Android Studio 3.4
Development Essentials

Java Edition

Android Studio 3.4 Development Essentials — Java Edition
ISBN-13: 978-0-9600109-7-4
© 2019 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

L INEFOAUCHION ccuveneiniiiiiiiiinniniiiintitcstntcaesst sttt saesae st s st sstssb e st s e ssbesst s b s bes st sobesaes bt sonssnesabesnesnesanens 1
1.1 Downloading the Code SAMPIEScccreureeureurineiriirieirerseeneireerei et sesseseens 1
L2 FEEADACKcveeeiiecireiicireieectret ettt ettt st st b 2
L3 BITALA ot 2
1.4 DOWNI0AA the €BOOKccoriuiireiricireiricireireeireiseetrei sttt eae 2
2. Setting up an Android Studio Development ENVironment............ocovevevseerinrinesensenesncsnesnssessesscssessenesees 3
2.1 System ReqUITEMENTS.........cccuviimiiiiiiiiiiicicc et sesanaes 3
2.2 Downloading the Android Studio Packagecccveeeeuivecrnicencrniceereceeneeenneeeeneee e 3
2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene 3
2.3.1 Installation on WINdOWSccccciiiiiiiiiiis s sssssssssssssssssens 4
2.3.2 Installation on MAcOS ... s 4
2.3.3 Installation on LINUX......cccccviiiiiiiin s ssssssssssssssssens 5

2.4 The Android Studio Setup WizZard.......ccc.eveeurireecurenicinineeineeieinecieseeietsescsetseess e eeesesseesesseneaes 5

2.5 Installing Additional Android SDK Packagescccceeueueecrnimeererieeremneeeeneeeeneeeenseeenessesenne 6

2.6 Making the Android SDK Tools Command-line Accessible...........ccoeuviemrerreeenernecenernecnnernennn. 8
2.6.1 WINAOWS 7ot s ss s ns 8
2.6.2 WINAOWS 8.1 ..ot ss s 9
2.6.3 WINAOWS 10 w.ociuiiiiiiiiiieiiiciici s ss s ss s sse s
2.0.4 LINUX oottt sttt
2.6.5 MACOS......coiiietir e

2.7 Updating Android Studio and the SDK

2.8 SUIMIMATY ..ottt bbb st

3. Creating an Example Android App in Android Studio.........cocevevieviienenriniiniisininenniniiniisenenensenninenne 11
3.1 ADOUL the PIOJECL c.ceuveeuicicicireieecireiseetneieeeirei sttt sttt sttt 11
3.2 Creating a New AnNdroid ProjJecCt.......ocveurirnciniurencineineeineineeinesseesessesessessesessessesessessesessesscsenns 11
3.3 Creating an ACHIVILYcccciiiiiiiiiiicc e 12
3.4 Defining the Project and SDK Settingscecveureurereureurereireinereerersenessessesessessesessessesessessescssesscsenns 12
3.5 Modifying the Example APPIiCAtion......c.ccoeureurereureurecireuneneineiseetrerneessesseseasessesessessesessessesessesscsenns 13
3.6 Reviewing the Layout and Resource Files........cocvmrnciniinencneneneneinecneiseeeneiseensesseessesnesenne 20
3.7 AddINg INEIACTION ..cevuieeeecireeecircteeetrcteee ettt sttt nae 22
3.8 SUIMIMATY «.ecviiiiiiii bbb bbb bbbt 24

4. Creating an Android Virtual Device (AVD) in Android Studio
4.1 About Android Virtual Devices ...
4.2 Creating a New AVD ..o
4.3 Starting the Emulator........cccoceevenenecncnecnnenne.

4.4 Running the Application in the AVD...........cc........
4.5 Run/Debug Configurations............ccceeeveeeercrreecurennee
4.6 Stopping a RUNNING APPlICAtiONc.oveviuemerreeeeeireeeierreeeeetreienetrese s esensese e nsesensessesensessesennes
4.7 AVD Command-line Creation ... ssssssssssssssssssssssses
4.8 Android Virtual Device Configuration Files.........cccoeveereenerneeeneineceneneeereeeereseeensenennes
4.9 Moving and Renaming an Android Virtual DeViCecccvevemreeeenerreeeenerreeeenenrenennenresensenrenennes

Table of Contents

5. Using and Configuring the Android Studio AVD Emulator

4.10 SUMMATY wniiiiiiii bbb bbb bbbt 32

5.1 The Emulator ENVIFONMENT «......c.cuiiicicicicieiiiiieiieiseisese s ssessessssss s ssenas
5.2 The Emulator Toolbar Options
5.3 Working in Zoom Modecccccccvuriririuninnenn.
5.4 Resizing the EMulator WIndOW.......c.cc.ccciiiiiniiccceeeese e senas
5.5 Extended COntrol OPHIONSc.cueeureurecereurecireineciresseetsessesessessesessessesessessesessessessssessessssessesesesscas
5.5.1 LOCALION ...ttt
5.5.2 CIUIAT ...t s s s
5.5.3 CAIMEI A ..ottt
5.5.4 BaterY..oouiiiiiiiiiicci s
5.5.5 PRONE ...ttt s
5.5.6 Directional Pad.........cccciuiiiiniiiinciiciicieiecieiccsie s
5.5.7 MICTOPRONE. ... vttt ettt st besees
5.5.8 FINGEIPIINT ..ottt
5.5.9 VIITUAL SEIISOTS......cocumimriiriiiiiireiciciicis i et
5.5.10 SHIAPSHOLS.c..cucvreeirierieeircireieietreieeeiseie et sese et sese sttt ese bbb bbbt ees
5.5.11 Screen Record...
5.5.12 Settings
5.5.13 Help..cooeurerrererrerrenene
5.6 Working with Snapshots
5.7 Configuring Fingerprint Emulation
5.8 SUITIMIATY ..ottt

6. A Tour of the Android Studio User INterfacecouvevuivuirineninisninnnnininisiniinenesninseesinin. 41
6.1 The WEICOME SCIEI.....cuvreverrirercieeenciereesetsessese et aessese e seese e seesasessesaseseessseseas 41
6.2 The Main WINAOWcevciriericiieeeieeicireieeereiseeaeseese e seese s ssesssessesasesesssnesens 42
6.3 The TOOL WINAOWSevuiieeciciccircieicireieeeteiseseessese et sees e ssessasessesasesesssneseeas 43
6.4 Android Studio Keyboard SHOTTCULSc.ccecureurecrrcrrecirirnicnnieeeeiscceee e seesessesens 46
6.5 Switcher and Recent Files Navigationcccvceeecureurercurerrenceneinenennerneenerseensessesessessesessessesessesens 46
6.6 Changing the Android Studio TREemecccvcuvcurerrercinerrencineieeeneeee e seseees 47
0.7 SUITITIATY ..ottt b bbb bbbt 47
7. Testing Android Studio Apps on a Physical Android Device.........coocevueverrunnucninnecscninsecscnsensucsessecsaens 49
7.1 An Overview of the Android Debug Bridge (ADB).........cccvcuviuneincucenciciieieinercseseeeseeenas 49
7.2 Enabling ADB on Android based DevViCes..........oouriuiuriuniincrniincincicieieneiseeieeeseescssssessesesesenns 49
7.2.1 macOS ADB CONnfIGUrationc.ccccueeciuriuriuniunimniinerieseieeesessesessessssesssssssssesssssesssssessssenas 50
7.2.2 Windows ADB CONfIgUIation.c.cucuriuiuriuiunimniineiieseieiesessesesssseisesssssssssesssssesssssesssssenas 51
7.2.3 Linux adb Configuration ... ssenas 52
7.3 Testing the adb CONNECHiON ..o 52
7.4 SUITIITIATY ..ottt bbb bbbt s bbb 53
8. The Basics of the Android Studio Code Editor........oovivuinuivinrininnisnisnnnininisiniinisnisnsnieeeninee 55
8.1 The Android Studio EdItOr......c.cecieurercinierecirerecneireereeeeereee e ssese s ssesessenens
8.2 Splitting the EdIitor WINAOW ..ot ssesessessesessessessssessesessesens
8.3 COAE COMPIELIONcueiiuiieacieireicieeciet sttt sttt sttt ettt s et saesenas
8.4 Statement Completion.....

ii

8.5 Parameter Information....
8.6 Parameter Name Hints....
8.7 Code Generationceeeeevereeevereeverereerenerenenns

Table of Contents

8.8 C0dE FOLAING ...ttt nns 61
8.9 Quick Documentation LOOKUDccceuveueureiuririncieireeisineecinieetseeee et sseesssseseseeesessssesesesnenes 62
8.10 Code Reformatting...........cccceeuneuee.
8.11 Finding Sample Code
812 SUMMATY ..ot
9. An Overview of the Android ArchiteCtureooeviiveinieinieinieeiceineieeee et esse s seenes 65
9.1 The Android SOfEWAre StACKcc.veueeeirivrireiriiriereieecreireeret sttt ene 65
9.2 The LinUx KeINel.....c.euiiriuiiiiriinicireinicireiseeineisee et sesste ettt sttt nns 66
9.3 Android RUNtime — ART ..ottt bbb ene 66
9.4 ANAIOId LIDIATIES c.cuveeuievriecireeeecireieeeiseteee ettt bttt sttt bbbt 66
9.4.1 C/CrA LIDTATIES w.vuvveeuereeircireeeieireieieiseeeeetseee st sese st se s bbb eaeen 67
9.5 Application FramewWOTK......cc.ocecciriuriciriinicieirenieccset ettt ene 67
9.6 APPLICALIONS «.ecrveeeiceinireteeei ettt sttt seb sttt sttt et sttt bttt bt 68
0.7 SUIMIMATY ..ottt bbbttt bbb bbbt s s ne 68
10. The Anatomy of an Android APPLICALIONceceuivuirinrnsinisnisisinsnininisissesessesesessssssssssssessesses 69
10.1 ANArOid ACHVILIESceovurrieencteeeincrreieietreee et esetseee s ssese et seseese s sesessessesessessesensesesennes
10.2 Android Fragments
10.3 Android Intentsccecveeevrerreuennes
10.4 Broadcast Intents........ccocveeeevcrreuennes
10.5 Broadcast Receivers
10.6 ANATOIA SEIVICES «...uvrnrceinieecectreieectreee ettt sese st sese s s st sesessessesesaeasesenncs
10.7 CONENt PIOVIARTSeovurrieinieecieireieietreeeietreeeietseseee s nsese e seseese s ssesessessesensessessssessesennes
10.8 The ApPlication ManIfestoccureeueurincueirencieiricieineeiet ettt sseese st sssseseseen 71
10.9 APPLICAtiON RESOUICESeueueimeeirinieeiricieireeietseseietsee st sese st aese sttt ese st esseaesssseseseen 71
10.10 APPLICAtION CONTEXL...cuviuuiucerieueirieieirieieeseeeetseseiessesese st sesesstseae st s bseaesesseaebeseaessssescsen 71
1011 SUIMIMATY ottt bbb bbb bbb bbb bbbt 71
11. Understanding Android Application and Activity Lifecycles.......ccocouneririisnsenennennisnisensenessesnesniennes 73
11.1 Android Applications and Resource Management.............cceceeereueucrseuereuemcmsesseemessnenesasens 73
11.2 Android Process Statescoceeveureveererrevenseerevenneenenes
11.2.1 Foreground Process
11.2.2 Visible Process.......cccoveeuvervenecn.
11.2.3 Service Processccccceeueunene
11.2.4 Background Process
11.2.5 EMPLY PIOCESS ...coviiiiiiiiiiccciic s
11.3 Inter-Process DePendencieseeeereveeeureseineeremeenessesesessesesessesesessesessessesessessesesessesesnes 75
11.4 The ACHVILY LIfECTCLE. ittt sesetse st ses et sesessessese st sesesacs 75
11.5 The ACHVILY SEACK.....c.cuiireeeieireteieireieieireeeiet sttt et sese bbbt ses et seb et ses et sese s tsesesncs 75
11.6 ACHIVILY SEALES ..ottt 76
11.7 Configuration CRanGES ..o e sse s ssesasssssassans 76
11.8 Handling State Change.........ccoueuiureuiucieeceeieieiseeseseessesesssesssssesssssess s ssessssesssssssssssssssans 77
11,9 SUIMMATY w.eeiiiiiiiis ettt bbbt 77
12. Handling Android Activity State Changes.........cccecevuvrenrinisuisnisinsninininssenenessssniesesinsssssesmese 79
12.1 New vs. Old Lifecycle TeChNIQUES.......coceverreeeeerreeeierreeeeerreeeeereeeeenesenesseseesessesensessesensensesennes
12.2 The Activity and Fragment Classes...
12.3 Dynamic State vs. Persistent State.....
12.4 The Android Lifecycle Methods........
12.5 Lifetimesccoeuveeemrerreeemcrreeenernenennes

iii

Table of Contents

12.6 Disabling Configuration Change RESLartsccceveeerureerirreerirneerienesenessesesessesenesssseneses 85
12.7 Lifecycle Method LImItations.......ccueeeeiereeriureeriuneeenieneeneesesenessesesessesessessssesssssssessessssenseses 85
12.8 SUIMIMIATY ..ottt bbb 85
13. Android Activity State Changes by EXampleccccocvvuiruiiirncnininnecninninncncnennncneneencseseencessens
13.1 Creating the State Change Example Project ..o 87
13.2 Designing the User INTErface ... ssessesssssssssessssse e 88
13.3 Overriding the Activity Lifecycle Methodsccocvinuniincincincinciciciciniseneseseeeseeeseneenes 89
13.4 Filtering the Logcat Panel...........c.ccccuiiiiniiiinirerceciceie e 92
13.5 RUNning the APPICAtion ... ssese s 93
13.6 Experimenting with the ACHVItYccccccuiiiiiniiiniccicceececeesee e 94
13,7 SUIMMATY ..ttt e bbbttt n s 94
14. Saving and Restoring the State of an Android ACHVILYccoevivuirrirnsinisisisnnininisnisniisississessessenes
14.1 Saving Dynamic State ...
14.2 Default Saving of User Interface State
14.3 The Bundle Class..........cocveuiieiriiinninininnininns
14.4 Saving the State........c..coeerurecrnerrercrnireecrneeennens
14.5 Restoring the Statecccoveeeeneerercrnieeeerneveenes
14.6 Testing the Application.........ccceeeeeeureueecreeennce
14.7 SUMMATY ..o

15. Understanding Android Views, View Groups and Layouts

15.1 Designing for Different Android DeviCes..........ccvuuriuniuniuneincrneenereicicieerieesessesessesesssesesees
15.2 VIEWS Q1A VIEW GIOUPS ..cvuvveenerieireerieeineireseieeseseseesesessessesesssesesessesesesssssesesssssssesssssssessesssaessses
15.3 Android Layout Managerscc.cccueemiurimniuneunssnemiesesesesessesse s ssssssessssssssssssssssssesssssessees
15.4 The VIEW HIETAICHYc.vuiiieeiiiriecieirie ettt sese s ss e ssaeen
15.5 Creating User INErfaces.........ccocuucuucirimriuniiiinieiseisise e ssessessssss s sssssse e saes
156 SUIMMATY ..ottt bbb en s

16. A Guide to the Android Studio Layout Editor Tool

16.1 Basic vs. Empty Activity Templates
16.2 The Android Studio Layout Editor
16.3 Design Mode
16.4 The Palette........ccovivriniinciciciciciiiciics

16.5 Design and Layout VIEWS......c.ceecueuercriueecrieenerieeneneseesesesessessesessessesessessesessessesessessesessesens
16.6 TexXt MOQe......coimiiiiiiciiic s
16.7 Setting AtIIDULES.....ccucveeeeiireeeiiereeriteeeeieese et ssesesasseseeas
16.8 CONVErtiNg VIEWS....cuiuiiiiiiiiiiciicii bbb sasaas
16.9 Displaying SAmple Datacc.ceveuiueeeriermcrieenerieereneienesesesse s ssesessessesessessesessessesesesens
16.10 Creating a Custom Device DefInitionc.cceecueeeecrnieeenerniecrerniceeneeeeneeenersesenseseesensenens
16.11 Changing the CUrrent DeVICE.ceveuuercriermerieeeereieneseeenereseese s ssesessessesessesens
16.12 SUIMIMATY ..ottt bbb bbb aeas

17. A Guide to the Android ConstraintLayout..........ccccevervuerueirinnnninsinncninsinncnineescsiseecsesneesesses

17.1 How ConstraintLayout WOTKS........c.eccveereueueurieeenteriecieenesestinesesseesesessssesesssssssessessssessessssesseses
17.1.1 Constraints
17.1.2 Margins.......cccoeeveeeierererinninnecnncseseseneneeens
17.1.3 Opposing Constraints
17.1.4 Constraint Bias
17.1.5 CRAINS c.vevuteeiaereeeicesetetet st sese st sese et seb et seb et seb et seb et s bbbt seb st sese bt sebesaetsenes

iv

Table of Contents

17.1.6 CRAIN SEYLES...... ettt sese s s sese st sese s ssesessessessssessesessessesennes
17.2 Baseline ALIGNIMENT.......c.oveueirieeiirierririenereereeseee e sssssese s s sssasssesssasesesssssssesnsssssens
17.3 Working with Guidelines................
17.4 Configuring Widget Dimensions
17.5 Working with Barriers....................
17.6 Ratios ...
17.7 ConstraintLayout Advantages........
17.8 ConstraintLayout AVailability.........ccccveireeiiircrniiecreeeeeeeeeneee e eeeneseesessesesens
17.9 SUIMMATY vttt

18. A Guide to using ConstraintLayout in Android Studio..........coeeeerirrecvinrennucninnenncnennecscnsensecsscnnees 127

18.1 Design and Layout VIEWS........c.ccvcuiureuiicieicieieiacisesieisesiscsssesessssse s ssess s ssssssssssssssssens
18.2 AUtOCONNEC MOAE ..ot
18.3 INfErence MOdE. ...t
18.4 Manipulating Constraints Manually..........cccccecininininnceese e eesesseceessesessseseens
18.5 Adding Constraints in the INSPECLOLc.cccuueurieiriiriiiseiei e ssesessasaens
18.6 Deleting CONSIAINES.......c.curuieieririereseeeseiesessessessessessesaesese s sa e sse s sasaens
18.7 Adjusting Constraint Biasc.ecviureuiiciniincicieicieciccciese e ssesessssaens
18.8 Understanding ConstraintLayout Margins..................
18.9 The Importance of Opposing Constraints and Bias ...
18.10 Configuring Widget Dimensions
18.11 Adding Guidelines........ccccccoeuuvuunnnee
18.12 Adding Barriers.........cccccueeeeneureuneererneenerneenenncanas
18.13 Widget Group Alignment and Distribution...........cccceeeivininiinciniincisencisecieeceeecseneeens
18.14 Converting other Layouts to ConstraintLayout..........cceceereereurerneenerseeeeseeeneneneeeseseseaeeeens
18.15 SUIMIMATY ..euiiiiiiiiiiiice ettt sttt s bbbt

19. Working with ConstraintLayout Chains and Ratios in Android Studiocccceuervvresesrcsucsecsensennens 143

19.1 Creating @ CRaiN.......ccceureeeeereeenireeeeireeeeeereeesetseee s sas e sssssssesssas s sssasssesssasssessssessessssssacns
19.2 Changing the Chain Style ... sese e naens
19.3 Spread Inside Chain Style.........cceireeiirieircecie e sssssesesssenaens
19.4 Packed Chainl StYIe.....c.cuveeiireeiriciirecceeeeieee e sse s ese st esesssenscsssassaes
19.5 Packed Chain Style with Bias
19.6 Weighted Chain........cccocoveeevrerreuennes

19.7 Working with Ratios..........ccecveueenee

19.8 SUMMATY ..ottt

20. An Android Studio Layout Editor ConstraintLayout Tutorial.........cceceevivervenenuenniseisssenesncsnisenennes 151

20.1 An Android Studio Layout Editor Tool EXampleccccveueeeuremeencireeeineereeeeirereeeineeeeseenenennes 151
20.2 Creating @ NeW ACHIVILYcouviuiiviiiiiiiii s ss
20.3 Preparing the Layout Editor ENVIrONmentc..c.cccccueieiuriniuniineiniesessciseiseeesessessesmesassnssesennns
20.4 Adding the Widgets to the User Interface..........ccocoeueieiniriniininiinencinerseeeicieneiessssesenens
20.5 Adding the CONSLIAINESccevuiuiiriiiieicrcic et sae s
20.6 TesSting the LayOULc.ccccuiriiiiiriireesete e
20.7 Using the Layout INSPECLOLc.cuiuiviiiireicicieieieiaeciseseeacssssse et ssessssssssssssssns
20.8 SUMMATY ...ttt

21. Manual XML Layout Design in Android Studio

21.1 Manually Creating an XML Layout...........cccccunee..
21.2 Manual XML vs. Visual Layout Design.................
21.3 SUMMATY ...

Table of Contents

22. Managing Constraints using Constraint Sets

22.1 Java Code vs. XML Layout Files.........ccoureuirieniiniciiriciirciieeeeesseeeeessss e esensees

22.2 Creating Views.........

22.3 View Attributes

22.4 Constraint Sets.........
22.4.1 Establishing Connections..........c.cccceeuneeee.
22.4.2 Applying Constraints t0 @ LayOoutc..ccecurureeciniirencinirneceeeceeeeeseeeeeseeseseseeseseneees
22.4.3 Parent Constraint CONNECtIONS.........cccvimiiiiiniieiiic s ssaens
22.4.4 §izing CONSLIAINLS ...cucviiviiiiiiicriic s aes
22.4.5 Constraint Biasccccvviiiiiiiiiicii s
22.4.6 Alignment CONSLIAINESccovvveeurirricerirrieerereectrereee e nenes
22.4.7 Copying and Applying Constraint SetS..........ceveurererrererrererserermecsemsecssesnessessessersessensenes 167
22.4.8 ConstraintLayout Chains ... ssenees
22.4.9 GUIARINES ... eae
22.4.10 Removing COonStraints. ...t sssaens
22,411 SCALNG.c..orieieiiecre et
22.4.12 ROTATION ..ottt bbb

22.5 SUIIMATY ..ottt es et s

23. An Android ConstraintSet Tutorial

23.1 Creating the Example Project in Android Studio
23.2 Adding Views to an ACtVILYccoceveeeevcrrerernerrereenernenenrensesensenene

23.3 Setting VIEW ALIIDULES. ...c.ovueveerieeieereecitiriectee ettt ssas s sss s sa s sssssesasses
23.4 Creating VIeW IDS ...
23.5 Configuring the CONnStraiNt SEt......coerureeuirrrernirrieiiereeeteseeseseesesseseesessssessessssesessessssesseses
23.6 Adding the EAItTEXt VIEWc.ccureeeuirreeeiiirieieinieeeiseseeessesessesesesssssesessasesessssssesssssesesssssssesneses
23.7 Converting Density Independent Pixels (dp) to Pixels (PX)....ccoceeerrerrecrnevrecrnerreerevsecnnennes 176
23.8 SUMMATY ..ot b bt 177

24. A Guide to using Instant Run in Android Studio.........ccceeevreierernunncninncninninncnniniencninnenscseesenne

24.1 Introducing INStant RUN.......c.cc.oveiiiciiiicieir e eses s ese s ssees
24.2 Understanding Instant Run Swapping Levels
24.3 Enabling and Disabling Instant Run................
24.4 Using Instant Run........cccovviiiiinniincennns
24.5 An Instant Run Tutorial ...,
24.6 Triggering an Instant Run Hot Swap...............
24.7 Triggering an Instant Run Warm Swap...........
24.8 Triggering an Instant Run Cold Swap
24.9 The RUN BULON ..ouviiiiiiii s s s saes
24,10 SUINIMATY coovuiniiincriienicse it sese st sa s as bbb bbb es et as

25. An Overview and Example of Android Event Handling

25.1 Understanding Android EVENtS.........cccovureeueurecineirecrniineerieseeneeseeeseseesesssssesesssssssessessssesesees
25.2 Using the android:0nCliCK RESOUICE.........c.curvreeuivreeciniirieeeieneeieiseeesseseesessessesesssseesessesssseseses
25.3 Event Listeners and Callback Methods...........cccuiiniiiniiniincinciciciciicinisiscssscsse s
25.4 An Event Handling EXamPIecocuveeuiiriciniirieiniiniceireetntiseeneeeeeeseseesesessesessssssessessesesneses
25.5 Designing the User INEITACEcvvuvueeiurieciniirieiiireiceeseeciteseeseeeeeeseseesesessesesssessessessssesneses
25.6 The Event Listener and Callback Method
25.7 Consuming Events

25.8 SUMMIATY ..ttt bbb b b

vi

Table of Contents

26. Android Touch and Multi-touch Event Handlingcccceveevervininnenncnsennenncsnennecscssensecsscsseesscsennes 191

26.1 Intercepting ToUCh EVENLS ..o esenaes 191
26.2 The MOtiONEVENt ODJECtcuiiiieiciiiceiiiiceeeeetreeeeee et ssese s enenaa 191
26.3 Understanding Touch ACHONS. ..o sssssssaas 192
26.4 Handling Multiple TOUCREScceiuiiimciiicciciiitccnecie s sssas e 192
26.5 An Example Multi-Touch APpLICAtIONc.cvucvuermrereereeieeeeiereineiseeseessensessessensessensssssscssenns 192
26.6 Designing the Activity USer INErfacecvcueveueeremeeeereeneereieinerenrenessenensessensessessesssssssssess 193
26.7 Implementing the Touch Event LiStener........cccoccvcurieineurieencireeecirieiereeeesereeesseneeensenennes 193
26.8 Running the Example APPLICAtiON........c.ocueucrermermerereeneeeeeietnesseeseessensessensensessessesssssesscsnes 196
26.9 SUIIMATY c..ovuiviiiiiiiniici st s bbb s 197

