

AlmaLinux 9 Essentials

AlmaLinux 9 Essentials

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution
strictly prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor
the author offers any warranties or representation, express or implied, with regard to the accuracy
of information contained in this book, nor do they accept any liability for any loss or damage
arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the
benefit of the respective trademark owner. The terms used within this book are not intended as
infringement of any trademarks.

Rev: 1.0

i

Contents
Table of Contents
1. Introduction

1.1 Superuser Conventions
1.2 Opening a Terminal Window
1.3 Editing Files
1.4 Feedback
1.5 Errata

2. A Brief History of AlmaLinux
2.1 What exactly is Linux?
2.2 UNIX Origins
2.3 Who Created Linux?
2.4 The Early Days of Red Hat
2.5 Red Hat Support
2.6 Open Source
2.7 The Fedora Project
2.8 CentOS Stream
2.9 AlmaLinux
2.10 Summary

3. Installing AlmaLinux 9 on a Clean Disk Drive
3.1 Trying AlmaLinux with the Live Image
3.2 Obtaining the AlmaLinux Installation Media
3.3 Writing the ISO Installation Image to a USB Drive

3.3.1 Linux
3.3.2 macOS
3.3.3 Windows/macOS

3.4 Installing AlmaLinux 9
3.5 Partitioning a Disk for AlmaLinux 9
3.6 Disk Encryption
3.7 User Settings
3.8 The Physical Installation
3.9 Final Configuration Steps
3.10 Installing Updates
3.11 Displaying Boot Messages
3.12 Summary

4. Dual Booting AlmaLinux 9 with Windows
4.1 Partition Resizing
4.2 Changing the Default Boot Option

ii

Table of Contents

4.3 Accessing the Windows Partition from AlmaLinux 9
4.4 Summary

5. Allocating Windows Disk Partitions to AlmaLinux 9
5.1 Unmounting the Windows Partition
5.2 Deleting the Windows Partitions from the Disk
5.3 Formatting the Unallocated Disk Partition
5.4 Mounting the New Partition
5.5 Editing the Boot Menu
5.6 Using GNOME Disks Utility
5.7 Summary

6. A Guided Tour of the GNOME 40 Desktop
6.1 Installing the GNOME Desktop
6.2 An Overview of the GNOME 40 Desktop
6.3 Activity Overview
6.4 Managing Windows
6.5 Using Workspaces
6.6 Calendar and Notifications
6.7 GNOME Desktop Settings
6.8 Beyond Basic Customization
6.9 Installing GNOME Desktop Apps
6.10 Summary

7. An Overview of the Cockpit Web Interface
7.1 An Overview of Cockpit
7.2 Installing and Enabling Cockpit
7.3 Accessing Cockpit
7.4 Overview
7.5 Logs
7.6 Storage
7.7 Networking
7.8 Accounts
7.9 Services
7.10 Applications
7.11 Virtual Machines
7.12 Software Updates
7.13 Terminal
7.14 Connecting to Multiple Servers
7.15 Enabling Stored Metrics
7.16 Summary

8. Using the Bash Shell on AlmaLinux 9
8.1 What is a Shell?

iii

Table of Contents

8.2 Gaining Access to the Shell
8.3 Entering Commands at the Prompt
8.4 Getting Information about a Command
8.5 Bash Command-line Editing
8.6 Working with the Shell History
8.7 Filename Shorthand
8.8 Filename and Path Completion
8.9 Input and Output Redirection
8.10 Working with Pipes in the Bash Shell
8.11 Configuring Aliases
8.12 Environment Variables
8.13 Writing Shell Scripts
8.14 Summary

9. Managing AlmaLinux 9 Users and Groups
9.1 User Management from the Command-line
9.2 User Management with Cockpit
9.3 User Management using the Settings App
9.4 Summary

10. AlmaLinux 9 Software Installation and AppStreams
10.1 Repositories
10.2 The BaseOS Repository
10.3 The AppStream Repository
10.4 Summary

11. Managing AlmaLinux 9 systemd Units
11.1 Understanding AlmaLinux 9 systemd Targets
11.2 Understanding AlmaLinux 9 systemd Services
11.3 AlmaLinux 9 systemd Target Descriptions
11.4 Identifying and Configuring the Default Target
11.5 Understanding systemd Units and Unit Types
11.6 Dynamically Changing the Current Target
11.7 Enabling, Disabling, and Masking systemd Units
11.8 Working with systemd Units in Cockpit
11.9 Summary

12. AlmaLinux 9 Network Management
12.1 An Introduction to NetworkManager
12.2 Installing and Enabling NetworkManager
12.3 Basic nmcli Commands
12.4 Working with Connection Profiles
12.5 Interactive Editing
12.6 Configuring NetworkManager Permissions

iv

Table of Contents

12.7 Summary
13. AlmaLinux 9 Firewall Basics

13.1 Understanding Ports and Services
13.2 Securing Ports and Services
13.3 AlmaLinux 9 Services and iptables Rules
13.4 Well-Known Ports and Services
13.5 Summary

14. AlmaLinux 9 Firewall Configuration with firewalld
14.1 An Introduction to firewalld

14.1.1 Zones
14.1.2 Interfaces
14.1.3 Services
14.1.4 Ports

14.2 Checking firewalld Status
14.3 Configuring Firewall Rules with firewall-cmd

14.3.1 Identifying and Changing the Default Zone
14.3.2 Displaying Zone Information
14.3.3 Adding and Removing Zone Services
14.3.4 Working with Port-based Rules
14.3.5 Creating a New Zone
14.3.6 Changing Zone/Interface Assignments
14.3.7 Masquerading
14.3.8 Adding ICMP Rules
14.3.9 Implementing Port Forwarding

14.4 Managing firewalld from the Cockpit Interface
14.5 Managing firewalld using firewall-config
14.6 Summary

15. Configuring SSH Key-based Authentication on AlmaLinux 9
15.1 An Overview of Secure Shell (SSH)
15.2 SSH Key-based Authentication
15.3 Setting Up Key-based Authentication
15.4 Installing and Starting the SSH Service
15.5 SSH Key-based Authentication from Linux and macOS Clients
15.6 Managing Multiple Keys
15.7 SSH Key-based Authentication from Windows Clients
15.8 SSH Key-based Authentication using PuTTY
15.9 Generating a Private Key with PuTTYgen
15.10 Summary

16. AlmaLinux 9 Remote Desktop Access with VNC
16.1 Secure and Insecure Remote Desktop Access

v

Table of Contents

16.2 Installing the GNOME Desktop Environment
16.3 Installing VNC on AlmaLinux 9
16.4 Assigning Ports to Users
16.5 Configuring the VNC Server
16.6 Setting up a VNC Password
16.7 Starting VNC Server
16.8 Connecting to a VNC Server
16.9 Establishing a Secure Remote Desktop Session
16.10 Establishing a Secure Tunnel on Windows using PuTTY
16.11 Shutting Down a Desktop Session
16.12 Summary

17. Displaying AlmaLinux 9 Applications Remotely (X11 Forwarding)
17.1 Requirements for Remotely Displaying AlmaLinux 9 Applications
17.2 Displaying an AlmaLinux 9 Application Remotely
17.3 Trusted X11 Forwarding
17.4 Compressed X11 Forwarding
17.5 Displaying Remote AlmaLinux 9 Apps on Windows
17.6 Summary

18. Using NFS on AlmaLinux 9 to Share Files with Remote Systems
18.1 Ensuring NFS Services are running on AlmaLinux 9
18.2 Configuring the Firewall to Allow NFS Traffic
18.3 Specifying the Folders to be Shared
18.4 Accessing Shared Folders
18.5 Mounting an NFS Filesystem on System Startup
18.6 Unmounting an NFS Mount Point
18.7 Accessing NFS Filesystems in Cockpit
18.8 Summary

19. Sharing Files between AlmaLinux 9 and Windows with Samba
19.1 Accessing Windows Resources from the GNOME Desktop
19.2 Samba and Samba Client
19.3 Installing Samba on AlmaLinux 9
19.4 Configuring the AlmaLinux 9 Firewall to Enable Samba
19.5 Configuring the smb.conf File

19.5.1 Configuring the [global] Section
19.5.2 Configuring a Shared Resource
19.5.3 Removing Unnecessary Shares

19.6 Configuring SELinux for Samba
19.7 Creating a Samba User
19.8 Testing the smb.conf File
19.9 Starting the Samba and NetBIOS Name Services

vi

Table of Contents

19.10 Accessing Samba Shares
19.11 Accessing Windows Shares from AlmaLinux 9
19.12 Summary

20. An Overview of Virtualization Techniques
20.1 Guest Operating System Virtualization
20.2 Hypervisor Virtualization

20.2.1 Paravirtualization
20.2.2 Full Virtualization
20.2.3 Hardware Virtualization

20.3 Virtual Machine Networking
20.4 Summary

21. Installing KVM Virtualization on AlmaLinux 9
21.1 An Overview of KVM
21.2 KVM Hardware Requirements
21.3 Preparing AlmaLinux 9 for KVM Virtualization
21.4 Verifying the KVM Installation
21.5 Summary

22. Creating KVM Virtual Machines on AlmaLinux 9 using Cockpit
22.1 Installing the Cockpit Virtual Machines Module
22.2 Creating a Virtual Machine in Cockpit
22.3 Starting the Installation
22.4 Working with Storage Volumes and Storage Pools
22.5 Summary

23. Creating KVM Virtual Machines on AlmaLinux 9 using virt-manager
23.1 Starting the Virtual Machine Manager
23.2 Configuring the KVM Virtual System
23.3 Starting the KVM Virtual Machine
23.4 Summary

24. Creating KVM Virtual Machines with virt-install and virsh
24.1 Running virt-install to build a KVM Guest System
24.2 An Example AlmaLinux 9 virt-install Command
24.3 Starting and Stopping a Virtual Machine from the Command-Line
24.4 Creating a Virtual Machine from a Configuration File
24.5 Summary

25. Creating an AlmaLinux 9 KVM Networked Bridge Interface
25.1 Getting the Current Network Manager Settings
25.2 Creating a Network Manager Bridge from the Command-Line
25.3 Declaring the KVM Bridged Network
25.4 Using a Bridge Network in a Virtual Machine

vii

Table of Contents

25.5 Creating a Bridge Network using nm-connection-editor
25.6 Summary

26. Managing KVM using the virsh Command-Line Tool
26.1 The virsh Shell and Command-Line
26.2 Listing Guest System Status
26.3 Starting a Guest System
26.4 Shutting Down a Guest System
26.5 Suspending and Resuming a Guest System
26.6 Saving and Restoring Guest Systems
26.7 Rebooting a Guest System
26.8 Configuring the Memory Assigned to a Guest OS
26.9 Summary

27. An Introduction to Linux Containers
27.1 Linux Containers and Kernel Sharing
27.2 Container Uses and Advantages
27.3 AlmaLinux 9 Container Tools
27.4 The Docker Registry
27.5 Container Networking
27.6 Summary

28. Working with Containers on AlmaLinux 9
28.1 Installing the Container Tools
28.2 Pulling an AlmaLinux 9 Container Image
28.3 Running the Image in a Container
28.4 Managing a Container
28.5 Saving a Container to an Image
28.6 Removing an Image from Local Storage
28.7 Removing Containers
28.8 Building a Container with Buildah
28.9 Building a Container from Scratch
28.10 Container Bridge Networking
28.11 Managing Containers in Cockpit
28.12 Summary

29. Setting Up an AlmaLinux 9 Web Server
29.1 Requirements for Configuring an AlmaLinux 9 Web Server
29.2 Installing the Apache Web Server Packages
29.3 Configuring the Firewall
29.4 Port Forwarding
29.5 Starting the Apache Web Server
29.6 Testing the Web Server
29.7 Configuring the Apache Web Server for Your Domain

viii

Table of Contents

29.8 The Basics of a Secure Website
29.9 Configuring Apache for HTTPS
29.10 Obtaining an SSL Certificate
29.11 Summary

30. Configuring an AlmaLinux 9 Postfix Email Server
30.1 The Structure of the Email System

30.1.1 Mail User Agent
30.1.2 Mail Transfer Agent
30.1.3 Mail Delivery Agent
30.1.4 SMTP
30.1.5 SMTP Relay

30.2 Configuring an AlmaLinux 9 Email Server
30.3 Postfix Pre-Installation Steps
30.4 Firewall/Router Configuration
30.5 Installing Postfix on AlmaLinux 9
30.6 Configuring Postfix
30.7 Configuring DNS MX Records
30.8 Starting Postfix on an AlmaLinux 9 System
30.9 Testing Postfix
30.10 Sending Mail via an SMTP Relay Server
30.11 Summary

31. Adding a New Disk Drive to an AlmaLinux 9 System
31.1 Mounted File Systems or Logical Volumes
31.2 Finding the New Hard Drive
31.3 Creating Linux Partitions
31.4 Creating a File System on an AlmaLinux 9 Disk Partition
31.5 An Overview of Journaled File Systems
31.6 Mounting a File System
31.7 Configuring AlmaLinux 9 to Mount a File System Automatically
31.8 Adding a Disk Using Cockpit
31.9 Summary

32. Adding a New Disk to an AlmaLinux 9 Volume Group and Logical Volume
32.1 An Overview of Logical Volume Management (LVM)

32.1.1 Volume Group (VG)
32.1.2 Physical Volume (PV)
32.1.3 Logical Volume (LV)
32.1.4 Physical Extent (PE)
32.1.5 Logical Extent (LE)

32.2 Getting Information about Logical Volumes
32.3 Adding Additional Space to a Volume Group from the Command Line

ix

Table of Contents

32.4 Summary
33. Adding and Managing AlmaLinux 9 Swap Space

33.1 What is Swap Space?
33.2 Recommended Swap Space for AlmaLinux 9
33.3 Identifying Current Swap Space Usage
33.4 Adding a Swap File to an AlmaLinux 9 System
33.5 Adding Swap as a Partition
33.6 Adding Space to an AlmaLinux 9 LVM Swap Volume
33.7 Adding Swap Space to the Volume Group
33.8 Summary

34. AlmaLinux 9 System and Process Monitoring
34.1 Managing Processes
34.2 Real-time System Monitoring with top
34.3 Command-Line Disk and Swap Space Monitoring
34.4 Summary

Index

1

Chapter 1
1. Introduction
AlmaLinux 9 Essentials is intended to provide detailed information on the installation, use, and
administration of the AlmaLinux 9 distribution. For beginners, the book covers topics such as
operating system installation, the basics of the GNOME desktop environment, configuring email
and web servers, and installing packages and system updates. Additional installation topics, such
as dual booting with Microsoft Windows, are also covered, together with all important security
topics, such as configuring a firewall and user and group administration.

For the experienced user, topics such as remote desktop access, the Cockpit web interface, logical
volume management (LVM), disk partitioning, swap management, KVM virtualization, Secure
Shell (SSH), Linux Containers, and file sharing using both Samba and NFS are covered in detail
to provide a thorough overview of this enterprise class operating system.

1.1 Superuser Conventions
AlmaLinux 9, in common with Linux in general, has two types of user accounts, one being a
standard user account with restricted access to many of the administrative files and features of
the operating system and the other a superuser (root) account with elevated privileges. Typically,
a user can gain root access either by logging in as the root user or using the su - command and
entering the root password. In the following example, a user is gaining root access via the su -
command:
[root@demoserver ~]$ su -

Password:

[root@demoserver ~]#

Note that the command prompt for a regular user ends with a $ sign while the root user has a #
character. When working with the command line, this is a useful indication of whether you are
currently issuing commands as the root user.

