iPhone iOS 5 Development
Essentials

iPhone iOS 5 Development Essentials — First Edition
ISBN-13:978-1466337275
© 2011 Neil Smyth. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the
author offers any warranties or representation, express or implied, with regard to the accuracy of
information contained in this book, nor do they accept any liability for any loss or damage arising from
any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of
the respective trademark owner. The terms used within this book are not intended as infringement of
any trademarks.

Rev 2.3p

Table of Contents

Lo 2 o Xix
1. About iPhone i0S 5 App Development ESSentialsccccccviiiiiiiiiiiiiiiiiniiinnnnsssssesssssssesssssssseeeseen 1
1.1 EXAMPIE SOUICE COUE .ttt ettt ettt ettt e e ettt e e et e e e e tte e e s abteeesabbeeeesabteeessnbaeeesnbeeessnnbeeesanbaeeesnns 2
B 1Yo | o=l P PURP 2
2. The Anatomy of an iPhONE@ 4S...........ceeeeeeeeeeeeeeneenneeennenenmemeesse 3
120 10 L PP TPPRP 3
YA B 1 o - VSRR SURR 3
P VAV T < (T 0 o T o= d AV YA PSURR 4
VYT = To I @e T oY aT=Yot d AV Y PSURR 4
P8 N1V 1= 44T oY 2P SURR 4
P S @ 1 =Y TSR 4
T 4 1Yo SR 4
PR W Tor- [o D T=Y (=Y ot o o SRR 5
2.9 Central ProcessSing UNIt (CPU)ccciccuiiiiieeeeeccciitee e e e e e cstit et e e e e e s st raeeeeeesssnanabaaeeeeessaansssaeeeaaeessasssnneeaaessannes 5
2.10 Speaker and MICIOPNONEcccieeiieieeee ettt e e e e e e e e e e e s st a e e e e e e s s e sbtaaeeeeeessaansttaeeeeaessansssaeeeeaseeannnes 5
B Y o o T TSR 5
2.0 SUMIMAIY ottt e e e eecctte et e e e e e et st raeeeeeeesstasaaaaeeaeeeaaasstaaaeeeasasaasssaaeeaaessaasesaaeeeeesaanssaaaeeeeessaasssaseaeaessannes 5
3.i0S 5 Architecture and SDK FrameEWOrKS........ccciiiiiiiininniiiiiiiiiinnniiiiiisseiiiiimeesseeiisssssssissssssssssssss 7
I 1 oL Tl @ R o= Tole] o o T=T-3E 10 1R 7
3.2 An Overview Of the 10S 5 ArChItECTUIEuiieeeiee et e s ee e e e e e e st e e s sntaeeesnnraeeeennreeens 7
G I I =N Oo Yol - T e TV T ol o I 1Y/ P PSURRN 8
3.3.1 UIKit Framework (UIKIt.fTAMEWOIK)cueeeeeeceeeieeeeeeeeeeieeee e eeettttttae e e e ee st ttassaaa e e e e eesssssaaaaseeessssssseeas 9
3.3.2 Map Kit Framework (MAPKIt fraMEWOIK)...............eeeeeeeeeiieeeieeeeeeetiiisieeeeeeeetiiiatvtaeeaeeessiisssseaaseeesssssseneas 9
3.3.3 PUSH NOLIfICAtION SEIVICE .coveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee ettt ettt eeaeeaeaeeaeeaaaaasessassasssssssssssssssssnnnnnes 10
3.3.4 Message Ul Framework (MesSAGeUIfrAMEWOIK)cccc.uvveeeeeeeeeiiirieeeeeeeeeiiiiveaeeeeeeesiissseeesseesssinnns 10
3.3.5 Address Book Ul Framework (AddressULFrameWOrK)............uuueeeeeeeeeeeeeeieeeeeeeeeeeeeeeeeeeeeeeeeeveeesssevsvsssasnnns 10
3.3.6 Game Kit Framework (GAMEKIt.frAMEWOIK).........cooeeeaeeaeaeaaeasaevasssnasenes 10
3.3.7 iAd FrameWork (IAQ.frOmMEWOIK)coueee ettt aeaeaaaasaaaaassassssssssssnnes 10
3.3.8 EVENt Kit Ul FIAMEWOIK ...ttt ettt ettt e e e s e sttt e e e e s e s sstsaaaaessssssssssnaasssssssnsses 10
3.3.9 Accounts Framework (ACCOUNTS.frAMEWOIK)ouvveeaeaaaeaeeaaaevsaevaavenasaees 11
3.3.10 Twitter Framework (TWitter. frAMEWOIK)oueeeaeeaeeaaaaaasssssssannanes 11
A TNE IOS MEAIA LAYET .. ettt e e ettt e e e e e et e e e e e e e s e tbb e e e e e e eeeeeebbbaeeeaeeseaassbbaareaeesssaassbaaeeeaeessanastbaeeeaeeens 11
3.4.1 Core Video Framework (CoreVideo.frameWOrK).............oueeeeeeeeeeeeieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeveeeaeeaeeveavvaasanes 11
3.4.2 Core Text Framework (COreText.framMEWOIK)cuueeeaaaeeeeeaeeaessvessvassanes 11
3.4.3 Image I/O Framework (IMagelO.frameEWOIK)................coeeeevuveeeeeeeeeiiiieeieeeeeeeeiiieeeaeeeeeeesssisseeasseeesssianns 11
3.4.4 Assets Library Framework (AssetsLibrary. frameWoOrk).............oeeeeeeeeeeeeeeeiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeevsvsasanns 11
3.4.5 Core Graphics Framework (CoreGrapRicS. frAmEWOIK)ueeevvaaaanns 11
3.4.6 Core Image Framework (Corelmage.frameWOIK)oeeaeeeeeeeeeeeeevevvvaaaanns 12
3.4.7 Quartz Core Framework (QUArtzCore.frameWOIK)ueeeaeeeeeaeaeeeeevesvvaesanns 12
3.4.8 OpenGL ES framework (OpenGLES.frAMEWOIK)coeevevaeevaaaaees 12
3.4.9 GLKit Framework (GLKIt frAMEWOIK)ooeeeaeaaeaaaaaaassssssssnsanns 12

3.4.10 NewsstandKit Framework (NewsstandKit frameWOrk)...............coeecccuueeeeeeeeeeisiiiiiieeeeeessecisiieeaseeesssinns 12

3.4. 11 iOS AUGIO SUPPOIT....cccceeeiiieieeeeeeee ettt ettt e e ettt e e e e e ettt e e e e e eissteeeeaeeeanaannes 12
3.4.12 AV Foundation framework (AVFoundation.framewWork)cccueeeeeiueeeenciieeeniiieeeiiee e 12
3.4.13 Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework and AudioUnit.framework)
.. 13
3.4.14 0pen AUIO LIDIAIY (ODENAL).....cccuueeeeeeee et e ettt e e et a e st a e essteaeessseaeas 13
3.4.15 Media Player Framework (MediaPlayer.frameWork).............c.coovcueeeeecueeeeniiieeeiiiiaeseiieeesieae e 13
3.4.16 Core Midi Framework (COreMIDILFrAMEWOIK)..........ccceeeeccueiieiaeseeescitiiaee e e eescessiaaaaeeeessssissseaaaseesssianes 13
3.5 TE 10S COIE SEIVICES LAY ..veeiieeeeiiiiieeee e e eeeecttite e e e e e e e s st ta e e e e e e e e s s ettaaeeeeeessaassstaaeeaeesssasstaseeeaeessannsssaeeeaasean 13
3.5.1 Address Book Framework (AddressBOOK.frAMEWOIK)...............eueeeeeeeiiiuveieieseeeesiiiiiieeaeeeeseiivsvaaaaeeesssinnns 13
3.5.2 CFNetwork Framework (CFNEtWOrK.fraOmMEWOTIK)cccccuuueeeeeeeeeeeiisiieeeeeeeecciieeeeaeeeeeseissaeeaaaeesssinnes 13
3.5.3 Core Data Framework (COreData.framMEWOIK)c.eeeeccueeeeeeseeeesiiisiieee e e eesisiieeaeeeeeeesssissseeaaaeesssinnes 13
3.5.4 Core Foundation Framework (CoreFoundation.frameWork)cccueeeeeeeeeeciiiuveeeeseeeesiiisiveesaeeessiinnns 13
3.5.5 Core Media Framework (CoreMedia.framEWOrK)............ccccuuueeeeeeeeeeiiiiieeeeeeessiiiieeaeeeeeesesssseeaaaeesssinnes 14
3.5.6 Core Telephony Framework (CoreTelephony. frameWOrK)..............ccecccuveeeeeeeeeeiciiieeeeeeeeesciissveeeaeeesssinns 14
3.5.7 EventKit Framework (EVENtKIt framMEWOIK)..............eeeeieeeeciieeiiieeeeeetiiisieeee e e eestciteaaeaeeeeseissvaeaaeeesssinnes 14
3.6 Foundation Framework (Foundation.framewWork)coccuiiieeie e e e rre e e e e 14
3.6.1 Core Location Framework (CoreLocation.frameWOrK)eeeeeeccivueeeeeeeeeeeiiiiiseeeeseeessiiissseesaeeesssinns 14
3.6.2 Mobile Core Services Framework (MobileCoreServices.framework)ccccevvuveeeeeeeeesciivveeesaeessainns 14
3.6.3 Store Kit Framework (StOreKit framMEWOIK)uueeeeeeeeeeieiieeeeeeeesceitteeee e e eeeesisseaaeaeeeessssssaaaaaeesssnnes 14
Be6.4 SQLILE lIDIQIY ...ttt ettt e ettt e e e s ettt e e e e e e s sttt e e e e e e ea s nbttaeaeeennaane 15
3.6.5 System Configuration Framework (SystemConfiguration.framework)ccccuueeeeeeeesiiivveeeseeesseinns 15
3.6.6 Quick Look Framework (QUICKLOOK.FramMEWOIK)............cccuueeeecuiieeeeiiieeeciieeeeieeeeeaeeeeaaesseaeesnseaens 15
A I =R (O N e ¢ @ L I Y- PRSP 15
3.7.1 Accelerate Framework (Accelerate.frameWOrK)............couecuuueeeeeeeeeesiiieieeee e e eeeteiieeeeeeeeeesscissseeaaaeesssianes 15
3.7.2 External Accessory Framework (ExternalAccessory.frameWOrk)eueeeeeeeceiivveeeeeeeeesiiirvveeeeeeeesiinns 15
3.7.3 Security Framework (SECUILY. frAMEWOIK)...............eeeeeeeeeeiieeieeeeeeeetiiiseieee e e eesssisseaeeeeeeessisssaaasseeesssnes 15
3.7.4 SYSLEIM (LIDSYSEEIM) ...evveeeeeeeieee ettt e ettt e e e e ettt e e e e e e et aaeeeeeassssaaeaaseessssssssaaaeeesssnres 16
4. Joining the Apple iOS Developer Programi.........cccccciiiiiiiiiiiiisssns 17
4.1 Registered ApPle DEVEIOPET ... 17
A O N DT =] LoT oYY gl CeY - [1 PO SUUS P PRPP 17
4.3 When to Enroll in the iOS DeVelOPEr PrOZIram™?ceiicciiiciiieeeeeeeecciiieeeeeeeeeeeittraeeeeeeesesatrseeeeeessenssssseeaeeens 18
4.4 Enrolling in the i0OS Developer Program ..., 18
A5 SUMMAIY e, 19
5. Installing Xcode 4 and the i0S 5 SDK........ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeennnnnnsnsssnssssssssssssssssssssssssssnsssnssssssssssssnsnne 21
5.1 Identifying if you have an Intel or POWErPC based MacCcooeiiiiiiiiiieiccceccee e 21
5.2 Installing Xcode 4 and the 10S 5 SDKueiiiiiiiiiiiiieeee e e eeccittee e e e e eeeeettreeeeeeeeseetbbbreeeeeeeesetabaaeeeaeeesanasraaaeeaeeeas 22
B 3 StAITING XCOUE ...uvvieieeeeeeeciteee e eeecct e e e e e et e e e e e e e e e e tbbaaeeeeeeeeeabbbaeeeaeeeaasatbaaeeaaeessassbaaeesaeeesanastbaneeaeeens 23
6. Creating a SIMple IPhONE IOS 5 APP ceeeeeeeeemmeemmmeeeeeeeeeeeeeeeeneeenennenesensssnsane 25
L Y = TV ol Yo [T 25
6.2 Creating the i0S APP USer INteITaCE e e e e e e e e e e e e e e e nnnn 30
6.3 Changing CoOMPONENT PrOPEITIESeeieeee e e e e e e e e e e e e e aeaaaaaannnnn 32
6.4 Adding ObjJects 10 the USer INTEITACE ...t e e e e e e e e e e e e annn 32

6.5 Building and RUNNIng an iOS APP iN XCOE 4eeiiiiiiieiiiiie ettt ettt ettt ettt et e e s it e e e bbe e e s sabae e e sabaeens 34

6.6 DEAliNG With BUIII EFTOISciiiiiiiieiiiiee ettt ettt ettt e e sttt e e e st e e e e saba e e e e bbe e e e sabbeeessabaeeesaabaeans 35
7. Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profilesccccoevveiriinneiscsnnnns 37
7.1 Creating an iOS Development Certificate Signing REQUESTueiiiiiiiriiiieeeeiie et s 37
7.2 Submitting the iOS Development Certificate SigniNg REQUESTcccvuiiiiiiiiiiiiie ettt 40
7.3 Installing an i0S Development CErtifiCatecuiiiiriiee ittt s e e st e e s sabee e e sabeee s 41
T4 ASSIGNING DEVICES ..nneeieeiiiiee ettt ettt e ettt e e sttt e e sttt e e s et e e e s aatbeee e ataeeeaabeeeeaabteeeeaabaeeessbaeessasbaeesaabaeessnnreeens 42
F BN O T 1AL o= T a1 Yo N | O TS PRI 43
7.6 Creating an iOS Development ProvisSioning Profile.........cccuiiiiiiie i e e e envaree e e e 44
7.7 Enabling an iPhone Device for DEVEIOPMENTciiiiiiieiiiee ettt rtee e e st e e s sere e e s sataeeesareeees 46
7.8 Associating an APP ID WIth @GN AP ...eeeiiiieie i e e e e e et e e e e e e e e e bbb a e e e e e e e s e arrraeeaaeeeas 46
7.910S and SDK Version ComPatibilityeeiiiiiiiiiiiieee et e e e et e e e e e e e raaeeaeeeas 47
7.10 Installing an APP ONTO @ DBVICEuuuuiiiiieeeeecicite et e e e escrre e e e e e e e ettt e e e e e e e e s s bt taeeeeeeessasstaaeeeaeessasansraeeaaeeeas 48
0 N YU 'Y T VSRS 48
8. The Basics of Objective-C Programming........ccccciiiiiiiiiiiiiiiiiiiisiiiisissns 49
8.1 Objective-C Data Types and Variablescoocuiiiieiii ettt e e e e et re e e e e e s e anrraeeeaeeeas 49
oA 0] oY [=Tot VT Ol oo T YT o T - PRSP 50
8.3 Objective-C Flow Control With if and @ISe...........uuveiiiiiiiiiee e e e 53
8.4 Looping With the for STatEMENTueiiiiiie e e e e e e et e e e e e e e ettt aeeeeeeeeseantraaeeaaeeas 54
8.5 Objective-C Looping With do and Whil@cccuuiiiiieeie e e e e e e e rrereae e 55
N O oI L=Tot VT Ol [IRV o T1 TN o Yo o L PRSP 55
9. The Basics of Object Oriented Programming in ObjJective-C.......ccccciiiiiiiiiiiiiiiiiiiiiiiiiiisssssssssssssssssssssssssssssssssssnns 57
LS VY o P Y A =T WO o =T ot 4 SRR 57
8B o T T 11 S 57
9.3 Declaring an Objective-C Class INTEITACEcccuiiieeee et e e e e et e e e e e e e s ebbb e e e e e e e e seanbaaeeeaeeeas 57
9.4 Adding INStance Variables t0 @ Classueiiiiiiiciiiieeee e eeccciiitee e e e e s cttrre e e e e e e sttt rr e e e e e e s s eabbaaeeeeeessaastsaeeeaeeeas 58
0.5 DEfiNg Class IMETNOMUSvvieeiiiieeetiee ettt e et e e e st e e ettt e e e s e e e s nteeeesnnteeeesnsaeeeennreeeesnssaeessnsaeeesnnneeens 58
9.6 Declaring an Objective-C Class IMPlemMeENntatioNn...........ccoiciiiiieieeieiiiiiieee et e e e e e seirbree e e e e e e e eaabraeeeaeeeas 60
9.7 Declaring and Initializing @ Class INSTANCEccuuviiieeeeeeiciieee e e e e e e e e et e e e e e e e s etrbre e e e e e e e seanbraeeeaeeeas 61
9.8 Automatic Reference CoOUNTING (ARC)ueieiiiiiiiiiieeeeeeeeceiitteee e e e eeeeettreeeeeeeseeetabtrareeeeessesatbaaeeeaeeesanasrraeeeaaeens 61
9.9 Calling Methods and Accessing INStANCE DAtaueeeiieieiiiiiiiieeeeeeeccciiee e e e e e e eeetrree e e e e e e e etbbreeeeeeeeseatraaeeeaeeeas 62
9.10 Creating the Program SECLIONcccuuiiiieee ettt e e e e e e e e e e e e et b e e e e e e e e s e bbbaeeeeeeeesastbaeeeeaeeesanstraeeeaeeens 62
.11 BringiNg it @ll TOBETNEIuvveieeee ettt e e e e e e et e e e e e e s s e bbb a e e e e e e e e s e tbbbaeeeaeeesenasbbaeeeaaeeas 63
9.12 Structuring Object-Oriented ObJECIVE-C COUR ..uuuriiiiiiiiiiiiiiee e e e ettt e e e e eecttr e e e e e e e eetbre e e e e e e e e eabbraeeeaeeeas 64
10. An Overview of the iPhone iOS 5 Application Development Architecture........ccccceeeeiiiiiiiiiiiiiccccccceceeeeeeeeeeeees 67
10.1 Model VieW CONrOHEE (IMIVC)uuuiiieeeeeeeeciieeeee ettt e e e e et e e e e e e e e tbbaeeeeeeeeseabbbaeeaeeeeennstaseeeaeeesannees 67
10.2 The Target-Action pattern, IBOUtIets and IBACTIONS.eeiiiieiiiiiiiiieee e e e ettt e e e e eectrree e e e e e e eeabrreeeeeeeeeanns 68
ORI U] oYl =TT V- 69
OB D=1 T=T= - d o] o D 69
L0.5 SUMMIAIY ..ottt aaaaaaaaaaseeaasaaaaasnnnnsnssssssssssssssnssnnssnnssnnnnnnsnnnsnnnnsnnnnnnnnnnnnnsnnnnnnnnnnnnnnnn 69
11. Creating an Interactive i0S 5 iPRONE APP ...ccccceciiiiiiiicicceeceeccesseere e sssseeseeeseeeeeeeeesesssessseesesessesesesaseesseeeasaassesnanns 71
11,1 Creating the NEW PrOJECT.....ciiiiiiiiiiee ettt et e e e e sttt e e e e e s ssaa bbb e e e e eeesssaabbeaeeaeeessanasbbeeeaaesssnnnnes 71

11.2 Creating the UsSer INTEITACEcoi ittt ettt e et e e ettt e e s sabaeeesnabeeens 71

11.3 Building and Running the Sample APPliCatioN.........ueiiiiiiiiiiie ettt et e e 74
11.4 Ading ACtiONS AN OULIETS......cceiiiiiieiiiie ettt ettt e e ettt e ettt e e sttt e e e sabbe e e e sttt e e ssabaeeesnbaeans 74
11.5 Connecting the Actions and Outlets to the User INTerfacecoocceieiiieiiiiiiie et 78
11.6 Building and Running the Finished AppliCationooiiiiiiiiiie e 81
I AT 4T o - PSPPI 82
12. Writing iOS 5 Code to Hide the iPhone Keyboard.........cccccciiiiiiiiiiiiiiiiiniiniinnnnnnnnnnnessesnnsessssssssssssenenn 83
12.1 Creating the EXAMIPIE AP . .ci i i ieiiieee e e eeectit ettt e e e e e st tae e e e e e e s s aataaaeeeeeessasssaaeeeeeessansssaeeaeesssansrsaeeeeesesanses 83
12.2 Hiding the Keyboard when the User Touches the RETUIN KEYceiveiiiiiiiiiiiiee e 84
12.3 Hiding the Keyboard when the User Taps the Background..............ccovviieiiiiiiieiiniieee e 85
L2, SUIMIMIAIY .uiititteeee e e e ettt ee e e e e e ettt eeeeeeeesaaataaeeaaeeeaaasssaaaaaaeeaaaasssaaeeeaeesansssaaaeeeeessassssaaeaeesssansnssnneeeenssannes 87
13. Understanding iPhone iOS 5 Views, Windows and the View Hierarchy.......ccccccciiiiiiiiiiiiniiiinniinnininnnnnnnnnnnnnn, 89
13.1 AN OVEIVIEW OF VIBWSviiiieiiieeeeiieeeeeitte e e sttt e e e sttte e e et eeesneteeeesntteeeesnsaeessnsaeeeanssaeeeansseeessnssneesnnsaeessnsseeens 89
13.2 THE UIWINAOW ClASS ..uuvieeeeirieeeeiiieeeeiteeeestteeeesstteeesssseeesssseesesssseeessssseessnnsseessnssesessnsseeessnssneessseeessnseees 89
TR B N T VY 1T = o] o 1Y U UEPPS 90
L3024 VIEW TYPES cutrrieeeeeeeeeiittteee e e e e ettt e ee e e e e e s st staaeeeeeeessaatsaaeeeaesaaassssaaaeeaeeaaasssssaseeeeessaassssaaesaeessannsssseeeeeessannes 92
13.4. 0 TRE WINGAOWeevvieeeiiieeeeee ettt ettt ettt e e e ettt e e e s e sttt e e e e s essasstteeaeeeessasnsneeeas 92
J3.4.2 CONTAUINEE VIBWS......ceeeeeeeeeeeeeeeee aaaaaaaeaaaaaaaeaaeaeaaeaaaaeaaaaaeaaaaaaaaeens 92
I3.4.3 CONEIOIS.cccoeiiiieee ettt ettt ettt e e e ettt e e e e ettt e e e e s e ettt aaeesasssassttaaassesssasssaeeens 92
R 1 o) o Y T=1 Y 92
13.4.5 TeXt ANA WD VIEWS ...ttt ettt ettt e ettt e e e s ettt a e e s sssasbttaaaesessssssaeeeas 92
13.4.6 Navigation VIeWs GNd TAD BAIS.........cccceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee aaaaaans 92
13.4.7 Alert Views aNd ACEION SHEEOLSeuueeieeeiiieieee ettt ettt e e et e e s e e sttt e e e e esssssseeeeas 92

T Y V1011 0o - TV U PUPPRS 92
14.i0S 5 iPhone Rotation, View Resizing and Layout HandliNg.........cccovvvumriiiiiiiiinnnnnenniiniiinnnnnnneiiinssmsnesesisssne 95
14.1 Setting UP the EXAMIPIE ..eiiieiiiiiiiiiiteee ettt ettt e e e sttt e e e e e s s sab bbb et e e e e essabbbtaeeaeesssannbbbaeeeaesssnnases 95
14.2 Enabling and Disabling ROTATION........cccciiiieiiiireeriiee e esiee e e siee e e seee e e st e e e ssntaeeesnaeeeesnnaeeeesnsaeeessnnneeesnssneens 95
14.3 Testing ROtation BENAVIONcccuuiiiiiee ettt e e et e e e e e e e sttt b e e e e e eeessabbbaeeaaeeesanastaaeeeaeseaannees 97
14.4 ConfigUring VIEW AULOSIZING. .. .uuuuueeeeureiiuieiiieaetteeueeiienaennnnaannaaaannanaanaanaaa.aan.aaaanaananannannnnnannnnnnnnnnnnnnaaaaaans 97
14.5 Coding Layout and Siz€ CRaNEESuuuuuuuuuuiiiiiiiiiiiiiiiiitannenaaaaaanaannaannanaaaann e nnnnaannnnnnannnnnnnnn 100
15. Using Xcode Storyboardingccciiiiiiiiiiiiiiiiiiiiicccsccessssessssssssesssssssessessssssssssssesssssesssssesssssssssssssssssssasssssssnsanns 105
15.1 Creating the Storyboard EXample PrOJECt.........uuuuuuiiuiiiiiii s 105
15.2 AcCeSSING the STOIYDOAI. ... e ee e e e e e e et b b e e e e e e e e stbbbaeeeaeeesanastbaeeeaaeesannnes 105
15.3 Adding Scenes t0 the STOrYDOAIdccooiiiiiiiie e et e e e e et e e e e e e s e eatbbaeeeeeeeeenanes 107
15.4 Configuring STOryboard SEEUESuuuuuuuueiiiiii e nnnnn 109
15.5 Configuring Storyboard Transitionseeeeeeeiii e aan 109
15.6 Associating a View Controller With @ SCENEcooiiiiriiiee ettt e et e e e e eabrae e e e e e e e eanes 110
15.7 Triggering a Storyboard Segue ProgrammatiCally ... 112
15.8 Performing Tasks DEfOre @ SEBUEuuuuuueiiiii e nnnnn 112
15,0 SUMIMIAIY ..ottt aaaeaaeaaaaaaaaaaaeessessnnnnnnsssnsssnsnsssssssssnsnssnsnsnnssnsnnsnnnnnnsnnnsnnnnnnnnnnnnnnnnnnnnnnnnnn 113
16. Using Xcode Storyboards to create an iOS 5 iPhone Tab Bar Applicationcccceeeeiiiiiiieiieiieecceececceeeeeeeeees 115
16.1 An OVErvieW Of the Tab Baruuiiiiiiiiiiiiiiiiee ettt e e e e s st e e e e s s sabbbaeeeaeessssabbbaeeeeaeesananes 115