27. Detecting Common Gestures using the Android Gesture Detector Class...........eccererrurreciersuesucsenane 199

27.1 Implementing Common Gesture DeteCtion.........ccocueueuerreueeeereveereereueeersesenserseseesesseseesessesenne
27.2 Creating an Example Gesture Detection Projectcccecereeencereeeencrreeeeneeneeeeseeseseesersevenn
27.3 Implementing the LiStener Class.......oeeureueereureueererreeeerersereeenseseeetseseeessesessessesessessesessessesesses
27.4 Creating the GestureDetectorCompat Instance...
27.5 Implementing the onTouchEvent() Method.........
27.6 Testing the Application
27.7 SUMMATY ..ottt

28. Implementing Custom Gesture and Pinch Recognition on Android

28.1 The Android Gesture Builder Application........c.coecurereucrrenicerenceeinenceeirecieeneeieesecseeeeseesesenes
28.2 The GestureOVerlayVIew CLassccvcieencuieeeneirieeienrieneeeseeesseseeessesensessesessessesessessesennes
28.3 Detecting GESTULES.......cuvviuiiiiiiciic s sae s
28.4 Identifying SPECIfiC GESLUIEScvcuiremerrercrerenserereeeieeseeaeaeesesessesessessessessessessessesssssscsscsnes
28.5 Building and Running the Gesture Builder Application...........c.cecveueererrererenerenneceneuncenennes
28.6 Creating a Gestures File ..ottt ssese e esenaes
28.7 Creating the EXample PIOJECT........coviureuirreuererersereniecineenesesessesessesessensessessessessesssssssscsscsnes
28.8 Extracting the Gestures File from the SD Cardc.cccouvrevineninerncnernerereneneneceescenens
28.9 Adding the Gestures File t0 the Projectc.cccueeereeneeneeneineineiniireeeseneserensensensesasssscsnenns
28.10 Designing the USer INTErfaceovuuuerrercrrerermerenieineineineieisessessessessessessessensessessessssscsseses
28.11 Loading the Gestures Filecccovreirceiriceniricirceeseeneseeeneeeeens
28.12 Registering the Event LiStenerccvvvecuniuricenierecenierecniereeneeseecsseeeenens
28.13 Implementing the onGesturePerformed Method...........ccccoceveviuniniininncee.
28.14 Testing the APPLICAtION........ccciuieuiiriceircerc e eaens
28.15 Configuring the GestureOverlayVIew..........cocvcereevererereremmenenmeceneencesennenne
28.16 Intercepting GeSTUIES........occueviiiueiricriiiiici e
28.17 Detecting Pinch GeStUres........c.ccewueeureureererniirerinrerererenserensensensesssesscsscssenne
28.18 A Pinch Gesture EXample PrOJECt........ccocieviuiienciriicrieereeeeireneeesesesessesensessesensensesennes
28.19 SUIMIMATY .oouviiniiiiiriici it sea bbbt st s bbb bbb

29. An Introduction to Android Fragments..........coueiiennnnininnecneninninininnenenensinesssineessneee

29.1 What i @ FragIMent?ccvcureueencireieieirereieiseeeeetseseesetseseesessesessessesessessesessessesessessesessessesessessesesns 215
29.2 Creating a Fragmentccccoviiiiiiiiiiicc e

29.3 Adding a Fragment to an Activity using the Layout XML File
29.4 Adding and Managing Fragments in Codecccocureueunerreueineireeencireennerreeeeseeseseesesseseesessesenne
29.5 Handling Fragment EVENLScvceuvcureeeeneureeeineireeeictreeeeessesessessesessetsesessessesessessesessessesessessesesse
29.6 Implementing Fragment Communication............
29.7 SUMMATY ..ot s

30. Using Fragments in Android Studio - An Example

Table of Contents

31. Modern Android App Architecture with Jetpack

32. An Android Jetpack ViewModel Tutorial

33. An Android Jetpack LiveData Tutorial

34. An Overview of Android Jetpack Data Binding

viii

30.1 About the Example Fragment APpliCationc.oceeveureeemnerreeeerernereenennerenenrenensensesensessesenensenes
30.2 Creating the EXample PrOJECT......cvveverrieeecireeeeeireeeieireeeeeneeeeesseseesessesensessesessessesessessesensessenes
30.3 Creating the First Fragment Layout.................

30.4 Creating the First Fragment Class

30.5 Creating the Second Fragment Layout
30.6 Adding the Fragments to the Activity

30.7 Making the Toolbar Fragment Talk to the Activity
30.8 Making the Activity Talk to the Text Fragmentccceeveeenerneeeenerneeemnenneeesenrereesenrenensennenes
30.9 Testing the APPLICAtION.....c.ccvcveueeiirieeeerrereectreecereee et reseese s sese s asese s ssesessessesensessenes
30.10 SUMMATY ..t bbb

31.1 What is Android JEPACK?c.cceuveureeeieireieieireieieireeeteisesetetsesetetsesetsessesessessesessessesessessesessssnenes 235
31.2 The “Old” ArChIteCtUre.........cuiuuiicicicicieciciiieciciresi e
31.3 Modern Android ArChiteCtULEccccuuciiiuiiiiiiitrcrc e
31.4 The ViewModel COMPONENLccurevereereeeereirereieireeeeetreseseeseseesessesesessesessessesessessesesessesesesseses
31.5 The LiveData COMPOIENLc.eueueureueererrereeseereseeetseseeeesesessessesessessesessessesessessesessessesessessesessesseses
31.6 LiveData and Data BINdINg.........cccecueuiiiieiriniiniincsiseecse e ssessssesssssesssesssesesssssesssnes
31.7 Android Lifecyclescccoreveunereneenernencenernennn.
31.8 Repository Modules....
31.9 SUIMMATY ..ottt bbb bbbt

32.1 ADOUL the PrOJECLouuieeieeicicecicireicecteecicteeeeeteee et sese s sese s s ssessesensesenen
32.2 Creating the ViewModel Example Project.........cocveureeeenerrereenerrereenenneeenennenensenseseesessesenensenee
32.3 ReVIEWINEG the PIOJECT....c.vevreeeicireeeeeireicctreeeeetreee et sesessessese s ssesessessesessessesensesenes

32.3.1 The Main ACHVITY..c.vevcrreeeeeirereecirereeererseeeeseee e seesessesseseasessesssesessasesnens

32.3.2 The Content FIagmentcc.oeceercunerrencineineeineneeneseeesessesessessesessessesessessesessessescsenens

32.3.3 The VIEWMOME] ...
32.4 Designing the Fragment LayOUL........ccocveecureueencrreeeenernieeneneeeeenseseeesseseesessesensessesessessesensessenes
32.5 Implementing the VIEW MOdel..........ccocuruecrnieeniirieeineinieeireieeenereienneseeesseseesessesessessesensessenes
32.6 Associating the Fragment with the View Model
32.7 Modifying the Fragmentccccooeeeuverneerncrrecnnennee.
32.8 Accessing the ViewModel Data
32.9 Testing the Project
32.10 SUMMATY ...

33.1 LiveData - A RECAP ...cooviiiiiiccciii s 249
33.2 Adding LiveData to the VIEWMOdel..........cccoeuriuiniiiiniiniincicicisccieicceieeecsesesessesesseseseene 249
33.3 Implementing the ODSEIVETccocuiiiriiiiririiserise e 251
33,4 SUIMIMATY ..ottt bbbt 253

34.1 An Overview of Data BiNdiNg.........cccveureueeeireeiniirieeirieeneeeeeneeeeesseseesesseseesessesessessesesessenes
34.2 The Key Components of Data BIindingcccecuveeeereureeenerreeenerneeeenenneeenennenenensesensessesensessenee
34.2.1 The Project Build Configuration..........c..ceecureurerceneurencrnerneremneineenrereeessesseseesessesessessesensenens
34.2.2 The Data Binding Layout File....................
34.2.3 The Layout File Data Element....................
34.2.4 The Binding Classes.......ccccooceurerreemrerrenene
34.2.5 Data Binding Variable Configuration

..

...

Table of Contents

34.2.6 Binding EXpressions (One-Way).......cccoecuerrernieemereemereeemenesenersesesessesessessesssessescens 259
34.2.7 Binding EXpressions (TWOo-Way).......cccuuecueerernieemnerimemeneeemeneeeeesesessessesessessesssessescens 260
34.2.8 Event and Listener Bindings..........ccccocvniiiiiininiici s 260

34.3 SUMMATY ..ot bbb bbb 261

35. An Android Jetpack Data Binding Tutorial..........cccccevvverruinrinnernininncncnnenncninennncnesesnscsessessesesee 263
35.1 Removing the Redundant Code.............cucuuuiiciciriniiiiseeese e 263
35.2 Enabling Data BINdINgcccceiiiiiniiniinincicieieieieceeeeeicsise e sse s sssssesssssnns 265
35.3 Adding the Layout EIEMENtccoiiuiiiincincicicieiciieiieeicicise e ssessessessessesasenens 266
35.4 Adding the Data Element to Layout File..........ccccccoiiininininininicnccicceeceieeeceeinenns 267
35.5 Working with the Binding Classc.cccvuvireiieiniiniiiinceseesee e 267
35.6 Assigning the ViewModel Instance to the Data Binding Variableccccccccccuevinininincnnes 269
35.7 Adding Binding EXPIeSSIONSceciuriuiureuceemaseiaeimianisssaisssssesssssessssesssssessssessssssssssssssns 269
35.8 Adding the Conversion Method ... 270
35.9 Adding a Listener Binding........c.ccocecuiuriuniiniincincieieicieieieeiesisessese et ssessessssesasssns 270
35.10 TeStING the APP....cviciiiiiieiiiiiieeise et 271
35.11 SUIMMATY ..ttt 271
36. Working with Android Lifecycle-Aware COMPONENLSceuerurrerrersissiseisensessessissisessessessesssssssessessesses 273
36.1 LIfECYCLe AWATEIIESScvueveeuireeracrreeeeserreeeeseeseneesenseseesesseaeesessese s ssesessessesessessesssessesessessesnsessesenses
36.2 Lifecycle OWners........cvcueecureueeene
36.3 Lifecycle Observers..........ccccveueueen.

36.4 Lifecycle States and Events
36.5 SUMMATY ..ot bbb

37. An Android Jetpack Lifecycle Awareness TUtorialccecceveerervrinrinsunsinsensucninsenncsensessscssesseessesesnes

37.1 Creating the Example Lifecycle PrOJECt.......c.ccocuueiciininiiriniineseisecisee e
37.2 Creating a Lifecycle ODSEIVer.........ooiiiiniinciiiieicieiniieirccise e sse s ssssssnes
37.3 Adding the ODSEIVETcccouiiiiiiiiricrcic et
37.4 Testing the ODSEIVETccoiiiiiiiiirccreic e
37.5 Creating a Lifecycle OWINEeT ...t sae s sssssssnes
37.6 Testing the Custom Lifecycle Owner...
37.7 SUMMATY ..ottt

38. An Overview of the Navigation Architecture Component

38.1 Understanding NaVIGation.........ceceueureeeeerreueeerneeeeerreuemensenenessesensessesessessesessessesessessesessessesesses
38.2 Declaring a Navigation HOSE......c..ccvcueeeerreernerneeeicieeienneeeessesensetsesensessesessessesensessesessessesenses
38.3 The Navigation GIaphc.ccvceecireeeencrreeeieirieeineeeeetseeeeensesessessesessessesessessesessessesessessesessessesenses
38.4 Accessing the Navigation CONtIOller..........occveueeeecrreeeererneeeeireeenetreeenenseneeessesenesseseesensesenses
38.5 Triggering a Navigation ACIONcoccueuiciriricriiniciccc e sssessaesesens
38.6 Passing ATGUIMENLS........cccviiiiiiiiiii s
38.7 SUMMATY ..ottt bbb

39. An Android Jetpack Navigation Component Tutorialc.cceceeveverruerinsersininsenncsinsnscssensecsesennee

39.1 Creating the NavigationDemo Projectc.ccccuuiciiniuniininiineniseeiseseiese s
39.2 Adding Navigation to the Build Configuration............cccceueeeiureunienerncinerneeseeseiencieeeieeenenns
39.3 Creating the Navigation Graph Resource File
39.4 Declaring a Navigation Host..........
39.5 Adding Navigation Destinations
39.6 Designing the Destination Fragment Layouts
39.7 Adding an Action to the Navigation Graph...........ccccccocoeiririnininincncnciseeieieceiesesesenens

ix

Table of Contents

39.8 Implement the OnFragmentInteractionLiSteNerceeueeeererreeeererreeemerrerensenrereesensenenensenee
39.9 Trigering the ACHONc.oceueueeeeeireeeerreeeeeireeeeet et sese s sese s sese st sesessessesensesenes
39.10 Passing Data Using Safeargs
39.11 SUMMATY ..ot

40. Creating and Managing Overflow Menus on Android

40.1 The OVErfloW MENU......cuiiiuiiciciciciiiiiriiieeesesese s sees
40.2 Creating an OVerflow MENU ... ssessessesssssessssssssse s sees
40.3 Displaying an OVerflow MeNU.........c.cc.ccucuiiuniunimniineiiineieesese e sssssesaes
40.4 Responding to Menu Item Selections.........ccueuueuiureiiirciiencicieicieeeieessseesesesssesesssese s
40.5 Creating Checkable Ttem GIroUPS.........cccccuriiuiuriuniiremieneieisese e sssssesaes
40.6 Menus and the Android Studio Menu Editor............cocnuicincicincicicieirincncscisceseseens
40.7 Creating the EXample PTOJECt.........ccccuiiiiuniiriinineiiseieisce e s sssssesesesssse s sees
40.8 Designing the MENU........c.ccuuciciciiciiiiiieisesise s sase s sees
40.9 Modifying the onOptionsItemSelected() Method..........c.cccucucciiiccicininininirirerccenes
40.10 Testing the APPLCALION.......c.cucucuciieciicieciirieieresi e saes
40.11 SUIMNIMATY «.viiiiiii sttt st b bbb s s st

41. Animating User Interfaces with the Android Transitions Framework...........ccocovcvcvuvsvsnrescsncsucsennes

41.1 Introducing Android Transitions and Scenes
41.2 Using Interpolators with Transitions...................
41.3 Working with Scene Transitionsccccoveuveuncnnee
41.4 Custom Transitions and TransitionSets in Code
41.5 Custom Transitions and TransitionSets in XML
41.6 Working With INtErPOLAtOrSccvvvveeemiureerirrierirreeereereeesteeeeenseesesessasesessesesesssasesesssasssesnssnes
41.7 Creating a Custom INterpolatorccuueeuirreeriureerniereeriereeneeeeeeneeeesesseeesessessesesssasnsesneses
41.8 Using the beginDelayed Transition Method..........ceccueureceiureccrnierecrnienecrnieeeeneeeeeneeeeeneees
41,9 SUMMATY woniiiiiii bbb bbb bbbt

42. An Android Transition Tutorial using beginDelayed Transition...........ccecceverveereccrerrecsucnsensecscssensecnne

42.1 Creating the Android Studio TransitionDemo Project
42.2 Preparing the Project Files........cccccccururininininincnineicincnecanes
42.3 Implementing beginDelayedTransition Animation
42.4 Customizing the Transition
42.5 SUMMATY ..ttt

43. Implementing Android Scene Transitions — A Tutorial.........coccevverrrvninisisnsninisisnsneneneesennes

43.1 An Overview of the Scene Transition PIOjectccceveceiurecrierecrnieneennieeeeneeeeeneeeeeneens 329
43.2 Creating the Android Studio SceneTransitions Projectccveeneerecrnierecceneerecrnensecnneenes 329
43 .3 Identifying and Preparing the ROot CONtainerc..coveeiureemierecrniureernieeeereeeneneeeeeneees
43.4 Designing the FIrst SCEME.....cuu ittt ssasesesssss s sssaesesnsses
43.5 Designing the SECONA SCEME ..ottt esessas s sasnsessaes
43.6 Entering the FITSt SCENE ..ottt nssesesessas s ssssssesssssssesssssssesnsses
43.7 LOAING SCENE 2....ccouieerrieecenireeeietreeeetiseee e sessese s sasese s sae s sse s s sasasssssssssssesasasssesnsanes
43.8 Implementing the Transitionsc.eceeeureeuirreernirreeriereerteeeeneeeeseseseesessseessessssesesssssseseses
43.9 Adding the Transition File ... esessees
43.10 Loading and Using the Transition Set...........cccveenireernirrecriereennieneenneeeeeneseeeseseeseneses
43.11 Configuring Additional Transitions
43.12 SUMMATY «.ocviiiiiiiicc s

44. Working with the Floating Action Button and Snackbar

Table of Contents

44.1 The Material DeSIZI......c.ouceueureeemiureerirriereirieeeiseeeseesesessesese e s sssasssesssssssessssssesssessesssasssens 337
44.2 The DeSiBN LIDIATYc.cvveuiirieieireceiirieneteeeseiseee s esesssesese e s sssasssesssssssesssssssessssssesnsssssens 337
44.3 The Floating Action Button (FAB)ccccvureineirieireeneieeneeseeneseesessseeseseseesessessesens 337

44.4 The SNACKDAT ..o s 338
44.5 Creating the EXample PrOJECtoucciiceiiriernienicireceieeeieeeseeeesesessesessssesessssssessasesens 339
44.6 ReVIEWING the PrOJECtccviuieciiireeceiireccieeeee et ese s sae s s naessasscns 339
44.7 Changing the Floating Action BUtton ... 340
44.8 Adding the ListView to the Content LayOuL.........cccevueeeuierecrniereecrieneenieeeeenieeesenesensesseseesens 341
44.9 Adding Items t0 the LIStVIEW ...c.curveeiurecriirectieeneiseerteeeeseeseeesseeesessessesessseesesssessesssssesens 342
44.10 Adding an Action to the SNackbar........cccveciirciccrcece s 344
44,11 SUIMIMATY .ottt a bbb bbb bbbt 345

45. Creating a Tabbed Interface using the TabLayout Componentcocceveereceerrensucssessecscssessecsscssenn 347

45.1 An Introduction to the VIEWPAer ..o sssasesesaens 347
45.2 An Overview of the TabLayout COMPONENTc.euevreveeeeniereeceniereeeieeseseeseesesesseesesesseseesessessesens 347
45.3 Creating the TabLayoutDemo Project........cccccuuiriuniuniuniineiniisciseiseieiesessessessesssssessssssssens

45.4 Creating the First FIagment..........ccocviciviiciciciniciinicseisesese e ss s ssssssssessens

45.5 Duplicating the Fragments............cocvcuiucincicicicieieiniicsesesese e ssssssssssssesasens

45.6 Adding the TabLayout and ViewPager
45.7 Creating the Pager Adapter................
45.8 Performing the Initialization Tasks...
45.9 Testing the Application............cccc.....
45.10 Customizing the TabLayout.........
45.11 Displaying Icon Tab TEemS.......ccccuiuiuiicicicicicicieirieeccesese e s ssessssssaees
45.12 SUINIMATY «.ceiiiiiiieiiicie ettt et b bbb sennas

46. Working with the RecyclerView and CardView Widgets.........ceovevrirrisuirnsinisrisisnsensessesesessessessene 359

46.1 An Overview of the ReCYClerVIEWcccuiuieriuriceiiriceirecieieecneseseneeeesesseeese s ssesssasesens 359
46.2 An Overview of the CardVIEWcc.cveeuiurecrniiniciiinicireeeeeeesseeeseseseesessseesesssessessssesens 361
46.3 Adding the Libraries to the Project........ccccircnirciceiseeeeeeeesneeeesenesesseseesesens 362
46.4 SUINIMATY ..ottt s a bbb bbb bbb bbb 362

47. An Android RecyclerView and CardView Tutorialccccovervuevuinirncninsinscninsnncnensecscnensecscsnenns 363

47.1 Creating the CardDemo Project.........couuciciciciciriiriesesseeese e ssesasessaens
47.2 Removing the Floating Action Buttonccccccecuueee.
47.3 Adding the RecyclerView and CardView Libraries....
47.4 Designing the CardVIew LayOuL ..o ssessesssssssessssssaens
47.5 Adding the ReCyClerVIEW.......ccoiuiuiiiiiiciciciciciciieicicse e sasaens
47.6 Creating the RecyclerView Adapter.........c.ccociicirinininiinenisesesee e ssessessesssssssssssesaens
47.7 Adding the Image FIles........cooiiiiiiniinciccciciciccecice e saens
47.8 Initializing the RecyclerView COmMPONENL..........cccciiuriurimniinimiirerseiseieeesessenseisesesssesssesesaens
47.9 Testing the APPHCALION........cceiuiuiiiircccccc e aes
47.10 Responding to Card SEleCtionsc.ccucucucuiciuciurimniiiseisesise e ssessssesssssesssssesaens
47.11 SUIIMNATY «.cuiiiiiiiieiiice ettt et s bbb bennas

48. A Layout Editor Sample Data TUtorialc.ceccvuevuirmrenininisiniincnininiinincniieneceeses

48.1 Adding Sample Data t0 @ PIOJECT ...c.cuuvueucumirrecreiricrcireeeeteeneeeecneesesenessesessseesesssensesssasesns
48.2 Using Custom Sample Data
48.3 SUIMMATY ..ottt

49. Working with the AppBar and Collapsing Toolbar Layouts

xi

Table of Contents

49.1 The Anatomy Of an APPBATcccuivricriiicicirct e sess s esensaes
49.2 The EXAMPIe PIOJECTvueveeeeireeeieireecetiiciiieentisesessssesesssasese s sse s s sssasssssssssssesssasesesnsees
49.3 Coordinating the RecyclerView and Toolbar.....

49.4 Introducing the Collapsing Toolbar Layout ...

49.5 Changing the Title and Scrim Color

49.6 SUMMATY ...

50. Implementing an Android Navigation DIaWerccoccvvirrecnininnecnininscninsensucnesnessscseseesscsesseses 389
50.1 An Overview of the Navigation DIQWETccceuviuiiuriiniincineincineieieieieieeeesesesesssesessseseseenes 389
50.2 Opening and Closing the DIAWeTc.ccccuiiriuniirirenieseeesesse e ssessessesssssesssesssesesssesessssses 390
50.3 Responding to Drawer Item Selections...........ccceiuiuriuriuniencineincincieieieieieeesesssesesssesessseseseenes 391
50.4 Using the Navigation Drawer Activity Templatecocoocuviuvcuneivcineicinininiiinesssesesenseenes 391
50.5 Creating the Navigation Drawer Template Project.........cococvcuncuvcuncicinineninnnenieserseesenneenes 392
50.6 The Template Layout ReSOUICe Files.......ccveureueiniireueineirieeineireieieirereieineeeeeiseneeessesessesseseseenenns 392
50.7 The Header Coloring Resource File.........ccccociiiiiinininciniinciscieicceieeecsesesessesesssesessenes 393
50.8 The Template Menu ReSOUICe File.......c.vueiiriuriniirieeiniiriieieireieieineeeteiseseeeiseseeetsesesesseseseesenes 393
50.9 The Template COAecceueueeeuremeieireieieireeeieiseietetreseteeseseset bt tsesessessesessetsesessetsesessessesessssseses 393
50.10 RUNNING the APP ..oucurimiiiiiiciciccci ittt 394
50.11 SUMMATY ..ottt bbb 394

51. An Android Studio Master/Detail Flow Tutorialccceouvueiniieninininiiniiinicescennenssensesnsenenns 395
51.1 The Master/Detail FIOW ... 395
51.2 Creating a Master/Detail FLOW ACHVILY.......coveverreeerreineeeeerreieeenreeeienreeeeesseseeenseseesessesensensenes 396
51.3 The Anatomy of the Master/Detail Flow Template..........ccccoceererrereercrreeeenerreremrerrereesenrerensennenee 397
51.4 Modifying the Master/Detail Flow Templateccccveeeurereenerrereenerrerennennenensenrereesensesensennenee 398
51.5 Changing the Content MOdel..........cccveureueerrereenirreeeeneireeeeneieeerseseeenseseeesseseesessesessessesessessenes 398
51.6 Changing the Detail PANecccccveeeerreeeecrnieeeireeeeieeeeeneeeeesseseesessesensesseseesessesessessesessessenes 400
51.7 Modifying the WebsiteDetailFragment CLass...........cccveueureurereererrereererreremsenreremsenseseesessenensensenee 401
51.8 Modifying the WebsiteLiStACHVILY Class.......cccoeureueererreeemrerreremrerrereeenresenenreseeensesensessesenensenes
51.9 Adding Manifest PErmiSSIONS.cvvueverrevemrerreremerrerenerrerenensesensensesessessesensesseseesessesessessesersessenes
51.10 RUnning the AppliCAtioncceueueecrreeeecrreeeeeireeeieiereeeneeeeerseseesesseseesesseseesessesessessesessessenes
SLIT SUMMATY cooiiiiiiiiii bbb bbb

52. An Overview of Android Intentsccuuueen.

52.1 An Overview of Intents..........ccccccvuveurereurennenn.

52.2 EXplicit INtents......ccveereeurerreeererrecenerneeerernenenne

52.3 Returning Data from an ACHVILY ..o
52.4 TMPLICIE INTEIIES ..vovuirivireireieieireeetctreietet ettt sese et seb et seb et seb et b et seb et sebe st sebesaetsesesaetnenes
52.5 USING INtEN FIIETS.......cuuiuiiiiiicicicicic et ssss s
52.6 Checking Intent Availabilitycccocoiieiiiiriiniirccc e
52.7 SUIMIMATY ..ottt bbbt b bbbt

53. Android Explicit Intents - A Worked Example
53.1 Creating the Explicit Intent Example Application........c.ccocuveeeeerreecencrreeeenernereerenrereesenrenenennenee 411
53.2 Designing the User Interface Layout for MainACtiVItycccoeureueererreremrerrereenerrereesenrenenennenes 411
53.3 Creating the Second ACtiVIty ClaSs.........ceveureremerreeeererrerenenrereeerereeenserenesseseesessesessessesessessenes 412
53.4 Designing the User Interface Layout for ACtiVityB.........ccocveeeverreeererreeeneneeenenreeeenreneeennenes 413
53.5 Reviewing the Application Manifest File
53.6 Creating the Intent.........