If the su - command fails, the root account on the system has most likely been disabled for security
reasons. In this case, the sudo command can be used instead, as outlined below.

Using sudo, a single command requiring root privileges may be executed by a non-root user.
Consider the following attempt to update the operating system with the latest patches and
packages:
$ dnf update

Error: This command has to be run with superuser privileges (under the root user

on most systems).

Optionally, user accounts may be configured so that they have access to root-level privileges.
Instead of using the su - command to first gain root access, user accounts with administrative
privileges are able to run otherwise restricted commands using sudo:

2

Introduction
$ sudo dnf update

We trust you have received the usual lecture from the local System

Administrator. It usually boils down to these three things:

 #1) Respect the privacy of others.

 #2) Think before you type.

 #3) With great power comes great responsibility.

[sudo] password for demo:

.

.

To perform multiple commands without repeatedly using the sudo command, a command
prompt with persistent super-user privileges may be accessed as follows:
[root@demoserver ~]$ sudo su -

[root@demoserver ~]#

The reason for raising this issue so early in the book is that many of the command-line examples
outlined in this book will require root privileges. Rather than repetitively preface every command-
line example with directions to run the command as root, the command prompt at the start of the
line will be used to indicate whether or not the command needs to be performed as root. If the
command can be run as a regular user, the command will be prefixed with a $ command prompt
as follows:
$ date

If, on the other hand, the command requires root privileges, the command will be preceded by a
command prompt:
dnf install openssh

1.2 Opening a Terminal Window
If you are using the GNOME desktop and need to access a command prompt, you will need to
open a Terminal window. To do this, either press the keyboard Windows key or click on the
Activities button in the top left-hand corner of the screen, then select the Terminal from the dash
as shown in Figure 1-1:

Figure 1-1

3

Introduction

1.3 Editing Files
Configuring a Linux system typically involves editing files. For those new to Linux, it can be
unclear which editor to use. If you are running a terminal session and do not already have a
preferred editor, we recommend using the nano editor. To launch nano in a terminal window,
enter the following command:
nano <file>

Where <file> is replaced by the path to the file you wish to edit. For example:
nano /etc/passwd

Once loaded, nano will appear as illustrated in Figure 1-2:

Figure 1-2

To create a new file run nano as follows:
nano

When you have finished editing the file, type Ctrl-S to save the file, followed by Ctrl-X to exit. To
open an existing file, use the Ctrl-R keyboard shortcut.

If you prefer to use a graphical editor within the GNOME desktop environment, gedit is a useful
starting point for basic editing tasks. To launch gedit from the desktop press Alt-F2 to display the
Enter a Command window as shown in Figure 1-3:

4

Introduction

Figure 1-3

Enter gedit into the text field and press the Enter key. After a short delay, gedit will load ready to
open, create, and edit files:

Figure 1-4

Alternatively, launch gedit from a terminal window either with or without the path to the file to
open:
gedit

gedit /etc/passwd

1.4 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book or
have any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

1.5 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that
a book covering a subject area of this size and complexity may include some errors and oversights.
Any known issues with the book will be outlined, together with solutions, at the following URL:

5

Introduction

https://www.ebookfrenzy.com/errata/almalinux9.html

In the event that you find an error not listed in the errata, please let us know by emailing our
support team at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/errata/almalinux9.html

7

Chapter 2
2. A Brief History of AlmaLinux
AlmaLinux 9 is one of several variants (also referred to as distributions) of the Linux operating
system. It is based on the source code of the Red Hat Enterprise Linux distribution (RHEL),
developed by a U.S. company named Red Hat, Inc. Based in Raleigh, North Carolina, the company
was founded in the mid-1990s through the merger of two companies owned at the time by Marc
Ewing and Bob Young. The origins of Linux, however, go back even further. This chapter will
outline the history of both the Linux operating system and Red Hat, Inc. before explaining how
AlmaLinux fits into this picture.

2.1 What exactly is Linux?
Linux is an operating system in much the same way that Windows is an operating system (and
there any similarities between Linux and Windows end). The term operating system is used to
describe the software that acts as a layer between the hardware in a computer and the applications
that we all run on a daily basis. When programmers write applications, they interface with the
operating system to perform such tasks as writing files to the hard disk drive and displaying
information on the screen. Without an operating system, every programmer would have to write
code to access the hardware of the system directly. In addition, the programmer would have to
be able to support every single piece of hardware ever created to be sure the application would
work on every possible hardware configuration. Because the operating system handles all of this
hardware complexity, application development becomes a much easier task. Linux is just one of a
number of different operating systems available today.

2.2 UNIX Origins
To understand the history of Linux, we first have to go back to AT&T Bell Laboratories in the
late 1960s. During this time, AT&T had discontinued involvement in developing a new operating
system named Multics. However, two AT&T engineers, Ken Thompson, and Dennis Ritchie,
decided to take what they had learned from the Multics project and create a new operating system
named UNIX which quickly gained popularity and wide adoption both with corporations and
academic institutions.

A variety of proprietary UNIX implementations eventually came to market, including those
created by IBM (AIX), Hewlett-Packard (HP-UX), and Sun Microsystems (SunOS and Solaris).
In addition, a UNIX-like operating system named MINIX was created by Andrew S. Tanenbaum
and designed for educational use with source code access provided to universities.

2.3 Who Created Linux?
The origins of Linux can be traced back to the work and philosophies of two people. At the heart of
the Linux operating system is something called the kernel. This is the core set of features necessary
for the operating system to function. The kernel manages the system’s resources and handles

8

A Brief History of AlmaLinux

communication between the hardware and the applications. The Linux kernel was developed by
Linus Torvalds, who, taking a dislike to MS-DOS and impatient for the availability of MINIX for
the new Intel 80386 microprocessor, decided to write his own UNIX-like kernel. When he had
finished the first version of the kernel, he released it under an open-source license that enabled
anyone to download the source code and freely use and modify it without having to pay Linus
any money.

Around the same time, Richard Stallman at the Free Software Foundation, a strong advocate of
free and open-source software, was working on an open-source operating system of his own.
Rather than focusing initially on the kernel, however, Stallman began by developing open-source
versions of all the UNIX tools, utilities, and compilers necessary to use and maintain an operating
system. By the time he had finished developing this infrastructure, the obvious solution was
to combine his work with the kernel Linus had written to create a complete operating system.
This combination became known as GNU/Linux. Purists insist that Linux always be referred
to as GNU/Linux (in fact, at one time, Richard Stallman refused to give press interviews to any
publication which failed to refer to Linux as GNU/Linux). This is not unreasonable, given that
the GNU tools developed by the Free Software Foundation make up a significant and vital part
of GNU/Linux. Unfortunately, most people and publications refer to Linux as Linux, which will
probably always continue to be the case.

2.4 The Early Days of Red Hat
In 1993 Bob Young created a company named ACC Corporation which, according to Young, he
ran from his “wife’s sewing closet”. The name ACC was intended to represent a catalog business
but was also an abbreviation of a small business his wife ran called “Antiques and Collectibles
of Connecticut”. Among the items sold through the ACC catalog business were Linux CDs and
related open-source software.

Around the same time, Marc Ewing had created his own Linux distribution company, which he
named Red Hat Linux (after his propensity to wear a red baseball cap while at Carnegie Mellon
University).

In 1995, ACC acquired Red Hat, adopted the name Red Hat, Inc., and experienced rapid and
significant growth. Bob Young stepped down as CEO shortly after the company went public in
August of 1999 and has since pursued a number of business and philanthropic efforts, including
a print-on-demand book publishing company named Lulu and ownership of two Canadian
professional sports teams. In 2018, IBM acquired Red Hat, Inc. in a deal valued at $34 billion.

2.5 Red Hat Support
Early releases of Red Hat Linux were shipped to customers on floppy disks and CDs (this, of
course, predated the widespread availability of broadband internet connections). When users
encountered problems with the software, they could only contact Red Hat by email. In fact, Bob
Young often jokes that this was effective in limiting support requests since, by the time a customer
realized they needed help, their computer was usually inoperative and therefore unavailable to
be used to send an email message seeking assistance from Red Hat’s support team. In later years,

9

A Brief History of AlmaLinux

Red Hat provided better levels of support tied to paid subscriptions and now provides a variety of
support levels ranging from “self-help” (no support) up to premium support.

2.6 Open Source
Red Hat Enterprise Linux 9 is the current commercial offering from Red Hat and is primarily
targeted at corporate, mission-critical installations. It is also the cornerstone of an expanding
ecosystem of products and services Red Hat offers.

RHEL used to be an open-source product in that anyone could download the source code free of
charge and build the software themselves (a task not to be undertaken lightly). That changed in
2023 when Red Hat began making the source code available to paying customers only.

2.7 The Fedora Project
Red Hat also sponsors the Fedora Project, the goal of which is to provide access to a free Linux
operating system (in both source and binary distributions) in the form of Fedora Linux. Fedora
Linux also serves as a proving ground for many of the new features that are eventually adopted
into the Red Hat Enterprise Linux operating system family and the CentOS derivative.

2.8 CentOS Stream
For users unable to afford a Red Hat Enterprise Linux subscription, another option is the CentOS
Stream operating system. The CentOS project, initially a community-driven effort but now owned
by Red Hat, takes the Red Hat Enterprise Linux source code, removes the Red Hat branding and
subscription requirements, compiles it, and provides the distribution for download. Like Fedora,
CentOS Stream field tests new operating system features before they are included in a future
RHEL release. As such, it may lack stability but provides access to cutting-edge features.

2.9 AlmaLinux
AlmaLinux was created in 2021 by the AlmaLinux OS Foundation to provide a stable Linux
distribution that is 100% compatible with Red Hat Enterprise Linux. This originally involved
building from the RHEL source code. Now that the RHEL source code is no longer publicly
available, the goal is changing to 100% binary compatibility. Binary compatibility means that
while AlmaLinux may not be identical to RHEL, it can run the same software and applications
that run on RHEL.

2.10 Summary
The origins of the Linux operating system can be traced back to the work of Linus Torvalds and
Richard Stallman in the form of the Linux kernel combined with the tools and compilers built by
the GNU project.

Over the years, the open-source nature of Linux has resulted in the release of a wide range of
different Linux distributions. One such distribution is Red Hat Enterprise Linux, created by Red
Hat, Inc., founded by Bob Young and Mark Ewing. Red Hat specializes in providing enterprise-
level Linux software solutions combined with extensive technical support services. AlmaLinux is
based on and 100% binary compatible with Red Hat Enterprise Linux.

29

Chapter 4
4. Dual Booting AlmaLinux 9 with
Windows
Like most Linux distributions, AlmaLinux 9 will happily co-exist on a hard disk drive with just
about any version of Windows up to and including Windows 11. This is a concept known as
dual-booting. When you power up the system, you will be presented with a menu providing the
option to boot either your AlmaLinux 9 installation or Windows. Obviously, you can only run
one operating system at a time. Still, it is worth noting that the files on the Windows partition of
your disk drive will be available to you from AlmaLinux 9 regardless of whether your Windows
partition was formatted using NTFS, FAT16, or FAT32.

This installation method involves shrinking the size of the existing Windows partitions and then
installing AlmaLinux 9 into the reclaimed space. This chapter will assume that AlmaLinux 9 is
being installed on a system currently running Windows 11.

4.1 Partition Resizing
To accommodate AlmaLinux 9 on a disk drive that already contains a Windows installation,
the first step involves shrinking the Windows partition to make some room. The recommended
course of action is to use the Windows Disk Management interface to reduce the partition size
before attempting to install AlmaLinux 9.

To access Disk Management on Windows 11, right-click on the Start menu and select the option
from the resulting menu as highlighted in Figure 4-1:

Figure 4-1

30

Dual Booting AlmaLinux 9 with Windows

Once loaded, the Disk Management tool will display a graphical representation of the disk drives
detected on the system:

Figure 4-2

Right-click on the partition you wish to reduce in size and select Shrink Volume... from the popup
menu. The tool will calculate the maximum amount by which the volume size can be reduced
without data loss (a process that can take several minutes depending on the overall size of the
partition). Once this analysis is complete, a dialog similar to the one in Figure 4-3 below will
appear:

Figure 4-3

Specify a value in the Enter amount of space to shrink in the MB field and click the Shrink button
to proceed. Once the resizing operation is complete, reboot using the AlmaLinux 9 installation
media (as outlined in “Installing AlmaLinux 9 on a Clean Disk Drive”) and install using the
new free space. During the AlmaLinux 9 installation process, this can be achieved by selecting

31

Dual Booting AlmaLinux 9 with Windows

the Installation Destination option on the Installation Summary screen and ensuring that the
Automatic storage configuration option is selected. This will automatically install AlmaLinux 9
into the unallocated space created when the Windows partition was reduced in size.

Once installation of AlmaLinux 9 onto the disk is complete and the system has restarted, the
standard AlmaLinux 9 boot menu will appear, including an additional option to boot the Windows
system:

Figure 4-4

4.2 Changing the Default Boot Option
When the system starts, the boot options screen will appear, and wait 5 seconds for the user to
choose an operating system. If no selection has been made before the timeout elapses, the default
operating system will be started. The default operating system will be the standard (non-rescue)
AlmaLinux 9 image on a newly configured system. This default can, however, be changed from
within AlmaLinux 9.

A range of boot configuration options (including the 5-second timeout and the boot RHGB
settings outlined in “Installing AlmaLinux 9 on a Clean Disk Drive”) are declared in the /etc/
default/grub file, which reads as follows on a new installation:
GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_DISABLE_SUBMENU=true

GRUB_TERMINAL_OUTPUT="console"

GRUB_CMDLINE_LINUX="crashkernel=1G-4G:192M,4G-64G:256M,64G-:512M resume=/dev/
mapper/almalinux-swap rd.lvm.lv=almalinux/root rd.lvm.lv=almalinux/swap rhgb
quiet"

GRUB_DISABLE_RECOVERY="true"

GRUB_ENABLE_BLSCFG=true

The first step in changing the default boot system is to declare the GRUB_SAVEDEFAULT setting

32

Dual Booting AlmaLinux 9 with Windows

within this file:
GRUB_TIMEOUT=5

GRUB_DISTRIBUTOR="$(sed 's, release .*$,,g' /etc/system-release)"

GRUB_DEFAULT=saved

GRUB_SAVEDEFAULT=true
.

.

This setting saves a new default value within the boot configuration. Next, run the grub2-set-
default command to change the default setting using a numbering system that counts the first
option as 0. For example, if the Windows 11 option is position 3 in the menu, the command to
make Windows 11 the default boot option would read as follows:
grub2-set-default 2

Check that the new setting has taken effect by running the following command:
grub2-editenv list

saved_entry=2

menu_auto_hide=1

boot_success=1

boot_indeterminate=0

Note that the saved_entry value is now set to the Linux boot partition. After changing the default,
regenerate the boot configuration file as follows:
grub2-mkconfig --output=/boot/grub2/grub.cfg

Reboot the system and verify that the boot menu defaults to the Windows option and that
Windows loads after the timeout expires.

4.3 Accessing the Windows Partition from AlmaLinux 9
When running AlmaLinux 9 in a dual boot configuration, it is possible to access files located on
the Windows partition by manually mounting the partition from the command line. Before doing
so, however, some additional packages need to be installed on the system. First, the fuse kernel
module needs to be downloaded and installed:
dnf install fuse

modprobe fuse

Next, the Fuse NTFS driver needs to be installed. Unfortunately, this package is not included
in the standard AlmaLinux 9 repositories, so the Extra Packages for Enterprise Linux (EPEL)
repository needs to be added to the system as follows:
dnf config-manager --set-enabled crb

crb enable

dnf install \

 https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm \

 https://dl.fedoraproject.org/pub/epel/epel-next-release-latest-9.noarch.rpm

With the EPEL repository added, the driver can now be installed:

33

Dual Booting AlmaLinux 9 with Windows
dnf install ntfs-3g

Once the requisite packages are installed, the next step is to create a directory to use as the mount
point for our Windows partition. In this example, we will create a directory named /mnt/windows:
mkdir /mnt/windows

To identify the device name that has been assigned to the Windows partition, use the fdisk
command as follows:
fdisk -l

.