Vi

16.2 Understanding View Controllers in a Multiview Application...........ccooiiiiiniiiinniieiie e 115

16.3 Setting up the Tab Bar Example APPlCationeiiiiiiiiiiiie et 116
16.4 ReVIEWING the PrOJECE FIlESeoiiiiieeeieee ettt ettt e et e e e s bt e e e sttt e e s sabbeeesaabaeens 116
16.5 Renaming the Initial VIeW CONTIOIEI.......ooiiiiiiiiiiee ettt e et e e st e e e s abaee s 116
16.6 Adding the View Controller for the Second CoONteNt VIEWcccooviiiiiiiiieiiiiiee e 117
16.7 Adding the Tab Bar Controller to the Storyboard............cooiiiiiiiiii e 117
16.8 Adding a Second View Controller to the Storyboard............ccooiiiiiiiiiiii e 118
16.9 Designing the View Controller User iNTErfaces........ciiiiiiiiiiiii ettt e e sbee e s 120
16.10 Configuring the Tabh Bar IEEMIS......uiii i i cciieeee ettt e e e s e e e e e e st e e e e e e e s santaaeeeaeesssnsrsaneeaeeesannnes 121
16.11 Building and RUNNING the APPliICAtioNuiiiiiiiicciee e e e s s e e e e e e s s erbaaee e e e e e s eanes 122
T A U1 o 0 =T VPR PRPPRR 123
17. An Overview of iOS 5 Table Views and Xcode Storyboardscccovvvumeiiiiiiiiisiinnnniininiinnineninnnsssenneeeenens 125
17.1 An OVerview Of the Table VIBWoiiiiiiiiiiiie ettt ettt e e st e e s stae e e esabbeeesnaneee s 125
17.2 Static VS. DYNAMIC TAbIE VIBWS.....uvviiiiieiiiiiieee ettt e e e e st e e e e e e st a e e e e e e e s sanbaaeeeaeesssnstnaeeeeeeesananes 125
17.3 The Table View Delegate and dataSOUICe.cciiiiiiiuriieeeeececcciitee e e e e e s srtrree e e e e e s serbrreeeaeeesssnrraeeeaeessannnes 126
I o oL oY R Y 1Y PRSPPI 126
17.5TablE VIEW CEII SEYIES ...vveeeeee ettt e et e e e e e e st e e e e e e e e s s abraeeeeeeessnstsaeeeaeeesannssraeeeeesesannnes 127
L7 8 SUMIMIAIY .titiiieee e e eeette et e e e e ee s et b e e e e e e e e s ataaaeeeeeeesaaataaeaeaeeesasssaaeeeeaesaassnssaaeeeeessaanssssaeeaeessannsssnneseesssannes 127
18. Using Xcode Storyboards to Build Dynamic TableViews with Prototype Table View Cells..........cccccceveeeenenns 129
18.1 Creating the EXamMPIE PrOJECT......uuiiiii e e e i i iciieee e e ee sttt e e e e e e st re e e e e e e e s s ettbaeeeeeesssasbaaeeeaeessannssaaeeeeessannnes 129
18.2 Adding the TableView Controller to the Storyboardcoocciiiieiiieiiccieee e e 130
18.3 Creating the UlTableViewController and UlTableViewCell SUDCISSESeeeeeeviiciiiiieeieeeeiicciiieee e, 130
18.4 Declaring the Cell REUSE IdENTIFIEN ...ciiiiiiiiiieeee et e cr e e e e e e e st e e e e e e e s e ebbraeeeeeeeeeanes 131
18.5 Designing a Storyboard UlTableView Prototype Cell..........cooiioiiiiieiiieiiicciiieee ettt e e e 132
18.6 Modifying the CarTableVieWCeIl CIass..........uveeiiiieiiiiiiiieee e e ettt e e e e s cttre e e e e e e e s setbbaeeeaeessesantaaeeeaeeesannnns 133
18.7 Creating the Table VIEW DatasOUICe.......ccccuuiiieieieeiiciiieeee e e e e ccetiree e e e e e e sscatraeeeeeesssstbbaeeeaeessanastsaaeeeesesannnes 134
18.8 Downloading and Adding the IMage FileSueiii et e e ettt e e e e e s s et raeeeeeeeseanes 138
18.9 Compiling and RUNNING the APPlICatioN.........eveiiiiiiiiiiiieee et e e e e et e e e e e s s e eabrae e e e e e e s eanes 138
L8. 10 SUMIMAIY «.utttiiieeeeeeecitte et e e e e eeecct et e e e e eeeeettbaeeeeeeessatbbaeaeaeeesasssaaaeeaesesaasstssaseeeessaasstaaeeeaeeesansssssanesasesannes 139
19. Implementing TableView Navigation using Xcode Storyboards.........ccccceriiiiiiinnnnnnnniiinciisssnneeninsssssssnssessnns 141
19.1 Understanding the Navigation CONTrOIlErcccuiiiiiiiiee e e e e et e e e e e e enareee s 141
19.2 Adding the New Scene to the Storyboard...........cceeiiiiie e e 141
19.3 Adding @ Navigation CONTIOIIETeieeiiieeceiiee e cceee et e e e e st e e e st e e e et e e e snre e e e snnaeeeennsaeeesnnneeens 142
19.4 Establishing the StOryboard SEBUEeiiiiiiii et e e e e stre e e e saeae e e enntaee s 143
19.5 Modifying the CarDetailVieWCONTroller Classcouciiieiiiiiee e eree e s e e sire e e e sarre e e e nnaeee s 144
19.6 Using prepareForSegue: to Pass Data between Storyboard SCENES.........cccvveieeriveeeiiieee e e 147
RS =T A= o o TN VT o] [or= Y T o PSS 148
SR T U ' o - 2 PSP 149
20. Using an Xcode Storyboard to Create a Static Table VIeWceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneennennnnnsssssnnssssssnnnnnns 151
20.1 An Overview of the STatiC TAble ProJECT ... e aan 151
WO A O =YY T = g V=T oo =T ot 151
20.3 Adding a Table VIeW CONTIOIEN e e e e e aan 152

vii

20.4 Changing the Table VIeW CONtENT TYPEuiiiiiiiieeiiee ettt ettt ettt e s st bee e st e e e s baeeessaeeas 152

20.5 Designing the STatic Tableeii ittt ettt e et e e s st e e e s sabb e e e s bbee e s saees 153
20.6 Adding 1tems £0 the Table CellS.......uuiiiiiiee ettt e st e e e st e e e s abee e e saeees 154
20.7 Modifying the StaticTableVieWCoONtroller Class.........ciiuriuiiiiiiie ettt sebee e sabee e s 157
20.8 Building and RUNNING the APPIICAtiONcoiiiiiiiiiiiie ettt ettt e st e e e atee e s eaees 157
20.9 SUMIMAIY ..ttt ettt ettt e e e sttt e ettt e e s ateeeesabbeee e abeeeeessbaeeeaasteeeeabaeeeesbaeeeansbeeesanbaaeesnbaeeesnbaeessnnees 158
21. Creating a Simple iOS 5 iPhone Table View Applicationccccccceeemnmnnnnnnnnnmemsemsss 159
21,1 SEtLING UP ThE PrOJECT .. .uuiiiiieeeeeeiciiitee e ettt e e e e e et e e e e e e e st b a e e e e e e s s s aeteaeeeeeessaastaaaeeaeessannssraneeaanean 159
21.2 Adding the Table VIEW COMPONENT ...c.ccuiiitiiiiiteeiiiee e ettt e eriiteeesiteeesstteesssateeessabeeessbseeesssbaeessnnseeessnees 159
21.3 Making the Delegate and dataSource CONNECLIONS..........uviiiieeiiiiiiiiiee e e e e e cecirre e e e e e e s e e e e e e s eanrraeeeeee s 160
21.4 IMplementing the dataSOUICE.........uuiiiiii ettt e e e e e e e e sttt e e e e e e e s s s attaaeeeeeessanasrraneeaaenas 161
21.5 Building and RUNNING the APPIICAtiON.......cci it e e e e e e rr e e e e e e s eabbraeeaaaeeas 163
21.6 Adding Table View Images and Changing Cell STYIESuueeiieiiiiiiiiieee et errrre e e 164
2.7 SUIMIMAIY o eietteee e e e eecct et e e e e e e e st etaeeeeeeeesasasaaeeeeeeaaassbaaeeeeeessaasssaaeeeeeessasnstaaaeeeeessasstaaeaeeeessannssrsneeaennan 166
22. Creating a Navigation based iOS 5 iPhone Application using TableViews........ccccccceeeeennnnnnnnnnnneneenennnnnnnnnnnnns 167
22.1 AN OVErvieW Of the EXAmMPIE ..cceiiiiiiieeee ettt e e e e st e e e e e e s sttt a e e e e e e e s s snttaaeeeaeessanasrraneaaeenas 167
22.2 SETHING UP ThE PrOJECTuuviiiieee e ettt ettt e e e e et e e e e e e e e s bt a e e e e e e s s attaaaeeeeesssastaaeeeaeessannstraaeeaanean 168
22.3 ReVIEWING the ProOJECE FIlS ..cceiiieiiiiieee ettt e et e e e e e e st e e e e e e s s bt aaeeeaeeesaanbraaeeaaeean 168
22.4 Adding the ROOT VIEW CONTIOIIEEuviieie e i ettt e ettt e e e e e st e e e e e e e st a e e e e e e s s s anbbaeeeeeesseanbraeeeaaenas 169
22.5 Creating the Navigation CONTIOIIEIciii ittt e e e et e e e e e e s et ba e e e e e e s s eanbbaeeeaaeeas 169
22.6 Setting up the Data in the ROOt VIeW CONTIOIIENcccuviiiieei et rre e e e 171
22.7 Writing Code to Display the Data in the Table VIEWcc.uveiiii it 172
22.8 Creating the SecoNnd VIEW CONtIOIIRIii it e e e e e e e s s s ba e e e e e e e s sarbbaeeeaeeeas 174
22.9 Connecting the Second View Controller to the Root View Controllercccoveeeeeeiiiiiiieeeee e 174
22.10 Implementing the Functionality of the Second View Controllerccccoecuviieeieeiiicciiieeeee e 175
22.11 Adding the NaVvIgation COUE......cccuuiiieeieieciiiiteee e et e e e e e et r e e e e e e s sttt aaeeeeeeessatbaaeeeeeeesanasbraeeeaaenss 178
22.12 Controlling the Navigation Controller Stack Programmaticallycccccovviiiiiiieeii e 179
22,13 SUMIMIAIY c.ttirteeeeeeeeeittreeeeeeeeeietrraaeeeeeeaaasssaaaeeeaessaasssasaeaaessaasssasesseeessassstsaseeaeesiaasstaaaeeeeessannstrannseeenns 179
23. Implementing a Page based iOS 5 iPhone Application using UIPageViewController.........ccccccceeeenenennnnnnnnnnns 181
23.1 The UIPageVieWCONtIOlEr Class.......uuuueeiiceiiiiiiiieeeeeeeeiiiieeeeeeeeeseitrareeeeeesssstbrsaeeeeeessssssraeeseeeessassrrsseeeeeens 181
23.2 The UIPageViewController DAtaSOUICEcccvvvieeeeeeiiiiiieeeeeeeeeeceitteeeeeeeessabrreeeeeeessssastaaeeeeeeesanasbraseeaeeens 181
23.3 NaVIZAtioN OFIENTATION ...uuviiiieiiieiiiiiieeee e e eeccettree e e e e e e seebreeeeeeeeesstbbaaeeeeeeessabtraaeeeeessaastbaeeeaeessanastrasesaaenas 182
R Y o (g L] MoTor- [4 o] s PPN 182
23.5 The UIPageViewController Delegate ProtOCOL..........ccuiccureeieeeeeecciiiieee e e e e eetrree e e e e e e et be e e e e e e e s earbreeeeaeeeas 183
23,6 SUMIMAIY ... iiiiiitiieeeeeeeccctte et e e e e eeeeetbraeeeeeeeasettaaaaeaeeeeaaassbaaaeaaeeaaassbasaeeeeesaassbaaaesaeeesassbaseeeaeessannstraaeeaaenns 183
24. An Example iOS 5 iPhone UIPageViewController Application.......ccccceeceirrnmeiiiiiiiiiissnnenniinicsssssnneessssssssssnnees 185
24.1 The Xcode Page-based Application TEMPIAtEcccveiiiiiiee et stee e e aaa e e e eaeees 185
24,2 Creating the PrOJECE....cccueiiiiie e ettt e e e e e e e e e e e s sttt e e e e e e e s sttt e aeeeeeessaabbbaeeaeeessanasbbaaeaaeeean 185
24.3 Adding the Content VIEW CONTIOII. e e ann 185
B A @ =YY T o= T = TN 1Y, o T =Y 187
24.5 Initializing the UIPageVieWCONTIOIEY e e e e aaan 190
24.6 Running the UlIPageViewController AppliCation.........cooiiooiiiiiieeeeeeeeeeeee e 192

viii

2477 SUMIMAIY ..ttt ittt ettt et e e ettt e et b e e e e ataee e e bttt e aaabbee e e abeeeeeaabae e e abeeeeeabaeeeaabaeeeaabbeeesanbbeeesnbaeeesnbaeassanees 192

25. Using the UlPickerView and UlDatePicker COmMPONENtS........cccceeveeiiiisniinissnniissssnnsisssnsissssnesssssssssssssesssnns 193
25.1 The DatePicker and PickerView COMPONENTScouuiiiiriiieeiiiiie et e ettt e e s siieeessieeeessabbeeessabeeesssreeessanes 193
25.2 A DatePICKET EXAMIPIE . neeiiee ittt ettt ettt et e e ettt e e e sttt e e sttt e e ettt e e e e abbe e e s eabbeeeenabaeeeearaeeeeanees 194
25.3 Designing the User INTErfaceoouuiiiiiiiee ettt ettt e ettt e e s abee e e s abee e e sabaee s snees 194
25.4 Coding the Date Picker Example FUNCHIONAIITY ...c.oiouiiiiiiiiii e e 195
25.5 REICASING IMIBIMOIYeiiiiiiee ettt ettt ettt e e e ettt e ettt e e e s et e e e sabe e e e abaeeeesbaeessnbbeeesaabbeeesnbaeessnsbeeesannees 196
25.6 Building and Running the iPhone Date Picker Applicationcccvvviieiiiiiiiiiiiieec et 196

26. An iOS 5 iPhone UIPIickerView EXamPIeeeeeeeeeeeenmneeenemmemmsmmssnse 199
26.1 Creating the i0S 5 PICKErVIEW PrOJECTviiiiiiieeeiiiie ettt ettt e e e s eee e s sete e e s sebae e e saneeeseneees 199
26.2 UIPickerView Delegate and DataSOUICEcccuiieeruiieeeiieeeeieeeesiteeeesieeesssateeessaseeessseeeesssseeessnsseeessnsees 199
26.3 The pickerVieWCoNTrollEr.h FIleeoi ittt et e st e e s et e e e s abee e e sneees 200
26.4 DeSIgNINg the UsSer INTEITACEcii ittt e e e s e e e e e e e st r e e e e e e s s astaaeeeaeeesenanrraeeaaeenan 200
26.5 INITIAlIZING ThE ATTAYS . ..eeiiiieeeee ettt e e e e e e et e e e e e e e s s s bt e e e e e e e e s s aataaaeeeeessanstaaeeeaeessanassraaeeaaeean 201
26.6 Implementing the DataSource ProtOCOL..........uiiieeiiieciciieeee et e e e e e e rr e e e e e e s eanbraeeeaeeeas 202
26.7 IMpPlemMeENting the DeIBGATE.......ccceeeeeee et e e e s e e e e e e e st a e e e e e e s s e abtbaeeeaeessanastraeeaaaenan 203
26.8 HIidiNG the KEYDOAIdeeiiiieee ettt e e e e e e e s et e e e e e e e sttt a e e e e e e e s s s antaaeeeaeeesannsbraeeeaaeean 203
26.9 MEMOIY IMANAZEIMENTuiiiiieeeeeiiiiitreeeeeeesiertrreeeeeeeessrtraseeeeeessasattaaeeeeeesaaaastsaaeeaeesasasstsaeseeeessansrraaeeaeenan 203
26.10 Testing the APPICATIONviiiei it e e e e e e e st r e e e e e e s s abtaaeeeaeesssastaaeeeeeessanasrraeeeaaenan 204

27. Working wWith Directories 0N iOS 5cceeeeeeeeeeemeeemememmmmemmmmmmmmmmmssses 205
27.1 The Application DOCUMENTS DIir€CLOIYuiiiieeiieeeitieeeesieeeeestieeeesstteeeestaeeesssseeeesnseneesssseeesasseeessnssneessnnees 205
27.2 The Objective-C NSFileManager, NSFileHandle and NSData Classes.........ecevrveeeerruieresrieeresnieeeeseeeeessnens 205
27.3 Understanding Pathnames in ODJECTIVE-Cccieicuiirieiiieeeeieee e ciee e et e s seee e stee e e sene e e st e e e snaeeeesnnees 206
27.4 Obtaining a Reference to the Default NSFileManager ObJect........ccvveeviiereiiciee e 206
27.5 Identifying the CUrrent Working DIr€CTOIYuuuiiercuiireeriieeescteeeestteeeestteeesseteeeesneeeessnsseeessnseeeesneneessnnnes 206
27.6 Identifying the DOCUMENTS DIF€CTONY.......vuiiiiiieeectiee e ecttee e s ree e e st e e e stee e e st e e e sete e e s snnreeessnraeeesneeeessnnees 207
27.7 Identifying the TEMPOrary DIrECLONYciiieiiiiiiieeee e e e eccctieee e e e e e escrtar e e e e e e e sstbrareeeeeessesastaaeeeeeessaasrraeeeaaenss 208
27.8 ChangiNg Dir€CEONY ...eeeiiuvirieeeeeeeeeiittreeeeeeeeeeitbreeeeeeeesstbrasaeeeeessaabbaraeeaeesaassbtaaseeaeessasstaseeeaeessasstraneeaeenas 208
27.9 Creating @ NEW DirECEOIMY ..uuveeeeiieiiiirreeeeeeeeeiiitrreeeeeeeeseitbareeeeeeeaattrbaaeeeaeessassstsaseeaeessasstraaeseeeessanastraseeaeenns 208
27.10 DEIETING @ DIMECEOIY ...uuviiriieeeeeeeccitteee e e e e eecetbr e e e e e e e s ttbraeeeeeeeeseatbaaeeeeeesaasttbaaeeaeeesaaastbaeseeeessanastraeeeaaenas 209
27.11 Listing the CoNteNtS Of @ DIFECLOIY ...vveiiiieiiiiiiiieee e e e eccitieee e e e e e e cetbaee e e e e e e stbbareeeeeessesabbbaeeeeeeesenasbrareeaaeeas 210
27.12 Getting the Attributes Of @ File OF DIF€CLOIY.....uueiiiieiiiciieieee et e e e e e e et rr e e e e e e s eabbraeeeaeeeas 210

28. Working with iPhone Files 0n iOS 5..........ceeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeeneennnnnsnsnsnsssssssssssssnsssssssssssssssssssssssssssnen 213
28.1 Creating an NSFIleManager INSTANCEvviii e e ectreeeertte e e erree e e sre e e e stae e e s raaee e e sateeessnsseeeesntaeeesseaeessnnees 213
28.2 Checking for the EXIiStENCE Of @ FIlE ...uiiiiuiiii e eciee e ecee e e s e e e are e e stre e e e seta e e e sneaeeeennees 213
28.3 Comparing the Contents Of TWO FIlES........ciiiiiiiiiiiie e e et stre e e e seta e e e s nrne e e eneees 214
28.4 Checking if a File is Readable/Writable/Executable/Deletablecccccveriiiiiieiiciiee e 214
28.5 MOoVING/RENAMING @ FIl@ ..veiiiiiiiieciiee ettt e s e e e e e e s sate e e e s ate e e e sabaeeesaataeaesneeeeesnnees 214
28.6 COPYING @ FIlE 1uvvrteieieeieiiiiiteee ettt e e e st e e e e e s st e e e e e e e e s sttt eaeeeeeesassstbaeeeeeessaasttaeaeeeessnnnstraeaaaeenas 215
B s =Y 04 Vo XY T oY== TN = T = 215
28.8 Creating @ SYMBDOIC LINKee e e e nnnn 215
28.9 Reading and Writing Files With NSFIl@IManager...... ... 216

28.10 Working with Files using the NSFIleHaNdIe Classccuueiiiiiiiiiiieeeiee ettt 216

28.11 Creating an NSFIleHANdIE OBJECT.....ccoiiiiiiiiie ettt ettt e e st e e s abee e e saees 216
28.12 NSFileHandle File Offsets and SEEKINGcouuiiiiiiiiieee et 217
28.13 Reading Data fromM @ FlE ..c.cuiiiiiiiee ettt e ettt e e sttt e e e st e e s st e e e e nabe e e e sabeeeeeanees 218
28. 14 Writing Data tO @ FilE c.uuueieeieiie ettt ettt ettt e e et e e e s st be e e s eabe e e e sabeeeseanees 218
28. 15 TrUNCATING @ FIlE .ttt ettt ettt e ettt e e sttt e e s bee e e s abe e e s eaabeeessabbeeesnabaeeesnsbaeesennees 219
28.16 SUMIMAIY .o iuiitiee ettt et te e ettt e e e ettt e ettt eeeaatee e e abeeee e abaeeeaabaeeeaaateeeeabaeeeasbaeesansbaeesansaaeesnstaeessnnbaeessnsnes 219
29. i0S 5 iPhone Directory Handling and File I/O — A Worked EXample........cccccceeeeeereeeeccrsneenecsneeecssneeseessneesennnns 221
29.1 The Example iPhone APPIICAtioNuviiiii it e e e e e s st e e e e e e s seabtra e e e e e e e s aanbraaeeaaeeas 221
29.2 Setting up the APPlICAtioN PrOJECT.uiiiii ittt e e e e e e e e e e e s st rae e e e e e e s earbraaeeaaeeas 221
29.3 Defining the Actions and QULIETS.........eeiii i e e e e e e e e e e s st ra e e e e e e e s s anbraeeeaaeeas 221
29.4 DesigNINg the UsSer INTEITACEccci i iiiieee e ettt e e e e st e e e e e s s sttt a e e e e e e e s sabtaaeeeeeeesananbraaeeaaeeas 222
29.5 Checking the Data File on AppliCation STArtUPeeeeeeeccciiiieee et escrrre e e e e e e st rae e e e e e e s earrraeeaaeeeas 223
29.6 Implementing the ACioN IMELNOcoii i e e e e e e e e e s s arrraeeeeeeeas 224
29.7 Building and RUNNING the EXAMPIEvveeiii ittt ettt e e e cettaee e e e e e e s artrre e e e e e s s santaaeeeeeessennbraeeaeaenas 225
30. Preparing an iOS 5 App to use iCloud SEOragecccvvvureriiiiiiiiisnnniniiiiiisisnnenesissssssasssess s ssssssssssssssssssssssssnnnns 227
{01V o 1 A T o 18 o I RSP 227
30.2 iCIOUd Data StOraZE SEIVICESeceiiuriireeeeeeeeiiittteeeeeeeessettareeeeeessettbaaeeeeeesssaastaaaeeeeessaasstaaeeeeeessanssraneeaaenas 227
30.3 Preparing an Application to USe iCIoUd STOrage.......cciiicuiiiieei e ettt e e st e e e e e e st ae e e e e e e e s eanbraeeeaeeean 228
30.4 Creating an iOS 5iCloud enabled APP IDuuiiiiieie ettt e e e st e e e e e e e s et ra e e e e e e e s sabbraeeeaaeeas 228
30.5 Creating and Installing an iCloud Enabled Provisioning Profileccccceeviiiiiiieeie e 229
30.6 Creating an iCloud ENtitlements Fil.....ui ettt e e e e e e e e st rr e e e e e e s s eabbraeeeeaeeas 229
30.7 Manually Creating the Entitlements File.........uiiieiii i e e e e e e s earrraee e e e e s 230
30.8 Accessing Multiple Ubiquity CONTAINETSccuuviiieeeeeeeiiiiieeee e e e e e ettt e e e e e e s sttrae e e e e e e s eeaabbaeeeeeeesearbraeeeaeenas 231
30.9 UbBIQUItY CONTAINET URLS ...uvviiiiiiiiiiiiiieeeeeeeciiittteeeeeeeessitttaeeeeeesssssttaaeesaeessanstsaeeeaesssassstaseseeesssasssraneeaeenas 232
30,10 SUMIMIAIY c.ittteieee e e eeccttr e e e e e e e e e iettrreeeeeeesstabaaeeeeeeesaasraaaeaeeesaassraaaeeeessaasstaaaeeeeessasssaaeseeeesaannssranneaeenns 232
31. Managing Files using the i0S 5 UIDOCUMENT ClaSScceeeeeememmnnennnnnnnmnnnmnnsnnnnsnsssssssssssssssnssssssssssssssssssssssssnsanes 233
31.1 An Overview of the UIDOCUMENT CIaSScccvieieiiiiereeiiieeeesieeeesiteeeestaeeesseteeeessnteeessnnreeessssaeaesneeeessnnnes 233
31.2 Subclassing the UIDOCUMENT CIaSSccccuviiieiieieeeeieieeeestteeesseteeeesereseesstaeeessstaeessnteeessnssesesssteeeesnnsanessnsees 233
31.3 Conflict Resolution and DOCUMENT STAtES.........uiieiciiieeeiiieeeeree e e st e e e sre e st e e e sere e e e stre e e esaraeeesnreeeesnnnes 233
31.4 The UIDocument EXxample APPICAtIONcciicuiirieiiiie et e e e e e sere e e et e e e s nrae e e ennnes 234
31.5 Creating @ UIDOCUMENT SUDCIASSuuviieeiiieiiiiiieiee e cee ettt e e e eeetrae e e e e e e e sttt ba e e e e e e s s eatbbaeeeaeeeseatbraaeeeaeeas 234
31.6 Declaring the OULIETS @Nd ACLIONSuvieiiiieeiciieeee et e e e e et e e e e e e e ssabbbaeeeeeeeseabbaaeeeaeeesenatbraaeeaaeens 235
31.7 DeSIgNING the USer INTEITACEcci ittt e e e e e et e e e e e e e sttt b e e e e e e e e s e abbbeeeeeeeesenntbbaeeeaaeens 236
31.8 Implementing the Application Data StFUCLUIEcooiiiiiiieiee ettt e et rr e e e e e e e earbraeeeaeeeas 237
31.9 Implementing the contentSFOrTYPE MEtNOd..........cooiiiiiiiiiee e e et rr e e e 237
31.10 Implementing the loadFromContents MEthodcccuvviiiiiiiiiiiiieeee e et e e 238
31.11 Loading the Document at APP LAUNCHc.uuiiiiiee ettt e e e et e e e e e e s eatbbaeeeaeeeas 238
31.12 Saving Content t0 the DOCUMENTieeee aaann 241
003 0 G B =Yy g = o V=AY o o] [Tor= o o T 242
003 0 I U 4T o 1 /2 242
32. Using iCloud Storage in an iOS 5 iPhone Applicationccccecciiiemeiiiiiiciinnenenniinnisineenneeninssssssssnneesssssssssssnnees 243

32.10CIoUd USAZE GUIAEINES. ...ceeiuetieeeitiee ettt ettt ettt e ettt e et e e e s sabt e e e s abbeeessabbeeesaabbeeesbbeeeesanees 243