53.7 Extracting Intent Data
53.8 Launching ActivityB as a Sub-Activity............

xii

Table of Contents

53.9 Returning Data from a Sub-ACtIVILY.......cocveveureurercrnerriererecreree et seesenne 417
53.10 Testing the APPLCAtION.c.ccuiurercirireereirerreereieetreieee e sese s seesenns 418
53.11 SUMMATY .ottt 418
54. Android Implicit Intents — A Worked EXampleccccoeevuerrinrernininnincnsenncncssennncsessessscsesssessesesnes 419
54.1 Creating the Android Studio Implicit Intent Example Projectccccoeueueueirieirincnennas 419
54.2 Designing the User INterface ... sssssesesenes 419
54.3 Creating the IMPlicit INENtc.cuiiiiciciciciiicee e 420
54.4 Adding a Second Matching ACHVILYc.ccceuruirininiiinisirccse e 420
54.5 Adding the Web View to the Ul.......c.cccciiiiinininiincicsee e ssessessessessesasssesesenns 421
54.6 Obtaining the Intent URL.........ccccoiiiiiriiiiiniciseseisesise e sse s ssessesssssessscsens 421
54.7 Modifying the MyWebView Project Manifest Fileccocvinineincrncineinsicicieceiecnieenennns 422
54.8 Installing the MyWebView Package on a Device..........ccocviureunieneincinerncinceneecieieenineesiaesenens 424
54.9 Testing the APPLCAtION.......c.ocuiuciciciicicieiiicicieiesi et 424
54.10 SUMMATY c..ouiiiiiiiiiiiiiii ettt 425
55. Android Broadcast Intents and Broadcast RECEIVers..........couveirerirriiniceniieiicitcnscescesceneneans 427
55.1 An Overview of Broadcast INTENtS.........cccciiiiiininininii s
55.2 An Overview of Broadcast Receiverscc.c......
55.3 Obtaining Results from a Broadcast....

55.4 Sticky Broadcast Intentscc.ceeecuneee
55.5 The Broadcast Intent Example...........
55.6 Creating the Example APPLiCAtionccccuveueecureurecirernencrneireeireieeeeneiseenesesensessesesessesesessesenne

55.7 Creating and Sending the Broadcast INtent.........ccveuveerneurereirernercenernenenernceenenseneeseseeseneseenenne 430
55.8 Creating the Broadcast RECEIVETc.cocururerciriureciriinecineineereieeeeneseeeeesesenesseseaessesensessesenne 431
55.9 Registering the Broadcast RECEIVET.........cvuureeuriurercirerneeireineererneenenseenessesenesseseaessesessessesenne 432
55.10 Testing the Broadcast EXAMPIEc.cocureurercureurercireuneenneieeresneensenseseseseeseasessesessessesensessesenns 433
55.11 Listening for System BroadCasts..........cocvurereureurercirerrencnneinecnnerneennenseensessesensessesessessesessessesenne 433
55.12 SUMMATY ..ottt 434

56. A Basic Overview of Threads and ASyncTasks.........ccooeveerinrinrerninsinnnncnsennincnsennncsenessscseseessesenee 435

56.1 An OVerview of TRIeadsccocvcucuicicieiiiiirccise e saesaseses
56.2 The Application Main Thread
56.3 Thread Handlers.........ccccecvvuveunnee.
56.4 A Basic AsyncTask Example..........
56.5 Subclassing AsyncTask...................
56.6 TESHING the APD....cuiiiiiiiiiicicicic e st
56.7 Canceling @ TasK.........cocuriuiiniiniinciicciicie et
56.8 SUIMIMATY ...cueiiiiiiiirii ettt

57. An Overview of Android Started and BoUNd SEIVICES.....cccuuureeerrrvrerirrrrnereerrneeesssseneeesssssseesssssssessses

57.1 Started SEIVICES.......vuimiiiiiiiii s
57.2 INEENE SEIVICE .ueviiitrircttcttct ettt
57.3 BOUNA SEIVICE.....cimiiiiiiiiiiii s ss s sa e
57.4 The ANAtOmy Of @ SEIVICE ...cevucriuricieieeetreireereiecrereee e sseseesnns
57.5 Controlling Destroyed Service Restart OPtions..........coceueeecererrecrrerrererrerseemnesseensessesessersesenne
57.6 Declaring a Service in the Manifest File.......c.cocoecnireninncnncncnercerccneeeeneeeneneeeenne
57.7 Starting a Service Running on System Startup
57.8 SUMIMATY ..ot

58. Implementing an Android Started Service - A Worked Example

Table of Contents

58.1 Creating the EXample PrOJECt.......cvveverreeeecrreeeeeireeeieineeeeeteeeeeseseesessesensesseseesessesessessesessessenee
58.2 Creating the SErvice Class........cueeerrereeerreremerrerenerresemenseseesessesessessesessessesessessesessessesessesseses
58.3 Adding the Service to the Manifest File
58.4 Starting the Serviceccocvvererrecerrerrecerernennne

58.5 Testing the IntentService Example...................

58.6 Using the Service Class........cccooeuveeerrerrercrrerrennnne

58.7 Creating the New Service........ccoceeuveuvevcrrerrenncn.

58.8 Modifying the User INtEIface......cocvveverreeeecireeceneirieeeeireecereeeeetseneeessese s ssessesessessesensessenes
58.9 RUNNING the APPLICAtIONccucveuicreeeeerreieeeireecetreeeietreeeeteeeee e ssese s sesessessesensesenes
58.10 Creating an AsyncTask for Service Tasks........cocvevreureeemnerreeemrerrercenerneeenennesensenseneesessesensensenes 453
58.11 SUMMATY ..t bbb bbb s 455

59. Android Local Bound Services — A Worked Example..........ccoccvvurruininrennucnensennucnensensecscnsecsscsesseenes

59.1 Understanding Bound SErviCes...........cccuiiiniiniininiincescie e ssesseesesssssesesesssesesssesesssenes 457
59.2 Bound Service Interaction OPLONSc.eueereveeeereveieerererseerereesessesesessesesessesessessesessessesessesseses 457
59.3 An Android Studio Local Bound Service EXampleccocveeeeveurereineinereeneineeeeneereeeeneeneeenseinenes 457
59.4 Adding a Bound Service to the Project ... 458
59.5 Implementing the BINder ...

59.6 Binding the Client to the Service
59.7 Completing the Example........ccccccoeuriririuninnnn.
59.8 Testing the Application
59.9 Summary.......cccoeeiueueee.

60. Android Remote Bound Services — A Worked Exampleccccccervueeiinirnriinninnnincnnenncnscnnenscsensenns

60.1 Client to Remote Service COMMUNICAtION......cccueuevrerrivemerrereeerrereierrereneeseseeenseseesessesensensenes 465
60.2 Creating the Example ApPlICation........c.ocevcureueencrreeeeneirieenerreeeeerrerenensesensenseseesessesessessesenessenes 465
60.3 Designing the USer INTErfacec.vveverreueeerreeeenerrieeieireeeeeteeeeesseseesessesensenseseesessesessessesessessenes 465
60.4 Implementing the Remote Bound SErvice........ocveureeenerreeeenernercenerneeenerneneeenseseesensesensensenes 466
60.5 Configuring a Remote Service in the Manifest File........ccocoueverreenerneenencnenecncneenennenee 467
60.6 Launching and Binding to the Remote Service........ccveeureenerrereenerneeeeneinecenenreeesenrenensennenes 468
60.7 Sending a Message to the Remote Service
60.8 SUMMATY ..ottt

61. An Android Notifications Tutorialcc..uu......

61.1 An Overview of Notifications..........cccccccoveuuece.

61.2 Creating the NotifyDemo Project....................

61.3 Designing the User INterface ..o
61.4 Creating the Second ACHVILYc.cueuiiciciciciiiritisce et
61.5 Creating a Notification Channelccccciiniininc e
61.6 Creating and Issuing a Basic NOtIfICAtIONccccuuiuiiuriiniinciiicicicieiccieecsiesesesseseseenes
61.7 Launching an Activity from a Notification..........cceceeuriuniinciniincinciscieicicieencessessesessseseneenes 478
61.8 Adding Actions t0 @ NOTHICAIONc..cuueuiuiiieiiiircrre et 480
61.9 Bundled NOtIfICAtIONS ..o saseas 480
61,10 SUMMATY ..ottt e 483

62. An Android Direct Reply Notification Tutorialcceceeurveniniseisisnnnininnsnnenincninneneencsen

62.1 Creating the DirectReplY PIOJECcveueueecrrieeierreeceeireeeeetreieeeteneeensese e esesseseesessesensenenes
62.2 Designing the User Interface.......c.ccoccoceeunerenee.

62.3 Creating the Notification Channel
62.4 Building the RemoteInput Object....................
62.5 Creating the PendinglIntent.........c.ccocceceeurerence.

Xiv

Table of Contents

62.6 Creating the Reply ACHION.cocuveuereirieeecireiceineeeeetreeeeenseeensessesessessesense s ssessesensessesensessesenses 488
62.7 Receiving Direct Reply INPUL.....c..ccvcueueeeirieereineceetreieierreeenetsesensetseneesessesensessesensessesessessesenses 491
62.8 Updating the NOTHCAtIONc.cvcrieercrreeeeeireiceineiceetreeeeeeeetsesensessese s ssessesensessesensessesenses 492

62.9 SUMMATY ..ottt 493

63. An Introduction to Android Multi-Window SUPPOTt........ccceevvnrinnininsenncninsinncnessenscseseessesenee 495
63.1 Split-Screen, Freeform and Picture-in-Picture MoOdes........ccocveveeveereueencerereeneerereeneenereenensenennes 495
63.2 Entering Multi-Window MOde ... ssessessesssssessssnes 496
63.3 Enabling Freeform SUPPOItccoiiuiuiiniincicieieicieciseeseic et sssse s sssassnes 497
63.4 Checking for Freeform SUPPOIT ..ot sae s sassssnes 497
63.5 Enabling Multi-Window Support in an App ... 498
63.6 Specifying Multi-Window AHIIDULESc.ccucurieiciinieciise e 498
63.7 Detecting Multi-Window Mode in an ACHVILYcccceueeuririniniiniinescineiseieseeseiaeeaseneseneans 499
63.8 Receiving Multi-Window NOHHCAONSc..cccuueicieiririiiiisecisecsee e 499
63.9 Launching an Activity in Multi-Window Modecccceuriininincincincincincieieccieneieeinens 500
63.10 Configuring Freeform Activity Size and POSItION.........ccocviuviuniiniinerncinciscicicicicieceeeincinns 500
63.11 SUIMMATY ..ottt e 501
64. An Android Studio Multi-Window Split-Screen and Freeform Tutorial.........c.cccceeerveriurincrnennucnncnnes 503
64.1 Creating the Multi-Window Project........cveereeencrreeeerniencineeeetreneeessenenesseseesessesessesseseeses
64.2 Designing the MainActivity User Interface
64.3 Adding the Second Activity.......coeevevrevcrrerrncrnennee
64.4 Launching the Second ACHVILYccccveueerreernernicinetrieeneeenetsenenetseneesessesessessesensessesensessesenses
64.5 Enabling Multi-Window MOde.........cveirieiinieencirieeineeeeirerenctseeeesensesesessesensessesessessesennes
64.6 Testing Multi-Window SUPPOITccveeuirreeeererreeeeetreeeeerreeeeessesensesseseesessesessessesessessesessessesense
64.7 Launching the Second Activity in a Different Window.........cc.ccvcveeernecnenecencrneeeenerneennes 507
64.8 SUMMATY ..ot 508
65. An Overview of Android SQLite DatabDasescccceeerrreeeeeerrreeeeeessseeeecssssseeecsssssseessssssseessssssssessssssssssns 509
65.1 Understanding Database Tables.............cccuuvciieiiieininiicisessese et ssessessesssssesessnns 509
65.2 Introducing Database SChema ..o 509
65.3 Columns and Datad TYPESc.eecereveereereereeerereieireseietseseeeisesesessesessetsesessessesesssssesessessesessessesesns 509
65.4 Database ROWS ..ot 510
65.5 Introducing Primary Keysccvciriniincincinciieiciieieseicssise e ssssssssssssns 510
65.6 WRAL 1S SQLIEE? ..ttt ettt a et se et stess s e s et saessssesestesssesessssessssesessenesarens 510
65.7 Structured Query Language (SQL)cccuveuuneunueicieinieniiiieiseissese e ssessessesssssesssssns 510
65.8 Trying SQLite on an Android Virtual Device (AVD)ccocvinimninerniinerneeeieieieieeeniaseenens 511
65.9 The Android ROom Persistence LiDIary........ccvecureeeneereeeeneireeeencineeeieireeeeeeseseesessesessesseseene 513
65.10 SUIMMATY ..ottt e 513
66. The Android Room Persistence LiDrary ... 515
66.1 Revisiting Modern App ArChiteCtUreccueueeeercrreeeeerreeeneireeenetrereeessenensesseseesessesensessesenses 515
66.2 Key Elements of Room Database PersisteniCe........cvuueurreuemerrereeerreeemerrerenserseseesesseseesessenennes 515
06.2.1 REPOSILOTY ...ttt 516
66.2.2 ROOM Databasecccuiuiiiiiiiii s 516
66.2.3 Data Access Object (DAQ)cuovcurrecreerrerieererieneeeeee e ssesessessesessessessssessesssessescens 516
00.2.4 BNEIEIES oottt s
66.2.5 SQLite Database.......................

66.3 Understanding Entities

66.4 Data Access Objects.......c.coeurereneen.

66.5 The Room Database.........................

XV

Table of Contents

66.6 THhe REPOSILOTYcvurrieerereecirerreeeietreieesesseeeesetseae e sseseeses s ssesessessesessessesessessesessessesessessesessesenen 522
66.7 In-MemOTy Databasesccvceecrriueeerreieecineecieeeereenseeeee s ssessese e ssesessessesessessenes 523
06.8 SUIMIMATYoviiiiiiiiii bbb bbb 523
67. An Android TableLayout and TableRow Tutorialccccocvruevuirrerrucsinsenscninsinscnsennescssessecsesessecne
67.1 The TableLayout and TableROW Layout VIEWS......c.ccccveueueerereereerereineerereeeereseesessesessessesesseesenes 525
67.2 Creating the Room Database PIOJECtccccuiuiuniiiiiriiniinciiicie e ieceiieeisesesesesssesesseseseenes 526
67.3 Converting to a LinearLayout...........ccooviiiiniiiciiiicic s 526
67.4 Adding the TableLayout to the User Interface............cocveveuniuncencuncencicininenisisessesenssesensennes 527
67.5 Configuring the TabIEROWSc.ccccuiiciiiiiiiirircrse et 528
67.6 Adding the Button Bar to the Layout ..o 529
67.7 Adding the ReCyClerVIEW.........c.cucuiiiiiciciiiiiicisisesse s 530
67.8 Adjusting the Layout Margins ... ssessessessssesssesssssesssssessssses 531
67.9 SUIMIMATY ..ottt bbbt 531
68. An Android Room Database and Repository Tutorial

68.1 About the RoomDemo Project..........ccccneuneee.
68.2 Modifying the Build Configuration
68.3 Building the Entity.......cccooceveneveccnernencrnernennn.

68.4 Creating the Data Access Object........ccveuuee.

68.5 Adding the Room Database........ccccocvererrerenee.

68.6 Adding the Repositoryccoceeenervercurerrennnne

68.7 Modifying the VIEWIMOMEL.........ccocuiuererrieeecireeeeireieieineeeeeneeeeenseseeensesessenseseesessesessessesessessenes
68.8 Creating the Product Item LayOuLc..ceeureeeeerreeeenerreeeeenreeeneneeeiesseseesesseseesessesessessesensessenes
68.9 Adding the RecyclerView Adapter.........ccueeecineeeeneineeeeenreieeenreeeienseseeenseseeessesessessesensessenes
68.10 Preparing the Main Fragmentccocveeeeeureeeenerreeemnerneeeeeneeeeenseseeessesensesseseesessesessessesessessenes
68.11 Adding the BUttON LiStENETS.......coveverreeeecrreeeeetreeeierreeeeeneseeensesessessesensessesensessesessessessssessenes
68.12 Adding LiveData ODSEIVELScoveverreueeerreremerreeenetresenesseseesensesessessesessessesessessesessessesesessenes
68.13 Initializing the ReCYCIEIVIEW.......c.vuevirieeicireeeecireecieireecetreeeeeteseesenese s ssesessessesensessenes
68.14 Testing the ROOMDEIMO APDcucvreuemirreveeerrireeeireeeeetrereeessereesensesessesseseesessesessessesessessesesessenes
68.15 SUMMATY ..ottt bbb bbb

69. Accessing Cloud Storage using the Android Storage Access Framework...........ccccceveevuciensecscnennucnne

69.1 The Storage Access FrameworK ...
69.2 Working with the Storage Access Framework...
69.3 Filtering Picker File LiStingscccccoeuvuureuriunnn.
69.4 Handling Intent ReSUILS.........cocuiiciiiiiiciciccirciscses e
69.5 Reading the Content 0f @ FIle ..o
69.6 Writing Content t0 a FIle ...t
69.7 Dieleting @ File.......c.cuuiuiuiiiiiicicicccicccec et
69.8 Gaining Persistent Access t0 a File........ccccuovuiiiniiiinininccce e
69.9 SUIMIMATY ...ttt

70. An Android Storage Access Framework EXample.........coccovcvinirnnnrininiinnnnnnininncnnnenenensncnsene

70.1 About the Storage Access Framework Example.........c.ocevcureeeenerneecenenneecenerneneenennereesennenensennenee
70.2 Creating the Storage Access Framework Example
70.3 Designing the USer INTErfacecvueuerreueeerreeeeeireeeieireeeeneeeeesseseesessesensessesessessesessessesessessenes
70.4 Declaring Request Codes.........coceunervecrrernenecn.

70.5 Creating a New Storage File........ccccocoveecrneneace.

70.6 The onActivityResult() Method
70.7 Saving to a Storage File........cccoveveeernervcncrnernencnn.

Xvi

Table of Contents

70.8 Opening and Reading a Storage Filec.ccccvrcinircnirencnenecneeceeeneseeeseseseneseesenne 564
70.9 Testing the Storage Access APPLICAtIONc.ccueuecererrecereirecirereeerereeenereee e nsereesenne 566
70.10 SUMMATY ..ottt bbbt 566

71. Implementing Video Playback on Android using the VideoView and MediaController Classes 567
71.1 Introducing the Android VideoView Classc.ccccuuiiriniiniiniinernciseeseeeneiesensesissaesenenns 567
71.2 Introducing the Android MediaController CLassccooveiuremnienerncincrseesereieieieeriaeeenenn 568
71.3 Creating the Video Playback EXamplec.ccccuorueiimininininiineiniisesciseicieseseesessessesnesenennns 568
71.4 Designing the VideoPlayer Layout ... scsesesesessessessesssssessscsns 568
71.5 Configuring the VIdEOVIEWccviuiuniuiincincicieieieiceieseiccise e sse s ssessssnes 569
71.6 Adding Internet PErMISSIONccocuiuriuiureincuneicieeieiiiisieeeiscissese e sse s s ssssssaes 570
71.7 Adding the MediaController to the Video VIeW........ccccouririniiniiniinerncincinciciciciciesiseneeenenns 571
71.8 Setting up the onPreparedLiStENETccvcuueucueiciiiirieeiiriicise e sa e 572
71.9 SUIMMATY ..ottt et 573

72. Android Picture-in-Picture MOde..........ccoeuieniiininiiniiintieiieiseiscnscntsesssesssesssesssesessesssseseans
72.1 Picture-in-Picture Features................
72.2 Enabling Picture-in-Picture Mode
72.3 Configuring Picture-in-Picture Parameters
72.4 Entering Picture-in-Picture Mode..........ccccveununce
72.5 Detecting Picture-in-Picture Mode Changes
72.6 Adding Picture-in-Picture Actions.........ccccoeeuunce
72.7 SUIMIMATY oottt bbb bbb bbb bbb bbb bbb bbb

73. An Android Picture-in-Picture Tutorial..........ccoevueeeneniniieiinnneeeetntnsc et
73.1 Adding Picture-in-Picture Support to the Manifest..........ccccocveuviunerncincrseinceneicicieneceenenns
73.2 Adding a Picture-in-Picture BUttON ..o ssessesaessssesasnns
73.3 Entering Picture-in-Picture Modec.ccvcuvuciucirieiniiinisiinessese e ssessessessesssssessssnes
73.4 Detecting Picture-in-Picture Mode Changes............c.ccoeueerinininiincincinceneineicieceiececeseneas
73.5 Adding a Broadcast RECEIVET ..ot sse s
73.6 Adding the PiP ACHON.......ccouuiuiiiiriiiicccicc et

73.7 Testing the Picture-in-Picture Action
73.8 SUMMATY ..ottt

74. Video Recording and Image Capture on Android using Camera Intents

74.1 Checking for Camera SUPPOIT.......ccvwueeecurerrercrremreeurereeeaserseessessesessessesessesseseasessesessesseseaessesenns
74.2 Calling the Video Capture INTENt.........ccocrurererrerrereirirreerneireeiresreenserseeseseesessessesesessesensessesenns
74.3 Calling the Image Capture INTeNt.......c.ccoeureurererreurecirerreeireeeeirereeensers e sereesesessesessessesenseseesenne
74.4 Creating an Android Studio Video Recording Project...........cececvueevcrnerrerernernecenernecnnernenenne
74.5 Designing the User Interface LayOuLc.ccecuveurecererrecrneineneinerneennenneesessesensessesensessesenessesenne
74.6 Checking for the Camera ... sesesessessesnns
74.7 Launching the Video Capture INENt.........c.cccureureeureurerernernecinerneennerseeneseesensessesessessesensessesenne
74.8 Handling the Intent REtUIT «....c.ocueveuieeercineiricinerrecireireenreeeereseesessessese e s ssesessessesensessesenns
74.9 Testing the APPLICAtION......c.ccvcrrierercireieeeireirereieerereee e sese s seeaenns
74.10 SUMMATY ..ottt bbb

75. Making Runtime Permission Requests in Android

75.1 Understanding Normal and Dangerous Permissions
75.2 Creating the Permissions Example Project
75.3 Checking for a Permission..........cccecveuvcuniercrncenn.
75.4 Requesting Permission at Runtime

xvii

Table of Contents

75.5 Providing a Rationale for the Permission ReqUeStccccveueverreeeercrreeeenernereenerrereeenrenenennenes 600
75.6 Testing the PermiSsions APP.......cccvecereeeeeerereeerreremersesemessesemsessesessessesessessesessessesessessesesesseses 602
75.7 SUIMMATY ..ot bbb bbb bbb bbb bbb 602
76. Android Audio Recording and Playback using MediaPlayer and MediaRecorderccecceuerunnee. 603
76.1 Playing AUGIO ..ottt 603
76.2 Recording Audio and Video using the MediaRecorder Class..........ccccoeueeuriuninirniurerniercrncenes 604
76.3 About the EXamPle PrOJECTc.eucuiueieirieeieireeeicireeeicisesetetsesetetsesetessesessessesessessesessessesessssneses 605
76.4 Creating the AUdIOADPDP PrOJECt.......ccouiuiiiiiiirctse e 605
76.5 Designing the User INterface ..o 605
76.6 Checking for Microphone Availability...........cccoooniiininiincnincincccceeeceescesesseeenes 606
76.7 Performing the Activity INftialiZationcccceueiniiiininiincinecsccecceeeeceese e 607
76.8 Implementing the record Audio() Method...........ccccviriiniiniiniincincinciciciceecescesesseieenes 608
76.9 Implementing the stopAudio() Method..........cccoviiiiniiniinciniincincicicieeeesresseseseeenes 609
76.10 Implementing the playAudio() method........ccocviiiniiininincisceceececeeeeenes 609
76.11 Configuring and Requesting PermisSionsccceereuniurcueuncencisceemmcinieenesssesenssesesssesesseenes 610
76.12 Testing the APPLICAtION. ..ot 613
76.13 SUIMIMATY ...ooeeiiiiiit ettt bbb 613

77. Working with the Google Maps Android API in Android Studiococcvvvenveninnirisnsenscnncsncsnnennes 615

77.1 The Elements of the Google Maps Android APTccocvenerneeneneeeenerneeenenreeesennenenennenes 615
77.2 Creating the Google Maps PrOJECT.......c.vvueverreeercrreeeeerrieeeerrereeesseseesensesensensesessessesessessesensessenes 616
77.3 Obtaining Your Developer SIZNAtUrec..ccreeeeerreeemnerreeemersereeensesensenseseesessesessesseseesessenes 616
77.4 Adding the Apache HTTP Legacy Library Requirementc..cceeureeeererrereenerreeeererrerensennenee 617
77.5 Testing the APPLICAtION.....c.ccvcueueercirieeeerreiceetreeeetreee et sese e ssese st sesessessesensessenes 617
77.6 Understanding Geocoding and Reverse GeOCOdINgcvuevereveererrereererrereererreveesenrenensennenee 618
77.7 Adding a Map t0 an APPLICAtIONc.cueveueemcrreeeeerreeeeeireeeeetreeeeeteseesensese s ssesessessesensessenes
77.8 Requesting Current Location Permission...........cccocvviniiinnnccccnnens
77.9 Displaying the User’s Current LOCAtIONc.ceeureueereureeemrerrereenernereeennesenenseseeensesessessesenensenes
77.10 Changing the Map TYPec.vceureeeerreeeecrreeeeeireeeeessesemesseseesessesessessesessessessssessesessessesessessenes
77.11 Displaying Map Controls t0 the USeTccveureueererreeemnerreeeerenrereeennerenensesenensesensessesensessenes
77.12 Handling Map Gesture INteraction........ccocveeecureeeererreeemnerneremsersereeensesemenseseesensesessessesensessenes
77.12.1 Map Zooming Gestures..............ccceureuenee
77.12.2 Map Scrolling/Panning Gestures.............
77.12.3 Map Tilt Gestures......c..coceureveuerrercrrerecnnes
77.12.4 Map Rotation Gestures.........cceceururveueneee.
77.13 Creating Map Markers.........ccoceeeunervecrrernennnn.
77.14 Controlling the Map Camerac.ccccveueneen.
77.15 SUMMATY c.oviiiiiriiii bbb bbb bbbt bbb