.

Device Start End Sectors Size Type

/dev/nvme0n1p1 2048 206847 204800 100M EFI System

/dev/nvme0n1p2 206848 239615 32768 16M Microsoft reserved

/dev/nvme0n1p3 239616 49362943 49123328 23.4G Microsoft basic data

/dev/nvme0n1p4 132933632 134213631 1280000 625M Windows recovery environment

/dev/nvme0n1p5 49362944 51460095 2097152 1G Linux filesystem

/dev/nvme0n1p6 51460096 132933631 81473536 38.8G Linux LVM

In the above output, the main Windows partition containing the files we need access to is
represented by /dev/nvme0n1p3. Next, we need to run the mount command (assuming the
Windows partition is /dev/nvme0n1p3) as follows:
mount /dev/nvme0n1p3 /mnt/windows

Check that the mount was successful by listing the contents of the top-level directory of the mount
point:
ls /mnt/windows

'$Recycle.Bin' ProgramData swapfile.sys

'Documents and Settings' 'Program Files' 'System Volume Information'

 pagefile.sys 'Program Files (x86)' Users

 PerfLogs Recovery Windows

To automate the mount each time the system is booted, add the appropriate mount line to the /
etc/fstab file:
/dev/nvme0n1p3 /mnt/windows ntfs defaults 0 0

To unmount the Windows file system at any time:
umount /mnt/windows

4.4 Summary
AlmaLinux 9 can safely co-exist on the same disk drive as a Windows operating system by creating
a dual boot environment. This involves shrinking the Windows system’s space to make room for
AlmaLinux 9 before performing the installation. Once AlmaLinux 9 has been installed, the boot
menu configuration must be modified to include the option to boot from Windows. To access the
Windows filesystem from within AlmaLinux 9, the Fuse NTFS driver must be installed and used
to mount the Windows partitions.

55

Chapter 7
7. An Overview of the Cockpit Web
Interface
Although equipped with the latest Linux desktop environment, AlmaLinux 9 is very much a server
operating system. As such, most AlmaLinux deployments will be to remote physical servers or as
cloud-based virtual machine instances. Invariably, these systems run without a keyboard, mouse,
or monitor, with direct access only available via the command prompt over a network connection.
This presents a challenge in terms of administering the system from remote locations. While much
can certainly be achieved via remote access to the command-line and desktop environments,
there needs to be a consistent and cohesive solution to the administrative and monitoring tasks
that must be performed daily on an enterprise-level operating system such as AlmaLinux 9.

The Cockpit web-based administration interface provides this functionality. This chapter will
explain how to install, configure and access the Cockpit interface while also providing an overview
of the key features of Cockpit, many of which will be covered in greater detail in later chapters.

7.1 An Overview of Cockpit
Cockpit is a lightweight, web-based interface that allows general system administrative tasks to
be performed remotely. When installed and configured, the system administrator opens a local
browser window and navigates to the Cockpit port on the remote server. After loading the Cockpit
interface into the browser and logging in, a wide range of tasks can be performed visually using
administration and monitoring tools.

Behind the scenes, Cockpit uses the same tools to perform tasks typically used when working
at the command line and updates automatically to reflect changes occurring elsewhere on the
system. This allows Cockpit to be used with other administration tools and techniques without
the risk of one approach overriding another. Cockpit can also be configured to access more than
one server, allowing multiple servers to be administered and monitored simultaneously through
a single browser session.

Cockpit is installed by default with a wide range of tools already bundled and allows additional
extension plugins to be installed as needed. Cockpit is also designed so that you can create
your own extensions using a combination of HTML and JavaScript to add missing or custom
functionality.

Cockpit’s modular design also allows many features to be embedded into other web-based
applications.

56

An Overview of the Cockpit Web Interface

7.2 Installing and Enabling Cockpit
Cockpit is generally not installed on AlmaLinux 9 by default but can be set up and enabled in a
few simple steps. The first step is to install the Cockpit package as follows:
dnf install cockpit

Next, the Cockpit socket service needs to be enabled:
systemctl enable --now cockpit.socket

Finally, the necessary ports need to be opened on the firewall to allow remote browser connections
to reach Cockpit if a firewall is enabled on your system (for details on firewalls, refer to the chapter
entitled “AlmaLinux 9 Firewall Basics”).
firewall-cmd --add-service=cockpit --permanent

firewall-cmd --reload

7.3 Accessing Cockpit
If you have access to the desktop environment of the server on which Cockpit has been installed,
open a browser window and navigate to https://localhost:9090 to access the Cockpit sign-in screen.
If, on the other hand, the server is remote, navigate to the server using the domain name or IP
address (for example, https://myserver.com:9090).

When the connection is established, the browser may warn that the connection is not secure. This
is because the Cockpit service uses a self-signed certificate. Select the option to proceed to the
website or, to avoid this message in the future, select the advanced option and add an exception
for the server address. Once connected, the browser will load the login page shown in Figure 7-1
below:

Figure 7-1

57

An Overview of the Cockpit Web Interface

Sign in to the Cockpit interface either as root or with your user account credentials. Note that some
tasks will be restricted within the Cockpit interface when signed in as a user due to permission
constraints. In this situation, the Cockpit console will display a button labeled “Limited Access,”
as shown in Figure 7-2:

Figure 7-2

To elevate your privileges, click on the limited access button and enter your password when you
are prompted to do so:

Figure 7-3

After signing in, Cockpit will display the Overview screen.

7.4 Overview
The Overview screen provides an overview of the current system, including access to CPU, memory,
storage, and network activity performance metrics. This screen also includes information about
the system, including the underlying hardware, hostname, system time, and whether the system
software is up to date. Options are also provided to restart or shut down the system.

Figure 7-4, for example, shows the Overview page of the Cockpit interface:

58

An Overview of the Cockpit Web Interface

Figure 7-4

For more information on a particular category, click on the corresponding link. Figure 7-5, for
example, shows the system performance history screen:

Figure 7-5

7.5 Logs
When the Logs category is selected, Cockpit displays the contents of the systemd journal logs.
Choosing a log entry will display the entire log message. The log entries are ordered with the most
recent at the top, and menus are included to filter the logs for different time durations and based
on message severity.

59

An Overview of the Cockpit Web Interface

Figure 7-6

7.6 Storage
Select the Storage option to review and manage the storage on the system, including disks,
partitions, volume groups, Network File System (NFS) mounts, and RAID storage. This screen
also allows disk I/O activity to be monitored in real-time and lists log output from the system
udisksd service used to query and manage storage devices:

Figure 7-7

7.7 Networking
The Networking screen provides information on various network-related configurations and
services, including network interfaces and firewall settings. In addition, it allows configuration
changes such as creating network bridges or setting up virtual networks:

60

An Overview of the Cockpit Web Interface

Figure 7-8

7.8 Accounts
Select this option to view the current user accounts configured on the system and create accounts
for additional users. The topic of user management will be covered later in the chapter entitled
“Managing AlmaLinux 9 Users and Groups”:

Figure 7-9

Click on an existing account to view details and make changes. The user account details page
may also be used to review and add Public SSH keys to the user’s account for remote access to the
server, as outlined in the chapter “Configuring SSH Key-based Authentication on AlmaLinux 9”.

7.9 Services
This screen displays a list of the system services running on the server and allows those services
to be added, removed, stopped, and started.

61

An Overview of the Cockpit Web Interface

Figure 7-10

The topic of services will be covered in detail in the chapter “Managing AlmaLinux 9 systemd
Units”.

7.10 Applications
As previously mentioned, additional functionality can be added to Cockpit as extensions. These
can either be self-developed extensions or those provided by third parties. The Applications
screen lists installed extensions and allows extensions to be added or removed:

Figure 7-11

7.11 Virtual Machines
Virtualization allows multiple operating system instances to run simultaneously on a single
computer system, with each system running inside its own virtual machine. The Virtual Machines
Cockpit extension provides a way to create and manage the virtual machine guests installed on
the server:

62

An Overview of the Cockpit Web Interface

Figure 7-12

The Virtual Machines extension is not installed by default but can be added via the Cockpit
Applications screen or by running the following command:
dnf install cockpit-machines

The use of virtualization with AlmaLinux 9 is covered starting with the chapter “An Overview of
Virtualization Techniques”.

7.12 Software Updates
If any software updates are available for the system, they will be listed here and can be installed
from this screen:

Figure 7-13

7.13 Terminal
As the name suggests, the Terminal screen provides access to the command-line prompt:

63

An Overview of the Cockpit Web Interface

Figure 7-14

7.14 Connecting to Multiple Servers
Cockpit can be configured to administer multiple servers from within a single session. To add
another host to the Cockpit session, click on the button highlighted in Figure 7-15 to display the
Hosts panel:

Figure 7-15

Click the Add new host button and enter the IP address or hostname of the other system and select
a color by which to distinguish this server from any others added to Cockpit before clicking on
the Add button:

64

An Overview of the Cockpit Web Interface

Figure 7-16

Cockpit will ask you to accept a new SSH key if you are connecting to the remote server for the
first time. After accepting the key, you will be prompted to enter the password for the user name
specified in Figure 7-16 above. The option is also provided to set up and authorize a password-
protected SSH key to enable automatic login to the second host system next time you need to
access it:

Figure 7-17

To switch between the hosts, display the Hosts panel (Figure 7-15 above) and select the required
system.

7.15 Enabling Stored Metrics
In a standard installation, Cockpit does not retain any performance metric data beyond what is
displayed in the short time window covered by the graphs. To retain the data collected by Cockpit,
the Cockpit Co-Pilot (PCP) package needs to be installed. Begin by installing the cockpit-pcp
package as follows:

65

An Overview of the Cockpit Web Interface
dnf install cockpit-pcp

After installing cockpit-pcp, log out of the current Cockpit session and back in.

Next, display the Performance Metrics screen and click on the Metrics settings button to display
the screen shown in Figure 7-18, switch on the Collect metrics option, and click Save:

Figure 7-18

After sufficient time has elapsed for Cockpit to gather data, the metric information will appear as
shown in Figure 7-19, categorized in hourly blocks:

Figure 7-19

7.16 Summary
The Cockpit web interface allows remote system administration tasks to be performed visually
from within a web browser without relying on the command prompt and command-line tools.
Once installed and enabled, the system administrator opens a web browser, connects to the remote
server, and signs into the Cockpit interface. Behind the scenes, Cockpit uses the same command-
line tools as those available via the command prompt, allowing both options to be used without
the risk of configuration conflicts. In addition, Cockpit uses a modular framework enabling
additional extensions to be added and for custom extensions to be developed and integrated. A
Cockpit session can be used to administer a single server or configured to access multiple servers
simultaneously.

133

Chapter 16
16. AlmaLinux 9 Remote Desktop
Access with VNC
AlmaLinux 9 can be configured to provide remote access to the graphical desktop environment
over a network or internet connection. Although not enabled by default, displaying and accessing
an AlmaLinux 9 desktop from a system anywhere else on a network or the internet is relatively
straightforward. This can be achieved regardless of whether that system runs Linux, Windows,
or macOS. There are even apps available for Android and iOS that will allow you to access your
AlmaLinux 9 desktop from just about anywhere that a data signal is available.

Remote desktop access can be helpful in many scenarios. For example, it enables you or another
person to view and interact with your AlmaLinux 9 desktop environment from another computer
system on the same network or over the internet. This is useful if you need to work on your
computer when you are away from your desk, such as while traveling. It is also helpful when a co-
worker or IT support technician needs access to your desktop to resolve a problem.

When the AlmaLinux 9 system runs on a cloud-based server, it also allows access to the desktop
environment as an alternative to performing administrative tasks using the command-line
prompt or Cockpit web console.

The AlmaLinux 9 remote desktop functionality is based on a technology known as Virtual
Network Computing (VNC). This chapter will cover the key aspects of configuring and using
remote desktops within AlmaLinux 9.

16.1 Secure and Insecure Remote Desktop Access
In this chapter, we will cover both secure and insecure remote desktop access methods. Assuming
you are accessing one system from another within a secure internal network, using the insecure
access method is generally safe. If, on the other hand, you plan to access your desktop remotely
over any public network, you must use the secure method of access to avoid your system and data
being compromised.

16.2 Installing the GNOME Desktop Environment
It is, of course, only possible to access the desktop environment if the desktop itself has been
installed. If, for example, the system was initially configured as a server, it is unlikely that the
desktop packages were installed. The easiest way to install the packages necessary to run the
GNOME desktop is to perform a group install. The key to installing groups of packages to enable
a specific feature is knowing the group’s name. At the time of writing, there are two groups for
installing the desktop environment on AlmaLinux 9: “Server with GUI” and “Workstation”. As
the group names tend to change from one AlmaLinux release to another, it is helpful to know that

134

AlmaLinux 9 Remote Desktop Access with VNC

the list of groups that are either installed or available to be installed can be obtained using the dnf
utility as follows:
dnf grouplist

Available Environment Groups:

 Server

 Minimal Install

 Workstation

 Virtualization Host

 Custom Operating System

Installed Environment Groups:

 Server with GUI

Installed Groups:

 Container Management

 Headless Management

Available Groups:

 RPM Development Tools

 .NET Development

 Console Internet Tools

 Scientific Support

 Legacy UNIX Compatibility

 Graphical Administration Tools

 Network Servers

 System Tools

 Development Tools

 Security Tools

 Smart Card Support

The Workstation environment group is listed as available (and therefore not already installed) in
the above example. To find out more information about the contents of a group before installation,
use the following command:
dnf groupinfo workstation

Environment Group: Workstation

 Description: Workstation is a user-friendly desktop system for laptops and PCs.

 Mandatory Groups:

 Common NetworkManager submodules

 Core

 Fonts

 GNOME

 Guest Desktop Agents

 Hardware Support

 Internet Browser

 Multimedia

 Printing Client

 Standard

135

AlmaLinux 9 Remote Desktop Access with VNC
 Workstation product core

 base-x

 Optional Groups:

 Backup Client

 GNOME Applications

 Headless Management

 Internet Applications

 Office Suite and Productivity

 Remote Desktop Clients

 Smart Card Support

Having confirmed that this is the correct group, it can be installed as follows:
dnf groupinstall workstation

Once installed, and assuming that the system has a display added, the desktop can be launched
using the following startx command:
$ startx

To launch the graphical desktop each time the system starts, change the default target as follows:
systemctl set-default graphical.target

If, on the other hand, the system is a server with no directly connected display, the only way to run
and access the desktop will be to configure VNC support on the system.

16.3 Installing VNC on AlmaLinux 9
Access to a remote desktop requires a VNC server installed on the remote system, a VNC viewer
on the system from which access is being established, and, optionally, a secure SSH connection.
While several VNC server and viewer implementations are available, Red Hat has standardized
on TigerVNC, which provides both server and viewer components for Linux-based operating
systems. VNC viewer clients for non-Linux platforms include RealVNC and TightVNC.

To install the TigerVNC server package on AlmaLinux 9, run the following command:
dnf install tigervnc-server

If required, the TigerVNC viewer may also be installed as follows:
dnf install tigervnc

Once the server has been installed, the system must be configured to run one or more VNC
services and open the appropriate ports on the firewall.