32.2 Preparing the iCloudStore Application for iCIoUd ACCESS.uutiiiiiiiiiiiiee ettt 243
32.3 Configuring the VIEW CONTIOIIEroiiiiiii ettt ettt e et e e e abe e e e s abae e e saees 244
32.4 Implementing the viewDidLoad MEthodciiiiiiiiiiiiee ettt e eee e s 245
32.5 Implementing the metadataQueryDidFinishGathering: Methodcccccovviiiiiiiiie i, 247
32.6 Implementing the saveDocument METhOMcoooiiiiiiiiiie et e s 250
32.7 Enabling iCloud Document and Data Storage on an iPhoNeccceiiiiiiiiiiiiieeeiee e 250
32.8 RUNNING the iICIoUd APPIICATION ..eiiuiiiiiiiiiiee ettt ettt e ettt e e s sabee e e s abe e e e sabaeessaeees 251
32.9 Reviewing and Deleting iCloud Based DOCUMENTSc.uuveeeieeeiiiiiiiieeeeeesisitirreeeeeesssanrseeeeeeessennnssneesaaeeas 251
32.10 Making a Local File UDIQUITOUSuviiiieiiiiciiiiieee ettt e e e e eseteee e e e e e e st rre e e e e e e seastaaeeeeeessnansraeeeaaeeas 252
Bt YT 4 o - PP 253
33. Synchronizing iPhone iOS 5 Key-Value Data using iCloudcceeeeememnnnnnnnnnnmemnnmsnnmesssmsssssssssssssssssssssssssssss 255
33.1 An Overview of iCloud Key-Value Data STOrageccoiecuriiieieeeeiiiiiieee e e e e e settrree e e e e e ssarraaeee e e e s s ensrraaeeaaeean 255
33.2 Sharing Data BetWeen APPliCatiONS.iiiiii et eccciiteee e e e ecrtree e e e e e e sttt e e e e e e e s s seanbtaeeeeeeeseanbraeeeaeenas 256
Rl D E] = I (o =Tl =T g ot To T PP 256
KR I o) o i ot f =TT V4T o T RSP 256
33.5 Receiving Notification of Key-Value ChanGes........cccieiiiiiiiiiiie ettt e e e e e s rrre e e e e e e s eanrraeeeaeeeas 256
33.6 An iCloud Key-Value Data Storage EXampPle.......ueeeeiieiiiiiiiiee e ettt e s st e e e e e e st rr e e e e e e e s eanbraeeeaeeeas 257
33.7 Enabling the Application for iCloud Key Value Data StOrage........cccvveeeeeeeiiiiiiieeeee e ccciiieeee e e e e sevrrneeee e 257
33.8 Implementing the VIEW CONTIOIIEEceiii it e e et re e e e e e e e et ra e e e e e e s s earbraneeaeeeas 258
33.9 Modifying the viewDidLoad METNOMcccuiiiiiiee ettt e e e e e st br e e e e e e e s eanbraeeeeeeeas 258
33.10 Implementing the Notification Methodcoeviiiiiiiiiiiiie e e 259
33.11 Implementing the saveData MEthod..........c.uuiiiiiii e e e e s e rra e e e e 259
33.12 DeSiZNING the USEr INTEITACE ... uiiiieeei ettt e e et e e e e e e e s st a e e e e e e s s aataaeeeaeessenasbraneeaaeeas 260
KR T B Y e o o T Vo o] or= 1 Lo T SRR 260
34.i0S 5 iPhone Data Persistence using ArChiVing..........eeeeeeeeeeeeeeeeeeeeneemeenensessanes 263
34.1 AN OVEIVIEW Of AFCRIVING....veeiiiiiiiiiiiieee ettt e e e st e e e e e e e e s ettt aa e e e e e e s s abtaaeeeaeessaastaeeseaeessanastraneeaeenan 263
34.2 The Archiving EXample APPICAtIONueeiiiieiiiiiiiee ettt e e et e e e e e e st e e e e e e s s saatbaeeeeeesseabbraeeeeeenas 264
34.3 Implementing the Actions anNd OULIETSccuuiiiiiei e e e e e e e et br e e e e e e e s eatbbaeeeaaeeas 264
34,4 MEMOTY IMANAZEIMENT ... uuviiiieieieeiiiiieeeeeeeeeieitrreeeeeeeeseitbareeeeeeesaitbaaeeeaeesaassstaaseeeeeeaassstasaseeeessanstraneeaaennn 265
34.5 DeSIgNING the USr INTEITACEciiiciiiiieee ettt e e e e et e e e e e e e et ba e e e e e e e e e atbaaeeeeeeesenntbraeeeaaeens 265
34.6 Checking for the Existence of the Archive File 0N Startupcoccvvvieeie i 266
34.7 Archiving Object Data in the ACtioN MEthodcooiiiiiiiiiiie et e e 268
34.8 TeStING The APPIICATION «.uutriiieee ettt e e e e e e e et b b e e e e e e e s s sttt beaeeeeeeseasbbaeeeaeessanasbraeeeaaenan 268
2.9 SUMIMAIY .. eiiiitiieee e e eeccctte e e e e e e et eetbraeeeeeeeesettbaaaeeeeeeaaaasbaaaeaaeeeaassbasaeaeeessastbaaaeeaeeesassbaaeeeeeeesannstbaeeeaaennn 269
35. i0S 5 iPhone Database Implementation using SQLIte........cceeueeeeeeeeeeeeeeeeneennenneennmnennmmnmnnnnnnnnssnnsssssssssssssssnsnnes 271
5.1 WAt iS SQLITE? .eveieiieieiiiiiiieee e e e eecctte et e e e eeeertb e e e e e e eeesebbraeeeeeeeeaaabbaseeseeeeaasasbaaaesaeessaaastbaeeeeeeesanastbaeesaaeens 271
35.2 Structured QUErY LANGUAEZE (SQIL) «.uuvrreeeeeieeiiiirieieeeeeeeeeitteeeeeeeeeeettraeeeeeeesssaatbaeeeeeessasastbaeeeaeeesasnstraeeeaaenns 271
35.3 Trying SQLItE 0N IMACOS X....uuuuiiiieeee s nnnnnnnnnnnnnnnnnn 272
35.4 Preparing an iPhone Application Project for SQLite INtegrationcccoeeeiiieiiiiiiiieiieeeeeeeeeee e 273
35.5 KEY SQLITE FUNCLIONS ... e e e e e e e e e e e e e e e aaaaannnnnnnnnnnnnnnnnnn 274
35.6 Declaring @ SQLItE DAtabase ... e e e e e e e aann 275
35.7 Opening or Creating @ Database.cccciiiiecee e aan 275

Xi

36

37

38

Xii

35.8 Preparing and Executing @ SOL StatemMENT........ciiiiiiiiiiiiee ettt e e e s 275

35.9 Creating @ Database TabIeii ittt et e e st e e s be e e s abe e e e eaaes 276
35.10 Extracting Data from a Database Table..........iii it 276
35.11 CloSing @ SQLItE Databaseeeiiiiieiiiiiiee ettt ettt et e e e st e e stae e e ettt e e s sbbeeessabteeessabaeeesabeeessanees 277
Lo T YU 4T 1 =1 Y PSP PR PP 278
. An Example SQLite based i0OS 5 iPhone Applicationccccciiiiiiiiniiiiiiiiiniiiiisssssssssns 279
36.1 About the Example SQLite iPhoNne APPliCatioN.......c.ueiiiiiiiiiiiiee ettt et e e s 279
36.2 Creating and Preparing the SQLite Application ProjECtcoovvieeeiiiireeiiiee ettt 279
36.3 Importing sqlite3.h and declaring the Database REference.........cccvveeeieeiiicciiieeeee e 280
36.4 Creating the OULIETS aNd ACTIONS.......uuiiiii e e e e e e e e e st re e e e e e s s seabtrbeeeeeessannbraaeeaaeeas 280
30.5 REICASING IMBIMOIY ...c.cciiiieeee e e ettt e e e e e et e e e e e e e st aaeeeeeeeessartaaeeeeeessassstaaeeeaeessannstaaaaeaeessannssraaeaaannan 281
36.6 Creating the Database and TabIeceiii oo e e e e e e e s st ra e e e e e e e s earbraeeeaeeeas 282
36.7 Implementing the Code to Save Data to the SQLite Databasec.eeeieeeiiiiiiiieee et 283
36.8 Implementing Code to Extract Data from the SQLite Databasecccvcvverevriiereiiiiee e 284
36.9 DeSIgNING the USer INTEITACEii i iiiieee ettt e e e e s re e e e e e e e st a e e e e e e s s abtaeeeeaeeesanasrraaeaeeenas 285
36.10 Building and RUNNIing the APPlication............uiiiiiii i e e e e srbraee e e e 286
RTINS0 4 o =T USRI 287
. Working with iOS 5 iPhone Databases using Core Data.......ccccceeeeivvuneeriiiiiiissssnnnnisiisisisseeniiissssssesesssssses 289
37. 1 Te COre Data STACK.....cccutieeeeeieeeeiiteeeetteeeete e e ettt e e ettt e e eseaeeeesnteeeesstaeeeasseeeeannseeessnsseeesanseeessnneeeessnnees 289
Y VT To I @ | o T =Tel £ URPRRR 290
YRV F T T={Yo @ o T <Tel A 0] o] =« PR 290
YV E T T Yo I @ oY <Ted Y, LoT =] PSR 291
R N T E TS = o] e =l oY) e [T F=1 o SRR 291
O T 1S YA A O] o =T ot d] o] TSR 291
37.7 Defining an ENtity DESCIIPTIONcciciiiieeeeeeeeccititeee e e e et e e e e e e st a e e e e e e e s st b aeeeeaeesssaabbaaeeeaeessanasbraneeaaenss 292
37.8 Obtaining the Managed ODbJect CONTEXLcuuiiieeee ettt e e e e e et e e e e e st rr e e e e e e e s setbbaeeeeeesseanbraeeeaeenas 293
37.9 Getting an ENtity DESCIIPTION ..icciiiiiiieee e e ettt e e e e e e e st e e e e e e e s sttt b aeeeeeeessatbaaeeeaeeesanasbraaeeaeenss 293
37.10 Creating @ Managed ODBJECT.......ccccuiiiieei ettt et e e e e e st e e e e e e s sttt b e e e e e e e e ssabtaaeeeaeessenasbraaeeaaenas 293
37.11 Getting and Setting the Attributes of a Managed ObJECtccccvviieeii e 294
37.12 Fetching Managed ObjECES.ccciiiiiieeeeeeeciitiee et e e e ececte e e e e e e e et b e e e e e e e e s s abbareeeeeeessatbaeeeeeeessanastrsaeeaaeens 294
37.13 Retrieving Managed Objects based 0N Criteria........cccciuiiieeieeeiiiiiiiiee e e e eerbe e e e e e s earbraeeeee e 294
7.1 SUMIMIAIY .ttreeeeeeeeeccctteeeee e e e e et etabaeeeeeeeesaatsaaaeaeeeeaassbasaeaeeeeaassbaaeseeeeaaasssssaaeeaeeesastsaaaeeeeesaannsbbanneaaenns 295
. An iOS 5 iPhone Core Data TULOrial.....cccccviiiiiiiinneiiiiiiininnnneniiiiiisinnseeniiiisssssseessisssssssssessssssssssssssssssssssssns 297
38.1 The iPhone Core Data Example APPliCationccccviiiiiiieecciiee e e ae e e 297
38.2 Creating a Core Data based iPhone ApPliCationccocvieieiiieii e ree e e e e et e e are e e 297
38.3 Creating the ENtity DESCHIPTION ..iiiiiiiiiciiee et et ee et e e s e e e s e e et e e e s sate e e e st e e e s sataeeesnraeeeeneaeesannees 297
38.4 AAdING @ VIEW CONTIOIET «.eeiineiiieeciiee ettt e e e e e e e st e e e e st e e e s ate e e e sntteeeesnsaeeesantaeeesnntneeennnees 299
38.5 Adding Actions and Outlets to the VIew CONroller........c.ueiiiiiii it 300
38.6 DeSIZNING the USEr INtEITACE e e e e e e e e e e e aeaaannnn 301
38.7 Saving Data to the Persistent Store Using Core Data......ccccceeeeeeeeieeieieeeeeeee e 302
38.8 Retrieving Data from the Persistent Store using Core Dataccccoeeeeeeieeeiiieiieieeeeee e 302
BTSN 2= 1T T =1V =T 'y T o 303
38.10 Building and Running the Example AppliCationccooooooiiiiiiieeeecee e 304

1 T YU 4T 1 =T YOO OO ST P PP PPRTTPR 304

39. An Overview of iOS 5 iPhone Multitouch, Taps and GESLUIEScccvceiiriiiuniiinsinniinininninissneisssessssneesssens 305
1S BN I g Tl 2T T aTe [= s =1 o H PSPPSR 305
39.2 Forwarding an Event to the NeXt RESPONUETccoiuiiiiiiiiie ettt ettt e e e s 306
K1 TR €Y (U [<SP 306
1S B I | 1P PP 306
K1 TR e TU ol =T SRR 306
39.6 Touch NOTIfiCatioN METNOUSccoiiiiiiiiiiee ettt e e e e s ettt e e e st e e s satee e e sabeeeesnbeeessnnees 306

LN I (010 [0 =X 1= To o I ¢ £ T=2 7 ¢ Lo Lo OO PPNt 307
39.6.2 toUCNESMOVEA MELNOXcoveeeeiiiieeeiee ettt ettt e e e e et ae e e e e ensanes 307
39.6.3 tOUCNESENE MELROUcoveeieiiiieieiee ettt ettt e e et e e e e e nsines 307
39.6.4 touchesCanCelled MELNOU............cc...uuueeeeeeiieeee ettt ettt e e e et e e e e ensanes 307
30, 7 SUIMIMAIY .ttt e e e ettt e e e e e e e et aeeeeeeesaaaetaaeeeeeeesaasbaaaeeeeesaaasstaseeeeeessanssteaaeeeeessanssaaeeeeeessannssraneaaannnn 307

40. An Example iOS 5 iPhone Touch, Multitouch and Tap Applicationccccciiiiiiiiiiiiiiiiiiniiniiniiinnrnssenn, 309
40.1 The Example iOS 5 iPhone Tap and Touch ApPPliCation.......c.uuvieiieeiiiiiieeee e 309
40.2 Creating the EXample iOS TOUCKH PrOJECE......cciiiiciiiieeee ettt ettt e e e e e e st e e e e e e s st rre e e e e e e e eanrnaees 309
40.3 Creating the OUTIETS. ...ccii it e e e st e e e e e e e e st ba e e e e e e e s s s attaaeeeaeeesarnntaaeeeeeeessannrraees 309
40.4 Designing the UsSer INTEITACEuiii ittt e e e e e e e e e e s sttt b e e e e e e e e s sabtaaeeeaeeesenanseaees 310
40.5 Enabling MUILITOUCH 0N ThE VIEWuuiiiiiieie ettt e e e e et rre e e e e e s s et ra e e e e e e e e eanrraeeas 311
40.6 Implementing the touchesBegan Methoduveiiii i e 312
40.7 Implementing the touchesMoved Method.............eeeiii it 312
40.8 Implementing the touchesEnded MEethOduviiiiiiiiiiiiiieee e e e e e 312
40.9 Getting the Coordinates 0f @ TOUCK.........uiiii i e e e e e e raees 313
40.10 Building and Running the Touch Example ApplicatioNn...........ceeieeeiiiiiiiieeee e 313

41. Detecting iOS 5 iPhone Touch Screen Gesture IMOtIONS........ccccciiiiiiiiiiiiiiiiiiiisissnns 315
41.1 The Example iOS 5 iPhone Gesture Application ..., 315
41.2 Creating the EXaMPIE PrOJECT.....uiiiiii i ciiiieee e ee ettt e e e e ecet e e e e e e e e sttba e e e e e e e e e snbbaaeeeaeeesantbaaeeeaeessennsrraees 315
41,3 Creating OULIETS. . .uuveeeeieeeecciteee e e e e eeccctt e e e e e e e st r e e e e e e eessettbaeeeeeeeesasasbaseeaeeeasassstbaaseeeeesaanstbaeseaeeesannsrraees 315
41.4 Designing the Application User Interface.........cccoooeeiiii 316
41.5 Implementing the touchesBegan Methodcooo 316
41.6 Implementing the touchesMoved Method.............eeeiiiiiiiiiiiiiee e 317
41.7 Implementing the touchesEnded Method ... 317
41.8 Building and RUNNINg the GestUre EXamMPleccvvveeiiiiiiiiiiiieee et e ettt e e e e et rae e e e e e e e aaraaeeas 317
1.9 SUMIMAIY c.eeeeeeeeeciteeee e e e eeeecctt it e e e e e e eeeeabaeeeeeeeeaattataaaeeaeeesaastaaaaaaaeeaaasssbaseeeeeeeaaasssbaaseaeeesassbsaneeaeeeeaassrranes 318

42. Identifying iPhone Gestures using i0OS 5 Gesture RECOGNIZEYSccccceerirririiirriessssssassesssssssssssssssssssssssssssssssnns 319
42.1 The UIGEStUIrERECOZNIZET ClaSSeiciurreeeiereeeeirreeesiteeeesitteeeestreeessssaesessraeesssseeessssaeeesnssesesssseeessnsseeenns 319
42.2 RECOZNIZEN ACTION IMESSAZESuvvveeeieieeeeiitreeeeitteeesitteeeestreeeesstaeeessstaeeeassaeessssseseasssseeeansseeessnsseeessnsseeennns 320
42.3 Discrete and CONtINUOUS GESTUIESuuviiiieieeeiiiiiireeeeeeesisitieeeeeeeessstrteeeeeeeessssabbaeeraaeessssssbraeeeaesssssssssneees 320
42.4 Obtaining Data from @ GeSTUIEccoiiiiiii 320
42.5 Recognizing Tap GeSTUIES ...ccceeiiiiieeeeeeee e 320
42.6 Recognizing PINCh GESTUIESccoooiiiii 321
42.7 Detecting ROTation GESTUIESccceiiiieee e, 321

Xiii

42.8 Recognizing Pan and Dragging GeSTUIESc.cuiuuitiiiieiee ettt e ettt e ettt e e ettt e e sttt e e s sabae e e ssabeeeesbbeeessabaeeesnns 321

42.9 RECOGNIZING SWIPE GOSTUIESeeiiiiititeeeittee ettt e e ettt e e e sttt e e e sttt e e s abt e e e abbteesaabbeeesaabaeesabbeeessbbeeasanbaeeenans 321
42.10 Recognizing Long Touch (Touch and Hold) GESTUIESccooiiieiiiiiiiieiiiie ettt 322
Z2. 10 SUMIMI@IY «.ttteenittteeeittee e ettt ee e sttt e e sttt e e esatteeesatteeaansbaeeaaaseeeeeasteeeeaasbaeeeanssaeesansaeeeenbaeesansseeesansaeeessnsaeeennns 322
43. An iPhone iOS 5 Gesture Recognition TULOralccccciiiiiiiiiiiiiiiiiiniiiiiiiiiiinnissssssssssssssssssssssssssssssssssssans 323
43.1 Creating the Gesture RECOGNITION PrOJECT....c.iiitiitiiiiieeeeiiee e ettt e ettt e e sttt e s sbte e e s sabaee s s rabeeessbbeeessabeeeesnns 323
43.2 Configuring the Label OULIETeiiiieiiieeiee ettt ettt e e rbte e e st e e e s bt e e s sbbeeessabaeeesnes 323
43.3 DeSigNING the USer INTEITACEciiii ittt e e s e e e e e e s st rr e e e e e e s s saatraeeeeeeesenansraneas 324
43.4 Configuring the GESTUIE RECOZNIZENS.uuuieieeeeieiiireee e e e e eectite e e e e e e s settree e e e e e e s s sabtbaeeeeeessssnstraeeeaeeesannsseneees 324
43.5 Adding the ACTION MELNOAScoiiiiieeeeee e e e e e e e st ar e e e e e e e s snnrraeeeeeeesenanseaeeas 325
43.6 Testing the Gesture Recognition APPlICAtIONuiiiiieiiiiiiiiee et e e e e e e e e e e e e e anreaeeas 326
44. Drawing iOS 5 iPhone 2D Graphics With QUArtzcccceiiiiiiiiiiieiiiiir e eaaees 327
44.1 Introducing Core Graphics and QUAIZ 2Dcc.eeveruirreeriiieeeeriieeessieeeesnereeesseteeesssseeessssseeessnsseeessnseeessnns 327
44,2 The draWRECT IMETNOMoiiiiiiiee et e st e e ettt e e e sntte e e s snteeessnateeessnnbeeessnneeeennns 327
44.3 Points, COOrdiNates @Nd PIXEIScouuuuuiieiiiiiiiiiiieee e e ettt e e ettt e et eeeeeeeeataaseeeeseessaaaaseeeseessrannseeesrerrrnes 327
Y N TN] =Y o] o ot 0] o] = SRR 328
44.5 Working with Colors in QUAITZ 2Dceeeiiiereeiiieeeeiieeeeecteeeesteeeesssteeeesnsreeessssseeessnsaeessssseeessnsseeessnssneenns 328
Y R Ul 4 o =1 V2SRRI 329
45. An iOS 5 iPhone Graphics Tutorial using Quartz 2D and Core IMageccccciiiiiiiiiiisiisisssssssssssssssssssssssssssssans 331
45.1 The iOS iPhone Drawing Example APPlICAtioNuieiiiiiiiiiiiieeee et e e s 331
45.2 Creating the NEW PrOJECTuuiiiie i ettt e e ee ettt e e e e e e s st e e e e e e e s e s tb b b e e e e e eesssattaaeeeeeeesanstraeeeaeessaansrsnees 331
45.3 Creating the UIVIEW SUDCIASScciiiiiiiieee ettt e sttt e e e e e e sttt e e e e e e e e e st b aaeeeeeesssnnstaaeeeaeessennnsenees 331
45.4 Locating the drawRect Method in the UIView Subclass.........coooiiiiiiii, 332
A5, 5 Drawing @ LiN€ .o, 333
45,6 DraWing Pathsuuiiiiiiiiieccciieeeee ettt e e e e e e et e e e e e e e s ettt e e e e e e e e e sttt baaeeaeeeaaaabtbaeeeaeeesaabrraareaeeeaananrraeees 334
45.7 Drawing @ RECIANEIE ..o 335
45.8 Drawing an ElliIPSE OF CIMCIE ...uuviiieiiieiciiitieee e ettt e e e ecet e e e e e e e sttt b e e e e e e e e s sabbaaeeeaeeessnbtraeeeeeeesennsrraees 336
45.9 Filling @ Path With @ COlOr......uuuiiiiiiiiiiiiiiiee ettt e e e e e e st b e e e e e e e e sttt aeeeeeeeessnabbbaereeeeesensrraeess 337
45,10 DIAWING @GN AIC ..uuvviieeeeeeeiciiteeeeeeeeeeiiitraeeeeeeeesetataaeeeeeeeaaaataaaaeaaesaaastsasaeseeesasasstbasseeeessanstrasreaesssassrraeees 339
45.11 Drawing a Cubic BEzZIer CUIVE........ccoo i, 340
45,12 Drawing @ QUAdratiC BEZIEI CUIMNVEuveeeieeeeiiiiiieeeeeeeeeeeiiteeeeeeeeeestabaeeeeeeesessabbaaeeeeeessasattraeeeaeessansrraees 341
45,13 DaShed LINE DIraWINEcccuuviiieeeeeeeiiiirteeee e e eeeecittvreeeeeeeeeeatbaeeeseesssababaaeeeaeesasasttaaesaaeessaanstraeeeeeessasssrranes 342
45.14 Drawing an Image into a Graphics CoONteXt.........cceeiiiiiiiiiii i, 343
45.15 Image Filtering with the Core Image Frameworkcccci i, 345
45,16 SUMIMAIY oeeiiiieiiiiieeeeeeeeeeectt et e e e e e e e e eetbreeeeeeeesaaaaaaeeeaeeeaaasrbaaaasaeeaaasssbaseesaeesaaasssbaeseaeeesassbaaneeaeeesassrsanes 346
46. Basic iOS 5 iPhone Animation using Core ANiMatioN.......cccccueiiiiicnniiiiiiciinsssneeeeiiississeessinssssssssssssssssssssssnnes 347
46.1 UIView Core ANIMation BIOCKSccviieiiiiieieeitieeeeiiee e e steeeesireeesssteeeesntaeeesntseeessntaeesssreeeesnsseeesssseeennns 347
46.2 Understanding ANiMation CUIVES..........coooi i 348
46.3 Receiving Notification of Animation Completioncc 348
46.4 Performing Affine Transformations..........ccccoo i 349
46.5 Combining TransformMations..............coooi i 349
46.6 Creating the Animation Example Application...........ccccc 349