78. Printing with the Android Printing Framework

78.1 The Android Printing ArChIteCtUIEc.ccuuiuiuiuriiniireiiiseecie e
78.2 The Print Service PIUGINSccucuiuiiiiiiciciiiciiniscsese st
78.3 GOOGle CloUd PriNf.......cciuiiiiiiiiciciciciciiicieicicsi e
78.4 Printing to GOOGle DIIVe.........ccuiuiiiiiciciciiicicsisese et
78.58aVE S PDF ...
78.6 Printing from Android DEVICESccccucuriiriuiinimiiiriniiseisicse e esessesesssssesesesssesessesesssnes
78.7 Options for Building Print Support into Android APps........cccceeceecucirieenineneniererseiserseenes 632

78.7.1 Image Printing..........cocovveieienieinenniiccceceeeeccan

78.7.2 Creating and Printing HTML Content

78.7.3 Printing @ Web Page........c.ccociiiiiiriicccccscc e

Xviii

Table of Contents

78.7.4 Printing a Custom DOCUMENLt ...t 635
78.8 SUIMIMATY ..ottt bbb bbb 635

79. An Android HTML and Web Content Printing EXamplecccccovurrurninrennuenennenscncnsensscssenseessessennee 637
79.1 Creating the HTML Printing Example Application.cceceeuveuniencuncincincenceneicncienseeeenenns 637
79.2 Printing Dynamic HTML Content ... 637
79.3 Creating the Web Page Printing Example.........cccccuocuininininininincncinesceeiciesesnecissnesesenns 640
79.4 Removing the Floating Action BUttONc.cc.ccucueiciriniiniininesesecseceesesseceesaessessesanenns 640
79.5 Designing the User Interface Layoutc.ccccuvcuueiocieinineininineseise e 640
79.6 Loading the Web Page into the WebVIew ... 642
79.7 Adding the Print Menu OPtion..........ccocuuvcucicicieieieinieseisisisesssese e ssesssssesssssesasssns 643
79.8 SUIMIMATY ...ttt bbb 645
80. A Guide to Android Custom Document Printing.........cocecvuirisnnninisensnsneninnisnnenencnnseeene 647
80.1 An Overview of Android Custom Document Printingc.cccecveeeverreeenerreeererreeeererrenennes 647
80.1.1 Custom Print AdAPLers.......coceecrcueureceeinecirireeietrecietseie et stseseseeae st seesetseaebessesesesnens 647
80.2 Preparing the Custom Document Printing Project.......c.cccvencrreeenerreemnerrereeserserensensenennes 648
80.3 Creating the Custom Print Adapler.......ccvceeencrrieenerneeenereeetreeenesseseeessesenessesessessesenses 649
80.4 Implementing the onLayout() Callback Method.........ccccveeueureeeniireeinerreeeneireeeeerreeeeenrenennes 650
80.5 Implementing the onWrite() Callback Methodcceeuveevcireemneirececrrecereeeerreeeenreeennes 653
80.6 Checking a Page is In RANGEc.vueverrieeiirriceicctreeeeeeeseeeesetsesense s sseseesessesensessesenses 655
80.7 Drawing the Content on the Page Canvascccecveeererreeererreremnerneeeeerseensensesensessesemsessesense 656
80.8 Starting the Print JOD ..ot ssesennes 658
80.9 Testing the APPLICALION.ccvuevcirieeicireeecireecetreeeeeteee et sese s sese st sesensessesennes 659
80.10 SUMMATY ..ttt bbb bbbt 659
81. An Introduction to Android APP LinKS.......cccccvvvirvuinvinrenninsinneinininsiincnsinnenisesssssesessesessessceeses 661
81.1 An Overview of AnNdroid APP Linksccccveeeereureeeineireeeieineeieneeieiseeeeeiseeeseeseseeessesesessesesnes 661
81.2 AP Link INtent FIIETSceuiviiirieeicireeeicireteicinceetet ettt sese st sesetse st sesessessesesaessesennc 661
81.3 Handling App Link INTENESc.vuiuiiieiicircicicieieiciie et ss s sssassas 662
81.4 Associating the App with @ Website..........cocuoiuviiiiiiiciniiice e 662
815 SUMMATY ..ottt 663
82. An Android Studio App Links Tutorialcccccceveeiiviiiirninsiininiininnencetnencst st sesesesssssessesaes 665
82.1 About the EXamPLe APD ..cecvreceeirireieirieieineeieireieisteetstseseisteae sttt sseess s sesessssesesees 665
82.2 The Database SChema ... 665
82.3 Loading and RUNNING the PTOJECtc..ccueuiueeeineeencirieerreeetreeeectreeeesesseseesessesensessesensessesennes 666
82.4 Adding the URL MapPing.......ccoeureeerrerreremerrevemenreseeessesemsessesemsessesessessessssessesessessessssessesessessesesss 667
82.5 Adding the INtent Filter ..ottt ssese e ssesensessesensessesenses 670
82.6 Adding Intent Handling Code..........ccveueurieeneineeencrrieeineeeineeenetsenenesseneesessesensessesensessesenses 670
82.7 Testing the APP LiNK.....ccciieiiriceireeeircceeneneeetreeeensene s ssessese s ssesessessesessessesessessesense 674
82.8 Associating an App Link with @ Web SItec..cvveerreneiniecireeereeereeeneeeeeseeeeensenennes 674
82.9 SUMMATY ..ot 676
83. A Guide to the Android Studio Profiler 677
83.1 Accessing the Android PrOfIler ...
83.2 Enabling Advanced Profiling.............
83.3 The Android Profiler Tool Window
83.4 The Sessions Panel..........cccccccecvuuniuncen.
83.5 The CPU Profiler........cccceovuvuunnce.
83.6 MEMOTY PIOfIETeuieiieiireecicircicicircec ettt sese st s ettt seb ettt ses st sesenaes

Xix

Table of Contents

83.7 NetWork PrOfIlercuiviiiiiiiicicicn s 684
83.8 ENEIGY PrOfIlEr......oucvieiieiicicecctcceeteeeeteeeteeeeset e sese s ssese s sesensessesensesenes 686
83.9 SUMMATY ..ot 686

84. An Android Biometric Authentication Tutorial........ccecevevevinintiieiennntiineetenne e
84.1 An Overview of Biometric AUthentication...........coceeureuiirciniincincincieicieieeeceeseseseseseneenes 687
84.2 Creating the Biometric Authentication Project ... 687
84.3 Configuring Device Fingerprint Authenticationucueevcuvcuvcicicinineniseenesssessesenseenes 688
84.4 Adding the Biometric Permission to the Manifest File........ccccocccuiuciorinininininincnincncnas 688
84.5 Designing the User INterface ..o 689
84.6 Adding a Toast Convenience Method...........ccoueiriiiiriniinciniincincciccicieeeceesessese e 689
84.7 Checking the Security SEtNGS........ccccueueiiiiriiririirirenise e 690
84.8 Configuring the Authentication Callbacks..........ccceuuriuiiinerniincincineieicinieeeeeseeseesceenes 691
84.9 Adding the CancellationSigNal.........c.ccucuciciuiiiniiniiiiireisce e 692
84.10 Starting the Biometric PrOMPLccccucuiriuiiiiiniiiireeisesicse e esesseesessssssssesssesessesesseaes 693
84.11 TeStiNg the PIOJECt......ciuiuiicicicicicicieiicacieieisest et 693
84,12 SUMMATY ..ottt bbb 695

85. Creating, Testing and Uploading an Android App Bundle..........cccovvvinirunsnsnincncsnsnscnesscseesennes

85.1 The Release Preparation Process
85.2 Android App Bundles.......c.ccoeveurneernnecrrinennnes

85.3 Register for a Google Play Developer Console Account
85.4 Configuring the App in the COonsOleccvveirieireirieeenerreieeeereierreee s nsessenes
85.5 Enabling Google Play AP SIGNING......c.cceveureremerrieeererrieeeenreeenerereeenseseesensesensessesessessesesessenes
85.6 Creating a Keystore Filecvceeriecineeeeeieineeeeeneeeeetseseesessesessessesensessesessessesensessenes
85.7 Creating the Android App Bundle..........ccocueeiireeiniinieeireceeeeieirereeerereeesseseeessesensensenes
85.8 Generating Test APK Filesccvuueirreeicineecirecieineeeeneieeenseseesessese s ssessesessessesensessenes
85.9 Uploading the App Bundle to the Google Play Developer Console...........ccccoeureuevrerreeerernenee 704
85.10 Exploring the App BUndIec.cc.ceeiiecinicccereeeieeeeeienneseeenseseesensesessessesensessenes
85.11 Managing TESTETSccccuviiiiriiieiiiiiiereietce ettt sese s sssss
85.12 Uploading New App Bundle ReVISIONS...........ccocureueeerreeemerreeeeerreneeenrerenensesenenseseesessesenessenes
85.13 Analyzing the App Bundle Filecccoeencninccreceneeienereeseseeensesenensesensensenes
85.14 Enabling Google Play Signing for an Existing App
85.15 SUMMATIY ..o

86. An Overview of Android Dynamic Feature Modules.......................

86.1 An Overview of Dynamic Feature Modules..........ccoereveeneurereineireeeineineeeeneineseeseesesesseesesesseenenes
86.2 Dynamic Feature Module ATChIiteCtUrec.eveureeeereureeeineireieieireeeieireeeeeeseseeeesesesesseseseesenes
86.3 Creating a Dynamic Feature Module ...
86.4 Converting an Existing Module for Dynamic Delivery...........cccccucuciorineninininiererneeserneenes 714
86.5 Working with Dynamic Feature Modules.............ccceuriuiiniuniincincincineicinieecsssessesesssesenseenes 716
86.6 Handling Large Dynamic Feature Modulescccocvinuniincincincineicinininissnessisensseseneenas 718
86.7 SUIMIMATY ..ottt bbbt 719

87. An Android Studio Dynamic Feature Tutorial.........coccecerrverisisuineisnsenininnsnnneninncnneneensssene

87.1 Creating the DynamicFeature Project.........occueercirieeenerreeeeernencienreeeeeiseseeessesessensesenensenes
87.2 Adding Dynamic Feature Support to the Projectcceeneeencrneecenerneeeenenrecesennenensennenee
87.3 Designing the Base Activity User Interface
87.4 Adding the Dynamic Feature Module.............
87.5 Reviewing the Dynamic Feature Module........
87.6 Adding the Dynamic Feature Activity.............

Table of Contents

87.7 Implementing the launchIntent() Method..........ccecureeerreemneireemneireecreeereeeetseeeeensenennes 727
87.8 Uploading the App Bundle for Testing..........ccocveeerreeererreemnerreeenerneenenreeeneesesenessesenessesennes 728
87.9 Implementing the installFeature() Methodccocveeerneercineceneineeereeereeeeerseeeeensenennes 729

87.10 Adding the Update LISLENETccccoeureueeerreeeeerrieeeerreeeeersenenessesensessesensessesessessesessessesessessesense 731
87.11 Handling Large DOWNIOAAS.........c.ccureueeerreueenerrieceerrieeienneeenetseseesesseseesessesensessesensessesensessesenses 734
87.12 Using Deferred INStallationcccvceeeureeeecrneecenerrieeeenneenerrenenetseseesessesessessesensessesensessesenses 736
87.13 Removing @ Dynamic MOAUIEc.oceueuiernciniceneirieeneeereeeectsenensessesensesseseesessesessessesenses 736
87.14 SUIMIMATY ..ottt bbb bbb bbb 737

88. An Overview of Gradle in ANdroid StUAIO.....ccccvueeeerrrreeeeerirreeeeeirreeeeeerrsneeeessssseeesssssseeessssssesessssssseesns 739

88.1 An OVerview of Gradle ..o
88.2 Gradle and Android StUAIO ...
88.2.1 Sensible Defaultscccocriiiiiniiiincccc s
88.2.2 DIEPENAEIICIES.euveeeuerieereirieeietreicitiseae sttt sttt
88.2.3 BUIld VATTANTS ...t
88.2.4 Manifest ENIIEScocuuiuiuiiiiiirciiiceictc e cssiss e
88.2.5 APK SIGNING.....ouiiiiiiiiiiiiiii s
88.2.6 PrOGUAId SUPPOIL....eueuerieieciriereicitireicieieeaeiseis ettt ese st ens
88.3 The Top-level Gradle Build File.....
88.4 Module Level Gradle Build Files
88.5 Configuring Signing Settings in the Build File.........
88.6 Running Gradle Tasks from the Command-line
88.7 SUIMMIATY ..ottt

XXi

Chapter 1

1. Introduction

In 2018 Google introduced Android Jetpack to the developer community. Designed to make it quicker and
easier to develop modern and reliable Android apps, Jetpack consists of a set of tools, libraries and architectural
guidelines. The main elements of Android Jetpack consist of the Android Studio Integrated Development
Environment (IDE), the Android Architecture Components and the Modern App Architecture Guidelines, all
of which are covered in this latest edition of Android Studio Development Essentials.

Fully updated for Android Studio 3.4 and Android 9, the goal of this book is to teach the skills necessary to
develop Android based applications using the Java programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android development
and testing environment. An overview of Android Studio is included covering areas such as tool windows, the
code editor and the Layout Editor tool. An introduction to the architecture of Android is followed by an in-
depth look at the design of Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle
management, Room database access, app navigation, live data and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, camera
access and the playback and recording of both video and audio. This edition of the book also covers printing,
transitions and cloud-based file storage.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers and collapsing toolbars.

In addition to covering general Android development techniques, the book also includes Google Play specific
topics such as implementing maps using the Google Maps Android API, and submitting apps to the Google Play
Developer Console.

Other key features of Android Studio 3.4 and Android 9 are also covered in detail including the Layout Editor,
the ConstraintLayout and ConstraintSet classes, constraint chains and barriers, direct reply notifications and
multi-window support.

Chapters also cover advanced features of Android Studio such as App Links, Dynamic Delivery, the Android
Studio Profiler and Gradle build configuration.

Assuming you already have some Java programming experience, are ready to download Android Studio and
the Android SDK, have access to a Windows, Mac or Linux system and ideas for some apps to develop, you are
ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/androidstudio34/index.php

The steps to load a project from the code samples into Android Studio are as follows:

https://www.ebookfrenzy.com/retail/androidstudio34/index.php

Introduction
1. From the Welcome to Android Studio dialog, select the Open an existing Android Studio project option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/androidstudio34.html

In the event that you find an error not listed in the errata, please let us know by emailing our technical support
team at feedback@ebookfrenzy.com. They are there to help you and will work to resolve any problems you may
encounter.

1.4 Download the eBook

Thank you for purchasing the print edition of this book. If you would like to download the PDF version of this
book, please email proof of purchase (for example a receipt, delivery notice or photo of the physical book) to
feedback@ebookfrenzy.com and we will provide you with a download link for the book in PDF format.

mailto:feedback%40ebookfrenzy.com?subject=
https://www.ebookfrenzy.com/errata/androidstudio34.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves a number of steps consisting of installing the Android
Studio Integrated Development Environment (IDE) which also includes the Android Software Development Kit
(SDK) and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS and Linux based systems.

2.1 System Requirements

Android application development may be performed on any of the following system types:
o Windows 7/8/10 (32-bit or 64-bit)

o macOS 10.10 or later (Intel based systems only)

o Linux systems with version 2.19 or later of GNU C Library (glibc)

o Minimum of 3GB of RAM (8GB is preferred)

 Approximately 4GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio Package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio version 3.4 which,
at the time writing is the current version.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for Android Studio 3.4
should provide the option to download the older version in the event that these differences become a problem.

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

https://developer.android.com/studio/index.html

Setting up an Android Studio Development Environment

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-ide-<version>-
windows.exe) in a Windows Explorer window and double-click on it to start the installation process, clicking
the Yes button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the task bar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the executable and selecting the Pin to Taskbar
menu option. Note that the executable is provided in 32-bit (studio) and 64-bit (studio64) executable versions. If
you are running a 32-bit system be sure to use the studio executable.

2.3.2 Installation on macOS

Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-ide-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The
Android Studio package will then be installed into the Applications folder of the system, a process which will
typically take a few minutes to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:

unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a sub-directory named android-studio. Assuming,

therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:

./studio.sh

When running on a 64-bit Linux system, it will be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:

sudo apt-get install 1ibc6:1386 libncurses5:1386 libstdc++6:1386 1ib32z1 libbz2-
1.0:1386

On Red Hat and Fedora based 64-bit systems, use the following command:

sudo yum install z1ib.i686 ncurses-1libs.i1686 bzip2-1libs.1686

2.4 The Android Studio Setup Wizard

The first time that Android Studio is launched after being installed, a dialog will appear providing the option to
import settings from a previous Android Studio version. If you have settings from a previous version and would
like to import them into the latest installation, select the appropriate option and location. Alternatively, indicate
that you do not need to import any previous settings and click on the OK button to proceed.

Next, the setup wizard may appear as shown in Figure 2-2 though this dialog does not appear on all platforms:

Figure 2-2
If the wizard appears, click on the Next button, choose the Standard installation option and click on Next once
again.

Android Studio will proceed to download and configure the latest Android SDK and some additional components
and packages. Once this process has completed, click on the Finish button in the Downloading Components
dialog at which point the Welcome to Android Studio screen should then appear:

Setting up an Android Studio Development Environment

Figure 2-3
2.5 Installing Additional Android SDK Packages

The steps performed so far have installed Java, the Android Studio IDE and the current set of default Android
SDK packages. Before proceeding, it is worth taking some time to verify which packages are installed and to
install any missing or updated packages.

This task can be performed using the Android SDK Settings screen, which may be launched from within the
Android Studio tool by selecting the Configure -> SDK Manager option from within the Android Studio welcome
dialog. Once invoked, the Android SDK screen of the default settings dialog will appear as shown in Figure 2-4:

Figure 2-4

Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are available for update, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-5:

Setting up an Android Studio Development Environment

Figure 2-5

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, a number of tools are also installed for building Android applications.
To view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-6:

Figure 2-6

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

« Android SDK Build-tools

 Android Emulator

« Android SDK Platform-tools

 Android SDK Tools

» Google Play Services

« Intel x86 Emulator Accelerator (HAXM installer)
« ConstraintLayout for Android

o Solver for ConstraintLayout

Setting up an Android Studio Development Environment
« Android Support Repository

« Google Repository

» Google USB Driver (Windows only)

In the event that any of the above packages are listed as Not Installed or requiring an update, simply select the
checkboxes next to those packages and click on the Apply button to initiate the installation process.

Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

2.6 Making the Android SDK Tools Command-line Accessible

Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. In order for the operating system on which you are
developing to be able to find these tools, it will be necessary to add them to the system’s PATH environment
variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):

<path to android sdk installation>/sdk/tools

<path to android sdk installation>/sdk/tools/bin

<path to android sdk installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-7:

Figure 2-7

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 7

1. Right-click on Computer in the desktop start menu and select Properties from the resulting menu.

2. In the properties panel, select the Advanced System Settings link and, in the resulting dialog, click on the
Environment Variables... button.

3. Inthe Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on Edit.... Locate the end of the current variable value string and append the path to the Android platform
tools to the end, using a semicolon to separate the path from the preceding values. For example, assuming
the Android SDK was installed into C:\Users\demo\AppData\Local\Android\sdk, the following would be

Setting up an Android Studio Development Environment

appended to the end of the current Path value:
;C:\Users\demo\AppData\Local\Android\sdk\platform-tools; C:\Users\demo\AppData\
Local\Android\sdk\tools; C:\Users\demo\AppData\Local\Android\sdk\tools\bin

4. Click on OK in each dialog box and close the system properties control panel.

Once the above steps are complete, verify that the path is correctly set by opening a Command Prompt window
(Start -> All Programs -> Accessories -> Command Prompt) and at the prompt enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the tools path setting by attempting to launch the AVD Manager command line tool (don’t
worry if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most
likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. Follow the steps outlined for Windows 7 starting from step 2 through to step 4.

Open the command prompt window (move the mouse to the bottom right-hand corner of the screen, select the
Search option and enter cmd into the search box). Select Command Prompt from the search results.

Within the Command Prompt window, enter:
echo %Path%
The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that

the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command line options when executed.

Similarly, check the fools path setting by attempting to run the AVD Manager command line tool (don’t worry if
the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most
likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

Setting up an Android Studio Development Environment

operable program or batch file.

2.6.3 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 7 starting from step 3.

2.6.4 Linux

On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin:/home/demo/android-studio/bin: $PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

A number of techniques may be employed to modify the $PATH environment variable on macOS. Arguably
the cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to
$PATH. Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be
configured by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Updating Android Studio and the SDK

From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, click on the Configure -> Check for Update menu option within
the Android Studio welcome screen, or use the Help -> Check for Update menu option accessible from within
the Android Studio main window.

2.8 Summary

Prior to beginning the development of Android based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS and Linux.

10

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of a simple Android application project using Android Studio. Once the
project has been created, a later chapter will explore the use of the Android emulator environment to perform a
test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a very simple currency conversion calculator (so simple,
in fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project
will also make use of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

11

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
simply click on the Start a new Android Studio project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the option to create a Basic Activity on
the Phone and Tablet screen. The Basic Activity option creates a template user interface consisting of an app bar,
menu, content area and a single floating action button.

Figure 3-2
With the Basic Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:

com.mycompany.androidsample
If you do not have a domain name you can enter any other string into the Company Domain field, or you may

use example.com for the purposes of testing, though this will need to be changed before an application can be
published:

com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

12

Creating an Example Android App in Android Studio

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the SDK that will be used in most of the
projects created in this book unless a necessary feature is only available in a more recent version. While Android
Studio allows older SDK versions to be selected, many of the security and privacy features built into Android
were only introduced after the API 25 SDK was released. To improve app security, Google announced that
starting in August 2018 the Google Play store will only accept new apps built using API 26 or newer. This same
restriction was also applied to updates of existing apps after October 2018.

Figure 3-3
Finally, change the Language menu to Java and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application

At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4

The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which

13

Creating an Example Android App in Android Studio

information can be displayed. By default, this panel will be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

Figure 3-5

The example project created for us when we selected the option to create an activity consists of a user interface
containing a label that will read “Hello World!” when the application is executed.

The next step in this tutorial is to modify the user interface of our application so that it displays a larger text view
object with a different message to the one provided for us by Android Studio.

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. This layout file includes the app bar (also known as an
action bar) that appears across the top of the device screen (marked A in Figure 3-6) and the floating action
button (the email button marked B). In addition to these items, the activity_main.xml layout file contains a
reference to a second file containing the content layout (marked C):

Figure 3-6
By default, the content layout is contained within a file named content_main.xml and it is within this file that

14

Creating an Example Android App in Android Studio

changes to the layout of the activity are made. Using the Project tool window, locate this file as illustrated in
Figure 3-7:

Figure 3-7

Once located, double-click on the file to load it into the user interface Layout Editor tool which will appear in
the center panel of the Android Studio main window:

Figure 3-8

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon.

As can be seen in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be

noted, however, that not all user interface components are obviously visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual

15

Creating an Example Android App in Android Studio

user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
with a single child in the form of a TextView object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to make sure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
magnet icon. When disabled the magnet appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:

Figure 3-11

16

Creating an Example Android App in Android Studio

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the fext property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-13:

Figure 3-13

The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
17

Creating an Example Android App in Android Studio

button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-15. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-15

When clicked, a panel (Figure 3-16) will appear describing the nature of the problems and offering some possible
corrective measures:

Figure 3-16

Currently, the only warning listed reads as follows:

Hardcoded string "Convert", should use @string resource

This 118N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing

18

Creating an Example Android App in Android Studio

the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-17).
Within this panel, change the resource name field to convert_string and leave the resource value set to Convert
before clicking on the OK button.

Figure 3-17

It is also worth noting that the string could also have been assigned to a resource when it was entered into the
Attributes panel. This involves clicking on the narrow button to the right of the property field in the Attributes
panel and selecting the Add new resource -> New String Value... menu option from the resulting Resources
dialog. In practice, however, it is often quicker to simply set values directly into the Attributes panel fields for
any widgets in the layout, then work sequentially through the list in the warnings dialog to extract any necessary
resources when the layout is complete.

The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the widget palette, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-18:

19

Creating an Example Android App in Android Studio

Figure 3-18

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-19:

Figure 3-19
Change the id to dollarText before proceeding.

3.6 Reviewing the Layout and Resource Files

Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
content_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly in order to make user interface changes and, in some instances, this may actually be
quicker than using the Layout Editor tool. At the bottom of the Layout Editor panel are two tabs labeled Design

20

Creating an Example Android App in Android Studio

and Text respectively. To switch to the XML view simply select the Text tab as shown in Figure 3-20:

Figure 3-20

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the Button object. We can also see that the text property of the Button is set to our
convert_string resource. Although varying in complexity and content, all user interface layouts are structured in
this hierarchical, XML based way.