16.4 Assigning Ports to Users
VNC uses a range of ports starting at 5900 to communicate with remote clients. When connecting
to a VNC server, these ports are referenced as display numbers (where 5901 is display :1, 5902 is
display :2, and so on).

When setting up VNC on AlmaLinux 9, it is helpful to assign a specific port to each remote user to
provide consistency in gaining access. Port assignments are declared in the /etc/tigervnc/vncserver.

136

AlmaLinux 9 Remote Desktop Access with VNC

users file and use the following format:
display_number=user

It is recommended that port assignments begin at 5902. For example, the following entry in the
vncserver.users file assigns display :2 (port 5902) to user demo:
:2=demo

16.5 Configuring the VNC Server
With the VNC server packages installed, the next step is configuring the server. System-wide
settings may be declared within the /etc/tigervnc/vncserver-config-defaults file, while settings for
individual users can be placed in the $HOME/.vnc/config file. At a minimum, one of these files
should contain the following entries:
session=gnome

16.6 Setting up a VNC Password
The next step is to specify a password for the remote desktop environment user. While logged in
as the remote user, execute the vncpasswd command as follows:
[demo@demoserver ~]$ vncpasswd

Password:

Verify:

Would you like to enter a view-only password (y/n)? n

A view-only password is not used

Next, the firewall needs to be configured to provide external access to the VNC server for remote
VNC viewer instances, for example:
firewall-cmd --permanent --add-service=vnc-server

firewall-cmd --reload

16.7 Starting VNC Server
With the service configuration file created, the service needs to be started as follows (where
<number> is replaced by the VNC display number:
systemctl start vncserver@<number>

The following command, for example, starts the VNC server for display :2:
systemctl start vncserver@:2

Check that the service has started successfully as follows:
systemctl status vncserver@:2

● vncserver@:2.service - Remote desktop service (VNC)

 Loaded: loaded (/usr/lib/systemd/system/vncserver@.service; enabled; prese>

 Active: active (running) since Thu 2023-08-24 15:50:07 CDT; 21h ago

 Process: 1027 ExecStartPre=/usr/libexec/vncsession-restore :2 (code=exited,>

 Process: 1107 ExecStart=/usr/libexec/vncsession-start :2 (code=exited, stat>

 Main PID: 1114 (vncsession)

 Tasks: 0 (limit: 22131)

137

AlmaLinux 9 Remote Desktop Access with VNC
 Memory: 1.9M

 CPU: 38ms

 CGroup: /system.slice/system-vncserver.slice/vncserver@:2.service

 1114 /usr/sbin/vncsession demo :2

If the service fails to start, run the journalctl command to check for error messages:
journalctl -xe

Also, try again after rebooting the system before tying again. If the problem persists, check the
VNC log file located in the user’s $HOME/.vnc directory for diagnostic messages.

16.8 Connecting to a VNC Server
VNC viewer implementations are available for a wide range of operating systems. Therefore,
a quick internet search will likely provide numerous links containing details on obtaining and
installing this tool on your chosen platform.

First, verify that the remote user has logged out of all local desktop sessions (the VNC server will
not start if the user has an active desktop session).

From the desktop of a Linux system on which a VNC viewer such as TigerVNC is installed, a
remote desktop connection can be established as follows from a Terminal window:
$ vncviewer <hostname>:<display number>

In the above example <hostname> is either the hostname or IP address of the remote system, and
<display number> is the display number of the VNC server desktop, for example:
$ vncviewer 192.168.86.34:2

Alternatively, run the command without any options to be prompted for the details of the remote
server:

Figure 16-1

Enter the hostname or IP address followed by the display number (for example, 192.168.86.34:2)
into the VNC server field and click on the Connect button. The viewer will prompt for the user’s
VNC password to complete the connection, at which point a new window containing the remote
desktop will appear:

138

AlmaLinux 9 Remote Desktop Access with VNC

Figure 16-2

This section assumed that the remote desktop was accessed from a Linux or UNIX system; the
same steps apply to most other operating systems.

Connecting to a remote VNC server using the steps in this section results in an insecure,
unencrypted connection between the client and server. This means the data transmitted during
the remote session is vulnerable to interception. Therefore, a few extra steps are necessary to
establish a secure and encrypted connection.

16.9 Establishing a Secure Remote Desktop Session
The remote desktop configurations explored in this chapter are considered insecure because no
encryption is used. This is acceptable when the remote connection does not extend outside an
internal network protected by a firewall. However, a more secure option is needed when a remote
session is required over an internet connection. This is achieved by tunneling the remote desktop
through a secure shell (SSH) connection. This section will cover how to do this on Linux, UNIX,
and macOS client systems.

The SSH server is typically installed and activated by default on AlmaLinux 9 systems. If this is
not the case on your system, refer to the chapter “Configuring SSH Key-based Authentication on
AlmaLinux 9”.

139

AlmaLinux 9 Remote Desktop Access with VNC

Assuming the SSH server is installed and active, it is time to move to the other system. At the
other system, log in to the remote system using the following command, which will establish the
secure tunnel between the two systems:
$ ssh -l <username> -L 5902:localhost:5902 <remotehost>

In the above example, <username> references the user account on the remote system for which
VNC access has been configured, and <remotehost> is either the hostname or IP address of the
remote system, for example:
$ ssh -l neilsmyth -L 5902:localhost:5902 192.168.1.115

When prompted, log in using the account password. With the secure connection established, it is
time to launch vncviewer to use the secure tunnel. Leaving the SSH session running in the other
terminal window, launch another terminal and enter the following command:
$ vncviewer localhost:5902

The vncviewer session will prompt for a password if one is required, and then launch the VNC
viewer providing secure access to your desktop environment.

Although the connection is now secure and encrypted, the VNC viewer will most likely still report
that the connection is insecure. Figure 16-3, for example, shows the warning dialog displayed by
the RealVNC viewer running on a macOS system:

Figure 16-3

Unfortunately, although the connection is now secure, the VNC viewer software has no way of
knowing this and consequently continues to issue warnings. However, rest assured that as long as
the SSH tunnel is being used, the connection is indeed secure.

In the above example, we left the SSH tunnel session running in a terminal window. If you would
prefer to run the session in the background, this can be achieved by using the –f and –N flags
when initiating the connection:
$ ssh -l <username> -f -N -L 5902:localhost:5902 <remotehost>

The above command will prompt for a password for the remote server and then establish the
connection in the background, leaving the terminal window available for other tasks.

140

AlmaLinux 9 Remote Desktop Access with VNC

If you are connecting to the remote desktop from outside the firewall, keep in mind that the IP
address for the SSH connection will be the external IP address provided by your ISP or cloud
hosting provider, not the LAN IP address of the remote system (since this IP address is not visible
to those outside the firewall). Therefore, you will also need to configure your firewall to forward
port 22 (for the SSH connection) to the IP address of the system running the desktop. It is not
necessary to forward port 5900. Steps to perform port forwarding differ between firewalls, so
refer to the documentation for your firewall, router, or wireless base station for details specific to
your configuration.

16.10 Establishing a Secure Tunnel on Windows using PuTTY
A similar approach is taken to establishing a secure desktop session from a Windows system to
an AlmaLinux 9 server. Assuming you already have a VNC client such as TightVNC installed, the
remaining requirement is a Windows SSH client (in this case, PuTTY).

Once PuTTY is downloaded and installed, the first step is establishing a secure connection
between the Windows system and the remote AlmaLinux 9 system with appropriate tunneling
configured. When launched, PuTTY displays the following screen:

Figure 16-4

Enter the IP address or hostname of the remote host (or the external IP address of the gateway if
you are connecting from outside the firewall). The next step is to set up the tunnel. Click on the +
next to SSH in the Category tree on the left-hand side of the dialog and select Tunnels. The screen
should subsequently appear as follows:

141

AlmaLinux 9 Remote Desktop Access with VNC

Figure 16-5

Enter 5902 as the Source port and localhost:5902 as the Destination, and click the Add button.
Finally, return to the main screen by clicking on the Session category. Enter a name for the session
in the Saved Sessions text field and press Save. Click on Open to establish the connection. A
terminal window will appear with the login prompt from the remote system. Enter the appropriate
user login and password credentials.

The SSH connection is now established. Launch the TightVNC viewer, enter localhost:5902 in the
VNC Server text field, and click Connect. The viewer will establish the connection, prompt for
the password, and then display the desktop. You are now accessing the remote desktop of a Linux
system from Windows over a secure SSH tunnel connection.

16.11 Shutting Down a Desktop Session
To shut down a VNC Server hosted desktop session, use the systemctl stop command. For example,
to stop desktop :2:
systemctl stop vncserver@:2

The VNC server must be stopped before the user attempts to log into a local desktop session. If
the user’s VNC server is still running, the local desktop session will appear as a blank screen.

16.12 Summary
Remote access to the GNOME desktop environment of an AlmaLinux 9 system can be enabled by
using Virtual Network Computing (VNC). Comprising the VNC server running on the remote
server and a corresponding client on the local host, VNC allows remote access to multiple desktop
instances running on the server.

When the VNC connection is being used over a public connection, SSH tunneling is recommended
to ensure that the communication between the client and server is encrypted and secure.

167

Chapter 20
20. An Overview of Virtualization
Techniques
Virtualization is the ability to run multiple operating systems simultaneously on a single computer
system. While not necessarily a new concept, Virtualization has come to prominence in recent
years because it provides a way to fully utilize the CPU and resource capacity of a server system
while providing stability (in that if one virtualized guest system crashes, the host and any other
guest systems continue to run).

Virtualization is also helpful in trying out different operating systems without configuring
dual boot environments. For example, you can run Windows in a virtual machine without re-
partitioning the disk, shut down AlmaLinux 9, and boot from Windows. Instead, you start up a
virtualized version of Windows as a guest operating system. Similarly, virtualization allows you
to run other Linux distributions within an AlmaLinux 9 system, providing concurrent access to
both operating systems.

When deciding on the best approach to implementing virtualization, clearly understanding the
different virtualization solutions currently available is essential. Therefore, this chapter’s purpose
is to describe in general terms the virtualization techniques in common use today.

20.1 Guest Operating System Virtualization
Guest OS virtualization, also called application-based virtualization, is the most straightforward
concept to understand. In this scenario, the physical host computer runs a standard unmodified
operating system such as Windows, Linux, UNIX, or macOS. Running on this operating system is
a virtualization application that executes in much the same way as any other application, such as
a word processor or spreadsheet, would run on the system. Within this virtualization application,
one or more virtual machines are created to run the guest operating systems on the host computer.

The virtualization application is responsible for starting, stopping, and managing each virtual
machine and essentially controlling access to physical hardware resources on behalf of the
individual virtual machines. The virtualization application also engages in a process known as
binary rewriting, which involves scanning the instruction stream of the executing guest system
and replacing any privileged instructions with safe emulations. This makes the guest system
think it is running directly on the system hardware rather than in a virtual machine within an
application.

The following figure illustrates guest OS-based virtualization:

168

An Overview of Virtualization Techniques

Figure 20-1

As outlined in the above diagram, the guest operating systems operate in virtual machines within
the virtualization application, which, in turn, runs on top of the host operating system in the
same way as any other application. The multiple layers of abstraction between the guest operating
systems and the underlying host hardware are not conducive to high levels of virtual machine
performance. However, this technique has the advantage that no changes are necessary to host or
guest operating systems, and no special CPU hardware virtualization support is required.

20.2 Hypervisor Virtualization
In hypervisor virtualization, the task of a hypervisor is to handle resource and memory allocation
for the virtual machines and provide interfaces for higher-level administration and monitoring
tools. Hypervisor-based solutions are categorized as being either Type-1 or Type-2.

Type-2 hypervisors (sometimes called hosted hypervisors) are installed as software applications
that run on top of the host operating system, providing virtualization capabilities by coordinating
access to resources such as the CPU, memory, and network for guest virtual machines. Figure
21-2 illustrates the typical architecture of a system using Type-2 hypervisor virtualization:

169

An Overview of Virtualization Techniques

Figure 20-2

To understand how Type-1 hypervisors work, it helps to understand Intel x86 processor
architecture. The x86 family of CPUs provides a range of protection levels known as rings in which
code can execute. Ring 0 has the highest level privilege, and it is in this ring that the operating
system kernel normally runs. Code executing in ring 0 is said to be running in system space,
kernel mode, or supervisor mode. All other code, such as applications running on the operating
system, operate in less privileged rings, typically ring 3.

In contrast to Type-2 hypervisors, Type-1 hypervisors (also referred to as metal or native
hypervisors) run directly on the hardware of the host system in ring 0. With the hypervisor
occupying ring 0 of the CPU, the kernels for any guest operating systems running on the system
must run in less privileged CPU rings. Unfortunately, most operating system kernels are written
explicitly to run in ring 0 because they need to perform tasks only available in that ring, such
as the ability to execute privileged CPU instructions and directly manipulate memory. Several
different solutions to this problem have been devised in recent years, each of which is described
below:

20.2.1 Paravirtualization
Under paravirtualization, the kernel of the guest operating system is modified specifically to run
on the hypervisor. This typically involves replacing privileged operations that only run in ring 0
of the CPU with calls to the hypervisor (known as hypercalls). The hypervisor, in turn, performs

170

An Overview of Virtualization Techniques

the task on behalf of the guest kernel. Unfortunately, this typically limits support to open-source
operating systems such as Linux, which may be freely altered, and proprietary operating systems
where the owners have agreed to make the necessary code modifications to target a specific
hypervisor. These issues notwithstanding, the ability of the guest kernel to communicate directly
with the hypervisor results in greater performance levels than other virtualization approaches.

20.2.2 Full Virtualization
Full virtualization provides support for unmodified guest operating systems. The term unmodified
refers to operating system kernels that have not been altered to run on a hypervisor and, therefore,
still execute privileged operations as though running in ring 0 of the CPU. In this scenario,
the hypervisor provides CPU emulation to handle and modify privileged and protected CPU
operations made by unmodified guest operating system kernels. Unfortunately, this emulation
process requires both time and system resources to operate, resulting in inferior performance
levels when compared to those provided by paravirtualization.

20.2.3 Hardware Virtualization
Hardware virtualization leverages virtualization features built into the latest generations of CPUs
from both Intel and AMD. These technologies, called Intel VT and AMD-V, respectively, provide
extensions necessary to run unmodified guest virtual machines without the overheads inherent in
full virtualization CPU emulation. In very simplistic terms, these processors provide an additional
privilege mode (ring -1) above ring 0 in which the hypervisor can operate, thereby leaving ring 0
available for unmodified guest operating systems.

The following figure illustrates the Type-1 hypervisor approach to virtualization:

Figure 20-3

As outlined in the above illustration, in addition to the virtual machines, an administrative

171

An Overview of Virtualization Techniques

operating system or management console also runs on top of the hypervisor allowing the virtual
machines to be managed by a system administrator.

20.3 Virtual Machine Networking
Virtual machines will invariably need to be connected to a network to be of any practical use. One
option is for the guest to be connected to a virtual network running within the host computer’s
operating system. In this configuration, any virtual machines on the virtual network can see each
other, but Network Address Translation (NAT) provides access to the external network. When
using the virtual network and NAT, each virtual machine is represented on the external network
(the network to which the host is connected) using the IP address of the host system. This is the
default behavior for KVM virtualization on AlmaLinux 9 and generally requires no additional
configuration. Typically, a single virtual network is created by default, represented by the name
default and the device virbr0.