Xiv

46.7 Implementing the INTerface File ..o e 350

46.8 Drawing iN the UIVIBWeieiiiiie ettt ettt ettt ettt e ettt e e e bt e e e eabbe e e saabae e e s abteeesbbeeesaabaeeesans 350
46.9 Detecting Screen Touches and Performing the AnNIMationccooiiiiiiiiiiiiiniii e 351
46.10 Building and Running the Animation AppliCationcocuiiiiiiiiiiiiee e 352
8. 11 SUMIMIAIY «.ttttenittteeettee ettt e e e sttt e e e ateeeesatteeeaatteeesnsbaeeeaaseeeeesbaeeeansbaeeeanseeeesaasbeeeanbaeesansseeesansaeeesansaeeennns 353
47. Integrating iAds into an iOS 5 IPhONE APP...ccciiiiiiiiiiiiiiiiiiiiiiiiiiiiiisiissisissns 355
47.110S IPhONE AAVEITISING OPTIONS....ceiiiiiieiiiie ettt ettt e ettt e et e e e sttt e e e sttt e e s sabbeeessabaeesebbeeesansaeeesssaeeennns 355
47.2 IAdS AQVEITISEMENT FOIMATS ..euuiiieiiiiiee ettt eeite e e ette e e st ee e e sttt e e ssateeeesabeeessasteeesnntaeesasneeessnsseeesssseeennns 356
47.3 Basic Rules for the Display Of IAUSuuviiieieiie ittt e s e e e e e e e s st bre e e e e e e s sanrraeeeeeeesenansnaees 356
47.4 Creating an Example iAds iIPhone APPliCatioN.........ocuiiiiiiiiriiiiiee et et e s stre e e s sraeeeenes 357
47.5 Adding the iAds Framework to the XCOde ProjECt........ccuicccuiiiieii ettt 357
47.6 Configuring the VIeW CONTIOIIr ... eeiiiiiee ettt e s e e e e e e st e e e e e e e s snbr e e e e e e e e e s nansraeeas 357
47.7 Designing the USer INTEITACEciii ittt e e e e e e s st tr e e e e e e s s nnarreeeeeeeesenanseaeeas 357
47.8 Creating the BAnNEr Ad...........veeiiiiieciiieeee ettt e e e e e s et e e e e e e e s sttt a e e e e e e e s s sattaaeeeeeessanstaaeeeaeessaansreaees 358
7.9 DiSPlayiNg the Ad....eeeeei ettt e e e e e st e e e e e e e s sttt e e e e eeeesssastraeeeaeeesaanttraeeeaeeeaaannrraeees 359
47.10 Changing Ad Format during DeVvice ROTAtIONeeiieeiiiiiiiiieee e e ccciireee e e e e e scrrree e e e e e e st rre e e e e e e s eanrraeeas 360
47.11 Implementing the Delegate Methods..........ociiiiei e e e et e e e e e e e eanrraees 361
47.11.1 bannerVieWACtiONSROUIABEGINccoee ettt aeeaeeeeeaeeeeeeeesenenes 361
47.11.2 bannerVieWACtIONDIAFINISAeeeeeeimmeiiiiiiieee e ettt ettt e e ettt e e e e s st aaeeeeenssanes 362
47.11.3 bannerView:didFQilTORECEIVEAAWILREITOLcoeeeeeveciiiiiieeeeeeeiiieeeee ettt e eessitvaee e e e essines 362
47.11.4 bANNEIVIEWWIIILOGUAT.cooveeeeiiieeeee ettt ettt ettt e e e e ettt e e e s e s sasteaeeaeesnsasnes 362
O YT 1Y o - TV USPRR 362
48. An Overview of i0S 5 iPhone Multitasking...........cccvvvvemiiiiiiiiiiininnniiiininisssesssessssssesssssssssssssnnns 363
48.1 Understanding i0OS APPliCation STAteScvuiiieiiiieeeiie e eriie e eree e sree e st e e e stte e e e st e e s s rere e e e srneeessnnaeeeenes 363
48.2 A Brief Overview of the Multitasking Application LIfecyclecccovviireirciii e 364
48.3 Disabling Multitasking for an iOS APPlICAtIONcieiiireiiiie e e e e e seee e enes 365
48.4 Checking for MUItItasking SUPPOITvieiiiiieeeciiee e e rer et e st e e e st e e e s st e e e e sntaeessnnaeeeesnnneeessnnneeesnns 366
48.5 Supported Forms of Background EXECUTIONccevcuiireeiiiieeeiiieeessieeeeseieeeestteeessnteeesssneeeessnneeeesnneeeesnes 366
48.6 The Rules of BaCKgrouNnd EXECULION.......cccuiiieiiiieeeeireeeecteeeestre e e s sete e e e sereeeestreeeesstaeeessnreeeesnnaeeessnnneeennns 367
48.7 Scheduling Local NOTIiCAtIONS......cciiciieeiiiiie e cciteeectee e ree e see e st e e e st e e e st b e e e esntaeeesnteeeesnsaeeessnnneeennns 368
49. Scheduling iOS 5 iPhone Local NOtifications........ciiciiiveeriiiiiiiiinineiiiiinienieiniiisesseessiiiessssseessssssssssssees 369
49.1 Creating the Local Notification iPhone APP ProjECt.......cciiicuiiiieee e e ccciireee e e ettt e e e esrrre e e e e e e e aabaaeeas 369
49.2 Locating the Application Delegate Method.............ueviiiiiiiiiiiiiee e e e 369
49.3 Adding a SoUNd File tO the PrOJECTuvviiieiee ettt e e e e e e et e e e e e e e et ba e e e e e e e e eaabraeees 370
49.4 Scheduling the Local NOtIfiCationc..uviiiiii et e e e et e e e e e eaab e e e e e e e e e eanraaeees 370
49.5 Testing the APPIICATION ...cc.eeeiiiieee et e e e e e et r e e e e e e e e e s ab b b e e e e e eeeseabbbaereaeeesensrraeess 371
49.6 Cancelling Scheduled NOtIfiCatioNS..........ueeiiiiiiiiiiieee et eeecerr e e e e e e e et e e e e e e s eebbbaereeeeeeenasbraeees 371
49.7 Immediate Triggering of @ Local NOtifiCationuuveeiiiiiiiiiiiiee e e e 372
49,8 SUMMAIY .. 372
50. Getting iPhone Location Information using the iOS 5 Core Location Framework...........cccccceeeeeeeeeneenennnnnnnns 373
50.1 The Basics Of COre LOCAtION.....iiiiiiiiiiieee e ettt tee e e e sttt e e e e e s st e e e e e e e s st eaeeeeeesssabbaaeeeaeessanasbraaeaaeeeas 373
50.2 Configuring the Desired LOCAtioN ACCUIACY. et e neaannnn 373

XV

50.1 Configuring the DIiStanCe FILErc.uiii ittt et e e et e e e e sabe e e e s abae e s sabees 374

50.2 The LoCation Manager DeIEAte........ciiuuiiiiiiiie ettt ettt ettt e e ettt e e s sabbe e e s abee e e sabaeessanees 374
50.3 Obtaining Location Information from CLLOCAtion OBJECES........eiiiiiiiieriiee ettt 375
50.3.1 Longitude ANd LALIEUTEccoceeeiiiiiieiiieeeeeeeeee ettt ettt e e e e e 375
50.3.2 ACCUIACY.....ccccooeiiiiiiiiiiieeiiieeeeeeeeee ettt 375
BO.B.3AIEIEUAE ...ttt et e ettt e e e e e e ettt e e e e e e e ee ittt aa e e e e e s e aaaaeasaesssanaaeaaaaeseans 375
50.4 CalCUIGtING DISTANCES ..euuvvieeeiiiieeeitee ettt e e ettt e e sttt e e sttt ee e sttt e e e sabeeeesabaeeeessbaeesanstaeessabbeeesanbeeesssraeessnnees 375
50.5 Location Information and MUILIEASKING........coouuiiiiiiiiiiie et e 375
50,8 SUMIMAIY ...ttt eee e ettt e e e e e e e et e e e e e e e s et aaaeeeeeessaattaaaeeeeeaaaanstaaeeeeeessannstsaaeeeeesaanstaaaeeeeessannssraneaaannan 376
51. An Example iOS 5 iPhone Location APPliCationeeeeeeeeeeemneeenmneemmemmmmmmmmsssmss 377
51.1 Creating the Example iOS 5 iPhone LOCation ProjECt........uuuiiieeiiiiiiiiieee e e e ecciiitee e e e e e scivrre e e e e e e eanrrreeeae e 377
51.2 Adding the Core Location Framework t0 the Projecteeieiiiiiciiiieei e e crreee e e e enrrane e e e 377
51.3 Configuring the VIEW CONTIOIIENviiiii ettt e e e e e e st e e e e e e e s eaabra e e e e e e s s snnbraaeeaaeeas 377
51.4 Designing the User INTEITACEccci et e et e e e e e e e st a e e e e e e e s abtaaeeeeeessananbraaeeaeeeas 378
51.5 Creating the CLLOCatioNManager ODJECTuviieiii it e e e et e e e e e e s sarbraeeeaeeeas 379
51.6 Implementing the ACtion IMELNOMcooii i e e e e e e s eanbrreeeaeeeas 380
51.7 Implementing the Application Delegate Methodscc.veeiieiiiiiiiiiieee e 380
IR e [T T T =T 0 4 T VPR 382
51.9 Building and Running the iPhone Location APPliCatioNncccciiiciiiieeee e e evbrree e 382
52. Working with Maps on the iPhone with MapKit and the MKMapView Class.......ccccccccuemmmmnmmnmnnenennnsnnnnnnnnnnnes 385
52.1 About the MapKit FramEWOIK..........uviieiiiieiiiiiiiee e e e st e e e e e st re e e e e e e s bt r e e e e e e e s ssantaaeeeaeessenasbraeeeaaenas 385
52.2 UNnderstanding Map REZIONSccciuuiiiieeeeeeiciititeee e e e e e sitteee e e e e e e ssttbaaeeeeeesssastaaaeeaeesssaastaseeeeeessasssrsneeaaenas 385
52.3 About the iPhone MKMapVieW TULOFIlc.uuiiieeie ettt e e e e et rr e e e e e e e s eanbraeeeaeeeas 386
52.4 Creating the iPhoNe IMap TULOIANuuieii ittt e e e e e e st rr e e e e e e e s eatbba e e e e e e s s enbbraaeeeaenas 386
52.5 Adding the MapKit Framework to the Xcode Projecteeeeeeiiiiciiiieee e brree e 386
52.6 Declaring an Outlet for the MAPVIEWcocciiiiieee ettt e e e e e st ta e e e e e e e s s et ba e e e e e e e s eabbraeeeaeeeas 386
52.7 Creating the MKMapView and Connecting the OQULIETcccooviiiiiiiiii e 387
YR Yo [[TaYa d o TT e To I T Tl 1T TSR 388
52.9 Changing the MapVieW REZIONuvvieiiiiiiiiiiiiiee e e e eceiittee e e e e e e eetbaee e e e e e e s abbaaeeeeeeessabraeeeeeeeseanastraeeeaaeens 389
52.10 Changing the IMap TYPE .uuveeeeeeeeeiiriieee e eeecct it ee e e e e e e eetb e e e e e e e e e eetbbaaeeeaeesssattbaaeeaeeeaaatraseseaeessanastraneeaeenas 390
52.11 Testing the iPhone MapVieW APPIICAtIONuvvieiiiieiiiiieiee e e e e e re e e e e e e s e bt raeeeeeeean 390
52.12 Updating the Map View based on USer MOVEMENT..........eeiiiiiiiiiiiiiieeeeeeeceitreee e e e e eeerrree e e e e e e s eeaabraeeeeee s 391
52.13 Adding Basic ANNOtatioNs 10 @ IMAP VIBWuuuiiiieiiieiiiiiiiieeeeeeeccittee e e e e e eetttre e e e e e e e seaabaae e e e e e e s eabbraeeeaeeeas 392
53. Accessing the iPhone Camera and Photo Library...........eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeneeeeeneennnenssssssssssssssssssssnnnnnns 395
53.1 The i0S 5 UIIMagePickerCoNtroller Classcuuveeeeeeeiiiiiieieee e e e e ceittee e e e e e e setrre e e e e e e e s eaarbeeeeaeeeseanbaaeeeaaeeas 395
53.2 Creating and Configuring a UllmagePickerController INStanCeeeeeeeeiiiiiiiieeeee et 395
53.3 Configuring the UlimagePickerController DeIEGAte.c..ueeeieeiiiciiiiieee ettt e e e e eibraee e e 396
53.4 Detecting Device Capabilities.......cccviieeii i e e e e e e e e e st e e e e e e e et raaraaaeean 397
53.5 SaViNg MOVIES @Nd IMAZESuuunnieie et e e e e e e e e e e e e e e e e e e e s e e e e e e s e e e e e aaaaaasaaannnnnn 398
L30T G YU 12T =T 2 399
54. An Example iOS 5 iPhone Camera ApPliCatioNcceeeeeeeeeeeeeeeeeeeeeeeeeeeeenneeeennenennnennnsssssnssssssssssssssssssssnssnnsanes 401
54.1 An Overview oOf the APPIICAtiON.........uiiiiiiiiiiiee e e e e e e e s st ae e e e e e e s s snabbbaaeaaeeeas 401

Xvi

54.2 Creating the CameEra PrOJECEii i ittt ettt ettt e ettt e e s sabt e e e s bbe e e s sabbe e e eabbeeesabaeessanees 401

54.3 Adding FrameWOrk SUPPOITcoiiiiiiiiiiiee ettt ettt ettt e st e e e bt e e s sabe e e e s aabbeeeseabaeessanees 401
54.4 Configuring Protocols, Outlets and ACLIONS........ccuiiiiiiiiiie ettt ettt et e e e e s 401
54.5 Designing the User INTErTaCeooiiiiiiiiiee ettt ettt e e s sbee e e s abbe e e s abaeessanes 402
54.6 Implementing the ACtiON IMETNOMS.c..uiii ittt e st sabeee e s abee e s saees 403
54.7 Writing the Delegate MethodS.uui ittt ettt e e s sbee e e s abee e e sabaeessaeees 404
54,8 REICASING IMIBIMOIYeiiiiiiiee ettt ettt ettt e e ittt e ettt e e et e e e s abee e e sabe e e e abaeeessbaeeeanbbeeesanbbeeesanbaeeesnsbaeessnnees 406
54.9 Building and RUNNING the APPIICAtiONoiiiiiiiiiiiie ettt sttt e e s abee e s eees 406
55. Video Playback from within an iOS 5 iPhone Application............eeeeeeeeeeennennnnmmmeemeesssmsssssssssssssssssssssssssssssssssss 409
55.1 An Overview of the MPMoviePlayerController Class..........uueieiciiiciiiieeeeeesiciiieee e e e e e sccrrrree e e e e e s ssnrrreeeeee s 409
55.2 SUPPOITEd VIAEO FOIMATS ..vviieiiieiiiiiiieeeeeeeeeitiieee e e e e e ssttae e e e e e e s ssntbaaeeeeeesssastaaaeeaeessaassaaeeeeeessasnssraaeaaenean 409
55.3 The iPhone Movie Player ExXample APPlICatioNncooicciiiiiiie ittt e e e re e e e e e e sanrraee e e e 409
55.4 Adding the MediaPlayer Framework to the ProjeCctc.uuveiiieiiiiiiiiiee e e e 410
55.5 Declaring the Action Method and MoviePlayer INSTANCE.........ccoivcviiieie e rrrree e e e 410
55.6 DeSIgNINg the UsSer INTEITACEccciiiieeee ettt e e s s e e e e e e e st a e e e e e e s s nttaaeeeeeessananbraaeaaeenas 410
55.7 Adding the Video File t0 the ProjeCt RESOUICESccccccuiiieiieeeeiiiitteee e e e e e settrree e e e e e ssarraeeeeeeesseanrraeeeaeeeas 410
55.8 Implementing the ACtion IMELNOMcoii oo e e e e e e s arbraeeeaae s 411
55.9 The Target-Action Notification Method.............eeeviiiiiiiiiiiiie e e rraee e e e 411
55.10 Build and RUN the APPlICAtioNuiiiiiii ettt e e e e ettt e e e e e e e sttt aa e e e e e e e s s anbraeeeaeeeas 412
55.11 Accessing @ Network based VidE0 Fileuie s 412
56. Playing Audio on an iPhone using AVAUJIOPIQYErceeeeeeeeeeeeeennnnenneennnnnnnnmmnnnssssssssssssssssssssssssssssssssssssnsanns 415
56.1 SUPPOItEd AUIO FOMMIALS ...eiiiiiiiiiiiiiieeeeeeeciit ittt e e e e e e ssitrreeeeeeeessaabaaeeeeeesssastaaaeeeeessaastsaeeeeeessannsrraeeeaeenan 415
56.2 Receiving Playback NOTIfiCAtIONSuviiiiiieiiiiiiieee e e sttt e ecrtae e e e e e s st e e e e e e s s saatra e e e e e e e ssnnbraeeeaaeeas 415
56.3 Controlling and Monitoring Playbackccccuuiiiiiiiieecee e et e e 416
56.4 Creating the iPhone Audio EXample APPliCationcoccciiiieii et e e rae e e e e 416
56.5 Adding the AVFOUNAtion FramMEWOrIK.........cuuiiiiieie ettt e cettee e e e e e s ttree e e e e e e s et ba e e e e e e s s eabbraeeeaaeeas 416
56.6 Adding an Audio File t0 the ProjECt RESOUICES.ciiiiiiiciiieieeeeeeciitire e e e e e s sectrrre e e e e e e ssrraaeeeeeesssabbraeeeaeeeas 417
56.7 Creating ACtions @Nd OULIEES.......ccuiiiieei et e e e e e e st e e e e e e e sttt b eeeeeeesssarbaaeeeeeessenasbraaeeaaenss 417
56.8 Implementing the ACtion IMEROTS.ooiiiiiiiee e e e e et e e e e e e s e atbbaaeeeeeeas 417
56.9 Creating Initializing the AVAUdIOPIAYer OBJECEccccoiiiiiiiieee e e e et e e 418
56.10 Implementing the AVAudioPlayerDelegate Protocol Methodscccccoovecuiiieeeieeeiicciiieeeee e 419
56.11 DeSiZNING the USEr INTEITACE ... uiiiieei ettt ettt e e e e e e e e e e e et r e e e e e e e e s satbaaeeeeeessenasbraaeeaaeens 419
56.12 REIEASING IMIEIMOIY ...iiiiieeeeeeeeeciiteee e e e eeeect b e e e e e eeeeeabbaeaeeeeeesatbbaaeeeaeesaaabbaaaeeaeeesaaastbaeneeeessanastraneeaaenan 420
56.13 Building and RUNNING the APPliCation.........c.uuiiiiiii e e et e e e s arbra e e e e e e 421
57. Recording Audio on an iPhone with AVAUdIORECOIdErcceeeeeeeeeemeeeeeeeeneeeennennnnennnnnnnnnnnnnnnnsssssssssssnsssnsnnes 423
57.1 An Overview of the iPhone AVAUdIiOReCOrder TULOMAlciiiiiiiiiiiiiiie e 423
57.2 Creating the RECOIAEY PrOJECE.....ccccuviiieeeeeeeccitieeee e e e e eeettee e e e e e e et a e e e e e e e e s tbbbaeeeeeeeseatbaeeeeaeeesennsbraaeeaaenss 423
57.3 Declarations, ACtiONS @Nd OULIETSueeeeee e aas 423
57.4 Creating the AVAUdIORECOIdEr INSTANCE.uuieeeeceeee e e e e e e e e e e e ann 424
57.5 Implementing the Action METNOAS. e e e e e e ann 425
57.6 Implementing the Delegate Methods........ ... 427
Y A XY =gV o= 4 TR W Iy =Y gl 1Y (=T - ol 427
YR T = 1= T 10T =d 1Y/ =T ' Vo 428

Xvii

57.9 Testing the APPIICAtION «...eiiiiiie ettt e et e e ettt e e s st be e e s eabb e e e sbbeeeesanes 429

58. Integrating Twitter into iPhone iOS 5 ApPlicatioNns........ccceceviiiiiiieniiiiiiininniinnre e s ssssasssssssans 431
58.1 The iOS 5 TWItter FramMEWOIK eeeeeaaaeaannnn 431
58.2 10S 5 ACCOUNTS FrAMEBWOIKeeeeiiieeeeeeeee eesaeesaaaaneeaeeeaaaaaaaaaaaannn 431
58.3 The TWTweetComposeVieWCONTrOHEr CIasscccuiiiiiiiiiiiiiee ettt e et e e s sbre e st e e e sabeeessaees 433
582 SUMIMAIY ..ttt ettt ettt ettt e ettt e e ettt e e ettt e e e abeeeeeabteeeaaseeeeesabaeeeesbaeesanbbeeesanbeaeessbaeeesnbaeessasees 434

59. An Example iPhone iOS 5 TWTweetComposeViewController Twitter Application.........cccccccveeeeeeennenennnnnnnnns 437
59.1 iPhone Twitter APPlICAtioN OVEIVIEWcccciuiiiiieeeeeeecciiee e e e e e e eetrtre e e e e e s st e e e e e e e e s ssantaaeeeeeesssnnsrraeeeaaeeas 437
59.2 Creating the TWItterAPP PrOJECE.uuiiiiii e ettt e e e e e s e e e e e e st r e e e e e e s s e aaraaeeeeeessansbraeeaaaeeas 437
59.3 Declaring Outlets, ACtions and Variablesuueeiiiiiiiiiiiiiee e e e e e e e e e arbrree e e e e 437
59.4 Creating the TWTweetComposeViewCoNntroller INSTaNCe........ccuiccviiieee ettt e e svrrrre e e e 438
59.5 Implementing the ACtion IMETNOUS.iii i e e r e e e e e s srbraaeeaeeeas 439
L O = [T T T =T 4 T VPSR 440
59.7 DesigniNg the UsSer INTEITACEccc ittt e e s rre e e e e e s st r e e e e e e s s saataaeeeeeessananbraaeeeeeeas 441
59.8 Building and RUNNING the APPIICAtiON.......coc e s e e e et e e e e e s s sarbraeeeeee s 441

60. Preparing and Submitting an Application to the App StOrecciiiiiiiiiiiiiiiiininnneer e 443
60.1 Generating an iOS Distribution Certificate Signing REQUESE........ccccvirerriiee e 443
60.2 Submitting the Certificate SIgNING REQUEST.......uvviiiiieiiiciiiiee et e e srrrre e e e e e e st rr e e e e e e e s sarbraeeeaeeeas 443
60.3 Installing the DistribUtion CartifiCate........cciiiiuiiieee e e e e e e e e e s s earrraeeeeeeeas 444
60.4 Generating an App Store Distribution Provisioning Profile..........ccccveeiii i 444
60.5 Adding an 1con t0 the APPICATIONvviiiii it e e e e e e e e s s st ba e e e e e e e s earbbaeeeaaeeas 444
60.6 Archiving the Application for DiStribULION.........uiiiiie i e e rree e e e e 445
60.7 Configuring the Application iN ITUNES CONNECTccccieiiiiiiiieee ettt e e errrre e e e e e e s re e e e e e e e s sabbraeeeaeeeas 448

INA@X.ceiiiiiiiiiinneeiiiiiiisiinneeerttisisssssseesssissssssssssessssessssssssssessnsesssssssssssssnsesssssssssssnsnsssssss 451

Xviii

Preface

This publication represents the third edition of the iPhone Application Development Essentials series of
books. The first edition addressed iOS 4 development for the iPhone using Xcode 3 whilst the second
revision was updated for the release of Xcode 4. This current edition has been fully updated to coincide
with the public release of iOS 5.

This latest SDK release is by far the most significant upgrade to the operating system and development
kit in the history of iOS and introduces new features such as iCloud support, Twitter integration, new
document handling paradigms and automatic reference counting. The revision of this book was,
similarly, no small undertaking involving over five months of work that evolved through the course of no
fewer than seven iOS 5 SDK Beta releases prior to the final release. Much of the new content in this
book would not have been possible without the timely responses from Apple’s iOS development team
to beta SDK bug reports and also without the persistence and support of other iOS 5 beta testers who
were also working through the learning curve of the new features of iOS 5 with little in the way of
documentation for guidance.

Without a doubt now is an exciting time to be an application developer. Prior to the iPhone and the App
Store a developer was responsible for finding a way to bring a completed application to market. Success
invariably went to the developer with the largest marketing budget or most web search traffic. The App
Store, however, has brought a more level playing field to the application market with both large and
small developers given equal status within the marketplace. Never before have hundreds of millions of
users been required to go to a single place to locate and purchase software applications. Every one of
those users is a potential customer for your applications.

Before you begin your journey into the world of iPhone application development I'd like to begin by
imparting some things | have learned that don’t necessarily relate to the actual coding of an application.
Firstly, try to choose an application idea that fits in with something that interests you. Both the
development and subsequent sales of an application can be a rollercoaster ride of ups and downs.
Addressing a market about which you are passionate will provide the drive you need to overcome any
obstacles.

Secondly, check Apple’s terms and conditions for acceptance into the App Store before beginning
development work. There is nothing worse than spending months of effort developing an application
only to have it declined during the application review process. That said, however, do not be too
discouraged by an initial rejection. Apple allows, and indeed encourages, developers to modify and
resubmit applications for review, and minor adjustments based on Apple’s feedback will often lead to
subsequent acceptance into the App Store.

Thirdly, try to get the application as feature complete and polished as possible before submitting it to
the App Store (but not the extent that you never actually finish it). If possible, get unbiased feedback
from friends, colleagues and potential customers before going live. This will increase the chance that
early reviews of the application will be positive thereby leading to more downloads.

Xix

Finally, remember to have fun. Opportunities as exciting as the smartphone application market come
along in the technology business once every 10 to 20 years. You are right in the middle of a vast shift in
the way that users acquire and use software applications. Once you’ve mastered the skills necessary to
develop iPhone applications there really are no limits. Take this opportunity to learn the necessary skills
and then, in the words of the late Steve Jobs, use this knowledge to build something “insanely great”.

XX

Chapter 1

1. About iPhone iOS 5 App Development
Essentials

Although the technology marketplace appears to evolve at a rapid and continuous pace, much of this
progress takes place in the form of incremental improvements. It is only once every 10 to 20 years
that new technology truly results in sweeping changes to both the technology industry and consumer
behavior. The late 1970s and early 1980s, for example, witnessed the introduction of the personal
computer. The late 1990s, of course, saw the widespread adoption of the internet. A little over a decade
later we are in the middle of yet another revolution in the form of smartphones and tablets.

In actual fact there are many similarities between the PC and smartphone revolutions. Both resulted in
the widespread adoption of new technology by businesses and consumers alike. Both caused a massive
surge of development activity resulting in large numbers of new applications being written. Perhaps
most interestingly, however, both were triggered to a large extent by the actions of Apple, Inc. first with
the introduction of the Apple Il computer in 1977, then again 30 years later with the iPhone in 2007.

The iPhone and its peers in the smartphone market are remarkable technological achievements. In a
device small enough to put in your pocket the iPhone can make phone calls, send and receive email,
SMS and MMS messages, stream and play audio and video, detect movement and rotation, vibrate,
adapt the display brightness based on the ambient lighting, surf the internet, run apps from a selection
of hundreds of thousands, take high resolution photos, record video, tell you your exact location,
provide directions to your chosen destination, play graphics intensive games and even detect when you
put the device to your ear.

Perhaps the most amazing thing about the iPhone is that all of these capabilities and hardware features
are available to you as an app developer. In fact, once you have an iPhone, an Intel-based Mac
computer, the iOS SDK, a copy of the Xcode development environment and the necessary skills, the only
limit to the types of apps you can create is your own imagination (and, of course, the restrictions placed
on apps accepted into the Apple App Store).

The subject of this book is version 5 of the iOS operating system within the context of the iPhone. iOS 5
introduces a wide range of new opportunities for the iPhone application developer to utilize. Beginning
with the basics, this book provides an overview of the iPhone hardware and the architecture of iOS 5. An
introduction to programming in Objective-C is provided followed by an in-depth look at the design of
iPhone applications and user interfaces. More advanced topics such as file handling, database
management, graphics drawing and animation are also covered, as are touch screen handling, gesture

About iPhone iOS 5 App Development Essentials

recognition, multitasking, iAds integration, location management, local notifications, camera access and
video and audio playback support. New iOS 5 specific features are also covered including page view
controller implementation, iCloud based storage, Storyboard user interface design, image filtering with
Core Image and Twitter integration.