One of the more powerful features of Android Studio can be found to the right-hand side of the XML editing
panel. If the panel is not visible, display it by selecting the Preview button located along the right-hand edge of the
Android Studio window. This is the Preview panel and shows the current visual state of the layout. As changes
are made to the XML layout, these will be reflected in the preview panel. The layout may also be modified
visually from within the Preview panel with the changes appearing in the XML listing. To see this in action,
modify the XML layout to change the background color of the ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"

app:layout behavior="@string/appbar scrolling view behavior"
tools:context=".MainActivity"
tools:showIn="@layout/activity android sample"
android:background="#££2438" >

</android.support.constraint.ConstraintLayout>

Note that the color of the preview changes in real-time to match the new setting in the XML file. Note also that a

21

Creating an Example Android App in Android Studio

small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Change
the color value to #a0ff28 and note that both the small square in the margin and the preview change to green.

Finally, use the Project view to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:
<resources>

<string name="app name">AndroidSample</string>

<string name="action settings">Settings</string>

<string name="convert string">Convert</string>

<string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Text mode, click on the “@string/convert_string” property setting so that it highlights and then press Ctrl-B
on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and take you
to the line in that file where this resource is declared. Use this opportunity to revert the string resource back to
the original “Convert” text.

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open Translations Editor menu option. This will
display the Translation Editor in the main panel of the Android Studio window:

Figure 3-21

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.7 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

22

Creating an Example Android App in Android Studio

Figure 3-22

Note that the text field for the onClick property is now highlighted with a red border to warn us that the button
has been configured to call a method which does not yet exist. To address this, double-click on the MainActivity.
java file to load it into the code editor and add the code for the convertCurrency method to the class file so that
it reads as follows, noting that it is also necessary to import some additional Android packages:

package com.ebookfrenzy.androidsample;

import android.os.Bundle;

import android.support.design.widget.FloatingActionButton;
import android.support.design.widget.Snackbar;

import android.support.v7.app.AppCompatActivity;

import android.support.v7.widget.Toolbar;

import android.view.View;

import android.view.Menu;

import android.view.Menultem;

import android.widget.EditText;

import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

public void convertCurrency (View view) {

EditText dollarText = findViewById(R.id.dollarText) ;
TextView textView = findViewById (R.id.textView) ;

if ('dollarText.getText().toString().equals("")) {

Float dollarValue = Float.valueOf (dollarText.getText () .toString())
Float euroValue = dollarValue * 0.85F;
textView. setText (euroValue. toString()) ;
} else {
textView.setText ("No Value") ;

23

Creating an Example Android App in Android Studio

}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value and if so, that value is extracted, converted from a String to a floating point

value and converted to euros. Finally, the result is displayed on the TextView widget. If any of this is unclear, rest
assured that these concepts will be covered in greater detail in later chapters.

The project is now complete and ready to run, a task that will be performed in the next chapter after an AVD
emulator session as been created for testing purposes.

3.8 Summary

While not excessively complex, a number of steps are involved in setting up an Android development
environment. Having performed those steps, it is worth working through a simple example to make sure the
environment is correctly installed and configured. In this chapter, we have created a simple application and then
used the Android Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the
importance of using resources wherever possible, particularly in the case of string values, and briefly touched
on the topic of layouts. Next we looked at the underlying XML that is used to store the user interface designs of
Android applications.

While it is useful to be able to preview a layout from within the Android Studio Layout Editor tool, there is no
substitute for testing an application by compiling and running it.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

24

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio

In the course of developing Android apps in Android Studio it will be necessary to compile and run an application
multiple times. An Android application may be tested by installing and running it either on a physical device or
in an Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created
and configured to match the specifications of a particular device model. The goal of this chapter, therefore, is
to work through the steps involved in creating such a virtual device using the Nexus 5X phone as a reference
example.

4.1 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity and the presence or otherwise of features such
as a camera, GPS navigation support or an accelerometer. As part of the standard Android Studio installation,
a number of emulator templates are installed allowing AVDs to be configured for a range of different devices.
Additional templates may be loaded or custom configurations created to match any physical Android device
by specifying properties such as processor type, memory capacity and the size and pixel density of the screen.
Check the online developer documentation for your device to find out if emulator definitions are available for
download and installation into the AVD environment.

When launched, an AVD will appear as a window containing an emulated Android device environment. Figure
4-1, for example, shows an AVD session configured to emulate the Google Nexus 5X model.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface.

Figure 4-1
25

Creating an Android Virtual Device (AVD) in Android Studio
4.2 Creating a New AVD

In order to test the behavior of an application in the absence of a physical device, it will be necessary to create an
AVD for a specific Android device configuration.

To create a new AVD, the first step is to launch the AVD Manager. This can be achieved from within the Android
Studio environment by selecting the Tools -> AVD Manager menu option from within the main window.

Once launched, the tool will appear as outlined in Figure 4-2 if existing AVD instances have been created:

Figure 4-2

To add an additional AVD, begin by clicking on the Create Virtual Device button in order to invoke the Virtual
Device Configuration dialog:

Figure 4-3
Within the dialog, perform the following steps to create a Nexus 5X compatible emulator:

1. From the Category panel, select the Phone option to display the list of available Android tablet AVD
templates.

26

Creating an Android Virtual Device (AVD) in Android Studio
2. Select the Nexus 5X device option and click Next.

3. On the System Image screen, select the latest version of Android (at time of writing this is API level 28,
Android 9.0 with Google Play) for the x86 ABI. Note that if the system image has not yet been installed a
Download link will be provided next to the Release Name. Click this link to download and install the system
image before selecting it. If the image you need is not listed, click on the x86 images and Other images tabs
to view alternative lists.

4. Click Next to proceed and enter a descriptive name (for example Nexus 5X API 28) into the name field or
simply accept the default name.

5. Click Finish to create the AVD.

6. With the AVD created, the AVD Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the AVD Manager, select the AVD from the list and click on the pencil icon in
the Actions column of the device row in the AVD Manager.

4.3 Starting the Emulator

To perform a test run of the newly created AVD emulator, simply select the emulator from the AVD Manager
and click on the launch button (the green triangle in the Actions column). The emulator will appear in a new
window and begin the startup process. The amount of time it takes for the emulator to start will depend on the
configuration of both the AVD and the system on which it is running.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the AVD Manager, select the new Nexus 5X entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen locate the Startup and orientation section and
change the orientation setting. Exit and restart the emulator session to see this change take effect. More details
on the emulator are covered in the next chapter (“Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.4 Running the Application in the AVD

With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, simply click on the run
button represented by a green triangle located in the Android Studio toolbar as shown in Figure 4-4 below, select
the Run -> Run app’ menu option or use the Ctrl-R keyboard shortcut:

Figure 4-4

By default, Android Studio will respond to the run request by displaying the Select Deployment Target dialog.
This provides the option to execute the application on an AVD instance that is already running, or to launch
a new AVD session specifically for this application. Figure 4-5 lists the previously created Nexus 5X AVD as
a running device as a result of the steps performed in the preceding section. With this device selected in the
dialog, click on OK to install and run the application on the emulator.

27

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-5

Once the application is installed and running, the user interface for the MainActivity class will appear within
the emulator:

Figure 4-6

In the event that the activity does not automatically launch, check to see if the launch icon has appeared among
the apps on the emulator. If it has, simply click on it to launch the application. Once the run process begins, the
Run and Logcat tool windows will become available. The Run tool window will display diagnostic information
as the application package is installed and launched. Figure 4-7 shows the Run tool window output from a
successful application launch:

Figure 4-7

28

Creating an Android Virtual Device (AVD) in Android Studio

If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured.

4.5 Run/Debug Configurations

A particular project can be configured such that a specific device or emulator is used automatically each time it
is run from within Android Studio. This avoids the necessity to make a selection from the device chooser each
time the application is executed. To review and modify the Run/Debug configuration, click on the button to
the left of the run button in the Android Studio toolbar and select the Edit Configurations... option from the
resulting menu:

Figure 4-8

In the Run/Debug Configurations dialog, the application may be configured to always use a preferred emulator
by selecting Emulator from the Target menu located in the Deployment Target Options section and selecting the
emulator from the drop down menu. Figure 4-9, for example, shows the AndroidSample application configured
to run by default on the previously created Nexus 5X emulator:

Figure 4-9

29

Creating an Android Virtual Device (AVD) in Android Studio

Be sure to switch the Target menu setting back to “Open Select Deployment Target Dialog” mode before moving
on to the next chapter of the book.
4.6 Stopping a Running Application

To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
4-10:

Figure 4-10

An app may also be terminated using the Logcat tool window. Begin by displaying the Logcat tool window using
the window bar button that becomes available when the app is running. Once the Logcat tool window appears,
select the androidsample app menu highlighted in Figure 4-11 below:

Figure 4-11

With the process selected, stop it by clicking on the red Terminate Application button in the toolbar to the left of
the process list indicated by the arrow in the above figure.

4.7 AVD Command-line Creation

As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly
from the command-line. This is achieved using the avdmanager tool in conjunction with some command-line
options. Once initiated, the tool will prompt for additional information before creating the new AVD.

The avdmanager tool requires access to the Java Runtime Environment (JRE) in order to run. If, when attempting
run avdmanager, an error message appears indicating that the ‘java’ command cannot be found, the command
prompt or terminal window within which you are running the command can be configured to use the Open]JDK
environment bundled with Android Studio. Begin by identifying the location of the Open]DK JRE as follows:

1. Launch Android Studio and open the AndroidSample project created earlier in the book.
2. Select the File -> Project Structure... menu option.

3. Copy the path contained within the JDK location field of the Project Structure dialog. This represents the
location of the JRE bundled with Android Studio.

On Windows, execute the following command within the command prompt window from which avdmanager is
to be run (where <path to jre> is replaced by the path copied from the Project Structure dialog above):

set JAVA HOME=<path to jre>

On macOS or Linux, execute the following command:
export JAVA HOME="<path to jre>"

30

Creating an Android Virtual Device (AVD) in Android Studio

If you expect to use the avdmanager tool frequently, follow the environment variable steps for your operating
system outlined in the chapter entitled “Setting up an Android Studio Development Environment” to configure
JAVA_HOME on a system-wide basis.

Assuming that the system has been configured such that the Android SDK tools directory is included in the
PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following
command in a terminal or command window:

avdmanager list targets

The resulting output from the above command will contain a list of Android SDK versions that are available on
the system. For example:
Available Android targets:
id: 1 or "android-28"
Name: Android API 28
Type: Platform
API level: 28
Revision: 3
id: 2 or "android-26"
Name: Android API 26
Type: Platform
API level: 26

Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command line. For example, to
create a new AVD named Nexus9 using the target ID for the Android API level 26 device using the x86 ABI, the
following command may be used:

avdmanager create avd -n Nexus9 -k "system-images;android-26;google apis;x86"

The android tool will create the new AVD to the specifications required for a basic Android 8 device, also
providing the option to create a custom configuration to match the specification of a specific device if required.
Once a new AVD has been created from the command line, it may not show up in the Android Device Manager
tool until the Refresh button is clicked.

In addition to the creation of new AVDs, a number of other tasks may be performed from the command line.
For example, a list of currently available AVDs may be obtained using the list avd command line arguments:

avdmanager list avd

Available Android Virtual Devices:

Name: Pixel XL API 28 No Play
Device: pixel x1 (Google)

Path: /Users/neilsmyth/.android/avd/Pixel XL API 28 No Play.avd
Target: Google APIs (Google Inc.)

Based on: Android API 28 Tag/ABI: google apis/x86

Skin: pixel x1 silver

Sdcard: 512M

Similarly, to delete an existing AVD, simply use the delete option as follows:

31

Creating an Android Virtual Device (AVD) in Android Studio

avdmanager delete avd —-n <avd name>

4.8 Android Virtual Device Configuration Files

By default, the files associated with an AVD are stored in the .android/avd sub-directory of the user’s home
directory, the structure of which is as follows (where <avd name> is replaced by the name assigned to the AVD):

<avd name>.avd/config.ini
<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions and memory specified
during the AVD creation process. These settings may be changed directly within the configuration file and will
be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD files. Note that
a change to the image.sysdir value in the config.ini file will also need to be reflected in the target value of this file.

4.9 Moving and Renaming an Android Virtual Device

The current name or the location of the AVD files may be altered from the command line using the avdmanager
tool’s move avd argument. For example, to rename an AVD named Nexus9 to Nexus9B, the following command
may be executed:

avdmanager move avd -n Nexus9 -r Nexus9B

To physically relocate the files associated with the AVD, the following command syntax should be used:

avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Nexus9Test:

avdmanager move avd -n Nexus9 -p /tmp/Nexus9Test

Note that the destination directory must not already exist prior to executing the command to move an AVD.

4.10 Summary

A typical application development process follows a cycle of coding, compiling and running in a test environment.
Android applications may be tested on either a physical Android device or using an Android Virtual Device
(AVD) emulator. AVDs are created and managed using the Android AVD Manager tool which may be used
either as a command line tool or using a graphical user interface. When creating an AVD to simulate a specific
Android device model it is important that the virtual device be configured with a hardware specification that
matches that of the physical device.

32

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator

The Android Virtual Device (AVD) emulator environment bundled with Android Studio 1.x was an
uncharacteristically weak point in an otherwise reputable application development environment. Regarded by
many developers as slow, inflexible and unreliable, the emulator was long overdue for an overhaul. Fortunately,
Android Studio 2 introduced an enhanced emulator environment providing significant improvements in terms
of configuration flexibility and overall performance and further enhancements have been made in subsequent
releases.

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
avaijlable to customize the environment.

5.1 The Emulator Environment

When launched, the emulator displays an initial splash screen during the loading process. Once loaded, the
main emulator window appears containing a representation of the chosen device type (in the case of Figure 5-1
this is a Nexus 5X device):

Figure 5-1

Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.

5.2 The Emulator Toolbar Options

The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

33

Using and Configuring the Android Studio AVD Emulator

Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear, or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

« Exit / Minimize - The uppermost X’ button in the toolbar exits the emulator session when selected while the
‘- option minimizes the entire window.

» Power - The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power off” request sequence.

Volume Up / Down - Two buttons that control the audio volume of playback within the simulator environment.

Rotate Left/Right — Rotates the emulated device between portrait and landscape orientations.

Screenshot — Takes a screenshot of the content currently displayed on the device screen. The captured image
is stored at the location specified in the Settings screen of the extended controls panel as outlined later in this
chapter.

» Zoom Mode - This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

o Back - Simulates selection of the standard Android “Back” button. As with the Home and Overview buttons
outlined below, the same results can be achieved by selecting the actual buttons on the emulator screen.

« Home - Simulates selection of the standard Android “Home” button.

o Overview — Simulates selection of the standard Android “Overview” button which displays the currently
running apps on the device.

34

Using and Configuring the Android Studio AVD Emulator

» Extended Controls - Displays the extended controls panel, allowing for the configuration of options such as
simulated location and telephony activity, battery strength, cellular network type and fingerprint identification.

5.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

5.4 Resizing the Emulator Window
The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3
5.5.1 Location

The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format.

A single location is transmitted to the emulator when the Send button is clicked. The transmission of GPS data
points begins once the “play” button located beneath the data table is selected. The speed at which the GPS data
points are fed to the emulator can be controlled using the speed menu adjacent to the play button.

35

Using and Configuring the Android Studio AVD Emulator
5.5.2 Cellular

The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

5.5.3 Camera

The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.4 Battery

A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health and whether the AC charger is currently connected.

5.5.5 Phone

The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing the way in which an app handles high level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.6 Directional Pad

A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.7 Microphone

The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.8 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

5.5.9 Virtual Sensors

The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement and tilting through yaw, pitch and roll settings.

5.5.10 Snapshots

Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in detail later in this chapter.

5.5.11 Screen Record

Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

36

Using and Configuring the Android Studio AVD Emulator

5.5.12 Settings

The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and to configure the emulator window to appear on top of other windows on
the desktop.

5.5.13 Help

The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots

When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

Figure 5-4

The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by
default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to
reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous
quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager), click on the down arrow in the actions
column for the emulator and select the Cold Boot Now menu option.

37

Using and Configuring the Android Studio AVD Emulator

Figure 5-5

5.7 Configuring Fingerprint Emulation

The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a
backup screen unlocking method (such as a PIN number) must be configured. Click on the Fingerprint + PIN
button and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN
number and complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-6

Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will
report the successful addition of the fingerprint:

38

Using and Configuring the Android Studio AVD Emulator

Figure 5-7

To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch the Semsor button once again. The topic of building
fingerprint authentication into an Android app is covered in detail in the chapter entitled “An Android Biometric
Authentication Tutorial”.

5.8 Summary

Android Studio 3.4 contains a new and improved Android Virtual Device emulator environment designed
to make it easier to test applications without the need to run on a physical Android device. This chapter has
provided a brief tour of the emulator and highlighted key features that are available to configure and customize
the environment to simulate different testing conditions

39

Chapter 6

6. A Tour of the Android Studio User
Interface

While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen

The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will by-pass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1

In addition to a list of recent projects, the Quick Start menu provides a range of options for performing tasks
such as opening, creating and importing projects along with access to projects currently under version control.
In addition, the Configure menu at the bottom of the window provides access to the SDK Manager along with a
vast array of settings and configuration options. A review of these options will quickly reveal that there is almost
no aspect of Android Studio that cannot be configured and tailored to your specific needs.

The Configure menu also includes an option to check if updates to Android Studio are available for download.

41

A Tour of the Android Studio User Interface
6.2 The Main Window

When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-2.

Figure 6-2
The various elements of the main window can be summarized as follows:
A - Menu Bar - Contains a range of menus for performing tasks within the Android Studio environment.

B - Toolbar - A selection of shortcuts to frequently performed actions. The toolbar buttons provide quicker
access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and
selecting the Customize Menus and Toolbars... menu option.

C - Navigation Bar - The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the subfolders
and files at that location ready for selection. This provides an alternative to the Project tool window.

D - Editor Window - The editor window displays the content of the file on which the developer is currently
working. What gets displayed in this location, however, is subject to context. When editing code, for example,
the code editor will appear. When working on a user interface layout file, on the other hand, the user interface
Layout Editor tool will appear. When multiple files are open, each file is represented by a tab located along the
top edge of the editor as shown in Figure 6-3.

42

A Tour of the Android Studio User Interface

Figure 6-3

E - Status Bar - The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will provide a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F - Project Tool Window - The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project
in a number of different ways. The default setting is the Android view which is the mode primarily used in the
remainder of this book.

The project tool window is just one of a number of tool windows available within the Android Studio environment.

6.3 The Tool Windows

In addition to the project view tool window, Android Studio also includes a number of other windows which,
when enabled, are displayed along the bottom and sides of the main window. The tool window quick access
menu can be accessed by hovering the mouse pointer over the button located in the far left-hand corner of the
status bar (Figure 6-4) without clicking the mouse button.

Figure 6-4

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right and bottom edges of the main window (as indicated by the arrows in
Figure 6-5) and contain buttons for showing and hiding each of the tool windows. When the tool window bars

43

A Tour of the Android Studio User Interface

are displayed, a second click on the button in the status bar will hide them.

Figure 6-5

Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window tool bars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-6 shows the settings menu for the project view tool window.
Options are available, for example, to undock a window and to allow it to float outside of the boundaries of the
Android Studio main window and to move and resize the tool panel.

Figure 6-6

All of the windows also include a far right button on the toolbar providing an additional way to hide the tool

44

A Tour of the Android Studio User Interface

window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s tool bar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

Project — The project view provides an overview of the file structure that makes up the project allowing for quick
navigation between files. Generally, double-clicking on a file in the project view will cause that file to be loaded
into the appropriate editing tool.

Structure - The structure tool provides a high level view of the structure of the source file currently displayed in
the editor. This information includes a list of items such as classes, methods and variables in the file. Selecting an
item from the structure list will take you to that location in the source file in the editor window.

Layout Captures — Provides access to all of the layout hierarchy snapshots previously captured using the Layout
Inspector tool (Tools -> Layout Inspector).

Favorites — A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list can
be accessed through this Favorites tool window.

Build Variants — The build variants tool window provides a quick way to configure different build targets for the
current application project (for example different builds for debugging and release versions of the application, or
multiple builds to target different device categories).

TODO - As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look for
comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting the
File -> Settings... menu option (Android Studio -> Preferences... on macOS) and navigating to the TODO page
listed under Editor.

Logcat — The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Terminal - Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

Build - The build tool windows displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

Run - The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing to
install and run on a device or emulator, this window will typically provide diagnostic information relating to
the problem.

Event Log - The event log window displays messages relating to events and activities performed within Android
Studio. The successful build of a project, for example, or the fact that an application is now running will be
reported within this tool window.

Gradle - The Gradle tool window provides a view onto the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project into
an executable application. Right-click on a top level Gradle task and select the Open Gradle Config menu option

45

A Tour of the Android Studio User Interface

to load the Gradle build file for the current project into the editor. Gradle will be covered in greater detail later
in this book.

Profiler - The Android Profiler tool window provides realtime monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

Device File Explorer — The Device File Explorer tool window provides direct access to the filesystem of the
currently connected Android device or emulator allowing the filesystem to be browsed and files copied to the
local filesystem.

Resource Manager - A tool for adding and managing resources and assets such as images, colors and layout files
contained with the project.

6.4 Android Studio Keyboard Shortcuts

Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option.

6.5 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-7).

Figure 6-7

Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options, while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure 6-8).
This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse
pointer can be used to select an option or, alternatively, the keyboard arrow keys used to scroll through the file
name and tool window options. Pressing the Enter key will select the currently highlighted item.

46

A Tour of the Android Studio User Interface

Figure 6-8
6.6 Changing the Android Studio Theme

The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option, or via the File -> Settings... menu option (Android Studio -> Preferences... on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance option in the left-hand panel and then change the
setting of the Theme menu before clicking on the Apply button. The themes available will depend on the platform
but usually include options such as Light, Intelli], Windows, High Contrast and Darcula. Figure 6-9 shows an
example of the main window with the Darcula theme selected:

Figure 6-9

6.7 Summary

The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar, or via the
optional tool window bars.

There are very few actions within Android Studio which cannot be triggered via a keyboard shortcut. A keymap
of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

47

Chapter 7

7. Testing Android Studio Apps on a
Physical Android Device

While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no
substitute for performing real world application testing on a physical Android device and there are a number of
Android features that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). In this chapter we will work through the steps to configure the adb environment to enable
application testing on a physical Android device with macOS, Windows and Linux based systems.

7.1 An Overview of the Android Debug Bridge (ADB)

The primary purpose of the ADB is to facilitate interaction between a development system, in this case Android
Studio, and both AVD emulators and physical Android devices for the purposes of running and debugging
applications.

The ADB consists of a client, a server process running in the background on the development system and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active
virtual or physical devices may be obtained using the devices command-line argument. The following command
output indicates the presence of an AVD on the system but no physical devices:

$ adb devices

List of devices attached

emulator-5554 device

7.2 Enabling ADB on Android based Devices

Before ADB can connect to an Android device, that device must first be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1. Open the Settings app on the device and select the About tablet or About phone option (on newer versions
of Android this can be found on the System page of the Settings app).

2. On the About screen, scroll down to the Build number field (Figure 7-1) and tap on it seven times until a
message appears indicating that developer mode has been enabled. If the build number is not displayed,
unfold the Advanced section of the list.

49

Testing Android Studio Apps on a Physical Android Device

Figure 7-1

3. Return to the main Settings screen and note the appearance of a new option titled Developer options. Select
this option and locate the setting on the developer screen entitled USB debugging. Enable the switch next
to this item as illustrated in Figure 7-2:

Figure 7-2

4. Swipe downward from the top of the screen to display the notifications panel (Figure 7-3) and note that the
device is currently connected for debugging.

Figure 7-3

At this point, the device is now configured to accept debugging connections from adb on the development
system. All that remains is to configure the development system to detect the device when it is attached. While
this is a relatively straightforward process, the steps involved differ depending on whether the development
system is running Windows, macOS or Linux. Note that the following steps assume that the Android SDK
platform-tools directory is included in the operating system PATH environment variable as described in the
chapter entitled “Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration

In order to configure the ADB environment on a macOS system, connect the device to the computer system
using a USB cable, open a terminal window and execute the following command to restart the adb server:

$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:

$ adb devices
List of devices attached
74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure

50

Testing Android Studio Apps on a Physical Android Device

7-4 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as
being available:

List of devices attached

015d41d4454b£80c device

In the event that the device is not listed, try logging out and then back in to the macOS desktop and, if the
problem persists, rebooting the system.

7.2.2 Windows ADB Configuration

The first step in configuring a Windows based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
Android Device. If you have a Google Nexus device, then it will be necessary to install and configure the Google
USB Driver package on your Windows system. Detailed steps to achieve this are outlined on the following web

page:
https://developer.android.com/sdk/win-usb.html
For Android devices not supported by the Google USB driver, it will be necessary to download the drivers

provided by the device manufacturer. A listing of drivers together with download and installation information
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:

adb devices

This command should output information about the connected device similar to the following:

List of devices attached

HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
7-4 seeking permission to Allow USB debugging.

Figure 7-4
Enable the checkbox next to the option that reads Always allow from this computer, before clicking on OK.
Repeating the adb devices command should now list the device as being ready:
List of devices attached
HT4CTJT01906 device
In the event that the device is not listed, execute the following commands to restart the ADB server:

51

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

Testing Android Studio Apps on a Physical Android Device

adb kill-server

adb start-server

If the device is still not listed, try executing the following command:

android update adb
Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration

For the purposes of this chapter, we will once again use Ubuntu Linux as a reference example in terms of
configuring adb on Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not
listed, run the following command to add your account to the group:

sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:

sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server and check the list of attached devices:

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 7-4 seeking permission to Allow USB debugging.