For guests to appear as individual and independent systems on the external network (i.e., with
their own IP addresses), they must be configured to share a physical network interface on the host.
The quickest way to achieve this is to configure the virtual machine to use the “direct connection”
network configuration option (also called MacVTap), which will provide the guest system with
an IP address on the same network as the host. Unfortunately, while this gives the virtual machine
access to other systems on the network, it is not possible to establish a connection between the
guest and the host when using the MacVTap driver.

A better option is to configure a network bridge interface on the host system to which the guests
can connect. This provides the guest with an IP address on the external network while also
allowing the guest and host to communicate, a topic covered in the chapter entitled “Creating an
AlmaLinux 9 KVM Networked Bridge Interface”.

20.4 Summary
Virtualization is the ability to run multiple guest operating systems within a single host operating
system. Several approaches to virtualization have been developed, including a guest operating
system and hypervisor virtualization. Hypervisor virtualization falls into two categories known
as Type-1 and Type-2. Type-2 virtualization solutions are categorized as paravirtualization, full
virtualization, and hardware virtualization, the latter using special virtualization features of some
Intel and AMD processor models.

Virtual machine guest operating systems have several options in terms of networking, including
NAT, direct connection (MacVTap), and network bridge configurations.

197

Chapter 25
25. Creating an AlmaLinux 9 KVM
Networked Bridge Interface
By default, the KVM virtualization environment on AlmaLinux 9 creates a virtual network to
which virtual machines may connect. It is also possible to configure a direct connection using
a MacVTap driver. However, as outlined in the chapter entitled “An Overview of Virtualization
Techniques”, this approach does not allow the host and guest systems to communicate.

This chapter will cover the steps involved in creating a network bridge on AlmaLinux 9, enabling
guest systems to share one or more of the host system’s physical network connections while still
allowing the guest and host systems to communicate.

In the remainder of this chapter, we will explain how to configure an AlmaLinux 9 network bridge
for KVM-based guest operating systems.

25.1 Getting the Current Network Manager Settings
A network bridge can be created using the NetworkManager command-line interface tool
(nmcli). The NetworkManager is installed and enabled by default on AlmaLinux 9 systems and
is responsible for detecting and connecting to network devices and providing an interface for
managing networking configurations.

A list of current network connections on the host system can be displayed as follows:
nmcli con show

NAME UUID TYPE DEVICE

eno1 f8d7c1b3-994c-3b5a-87f1-f8430e49f992 ethernet eno1

lo 05d13946-2ae4-49b7-92b5-1ecfbe604adb loopback lo

virbr0 91d7e0e0-d953-446a-887b-62c2635951e2 bridge virbr0

The above output shows that the host has an Ethernet network connection established via a device
named eno1 and the default bridge interface named virbr0, which provides access to the NAT-
based virtual network to which KVM guest systems are connected by default.

Similarly, the following command can be used to identify the devices (both virtual and physical)
that are currently configured on the system:
nmcli device show

GENERAL.DEVICE: eno1

GENERAL.TYPE: ethernet

GENERAL.HWADDR: 00:23:24:52:52:57

GENERAL.MTU: 1500

GENERAL.STATE: 100 (connected)

GENERAL.CONNECTION: eno1

198

Creating an AlmaLinux 9 KVM Networked Bridge Interface
GENERAL.CON-PATH: /org/freedesktop/NetworkManager/
ActiveConnection/2

WIRED-PROPERTIES.CARRIER: on

IP4.ADDRESS[1]: 192.168.86.39/24

IP4.GATEWAY: 192.168.86.1

IP4.ROUTE[1]: dst = 192.168.86.0/24, nh = 0.0.0.0, mt =
100

IP4.ROUTE[2]: dst = 0.0.0.0/0, nh = 192.168.86.1, mt =
100

IP4.DNS[1]: 192.168.86.1

IP4.DOMAIN[1]: lan

IP6.ADDRESS[1]: fd1e:fe64:8988:2c34:223:24ff:fe52:5257/64

IP6.ADDRESS[2]: fe80::223:24ff:fe52:5257/64

.

.

The above partial output indicates that the host system on which the command was executed
contains a physical Ethernet device (eno1) and a virtual bridge (virbr0).

The virsh command may also be used to list the virtual networks currently configured on the
system:
virsh net-list --all

 Name State Autostart Persistent

--

 default active yes yes

Currently, the only virtual network present is the default network provided by virbr0. Now that
some basic information about the current network configuration has been obtained, the next step
is to create a network bridge connected to the physical network device (in this case, eno1).

25.2 Creating a Network Manager Bridge from the Command-Line
The first step in creating the network bridge is adding a new connection to the configuration.
This can be achieved using the nmcli tool, specifying that the connection is to be a bridge and
providing names for both the connection and the interface:
nmcli con add ifname br0 type bridge con-name br0

Once the connection has been added, a bridge slave interface needs to be established between
physical device eno1 (the slave) and the bridge connection br0 (the master) as follows:
nmcli con add type bridge-slave ifname eno1 master br0

Connection 'bridge-slave-eno1' (07e588c0-14a1-4168-a9c6-e9056f55c11f)
successfully added.

At this point, the NetworkManager connection list should read as follows:
nmcli con show

eno1 f8d7c1b3-994c-3b5a-87f1-f8430e49f992 ethernet eno1

virbr0 91d7e0e0-d953-446a-887b-62c2635951e2 bridge virbr0

br0 5eac7f23-d0fa-4df9-986b-b643f1b4d35b bridge --

199

Creating an AlmaLinux 9 KVM Networked Bridge Interface
bridge-slave-eno1 07e588c0-14a1-4168-a9c6-e9056f55c11f ethernet --

The next step is to start up the bridge interface. If the steps to configure the bridge are being
performed over a network connection (i.e., via SSH) this step can be problematic because the
current eno1 connection must be closed down before the bridge connection can be brought up.
This means the current connection will be lost before the bridge connection can be enabled to
replace it, potentially leaving the remote host unreachable.

If you are accessing the host system remotely, this problem can be avoided by creating a shell
script to perform the network changes. This will ensure that the bridge interface is enabled after
the eno1 interface is brought down, allowing you to reconnect to the host after the changes are
complete. Begin by creating a shell script file named bridge.sh containing the following commands:
#!/bin/bash

nmcli con down eno1

nmcli con up br0

Once the script has been created, execute it as follows:
sh ./bridge.sh

When the script executes, the connection will be lost when the eno1 connection is brought down.
After waiting a few seconds, however, it should be possible to reconnect to the host once the br0
connection has been activated. Note that in some cases, the bridge interface may be assigned
a different IP address than the one previously assigned to the system. Keep this in mind while
attempting to reconnect via ssh.

If you are working locally on the host, the two nmcli commands can be run within a terminal
window without any risk of losing connectivity:
nmcli con down eno1

nmcli con up br0

Once the bridge is up and running, the connection list should now include both the bridge and
the bridge-slave connections:
nmcli con show

NAME UUID TYPE DEVICE

br0 5eac7f23-d0fa-4df9-986b-b643f1b4d35b bridge br0

virbr0 91d7e0e0-d953-446a-887b-62c2635951e2 bridge virbr0

bridge-slave-eno1 07e588c0-14a1-4168-a9c6-e9056f55c11f ethernet eno1

eno1 f8d7c1b3-994c-3b5a-87f1-f8430e49f992 ethernet --

Note that the connection is still listed but is no longer active. To exclude inactive connections
from the list, use the --active flag when requesting the list:
nmcli con show --active

NAME UUID TYPE DEVICE

br0 5eac7f23-d0fa-4df9-986b-b643f1b4d35b bridge br0

virbr0 91d7e0e0-d953-446a-887b-62c2635951e2 bridge virbr0

bridge-slave-eno1 07e588c0-14a1-4168-a9c6-e9056f55c11f ethernet eno1

200

Creating an AlmaLinux 9 KVM Networked Bridge Interface

25.3 Declaring the KVM Bridged Network
At this point, the bridge connection is on the system but is not visible to the KVM environment.
Running the virsh command should still list the default network as being the only available
network option:
virsh net-list --all

 Name State Autostart Persistent

--

 default active yes yes

Before a virtual machine can use the bridge, it must be declared and added to the KVM network
configuration. This involves the creation of a definition file and, once again, using the virsh
command-line tool.

Begin by creating a definition file for the bridge network named bridge.xml that reads as follows:
<network>

 <name>br0</name>

 <forward mode="bridge"/>

 <bridge name="br0" />

</network>

Next, use the file to define the new network:
virsh net-define ./bridge.xml

Network br0 defined from ./bridge.xml

Once the network has been defined, start it and, if required, configure it to autostart each time
the system reboots:
virsh net-start br0

virsh net-autostart br0

Once again, list the networks to verify that the bridge network is now accessible within the KVM
environment:
virsh net-list --all

 Name State Autostart Persistent

--

 br0 active yes yes

 default active yes yes

25.4 Using a Bridge Network in a Virtual Machine
To create a virtual machine that uses the bridge network, use the virt-install --network option and
specify the br0 bridge name. For example:
virt-install --name alma_vm_guest --memory 1024 --disk path=/tmp/alma_vm_guest.
img,size=10 --network network=br0 --cdrom /home/demo/AlmaLinux-9.2-x86_64-
minimal.iso

When the guest operating system runs, it will appear on the same physical network as the host
system and will no longer be on the NAT-based virtual network.

201

Creating an AlmaLinux 9 KVM Networked Bridge Interface

The bridge may also be selected for virtual machines within the Cockpit interface by editing
the virtual machine, locating the Network interfaces section, and clicking the Edit button as
highlighted in Figure 25-1 below:

Figure 25-1

Within the resulting interface settings dialog, change the Interface type menu to Bridge to LAN
and set the Source to br0 as shown in Figure 25-2:

Figure 25-2

Similarly, when creating a new virtual machine using the virt-manager tool, the bridge will be
available within the Network selection menu:

Figure 25-3

202

Creating an AlmaLinux 9 KVM Networked Bridge Interface

To modify an existing virtual machine so that it uses the bridge, use the virsh edit command. This
command loads the XML definition file into an editor where changes can be made and saved:
virsh edit GuestName

By default, the file will be loaded into the vi editor. To use a different editor, change the $EDITOR
environment variable, for example:
export EDITOR=gedit

To change from the default virtual network, locate the <interface> section of the file, which will
read as follows for a NAT-based configuration:
<interface type='network'>

 <mac address='<your mac address here>'/>

 <source network='default'/>

 <model type='virtio'/>

 <address type='pci' domain='0x0000' bus='0x01' slot='0x00' function='0x0'/>

</interface>

Alternatively, if the virtual machine was using a direct connection, the entry may read as follows:
<interface type='direct'>

 <mac address='<your mac address here>'/>

 <source dev='eno1' mode='vepa'/>

 <model type='virtio'/>

 <address type='pci' domain='0x0000' bus='0x01' slot='0x00' function='0x0'/>

To use the bridge, change the source network property to read as follows before saving the file:
<interface type='network'>

 <mac address='<your mac address here>'/>

 <source network='br0'/>

 <model type='virtio'/>

 <address type='pci' domain='0x0000' bus='0x01' slot='0x00' function='0x0'/>

</interface>

If the virtual machine is already running, the change will not take effect until it is restarted.

25.5 Creating a Bridge Network using nm-connection-editor
If either local or remote desktop access is available on the host system, much of the bridge
configuration process can be performed using the nm-connection-editor graphical tool. To use
this tool, open a Terminal window within the desktop and enter the following command:
nm-connection-editor

When the tool has loaded, the window shown in Figure 25-4 will appear, listing the currently
configured network connections (essentially the same output as that generated by the nmcli con
show command):

203

Creating an AlmaLinux 9 KVM Networked Bridge Interface

Figure 25-4

To create a new connection, click on the ‘+’ button in the window’s bottom left-hand corner.
Then, from the resulting dialog (Figure 25-5), select the Bridge option from the menu:

Figure 25-5

With the bridge option selected, click the Create button to proceed to the bridge configuration
screen. Begin by changing both the connection and interface name fields to br0 before clicking on
the Add button located to the right of the Bridge connections list, as highlighted in Figure 25-6:

204

Creating an AlmaLinux 9 KVM Networked Bridge Interface

Figure 25-6

From the connection type dialog (Figure 25-7), change the menu setting to Ethernet before
clicking on the Create button:

Figure 25-7

Another dialog will now appear in which the bridge slave connection needs to be configured.
Within this dialog, select the physical network to which the bridge is to connect (for example,
eno1) from the Device menu:

205

Creating an AlmaLinux 9 KVM Networked Bridge Interface

Figure 25-8

Click on the Save button to apply the changes and return to the Editing br0 dialog (as illustrated in
Figure 25-6 above). Within this dialog, click on the Save button to create the bridge. On returning
to the main window, the new bridge and slave connections should now be listed:

Figure 25-9

All that remains is to bring down the original eno1 connection and bring up the br0 connection
using the steps outlined in the previous chapter (remembering to perform these steps in a shell
script if the host is being accessed remotely):
nmcli con down eno1

nmcli con up br0

206

Creating an AlmaLinux 9 KVM Networked Bridge Interface

It will also be necessary, as it was when creating the bridge using the command-line tool, to
add this bridge to the KVM network configuration. To do so, repeat the steps outlined in the
“Declaring the KVM Bridged Network” section above. Once this step has been taken, the bridge is
ready to be used by guest virtual machines.

25.6 Summary
By default, KVM virtual machines are connected to a virtual network that uses NAT to provide
access to the network to which the host system is connected. If the guests are required to appear
on the network with their own IP addresses, they need to be configured to share the physical
network interface of the host system. This chapter outlines that this can be achieved using the
nmcli or nm-connection-editor tools to create a networked bridge interface.

211

Chapter 27
27. An Introduction to Linux
Containers
The preceding chapters covered the concept of virtualization, emphasizing creating and managing
virtual machines using KVM. This chapter will introduce a related technology in the form of
Linux Containers. While there are some similarities between virtual machines and containers,
key differences will be outlined in this chapter, along with an introduction to the concepts and
advantages of Linux Containers. The chapter will also introduce some AlmaLinux 9 container
management tools. Once the basics of containers have been covered in this chapter, the next
chapter will work through some practical examples of creating and running containers on
AlmaLinux 9.

27.1 Linux Containers and Kernel Sharing
In simple terms, Linux containers are a lightweight alternative to virtualization. A virtual machine
contains and runs the entire guest operating system in a virtualized environment. The virtual
machine, in turn, runs on top of an environment such as a hypervisor that manages access to the
physical resources of the host system.

Containers work by using a concept referred to as kernel sharing, which takes advantage of the
architectural design of Linux and UNIX-based operating systems.

To understand how kernel sharing and containers work, it helps first to understand the two main
components of Linux or UNIX operating systems. At the core of the operating system is the
kernel. In simple terms, the kernel handles all the interactions between the operating system
and the physical hardware. The second key component is the root file system which contains all
the libraries, files, and utilities necessary for the operating system to function. Taking advantage
of this structure, containers each have their own root file system but share the host operating
system’s kernel. This structure is illustrated in the architectural diagram in Figure 27-1 below.

This type of resource sharing is made possible by the ability of the kernel to dynamically change
the current root file system (a concept known as change root or chroot) to a different root file
system without having to reboot the entire system. Linux containers are essentially an extension
of this capability combined with a container runtime, the responsibility of which is to provide
an interface for executing and managing the containers on the host system. Several container
runtimes are available, including Docker, lxd, containerd, and CRI-O.