The aim of this book, therefore, is to teach you the skills necessary to build your own apps for the
iPhone. Assuming you have downloaded the iOS 5 SDK and Xcode, have an Intel-based Mac and some
ideas for some apps to develop, you are ready to get started.

1.1 Example Source Code

The source code and Xcode project files for the examples contained in this book are available for
download at http://www.ebookfrenzy.com/code/iphoneios5.zip.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you have any comments, questions or
concerns please contact us at feedback@ebookfrenzy.com.

http://www.ebookfrenzy.com/code/iphoneios5.zip

Chapter 2

2. The Anatomy of an iPhone 4S

IVI ost books covering the development of apps for the iPhone tend to overlook the underlying
hardware of the device and instead dive immediately into the software development
environment. This is a shame because the iPhone is an incredible technical achievement that we are
already starting to take for granted.

Take, for example, the iPhone 4S. This is a sleek device that is 115.2mm long, 58.6mm wide and 9.3 mm
deep. Now, compare the size of your laptop or desktop computer to your iPhone. Then take a look at
the specification for your computer and see if it has built in GPRS, EDGE and 3G wireless support, a
digital compass, GPS, an accelerometer, a gyroscope, a proximity sensor, an ambient light sensor,
Bluetooth capability, Wi-Fi, a multi-touch screen, a vibration generator and an 8 megapixel autofocus
camera with built in flash and a second, 30 frame per second front facing camera. The chances are your
much larger and heavier computer has only a small subset of these features. Next, check the expected
battery life of your laptop and see if it will allow you to play music for 40 hours or video for 10 hours
without needing a recharge. When you consider these capabilities you will hopefully begin to appreciate
the engineering achievements behind the iPhone and other similar smartphone devices.

Now that we have set the scene, we can move on to discuss some of the hardware features built into
the iPhone in a little more detail. Once again, we will do this within the context of the iPhone 4S.

2.1 10S5

Before we delve into the hardware of the iPhone we will start by talking about the operating system that
sits on top of all the hardware. This operating system is called iOS 5 and is a variant of Apple’s Mac 0S X
operating system which has been adapted to run on the iPhone. It is built upon a “UNIX-like” foundation
called Darwin and consists of the Mach kernel, core services and media layers and the Cocoa Touch
interface. i0OS 5 is covered in greater detail in the chapter entitled iOS 5 Architecture and SDK
Frameworks.

2.2 Display

The iPhone 4S has a 3.5 inch display with a resolution of 960 x 640 pixels capable of displaying 326 pixels
per inch (ppi) with an 800:1 contrast ratio. The underlying technology is an In Plane Switching (IPS) LED,
capacitive touch screen. The screen has a scratch, oil and fingerprint resistant oleophobic coated surface
and includes a proximity sensor which automatically turns off the screen when you put the phone to
your ear (presumably to extend the battery life during a phone call and to avoid making user interface
selections with your ear). The device also has ambient light detection which adjusts the screen

The Anatomy of an iPhone 4S

brightness to ensure the optimal screen visibility in a variety of lighting conditions from bright sunlight
to darkness.

2.3 Wireless Connectivity

The iPhone 4S supports a wide range of connectivity options. When within range of a Wi-Fi network, the
device can connect at either 802.11b, 802.11g or 802.11n speeds.

For making phone calls or transferring data when not connected to Wi-Fi, the AT&T device supports
GSM/EDGE connectivity (otherwise known as 2G). For faster speeds, support is also provided for
connectivity via Universal Mobile Telecommunications System (UMTS), High-Speed Downlink Packet
Access (HSDPA) and High Speed Uplink Packet Access (HSUPA). This is better known as 3G and provides
data transfer speeds of up to 7.2 megabits per second.

The iPhone 4S also includes Bluetooth v4.0 support with Enhanced Data Rate (EDR) technology.

2.4 Wired Connectivity

Given the wide array of wireless options it is not surprising that the iPhone has little need for wired
connections. In fact the iPhone only has two. One is a standard 3.5 mm headset jack for the attachment
of headphones or other audio devices. The second is a proprietary, 30-pin dock connector which, by
default, is used to provide a USB v2.0 connection for synching with a computer system and battery
charging. In practice, however, this connection also provides audio and TV output via specialty cables.

2.5 Memory

The iPhone 4S comes in three editions, containing 16GB, 32GB and 64GB of memory respectively. The
memory is in the form of a flash drive. Unlike some devices, the iPhone lacks the ability to supplement
the installed memory by inserting additional flash memory cards.

2.6 Cameras

The iPhone 4S contains a 8 megapixel autofocus still camera which may also be used to record video at
an HD resolution of 1080p included image stabilization and temporal noise reduction. In addition, the
device also incorporates an LED flash and a VGA resolution, 30 fps front facing camera.

2.7 Sensors

The latest generation of iPhone has an array of sensors which would make even the most die-hard 1960s
science fiction fan jealous. These consist of a proximity sensor which detects when the front of the
phone is covered or otherwise obscured, an accelerometer which uses the pull of gravity to detect when
the device is moved or rotated, a three-axis gyroscope and an ambient light sensor to detect current
environmental light levels.

The Anatomy of an iPhone 4S

2.8 Location Detection

The iPhone 4S contains a digital compass and GPS support with Assisted GPS (A-GPS) support. Essentially
this enables the iPhone to detect the direction the device is facing and to identify the current location by
detecting radio signals from GPS satellites. In the event that GPS signals are unavailable or too weak to
establish the current coordinates, the iPhone can also gain an approximate location using cellular and
Wi-Fi information.

2.9 Central Processing Unit (CPU)

The central processing unit (CPU) of the iPhone 4S is the Apple A5, an Apple designed system-on-a-chip
(SoC) consisting of a dual core ARM Cortex A9 chip combined with a dual core graphics processing unit
(GPU). The Cortex A9 processor is designed by a British company named ARM Holdings which specializes
in designing chips and then licensing those designs to third parties who then manufacture them. This
differs considerably from the approach taken by companies such as Intel which both design and
manufacture their own chips.

2.10 Speaker and Microphone

As with most other phones on the market, the iPhone includes both a built-in microphone and a speaker
to enable the use of the device as a speakerphone. Both the speaker and microphone may be used by
third party apps, though as is to be expected with a device the size of an iPhone, the sound quality of
the speaker is widely considered to be poor.

2.11 Vibration

Though initially provided as a “silent ring” feature whereby the device vibrates to indicate an incoming
call as an alternative to a ring tone (a feature common to most mobile phone devices), the vibration
feature of the iPhone may also be used within applications to notify the user of a new event (such as a
breaking news story) or to provide tactile feedback such as for an explosion in a game.

2.12 Summary

As we have seen in this chapter, the iPhone packs an impressive amount of technology into a very small
amount of space. Perhaps the most exciting aspect of all this technology is that you can, almost without
exception, access and utilize all this hardware within your own applications.

3.1i0S 5 Architecture and SDK
Frameworks

In The Anatomy of an iPhone 4S we looked at the hardware contained within an iPhone 4S device.
When we develop apps for the iPhone, Apple does not allow us direct access to any of this hardware.
In fact, all hardware interaction takes place exclusively through a number of different layers of software
which act as intermediaries between the application code and device hardware. These layers make up
what is known as an operating system. In the case of the iPhone, this operating system is known as iOS.

In order to gain a better understanding of the iPhone development environment, this chapter will look
in detail at the different layers that comprise the iOS operating system and the frameworks that allow
us, as developers, to write iPhone applications.

3.1 iPhone OS becomes iOS

Prior to the release of the iPad in 2010, the operating system running on the iPhone was generally
referred to as iPhone OS. Given that the operating system used for the iPad is essentially the same as
that on the iPhone it didn’t make much sense to name it iPad OS. Instead, Apple decided to adopt a
more generic and non-device specific name for the operating system. Given Apple’s predilection for
names prefixed with the letter ‘i’ (iTunes, iBookstore, iMac etc) the logical choice was, of course, iOS.
Unfortunately, iOS is also the name used by Cisco for the operating system on its routers (Apple, it
seems, also has a predilection for ignoring trademarks). When performing an internet search for iOS,
therefore, be prepared to see large numbers of results for Cisco’s iOS which have absolutely nothing to
do with Apple’s iOS.

3.2 An Overview of the iOS 5 Architecture

As previously mentioned, iOS consists of a number of different software layers, each of which provides
programming frameworks for the development of applications that run on top of the underlying
hardware.

These operating system layers can be presented diagrammatically as illustrated in Figure 3-1:

iOS 5 Architecture and SDK Frameworks

ouc

Heala geWICGS
X

Core Services
Core OS

* 4

IPhone Hardware

Figure 3-1

Some diagrams designed to graphically depict the iOS software stack show an additional box positioned
above the Cocoa Touch layer to indicate the applications running on the device. In the above diagram
we have not done so since this would suggest that the only interface available to the app is Cocoa
Touch. In practice, an app can directly call down any of the layers of the stack to perform tasks on the
physical device.

That said, however, each operating system layer provides an increasing level of abstraction away from
the complexity of working with the hardware. As an iOS developer you should, therefore, always look
for solutions to your programming goals in the frameworks located in the higher level iOS layers before
resorting to writing code that reaches down to the lower level layers. In general, the higher level of layer
you program to, the less effort and fewer lines of code you will have to write to achieve your objective.
And as any veteran programmer will tell you, the less code you have to write the less opportunity you
have to introduce bugs.

Now that we have identified the various layers that comprise iOS 5 we can now look in more detail at
the services provided by each layer and the corresponding frameworks that make those services
available to us as application developers.

3.3 The Cocoa Touch Layer

The Cocoa Touch layer sits at the top of the iOS stack and contains the frameworks that are most
commonly used by iPhone application developers. Cocoa Touch is primarily written in Objective-C, is
based on the standard Mac OS X Cocoa API (as found on Apple desktop and laptop computers) and has
been extended and modified to meet the needs of the iPhone hardware.

The Cocoa Touch layer provides the following frameworks for iPhone app development:

iOS 5 Architecture and SDK Frameworks

3.3.1 UIKit Framework (UIKit.framework)

The UIKit framework is a vast and feature rich Objective-C based programming interface. It is, without

question, the framework with which you will spend most of your time working. Entire books could, and

probably will, be written about the UIKit framework alone. Some of the key features of UIKit are as

follows:

e User interface creation and management (text fields, buttons, labels, colors, fonts etc)

e Application lifecycle management

e Application event handling (e.g. touch screen user interaction)

e Multitasking

e Wireless Printing

e Data protection via encryption

e Cut, copy, and paste functionality

o Web and text content presentation and management

e Data handling

e Inter-application integration

e Push notification in conjunction with Push Notification Service

e Local notifications (a mechanism whereby an application running in the background can gain the
user’s attention)

e Accessibility

e Accelerometer, battery, proximity sensor, camera and photo library interaction

e Touch screen gesture recognition

e File sharing (the ability to make application files stored on the device available via iTunes)

e Blue tooth based peer to peer connectivity between devices

e Connection to external displays

To get a feel for the richness of this framework it is worth spending some time browsing Apple’s UIKit
reference material which is available online at:

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIKit_Framework/index.html|

3.3.2 Map Kit Framework (MapKit.framework)

If you have spent any appreciable time with an iPhone then the chances are you have needed to use the
Maps application more than once, either to get a map of a specific area or to generate driving directions
to get you to your intended destination. The Map Kit framework provides a programming interface
which enables you to build map based capabilities into your own applications. This allows you to,

http://developer.apple.com/library/ios/#documentation/UIKit/Reference/UIKit_Framework/index.html

iOS 5 Architecture and SDK Frameworks

amongst other things, display scrollable maps for any location, display the map corresponding to the
current geographical location of the device and annotate the map in a variety of ways.

3.3.3 Push Notification Service

The Push Notification Service allows applications to notify users of an event even when the application is
not currently running on the device. Since the introduction of this service it has most commonly been
used by news based applications. Typically when there is breaking news the service will generate a
message on the device with the news headline and provide the user the option to load the
corresponding news app to read more details. This alert is typically accompanied by an audio alert and
vibration of the device. This feature should be used sparingly to avoid annoying the user with frequent
interruptions.

3.3.4 Message Ul Framework (MessageUlLframework)

The Message Ul framework provides everything you need to allow users to compose and send email
messages from within your application. In fact, the framework even provides the user interface
elements through which the user enters the email addressing information and message content.
Alternatively, this information may be pre-defined within your application and then displayed for the
user to edit and approve prior to sending.

3.3.5 Address Book Ul Framework (AddressUlframework)

Given that a key function of the iPhone is as a communications device and digital assistant it should not
come as too much of a surprise that an entire framework is dedicated to the integration of the address
book data into your own applications. The primary purpose of the framework is to enable you to access,
display, edit and enter contact information from the iPhone address book from within your own
application.

3.3.6 Game Kit Framework (GameKit.framework)

The Game Kit framework provides peer-to-peer connectivity and voice communication between
multiple devices and users allowing those running the same app to interact. When this feature was first
introduced it was anticipated by Apple that it would primarily be used in multi-player games (hence the
choice of name) but the possible applications for this feature clearly extend far beyond games
development.

3.3.7 iAd Framework (iAd.framework)

The purpose of the iAd Framework is to allow developers to include banner advertising within their
applications. All advertisements are served by Apple’s own ad service.

3.3.8 Event Kit Ul Framework

The Event Kit Ul framework was introduced in iOS 4 and is provided to allow the calendar events to be
accessed and edited from within an application.

10

iOS 5 Architecture and SDK Frameworks

3.3.9 Accounts Framework (Accounts.framework)

iOS 5 introduces the concept of system accounts. These essentially allow the account information for
other services to be stored on the iOS device and accessed from within application code. Currently
system accounts are limited to Twitter accounts, though other services such as Facebook will likely
appear in future iOS releases. The purpose of the Accounts Framework is to provide an API allowing
applications to access and manage these system accounts.

3.3.10 Twitter Framework (Twitter.framework)

The Twitter Framework allows Twitter integration to be added to applications. The framework operates
in conjunction the Accounts Framework to gain access to the user’s Twitter account information.

3.4 The i0S Media Layer

The role of the Media layer is to provide iOS with audio, video, animation and graphics capabilities. As
with the other layers comprising the iOS stack, the Media layer comprises a number of frameworks
which may be utilized when developing iPhone apps. In this section we will look at each one in turn.

3.4.1 Core Video Framework (CoreVideo.framework)

The Core Video Framework provides buffering support for the Core Media framework. Whilst this may
be utilized by application developers it is typically not necessary to use this framework.

3.4.2 Core Text Framework (CoreText.framework)

The iOS Core Text framework is a C-based API designed to ease the handling of advanced text layout and
font rendering requirements.

3.4.3 Image I/0 Framework (ImagelO.framework)

The Image I/O framework, the purpose of which is to facilitate the importing and exporting of image
data and image metadata, was introduced in iOS 4. The framework supports a wide range of image
formats including PNG, JPEG, TIFF and GIF.

3.4.4 Assets Library Framework (AssetsLibrary.framework)

The Assets Library provides a mechanism for locating and retrieving video and photo files located on the
iPhone device. In addition to accessing existing images and videos, this framework also allows new
photos and videos to be saved to the standard device photo album.

3.4.5 Core Graphics Framework (CoreGraphics.framework)

The iOS Core Graphics Framework (otherwise known as the Quartz 2D API) provides a lightweight two
dimensional rendering engine. Features of this framework include PDF document creation and
presentation, vector based drawing, transparent layers, path based drawing, anti-aliased rendering,
color manipulation and management, image rendering and gradients. Those familiar with the Quartz 2D
API running on MacOS X will be pleased to learn that the implementation of this APl is the same on iOS.

11

iOS 5 Architecture and SDK Frameworks

3.4.6 Core Image Framework (Corelmage.framework)

A new framework introduced with iOS 5 providing a set of video and image filtering and manipulation
capabilities for application developers.

3.4.7 Quartz Core Framework (QuartzCore.framework)

The purpose of the Quartz Core framework is to provide animation capabilities on the iPhone. It
provides the foundation for the majority of the visual effects and animation used by the UIKit
framework and provides an Objective-C based programming interface for creation of specialized
animation within iPhone apps.

3.4.8 OpenGL ES framework (OpenGLES.framework)

For many years the industry standard for high performance 2D and 3D graphics drawing has been
OpenGL. Originally developed by the now defunct Silicon Graphics, Inc (SGI) during the 1990s in the
form of GL, the open version of this technology (OpenGL) is now under the care of a non-profit
consortium comprising a number of major companies including Apple, Inc., Intel, Motorola and ARM
Holdings.

OpenGL for Embedded Systems (ES) is a lightweight version of the full OpenGL specification designed
specifically for smaller devices such as the iPhone.

iOS 3 or later supports both OpenGL ES 1.1 and 2.0 on certain iPhone models (such as the iPhone 3GS
and iPhone 4). Earlier versions of iOS and older device models support only OpenGL ES version 1.1.

3.4.9 GLKit Framework (GLKit.framework)

The GLKit framework is an Objective-C based API designed to ease the task of creating OpenGL ES based
applications.

3.4.10 NewsstandKit Framework (NewsstandKit.framework)

The Newsstand application is a new feature of iOS 5 and is intended as a central location for users to
gain access to newspapers and magazines. The NewsstandKit framework allows for the development of
applications that utilize this new service.

3.4.11 i0S Audio Support

iOS is capable of supporting audio in AAC, Apple Lossless (ALAC), A-law, IMA/ADPCM, Linear PCM, p-law,
DVI/Intel IMA ADPCM, Microsoft GSM 6.10 and AES3-2003 formats through the support provided by the
following frameworks.

3.4.12 AV Foundation framework (AVFoundation.framework)

An Objective-C based framework designed to allow the playback, recording and management of audio
content.

12

iOS 5 Architecture and SDK Frameworks

3.4.13 Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework and
AudioUnit.framework)

The frameworks that comprise Core Audio for iOS define supported audio types, playback and recording
of audio files and streams and also provide access to the device’s built-in audio processing units.

3.4.14 Open Audio Library (OpenAL)

OpenAL is a cross platform technology used to provide high-quality, 3D audio effects (also referred to as
positional audio). Positional audio may be used in a variety of applications though is typically used to
provide sound effects in games.

3.4.15 Media Player Framework (MediaPlayer.framework)

The i0S Media Player framework is able to play video in .mov, .mp4, .m4v, and .3gp formats at a variety
of compression standards, resolutions and frame rates.

3.4.16 Core Midi Framework (CoreMIDI.framework)

Introduced in iOS 4, the Core MIDI framework provides an API for applications to interact with MIDI
compliant devices such as synthesizers and keyboards via the iPhone’s dock connector.

3.5 The i0S Core Services Layer

The iOS Core Services layer provides much of the foundation on which the previously referenced layers
are built and consists of the following frameworks.

3.5.1 Address Book Framework (AddressBook.framework)

The Address Book framework provides programmatic access to the iPhone Address Book contact
database allowing applications to retrieve and modify contact entries.

3.5.2 CFNetwork Framework (CFNetwork.framework)

The CFNetwork framework provides a C-based interface to the TCP/IP networking protocol stack and
low level access to BSD sockets. This enables application code to be written that works with HTTP, FTP
and Domain Name servers and to establish secure and encrypted connections using Secure Sockets
Layer (SSL) or Transport Layer Security (TLS).

3.5.3 Core Data Framework (CoreData.framework)

This framework is provided to ease the creation of data modeling and storage in Model-View-Controller
(MVC) based applications. Use of the Core Data framework significantly reduces the amount of code
that needs to be written to perform common tasks when working with structured data within an
application.

3.5.4 Core Foundation Framework (CoreFoundation.framework)

The Core Foundation framework is a C-based Framework which provides basic functionality such as data
types, string manipulation, raw block data management, URL manipulation, threads and run loops, date

13

iOS 5 Architecture and SDK Frameworks

and times, basic XML manipulation and port and socket communication. Additional XML capabilities
beyond those included with this framework are provided via the libXML2 library. Though this is a C-
based interface, most of the capabilities of the Core Foundation framework are also available with
Objective-C wrappers via the Foundation Framework.

3.5.5 Core Media Framework (CoreMedia.framework)

The Core Media framework is the lower level foundation upon which the AV Foundation layer is built.
Whilst most audio and video tasks can, and indeed should, be performed using the higher level AV
Foundation framework, access is also provided for situations where lower level control is required by
the iOS application developer.

3.5.6 Core Telephony Framework (CoreTelephony.framework)

The i0S Core Telephony framework is provided to allow applications to interrogate the device for
information about the current cell phone service provider and to receive notification of telephony
related events.

3.5.7 EventKit Framework (EventKit.framework)

An API designed to provide applications with access to the calendar and alarms on the device.

3.6 Foundation Framework (Foundation.framework)

The Foundation framework is the standard Objective-C framework that will be familiar to those who
have programmed in Objective-C on other platforms (most likely Mac OS X). Essentially, this consists of
Objective-C wrappers around much of the C-based Core Foundation Framework.

3.6.1 Core Location Framework (CoreLocation.framework)

The Core Location framework allows you to obtain the current geographical location of the device
(latitude, longitude and altitude) and compass readings from with your own applications. The method
used by the device to provide coordinates will depend on the data available at the time the information
is requested and the hardware support provided by the particular iPhone model on which the app is
running (GPS and compass are only featured on recent models). This will either be based on GPS
readings, Wi-Fi network data or cell tower triangulation (or some combination of the three).

3.6.2 Mobile Core Services Framework (MobileCoreServices.framework)

The i0OS Mobile Core Services framework provides the foundation for Apple’s Uniform Type Identifiers
(UTI) mechanism, a system for specifying and identifying data types. A vast range of predefined
identifiers have been defined by Apple including such diverse data types as text, RTF, HTML, JavaScript,
PowerPoint .ppt files, PhotoShop images and MP3 files.

3.6.3 Store Kit Framework (StoreKit.framework)

The purpose of the Store Kit framework is to facilitate commerce transactions between your application
and the Apple App Store. Prior to version 3.0 of iOS, it was only possible to charge a customer for an app

14

iOS 5 Architecture and SDK Frameworks

at the point that they purchased it from the App Store. iOS 3.0 introduced the concept of the “in app
purchase” whereby the user can be given the option to make additional payments from within the
application. This might, for example, involve implementing a subscription model for an application,
purchasing additional functionality or even buying a faster car for you to drive in a racing game.

3.6.4 SQLite library

Allows for a lightweight, SQL based database to be created and manipulated from within your iPhone
application.

3.6.5 System Configuration Framework (SystemConfiguration.framework)

The System Configuration framework allows applications to access the network configuration settings of
the device to establish information about the “reachability” of the device (for example whether Wi-Fi or
cell connectivity is active and whether and how traffic can be routed to a server).

3.6.6 Quick Look Framework (QuickLook.framework)

The Quick Look framework provides a useful mechanism for displaying previews of the contents of file
types loaded onto the device (typically via an internet or network connection) for which the application
does not already provide support. File format types supported by this framework include iWork,
Microsoft Office document, Rich Text Format, Adobe PDF, Image files, public.text files and comma
separated (CSV).

3.7 The i0S Core OS Layer

The Core OS Layer occupies the bottom position of the iOS stack and, as such, sits directly on top of the
device hardware. The layer provides a variety of services including low level networking, access to
external accessories and the usual fundamental operating system services such as memory
management, file system handling and threads.

3.7.1 Accelerate Framework (Accelerate.framework)

The Accelerate Framework provides a hardware optimized C-based API for performing complex and
large number math, vector, digital signal processing (DSP) and image processing tasks and calculations.

3.7.2 External Accessory Framework (ExternalAccessory.framework)

Provides the ability to interrogate and communicate with external accessories connected physically to
the iPhone via the 30-pin dock connector or wirelessly via Bluetooth.

3.7.3 Security Framework (Security.framework)

The i0S Security framework provides all the security interfaces you would expect to find on a device that
can connect to external networks including certificates, public and private keys, trust policies, keychains,
encryption, digests and Hash-based Message Authentication Code (HMAC).

15

iOS 5 Architecture and SDK Frameworks

3.7.4 System (LibSystem)

As we have previously mentioned, iOS is built upon a UNIX-like foundation. The System component of
the Core OS Layer provides much the same functionality as any other UNIX like operating system. This
layer includes the operating system kernel (based on the Mach kernel developed by Carnegie Mellon
University) and device drivers. The kernel is the foundation on which the entire iOS platform is built and
provides the low level interface to the underlying hardware. Amongst other things, the kernel is
responsible for memory allocation, process lifecycle management, input/output, inter-process
communication, thread management, low level networking, file system access and thread management.

As an app developer your access to the System interfaces is restricted for security and stability reasons.
Those interfaces that are available to you are contained in a C-based library called LibSystem. As with all
other layers of the iOS stack, these interfaces should be used only when you are absolutely certain there
is no way to achieve the same objective using a framework located in a higher iOS layer.

16

Chapter 4

4. Joining the Apple iOS Developer
Program

he first step in the process of learning to develop iOS 5 based iPhone applications involves gaining an

understanding of the differences between Registered Apple Developers and iOS Developer Program
Members. Having gained such an understanding, the next choice is to decide the point at which it makes
sense for you to pay to join the iOS Developer Program. With these goals in mind, this chapter will cover
the differences between the two categories of developer, outline the costs and benefits of joining the
developer program and, finally, walk through the steps involved in obtaining each membership level.

4.1 Registered Apple Developer

There is no fee associated with becoming a registered Apple developer. Simply visit the following web
page to begin the registration process:

http://developer.apple.com/programs/register/

An existing Apple ID (used for making iTunes or Apple Store purchases) is usually adequate to complete
the registration process.

Once the registration process is complete, access is provided to developer resources such as online
documentation and tutorials. Registered developers are also able to download older versions of the iOS
SDK and Xcode development environment.

In order to obtain the latest versions of both the iOS SDK and Xcode, registered developers must either
purchase them from the Mac App Store or enroll in the iOS Developer Program. The latest iOS SDK and
Xcode package costs $4.99 to purchase from the Mac App Store and may be found at the following
location:

http://itunes.apple.com/us/app/xcode/id422352214?mt=12&Is=1

This raises the question of whether to upgrade to the iOS Developer Program, or to remain as a
Registered Apple Developer and simply purchase the latest iOS SDK and Xcode package. It is important,
therefore, to understand the key benefits of the iOS Developer Program.

4.2 i0S Developer Program

Membership in the iOS Developer Program currently costs $99 per year. As previously mentioned,
membership includes access to the latest versions of the iOS SDK and Xcode development environment.
The benefits of membership, however, go far beyond those offered at the Registered Apple Developer
level.