7.3 Testing the adb Connection

Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “Creating an Example Android App in Android
Studio” on the device.

Launch Android Studio, open the AndroidSample project and, once the project has loaded, click on the run
button located in the Android Studio toolbar (Figure 7-5).

Figure 7-5

Assuming that the project has not previously been configured to run automatically in an emulator environment,
the deployment target selection dialog will appear with the connected Android device listed as a currently
running device. Figure 7-6, for example, lists a Nexus 9 device as a suitable target for installing and executing
the application.

52

Testing Android Studio Apps on a Physical Android Device

Figure 7-6

To make this the default device for testing, enable the Use same device for future launches option. With the
device selected, click on the OK button to install and run the application on the device. As with the emulator
environment, diagnostic output relating to the installation and launch of the application on the device will be
logged in the Run tool window.

7.4 Summary

While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep
in mind that there is no real substitute for making sure an application functions correctly on a physical Android
device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps in order to be able to load applications directly
onto an Android device from within the Android Studio development environment. The exact steps to achieve
this goal differ depending on the development platform being used. In this chapter, we have covered those steps
for Linux, macOS and Windows based platforms.

53

Chapter 8

8. The Basics of the Android Studio
Code Editor

Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor

The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Java source code
file loaded:

Figure 8-1
The elements that comprise the editor window can be summarized as follows:

55

The Basics of the Android Studio Code Editor

A — Document Tabs - Android Studio is capable of holding multiple files open for editing at any one time.
As each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top
edge of the editor window. A small dropdown menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-Right
keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism (accessible
via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B —The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched on
by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu option.

C — The Status Bar - Though the status bar is actually part of the main window, as opposed to the editor, it
does contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line dialog.

D — The Editor Area - This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E — The Validation and Marker Sidebar - Android Studio incorporates a feature referred to as “on-the-
fly code analysis” What this essentially means is that as you are typing code, the editor is analyzing the code to
check for warnings and syntax errors. The indicator at the top of the validation sidebar will change from a green
check mark (no warnings or errors detected) to a yellow square (warnings detected) or red alert icon (errors
have been detected). Clicking on this indicator will display a popup containing a summary of the issues found
with the code in the editor as illustrated in Figure 8-2:

Figure 8-2

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup
containing a description of the issue (Figure 8-3):

56

The Basics of the Android Studio Code Editor

Figure 8-3

Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area
of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-4)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-4

It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over
any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window

By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into
multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 8-5, for example, shows the splitter in action with the editor
split into three panels:

Figure 8-5

57

The Basics of the Android Studio Code Editor

The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion

The Android Studio editor has a considerable amount of built-in knowledge of programming syntax and the
classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-6, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-6

If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the
keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred
to as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-Ctrl-
Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings... menu option (or Android Studio -> Preferences... on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-7:

58

The Basics of the Android Studio Code Editor

Figure 8-7

8.4 Statement Completion

Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:

myMethod ()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:

myMethod () {

)
8.5 Parameter Information

It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard

sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-8

59

The Basics of the Android Studio Code Editor

8.6 Parameter Name Hints

The code editor may be configured to display parameter name hints within method calls. Figure 8-9, for example,
highlights the parameter name hints within the calls to the make() and setAction() methods of the Snackbar class:

Figure 8-9

The settings for this mode may be configured by selecting the File -> Settings (Android Studio -> Preferences
on macOS) menu option followed by Editor -> Appearance in the left-hand panel. On the Appearance screen,
enable or disable the Show parameter name hints option. To adjust the hint settings, click on the Configure...
button, select the programming language and make any necessary adjustments.

8.7 Code Generation

In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-10 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-10

For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio
generate a stub method for this, simply select the Override Methods... option from the code generation list and
select the onStop() method from the resulting list of available methods:

60

The Basics of the Android Studio Code Editor

Figure 8-11

Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Java source file as follows:
@Override
protected void onStop() {
super.onStop () ;

}
8.8 Code Folding

Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-12, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-12

Clicking on either of these markers will fold the statement such that only the signature line is visible as shown
in Figure 8-13:

61

The Basics of the Android Studio Code Editor

Figure 8-13

To unfold a collapsed section of code, simply click on the ‘+” marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{...}” indicator as shown in Figure 8-14. The editor will
then display the lens overlay containing the folded code block:

Figure 8-14

All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings... (Android Studio -> Preferences... on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-15):

Figure 8-15

8.9 Quick Documentation Lookup

Context sensitive Java and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will

62

The Basics of the Android Studio Code Editor

display a popup containing the relevant reference documentation for the item. Figure 8-16, for example, shows
the documentation for the Android Snackbar class.

Figure 8-16

Once displayed, the documentation popup can be moved around the screen as needed. Clicking on the push pin
icon located in the right-hand corner of the popup title bar will ensure that the popup remains visible once focus
moves back to the editor, leaving the documentation visible as a reference while typing code.

8.10 Code Reformatting

In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a web site), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display
the Reformat Code dialog (Figure 8-17) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire source file currently active in the
editor or only code that has changed as the result of a source code control update.

Figure 8-17

The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences... on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog, for
example, unfold the Code Style section, select Java and, from the Java settings, select the Arrangement tab.

8.11 Finding Sample Code

The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
63

The Basics of the Android Studio Code Editor

To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample
Code menu option. The Find Sample Code panel (Figure 8-18) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

Figure 8-18

8.12 Summary

The Android Studio editor goes to great length to reduce the amount of typing needed to write code and
to make that code easier to read and navigate. In this chapter we have covered a number of the key editor
features including code completion, code generation, editor window splitting, code folding, reformatting and
documentation lookup.

64

Chapter 9

9. An Overview of the Android
Architecture

So far in this book, steps have been taken to set up an environment suitable for the development of Android
applications using Android Studio. An initial step has also been taken into the process of application development
through the creation of a simple Android Studio application project.

Before delving further into the practical matters of Android application development, however, it is important
to gain an understanding of some of the more abstract concepts of both the Android SDK and Android
development in general. Gaining a clear understanding of these concepts now will provide a sound foundation
on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of
this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack

Android is structured in the form of a software stack comprising applications, an operating system, run-time
environment, middleware, services and libraries. This architecture can, perhaps, best be represented visually
as outlined in Figure 9-1. Each layer of the stack, and the corresponding elements within each layer, are tightly
integrated and carefully tuned to provide the optimal application development and execution environment
for mobile devices. The remainder of this chapter will work through the different layers of the Android stack,
starting at the bottom with the Linux Kernel.

Figure 9-1

65

An Overview of the Android Architecture

9.2 The Linux Kernel

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between
the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the
kernel provides preemptive multitasking, low-level core system services such as memory, process and power
management in addition to providing a network stack and device drivers for hardware such as the device display,
Wi-Fi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities
and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system
referred to as GNU/Linux. Various Linux distributions have been derived from these basic underpinnings such
as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the
Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In
fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to
both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find
this software at the heart of the Android software stack.

9.3 Android Runtime — ART

When an Android app is built within Android Studio it is compiled into an intermediate bytecode format
(referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime
(ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the
native instructions required by the device processor. This format is known as Executable and Linkable Format
(ELEF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster
application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries

In addition to a set of standard Java development libraries (providing support for such general purpose tasks as
string handling, networking and file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples
of libraries in this category include the application framework libraries in addition to those that facilitate user
interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:
« android.app - Provides access to the application model and is the cornerstone of all Android applications.

« android.content — Facilitates content access, publishing and messaging between applications and application
components.

« android.database - Used to access data published by content providers and includes SQLite database
management classes.

o android.graphics - A low-level 2D graphics drawing API including colors, points, filters, rectangles and
canvases.

« android.hardware - Presents an API providing access to hardware such as the accelerometer and light sensor.

66

An Overview of the Android Architecture
« android.opengl - A Java interface to the OpenGL ES 3D graphics rendering API.

« android.os - Provides applications with access to standard operating system services including messages,
system services and inter-process communication.

« android.media - Provides classes to enable playback of audio and video.

« android.net — A set of APIs providing access to the network stack. Includes android.net.wifi, which provides
access to the device’s wireless stack.

o android.print - Includes a set of classes that enable content to be sent to configured printers from within
Android applications.

« android.provider - A set of convenience classes that provide access to standard Android content provider
databases such as those maintained by the calendar and contact applications.

« android.text — Used to render and manipulate text on a device display.

o android.util - A set of utility classes for performing tasks such as string and number conversion, XML
handling and date and time manipulation.

o android.view - The fundamental building blocks of application user interfaces.

« android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views,
layout managers, radio buttons etc.

« android.webkit - A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++ based libraries contained in this layer of the Android software stack.

9.4.1 C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary
APIs for developers writing Android applications. It is important to note, however, that the core libraries do
not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based
libraries. When making calls, for example, to the android.opengl library to draw 3D graphics on the device
display, the library actually ultimately makes calls to the OpenGL ES C++ library which, in turn, works with the
underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback,
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java based
Android core library APIs. In the event that direct access to these libraries is needed, this can be achieved using
the Android Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or
Kotlin programming languages (such as C and C++) from within Java code using the Java Native Interface (JNI).

9.5 Application Framework

The Application Framework is a set of services that collectively form the environment in which Android
applications run and are managed. This framework implements the concept that Android applications are
constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in
that an application is also able to publish its capabilities along with any corresponding data so that they can be

67

An Overview of the Android Architecture

found and reused by other applications.

The Android framework includes the following key services:

o Activity Manager - Controls all aspects of the application lifecycle and activity stack.

 Content Providers — Allows applications to publish and share data with other applications.

Resource Manager - Provides access to non-code embedded resources such as strings, color settings and user
interface layouts.

o Notifications Manager - Allows applications to display alerts and notifications to the user.
» View System - An extensible set of views used to create application user interfaces.

» Package Manager - The system by which applications are able to find out information about other applications
currently installed on the device.

Telephony Manager — Provides information to the application about the telephony services available on the
device such as status and subscriber information.

Location Manager - Provides access to the location services allowing an application to receive updates about
location changes.

9.6 Applications

Located at the top of the Android software stack are the applications. These comprise both the native applications
provided with the particular Android implementation (for example web browser and email applications) and
the third party applications installed by the user after purchasing the device.

9.7 Summary

A good Android development knowledge foundation requires an understanding of the overall architecture of
Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel,
a runtime environment and corresponding libraries, an application framework and a set of applications.
Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the
Android Studio build environment. When the application is subsequently installed on a device, this bytecode
is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the
Android architecture are performance and efficiency, both in application execution and in the implementation
of reuse in application design.

68

Chapter 10

10. The Anatomy of an Android
Application

Regardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail both the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities

Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this
is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities. An activity
is a single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointments application might, for example, have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application, for example, might contain an activity specifically for composing
and sending an email message. A developer might be writing an application that also has a requirement to send
an email message. Rather than develop an email composition activity specifically for the new application, the
developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may make use of the activity in unanticipated ways)
and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved
using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be specifically started as a sub-activity of the originating activity.

10.2 Android Fragments

An activity, as described above, typically represents a single user interface screen within an app. One option is
to construct the activity using a single user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each of these sections is referred to as a
fragment, each of which consists of part of the user interface layout and a matching class file (declared as a
subclass of the Android Fragment class). In this scenario, an activity simply becomes a container into which one
or more fragments are embedded.

69

The Anatomy of an Android Application

In fact, fragments provide an efficient alternative to having each user interface screen represented by a
separate activity. Instead, an app can consist of a single activity that switches between different fragments, each
representing a different app screen.

10.3 Android Intents

Intents are the mechanism by which one activity is able to launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents

Another type of Intent, the Broadcast Intent, is a system wide intent that is sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status such as the completion of system start up, connection of an external
power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time, or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers

Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A
Broadcast Receiver must be registered by an application and configured with an Intent Filter to indicate the
types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked
by the Android runtime regardless of whether the application that registered the receiver is currently running.
The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service,
making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the
background and do not have a user interface.

10.6 Android Services

Android Services are processes that run in the background and do not have a user interface. They can be started
and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal
for situations where an application needs to continue performing tasks but does not necessarily need a user
interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events
using notifications and toasts (small notification messages that appear on the screen without interrupting the
currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be
terminated as a last resort by the system in order to free up resources. In the event that the runtime does need
to kill a Service, however, it will be automatically restarted as soon as adequate resources once again become
available. A Service can reduce the risk of termination by declaring itself as needing to run in the foreground. This
is achieved by making a call to startForeground(). This is only recommended for situations where termination
would be detrimental to the user experience (for example, if the user is listening to audio being streamed by the
Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming

70

The Anatomy of an Android Application

of audio that should continue when the application is no longer active, or a stock market tracking application
that needs to notify the user when a share hits a specified price.

10.7 Content Providers

Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data through the implementation of a Content Provider
including the ability to add, remove and query the data (subject to permissions). Access to the data is provided
via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a
file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access
data such as contacts and media files. The Content Providers currently available on an Android system may be
located using a Content Resolver.

10.8 The Application Manifest

The glue that pulls together the various elements that comprise an application is the Application Manifest file.
It is within this XML based file that the application outlines the activities, services, broadcast receivers, data
providers and permissions that make up the complete application.

10.9 Application Resources

In addition to the manifest file and the Dex files that contain the byte code, an Android application package will
also typically contain a collection of resource files. These files contain resources such as the strings, images, fonts
and colors that appear in the user interface together with the XML representation of the user interface layouts.
By default, these files are stored in the /res sub-directory of the application project’s hierarchy.

10.10 Application Context

When an application is compiled, a class named R is created that contains references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and make changes to the application’s environment at runtime.

10.11 Summary

A number of different elements can be brought together in order to create an Android application. In this
chapter, we have provided a high-level overview of Activities, Fragments, Services, Intents and Broadcast
Receivers together with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of
functionality in the form of activities and intents, while data sharing between applications is achieved by the
implementation of content providers.

While activities are focused on areas where the user interacts with the application (an activity essentially
equating to a single user interface screen and often made up of one or more fragments), background processing
is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however,
that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a
solid knowledge foundation on which to build your own applications.

71

Chapter 11

11. Understanding Android
Application and Activity Lifecycles

In earlier chapters we have learned that Android applications run within processes and that they are comprised
of multiple components in the form of activities, services and broadcast receivers. The goal of this chapter is to
expand on this knowledge by looking at the lifecycle of applications and activities within the Android runtime
system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that both the operating system and the applications running on it
remain responsive to the user at all times. In order to achieve this, Android is given full control over the lifecycle
and state of both the processes in which the applications run, and the individual components that comprise
those applications.

An important factor in developing Android applications, therefore, is to gain an understanding of both the
application and activity lifecycle management models of Android, and the ways in which an application can
react to the state changes that are likely to be imposed upon it during its execution lifetime.

11.1 Android Applications and Resource Management

Each running Android application is viewed by the operating system as a separate process. If the system identifies
that resources on the device are reaching capacity it will take steps to terminate processes to free up memory.

When making a determination as to which process to terminate in order to free up memory, the system takes
into consideration both the priority and state of all currently running processes, combining these factors to
create what is referred to by Google as an importance hierarchy. Processes are then terminated starting with
the lowest priority and working up the hierarchy until sufficient resources have been liberated for the system to
function.

11.2 Android Process States

Processes host applications and applications are made up of components. Within an Android system, the current
state of a process is defined by the highest-ranking active component within the application that it hosts. As
outlined in Figure 11-1, a process can be in one of the following five states at any given time:

73

Understanding Android Application and Activity Lifecycles

Figure 11-1

11.2.1 Foreground Process

These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active and these are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

o Hosts an activity with which the user is currently interacting.
« Hosts a Service connected to the activity with which the user is interacting.

o Hosts a Service that has indicated, via a call to startForeground(), that termination would be disruptive to the
user experience.

« Hosts a Service executing either its onCreate(), onResume() or onStart() callbacks.

 Hosts a Broadcast Receiver that is currently executing its onReceive() method.

11.2.2 Visible Process

A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

11.2.3 Service Process

Processes that contain a Service that has already been started and is currently executing.

11.2.4 Background Process

A process that contains one or more activities that are not currently visible to the user, and does not host a Service
that qualifies for Service Process status. Processes that fall into this category are at high risk of termination in the
event that additional memory needs to be freed for higher priority processes. Android maintains a dynamic list
of background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

74

Understanding Android Application and Activity Lifecycles
11.2.5 Empty Process

Empty processes no longer contain any active applications and are held in memory ready to serve as hosts for
newly launched applications. This is somewhat analogous to keeping the doors open and the engine running on
a bus in anticipation of passengers arriving. Such processes are, obviously, considered the lowest priority and are
the first to be killed to free up resources.

11.3 Inter-Process Dependencies

The situation with regard to determining the highest priority process is slightly more complex than outlined in
the preceding section for the simple reason that processes can often be inter-dependent. As such, when making
a determination as to the priority of a process, the Android system will also take into consideration whether the
process is in some way serving another process of higher priority (for example, a service process acting as the
content provider for a foreground process). As a basic rule, the Android documentation states that a process can
never be ranked lower than another process that it is currently serving.

11.4 The Activity Lifecycle

As we have previously determined, the state of an Android process is determined largely by the status of the
activities and components that make up the application that it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

11.5 The Activity Stack

For each application that is running on an Android device, the runtime system maintains an Activity Stack.
When an application is launched, the first of the application’s activities to be started is placed onto the stack.
When a second activity is started, it is placed on the top of the stack and the previous activity is pushed down.
The activity at the top of the stack is referred to as the active (or running) activity. When the active activity exits,
it is popped off the stack by the runtime and the activity located immediately beneath it in the stack becomes
the current active activity. The activity at the top of the stack might, for example, simply exit because the task
for which it is responsible has been completed. Alternatively, the user may have selected a “Back” button on the
screen to return to the previous activity, causing the current activity to be popped off the stack by the runtime
system and therefore destroyed. A visual representation of the Android Activity Stack is illustrated in Figure
11-2.

As shown in the diagram, new activities are pushed on to the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity, or
popped off the stack when it exits or the user navigates to the previous activity. In the event that resources
become constrained, the runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

75

Understanding Android Application and Activity Lifecycles

Figure 11-2
11.6 Activity States

An activity can be in one of a number of different states during the course of its execution within an application:

Active / Running - The activity is at the top of the Activity Stack, is the foreground task visible on the
device screen, has focus and is currently interacting with the user. This is the least likely activity to be
terminated in the event of a resource shortage.

Paused - The activity is visible to the user but does not currently have focus (typically because this activity
is partially obscured by the current active activity). Paused activities are held in memory, remain attached
to the window manager, retain all state information and can quickly be restored to active status when
moved to the top of the Activity Stack.

Stopped - The activity is currently not visible to the user (in other words it is totally obscured on the
device display by other activities). As with paused activities, it retains all state and member information,
but is at higher risk of termination in low memory situations.

Killed - The activity has been terminated by the runtime system in order to free up memory and is no
longer present on the Activity Stack. Such activities must be restarted if required by the application.

11.7 Configuration Changes

So far in this chapter, we have looked at two of the causes for the change in state of an Android activity, namely
the movement of an activity between the foreground and background, and termination of an activity by the
runtime system in order to free up memory. In fact, there is a third scenario in which the state of an activity can
dramatically change and this involves a change to the device configuration.

76

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape, or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of
the user interface and simply destroying and recreating impacted activities is the quickest way for an activity to
respond to the configuration change. It is, however, possible to configure an activity so that it is not restarted by
the system in response to specific configuration changes.

11.8 Handling State Change

If nothing else, it should be clear from this chapter that an application and, by definition, the components
contained therein will transition through many states during the course of its lifespan. Of particular importance
is the fact that these state changes (up to and including complete termination) are imposed upon the application
by the Android runtime subject to the actions of the user and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple,
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within in app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach, and one that is recommended by Google, involves the lifecycle classes included with the
Jetpack Android Architecture components, introduced in “Modern Android App Architecture with Jetpack” and
explained in more detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

11.9 Summary

Mobile devices are typically considered to be resource constrained, particularly in terms of on-board memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, is made up of components in
the form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities in order to free
up memory. Process state is taken into consideration by the runtime system when deciding whether a process is
a suitable candidate for termination. The state of a process is largely dependent upon the status of the activities
hosted by that process.

The key message of this chapter is that an application moves through a variety of states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes and
activities that are not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

77

Chapter 12

12. Handling Android Activity State
Changes

Based on the information outlined in the chapter entitled “Understanding Android Application and Activity
Lifecycles” it is now evident that the activities and fragments that make up an application pass through a variety
of different states during the course of the application’s lifespan. The change from one state to the other is
imposed by the Android runtime system and is, therefore, largely beyond the control of the activity itself. That
does not, however, mean that the app cannot react to those changes and take appropriate actions.

The primary objective of this chapter is to provide a high-level overview of the ways in which an activity may
be notified of a state change and to outline the areas where it is advisable to save or restore state information.
Having covered this information, the chapter will then touch briefly on the subject of activity lifetimes.

12.1 New vs. Old Lifecycle Techniques

Up until recently, there was a standard way to build lifecycle awareness into an app. This is the approach covered
in this chapter and involves implementing a set of methods (one for each lifecycle state) within an activity or
fragment instance that get called by the operating system when the lifecycle status of that object changes. This
approach has remained unchanged since the early years of the Android operating system and, while still a viable
option today, it does have some limitations which will be explained later in this chapter.

With the introduction of the lifecycle classes with the Jetpack Android Architecture Components, a better
approach to lifecycle handling is now available. This modern approach to lifecycle management (together
with the Jetpack components and architecture guidelines) will be covered in detail in later chapters. It is still
important, however, to understand the traditional lifecycle methods for a couple of reasons. First, as an Android
developer you will not be completely insulated from the traditional lifecycle methods and will still make use
of some of them. More importantly, understanding the older way of handling lifecycles will provide a good
knowledge foundation on which to begin learning the new approach later in the book.

12.2 The Activity and Fragment Classes

With few exceptions, activities and fragments in an application are created as subclasses of the Android
AppCompatActivity class and Fragment classes respectively.

Consider, for example, the simple AndroidSample project created in “Creating an Example Android App in
Android Studio”. Load this project into the Android Studio environment and locate the MainActivity.java file
(located in app -> java -> com.<your domain>.androidsample). Having located the file, double-click on it to load
it into the editor where it should read as follows:

package com.ebookfrenzy.androidsample;

import android.os.Bundle;

import android.support.design.widget.FloatingActionButton;
import android.support.design.widget.Snackbar;

import android.support.v7.app.AppCompatActivity;

import android.support.v7.widget.Toolbar;

79

Handling Android Activity State Changes

import
import
import
import

import

public

android
android

android

android.

android.

.view.View;
.view.Menu;
.view.Menultem;
widget.EditText;
widget.TextView;

class MainActivity extends AppCompatActivity {

@Override

protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState);

setContentView (R.layout.activity android sample);
Toolbar toolbar = findViewById(R.id.toolbar);
setSupportActionBar (toolbar) ;

FloatingActionButton fab = findViewById(R.id.fab);

fab.setOnClickListener (new View.OnClickListener () {

@Override

public void onClick(View view) {

Snackbar.make (view, "Replace with your own action",
Snackbar.LENGTH LONG)

.setAction ("Action", null) .show();

public void convertCurrency (View view) {

EditText dollarText = findViewById(R.id.dollarText);
TextView textView = findViewById(R.id.textView);

if (!dollarText.getText ().toString().equals("")) {

Float dollarValue = Float.valueOf (dollarText.getText () .toString());
Float euroValue = dollarValue * 0.85F;

textView.setText (euroValue.toString());

} else

{

textView.setText ("No Value");

@Override

public boolean onCreateOptionsMenu (Menu menu) {

80

// Inflate the menu; this adds items to the action bar if it is present.

getMenulnflater () .inflate (R.menu.menu main, menu);

Handling Android Activity State Changes

return true;

@Override

public boolean onOptionsItemSelected (Menultem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId();

//noinspection SimplifiableIfStatement
if (id == R.id.action settings) {

return true;

return super.onOptionsItemSelected (item) ;

}

When the project was created, we instructed Android Studio also to create an initial activity named MainActivity.
As is evident from the above code, the MainActivity class is a subclass of the AppCompatActivity class.

A review of the reference documentation for the AppCompatActivity class would reveal that it is itself a subclass
of the Activity class. This can be verified within the Android Studio editor using the Hierarchy tool window.
With the MainActivity.java file loaded into the editor, click on AppCompatActivity in the class declaration line
and press the Ctrl-H keyboard shortcut. The hierarchy tool window will subsequently appear displaying the class
hierarchy for the selected class. As illustrated in Figure 12-1, AppCompatActivity is clearly subclassed from the
FragmentActivity class which is itself ultimately a subclass of the Activity class:

Figure 12-1

The Activity and Fragment classes contain a range of methods that are intended to be called by the Android
runtime to notify the object when its state is changing. For the purposes of this chapter, we will refer to these as
the lifecycle methods. An activity or fragment class simply needs to override these methods and implement the
necessary functionality within them in order to react accordingly to state changes.

One such method is named onCreate() and, turning once again to the above code fragment, we can see that this

81

Handling Android Activity State Changes

method has already been overridden and implemented for us in the MainActivity class. In a later section we will
explore in detail both onCreate() and the other relevant lifecycle methods of the Activity and Fragment classes.

12.3 Dynamic State vs. Persistent State

A key objective of lifecycle management is ensuring that the state of the activity is saved and restored at
appropriate times. When talking about state in this context we mean the data that is currently being held within
the activity and the appearance of the user interface. The activity might, for example, maintain a data model in
memory that needs to be saved to a database, content provider or file. Such state information, because it persists
from one invocation of the application to another, is referred to as the persistent state.