212

An Introduction to Linux Containers

Figure 27-1

27.2 Container Uses and Advantages
The main advantage of containers is that they require considerably less resource overhead than
virtualization allowing many container instances to be run simultaneously on a single server.
They can be started and stopped rapidly and efficiently in response to demand levels. In addition,
containers run natively on the host system providing a level of performance that a virtual machine
cannot match.

Containers are also highly portable and can be easily migrated between systems. Combined with
a container management system such as Docker, OpenShift, and Kubernetes, it is possible to
deploy and manage containers on a vast scale spanning multiple servers and cloud platforms,
potentially running thousands of containers.

Containers are frequently used to create lightweight execution environments for applications. In
this scenario, each container provides an isolated environment containing the application together
with all of the runtime and supporting files required by that application to run. The container can
then be deployed to any other compatible host system that supports container execution and runs
without any concerns that the target system may not have the necessary runtime configuration for
the application - all of the application’s dependencies are already in the container.

Containers are also helpful when bridging the gap between development and production
environments. By performing development and QA work in containers, they can be passed to
production and launched safely because the applications run in the same container environments
in which they were developed and tested.

Containers also promote a modular approach to deploying large and complex solutions. Instead of
developing applications as single monolithic entities, containers can be used to design applications

213

An Introduction to Linux Containers

as groups of interacting modules, each running in a separate container.

One possible drawback of containers is that the guest operating systems must be compatible with
the shared kernel version. It is not, for example, possible to run Microsoft Windows in a container
on a Linux system. Nor is it possible for a Linux guest system designed for the 2.6 version of
the kernel to share a 2.4 version kernel. These requirements are not, however, what containers
were designed for. Rather than being seen as limitations, these restrictions should be considered
some of the key advantages of containers in providing a simple, scalable, and reliable deployment
platform.

27.3 AlmaLinux 9 Container Tools
AlmaLinux 9 provides several tools for creating, inspecting, and managing containers. The main
tools are as follows:

•	buildah – A command-line tool for building container images.

•	podman – A command-line based container runtime and management tool. Performs tasks
such as downloading container images from remote registries and inspecting, starting, and
stopping images.

•	skopeo – A command-line utility used to convert container images, copy images between
registries and inspect images stored in registries without downloading them.

•	runc – A lightweight container runtime for launching and running containers from the
command line.

•	OpenShift – An enterprise-level container application management platform consisting of
command-line and web-based tools.

All of the above tools comply with the Open Container Initiative (OCI), a set of specifications
designed to ensure that containers conform to the same standards between competing tools and
platforms.

27.4 The Docker Registry
Although AlmaLinux 9 is provided with a set of tools designed to be used in place of those provided
by Docker, those tools still need access to AlmaLinux images for use when building containers.
For this purpose, the AlmaLinux OS Foundation maintains a set of container images within the
Docker Hub. The Docker Hub is an online container registry made of multiple repositories, each
containing a wide range of container images available for download when building containers.
The images within a repository are each assigned a repository tag (for example, 9.2, latest, etc.)
which can be referenced when performing an image download. The following, for example, is the
URL of the latest AlmaLinux image contained within the Docker Hub:
docker://docker.io/library/almalinux

In addition to downloading (referred to as “pulling” in container terminology) container images
from Docker and other third-party hosts registries, you can also use registries to store your own

214

An Introduction to Linux Containers

images. This can be achieved either by hosting your own registry, or by making use of existing
services such as those provided by Docker, Amazon AWS, Google Cloud, Microsoft Azure, and
IBM Cloud, to name a few of the many options.

27.5 Container Networking
By default, containers are connected to a network using a Container Networking Interface (CNI)
bridged network stack. In the bridged configuration, all the containers running on a server
belong to the same subnet and, as such, can communicate with each other. The containers are also
connected to the external network by bridging the host system’s network connection. Similarly,
the host can access the containers via a virtual network interface (usually named podman0) which
will have been created as part of the container tool installation.

27.6 Summary
Linux Containers offer a lightweight alternative to virtualization and take advantage of the
structure of the Linux and Unix operating systems. Linux Containers share the host operating
system’s kernel, with each container having its own root file system containing the files, libraries,
and applications. As a result, containers are highly efficient and scalable and provide an ideal
platform for building and deploying modular enterprise-level solutions. In addition, several tools
and platforms are available for building, deploying, and managing containers, including third-
party solutions and those provided by the AlmaLinux OS Foundation.

251

Chapter 32
32. Adding a New Disk to an
AlmaLinux 9 Volume Group and
Logical Volume
In the previous chapter, we looked at adding a new disk drive to an AlmaLinux 9 system, creating
a partition and file system, and then mounting that file system to access the disk. An alternative
to creating fixed partitions and file systems is to use Logical Volume Management (LVM) to
create logical disks comprising space from one or more physical or virtual disks or partitions. The
advantage of using LVM is that space can be added to or removed from logical volumes without
spreading data over multiple file systems.

Let us take, for example, the file system of an AlmaLinux 9-based server. Without LVM, this file
system would be created with a specific size when the operating system is installed. If a new disk
drive is installed, there is no way to allocate any of that space to the / file system. The only option
would be to create new file systems on the new disk and mount them at particular mount points.
In this scenario, you would have plenty of space on the new file system, but the / file system would
still be nearly full. The only option would be to move files onto the new file system. With LVM, the
new disk (or part thereof) can be assigned to the logical volume containing the home file system,
thereby dynamically extending the space available.

In this chapter, we will look at the steps necessary to add new disk space to both a volume group
and a logical volume to add additional space to the home file system of an AlmaLinux 9 system.

32.1 An Overview of Logical Volume Management (LVM)
LVM provides a flexible and high-level approach to managing disk space. Instead of each disk
drive being split into partitions of fixed sizes onto which fixed-size file systems are created, LVM
provides a way to group disk space into logical volumes that can be easily resized and moved. In
addition, LVM allows administrators to carefully control disk space assigned to different groups
of users by allocating distinct volume groups or logical volumes to those users. When the space
initially allocated to the volume is exhausted, the administrator can add more space without
moving the user files to a different file system.

LVM consists of the following components:

32.1.1 Volume Group (VG)
The Volume Group is the high-level container with one or more logical and physical volumes.

252

Adding a New Disk to an AlmaLinux 9 Volume Group and Logical Volume

32.1.2 Physical Volume (PV)
A physical volume represents a storage device such as a disk drive or other storage media.

32.1.3 Logical Volume (LV)
A logical volume is equivalent to a disk partition and, as with a disk partition, can contain a file
system.

32.1.4 Physical Extent (PE)
Each physical volume (PV) is divided into equal-sized blocks known as physical extents.

32.1.5 Logical Extent (LE)
Each logical volume (LV) is divided into equal size blocks called logical extents.

Suppose we are creating a new volume group called VolGroup001. This volume group needs
physical disk space to function, so we allocate three disk partitions /dev/sda1, /dev/sdb1, and /dev/
sdb2. These become physical volumes in VolGroup001. We would then create a logical volume
called LogVol001 within the volume group comprising the three physical volumes.

If we run out of space in LogVol001, we add more disk partitions as physical volumes and assign
them to the volume group and logical volume.

32.2 Getting Information about Logical Volumes
As an example of using LVM with AlmaLinux 9, we will work through an example of adding space
to the / file system of a standard AlmaLinux 9 installation. Anticipating the need for flexibility
in the sizing of the partition, AlmaLinux 9 sets up the / file system as a logical volume (called)
within a volume group called almalinux. Before making any changes to the LVM setup, however,
it is essential first to gather information.

Running the mount command will output information about a range of mount points, including
the following entry for the home filesystem:
/dev/mapper/almalinux-home on /home type xfs (rw,relatime,seclabel,attr2,inode64,
logbufs=8,logbsize=32k,noquota)

Information about the volume group can be obtained using the vgdisplay command:
vgdisplay

 --- Volume group ---

 VG Name almalinux

 System ID

 Format lvm2

 Metadata Areas 1

 Metadata Sequence No 4

 VG Access read/write

 VG Status resizable

 MAX LV 0

 Cur LV 3

253

Adding a New Disk to an AlmaLinux 9 Volume Group and Logical Volume
 Open LV 3

 Max PV 0

 Cur PV 1

 Act PV 1

 VG Size 296.50 GiB

 PE Size 4.00 MiB

 Total PE 75904

 Alloc PE / Size 75904 / 296.50 GiB

 Free PE / Size 0 / 0

 VG UUID HSp6WF-NrHn-KHrv-NbI8-jDhe-WTpc-Lb1CNa

As we can see in the above example, the almalinux volume group has a physical extent size of
4.00MiB and has a total of 296.50GB available for allocation to logical volumes. Currently, 75904
physical extents are allocated, equaling the total capacity. Therefore, we must add one or more
physical volumes to increase the space allocated to any logical volumes in the almalinux volume
group. The vgs tool is also helpful for displaying a quick overview of the space available in the
volume groups on a system:
vgs

 VG #PV #LV #SN Attr VSize VFree

 almalinux 1 3 0 wz--n- 296.50g 0

Information about logical volumes in a volume group may similarly be obtained using the
lvdisplay command:
lvdisplay

 --- Logical volume ---

 LV Path /dev/almalinux/swap

 LV Name swap

 VG Name almalinux

 LV UUID GwyCy4-JjCg-Nj1l-cmWf-GttL-MHwJ-YmaDYV

 LV Write Access read/write

 LV Creation host, time demoserver, 2023-08-17 15:48:07 -0500

 LV Status available

 # open 2

 LV Size 3.75 GiB

 Current LE 961

 Segments 1

 Allocation inherit

 Read ahead sectors auto

 - currently set to 256

 Block device 253:1

 --- Logical volume ---

 LV Path /dev/almalinux/home

 LV Name home

 VG Name almalinux

254

Adding a New Disk to an AlmaLinux 9 Volume Group and Logical Volume
 LV UUID lFAhky-CV0Z-Wc4Z-fqco-dGmM-10dk-veFJj9

 LV Write Access read/write

 LV Creation host, time demoserver, 2023-08-17 15:48:07 -0500

 LV Status available

 # open 1

 LV Size <222.75 GiB

 Current LE 57023

 Segments 1

 Allocation inherit

 Read ahead sectors auto

 - currently set to 256

 Block device 253:2

 --- Logical volume ---

 LV Path /dev/almalinux/root

 LV Name root

 VG Name almalinux

 LV UUID rGk5UZ-X0sJ-Lb3x-Lhe8-je8e-EWoo-609AfW

 LV Write Access read/write

 LV Creation host, time demoserver, 2023-08-17 15:48:09 -0500

 LV Status available

 # open 1

 LV Size 70.00 GiB

 Current LE 17920

 Segments 1

 Allocation inherit

 Read ahead sectors auto

 - currently set to 256

 Block device 253:0

As shown in the above example, 70 GiB of the space in volume group almalinux is allocated to
logical volume root (for the / file system), approximately 222 GiB to the home volume group (for
/home), and 3.75 GiB to swap (for swap space).

Now that we know what space is being used, it is often helpful to understand which devices are
providing the space (in other words, which devices are being used as physical volumes). To obtain
this information, we need to run the pvdisplay command:
pvdisplay

 --- Physical volume ---

 PV Name /dev/sda2

 VG Name almalinux

 PV Size 296.50 GiB / not usable 4.00 MiB

 Allocatable yes (but full)

 PE Size 4.00 MiB

 Total PE 75904

255

Adding a New Disk to an AlmaLinux 9 Volume Group and Logical Volume
 Free PE 0

 Allocated PE 75904

 PV UUID GboISU-O0WH-fdEU-3sre-mHr0-T1X9-ObypcW

Clearly, the space controlled by logical volume almalinux is provided via a physical volume located
on /dev/sda2.

Now that we know more about our LVM configuration, we can add space to the volume group
and the logical volume contained within.

32.3 Adding Additional Space to a Volume Group from the Command Line
Just as with the previous steps to gather information about the current Logical Volume
Management configuration of an AlmaLinux 9 system, changes to this configuration can be made
from the command line.

In the remainder of this chapter, we will assume that a new disk has been added to the system
and that the operating system sees it as /dev/sdb. We shall also assume this is a new disk with
no existing partitions. If existing partitions are present, they should be backed up, and then the
partitions should be deleted from the disk using the fdisk utility. For example, assuming a device
represented by /dev/sdb containing two partitions as follows:
fdisk -l /dev/sdb

Disk /dev/sdb: 14.46 GiB, 15525216256 bytes, 30322688 sectors

Disk model: USB 2.0 FD

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0x4c33060b

Device Boot Start End Sectors Size Id Type

/dev/sdb1 2048 30322687 30320640 14.5G 83 Linux

Once any filesystems on these partitions have been unmounted, they can be deleted as follows:
fdisk /dev/sdb

Welcome to fdisk (util-linux 2.37.4).

Changes will remain in memory only, until you decide to write them.

Be careful before using the write command.

Command (m for help): d

Selected partition 1

Partition 1 has been deleted.

Command (m for help): w

256

Adding a New Disk to an AlmaLinux 9 Volume Group and Logical Volume
The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

Before moving to the next step, remove any entries in the /etc/fstab file for these filesystems so that
the system does not attempt to mount them on the next reboot.

Once the disk is ready, the next step is to convert this disk into a physical volume using the
pvcreate command (also wiping the dos signature if one exists):
pvcreate /dev/sdb

WARNING: dos signature detected on /dev/sdb at offset 510. Wipe it? [y/n]: y

 Wiping dos signature on /dev/sdb.

 Physical volume "/dev/sdb" successfully created.

If the creation fails with a message that reads “Device /dev/<device> excluded by a filter”, it may
be necessary to wipe the disk using the wipefs command before creating the physical volume:
wipefs -a /dev/sdb

/dev/sdb: 8 bytes were erased at offset 0x00000200 (gpt): 45 46 49 20 50 41 52 54

/dev/sdb: 8 bytes were erased at offset 0x1fffffe00 (gpt): 45 46 49 20 50 41 52
54

/dev/sdb: 2 bytes were erased at offset 0x000001fe (PMBR): 55 aa

/dev/sdb: calling ioctl to re-read partition table: Success

With the physical volume created, we now need to add it to the volume group (in this case,
almalinux) using the vgextend command:
vgextend almalinux /dev/sdb

 Volume group "almalinux" successfully extended

The new physical volume has now been added to the volume group and is ready to be allocated
to a logical volume. To do this, we run the lvextend tool providing the size by which we wish to
extend the volume. In this case, we want to extend the size of the logical volume by 14 GB. Note
that we need to provide the path to the logical volume, which can be obtained from the lvdisplay
command (in this case, /dev/almalinux/home):
lvextend -L+14G /dev/almalinux/home

 Size of logical volume almalinux/home changed from <223.34 GiB (57174 extents)
to <237.34 GiB (60758 extents).

 Logical volume almalinux/home successfully resized.

The last step is to resize the file system residing on the logical volume to use the additional space.
The way this is performed will depend on the filesystem type, which can be identified using the
following df command and checking the Type column:
df -T /home

Filesystem Type 1K-blocks Used Available Use% Mounted on

/dev/mapper/almalinux-home xfs 234070356 3345116 230725240 2% /home

If / is formatted using the XFS filesystem, it can be resized using the xfs_growfs utility:
xfs_growfs /home

257

Adding a New Disk to an AlmaLinux 9 Volume Group and Logical Volume
meta-data=/dev/mapper/almalinux-home isize=512 agcount=4, agsize=14636544 blks

 = sectsz=512 attr=2, projid32bit=1

 = crc=1 finobt=1, sparse=1, rmapbt=0

 = reflink=1 bigtime=1 inobtcount=1

data = bsize=4096 blocks=58546176, imaxpct=25

 = sunit=0 swidth=0 blks

naming =version 2 bsize=4096 ascii-ci=0, ftype=1

log =internal log bsize=4096 blocks=28587, version=2

 = sectsz=512 sunit=0 blks, lazy-count=1

realtime =none extsz=4096 blocks=0, rtextents=0

data blocks changed from 58546176 to 62216192

If, on the other hand, the filesystem is of type ext2, ext3, or ext4, the resize2fs utility should be
used instead when performing the filesystem resize:
resize2fs /dev/almalinux/home

Once the resize completes, the file system will have been extended to use the additional space
provided by the new disk drive. All this has been achieved without moving a single file or restarting
the server. As far as users on the system are concerned, nothing has changed (except that there is
now more disk space).