17

http://developer.apple.com/programs/register/
http://itunes.apple.com/us/app/xcode/id422352214?mt=12&ls=1

Joining the Apple iOS Developer Program

One of the key advantages of the developer program is that it permits the creation of certificates and
provisioning profiles to test applications on physical devices. Although Xcode includes device simulators
which allow for a significant amount of testing to be performed, there are certain areas of functionality,
such as location tracking and device motion, which can only fully be tested on a physical device. Of
particular significance is the fact that iCloud access can only be tested when applications are running on
physical devices.

Of further significance is the fact that iOS Developer Program members have unrestricted access to the
full range of guides and tutorials relating to the latest iOS SDK and, more importantly, have access to
technical support from Apple’s iOS technical support engineers (though the annual fee covers the
submission of only two support incident reports).

By far the most important aspect of the iOS Developer Program is that membership is a mandatory
requirement in order to publish an application for sale or download in the App Store.

Clearly, developer program membership is going to be required at some point before your application
reaches the App Store. The only question remaining is when exactly to sign up.

4.3 When to Enroll in the iOS Developer Program?

Clearly, there are many benefits to iOS Developer Program membership and, eventually, membership
will be necessary to begin selling applications. As to whether or not to pay the enrollment fee now or
later will depend on individual circumstances. If you are still in the early stages of learning to develop
iOS applications or have yet to come up with a compelling idea for an application to develop then much
of what you need is provided by spending the nominal fee to purchase the latest iOS SDK and Xcode
bundle. As your skill level increases and your ideas for applications to develop take shape you can, after
all, always enroll in the developer program at a later date.

If, on the other hand, you are confident that you will reach the stage of having an application ready to
publish or know that you will need to test the functionality of the application on a physical device as
opposed to a simulator then it is worth joining the developer program sooner rather than later.

4.4 Enrolling in the iOS Developer Program

If your goal is to develop iPhone applications for your employer then it is first worth checking whether
the company already has membership. That being the case, contact the program administrator in your
company and ask them to send you an invitation from within the iOS Developer Program Member
Center to join the team. Once they have done so, Apple will send you an email entitled You Have Been
Invited to Join an Apple Developer Program containing a link to activate your membership. If you or your
company is not already a program member, you can enroll online at:

http://developer.apple.com/programs/ios/

Apple provides enrollment options for businesses and individuals. To enroll as an individual you will
need to provide credit card information in order to verify your identity. To enroll as a company you must
have legal signature authority (or access to someone who does) and be able to provide documentation
such as Articles of Incorporation and a Business License.

18

http://developer.apple.com/programs/ios/

Joining the Apple iOS Developer Program

Acceptance into the developer program as an individual member typically takes less than 24 hours with
notification arriving in the form of an activation email from Apple. Enrollment as a company can take
considerably longer (sometimes weeks or even months) due to the burden of the additional verification
requirements.

Whilst awaiting activation you may log into the Member Center with restricted access using your Apple
ID and password at the following URL:

http://developer.apple.com/membercenter

Once logged in, clicking on the Your Account tab at the top of the page will display the prevailing status
of your application to join the developer program as Enrollment Pending:

Developer Programs

Developer Program Status
Enrollment Pending (
p— <

B L.

Continue Enrollment)

Figure 4-1

Once the activation email has arrived, log into the Member Center again and note that access is now
available to a wide range of options and resources as illustrated in Figure 4-2:

@& Developer Member Center ‘

A Programs & Add-ons Your Account

Hi, Neil Smyth | Log out ‘
{
|
|

Developer Program Resources Developer Program Overview
Read about accessing the resources
and benefits of your iOS Developer

B -

Technical Resources and Tools

=sa” k. Dev Centers

Quickly access a range of
B

technical resources
PROV
i0S | Mac | Safari

iOS Provisioning Portal
Provision & test your apps on
your iPhane, iPad & iPod touch

News and Announcements) .

App Store Distribution -\

App Store Resource
lwl Center

Learn about how to prepare for
App Store Submission.

Get app submission tips, learn

about new features in iTunes
iTunes Connect Connect and receive guidance on
Submit and manage your apps
on the App Store

developing and marketing your apps
Learn mare »

e

ADC Premier and Select Members

Community and Support

Apple Developer Forums
Discuss technical topics with
i he! pers and Apple

engineers,

N
ras

Developer Support

Request technical or developer

program support

Technical \ Program

Learn about accessing your ADC membership
benefits and resources.
Learn mare »

Figure 4-2
4.5 Summary

An important early step in iPhone iOS 5 application development process involves registering as an
Apple Developer and identifying the best time to upgrade to iOS Developer Program membership. This
chapter has outlined the differences between the two programs, provided some guidance to keep in

19

http://developer.apple.com/membercenter

Joining the Apple iOS Developer Program

mind when considering developer program membership and walked briefly through the enrollment
process. The next step is to download and install the iOS 5 SDK and Xcode development environment.

20

5. Installing Xcode 4 and the i0S 5 SDK

*Phone apps are developed using the iOS SDK in conjunction with Apple’s Xcode 4 development

Ienvironment. The iOS SDK contains the development frameworks that were outlined in iOS 5
Architecture and Frameworks. Xcode 4 is an integrated development environment (IDE) within which
you will code, compile, test and debug your iOS iPhone applications. The Xcode 4 environment also
includes a feature called Interface Builder which enables you to graphically design the user interface of
your application using the components provided by the UIKit framework.

In this chapter we will cover the steps involved in installing both Xcode 4 and the iOS 5 SDK on Mac OS X.

5.1 Identifying if you have an Intel or PowerPC based Mac

Only Intel based Mac OS X systems can be used to develop applications for iOS. If you have an older,
PowerPC based Mac then you will need to purchase a new system before you can begin your iPhone app
development project. If you are unsure of the processor type inside your Mac, you can find this
information by opening the Finder and selecting the About This Mac option from the Apple menu. In the
resulting dialog check the Processor line. Figure 5-1 illustrates the results obtained on an Intel based
system.

If the dialog on your Mac does not reflect the presence of an Intel based processor then your current
system is, sadly, unsuitable as a platform for iPhone iOS app development.

In addition, the iOS 5 SDK with Xcode 4.2 environment requires that the version of Mac OS X running on
the system be version 10.6.6 or later. If the “About This Mac” dialog does not indicate that Mac OS X
10.6.6 or later is running, click on the Software Update... button to download and install the appropriate
operating system upgrades.

21

Installing Xcode 4 and the iOS 5 SDK

8.0.0 About This Mac
Y,
~
(4
}l‘./ ‘\‘

Mac OS X

Version 10.6.8

R SR TR
[Software Update...)

Processor 2 GHz Intel Core 2 Duo
Memory 3 GB 1067 MHz DDR3

Startup Disk Macintosh HD

(More Info...)
TM and © 1983-2011 Apple Inc.

All Rights Reserved

Figure 5-1

5.2 Installing Xcode 4 and the i0S 5 SDK

The best way to obtain the latest versions of Xcode 4 and the iOS SDK is to download them from the
Apple iOS Dev Center web site at:

http://developer.apple.com/devcenter/ios/index.action

In order to download Xcode 4 with the iOS 5 SDK, you will either need to be a member of the iOS
Developer programs or purchase a copy from the Mac App Store at:

http://itunes.apple.com/us/app/xcode/id422352214?mt=12&Is=1

The download is over 3.5GB in size and may take a number of hours to complete depending on the
speed of your internet connection. The package takes the form of a disk image (.dmg) file. Once the
download has completed, a new window will open as follows displaying the contents of the .dmg file:

ann | Xcode ()
4 Z items, 247.2 ME available =——————
_"-.
<X
About Xcode Xcode
P
Figure 5-2

22

http://developer.apple.com/devcenter/ios/index.action
http://itunes.apple.com/us/app/xcode/id422352214?mt=12&ls=1

Installing Xcode 4 and the iOS 5 SDK

If this window does not open by default, it can be opened by clicking on the SDK disk drive icon on the
desktop or by navigating to the Downloads directory of your home folder and double clicking on the
corresponding dmg file.

Initiate the installation by double clicking on the package icon (the one that looks like an opening box)
and follow the instructions until you reach the Custom Install screen:

anon ¢ Install Xcode

Custom Install on “Macintosh HD”

Package Name Location Action Size
@ Introduction V| Essentials [7] Developer = Zero KB
; ™ System Tools Upgrade Zero KB
Rakisanss ™ UNIX Davelopment Upgrade Zero KB
) Destination Select ™ Documentation Install Zero KB

6 Installation Type
Installation

Summary

-
I", fe Required: Zero KB Remaining: 25 GB
P,) L

n B A . "\
Go Back | [Continue

Figure 5-3

The default selections on this screen are adequate for most requirements so unless you have specific
needs there is no necessity to alter these selections. Continue to the next screen, review the information
and click Install to begin the installation. Note that you may first be prompted to enter your password as
a security precaution. The duration of the installation process will vary depending on the speed and
current load on the computer, but typically completes in 25 - 45 minutes.

5.3 Starting Xcode

Having successfully installed the SDK and Xcode, the next step is to launch it so that we can write and
then create a sample iPhone application. To start up Xcode, open the Finder and search for Xcode. Since
you will be making frequent use of this tool take this opportunity to drag and drop it into your dock for
easier access in the future. Click on the Xcode icon in the dock to launch the tool.

Once Xcode has loaded, and assuming this is the first time you have used Xcode on this system, you will
be presented with the Welcome screen from which you are ready to proceed:

23

Installing Xcode 4 and the iOS 5 SDK

pa
Recents

.

Recipes

b
lf.ﬂ ..nts /iPhoneiOS5 /iPhoneCoreDataRecipes_seed6

Welcome to Xcode

Version 4.2 (4C5163¢)

Create a new Xcode project
< Start building a new Mac, iPhone or iPad
application from one of the included templates

Connect to a repository
© Use Xcode's integrated source control features to
work with your existing projects

Learn about using Xcode
Explore the Xcode development environment with
the Xcode 4 User Guide

Go to Apple's developer portal
Visit the Mac and iOS Dev Center websites at
developer.apple.com L Last opened Today 2:21 PM

Figure 5-4

Having installed the iOS 5 SDK and successfully launched Xcode 4 we can now look at Creating a Simple
iPhone iOS 5 App.

24

6. Creating a Simple iPhone iOS 5 App

It is traditional in books covering programming topics to provide a very simple example early on. This
practice, though still common, has been maligned by some authors of recent books. Those authors,
however, are missing the point of the simple example. One key purpose of such an exercise is to provide
a very simple way to verify that your development environment is correctly installed and fully
operational before moving on to more complex tasks. A secondary objective is to give the reader a quick
success very early in the learning curve to inspire an initial level of confidence. There is very little to be
gained by plunging into complex examples that confuse the reader before having taken time to explain
the underlying concepts of the technology.

With this in mind, iPhone iOS 5 Development Essentials will remain true to tradition and provide a very
simple example with which to get started. In doing so, we will also be honoring another time honored
tradition by providing this example in the form of a simple “Hello World” program. The “Hello World”
example was first used in a book called the C Programming Language written by the creators of C, Brian
Kernighan and Dennis Richie. Given that the origins of Objective-C can be traced back to the C
programming language it is only fitting that we use this example for iOS 5 and the iPhone.

6.1 Starting Xcode 4

As with all iOS examples in this book, the development of our example will take place within the Xcode 4
development environment. If you have not already installed this tool together with the latest iOS SDK
refer first to the Installing Xcode 4 and the iOS 5 SDK chapter of this book. Assuming that the installation
is complete, launch Xcode either by clicking on the icon on the dock (assuming you created one) or use
the Finder to locate the Xcode binary.

When launched for the first time, and until you turn off the Show this window when Xcode launches
toggle, the screen illustrated in Figure 6-1 will appear by default:

25

Creating a Simple iPhone iOS 5 App

| Recents

Welcome to Xcode

Version 4.2 (4C139)

@ Create a new Xcode project m

Start building a new Mac, iPhone or iPad
application from one of the included templates

— Connect to a repository
W" Use Xcode's integrated source control features to
work with your existing projects

Learn about using Xcode
| Explore the Xcode development environment with
the Xcode 4 User Guide
Go to Apple's developer portal
Visit the Mac and i0S Dev Center websites at

— developer.apple.com No Selection

Open Other... MShow this window when Xcode launches [Cancel 1 [Open]
Figure 6-1

If you do not see this window, simply select the Window -> Welcome to Xcode menu option to display it.
From within this window click on the option to Create a new Xcode project. This will display the main
Xcode 4 project window together with the New Project panel where we are able to select a template
matching the type of project we want to develop:

Choose a template for your new project:

ios | —
L] | [E—— 27

Framework & Library

Other) -

Master-Detail OpenGL Game Page-Based Single View

¥ Mac 0S X | Application Application Application

Application ‘ B o

Framework & Library | Y

Application Plug-in | N,

System Plug-in

Other | Tabbed Application Utility Application Empty Application

m Single View Application

This template provides a starting point for an application that uses a single view. It provides a
view controller to manage the view, and a storyboard or nib file that contains the view.

Previous Next

£

Figure 6-2

The panel located on the left hand side of the window allows for the selection of the target platform
providing options to develop an application either for an iOS based device or Mac OS X.

26

Creating a Simple iPhone iOS 5 App

Begin by making sure that the Application option located beneath iOS is selected. The main panel
contains a list of templates available to use as the basis for an application. The options available are as
follows:

o Master-Detail Application — Used to create a list based application. Selecting an item from a master
list displays a detail view corresponding to the selection. The template then provides a Back button
to return to the list. You may have seen a similar technique used for news based applications,
whereby selecting an item from a list of headlines displays the content of the corresponding news
article. When used for an iPad based application this template implements a basic split-view
configuration.

e OpenGL Game — As discussed in iOS 5 Architecture and SDK Frameworks, the OpenGL ES framework
provides an API for developing advanced graphics drawing and animation capabilities. The OpenGL
ES Game template creates a basic application containing an OpenGL ES view upon which to draw
and manipulate graphics and a timer object.

e Page-based Application — Creates a template project using the page view controller designed to
allow views to be transitioned by turning pages on the screen.

o Tabbed Application — Creates a template application with a tab bar. The tab bar typically appears
across the bottom of the device display and can be programmed to contain items that, when
selected, change the main display to different views. The iPhone’s built-in Phone user interface, for
example, uses a tab bar to allow the user to move between favorites, contacts, keypad and
voicemail.

e Utility Application — Creates a template consisting of a two sided view. For an example of a utility
application in action, load up the standard iPhone weather application. Pressing the blue info button
flips the view to the configuration page. Selecting Done rotates the view back to the main screen.

e Single View Application — Creates a basic template for an application containing a single view and
corresponding view controller.

e Empty Application — This most basic of templates creates only a window and a delegate. If none of
the above templates match your requirements then this is the option to take.

For the purposes of our simple example, we are going to use the Single View Application template so
select this option from the new project window and click Next to configure some project options:

27

Creating a Simple iPhone iOS 5 App

Choose options for your new project:

—

Product Name

Company Identifier com.payloadmedia

Bundle Identifier com.payloadmedia.ProductName

Class Prefix

a)

Device Family | iPhone 1

(") Use Storyboard
‘Zf Use Automatic Reference Counting

[} Include Unit Tests

o —— T -
[Cancel) [Previous) Next
seee— S——————

Figure 6-3

On this screen, enter a Product name for the application that is going to be created, in this case
“HelloWorld” and make sure that the class prefix matches this name. The company identifier is typically
the reversed URL of your company’s website, for example “com.mycompany”. This will be used when
creating provisioning profiles and certificates to enable applications to be tested on a physical iPhone
device (covered in more detail in Testing iOS 5 Apps on the iPhone — Developer Certificates and
Provisioning Profiles). Enter the Class Prefix value of “HelloWorld” which will be used to prefix any
classes created for us by Xcode when the template project is created.

Make sure that iPhone is currently selected from the Device Family menu and that neither the Use
Storyboard nor the Include Unit Tests options are currently selected.

Automatic Reference Counting is a new feature included with the Objective-C compiler which removes
much of the responsibility from the developer for releasing objects when they are no longer needed.
This is an extremely useful new feature and, as such, the option should be selected before clicking the
Next button to proceed. On the final screen, choose a location on the file system for the new project to
be created can click on Create.

Once the new project has been created the main Xcode window will appear as illustrated in Figure 6-4:

28

Creating a Simple iPhone iOS 5 App

S0 0n [HelloWorld - HelloWorld.xcodeproj =
= Xcode
() (= =] | = (s
Run Stop Scheme Breakpoints Editor View Organizer

mo g hHeIIoWorId

|m T @ A = = B

o S PROJECT Summary | Info Build Settings Build Phases Build Rules

tar 05 SDK 5.0

" | HelloWorld l Helloworld iD5 Application Target =
‘h‘ HelloWorldAppDelegate.h TARGETS
‘E‘ HelloWorldAppDalagate.m pbe Identifier com.payloadmedia HelloWaorlc
‘h‘ HelleWorldviewController.h Version | 1.0 Build | 1.0
‘E‘ HelloWaorldviewController.m
" HelloWarldViewController.xib retEzs M
|| Supporting Files Deployment Target | 5.0 E]

|| Frameworks

|| Products iPhone / iPod Deployment Info

Main Storyboard

5 &

Main Interface

Supported Device Orientations

0

Portrait : Upside : Landscape Landscape
Down Left Right

App lcons

Retina Display

© ©

+O0EF®) Add Target Modernize Project
Figure 6-4

Before proceeding we should take some time to look at what Xcode has done for us. Firstly it has
created a group of files that we will need to create our application. Some of these are Objective-C
source code files (with a .m extension) where we will enter the code to make our application work,
others are header or interface files (.h) that are included by the source files and are where we will also
need to put our own declarations and definitions. In addition, the .xib file is the save file used by the
Interface Builder tool to hold the user interface design we will create. Older versions of Interface Builder
saved designs in files with a .nib extension so these files, even today, are called NIB files. Also present
will be one or more files with a .plist file extension. These are Property List files which contain key/value
pair information. For example, the HelloWorld-info.plist file contains resource settings relating to items
such as the language, icon file, executable name and app identifier. The list of files is displayed in the
Project Navigator located in the left hand panel of the main Xcode project window. A toolbar at the top
of this panel contains options to display other information such as build and run history, breakpoints
and compilation errors.

By default, the center panel of the window shows a summary of the settings for the application. This
includes the identifier specified during the project creation process and the target device. Options are
also provided to configure the orientations of the device that are to be supported by the application
together with options to upload an icon (the small image the user selects on the device screen to launch
the application) and splash screen image (displayed to the user while the application loads) for the
application.

In addition to the Summary screen, tabs are provided to view and modify additional settings consisting
of Info, Build Settings, Build Phases and Build Rules. As we progress through subsequent chapters of this

29

Creating a Simple iPhone iOS 5 App

book we will explore some of these other configuration options in greater detail. To return to the
Summary panel at any future point in time, make sure the Project Navigator is selected in the left hand
panel and select the top item (the application name) in the navigator list.

When a source file is selected from the list in the navigator panel, the contents of that file will appear in
the center panel where it may then be edited. To open the file in a separate editing window, simply
double click on the file in the list.

6.2 Creating the iOS App User Interface

Simply by the very nature of the environment in which they run, iPhone apps are typically visually
oriented. As such, a key component of just about any app involves a user interface through which the
user will interact with the application and, in turn, receive feedback. Whilst it is possible to develop user
interfaces by writing code to create and position items on the screen, this is a complex and error prone
process. In recognition of this, Apple provides a tool called Interface Builder which allows a user
interface to be visually constructed by dragging and dropping components onto a canvas and setting
properties to configure the appearance and behavior of those components. Interface Builder was
originally developed some time ago for creating Mac OS X applications, but has now been updated to
allow for the design of iOS app user interfaces.

As mentioned in the preceding section, Xcode pre-created a number of files for our project, one of
which has a .xib filename extension. This is an Interface Builder save file (remember that they are called
NIB files, not XIB files). The file we are interested in for our HelloWorld project is called
HelloWorldViewController.xib. To load this file into Interface Builder simply select the file name in the
list in the left hand panel. Interface Builder will subsequently appear in the center panel as shown in
Figure 6-5:

80O [HelloWorld - HelloWorldviewController.xib =
() () (=] | | Elug
Run Stop Scheme Breakpoints Editor View Organizer
|, S A = =» B | A » -_jHeIIuw:trId » [|Hellowerld ; - Hellowo... » . HelloworldviewController.xib (English) » | | View

=, HelloWorld
3 1 targer, i05 50K 5.0 [Placeholders
™
HelloWorld File's Owner = =3
|h| HellowarldAppDelegate.h @ First Responder
.E' HelloWaorldAppDelegate.m
|h| HellowarldviewContraller.h W% Objects
.E' HelloWarldViewController.m]
= Supporting Files
Frameworks
Praducts
w
' a
v
+ 0EE® (=] € RIS

Figure 6-5

30

Creating a Simple iPhone iOS 5 App

In the center panel a visual representation of the user interface of the application is displayed. Initially
this consists solely of the UlView object. This UlView object was added to our design by Xcode when we
selected the Single View Application option during the project creation phase. We will construct the user
interface for our HelloWorld app by dragging and dropping user interface objects onto this UlView
object. Designing a user interface consists primarily of dragging and dropping visual components onto
the canvas and setting a range of properties and settings. In order to access objects and property
settings it is necessary to display the Xcode right hand panel. This is achieved by selecting the right hand
button in the View section of the Xcode toolbar:

I [=]iw

View
Figure 6-6
The right hand panel, once displayed, will appear as illustrated in Figure 6-7:

| |pj@ 8 » « ©

Identity '

File Name HelloWerldViewController.x
ib
File Type | Default - Interface B...

]
v

Location | Relative to Group
en.lproj/
HelloWorldViewController.
xib

Full Path fUsers/neilsmyth/
Documents/
iPhonei0ss /HelloWorld /
HelloWorld fen.lproj/
HelloweorldViewCantroll
er.xib

Interface Builder Document

Document Versioning

Deployment I Project SDK Version (... + |

Development [Interface Builder 3.1 - |

Localization Locking

Default | Nathing

(Reset Locking Controls)

-
v

Localization
English

+ -
Target Membership
I A HelloWarld

ID[{} &« m
| |J| File Template Library

Figure 6-7

31

Creating a Simple iPhone iOS 5 App

Along the top edge of the panel is a row of buttons which change the settings displayed in the upper half
of the panel. By default the File Inspector is displayed. Options are also provided to display quick help,
the Identity Inspector, Attributes Inspector, Size Inspector and Connections Inspector. Before proceeding,
take some time to review each of these selections to gain some familiarity with the configuration
options each provides. Throughout the remainder of this book extensive use of these inspectors will be
made.

The lower section of the panel defaults to displaying the file template library. Above this panel is
another toolbar containing buttons to display other categories. Options include frequently used code
snippets to save on typing when writing code, the object library and the media library. For the purposes
of this tutorial we need to display the object library so click in the appropriate toolbar button (the three
dimensional cube). This will display the Ul components that can be used to construct our user interface.
Move the cursor to the line above the lower toolbar and click and drag to increase the amount of space
available for the library if required. In addition, the objects are categorized into groups which may be
selected using the menu beneath the toolbar. The layout buttons may also be used to switch from a
single column of objects with descriptions to multiple columns without descriptions.

6.3 Changing Component Properties

With the property panel for the View selected in the main panel, we will begin our design work by
changing the background color of this view. Begin by making sure the View is selected and that the
Attribute Inspector (View -> Utilities -> Show Attribute Inspector) is displayed in the right hand panel.
Click on the gray rectangle next to the Background label to invoke the Colors dialog. Using the color
selection tool, choose a visually pleasing color and close the dialog. You will now notice that the view
window has changed from gray to the new color selection.

6.4 Adding Objects to the User Interface

The next step is to add a Label object to our view. To achieve this, select Cocoa Touch -> Controls from
the library panel menu, click on the Label object and drag it to the center of the view. Once it is in
position release the mouse button to drop it at that location:

32

Creating a Simple iPhone iOS 5 App

Figure 6-8

Using the blue markers surrounding the label border, stretch first the left and then right side of the label
out to the edge of the view until the vertical blue dotted lines marking the recommended border of the
view appear. With the Label still selected, click on the centered alignment button in the Layout attribute
section of the Attribute Inspector (View -> Utilities -> Show Attribute Inspector) to center the text in the
middle of the screen. Click on the current font attribute setting to choose a larger font setting, for
example a Georgia bold typeface with a size of 24.

Finally, double click on the text in the label that currently reads “Label” and type in “Hello World”. At
this point, your View window will hopefully appear as outlined in Figure 6-9 (allowing, of course, for
differences in your color and font choices):

33

Creating a Simple iPhone iOS 5 App

Figure 6-9

Having created our simple user interface design we now need to save it. To achieve this, select File ->
Save or use the Command+S keyboard shortcut.

6.5 Building and Running an iOS App in Xcode 4

Before an app can be run it must first be compiled. Once successfully compiled it may be run either
within a simulator or on a physical iPhone, iPad or iPod Touch device. The process for testing an app on
a physical device requires some additional steps to be performed involving developer certificates and
provisioning profiles and will be covered in detail in Testing iOS 5 Apps on the iPhone — Developer
Certificates and Provisioning Profiles. For the purposes of this chapter, however, it is sufficient to run the
app in the simulator.

Within the main Xcode 4 project window make sure that the menu located in the top left hand corner of
the window (to the right of the Stop button) has the iPhone Simulator option selected and then click on
the Run toolbar button to compile the code and run the app in the simulator. The small iTunes style
window in the center of the Xcode toolbar will report the progress of the build process together with
any problems or errors that cause the build process to fail. Once the app is built, the simulator will start
and the HelloWorld app will run:

34

Creating a Simple iPhone iOS 5 App

Carrier =

A 4

Figure 6-10

6.6 Dealing with Build Errors

As we have not actually written or modified any code in this chapter it is unlikely that any errors will be
detected during the build and run process. In the unlikely event that something did get inadvertently
changed thereby causing the build to fail it is worth taking a few minutes to talk about build errors
within the context of the Xcode environment.

If for any reason a build fails, the status window in the Xcode 4 toolbar will report that an error has been
detected by displaying “Build” together with the number of errors detected and any warnings. In
addition, the left hand panel of the Xcode window will update with a list of the errors. Selecting an error
from this list will take you to the location in the code where corrective action needs to be taken.

35

Chapter 7

7. Testing i0OS 5 Apps on the iPhone -
Developer Certificates and Provisioning
Profiles

In the chapter entitled Creating a Simple iPhone iOS 5 App we were able to run an application in the
iOS Simulator environment bundled with the iOS 5 SDK. Whilst this is fine for most cases, in practice
there are a number of areas that cannot be comprehensively tested in the simulator. For example, no
matter how hard you shake your computer (not something we actually recommend) or where in the
world you move it to, neither the accelerometer nor GPS features will provide real world results within
the simulator (though the simulator does have the option to perform a basic virtual shake gesture and
to simulate location data). If we really want to test an iOS application thoroughly in the real world,
therefore, we need to install the app onto a physical iPhone device.