The appearance of the user interface (such as text entered into a text field but not yet committed to the
application’s internal data model) is referred to as the dynamic state, since it is typically only retained during a
single invocation of the application (and also referred to as user interface state or instance state).

Understanding the differences between these two states is important because both the ways they are saved, and
the reasons for doing so, differ.

The purpose of saving the persistent state is to avoid the loss of data that may result from an activity being killed
by the runtime system while in the background. The dynamic state, on the other hand, is saved and restored for
reasons that are slightly more complex.

Consider, for example, that an application contains an activity (which we will refer to as Activity A) containing
a text field and some radio buttons. During the course of using the application, the user enters some text into
the text field and makes a selection from the radio buttons. Before performing an action to save these changes,
however, the user then switches to another activity causing Activity A to be pushed down the Activity Stack
and placed into the background. After some time, the runtime system ascertains that memory is low and
consequently kills Activity A to free up resources. As far as the user is concerned, however, Activity A was simply
placed into the background and is ready to be moved to the foreground at any time. On returning Activity A to
the foreground the user would, quite reasonably, expect the entered text and radio button selections to have been
retained. In this scenario, however, a new instance of Activity A will have been created and, if the dynamic state
was not saved and restored, the previous user input lost.

The main purpose of saving dynamic state, therefore, is to give the perception of seamless switching between
foreground and background activities, regardless of the fact that activities may actually have been killed and
restarted without the user’s knowledge.

The mechanisms for saving persistent and dynamic state will become clearer in the following sections of this
chapter.

12.4 The Android Lifecycle Methods

As previously explained, the Activity and Fragment classes contain a number of lifecycle methods which act as
event handlers when the state of an instance changes. The primary methods supported by the Android Activity
and Fragment class are as follows:

» onCreate(Bundle savedInstanceState) — The method that is called when the activity is first created and the
ideal location for most initialization tasks to be performed. The method is passed an argument in the form of a
Bundle object that may contain dynamic state information (typically relating to the state of the user interface)
from a prior invocation of the activity.

« onRestart() - Called when the activity is about to restart after having previously been stopped by the runtime
system.

o onStart() - Always called immediately after the call to the onCreate() or onRestart() methods, this method
82

Handling Android Activity State Changes

indicates to the activity that it is about to become visible to the user. This call will be followed by a call to
onResume() if the activity moves to the top of the activity stack, or onStop() in the event that it is pushed down
the stack by another activity.

onResume() - Indicates that the activity is now at the top of the activity stack and is the activity with which
the user is currently interacting.

onPause() - Indicates that a previous activity is about to become the foreground activity. This call will be
followed by a call to either the onResume() or onStop() method depending on whether the activity moves back
to the foreground or becomes invisible to the user. Steps may be taken within this method to store persistent
state information not yet saved by the app. To avoid delays in switching between activities, time consuming
operations such as storing data to a database or performing network operations should be avoided within this
method. This method should also ensure that any CPU intensive tasks such as animation are stopped.

onStop() - The activity is now no longer visible to the user. The two possible scenarios that may follow this
call are a call to onRestart() in the event that the activity moves to the foreground again, or onDestroy() if the
activity is being terminated.

onDestroy() — The activity is about to be destroyed, either voluntarily because the activity has completed its
tasks and has called the finish() method or because the runtime is terminating it either to release memory or
due to a configuration change (such as the orientation of the device changing). It is important to note that a
call will not always be made to onDestroy() when an activity is terminated.

onConfigurationChanged() - Called when a configuration change occurs for which the activity has indicated
it is not to be restarted. The method is passed a Configuration object outlining the new device configuration
and it is then the responsibility of the activity to react to the change.

The following lifecycle methods only apply to the Fragment class:

onAttach() - Called when the fragment is assigned to an activity.
onCreateView() - Called to create and return the fragment’s user interface layout view hierarchy.

onActivityCreated() - The onCreate() method of the activity with which the fragment is associated has
completed execution.

onViewStatusRestored() - The fragment’s saved view hierarchy has been restored.

In addition to the lifecycle methods outlined above, there are two methods intended specifically for saving and
restoring the dynamic state of an activity:

onRestorelnstanceState(Bundle savedInstanceState) — This method is called immediately after a call to
the onStart() method in the event that the activity is restarting from a previous invocation in which state
was saved. As with onCreate(), this method is passed a Bundle object containing the previous state data.
This method is typically used in situations where it makes more sense to restore a previous state after the
initialization of the activity has been performed in onCreate() and onStart().

onSavelnstanceState(Bundle outState) - Called before an activity is destroyed so that the current dynamic
state (usually relating to the user interface) can be saved. The method is passed the Bundle object into which the
state should be saved and which is subsequently passed through to the onCreate() and onRestorelnstanceState()
methods when the activity is restarted. Note that this method is only called in situations where the runtime
ascertains that dynamic state needs to be saved.

When overriding the above methods, it is important to remember that, with the exception of
onRestorelnstanceState() and onSavelnstanceState(), the method implementation must include a call to the

83

Handling Android Activity State Changes

corresponding method in the super class. For example, the following method overrides the onRestart() method
but also includes a call to the super class instance of the method:
protected void onRestart () {
super.onRestart () ;
Log.1i(TAG, "onRestart");
}

Failure to make this super class call in method overrides will result in the runtime throwing an exception during
execution. While calls to the super class in the onRestorelnstanceState() and onSavelnstanceState() methods are
optional (they can, for example, be omitted when implementing custom save and restoration behavior) there are
considerable benefits to using them, a subject that will be covered in the chapter entitled “Saving and Restoring
the State of an Android Activity”.

12.5 Lifetimes

The final topic to be covered involves an outline of the entire, visible and foreground lifetimes through which an
activity or fragment will transition during execution:

« Entire Lifetime —The term “entire lifetime” is used to describe everything that takes place between the initial
call to the onCreate() method and the call to onDestroy() prior to the object terminating.

« Visible Lifetime - Covers the periods of execution between the call to onStart() and onStop(). During this
period the activity or fragment is visible to the user though may not be the object with which the user is
currently interacting.

o Foreground Lifetime - Refers to the periods of execution between calls to the onResume() and onPause()
methods.

It is important to note that an activity or fragment may pass through the foreground and visible lifetimes multiple
times during the course of the entire lifetime.

The concepts of lifetimes and lifecycle methods are illustrated in Figure 12-2:

Figure 12-2

84

Handling Android Activity State Changes

12.6 Disabling Configuration Change Restarts

As previously outlined, an activity may indicate that it is not to be restarted in the event of certain configuration
changes. This is achieved by adding an android:configChanges directive to the activity element within the project
manifest file. The following manifest file excerpt, for example, indicates that the activity should not be restarted
in the event of configuration changes relating to orientation or device-wide font size:

<activity android:name=".MainActivity"
android:configChanges="orientation|fontScale"

android:label="@string/app name">

12.7 Lifecycle Method Limitations

As discussed at the start of this chapter, lifecycle methods have been in use for many years and, until recently,
were the only mechanism available for handling lifecycle state changes for activities and fragments. There are,
however, shortcomings to this approach.

One issue with the lifecycle methods is that they do not provide an easy way for an activity or fragment to find
out its current lifecycle state at any given point during app execution. Instead the object would need to track the
state internally, or wait for the next lifecycle method call.

Also, the methods do not provide a simple way for one object to observe the lifecycle state changes of other
objects within an app. This is a serious consideration since many other objects within an app can potentially be
impacted by a lifecycle state change in a given activity or fragment.

The lifecycle methods are also only available on subclasses of the Fragment and Activity classes. It is not possible,
therefore, to build custom classes that are truly lifecycle aware.

Finally, the lifecycle methods result in most of the lifecycle handling code being written within the activity
or fragment which can lead to complex and error prone code. Ideally, much of this code should reside in the
other classes that are impacted by the state change. An app that streams video, for example, might include a
class designed specifically to manage the incoming stream. If the app needs to pause the stream when the main
activity is stopped, the code to do so should reside in the streaming class, not the main activity.

All of these problems and more are resolved by using lifecycle-aware components, a topic which will be covered
starting with the chapter entitled “Modern Android App Architecture with Jetpack”.

12.8 Summary

All activities are derived from the Android Activity class which, in turn, contains a number of lifecycle methods
that are designed to be called by the runtime system when the state of an activity changes. Similarly, the Fragment
class contains a number of comparable methods. By overriding these methods, activities and fragments can
respond to state changes and, where necessary, take steps to save and restore the current state of both the activity
and the application. Lifecycle state can be thought of as taking two forms. The persistent state refers to data that
needs to be stored between application invocations (for example to a file or database). Dynamic state, on the
other hand, relates instead to the current appearance of the user interface.

Although lifecycle methods have a number of limitations that can be avoided by making use of lifecycle-aware
components, an understanding of these methods is important in order to fully understand the new approaches
to lifecycle management covered later in this book.

In this chapter, we have highlighted the lifecycle methods available to activities and covered the concept of
activity lifetimes. In the next chapter, entitled “Android Activity State Changes by Example”, we will implement
an example application that puts much of this theory into practice.

85

Handling Android Activity State Changes

86

Chapter 13

13. Android Activity State Changes by
Example

The previous chapters have discussed in some detail the different states and lifecycles of the activities that
comprise an Android application. In this chapter, we will put the theory of handling activity state changes into
practice through the creation of an example application. The purpose of this example application is to provide
a real world demonstration of an activity as it passes through a variety of different states within the Android
runtime.

In the next chapter, entitled “Saving and Restoring the State of an Android Activity”, the example project
constructed in this chapter will be extended to demonstrate the saving and restoration of dynamic activity state.

13.1 Creating the State Change Example Project

The first step in this exercise is to create the new project. Begin by launching Android Studio and, if necessary,
closing any currently open projects using the File -> Close Project menu option so that the Welcome screen
appears.

Select the Start a new Android Studio project quick start option from the welcome screen and, within the resulting
new project dialog, choose the Basic Activity template before clicking on the Next button.

Enter StateChange into the Name field and specify com.ebookfrenzy.statechange as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

Upon completion of the project creation process, the StateChange project should be listed in the Project tool
window located along the left-hand edge of the Android Studio main window.

The next action to take involves the design of the content area of the user interface for the activity. This is
stored in a file named content_main.xml which should already be loaded into the Layout Editor tool. If it is not,
navigate to it in the project tool window where it can be found in the app -> res -> layout folder. Once located,
double-clicking on the file will load it into the Android Studio Layout Editor tool.

87

Android Activity State Changes by Example

Figure 13-1

13.2 Designing the User Interface

With the user interface layout loaded into the Layout Editor tool, it is now time to design the user interface for
the example application. Instead of the “Hello world!” TextView currently present in the user interface design,
the activity actually requires an EditText view. Select the TextView object in the Layout Editor canvas and press
the Delete key on the keyboard to remove it from the design.

From the Palette located on the left side of the Layout Editor, select the Text category and, from the list of text
components, click and drag a Plain Text component over to the visual representation of the device screen. Move
the component to the center of the display so that the center guidelines appear and drop it into place so that the
layout resembles that of Figure 13-2.

Figure 13-2

When using the EditText widget it is necessary to specify an input type for the view. This simply defines the type
of text or data that will be entered by the user. For example, if the input type is set to Phone, the user will be
restricted to entering numerical digits into the view. Alternatively, if the input type is set to TextCapCharacters,

88

Android Activity State Changes by Example
the input will default to upper case characters. Input type settings may also be combined.

For the purposes of this example, we will set the input type to support general text input. To do so, select the
EditText widget in the layout and locate the inputType entry within the Attributes tool window. Click on the
current setting to open the list of options and, within the list, switch off textPersonName and enable text before
clicking on the OK button.

By default the EditText is displaying text which reads “Name”. Remaining within the Attributes panel, delete this
from the text property field so that the view is blank within the layout.

13.3 Overriding the Activity Lifecycle Methods

At this point, the project contains a single activity named MainActivity, which is derived from the Android
AppCompatActivity class. The source code for this activity is contained within the MainActivity.java file which
should already be open in an editor session and represented by a tab in the editor tab bar. In the event that the file
is no longer open, navigate to it in the Project tool window panel (app -> java -> com.ebookfrenzy.statechange ->
MainActivity) and double-click on it to load the file into the editor. Once loaded the code should read as follows:

package com.ebookfrenzy.statechange;

import android.os.Bundle;

import android.support.design.widget.FloatingActionButton;
import android.support.design.widget.Snackbar;

import android.support.v7.app.AppCompatActivity;

import android.support.v7.widget.Toolbar;

import android.view.View;

import android.view.Menu;

import android.view.Menultem;
public class MainActivity extends AppCompatActivity {

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity state change);
Toolbar toolbar = findViewById(R.id.toolbar);
setSupportActionBar (toolbar) ;

FloatingActionButton fab = findViewById(R.id.fab);
fab.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View view) {
Snackbar.make (view, "Replace with your own action",
Snackbar.LENGTH LONG)

.setAction ("Action", null).show();

89

Android Activity State Changes by Example

@Override

public boolean onCreateOptionsMenu (Menu menu) {
// Inflate the menu; this adds items to the action bar if it is present.
getMenulnflater () .inflate (R.menu.menu main, menu);

return true;

@Override

public boolean onOptionsItemSelected (Menultem item) {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
int id = item.getItemId() ;

//noinspection SimplifiableIfStatement
if (id == R.id.action settings) {

return true;

return super.onOptionsItemSelected (item) ;

}

So far the only lifecycle method overridden by the activity is the onCreate() method which has been implemented
to call the super class instance of the method before setting up the user interface for the activity. We will now
modify this method so that it outputs a diagnostic message in the Android Studio Logcat panel each time it
executes. For this, we will use the Log class, which requires that we import android.util. Log and declare a tag that
will enable us to filter these messages in the log output:

package com.ebookfrenzy.statechange;

import android.os.Bundle;

import android.support.design.widget.FloatingActionButton;
import android.support.design.widget.Snackbar;
android.support.v7.app.AppCompatActivity;

import android.view.View;

import android.view.Menu;

import android.view.Menultem;

import android.util.Log;

public class MainActivity extends AppCompatActivity {
private static final String TAG = "StateChange";
@Override

protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

90

Android Activity State Changes by Example

setContentView (R.layout.activity state change);
Toolbar toolbar = findViewById(R.id.toolbar);
setSupportActionBar (toolbar) ;

FloatingActionButton fab = findViewById(R.id.fab);
fab.setOnClickListener (new View.OnClickListener () {
@Override
public void onClick (View view) {
Snackbar.make (view, "Replace with your own action",
Snackbar.LENGTH LONG)

.setAction ("Action", null).show();

1)

Log.i (TAG, "onCreate");

}

The next task is to override some more methods, with each one containing a corresponding log call. These
override methods may be added manually or generated using the Alt-Insert keyboard shortcut as outlined in the
chapter entitled “The Basics of the Android Studio Code Editor”. Note that the Log calls will still need to be added
manually if the methods are being auto-generated:
@Override
protected void onStart () {

super.onStart () ;

Log.1i(TAG, "onStart");

@Override
protected void onResume () {
super.onResume () ;

Log.1(TAG, "onResume");

@Override
protected void onPause () {
super.onPause () ;

Log.1i(TAG, "onPause");

@Override

protected void onStop () {
super.onStop () ;
Log.1(TAG, "onStop");

91

Android Activity State Changes by Example
}

@Override

protected void onRestart () {
super.onRestart () ;
Log.1i(TAG, "onRestart");

@Override
protected void onDestroy () {
super.onDestroy () ;

Log.1i (TAG, "onDestroy");

@Override
protected void onSavelnstanceState (Bundle outState) {
super.onSavelnstanceState (outState);

Log.1(TAG, "onSavelnstanceState");

@Override

protected void onRestoreInstanceState (Bundle savedInstanceState) {
super.onRestorelnstanceState (savedInstanceState);
Log.1i (TAG, "onRestoreInstanceState");

}
13.4 Filtering the Logcat Panel

The purpose of the code added to the overridden methods in MainActivity.java is to output logging information
to the Logcat tool window. This output can be configured to display all events relating to the device or emulator
session, or restricted to those events that relate to the currently selected app. The output can also be further
restricted to only those log events that match a specified filter.

Display the Logcat tool window and click on the filter menu (marked as B in Figure 13-3) to review the available
options. When this menu is set to Show only selected application, only those messages relating to the app selected
in the menu marked as A will be displayed in the Logcat panel. Choosing No Filter, on the other hand, will
display all the messages generated by the device or emulator.

Figure 13-3

Before running the application, it is worth demonstrating the creation of a filter which, when selected, will
further restrict the log output to ensure that only those log messages containing the tag declared in our activity

92

Android Activity State Changes by Example
are displayed.

From the filter menu (B), select the Edit Filter Configuration menu option. In the Create New Logcat Filter dialog
(Figure 13-4), name the filter Lifecycle and, in the Log Tag field, enter the Tag value declared in MainActivity.java
(in the above code example this was StateChange).

Figure 13-4

Enter the package identifier in the Package Name field (clicking on the search icon in the text field will drop
down a menu from which the package name may be selected) and, when the changes are complete, click on the
OK button to create the filter and dismiss the dialog. Instead of listing No Filters, the newly created filter should
now be selected in the Logcat tool window.

13.5 Running the Application

For optimal results, the application should be run on a physical Android device or emulator. With the device
configured and connected to the development computer, click on the run button represented by a green triangle
located in the Android Studio toolbar as shown in Figure 13-5 below, select the Run -> Run... menu option or
use the Shift+F10 keyboard shortcut:

Figure 13-5

Select the physical Android device from the Choose Device dialog if it appears (assuming that you have not
already configured it to be the default target). After Android Studio has built the application and installed it on
the device it should start up and be running in the foreground.

A review of the Logcat panel should indicate which methods have so far been triggered (taking care to ensure
that the Lifecycle filter created in the preceding section is selected to filter out log events that are not currently
of interest to us):

Figure 13-6
93

Android Activity State Changes by Example

13.6 Experimenting with the Activity

With the diagnostics working, it is now time to exercise the application with a view to gaining an understanding
of the activity lifecycle state changes. To begin with, consider the initial sequence of log events in the Logcat
panel:

onCreate

onStart

onResume

Clearly, the initial state changes are exactly as outlined in “Understanding Android Application and Activity
Lifecycles”. Note, however, that a call was not made to onRestorelnstanceState() since the Android runtime
detected that there was no state to restore in this situation.

Tap on the Home icon in the bottom status bar on the device display and note the sequence of method calls
reported in the log as follows:

onPause

onStop

onSavelnstanceState

In this case, the runtime has noticed that the activity is no longer in the foreground, is not visible to the user
and has stopped the activity, but not without providing an opportunity for the activity to save the dynamic state.
Depending on whether the runtime ultimately destroyed the activity or simply restarted it, the activity will
either be notified it has been restarted via a call to onRestart() or will go through the creation sequence again
when the user returns to the activity.

As outlined in “Understanding Android Application and Activity Lifecycles”, the destruction and recreation of
an activity can be triggered by making a configuration change to the device, such as rotating from portrait to
landscape. To see this in action, simply rotate the device while the StateChange application is in the foreground.
When using the emulator, device rotation may be simulated using the rotation button located in the emulator
toolbar. The resulting sequence of method calls in the log should read as follows:

onPause

onStop

onSavelnstanceState

onDestroy

onCreate

onStart

onRestorelnstanceState

onResume

Clearly, the runtime system has given the activity an opportunity to save state before being destroyed and
restarted.

13.7 Summary

The old adage that a picture is worth a thousand words holds just as true for examples when learning a new
programming paradigm. In this chapter, we have created an example Android application for the purpose of
demonstrating the different lifecycle states through which an activity is likely to pass. In the course of developing
the project in this chapter, we also looked at a mechanism for generating diagnostic logging information from
within an activity.

In the next chapter, we will extend the StateChange example project to demonstrate how to save and restore an
activity’s dynamic state.

94

Chapter 14

14. Saving and Restoring the State of
an Android Activity

If the previous few chapters have achieved their objective, it should now be a little clearer as to the importance
of saving and restoring the state of a user interface at particular points in the lifetime of an activity.

In this chapter, we will extend the example application created in “Android Activity State Changes by Example”
to demonstrate the steps involved in saving and restoring state when an activity is destroyed and recreated by
the runtime system.

A key component of saving and restoring dynamic state involves the use of the Android SDK Bundle class, a
topic that will also be covered in this chapter.

14.1 Saving Dynamic State

An activity, as we have already learned, is given the opportunity to save dynamic state information via a call from
the runtime system to the activity’s implementation of the onSavelnstanceState() method. Passed through as an
argument to the method is a reference to a Bundle object into which the method will need to store any dynamic
data that needs to be saved. The Bundle object is then stored by the runtime system on behalf of the activity and
subsequently passed through as an argument to the activity’s onCreate() and onRestorelnstanceState() methods
if and when they are called. The data can then be retrieved from the Bundle object within these methods and
used to restore the state of the activity.

14.2 Default Saving of User Interface State

In the previous chapter, the diagnostic output from the StateChange example application showed that an activity
goes through a number of state changes when the device on which it is running is rotated sufficiently to trigger
an orientation change.

Launch the StateChange application once again, this time entering some text into the EditText field prior to
performing the device rotation (on devices or emulators running Android 9 it may be necessary to tap the
rotation button in the located in the status bar to complete the rotation). Having rotated the device, the following
state change sequence should appear in the Logcat window:

onPause

onStop

onSavelnstanceState

onDestroy

onCreate

onStart

onRestorelInstanceState

onResume

Clearly this has resulted in the activity being destroyed and re-created. A review of the user interface of the
running application, however, should show that the text entered into the EditText field has been preserved.
Given that the activity was destroyed and recreated, and that we did not add any specific code to make sure the
text was saved and restored, this behavior requires some explanation.

95

Saving and Restoring the State of an Android Activity

In actual fact most of the view widgets included with the Android SDK already implement the behavior necessary
to automatically save and restore state when an activity is restarted. The only requirement to enable this behavior
is for the onSavelnstanceState() and onRestorelnstanceState() override methods in the activity to include calls to
the equivalent methods of the super class:

@Override

protected void onSavelInstanceState (Bundle outState) {

super.onSaveInstanceState (outState) ;

@Override
protected void onRestorelInstanceState (Bundle savedInstanceState) {
super.onRestoreInstanceState (savedInstanceState) ;

}

The automatic saving of state for a user interface view can be disabled in the XML layout file by setting the
android:saveEnabled property to false. For the purposes of an example, we will disable the automatic state saving
mechanism for the EditText view in the user interface layout and then add code to the application to manually
save and restore the state of the view.

To configure the EditText view such that state will not be saved and restored in the event that the activity is
restarted, edit the content_main.xml file so that the entry for the view reads as follows (note that the XML can be
edited directly by clicking on the Text tab on the bottom edge of the Layout Editor panel):
<EditText

android:id="@+id/editText"

android:layout width="wrap content"

android:layout height="wrap content"

android:ems="10"

android:inputType="text"

android:saveEnabled="false"

app:layout constraintBottom toBottomOf="parent"

app:layout constraintEnd toEndOf="parent"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent" />

After making the change, run the application, enter text and rotate the device to verify that the text is no longer
saved and restored before proceeding.

14.3 The Bundle Class

For situations where state needs to be saved beyond the default functionality provided by the user interface view
components, the Bundle class provides a container for storing data using a key-value pair mechanism. The keys
take the form of string values, while the values associated with those keys can be in the form of a primitive value
or any object that implements the Android Parcelable interface. A wide range of classes already implements the
Parcelable interface. Custom classes may be made “parcelable” by implementing the set of methods defined in
the Parcelable interface, details of which can be found in the Android documentation at:

https://developer.android.com/reference/android/os/Parcelable. html

The Bundle class also contains a set of methods that can be used to get and set key-value pairs for a variety of
data types including both primitive types (including Boolean, char, double and float values) and objects (such

96

http://developer.android.com/reference/android/os/Parcelable.html

Saving and Restoring the State of an Android Activity
as Strings and CharSequences).

For the purposes of this example, and having disabled the automatic saving of text for the EditText view, we
need to make sure that the text entered into the EditText field by the user is saved into the Bundle object and
subsequently restored. This will serve as a demonstration of how to manually save and restore state within an
Android application and will be achieved using the putCharSequence() and getCharSequence() methods of the
Bundle class respectively.

14.4 Saving the State

The first step in extending the StateChange application is to make sure that the text entered by the user is
extracted from the EditText component within the onSavelnstanceState() method of the MainActivity activity,
and then saved as a key-value pair into the Bundle object.

In order to extract the text from the EditText object we first need to identify that object in the user interface.
Clearly, this involves bridging the gap between the Java code for the activity (contained in the MainActivity.
java source code file) and the XML representation of the user interface (contained within the content_main.xml
resource file). In order to extract the text entered into the EditText component we need to gain access to that
user interface object.