32.4 Summary
Volume groups and logical volumes provide an abstract layer on top of the physical storage devices
on an AlmaLinux 9 system to provide a flexible way to allocate the space provided by multiple
disk drives. This allows disk space allocations to be made and changed dynamically without the
need to repartition disk drives and move data between filesystems. This chapter has outlined the
basic concepts of volume groups and logical and physical volumes while demonstrating how to
manage these using command-line tools.

273

Index
Index

Symbols
! 69

#! 73

>> 71

| 71

$DISPLAY variable 144

.bashrc 73

/etc/containers/networks 223

/etc/default/grub 31

/etc/exports 150

/etc/fstab 33, 35, 151, 153, 248

/etc/gdm/custom.conf 144

/etc/group 77

/etc/httpd 231

/etc/passwd 77

/etc/samba/smb.conf 156

/etc/shadow 77

/etc/sshd_config 144

/etc/ssh/sshd_config.d 144

/etc/sudoers 77

/etc/systemd/system 94

/etc/yum.repos.d/ directory 84

/home 75

/proc/swaps 259

.requires 95

.ssh 124, 125

/usr/lib/systemd/system 94

/var/log/maillog 240

.wants 94

A
aarch64 12

ACC Corporation 8

access control list 180

ACL 180

Activity Overview 47

AIX 7

alias 71

Aliases 71

AlmaLinux Live 11

AMD-V 170

Andrew S. Tanenbaum 7

Apache

mod_ssl 232

Apache web server 229

Application Stream 83

AppStream 83

modules 85

packages 85

profiles 85

AppStream repository 83

ARM64 12

authorized_keys file 128

B
BaseOS repository 83, 84

Bash

scripts 73

Bash shell 67

aliases 71

.bashrc 73

chmod 74

command-line editing 68

do loops 73

echo 72

environment variables 72

filename completion 70

Filename shorthand 70

for loop 73

history 69

HOME 72

input and output redirection 70

PATH 72

path completion 70

274

Index
pipes 71

sh 74

stderr 71

stdin 70

stdout 70

basic.target 90

Bell Labs 67

Boot ISO 12

Boot Menu

editing 39

Bourne Again SHell 67

Bourne shell 67

Brian Fox 67

buildah 213

containers 220

from registry 219

from scratch 220

installroot 220

run 221

umount 221

Buildah 215

C
CA 231

cat 70

CentOS

history of 7

certbot 232

Certificate Authority 231

change root 211

chmod 74

chroot 211

cifs filesystem 165

CNI 214, 221

Cockpit 95

accessing 56

account management 60

applications 61

cockpit-machines 177

cockpit-storaged 151

create VM 177

Drives 249

enabling 56

extensions 55, 61

firewall management 120

installing 56

logs 58

Multiple Servers 63

networking 59

NFS 151

overview 55

persistent metrics 64

Podman Containers 224

port 56

select bridge 201

services 60, 95

storage 59, 248

system 57

systemd 95

terminal access 62

user management 77

virtual machines 61

cockpit-machines 177

cockpit.socket 56

cockpit-storaged 151

Compressed X11 Forwarding 145

Connection Profiles 102

containerd 211

Container Networking Interface 214, 221

Containers

attaching to an image 218

bridge networking 221

buildah 219

networking 221

Networking Interface 221

overview 211

pulling an image 215

removing an image 219

running an image 217

saving to an image 219

stopping 218

context labels 159

275

Index
CoreUtils 220

CRI-O 211

C shell 67

D
daemon 89

dash 48

David Korn 67

dd 13

DDNS 229

Default Boot Option 31

default.target 92

df 256, 270

discretionary access control 158

disk drive

detecting 243

disk I/O 271

Disk partition

formatting 38

disk usage 270

diskutil 14

DISPLAY variable 144

dmesg 13

dmz 114

dnf 25

groupinfo 134

groupinstall 134

grouplist 134

dnf.conf file 84

DNS 110

DNS MX Records 239

Docker 211, 212

do loops 73

Domain Name Server 110

DoS 119

dual boot 35

Dual Booting 29

DVD ISO 12

Dynamic DNS 229

DynDNS 229

E
echo 72

Email Server 235

encryption

disk 23

env 72

Environment Variables 72

EPEL 32

Errata 4

Exim 235

export 72

exportfs 150

ext2 257

ext3 257

ext4 257

Extra Packages for Enterprise Linux 32

F
FAT16 29

FAT32 29

fdisk 33, 35, 245, 255

create partition 245

list partitions 245

Fedora Linux 9

Fedora Media Writer 15

Fedora Project 9

Fetchmail 235

Filename Shorthand 70

File System

creating 246

mounting 247

File Transfer (Control) 109

File Transfer Protocol (Data) 109

findmnt 13

Firewall

Interfaces 115

overview 107, 113

Port Forwarding 119

Ports 115

Services 115

web server settings 230

276

Index
Zones 113

firewall-cmd 109, 116

mail settings 237

web server settings 230

firewall-config 121

firewalld

default zone 116

display zone information 116

firewall-cmd 116

firewall-config 121

ICMP rules 119

interfaces 113, 115

list services 117

overview 113

permanent settings 116

port forwarding 119

port rules 117, 118

ports 113, 115

reload 116

runtime settings 116

services 113

status 115

zone creation 118

zone/interface assignments 118

zones 113

zone services 117

for 73

ForwardX11Trusted 145

FQDN 110

free 260

-s flag 270

Free Software Foundation 8

fsck 247

fstab 151, 248

FTP 107, 109

Full Virtualization 170

Fuse NTFS driver 32

G
GDM 25

gedit 145

getfacl 180

GNOME

apps 54

Software app 54

GNOME Desktop 45

Activity Overview 47

dash 48

gnome-tweaks 53

settings 52

starting 45

switcher 50

tweaks 53

windows 49

GNOME Desktop Environment 133

GNOME Display Manager 25

gnome-system-monitor 267

gnome-tweaks 53

GNU/Linux 8

GNU project 9

graphical.target 90

groupadd 76

groupdel 76

groups 76

grub2-set-default 32

GRUB_SAVEDEFAULT 31

Guest OS virtualization 167

H
Hardware Virtualization 170

Hewlett-Packard 7

history 68, 69

HOME 72

HP-UX 7

HTTP 111, 231

httpd 229

httpd.conf 232,

httpd-le-ssl.conf 233

HTTPS 107, 112, 115, 231

hypercalls 169

Hypertext Text Transfer Protocol 111

Hypertext Transfer Protocol Secure 112

277

Index
Hypervisor 168

hypercalls 169

type-1 168

type-2 168

Hypervisor Virtualization 168

I
IBM 7

ICMP 119

id_rsa file 124, 125, 127

id_rsa.pub file 124, 128

if statements 73

IMAP 110

IMAP4 111

Input and Output Redirection 70

installation

disk partitioning 20

Installation

clean disk 11

install packages

listing 84

Intel VT 170

Intel x86

Rings 169

Internet Control Message Protocol 119

Internet Message Access Protocol, Version 4 111

internet service provider 229

I/O redirection 71

iotop 271

installing 271

IPSets 122

iptables 107, 109, 113

rules 108

tool 108

ip tool 100

ISO image

Boot 12

DVD 12

Minimal 12

write to USB drive 13

ISP 229

J
journalctl 137

Journaled File Systems 247

K
Kdump 20

Kerberos 111

kernel 7

kill 266

-9 flag 266

KMail 235

Korn shell 67

Kubernetes 212

KVM

hardware requirements 173

installation 174

overview 173

System VM 178

User session VM 178

virt-manager 174

kvm_amd 175

kvm_intel 175

KVM virtualization 171

L
LE 252

Let’s Encrypt 232

libvirt 114

libvirtd 185

libvirtd daemon 175

Linus Torvalds 8

Linux Containers. See Containers

Live Image 11

Logical Extent 252

Logical Volume 252

Logical Volume Management 251

loopback interface 99

lost+found 247

ls 68, 71

lscpu 173

lsmod 174

278

Index
LV 252

lvdisplay 253, 256, 261

lvextend 256

LVM 251

lxd 211

M
macOS

writing ISO to USB drive 14

MacVTap 171

Mail Delivery Agent 235

Mail Exchanger 239

Mail Transfer Agent 235

Mail User Agent 235

main.cf 237

man 68

mandatory access control 158

Marc Ewing 8

Martin Hellman 123

MDA 235

Minimal ISO 12

MINIX 7

mkfs.xfs 38, 246

mkswap 260, 261

mod_ssl 232

mount 33, 151, 164, 247, 252

MTA 235

MUA 235

multi-user.target 90

MX 239

N
NAT 171, 179

NetBIOS 161

NetBIOS nameservice 161

Network Address Translation 171

Networked Bridge Interface 197

Network File System 112

NetworkManager

Connection Profiles 102

enabling 98

installing 98

permissions 106

Network News Transfer Protocol 111

Network Time Protocol 111

NFS 112

Cockpit 151

firewall settings 149

nfs-client.target 90

nfs-utils 150

NMB 161

nmcli 97, 198

activate connection 101

add bridge 198

add connections 103

command line options 98

deactivate connection 101

delete connection 103

device status 99

general status 99

interactive 104

modify connection 102

permissions 106

reload 102

show connections 100

switch connection 101

wifi scan 101

nm-connection-editor 97

create bridge 202

nmtui 97

NNTP 111

NTFS 29

NTP 111

nvme 243

O
OCI 213

Open Container Initiative 213

OpenShift 212, 213

OSI stack 111

P

279

Index
Paravirtualization 169, 170

Partition

mounting 38

passwd 75

PATH 72

Path Completion 70

PE 252

Physical Extent 252

Physical Volume 252

Pipes 71

podman 213

attach 218

commit 219

exec 218

images 216, 219

inspect 217

network commands 222

network connect 223

network create 223

network disconnect 223

network inspect 222

network ls 222

network rm 224

pause 219

ps -a 217

pull 216

rm 219

run 217

stop 218

unpause 219

Podman 215

POP3 111

Port Forwarding 119, 230

Ports

securing 107

Postfix 235, 236

configuring 237

installing 237

main.cf 237

postmap 240

sasl_passwd 240

starting 239

testing 239

postmap 240

Post Office Protocol 111

poweroff.target 89

PowerShell 127

ppc64le 12

private key 123

ps 71, 159

-a flag 265

-aux flags 266

-H flag 267

TERM signal 266

-u flag 265

public key 123

public key encryption 123

PuTTY 129

secure tunnel 140

X11 Forwarding 146

PuTTYgen 129

PuTTY Key Generator 129

PV 252

pvcreate 256, 263

pvdisplay 254

pwd 68

PXE 186

Q
QEMU 186

QEMU/KVM Hypervisor 175

Qmail 236

R
RealVNC 135

reboot.target 90

Red Hat, Inc. 7

Red Hat Package Manager 84

Red Hat Support 8

Remote Desktop Access

insecure 133

secure 133

280

Index
remote-fs.target 91

remote installation 19

Repositories 83

rescue.target 90

resize2fs 257

restorecon 160

RHGB 31

Richard Stallman 8

rlogin 110

root password

specifying during installation 24

root_t 160

root user 1

rpm 84

RPM 84

rsh 110

runc 213

S
s390x 12

Samba 149, 156

add user 160

firewall settings 156

installing 156

NetBIOS 161

samba_share_t 159

SELinux 158

smbclient 161, 164

smb.conf 156

smbpasswd 160

smb_t 159

testparm 161

Samba Client 156

samba_share_t 159, 160

sasl_passwd 240

Secure File Transfer Protocol 109

Secure Shell 110, 123

Secure Socket Layer 231

Secure Sockets Layer 112

Secure Tunnel 140

SELinux

context labels 159

restorecon 160

Samba 158

sestatus 158

type enforcement 159

SELInux

enforcing mode 159

permissive mode 159

Sendmail 235, 236

Server Message Block 155

Server with GUI 133

Services

securing 107

sestatus 158

setfacl 180

Settings App 79

users 79

SFTP 109

sh 74

Shell Scripts 73

Simple Mail Transfer Protocol 110

Simple Mail Transport Protocol 236

Simple Network Management Protocol 112

skopeo 213, 215

Skopeo 215

SMB 155

smbclient 161, 164

smb.conf 156

testing 160

testparm 160

smbpasswd 160

smb_t 159

SMTP 107, 110, 115, 236

SMTP Relay 236, 240

SNMP 112

sockets.target 90

Solaris 7

spawning 267

ssh

-C flag 145

X11 Forwarding 144

281

Index
-X flag 144

SSH 107, 110, 123, 138

Microsoft Windows 127

Multiple Keys 126

VNC 138

ssh client 125

ssh-copy-id 125, 128

sshd_config.d 144

sshd_config.d directory 126

sshd_config file 126

sshd service 126

ssh-keygen 124

SSH Service

installing 124

starting 124

SSH tunnel 139

SSL 112, 231

SSL certificate 231, 232

SSL Labs 234

startx 46, 135

stderr 71

stdin 70

stdout 70

storage devices

identify 13

Storage Pools 182

Storage Volumes 182

su - command 1

sudo 1

wheel group 76

SunOS 7

Superuser 1

Swap 259

current size 259

free 260

logical volume 261

lvdisplay 261

mkswap 260, 261

/proc/swaps 259

pvcreate 263

recommendations 259

swapoff 260, 263

swapon 260

swapoff 260, 263

swapon 260

system

units 92

unit types 92

systemctl 91

daemon-reload 136

systemd 89

services 89

targets 89

System Monitor 267

system processes 265

T
TCP/IP 107, 115

Well-Known Ports 109

Telnet 110

Terminal window 2

TERM signal 266

testparm

smb.conf 160

TFTP 110

TigerVNC 135, 137

installation 135

viewer 135

TightVNC 135

TLS 231

top 269

-u flag 270

Transport Layer Security 231

Trivial File Transfer Protocol 110

Trusted X11 Forwarding 145

Type-1 hypervisors 169

Type-2 hypervisors 169

type enforcement 159

U
UDP 109

umount 13, 151

282

Index
UNIX 7, 67

origins of 7

update packages 85

USB drive

device name 13

userdel 75

user_home_t 159

usermod 76

user processes 265

Users and Groups 75

V
VcXsrv 145

VG 251

vgdisplay 252

vgextend 256

vgs 253, 263

virbr0 197, 198

virsh 193, 195, 200, 207

destroy 195, 209

dumpxml 195

edit 202

help 208

list 208

reboot 210

restore 209

resume 209

save 209

setmem 210

setmemmax 210

shell 207

shutdown 195, 209

start 195, 209

suspend 209

virt-install 177, 193, 200

virt-manager 174, 185, 201

installation 174

New VM wizard 186

storage pools 188

VirtualBox 173

Virtualization 167

AMD-V 170

full 170

guest 167

hardware 170

hypercalls 169

hypervisor 168

Intel VT 170

KVM virtualization 171

MacVTap 171

Type-1 168

Type-2 168

virt-manager 174

Virtual Machine Networking 171

Virtual Network Computing 133

virt-viewer 181, 194

vmdk 187

VMware 173

VNC 133

installation 135

PuTTY 140

secure 139

server shutdown 141

vncpasswd 136

vncpasswd 136

VNC Server

configuring 136

stopping 141

vncserver-config-defaults 136

vncserver.users 135

vncviewer 139

Volume Group 251

W
Wayland 143

WaylandEnable 144

wc 71

Web Server 229

testing 230

Well-Known Ports 109

wheel group 76

which 68

283

Index
Whitfield Diffie 123

wildcard character 70

wildcards 70

Windows

accessing partition from Linux 32

Disk Management 29

Dual Booting 29

shrink volume 30

writing ISO to USB drive 15

Windows partition

reclaiming 35

unmounting 35

Windows PowerShell 127

wipefs 256

Workstation 133

X
X11 Forwarding 143

compressed 145

X11Forwarding 144

x86 family 169

Xen 174

XFS file system 246

XFS filesystem 256

xfs_growfs 256

XLaunch 145

X.org 143

X Window System 143

Y
yum.repos.d directory 84

	1. Introduction
	1.1 Superuser Conventions
	1.2 Opening a Terminal Window
	1.3 Editing Files
	1.4 Feedback
	1.5 Errata

	2. A Brief History of AlmaLinux
	2.1 What exactly is Linux?
	2.2 UNIX Origins
	2.3 Who Created Linux?
	2.4 The Early Days of Red Hat
	2.5 Red Hat Support
	2.6 Open Source
	2.7 The Fedora Project
	2.8 CentOS Stream
	2.9 AlmaLinux
	2.10 Summary