In order to achieve this a number of steps are required. These include generating and installing a
developer certificate, creating an App ID and provisioning profile for your application, and registering
the devices onto which you wish to directly install your apps for testing purposes. In the remainder of
this chapter we will cover these steps in detail.

Note that the provisioning of physical devices requires membership in the iOS Developer Program, a
topic covered in some detail in the chapter entitled Joining the Apple iOS Developer Program.

7.1 Creating an i0S Development Certificate Signing Request

Any apps that are to be installed on a physical iPhone device must first be signed using an iOS
Development Certificate. In order to generate a certificate the first step is to generate a Certificate
Signing Request (CSR). Begin this process by opening the Keychain Access tool on your Mac system. This
tool is located in the Applications -> Utilities folder. Once launched, the Keychain Access main window
will appear as illustrated in Figure 7-1:

37

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

0o

Keychain Access

H} Click to lock the login keychain.

Q|

[& ek

Keychains

login
Micr.. tificates

System

"

System Roots =
Category

All Items

Mame & Kind Expires

. Passwords

Secure Motes
My Certificates
Keys
Certificates

Keychain

0 items

B

Figure 7-1

Within the Keychain Access utility, perform the following steps:

1. Select the Keychain Access -> Preferences menu and select Certificates in the resulting dialog:

2. Within the Preferences dialog make sure that the Online Certificate Status Protocol (OCPS) and

Preferences

e

[General First Aid

Certificates]

Online Certificate Status Protocol (OCSP): | Off

“r
i

Certificate Revocation List (CRL): | Off

“r
.

Priority: | OCSP

Figure 7-2

Certificate Revocation List (CRL) settings are both set to Off, then close the dialog.

3. Select the Keychain Access -> Certificate Assistant -> Request a Certificate from a Certificate
Authority... menu option and enter your email and name exactly as registered with the i0OS
Developer Program. Leave the CA Email Address field blank and select the Saved to Disk and Let me

specify key pair information options:

38

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

Certificate Assistant

Certificate Information

Enter information for the certificate you are requesting.
Click Continue to request a certificate from the CA.

User Email Address: example@techotopia.com L]

Commaon Name: | John Smith |

CA Email Address:

Request is: () Emailed to the CA
® saved to disk
@ Let me specify key pair information

(; N
| Continue)

Figure 7-3

4. Clicking the Continue button will prompt for a file and location into which the CSR is to be saved.
Either accept the default settings, or enter alternative information as desired at which point the Key

Pair Information screen will appear as illustrated in Figure 7-4:

8060

Certificate Assistant

Key Pair Information

Specify the key size and algorithm used to create your key
pair.

The key pair is made up of your private and public keys. The
private key is the secret part of the key pair and should be
kept secret. The public key is made publicly available as part
of the digital certificate.

Key Size: | 2048 bits 3
Algorithm: [RSA)
[Learn More...)

| Continue |

Figure 7-4

39

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

5. Verify that the 2048 bits key size and RSA algorithm options are selected before clicking on the
Continue button. The certificate request will be created in the file previously specified and the
Conclusion screen displayed. Click Done to dismiss the Certificate Assistant window.

7.2 Submitting the iOS Development Certificate Signing Request

Having created the Certificate Signing Request (CSR) the next step is to submit it for approval. This is
performed within the iOS Provisioning Portal that is accessed from the Member Center of the Apple
developer web site. Under Developer Program Resources on the main member center home page select
iOS Provisioning Portal. Within the portal, select the Certificates link located in the left hand panel to
display the Certificates page:

i0S Provisioning Portal Welcome, Neil Smyth ‘ Edit Profile 1 Log out

Provisioning Portal Go to i0S Dev Center

Home
Certificates Development Distribution History How To
Devices

Current Development Certificates
App IDs

Provisioning [=] Your Certificate
Distribution
Name ~ Provisioning Profiles Expiration Date Status Action
1) You currently do not have a valid certificate Request Certificate
*If you do not have the WWDR intermediate certificate installed, click here to download now.
Figure 7-5

Click on the Request Certificate button, scroll down to the bottom of the text under the heading Create
an iOS Development Certificate and click on the Choose File button. In the resulting file selection panel,
navigate to the certificate signing request file created in the previous section and click on Choose. Once
your file selection is displayed next to the Choose File button, click on the Submit button located in the
bottom right hand corner of the web page. At this point you will be returned to the main Certificates
page where your certificate will be listed as Pending Issuance.

Click on the link to download the WWDR intermediate certificate and, once downloaded, double click on
it to install it into the keychain. This certificate is used by Xcode to verify that your certificates are both
valid and issued by Apple.

If you are not the Team Administrator, you will need to wait until that person approves your request. If,
on the other hand, you are the administrator for the iOS Developer Program membership you may
approve your own certificate request by clicking on the Approve button located in the Action column of

40

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

the Current Certificates table. If no approval button is present simply refresh the web page and the
certificate should automatically appear listed as Issued. Your certificate is now active and the table will

have refreshed to include a button to Download the certificate:

Provisioning Portal

Home
Development Distribution History How To
I
Devices

Current Development Certificates

App IDs

Provisioning [=] Your Certificate

Distribution
Name - Provisioning Profiles Expiration Date Status
[E]| Neil Smyth Jul 06, 2012 Issued

If you do not have the WWDR intermediate certificate installed, click here to download now.

Figure 7-6

7.3 Installing an i0S Development Certificate

Co to i0S Dev Center

Action

Download

Revoke

Once a certificate has been requested and issued it must be installed on the development system so

that Xcode can access it and use it to sign any applications you develop. The first step in this process is
to download the certificate from the iOS Provisioning Portal by clicking on the Download button located
on the Certificates page outlined in the previous section. Once the file has downloaded, double click on
it to load it into the Keychain Access tool. The certificate will then be listed together with a status

(hopefully one that reads This certificate is valid):

80O Keychain Access
d] Click to lock the login keychain. Q
Keychains
————] iPhone Developer: Neil Smyth
e

Issued by: Apple Worldwide Developer Relations Certification Authority
Expires: Thursday, March 10, 2011 2:00:50 PM ET
@ This certificate is valid

& Micr.. ertificates
& System -
System Roots

MName A Kind Expires

Catego
gory =] iPhone Devel...h {) certificate Mar 10, 2011 2:00:50 PM

i All ltems

4. Passwords
Secure Notes

E] My Certificates

@ Keys

= Certificates

Keychain

login

(i] [Copr 1 item

Figure 7-7

41

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

Your certificate is now installed into your Keychain and you are ready to move on to the next step.

7.4 Assigning Devices

Once you have a development certificate installed, the next step is to specify which devices are to be
used to test the iOS apps you are developing. This is achieved by entering the Unique Device Identifier
(UDID) for each device into the Provisioning Portal. Note that Apple restricts developers to 100
provisioned devices per year.

A new device may be added to the list of supported test devices either from within the Xcode Organizer
window, or by logging into the iOS Developer Portal and manually adding the device. To add a device to
the portal from within Organizer, simply connect the device, open the Organizer window in Xcode using
the Organizer toolbar button, select the attached device from the left hand panel and click on the Add to
Portal button. The Organizer will prompt for the developer portal login and password before connecting
and enabling the device for testing.

Manually adding a device, on the other hand, requires the use of the iPhone’s UDID. This may be
obtained either via Xcode or iTunes. Begin by connecting the device to your computer using the docking
connector. Once Xcode has launched the Organizer window will appear displaying summary information
about the device (or may be opened by selecting the Organizer button in the Xcode toolbar). The UDID
is listed next to the Identifier label as illustrated in Figure 7-8:

ano Organizer - Devices

1@ " & O

Devices Projects Archives Documentation

LIBRARY
X Developer Profile
(] Provisianing Profiles
Software Images
Device Lags
¥ Screenshots

iPhone
Capacity 15.03 GB
Model iPhone 4 (GSM)
Serial Number 860278CBA4S
ECID 1687754718572

DEVICES

Device Lags
@ Screenshots

Identifier 649644blcalfc2e0044ba5a7d484bcasbbfeflec
Software Version 4.3 (8F190)

Use for Development

© @

Add to Portal Remove
Figure 7-8

Alternatively, launch iTunes, select the device in the left hand pane and review the Summary
information page. One of the fields on this page will be labeled as Serial Number. Click with the mouse
on this number and it will change to display the UDID.

42

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

Having identified the UDIDs of any devices you plan to use for app testing, select the Devices link located
in the left hand panel of the iOS Provisioning Portal, and click on Add Devices in the resulting page. On
the Add Devices page enter a descriptive name for the device and the 40 character UDID:

Home

Certificates

App IDs
Provisioning

Distribution

Manage History iow To
Add Devices
You can add up to 89 device(s). Enter a name for each device and its ID. Finding the Device ID
Device Name Device ID (40 hex characters)
John's iPad Touch 8e626a +
Figure 7-9

In order to add more than one device at a time simply click on the “+” button to create more input
fields. Once you have finished adding devices click on the Submit button. The newly added devices will

now appear on the main Devices page of the portal.

7.5 Creating an App ID

The next step in the process is to create an App ID for each app that you create. This ID allows your app

to be uniquely identified within the context of the Apple iOS ecosystem. To create an App ID, select the
App IDs link in the provisioning portal and click on the New App ID button to display the Create App ID

screen as illustrated in Figure 7-10:

43

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

Manage How To
Create App ID

Description

Enter a common name or description of your App ID using alphanumeric characters. The description you specify will be used
throughout the Provisioning Portal to identify this App ID.

You cannot use special characters as @, &, *, " in your description.

Bundle Seed ID (App ID Prefix)

Generate a new or select an existing Bundle Seed ID for your App ID.

a suite of applications that will share the same Keychain access, use the same bundle Seed ID for each of your

| Generate New | 5 It you are creatir

application's Apf

Bundle Identifier (App ID Suffix)

Enter a unigue identifier for your App ID. The recommended practice is to use a reverse-domain name style string for the Bundle
Identifier portion of the App ID.

cum.techutupia| Example: com.domainname.appname

Figure 7-10

Enter a suitably descriptive name into the Description field and then make a Bundle Seed ID selection. If
you have not created any previous Seed IDs then leave the default Generate New selection unchanged.
If you have created a previous App ID and would like to use this for your new app, click on the menu and
select the desired ID from the drop down list. Finally enter the Bundle Identifier. This is typically set to
the reversed domain name of your company followed by the name of the app. For example, if you are
developing an app called MyApp, and the URL for your company is www.mycompany.com then your
Bundle identifier would be entered as:

com.mycompany . MyApp
If you would like to create an App ID that can be used for multiple apps then the wildcard character (*)
can be substituted for the app name. For example:

com.mycompany. *
Having entered the required information, click on the Submit button to return to the main App ID page
where the new ID will be listed.
7.6 Creating an iOS Development Provisioning Profile

The Provisioning Profile is where much of what we have created so far in the chapter is pulled together.
The provisioning profile defines which developer certificates are allowed to install an application on a
device, which devices can be used and which applications can be installed. Once created, the

44

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

provisioning profile must be installed on each device on which the designated application is to be
installed.

To create a provisioning profile, select the Provisioning link in the Provisioning Portal and click on the
New profile button. In the resulting Create iPhone Provisioning Profile screen, perform the following
tasks:

In the Profile Name field enter a suitably descriptive name for the profile you are creating.
Set the check box next to each certificate to specify which developers are permitted to use this
particular profile.

3. Selectan App ID from the menu.

4. Select the devices onto which the app is permitted to be installed.

5. Click on the Submit button.

Initially the profile will be listed as Pending. Refresh the page to see the status change to Active.

Now that the provisioning profile has been created, the next step is to download and install it. To do so,
click on the Download button next to your new profile and save it to your local system (note that the file
will have a .mobileprovision file name extension). Once saved, either drag and drop the file onto the
Xcode icon in the dock or onto the Provisioning Profiles item located under Library in the Xcode
Organizer window. Once the provisioning profile is installed, it should appear in the Organizer window
(Figure 7-11):

45

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

anon Organizer - Devices

= "3 O

Devices positories Projects Archives Doc

LIERARY
A Developer Profile
[£] Provisioning Profiles

Software Images iy |y, - Creation Date Thursday, January 6, 2011 6:47:15 AM ET
L iﬁ Expiration Date Wednesday, April 6, 2011 7:47:15 AM ET
Screenshots
Profile Identifier
DEVICES
= PROV App ldentifier
0 iPhone o
4.2.1 (BC148) " Devices iPhone, and 16 other devices
&
4 Applications Qv Profile Narr
B Console Name 4 Expiration Date Status
b iz g April 6, 2011 7:47 AM
% Screenshots
Add Delete 4
Figure 7-11

7.7 Enabling an iPhone Device for Development

With the provisioning profile installed select the target device in the left hand panel of the Organizer
window and click on the Use for Development button. The Organizer will then prompt you for your
Apple developer login and password.

Once a valid login and password have been entered, the Organizer will perform the steps necessary to
install the provisioning profile on the device and enable it for application testing.

7.8 Associating an App ID with an App

Before we can install our own app directly onto a device, we must first embed the App ID created in the
iOS Provisioning Portal and referenced in the provisioning profile into the app itself. To achieve this:

1. In the left hand panel of the main Xcode window, select the project navigator toolbar button and
select the top item (the application name) from the resulting list.

2. Select the Info tab from in the center panel:

46

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

eno | HelloWorld - HelloWorld.xcodeproj =
proj
(») (m) [eliow.z] (=] = 1)
~
Run Stap Scheme Breakpoints Editor View Organizer
mTdA=®B u | < » | [Helloworld
D FIFCENE PROJECT Summary | Info | Build Settings Build Phases Build Rules
Hellowarld
] Hellaworld 1 Hellowaorl Custom i0S Target Properties
'hl HellowWorldAppDelegate.h | TARGETS K Typt.! el
i HellowarldAppDelegate.m ﬁ Localization native development region string en
Lm| - Strin ' }
= MainWindow.xib =5 Helloworl Bundle dlspl.ay name string ${PRODUCT_NAME}
Ih' HelloworldViewController.h - Executable file String S{EXECUTABLE_NAME}
|m| Hellowarldy...antraller.m Ican file string
% Helloworl._ntroller.xib Bundle identifier » @O String com.eBookFrenzy. ${PRODUCT_MAME:rfc103didentifier}
(| Supporting Files InfoDictionary version String 6.0
|| HelloWorldTests Bundle name String ${PRODUCT_MAME}
[Frameworks Bundle OS Type code String APPL
&% UIKit.framework Bundle versions string, short String 1.0
| Headers. Bundle creator OS Type code String wm
&= Foundation.framework Bundle version String 1.0
~
= CoreGraphics.framewark Application requires iPhone environmer Boolea YES
[l Products Main nib file base name String MainWindow
Supported interface orientations Arr item
Document Types (D)
Exported UTIs (0}
Imported UTls (0)
URL Types (0)
Add Target Add
+ ORA® = n = % & |Helloworld 4
Figure 7-12

In the Bundle Identifier field enter the App ID you created in the iOS Provisioning Portal. This can either
be in the form of your reverse URL and app name (for example com.mycompany.HelloWorld) or you can
have the product name substituted for you by entering
com.mycompany.S{PRODUCT_NAME:rfc1034indentifer} as illustrated in Figure 7-12.

Once the App ID has been configured the next step is to build the application and install it onto the
iPhone or iPod Touch device.

7.9 10S and SDK Version Compatibility

Before attempting to install and run an application on a physical iPhone device it is important to be
aware of issues relating to version compatibility between the SDK used for the development and the
operating system running on the target device. For example, if the application was developed using
version 4.3 of the iOS SDK then it is important that the iPhone on which the app is to be installed is
running iOS version 4.3 or later. An attempt to run the app on an iPhone with an older version of iOS will
result in an error reported by Xcode that reads “Xcode cannot run using the selected device. No
Provisioned iOS devices are available. Connect an iOS device or choose an iOS simulator as the
destination”.

The absence in this message of any indication that the connected device simply has the wrong version of
i0S installed on it may lead the developer to assume that a problem exists either with the connection or
with the certification or provisioning profile. If you encounter this error message, therefore, it is worth
checking version compatibility before investing what typically turns into many hours of effort trying to
resolve non-existent connectivity and provisioning problems.

47

Testing iOS 5 Apps on the iPhone — Developer Certificates and Provisioning Profiles

7.10 Installing an App onto a Device

Located in the top left hand corner of the main Xcode window is drop down menu which, when clicked,
provides a menu of options to control the target run environment for the current app.

If either the iPhone or iPad simulator option is selected then the app will run within the corresponding
simulated environment when it is built. To instruct Xcode to install and run the app on the device itself,
simply change this menu to the iOS Device setting. Assuming the device is connected, click on the Run
button and watch the status updates as Xcode compiles and links the source code. Once the code is
built, Xcode will need to sign the application binary using your developer certificate. If prompted with a
message that reads “codesign wants to sign using key “<key name>" in your keychain”, select either
Allow or Always Allow (if you do not wish to be prompted during future builds). Once signing is complete
the status will change to “Installing <appname>.app on iPhone...”. After a few seconds the app will be
installed and will automatically start running on the device where it may be tested in a real world
environment.

7.11 Summary

Without question, the iOS Simulator included with the iOS 5 SDK is an invaluable tool for application
development. There are, however, a number of situations where it is necessary to test an application on
a physical iPhone device. In this chapter we have covered the steps involved in provisioning applications
for installation on an iPhone device.

48

8. The Basics of Objective-C Programming

In order to develop iOS apps for the iPhone it is necessary to use a programming language called
Objective-C. A comprehensive guide to programming in Objective-C is beyond the scope of this book.
In fact, if you are unfamiliar with Objective-C programming we strongly recommend that you read a
copy of a book called Objective-C 2.0 Essentials. This is the companion book to iPhone iOS 5
Development Essentials and will teach you everything you need to know about programming in
Objective-C.

In the next two chapters we will take some time to go over the fundamentals of Objective-C
programming with the goal of providing enough information to get you started.
8.1 Objective-C Data Types and Variables

One of the fundamentals of any program involves data, and programming languages such as Objective-C
define a set of data types that allow us to work with data in a format we understand when writing a
computer program. For example, if we want to store a number in an Objective-C program we could do
so with syntax similar to the following:

int mynumber = 10;

In the above example, we have created a variable named mynumber of data type integer by using the

keyword int. We then assigned the value of 10 to this variable.

Objective-C supports a variety of data types including int, char, float, double, boolean (BOOL) and a
special general purpose data type named id.

Data type qualifiers are also supported in the form of long, long long, short, unsigned and signed. For
example if we want to be able to store an extremely large number in our mynumber declaration we can
qualify it as follows:

long long int mynumber = 345730489;

A variable may be declared as constant (i.e. the value assigned to the variable cannot be changed
subsequent to the initial assignment) through the use of the const qualifier:

const char myconst = ‘c¢’;

49

The Basics of Objective-C Programming

8.2 Objective-C Expressions

Now that we have looked at variables and data types we need to look at how we work with this data in
an application. The primary method for working with data is in the form of expressions.

The most basic expression consists of an operator, two operands and an assignment. The following is an
example of an expression:

int myresult = 1 + 2;

In the above example the (+) operator is used to add two operands (1 and 2) together. The assignment
operator (=) subsequently assigns the result of the addition to an integer variable named myresult. The
operands could just have easily been variables (or a mixture of constants and variables) instead of the
actual numerical values used in the example.

In the above example we looked at the addition operator. Objective-C also supports the following
arithmetic operators:

Operator | Description

-(unary) | Negates the value of a variable or expression
* Multiplication

/ Division

+ Addition

- Subtraction

% Modulo

Another useful type of operator is the compound assignment operator. This allows an operation and
assighment to be performed with a single operator. For example one might write an expression as
follows:

X =X + y;

The above expression adds the value contained in variable x to the value contained in variable y and
stores the result in variable x. This can be simplified using the addition compound assignment operator:

+=y

Objective-C supports the following compound assignment operators:

Operator | Description

X+=y Add x to y and place result in x

X-=y Subtract y from x and place result in x

X *=zy Multiply x by y and place result in x

xX/=y Divide x by y and place result in x

X %=y Perform Modulo on x and y and place result in x

X&=y Assign to x the result of logical AND operation on x and y

50

The Basics of Objective-C Programming

X|=y Assign to x the result of logical OR operation on x and y

XM=y Assign to x the result of logical Exclusive OR on x and y

Another useful shortcut can be achieved using the Objective-C increment and decrement operators (also
referred to as unary operators because they operate on a single operand). As with the compound
assignment operators described in the previous section, consider the following Objective-C code

fragment:
x = x + 1; // Increase value of variable x by 1
X = x — 1; // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of using this approach it is
quicker to use the ++ and -- operators. The following examples perform exactly the same tasks as the
examples above:

x++; Increment x by 1
x——; Decrement x by 1

These operators can be placed either before or after the variable name. If the operator is placed before
the variable name the increment or decrement is performed before any other operations are performed
on the variable.

In addition to mathematical and assignment operators, Objective-C also includes a set of logical
operators useful for performing comparisons. These operators all return a Boolean (BOOL) true (1)
or false (0) result depending on the result of the comparison. These operators are binary operators in
that they work with two operands.

Comparison operators are most frequently used in constructing program flow control logic. For example
an if statement may be constructed based on whether one value matches another:

if (x == vy)
// Perform task

The result of a comparison may also be stored in a BOOL variable. For example, the following code will

result in a true (1) value being stored in the variable result:

BOOL result;
int x = 10;
int y = 20;

result = x < y;

Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists
the full set of Objective-C comparison operators:

Operator | Description

X==y Returns true if x is equal to y

X>y Returns true if x is greater thany

51

The Basics of Objective-C Programming

X>=y Returns true if x is greater than or equal to y
X<y Returns true if x is less than y

X<=y Returns true if x is less than or equal to y
x!=y Returns true if x is not equal to 'y

Objective-C also provides a set of so called logical operators designed to return boolean true and false. In
practice true equates to 1 and false equates to 0. These operators both return boolean results and take
boolean values as operands. The key operators are NOT (!), AND (&&), OR (] |) and XOR ().

The NOT (!) operator simply inverts the current value of a boolean variable, or the result of an
expression. For example, if a variable named flag is currently 1 (true), prefixing the variable with a '!'
character will invert the value to O (false):

bool flag = true; //variable is true
bool secondFlag;
secondFlag = !flag; // secondFlag set to false

The OR (| |) operator returns 1 if one of its two operands evaluates to true, otherwise it returns 0. For
example, the following example evaluates to true because at least one of the expressions either side of
the OR operator is true:

if ((10 < 20) || (20 < 10))
NSLog (Q@"Expression is true");

The AND (&&) operator returns 1 only if both operands evaluate to be true. The following example will

return 0 because only one of the two operand expressions evaluates to true:

if ((10 < 20) && (20 < 10))
NSLog (@"Expression is true");

The XOR (") operator returns 1 if one and only one of the two operands evaluates to true. For example,
the following example will return 1 since only one operator evaluates to be true:

if ((10 < 20) ~ (20 < 10))
System.Console.WriteLine ("Expression is true");

If both operands evaluated to true or both were false the expression would return false.

Objective-C uses something called a ternary operator to provide a shortcut way of making decisions. The
syntax of the ternary operator (also known as the conditional operator) is as follows:
[condition] ? [true expression] : [false expression]

The way this works is that [condition]is replaced with an expression that will return either true (1)
or false (0). If the result is true then the expression that replaces the [true expression]is evaluated.
Conversely, if the result was false then the [false expression] is evaluated. Let's see this in action:

int x = 10;
int y = 20;

52

The Basics of Objective-C Programming

NSLog (@"Largest number is %i", x >y ? x : y);

The above code example will evaluate whether x is greater than y. Clearly this will evaluate to false
resulting in y being returned to the NSLog call for display to the user:

2009-10-07 11:14:06.756 t[5724] Largest number is 20
8.3 Objective-C Flow Control with if and else

Since programming is largely an exercise in applying logic, much of the art of programming involves
writing code that makes decisions based on one or more criteria. Such decisions define which code gets
executed and, conversely, which code gets by-passed when the program is executing. This is often
referred to as flow control since it controls the flow of program execution.

The if statement is perhaps the most basic of flow control options available to the Objective-C

programmer.

The basic syntax of the Objective-C if statement is as follows:

if (boolean expression) {
// Objective-C code to be performed when expression evaluates to true

}

Note that the braces ({}) are only required if more than one line of code is executed after the if
expression. If only one line of code is listed under the if the braces are optional. For example, the
following is valid code:

int x = 10;
if (x > 10)
x = 10;

The next variation of the if statement allows us to also specify some code to perform if the expression in
the if statement evaluates to false. The syntax for this construct is as follows:

if (boolean expression) {

// Code to be executed if expression is true
} else {

// Code to be executed if expression is false

}

Using the above syntax, we can now extend our previous example to display a different message if the
comparison expression evaluates to be false:

int x = 10;
if (x> 9)
{
NSLog (@"x is greater than 9!");
} else {
NSLog (@"x is less than 9!");

53

The Basics of Objective-C Programming

In this case, the second NSLog statement would execute if the value of x was less than 9.

So far we have looked at if statements which make decisions based on the result of a single logical
expression. Sometimes it becomes necessary to make decisions based on a number of different criteria.
For this purpose we can use the if ... else if ... construct, the syntax for which is as follows:

int x = 9;
if (x == 10)
{
NSLog (@"x is 10");

}
else if (x == 9)
{
NSLog (Q@"x is 9");

}
else 1f (x == 8)
{
NSLog (Q@"x is 8");

}
8.4 Looping with the for Statement

The syntax of an Objective-C for loop is as follows:

for (''initializer''; ''conditional expression''; ''loop expression'')

{

// statements to be executed

}

The initializer typically initializes a counter variable. Traditionally the variable nameiis used for this
purpose, though any valid variable name will do. For example:

i =0;

This sets the counter to be the variable i and sets it to zero. Note that the current widely used Objective-
C standard (c89) requires that this variable be declared prior to its use in the for loop. For example:

int i=0;
for (1 = 0; i < 100; i++)
{
// Statements here
}

The next standard (c99) allows the variable to be declared and initialized in the for loop as follows:
for (int i=0; i<100; i++)

{
//Statements here

54

The Basics of Objective-C Programming

It is possible to break out of a for loop before the designated number of iterations have been completed
using the break; statement.

8.5 Objective-C Looping with do and while

The Objective-C for loop described previously works well when you know in advance how many times a
particular task needs to be repeated in a program. There will, however, be instances where code needs
to be repeated until a certain condition is met, with no way of knowing in advance how many
repetitions are going to be needed to meet that criteria. To address this need, Objective-C provides the
while loop.

The while loop syntax is defined follows:

while (''condition'")

{
// Objective-C statements go here

}
8.6 Objective-C do ... while loops

It is often helpful to think of the do ... while loop as an inverted while loop. The while loop evaluates an
expression before executing the code contained in the body of the loop. If the expression evaluates to
false on the first check then the code is not executed. The do ... while loop, on the other hand, is
provided for situations where you know that the code contained in the body of the loop will always
need to be executed at least once.

The syntax of the do ... while loop is as follows:

do
{

// Objective-C statements here
} while (''conditional expression'')

55

9. The Basics of Object Oriented
Programming in Objective-C

bjective-C provides extensive support for developing object-oriented iOS iPhone applications. The

subject area of object oriented programming is, however, large. It is not an exaggeration to state
that entire books have been dedicated to the subject. As such, a detailed overview of object oriented
software development is beyond the scope of this book. Instead, we will introduce the basic concepts
involved in object oriented programming and then move on to explaining the concept as it relates to
Objective-C application development. Once again, whilst we strive to provide the basic information you
need in this chapter, we recommend reading a copy of Objective-C 2.0 Essentials if you are unfamiliar
with Objective-C programming.

9.1 What is an Object?

Objects are self-contained modules of functionality that can be easily used, and re-used as the building
blocks for a software application.

Objects consist of data variables and functions (called methods) that can be accessed and called on the
object to perform tasks. These are collectively referred to as members.

9.2 What is a Class?

Much as a blueprint or architect's drawing defines what an item or a building will look like once it has
been constructed, a class defines what an object will look like when it is created. It defines, for example,
what the methods will do and what the member variables will be.

9.3 Declaring an Objective-C Class Interface

Before an object can be instantiated we first need to define the class 'blueprint' for the object. In this
chapter we will create a Bank Account class to demonstrate the basic concepts of Objective-C object
oriented programming.

An Objective-C class is defined in terms of an interface and an implementation. In the interface section of
the definition we specify the base class from which the new class is derived and also define the
members and methods that the class will contain. The syntax for the interface section of a class is as
follows:

@interface NewClassName: ParentClass {
ClassMembers;

57

The Basics of Object Oriented Programming in Objective-C

}
ClassMethods;

Q@end

The ClassMembers section of the interface defines the variables that are to be contained within the class
(also referred to asinstance variables). These variables are declared in the same way that any other
variable would be declared in Objective-C.

The ClassMethods section defines the methods that are available to be called on the class. These are
essentially functions specific to the class that perform a particular operation when called upon.

To create an example outline interface section for our BankAccount class, we would use the following:

@interface BankAccount: NSObject
{

}
@end

The parent class chosen above is the NSObject class. This is a standard base class provided with the
Objective-C Foundation framework and is the class from which most new classes are derived. By
deriving BankAccount from this parent class we inherit a range of additional methods used in creating,
managing and destroying instances that we would otherwise have to write ourselves.

Now that we have the outline syntax for our class, the next step is to add some instance variables to it.

9.4 Adding Instance Variables to a Class

A key goal of object oriented programming is a concept referred to as data encapsulation. The idea
behind data encapsulation is that data should be stored within classes and accessed only through
methods defined in that class. Data encapsulated in a class are referred to as instance variables.

Instances of our BankAccount class will be required to store some data, specifically a bank account
number and the balance currently held by the account. Instance variables are declared in the same way
any other variables are declared in Objective-C. We can, therefore, add these variables as follows:

@interface BankAccount: NSObject
{

double accountBalance;
long accountNumber;

}
@end

Having defined our instance variables, we can now move on to defining the methods of the class that
will allow us to work with our instance variables while staying true to the data encapsulation model.

9.5 Define Class Methods

The methods of a class are essentially code routines that can be called upon to perform specific tasks
within the context of an instance of that class.

58

The Basics of Object Oriented Programming in Objective-C

Methods come in two different forms, class methods and instance methods. Class methods operate at
the level of the class, such as creating a new instance of a class. Instance methods, on the other hand,
operate only on the instance of a class (for example performing an arithmetic operation on two instance
variables and returning the result). Class methods are preceded by a plus (+) sign in the declaration and
instance methods are preceded by a minus (-) sign. If the method returns a result, the name of method
must be preceded by the data type returned enclosed in parentheses. If a method does not return a
result, then the method must be declared as void. If data needs to be passed through to the method
(referred to as arguments), the method name is followed by a colon, the data type in parentheses and a
name for the argument. For example, the declaration of a method to set the account number in our
example might read as follows:

- (void) setAccountNumber: (long) vy;

The method is an instance method so it is preceded by the minus sign. It does not return a result so it is
declared as(void). It takes an argument (the account number) of type long so we follow
the accountNumber name with a colon (:) specify the argument type (long) and give the argument a
name (in this case we simply use y).

The following method is intended to return the current value of the account number instance variable
(which is of type long):

-(long) getAccountNumber;

Methods may also be defined to accept more than one argument. For example to define a method that
accepts both the account number and account balance we could declare it as follows:

- (void) setAccount: (long) y andBalance: (double) x;

Now that we have an understanding of the structure of method declarations within the context of the
class interface definition, we can extend our BankAccount class accordingly:

@interface BankAccount: NSObject
{
double accountBalance;
long accountNumber;

void) setAccount: (long) y andBalance: (double) x;
void) setAccountBalance: (double) x;

double) getAccountBalance;

void) setAccountNumber: (long) vy;

- (long) getAccountNumber;

- (void) displayAccountInfo;

(
(
(
(
(
(

Having defined the interface, we can now move on to defining the implementation of our class.

59

The Basics of Object Oriented Programming in Objective-C

9.6 Declaring an Objective-C Class Implementation

The next step in creating a new class in Objective-C is to write the code for the methods we have already
declared. This is performed in the @implementation section of the class definition. An outline
implementation is structured as follows:

@implementation NewClassName
ClassMethods
@end

In order to implement the methods we declared in the @interface section, therefore, we need to write
the following code:

@implementation BankAccount

- (void) setAccount: (long) y andBalance: (double) x;
{
accountBalance = Xx;

accountNumber = y;

}

- (void) setAccountBalance: (double) x

{

accountBalance = x;
}
- (double) getAccountBalance
return accountBalance;
- (void) setAccountNumber: (long) vy
accountNumber = y;
- (long) getAccountNumber
return accountNumber;
- (void) displayAccountInfo
NSLog (@"Account Number %i has a balance of %f", accountNumber,

accountBalance) ;

}
@end

We are now at the point where we can write some code to work with our new BankAccount class.

60

The Basics of Object Oriented Programming in Objective-C

9.7 Declaring and Initializing a Class Instance

So far all we have done is define the blueprint for our class. In order to do anything with this class, we
need to create instances of it. The first step in this process is to declare a variable to store a pointer to
the instance when it is created. We do this as follows:

BankAccount *accountl;

Having created a variable to store a reference to the class instance, we can now allocate memory in
preparation for initializing the class:

accountl = [BankAccount alloc];

In the above statement we are calling the alloc method of the BankAccount class (note thatallocis
a class method inherited from the parent NSObject class, as opposed to an instance method created by
us in the BankAccount class).

Having allocated memory for the class instance, the next step is to initialize the instance by calling
the init instance method:

accountl = [accountl init];

For the sake of economy of typing, the above three statements are frequently rolled into a single line of
code as follows:

BankAccount *accountl = [[BankAccount alloc] init];

9.8 Automatic Reference Counting (ARC)

In the first step of the previous section we allocated memory for the creation of the class instance. In
releases of the iOS SDK prior to iOS 5, good programming convention would have dictated that memory
allocated to a class instance be released when the instance is no longer required. Failure to do so, in
fact, would have resulted in memory leaks with the result that the application would continue to use up
system memory until it was terminated by the operating system. Those familiar with Java will be used to
relying on the garbage collector to free up unused memory automatically. Historically, Objective-C has
provided similar functionality on other platforms but not for i0S. That has now changed with the
introduction of automatic reference counting in the iOS 5 SDK and it is not necessary to call the release
method of an object when it is no longer used in an application.

Whilst the ARC avoids the necessity to call the release method of an object it is still, however,
recommended that any strong outlet references be assigned nil in the viewDidUnload methods of your
view controllers to improve memory usage efficiency. As a result, examples in this book will follow this
convention where appropriate.

When creating a new project, Xcode now provides the option to implement automatic reference
counting in the application code. If this option is selected, the code should not make calls to release,
retain, autorelease or dealloc methods. Management of objects at this level is now handled for you by
ARC.

61

The Basics of Object Oriented Programming in Objective-C

9.9 Calling Methods and Accessing Instance Data

Given the length of this chapter, now is probably a good time to recap what we have done so far. We
have now created a new class called BankAccount. Within this new class we declared some instance
variables to contain the bank account number and current balance together with some instance
methods used to set, get and display these values. In the preceding section we covered the steps
necessary to create and initialize an instance of our new class. The next step is to learn how to call the
instance methods we built into our class.

The syntax for invoking methods is to place the object pointer variable name and method to be called in
square brackets ([]). For example, to call the displayAccountinfo method on the instance of the class we
created previously we would use the following syntax:

[accountl displayAccountInfo];

When the method accepts a single argument, the method name is followed by a colon (:) followed by
the value to be passed to the method. For example, to set the account number:

[accountl setAccountNumber: 34543212];

In the case of methods taking multiple arguments (as is the case with our setAccount method) syntax
similar to the following is employed:

[accountl setAccount: 4543455 andBalance: 3010.107;
9.10 Creating the Program Section

The last stage in this exercise is to bring together all the components we have created so that we can
actually see the concept working. The last section we need to look at is called the program section. This
is where we write the code to create the class instance and call the instance methods. Most Objective-C
programs have a main() routine which is the start point for the application. The following sample main
routine creates an instance of our class and calls the methods we created:

int main (int argc, const char * argvl[])
{
NSAutoreleasePool * pool =
[[NSAutoreleasePool alloc] init];
// Create a variable to point to our class instance
BankAccount *accountl;
// Allocate memory for class instance

accountl = [BankAccount alloc];
// Initialize the instance
accountl = [accountl init];

// Set the account balance

[accountl setAccountBalance: 1500.53];

// Set the account number

[accountl setAccountNumber: 34543212];

// Call the method to display the values of

62

The Basics of Object Oriented Programming in Objective-C

// the instance variables
[accountl displayAccountInfo];
// Set both account number and balance
[accountl setAccount: 4543455 andBalance: 3010.10];
// Output values using the getter methods
NSLog (@"Number = %i, Balance = %f",
[accountl getAccountNumber],
[accountl getAccountBalance]) ;
[pool drain];
return 0;

}
9.11 Bringing it all Together

Our example is now complete so let’s bring all the components together:

#import <Foundation/Foundation.h>
// Interface Section Starts Here

@interface BankAccount: NSObject
{
double accountBalance;
long accountNumber;

void) setAccount: (long) y andBalance: (double) x;
- (double) getAccountBalance;
long) getAccountNumber;

- (void) setAccountBalance: (double) x;
- (void) setAccountNumber: (long) vy;

- (void) displayAccountInfo;

@end

// Implementation Section Starts Here
@implementation BankAccount
- (void) setAccount: (long) y andBalance: (double) x;

accountBalance = x;
accountNumber = y;

- (void) setAccountBalance: (double) x
accountBalance = x;
- (double) getAccountBalance

{

return accountBalance;

63

The Basics of Object Oriented Programming in Objective-C

- (void) setAccountNumber: (long) vy
accountNumber = y;

- (long) getAccountNumber
return accountNumber;

- (void) displayAccountInfo

NSLog (Q@"Account Number %$i has a balance of %f",
accountNumber, accountBalance);

@end
// Program Section Starts Here

int main (int argc, const char * argvl[])

{

NSAutoreleasePool * pool = [[NSAutoreleasePool alloc] init];
BankAccount *accountl;

accountl = [BankAccount alloc];

accountl = [accountl init];

[accountl setAccountBalance: 1500.53];

[accountl setAccountNumber: 34543212];

[accountl displayAccountInfo];

[accountl setAccount: 4543455 andBalance: 3010.107;

NSLog (@"Number = %i, Balance = %f",

[accountl getAccountNumber], [accountl getAccountBalance])
[pool drain];

return 0;

}

When the above code is saved, compiled and executed we should expect to see the following output:

2009-10-14 14:44:06.634 t[4287:10b] Account Number 34543212 has a balance of
1500.530000
2009-10-14 14:44:06.635 t[4287:10b] Number = 4543455, Balance = 3010.100000

9.12 Structuring Object-Oriented Objective-C Code

Our example is currently contained within a single source file. In practice, the convention is to place the
interface and implementation in their own include files that are then included in the program source file.
Generally the interface section is contained within a file called ClassName.h where ClassName is the
name of the class. In our case, we would create a file called BankAccount.h containing the following:

#import <Foundation/Foundation.h>

64

The Basics of Object Oriented Programming in Objective-C

@interface BankAccount: NSObject
{
double accountBalance;
long accountNumber;

(void) setAccount: (long) y andBalance: (double) x;
- (double) getAccountBalance;
- (long) getAccountNumber;
(
(
(

- (void) setAccountBalance: (double) x;
- (void) setAccountNumber: (long) vy;

- (void) displayAccountInfo;

@end

Next, the implementation section goes in a file traditionally named ClassName.m where ClassName
once again is refers to the name of the class. For example, BankAccount.m will contain the following
(note that it is necessary to import the BankAccount.h file into this file):

#import "BankAccount.h"
@implementation BankAccount
- (void) setAccount: (long) y andBalance: (double) x;

accountBalance = x;
accountNumber = y;

- (void) setAccountBalance: (double) x
accountBalance = x;

- (double) getAccountBalance
return accountBalance;

- (void) setAccountNumber: (long) vy
accountNumber = y;

- (long) getAccountNumber
return accountNumber;

- (void) displayAccountInfo

NSLog (@"Account Number %i has a balance of %f",
accountNumber, accountBalance);

@end

65

The Basics of Object Oriented Programming in Objective-C

Finally, we will create our program file and call it bank.m (though any suitable name will do as long as it
has a.m filename extension). This file also needs to import our interface file (BankAccount.h):

#import "BankAccount.h"

int main (int argc, const char * argvl[])
{
NSAutoreleasePool * pool =
[[NSAutoreleasePool alloc] init];

BankAccount *accountl;
accountl = [BankAccount alloc];
accountl = [accountl init];
[accountl setAccountBalance: 1500.53];
[accountl setAccountNumber: 34543212];
[accountl displayAccountInfo];
[accountl setAccount: 4543455 andBalance: 3010.10];
NSLog (@"Number = %i, Balance = %f",
[account]l getAccountNumber], [accountl getAccountBalance]) ;
[pool drain];
return 0;

66

Chapter 10

10. An Overview of the iPhone iOS 5
Application Development Architecture

So far we have covered a considerable amount of ground intended to provide a sound foundation of
knowledge on which to begin building iPhone iOS 5 based apps. Before plunging into writing your
first app, however, it is vital that you have a basic understanding of some key methodologies associated
with the overall architecture of an iOS application.

These methodologies, also referred to as design patterns, clearly define how your applications should be
designed and implemented in terms of code structure. The patterns we will explore in this chapter are
Model View Controller (MVC), Subclassing, Delegation and Target-Action.

If you are new to these concepts this can seem a little confusing to begin with. Much of this will become
clearer, however, once we start working on some examples in subsequent chapters.

10.1 Model View Controller (MVC)

In the days before object-oriented programming (and even for a time after object-oriented
programming became popular) there was a tendency to develop applications where the code for the
user interface was tied tightly to the code containing the application logic and data handling. This
coupling made application code difficult to maintain and locked the application to a single user
interface. If, for example, an application written for Microsoft Windows needed to be migrated to Mac
0S, all the code written specifically for the Windows Ul toolkits had to be ripped out from amongst the
data and logic code and replaced with the Mac OS equivalent. If the application then needed to be
turned into a web based solution, the process would have to be repeated again. Attempts to achieve
this feat were usually found to be prohibitively expensive and ultimately ended up with the applications
being completely re-written each time a new platform needed to be targeted.

The goal of the MVC design pattern is to divorce the logic and data handling code of an application from
the presentation code. In this concept, the Model encapsulates the data for the application, the View
presents and manages the user interface and the Controller provides the basic logic for the application
and acts as the go-between, providing instructions to the Model based on user interactions with the
View and updating the View to reflect responses from the Model. The true value of this approach is that
the Model knows absolutely nothing about the presentation of the application. It just knows how to
store and handle data and perform certain tasks when called upon by the Controller. Similarly, the View
knows nothing about the data and logic model of the application.

67

An Overview of the iPhone iOS 5 Application Development Architecture

Within the context of an object-oriented programming environment such as the iOS 5 SDK and
Objective-C, the Model, View and Controller components are objects. It is also worth pointing out that
applications are not restricted to a single model, view and controller. In fact, an app can consist of
multiple view objects, controller objects and model objects.

The way that a view controller object interacts with a Model is through the methods and properties
exposed by that model object. This, in fact, is no different from the way one object interacts with
another in any object-oriented programming environment.

In terms of the view controller’s interactions with the view, however, things get a little more
complicated. In practice, this is achieved using the Target-Action pattern, together with Outlets and
Actions.

10.2 The Target-Action pattern, IBOutlets and IBActions

When you create an iOS 5 iPhone app you will typically design the user interface (the view) using the
Interface Builder tool and write the view controller and model code in Objective-C using the Xcode code
editor. The previous section looked briefly at how the view controller interacts with the model. In this
section we will look at how the view created in Interface Builder and our view controller code interact
with each other.

When a user interacts with objects in the view, for example touching and releasing a button control, an
event is triggered (in this case the event is called a Touch Up Inside event). The purpose of the Target-
Action pattern is to allow you to specify what happens when such events are triggered. In other words,
this is how you connect the objects in the user interface you have designed in the Interface Builder tool
to the back end Objective-C code you have written in the Xcode environment. Specifically, this allows
you to define which method of which controller object gets called when a user interacts in a certain way
with a view object.

The process of wiring up a view object to call a specific method on a view controller object is achieved
using something called an Action. An action is a method defined within a view controller object that is
designed to be called when an event is triggered in a view object. This allows us to connect a view object
created within a nib file using Interface Builder to the code that we have written in the view controller
class. This is one of the ways that we bridge the separation between the View and the Controller in our
MVC design pattern. As we will see in Creating an Interactive iOS 5 iPhone App, action methods are
declared using the IBAction keyword.

The opposite of an Action is the Outlet. As previously described, an Action allows a view object to call a
method on a controller object. An Outlet, on the other hand, allows a view controller object method to
directly access the properties of a view object. A view controller might, for example, need to set the text
on a UlLabel object. In order to do so an Outlet must first have been defined using the /IBOutlet keyword.
In programming terms, an IBOutlet is simply an instance variable that references the view object to
which access is required.

68

An Overview of the iPhone iOS 5 Application Development Architecture

10.3 Subclassing

Subclassing is an important feature of any object-oriented programming environment and the iOS SDK is
no exception to this rule. Subclassing allows us to create a new class by deriving from an existing class
and then extending the functionality. In so doing we get all the functionality of the parent class
combined with the ability to extend the new class with additional methods and properties.

Subclassing is typically used where a pre-existing class does most, but not all, of what you need. By
subclassing we get all that existing functionality without having to duplicate it and simply add on the
functionality that was missing.

We will see an example of subclassing in the context of iOS 5 development when we start to work with
view controllers. The UIKit framework contains a class called the UlViewController. This is a generic view
controller from which we will create a subclass so that we can add our own methods and properties.

10.4 Delegation

Delegation allows an object to pass the responsibility for performing one or more tasks on to another
object. This allows the behavior of an object to be modified without having to go through the process of
subclassing it.

A prime example of delegation can be seen in the case of the UlApplication class. The UlApplication
class, of which every iOS iPhone application must have one (and only one) instance, is responsible for
the control and operation of the application within the iOS environment. Much of what the
UlApplication object does happens in the background. There are, however, instances where it gives us
the opportunity to include our own functionality into the mix. UlApplication allows us to do this by
delegating some methods to us. As an example, UlApplication delegates the
didFinishLaunchingWithOptions: method to us so that we can write code to perform specific tasks when
the app first loads (for example taking the user back to the point they were at when they last exited). If
you still have a copy of the Hello World project created earlier in this book you will see the template for
this method in the HelloWorldAppDelegate.m file.

10.5 Summary

In this chapter we have provided an overview of a number of design patterns and discussed the
importance of these patterns in terms of structuring iOS 5 applications to run on the iPhone. Whilst
these patterns may seem unclear to some, the relevance and implementation of such concepts will
become clearer as we progress through the examples included in subsequent chapters of this book.

69

	Preface
	1. About iPhone iOS 5 App Development Essentials
	1.1 Example Source Code
	1.2 Feedback

	2. The Anatomy of an iPhone 4S
	2.1 iOS 5
	2.2 Display
	2.3 Wireless Connectivity
	2.4 Wired Connectivity
	2.5 Memory
	2.6 Cameras
	2.7 Sensors
	2.8 Location Detection
	2.9 Central Processing Unit (CPU)
	2.10 Speaker and Microphone
	2.11 Vibration
	2.12 Summary

	3. iOS 5 Architecture and SDK Frameworks
	3.1 iPhone OS becomes iOS
	3.2 An Overview of the iOS 5 Architecture
	3.3 The Cocoa Touch Layer
	3.3.1 UIKit Framework (UIKit.framework)
	3.3.2 Map Kit Framework (MapKit.framework)
	3.3.3 Push Notification Service
	3.3.4 Message UI Framework (MessageUI.framework)
	3.3.5 Address Book UI Framework (AddressUI.framework)
	3.3.6 Game Kit Framework (GameKit.framework)
	3.3.7 iAd Framework (iAd.framework)
	3.3.8 Event Kit UI Framework
	3.3.9 Accounts Framework (Accounts.framework)
	3.3.10 Twitter Framework (Twitter.framework)

	3.4 The iOS Media Layer
	3.4.1 Core Video Framework (CoreVideo.framework)
	3.4.2 Core Text Framework (CoreText.framework)
	3.4.3 Image I/O Framework (ImageIO.framework)
	3.4.4 Assets Library Framework (AssetsLibrary.framework)
	3.4.5 Core Graphics Framework (CoreGraphics.framework)
	3.4.6 Core Image Framework (CoreImage.framework)
	3.4.7 Quartz Core Framework (QuartzCore.framework)
	3.4.8 OpenGL ES framework (OpenGLES.framework)
	3.4.9 GLKit Framework (GLKit.framework)
	3.4.10 NewsstandKit Framework (NewsstandKit.framework)
	3.4.11 iOS Audio Support
	3.4.12 AV Foundation framework (AVFoundation.framework)
	3.4.13 Core Audio Frameworks (CoreAudio.framework, AudioToolbox.framework and AudioUnit.framework)
	3.4.14 Open Audio Library (OpenAL)
	3.4.15 Media Player Framework (MediaPlayer.framework)
	3.4.16 Core Midi Framework (CoreMIDI.framework)

	3.5 The iOS Core Services Layer
	3.5.1 Address Book Framework (AddressBook.framework)
	3.5.2 CFNetwork Framework (CFNetwork.framework)
	3.5.3 Core Data Framework (CoreData.framework)
	3.5.4 Core Foundation Framework (CoreFoundation.framework)
	3.5.5 Core Media Framework (CoreMedia.framework)
	3.5.6 Core Telephony Framework (CoreTelephony.framework)
	3.5.7 EventKit Framework (EventKit.framework)

	3.6 Foundation Framework (Foundation.framework)
	3.6.1 Core Location Framework (CoreLocation.framework)
	3.6.2 Mobile Core Services Framework (MobileCoreServices.framework)
	3.6.3 Store Kit Framework (StoreKit.framework)
	3.6.4 SQLite library
	3.6.5 System Configuration Framework (SystemConfiguration.framework)
	3.6.6 Quick Look Framework (QuickLook.framework)

	3.7 The iOS Core OS Layer
	3.7.1 Accelerate Framework (Accelerate.framework)
	3.7.2 External Accessory Framework (ExternalAccessory.framework)
	3.7.3 Security Framework (Security.framework)
	3.7.4 System (LibSystem)

	4. Joining the Apple iOS Developer Program
	4.1 Registered Apple Developer
	4.2 iOS Developer Program
	4.3 When to Enroll in the iOS Developer Program?
	4.4 Enrolling in the iOS Developer Program
	4.5 Summary

	5. Installing Xcode 4 and the iOS 5 SDK
	5.1 Identifying if you have an Intel or PowerPC based Mac
	5.2 Installing Xcode 4 and the iOS 5 SDK
	5.3 Starting Xcode

	6. Creating a Simple iPhone iOS 5 App
	6.1 Starting Xcode 4
	6.2 Creating the iOS App User Interface
	6.3 Changing Component Properties
	6.4 Adding Objects to the User Interface
	6.5 Building and Running an iOS App in Xcode 4
	6.6 Dealing with Build Errors

	7. Testing iOS 5 Apps on the iPhone – Developer Certificates and Provisioning Profiles
	7.1 Creating an iOS Development Certificate Signing Request
	7.2 Submitting the iOS Development Certificate Signing Request
	7.3 Installing an iOS Development Certificate
	7.4 Assigning Devices
	7.5 Creating an App ID
	7.6 Creating an iOS Development Provisioning Profile
	7.7 Enabling an iPhone Device for Development
	7.8 Associating an App ID with an App
	7.9 iOS and SDK Version Compatibility
	7.10 Installing an App onto a Device
	7.11 Summary

	8. The Basics of Objective-C Programming
	8.1 Objective-C Data Types and Variables
	8.2 Objective-C Expressions
	8.3 Objective-C Flow Control with if and else
	8.4 Looping with the for Statement
	8.5 Objective-C Looping with do and while
	8.6 Objective-C do ... while loops

	9. The Basics of Object Oriented Programming in Objective-C
	9.1 What is an Object?
	9.2 What is a Class?
	9.3 Declaring an Objective-C Class Interface
	9.4 Adding Instance Variables to a Class
	9.5 Define Class Methods
	9.6 Declaring an Objective-C Class Implementation
	9.7 Declaring and Initializing a Class Instance
	9.8 Automatic Reference Counting (ARC)
	9.9 Calling Methods and Accessing Instance Data
	9.10 Creating the Program Section
	9.11 Bringing it all Together
	9.12 Structuring Object-Oriented Objective-C Code

	10. An Overview of the iPhone iOS 5 Application Development Architecture
	10.1 Model View Controller (MVC)
	10.2 The Target-Action pattern, IBOutlets and IBActions
	10.3 Subclassing
	10.4 Delegation
	10.5 Summary