	3. Installing AlmaLinux 9 on a Clean Disk Drive
	3.1 Trying AlmaLinux with the Live Image
	3.2 Obtaining the AlmaLinux Installation Media
	3.3 Writing the ISO Installation Image to a USB Drive
	3.3.1 Linux
	3.3.2 macOS
	3.3.3 Windows/macOS

	3.4 Installing AlmaLinux 9
	3.5 Partitioning a Disk for AlmaLinux 9
	3.6 Disk Encryption
	3.7 User Settings
	3.8 The Physical Installation
	3.9 Final Configuration Steps
	3.10 Installing Updates
	3.11 Displaying Boot Messages
	3.12 Summary

	4. Dual Booting AlmaLinux 9 with Windows
	4.1 Partition Resizing
	4.2 Changing the Default Boot Option
	4.3 Accessing the Windows Partition from AlmaLinux 9
	4.4 Summary

	5. Allocating Windows Disk Partitions to AlmaLinux 9
	5.1 Unmounting the Windows Partition
	5.2 Deleting the Windows Partitions from the Disk
	5.3 Formatting the Unallocated Disk Partition
	5.4 Mounting the New Partition
	5.5 Editing the Boot Menu
	5.6 Using GNOME Disks Utility
	5.7 Summary

	6. A Guided Tour of the GNOME 40 Desktop
	6.1 Installing the GNOME Desktop
	6.2 An Overview of the GNOME 40 Desktop
	6.3 Activity Overview
	6.4 Managing Windows
	6.5 Using Workspaces
	6.6 Calendar and Notifications
	6.7 GNOME Desktop Settings
	6.8 Beyond Basic Customization
	6.9 Installing GNOME Desktop Apps
	6.10 Summary

	7. An Overview of the Cockpit Web Interface
	7.1 An Overview of Cockpit
	7.2 Installing and Enabling Cockpit
	7.3 Accessing Cockpit
	7.4 Overview
	7.5 Logs
	7.6 Storage
	7.7 Networking
	7.8 Accounts
	7.9 Services
	7.10 Applications
	7.11 Virtual Machines
	7.12 Software Updates
	7.13 Terminal
	7.14 Connecting to Multiple Servers
	7.15 Enabling Stored Metrics
	7.16 Summary

	8. Using the Bash Shell on AlmaLinux 9
	8.1 What is a Shell?
	8.2 Gaining Access to the Shell
	8.3 Entering Commands at the Prompt
	8.4 Getting Information about a Command
	8.5 Bash Command-line Editing
	8.6 Working with the Shell History
	8.7 Filename Shorthand
	8.8 Filename and Path Completion
	8.9 Input and Output Redirection
	8.10 Working with Pipes in the Bash Shell
	8.11 Configuring Aliases
	8.12 Environment Variables
	8.13 Writing Shell Scripts
	8.14 Summary

	9. Managing AlmaLinux 9 Users and Groups
	9.1 User Management from the Command-line
	9.2 User Management with Cockpit
	9.3 User Management using the Settings App
	9.4 Summary

	10. AlmaLinux 9 Software Installation and AppStreams
	10.1 Repositories
	10.2 The BaseOS Repository
	10.3 The AppStream Repository
	10.4 Summary

	11. Managing AlmaLinux 9 systemd Units
	11.1 Understanding AlmaLinux 9 systemd Targets
	11.2 Understanding AlmaLinux 9 systemd Services
	11.3 AlmaLinux 9 systemd Target Descriptions
	11.4 Identifying and Configuring the Default Target
	11.5 Understanding systemd Units and Unit Types
	11.6 Dynamically Changing the Current Target
	11.7 Enabling, Disabling, and Masking systemd Units
	11.8 Working with systemd Units in Cockpit
	11.9 Summary

	12. AlmaLinux 9 Network Management
	12.1 An Introduction to NetworkManager
	12.2 Installing and Enabling NetworkManager
	12.3 Basic nmcli Commands
	12.4 Working with Connection Profiles
	12.5 Interactive Editing
	12.6 Configuring NetworkManager Permissions
	12.7 Summary

	13. AlmaLinux 9 Firewall Basics
	13.1 Understanding Ports and Services
	13.2 Securing Ports and Services
	13.3 AlmaLinux 9 Services and iptables Rules
	13.4 Well-Known Ports and Services
	13.5 Summary

	14. AlmaLinux 9 Firewall Configuration with firewalld
	14.1 An Introduction to firewalld
	14.1.1 Zones
	14.1.2 Interfaces
	14.1.3 Services
	14.1.4 Ports

	14.2 Checking firewalld Status
	14.3 Configuring Firewall Rules with firewall-cmd
	14.3.1 Identifying and Changing the Default Zone
	14.3.2 Displaying Zone Information
	14.3.3 Adding and Removing Zone Services
	14.3.4 Working with Port-based Rules
	14.3.5 Creating a New Zone
	14.3.6 Changing Zone/Interface Assignments
	14.3.7 Masquerading
	14.3.8 Adding ICMP Rules
	14.3.9 Implementing Port Forwarding

	14.4 Managing firewalld from the Cockpit Interface
	14.5 Managing firewalld using firewall-config
	14.6 Summary

	15. Configuring SSH Key-based Authentication on AlmaLinux 9
	15.1 An Overview of Secure Shell (SSH)
	15.2 SSH Key-based Authentication
	15.3 Setting Up Key-based Authentication
	15.4 Installing and Starting the SSH Service
	15.5 SSH Key-based Authentication from Linux and macOS Clients
	15.6 Managing Multiple Keys
	15.7 SSH Key-based Authentication from Windows Clients
	15.8 SSH Key-based Authentication using PuTTY
	15.9 Generating a Private Key with PuTTYgen
	15.10 Summary

	16. AlmaLinux 9 Remote Desktop Access with VNC
	16.1 Secure and Insecure Remote Desktop Access
	16.2 Installing the GNOME Desktop Environment
	16.3 Installing VNC on AlmaLinux 9
	16.4 Assigning Ports to Users
	16.5 Configuring the VNC Server
	16.6 Setting up a VNC Password
	16.7 Starting VNC Server
	16.8 Connecting to a VNC Server
	16.9 Establishing a Secure Remote Desktop Session
	16.10 Establishing a Secure Tunnel on Windows using PuTTY
	16.11 Shutting Down a Desktop Session
	16.12 Summary

	17. Displaying AlmaLinux 9 Applications Remotely (X11 Forwarding)
	17.1 Requirements for Remotely Displaying AlmaLinux 9 Applications
	17.2 Displaying an AlmaLinux 9 Application Remotely
	17.3 Trusted X11 Forwarding
	17.4 Compressed X11 Forwarding
	17.5 Displaying Remote AlmaLinux 9 Apps on Windows
	17.6 Summary

	18. Using NFS on AlmaLinux 9 to Share Files with Remote Systems
	18.1 Ensuring NFS Services are running on AlmaLinux 9
	18.2 Configuring the Firewall to Allow NFS Traffic
	18.3 Specifying the Folders to be Shared
	18.4 Accessing Shared Folders
	18.5 Mounting an NFS Filesystem on System Startup
	18.6 Unmounting an NFS Mount Point
	18.7 Accessing NFS Filesystems in Cockpit
	18.8 Summary

	19. Sharing Files between AlmaLinux 9 and Windows with Samba
	19.1 Accessing Windows Resources from the GNOME Desktop
	19.2 Samba and Samba Client
	19.3 Installing Samba on AlmaLinux 9
	19.4 Configuring the AlmaLinux 9 Firewall to Enable Samba
	19.5 Configuring the smb.conf File
	19.5.1 Configuring the [global] Section
	19.5.2 Configuring a Shared Resource
	19.5.3 Removing Unnecessary Shares

	19.6 Configuring SELinux for Samba
	19.7 Creating a Samba User
	19.8 Testing the smb.conf File
	19.9 Starting the Samba and NetBIOS Name Services
	19.10 Accessing Samba Shares
	19.11 Accessing Windows Shares from AlmaLinux 9
	19.12 Summary

	20. An Overview of Virtualization Techniques
	20.1 Guest Operating System Virtualization
	20.2 Hypervisor Virtualization
	20.2.1 Paravirtualization
	20.2.2 Full Virtualization
	20.2.3 Hardware Virtualization

	20.3 Virtual Machine Networking
	20.4 Summary

	21. Installing KVM Virtualization on AlmaLinux 9
	21.1 An Overview of KVM
	21.2 KVM Hardware Requirements
	21.3 Preparing AlmaLinux 9 for KVM Virtualization
	21.4 Verifying the KVM Installation
	21.5 Summary

	22. Creating KVM Virtual Machines on AlmaLinux 9 using Cockpit
	22.1 Installing the Cockpit Virtual Machines Module
	22.2 Creating a Virtual Machine in Cockpit
	22.3 Starting the Installation
	22.4 Working with Storage Volumes and Storage Pools
	22.5 Summary

	23. Creating KVM Virtual Machines on AlmaLinux 9 using virt-manager
	23.1 Starting the Virtual Machine Manager
	23.2 Configuring the KVM Virtual System
	23.3 Starting the KVM Virtual Machine
	23.4 Summary

	24. Creating KVM Virtual Machines with virt-install and virsh
	24.1 Running virt-install to build a KVM Guest System
	24.2 An Example AlmaLinux 9 virt-install Command
	24.3 Starting and Stopping a Virtual Machine from the Command-Line
	24.4 Creating a Virtual Machine from a Configuration File
	24.5 Summary

	25. Creating an AlmaLinux 9 KVM Networked Bridge Interface
	25.1 Getting the Current Network Manager Settings
	25.2 Creating a Network Manager Bridge from the Command-Line
	25.3 Declaring the KVM Bridged Network
	25.4 Using a Bridge Network in a Virtual Machine
	25.5 Creating a Bridge Network using nm-connection-editor
	25.6 Summary

	26. Managing KVM using the virsh Command-Line Tool
	26.1 The virsh Shell and Command-Line
	26.2 Listing Guest System Status
	26.3 Starting a Guest System
	26.4 Shutting Down a Guest System
	26.5 Suspending and Resuming a Guest System
	26.6 Saving and Restoring Guest Systems
	26.7 Rebooting a Guest System
	26.8 Configuring the Memory Assigned to a Guest OS
	26.9 Summary

	27. An Introduction to Linux Containers
	27.1 Linux Containers and Kernel Sharing
	27.2 Container Uses and Advantages
	27.3 AlmaLinux 9 Container Tools
	27.4 The Docker Registry
	27.5 Container Networking
	27.6 Summary

	28. Working with Containers on AlmaLinux 9
	28.1 Installing the Container Tools
	28.2 Pulling an AlmaLinux 9 Container Image
	28.3 Running the Image in a Container
	28.4 Managing a Container
	28.5 Saving a Container to an Image
	28.6 Removing an Image from Local Storage
	28.7 Removing Containers
	28.8 Building a Container with Buildah
	28.9 Building a Container from Scratch
	28.10 Container Bridge Networking
	28.11 Managing Containers in Cockpit
	28.12 Summary

	29. Setting Up an AlmaLinux 9 Web Server
	29.1 Requirements for Configuring an AlmaLinux 9 Web Server
	29.2 Installing the Apache Web Server Packages
	29.3 Configuring the Firewall
	29.4 Port Forwarding
	29.5 Starting the Apache Web Server
	29.6 Testing the Web Server
	29.7 Configuring the Apache Web Server for Your Domain
	29.8 The Basics of a Secure Website
	29.9 Configuring Apache for HTTPS
	29.10 Obtaining an SSL Certificate
	29.11 Summary

	30. Configuring an AlmaLinux 9 Postfix Email Server
	30.1 The Structure of the Email System
	30.1.1 Mail User Agent
	30.1.2 Mail Transfer Agent
	30.1.3 Mail Delivery Agent
	30.1.4 SMTP
	30.1.5 SMTP Relay

	30.2 Configuring an AlmaLinux 9 Email Server
	30.3 Postfix Pre-Installation Steps
	30.4 Firewall/Router Configuration
	30.5 Installing Postfix on AlmaLinux 9
	30.6 Configuring Postfix
	30.7 Configuring DNS MX Records
	30.8 Starting Postfix on an AlmaLinux 9 System
	30.9 Testing Postfix
	30.10 Sending Mail via an SMTP Relay Server
	30.11 Summary

	31. Adding a New Disk Drive to an AlmaLinux 9 System
	31.1 Mounted File Systems or Logical Volumes
	31.2 Finding the New Hard Drive
	31.3 Creating Linux Partitions
	31.4 Creating a File System on an AlmaLinux 9 Disk Partition
	31.5 An Overview of Journaled File Systems
	31.6 Mounting a File System
	31.7 Configuring AlmaLinux 9 to Mount a File System Automatically
	31.8 Adding a Disk Using Cockpit
	31.9 Summary

	32. Adding a New Disk to an AlmaLinux 9 Volume Group and Logical Volume
	32.1 An Overview of Logical Volume Management (LVM)
	32.1.1 Volume Group (VG)
	32.1.2 Physical Volume (PV)
	32.1.3 Logical Volume (LV)
	32.1.4 Physical Extent (PE)
	32.1.5 Logical Extent (LE)

	32.2 Getting Information about Logical Volumes
	32.3 Adding Additional Space to a Volume Group from the Command Line
	32.4 Summary

	33. Adding and Managing AlmaLinux 9 Swap Space
	33.1 What is Swap Space?
	33.2 Recommended Swap Space for AlmaLinux 9
	33.3 Identifying Current Swap Space Usage
	33.4 Adding a Swap File to an AlmaLinux 9 System
	33.5 Adding Swap as a Partition
	33.6 Adding Space to an AlmaLinux 9 LVM Swap Volume
	33.7 Adding Swap Space to the Volume Group
	33.8 Summary

	34. AlmaLinux 9 System and Process Monitoring
	34.1 Managing Processes
	34.2 Real-time System Monitoring with top
	34.3 Command-Line Disk and Swap Space Monitoring
	34.4 Summary

	Index