Each component within a user interface has associated with it a unique identifier. By default, the Layout Editor
tool constructs the ID for a newly added component from the object type. If more than one view of the same
type is contained in the layout the type name is followed by a sequential number (though this can, and should,
be changed to something more meaningful by the developer). As can be seen by checking the Component Tree
panel within the Android Studio main window when the content_main.xml file is selected and the Layout Editor
tool displayed, the EditText component has been assigned the ID editText:

Figure 14-1

As outlined in the chapter entitled “The Anatomy of an Android Application”, all of the resources that make up an
application are compiled into a class named R. Amongst those resources are those that define layouts, including
the layout for our current activity. Within the R class is a subclass named layout, which contains the layout
resources, and within that subclass is our content_main layout. With this knowledge, we can make a call to the
findViewByld() method of our activity object to get a reference to the editText object as follows:

final EditText editText = findViewById(R.id.editText) ;

Having either obtained a reference to the EditText object and assigned it to a variable, we can now obtain the text
that it contains via the object’s getText() method, which, in turn, returns the current text:

CharSequence userText = editText.getText();

Finally, we can save the text using the Bundle object’s putCharSequence() method, passing through the key

(this can be any string value but in this instance, we will declare it as “savedText”) and the userText object as
arguments:

outState.putCharSequence ("savedText", userText);

Bringing this all together gives us a modified onSavelnstanceState() method in the MainActivity.java file that

97

Saving and Restoring the State of an Android Activity

reads as follows (noting also the additional import directive for android. widget. Edit Text):

package com.ebookfrenzy.statechange;

import android.os.Bundle;

import android.support.design.widget.FloatingActionButton;
import android.support.design.widget.Snackbar;

import android.support.v7.app.AppCompatActivity;

import android.support.v7.widget.Toolbar;

import android.view.View;

import android.view.Menu;

import android.view.Menultem;

import android.util.Log;

import android.widget.EditText;

public class MainActivity extends AppCompatActivity {

protected void onSavelInstanceState (Bundle outState) {
super.onSavelnstanceState (outState);

Log.i (TAG, "onSavelInstanceState");

final EditText editText =

findViewById (R.id.editText) ;
CharSequence userText = editText.getText() ;
outState.putCharSequence ("savedText", userText)

Now that steps have been taken to save the state, the next phase is to ensure that it is restored when needed.

14.5 Restoring the State

The saved dynamic state can be restored in those lifecycle methods that are passed the Bundle object as an

argument. This leaves the developer with the choice of using either onCreate() or onRestorelnstanceState(). The

method to use will depend on the nature of the activity. In instances where state is best restored after the activity’s

initialization tasks have been performed, the onRestorelnstanceState() method is generally more suitable. For the

purposes of this example we will add code to the onRestorelnstanceState() method to extract the saved state from

the Bundle using the “savedText” key. We can then display the text on the editText component using the object’s

setText() method:

@Override

protected void onRestoreInstanceState (Bundle savedInstanceState) {
super.onRestorelInstanceState (savedInstanceState) ;

Log.1i(TAG, "onRestoreInstanceState");
final EditText editText =

98

Saving and Restoring the State of an Android Activity

findViewById (R.id.editText) ;

CharSequence userText =
savedInstanceState.getCharSequence ("savedText") ;

editText.setText (userText) ;
}

14.6 Testing the Application

All that remains is once again to build and run the StateChange application. Once running and in the foreground,
touch the EditText component and enter some text before rotating the device to another orientation. Whereas
the text changes were previously lost, the new text is retained within the editText component thanks to the code
we have added to the activity in this chapter.

Having verified that the code performs as expected, comment out the super.onSavelnstanceState() and super.
onRestorelnstanceState() calls from the two methods, re-launch the app and note that the text is still preserved
after a device rotation. The default save and restoration system has essentially been replaced by a custom
implementation, thereby providing a way to dynamically and selectively save and restore state within an activity.

14.7 Summary

The saving and restoration of dynamic state in an Android application is simply a matter of implementing the
appropriate code in the appropriate lifecycle methods. For most user interface views, this is handled automatically
by the Activity super class. In other instances, this typically consists of extracting values and settings within the
onSavelnstanceState() method and saving the data as key-value pairs within the Bundle object passed through
to the activity by the runtime system.

State can be restored in either the onCreate() or the onRestorelnstanceState() methods of the activity by extracting
values from the Bundle object and updating the activity based on the stored values.

In this chapter, we have used these techniques to update the StateChange project so that the Activity retains
changes through the destruction and subsequent recreation of an activity.

99

Chapter 15

15. Understanding Android Views,
View Groups and Layouts

With the possible exception of listening to streaming audio, a user’s interaction with an Android device is primarily
visual and tactile in nature. All of this interaction takes place through the user interfaces of the applications
installed on the device, including both the built-in applications and any third party applications installed by the
user. It should come as no surprise, therefore, that a key element of developing Android applications involves the
design and creation of user interfaces.

Within this chapter, the topic of Android user interface structure will be covered, together with an overview of
the different elements that can be brought together to make up a user interface; namely Views, View Groups
and Layouts.

15.1 Designing for Different Android Devices

The term “Android device” covers a vast array of tablet and smartphone products with different screen sizes and
resolutions. As a result, application user interfaces must now be carefully designed to ensure correct presentation
on as wide a range of display sizes as possible. A key part of this is ensuring that the user interface layouts resize
correctly when run on different devices. This can largely be achieved through careful planning and the use of the
layout managers outlined in this chapter.

It is also important to keep in mind that the majority of Android based smartphones and tablets can be held
by the user in both portrait and landscape orientations. A well-designed user interface should be able to adapt
to such changes and make sensible layout adjustments to utilize the available screen space in each orientation.

15.2 Views and View Groups

Every item in a user interface is a subclass of the Android View class (to be precise android.view.View). The
Android SDK provides a set of pre-built views that can be used to construct a user interface. Typical examples
include standard items such as the Button, CheckBox, ProgressBar and TextView classes. Such views are also
referred to as widgets or components. For requirements that are not met by the widgets supplied with the SDK,
new views may be created either by subclassing and extending an existing class, or creating an entirely new
component by building directly on top of the View class.

A view can also be comprised of multiple other views (otherwise known as a composite view). Such views are
subclassed from the Android ViewGroup class (android.view.ViewGroup) which is itself a subclass of View. An
example of such a view is the RadioGroup, which is intended to contain multiple RadioButton objects such that
only one can be in the “on” position at any one time. In terms of structure, composite views consist of a single
parent view (derived from the ViewGroup class and otherwise known as a container view or root element) that is
capable of containing other views (known as child views).

Another category of ViewGroup based container view is that of the layout manager.

15.3 Android Layout Managers

In addition to the widget style views discussed in the previous section, the SDK also includes a set of views
referred to as layouts. Layouts are container views (and, therefore, subclassed from ViewGroup) designed for the

101

Understanding Android Views, View Groups and Layouts
sole purpose of controlling how child views are positioned on the screen.
The Android SDK includes the following layout views that may be used within an Android user interface design:

« ConstraintLayout - Introduced in Android 7, use of this layout manager is recommended for most layout
requirements. ConstraintLayout allows the positioning and behavior of the views in a layout to be defined
by simple constraint settings assigned to each child view. The flexibility of this layout allows complex layouts
to be quickly and easily created without the necessity to nest other layout types inside each other, resulting
in improved layout performance. ConstraintLayout is also tightly integrated into the Android Studio Layout
Editor tool. Unless otherwise stated, this is the layout of choice for the majority of examples in this book.

« LinearLayout - Positions child views in a single row or column depending on the orientation selected. A
weight value can be set on each child to specify how much of the layout space that child should occupy relative
to other children.

« TableLayout - Arranges child views into a grid format of rows and columns. Each row within a table is
represented by a TableRow object child, which, in turn, contains a view object for each cell.

o FrameLayout — The purpose of the FrameLayout is to allocate an area of screen, typically for the purposes of
displaying a single view. If multiple child views are added they will, by default, appear on top of each other
positioned in the top left-hand corner of the layout area. Alternate positioning of individual child views can be
achieved by setting gravity values on each child. For example, setting a center_vertical gravity value on a child
will cause it to be positioned in the vertical center of the containing FrameLayout view.

« RelativeLayout - The RelativeLayout allows child views to be positioned relative both to each other and the
containing layout view through the specification of alignments and margins on child views. For example,
child View A may be configured to be positioned in the vertical and horizontal center of the containing
RelativeLayout view. View B, on the other hand, might also be configured to be centered horizontally within
the layout view, but positioned 30 pixels above the top edge of View A, thereby making the vertical position
relative to that of View A. The RelativeLayout manager can be of particular use when designing a user interface
that must work on a variety of screen sizes and orientations.

« AbsoluteLayout — Allows child views to be positioned at specific X and Y coordinates within the containing
layout view. Use of this layout is discouraged since it lacks the flexibility to respond to changes in screen size
and orientation.

o GridLayout - A GridLayout instance is divided by invisible lines that form a grid containing rows and
columns of cells. Child views are then placed in cells and may be configured to cover multiple cells both
horizontally and vertically allowing a wide range of layout options to be quickly and easily implemented. Gaps
between components in a GridLayout may be implemented by placing a special type of view called a Space
view into adjacent cells, or by setting margin parameters.

« CoordinatorLayout - Introduced as part of the Android Design Support Library with Android 5.0, the
CoordinatorLayout is designed specifically for coordinating the appearance and behavior of the app bar
across the top of an application screen with other view elements. When creating a new activity using the
Basic Activity template, the parent view in the main layout will be implemented using a CoordinatorLayout
instance. This layout manager will be covered in greater detail starting with the chapter entitled “Working with
the Floating Action Button and Snackbar”.

When considering the use of layouts in the user interface for an Android application it is worth keeping in mind
that, as will be outlined in the next section, these can be nested within each other to create a user interface design
of just about any necessary level of complexity.

102

Understanding Android Views, View Groups and Layouts

15.4 The View Hierarchy
Each view in a user interface represents a rectangular area of the display. A view is responsible for what is drawn

in that rectangle and for responding to events that occur within that part of the screen (such as a touch event).

A user interface screen is comprised of a view hierarchy with a root view positioned at the top of the tree and
child views positioned on branches below. The child of a container view appears on top of its parent view and
is constrained to appear within the bounds of the parent view’s display area. Consider, for example, the user
interface illustrated in Figure 15-1:

Figure 15-1

In addition to the visible button and checkbox views, the user interface actually includes a number of layout views
that control how the visible views are positioned. Figure 15-2 shows an alternative view of the user interface, this
time highlighting the presence of the layout views in relation to the child views:

Figure 15-2
103

Understanding Android Views, View Groups and Layouts

As was previously discussed, user interfaces are constructed in the form of a view hierarchy with a root view at
the top. This being the case, we can also visualize the above user interface example in the form of the view tree
illustrated in Figure 15-3:

Figure 15-3

The view hierarchy diagram gives probably the clearest overview of the relationship between the various views
that make up the user interface shown in Figure 15-1. When a user interface is displayed to the user, the Android
runtime walks the view hierarchy, starting at the root view and working down the tree as it renders each view.

15.5 Creating User Interfaces

With a clearer understanding of the concepts of views, layouts and the view hierarchy, the following few chapters
will focus on the steps involved in creating user interfaces for Android activities. In fact, there are three different
approaches to user interface design: using the Android Studio Layout Editor tool, handwriting XML layout
resource files or writing Java code, each of which will be covered.

15.6 Summary

Each element within a user interface screen of an Android application is a view that is ultimately subclassed from
the android.view. View class. Each view represents a rectangular area of the device display and is responsible both
for what appears in that rectangle and for handling events that take place within the view’s bounds. Multiple
views may be combined to create a single composite view. The views within a composite view are children of a
container view which is generally a subclass of android.view. ViewGroup (which is itself a subclass of android.
view.View). A user interface is comprised of views constructed in the form of a view hierarchy.

The Android SDK includes a range of pre-built views that can be used to create a user interface. These include
basic components such as text fields and buttons, in addition to a range of layout managers that can be used to
control the positioning of child views. In the event that the supplied views do not meet a specific requirement,
custom views may be created, either by extending or combining existing views, or by subclassing android.view.
View and creating an entirely new class of view.

User interfaces may be created using the Android Studio Layout Editor tool, handwriting XML layout resource
files or by writing Java code. Each of these approaches will be covered in the chapters that follow.

104

Chapter 16

16. A Guide to the Android Studio
Layout Editor Tool

It is difficult to think of an Android application concept that does not require some form of user interface. Most
Android devices come equipped with a touch screen and keyboard (either virtual or physical) and taps and
swipes are the primary form of interaction between the user and application. Invariably these interactions take
place through the application’s user interface.

A well designed and implemented user interface, an important factor in creating a successful and popular
Android application, can vary from simple to extremely complex, depending on the design requirements of the
individual application. Regardless of the level of complexity, the Android Studio Layout Editor tool significantly
simplifies the task of designing and implementing Android user interfaces.

16.1 Basic vs. Empty Activity Templates

As outlined in the chapter entitled “The Anatomy of an Android Application”, Android applications are made up
of one or more activities. An activity is a standalone module of application functionality that usually correlates
directly to a single user interface screen. As such, when working with the Android Studio Layout Editor we are
invariably working on the layout for an activity.

When creating a new Android Studio project, a number of different templates are available to be used as the
starting point for the user interface of the main activity. The most basic of these templates are the Basic Activity
and Empty Activity templates. Although these seem similar at first glance, there are actually considerable
differences between the two options.

The Empty Activity template creates a single layout file consisting of a ConstraintLayout manager instance
containing a TextView object as shown in Figure 16-1:

Figure 16-1
105

A Guide to the Android Studio Layout Editor Tool

The Basic Activity, on the other hand, consists of two layout files. The top level layout file has a CoordinatorLayout
as the root view, a configurable app bar, a menu preconfigured with a single menu item (A in Figure 16-2), a
floating action button (B) and a reference to the second layout file in which the layout for the content area of the
activity user interface is declared:

Figure 16-2

Clearly the Empty Activity template is useful if you need neither a floating action button nor a menu in your
activity and do not need the special app bar behavior provided by the CoordinatorLayout such as options
to make the app bar and toolbar collapse from view during certain scrolling operations (a topic covered in
the chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”). The Basic Activity is useful,
however, in that it provides these elements by default. In fact, it is often quicker to create a new activity using the
Basic Activity template and delete the elements you do not require than to use the Empty Activity template and
manually implement behavior such as collapsing toolbars, a menu or floating action button.

Since not all of the examples in this book require the features of the Basic Activity template, however, most of
the examples in this chapter will use the Empty Activity template unless the example requires one or other of the
features provided by the Basic Activity template.

For future reference, if you need a menu but not a floating action button, use the Basic Activity and follow these
steps to delete the floating action button:

1. Double-click on the main activity layout file located in the Project tool window under app -> res -> layout
to load it into the Layout Editor. This will be the layout file prefixed with activity_ and not the content file
prefixed with content .

2. With the layout loaded into the Layout Editor tool, select the floating action button and tap the keyboard
Delete key to remove the object from the layout.

3. Locate and edit the Java code for the activity (located under app -> java -> <package name> -> <activity
class name> and remove the floating action button code from the onCreate method as follows:

@Override
protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;

106

A Guide to the Android Studio Layout Editor Tool

setContentView (R.layout.activity main);
Toolbar toolbar = findViewById(R.id.toolbar);
setSupportActionBar (toolbar) ;

ﬁoﬁgﬁw‘ 3 =

Q (]
COVTLLITUT

P LA | VT B le (Y72 4 {
puoTrIc oIra OontCrIcCK({vIeEW Tew) 1

4= N I V| . T 1 13 . A
TSetACtIOn|(CTIoIr , ITurr) . SITow();

If you need a floating action button but no menu, use the Basic Activity template and follow these steps:
1. Edit the activity class file and delete the onCreateOptionsMenu and onOptionsltemSelected methods.

2. Select the res -> menu item in the Project tool window and tap the keyboard Delete key to remove the folder
and corresponding menu resource files from the project.

16.2 The Android Studio Layout Editor

As has been demonstrated in previous chapters, the Layout Editor tool provides a “what you see is what you
get” (WYSIWYG) environment in which views can be selected from a palette and then placed onto a canvas
representing the display of an Android device. Once a view has been placed on the canvas, it can be moved,
deleted and resized (subject to the constraints of the parent view). Further, a wide variety of properties relating
to the selected view may be modified using the Attributes tool window.

Under the surface, the Layout Editor tool actually constructs an XML resource file containing the definition of
the user interface that is being designed. As such, the Layout Editor tool operates in two distinct modes referred
to as Design mode and Text mode.

16.3 Design Mode

In design mode, the user interface can be visually manipulated by directly working with the view palette and the
graphical representation of the layout. Figure 16-3 highlights the key areas of the Android Studio Layout Editor
tool in design mode:

107

A Guide to the Android Studio Layout Editor Tool

Figure 16-3

A - Palette - The palette provides access to the range of view components provided by the Android SDK. These
are grouped into categories for easy navigation. Items may be added to the layout by dragging a view component
from the palette and dropping it at the desired position on the layout.

B - Device Screen - The device screen provides a visual “what you see is what you get” representation of the
user interface layout as it is being designed. This layout allows for direct manipulation of the design in terms of
allowing views to be selected, deleted, moved and resized. The device model represented by the layout can be
changed at any time using a menu located in the toolbar.

C - Component Tree — As outlined in the previous chapter (“Understanding Android Views, View Groups and
Layouts”) user interfaces are constructed using a hierarchical structure. The component tree provides a visual
overview of the hierarchy of the user interface design. Selecting an element from the component tree will cause
the corresponding view in the layout to be selected. Similarly, selecting a view from the device screen layout will
select that view in the component tree hierarchy.

D - Attributes — All of the component views listed in the palette have associated with them a set of attributes
that can be used to adjust the behavior and appearance of that view. The Layout Editor’s attributes panel provides
access to the attributes of the currently selected view in the layout allowing changes to be made.

E - Toolbar - The Layout Editor toolbar provides quick access to a wide range of options including, amongst
other options, the ability to zoom in and out of the device screen layout, change the device model currently
displayed, rotate the layout between portrait and landscape and switch to a different Android SDK API level.
The toolbar also has a set of context sensitive buttons which will appear when relevant view types are selected
in the device screen layout.

F - Mode Switching Tabs — The tabs located along the lower edge of the Layout Editor provide a way to switch
back and forth between the Layout Editor tool’s text and design modes.

16.4 The Palette

The Layout Editor palette is organized into two panels designed to make it easy to locate and preview view
components for addition to a layout design. The category panel (marked A in Figure 16-4) lists the different

108

A Guide to the Android Studio Layout Editor Tool

categories of view components supported by the Android SDK. When a category is selected from the list, the
second panel (B) updates to display a list of the components that fall into that category:

Figure 16-4

To add a component from the palette onto the layout canvas, simply select the item either from the component
list or the preview panel, drag it to the desired location on the canvas and drop it into place.

A search for a specific component within the currently selected category may be initiated by clicking on the
search button (marked C in Figure 16-4 above) in the palette toolbar and typing in the component name. As
characters are typed, matching results will appear in real-time within the component list panel. If you are unsure
of the category in which the component resides, simply select the All category either before or during the search
operation.

16.5 Design and Layout Views

When the Layout Editor tool is in Design mode, the layout can be viewed in two different ways. The view shown
in Figure 16-3 above is the Design view and shows the layout and widgets as they will appear in the running app.
A second mode, referred to as Layout or Blueprint view can be shown either instead of, or concurrently with the
Design view. The toolbar menu shown in Figure 16-5 provides options to display the Design, Blueprint, or both
views. A fourth option, Force Refresh Layout, causes the layout to rebuild and redraw. This can be useful when
the layout enters an unexpected state or is not accurately reflecting the current design settings:

Figure 16-5

Whether to display the layout view, design view or both is a matter of personal preference. A good approach is
to begin with both displayed as shown in Figure 16-6:

109

A Guide to the Android Studio Layout Editor Tool

Figure 16-6

16.6 Text Mode

It is important to keep in mind when using the Android Studio Layout Editor tool that all it is really doing is
providing a user friendly approach to creating XML layout resource files. At any time during the design process,
the underlying XML can be viewed and directly edited simply by clicking on the Text tab located at the bottom
of the Layout Editor tool panel. To return to design mode, simply click on the Design tab.

Figure 16-7 highlights the key areas of the Android Studio Layout Editor tool in text mode:

Figure 16-7

A - Editor - The editor panel displays the XML that makes up the current user interface layout design. This is

110

A Guide to the Android Studio Layout Editor Tool

the full Android Studio editor environment containing all of the features previously outlined in the “IThe Basics
of the Android Studio Code Editor” chapter of this book.

B - Preview — As changes are made to the XML in the editor, these changes are visually reflected in the preview
window. This provides instant visual feedback on the XML changes as they are made in the editor, thereby
avoiding the need to switch back and forth between text and design mode to see changes. The preview also
allows direct manipulation and design of the layout just as if the layout were in Design mode, with visual changes
being reflected in the editor panel in real-time. As with Design mode, both the Design and Layout views may be
displayed using the toolbar buttons highlighted in Figure 16-5 above.

C - Toolbar - The toolbar in text mode provides access to the same functions available in design mode.

D - Mode Switching Tabs — The tabs located along the lower edge of the Layout Editor provide a way to switch
back and forth between the Layout Editor tool’s Text and Design modes.

16.7 Setting Attributes

The Attributes panel provides access to all of the available settings for the currently selected component. Figure
16-8, for example, shows the attributes for the TextView widget:

Figure 16-8
111

A Guide to the Android Studio Layout Editor Tool
The Attributes tool window is divided into the following different sections.

o id - Contains the id property which defines the name by which the currently selected object will be referenced
in the source code of the app.

« Declared Attributes - Contains all of the properties which have already been assigned a value.

« Layout - The settings that define how the currently selected view object is positioned and sized in relation to
the screen and other objects in the layout.

o Common Attributes - A list of attributes that commonly need to be changed for the class of view object
currently selected.

o All Attributes - A complete list of all of the attributes available for the currently selected object.

A search for a specific attribute may also be performed by selecting the search button in the toolbar of the
attributes tool window and typing in the attribute name.

Some attributes contain a narrow button to the right of the value field. This indicates that the Resources dialog
is available to assist in selecting a suitable property value. To display the dialog, simply click on the button. The
appearance of this button changes to reflect whether or not the corresponding property value is stored in a
resource file or hardcoded. If the value is stored in a resource file, the button to the right of the text property field
will be filled in to indicate that the value is not hard coded as highlighted in Figure 16-9 below:

Figure 16-9

Attributes for which a finite number of valid options are available will present a drop down menu (Figure 16-10)
from which a selection may be made.

Figure 16-10

112

A Guide to the Android Studio Layout Editor Tool

16.8 Converting Views

Changing a view in a layout from one type to another (such as converting a TextView to an EditText) can be
performed easily within the Android Studio layout editor simply by right-clicking on the view either within the
screen layout or Component tree window and selecting the Convert view... menu option (Figure 16-11):

Figure 16-11

Once selected, a dialog will appear containing a list of compatible view types to which the selected object is
eligible for conversion. Figure 16-12, for example shows the types to which an existing TextView view may be
converted:

Figure 16-12

This technique is also useful for converting layouts from one type to another (for example converting a
ConstraintLayout to a LinearLayout).

16.9 Displaying Sample Data

When designing layouts in Android Studio situations will arise where the content to be displayed within the user
interface will not be available until the app is completed and running. This can sometimes make it difficult to
assess from within the layout editor how the layout will appear at app runtime. To address this issue, the layout
editor allows sample data to be specified that will populate views within the layout editor with sample images

113

A Guide to the Android Studio Layout Editor Tool

and data. This sample data only appears within the layout editor and is not displayed when the app runs. Sample
data may be configured either by directly editing the XML for the layout, or visually using the design-time
helper by right-clicking on the widget in the design area and selecting the Set Sample Data menu option. The
design-time helper panel will display a range of preconfigured options for sample data to be displayed on the
selected view item including combinations of text and images in a variety of configurations. Figure 16-13, for
example, shows the sample data options displayed when selecting sample data to appear in a RecyclerView list:

Figure 16-13

Alternatively, custom text and images may be provided for display during the layout design process. An example
of using sample data within the layout editor is included in a later chapter entitled “A Layout Editor Sample Data
Tutorial”.

16.10 Creating a Custom Device Definition

The device menu in the Layout Editor toolbar (Figure 16-14) provides a list of preconfigured device types
which, when selected, will appear as the device screen canvas. In addition to the pre-configured device types,
any AVD instances that have previously been configured within the Android Studio environment will also be
listed within the menu. To add additional device configurations, display the device menu, select the Add Device
Definition... option and follow the steps outlined in the chapter entitled “Creating an Android Virtual Device
(AVD) in Android Studio”.

Figure 16-14

114

A Guide to the Android Studio Layout Editor Tool

16.11 Changing the Current Device

As an alternative to the device selection menu, the current device format may be changed by selecting the
Custom option from the device menu, clicking on the resize handle located next to the bottom right-hand corner
of the device screen (Figure 16-15) and dragging to select an alternate device display format. As the screen
resizes, markers will appear indicating the various size options and orientations available for selection:

Figure 16-15

16.12 Summary

A key part of developing Android applications involves the creation of the user interface. Within the Android
Studio environment, this is performed using the Layout Editor tool which operates in two modes. In design
mode, view components are selected from a palette and positioned on a layout representing an Android device
screen and configured using a list of attributes. In text mode, the underlying XML that represents the user
interface layout can be directly edited, with changes reflected in a preview screen. These modes combine to
provide an extensive and intuitive user interface design environment.

115

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata
	1.4 Download the eBook

	2. Setting up an Android Studio Development Environment
	2.1 System Requirements
	2.2 Downloading the Android Studio Package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio Setup Wizard
	2.5 Installing Additional Android SDK Packages
	2.6 Making the Android SDK Tools Command-line Accessible
	2.6.1 Windows 7
	2.6.2 Windows 8.1
	2.6.3 Windows 10
	2.6.4 Linux
	2.6.5 macOS

	2.7 Updating Android Studio and the SDK
	2.8 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Reviewing the Layout and Resource Files
	3.7 Adding Interaction
	3.8 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Creating a New AVD
	4.3 Starting the Emulator
	4.4 Running the Application in the AVD
	4.5 Run/Debug Configurations
	4.6 Stopping a Running Application
	4.7 AVD Command-line Creation
	4.8 Android Virtual Device Configuration Files
	4.9 Moving and Renaming an Android Virtual Device
	4.10 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 The Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Cellular
	5.5.3 Camera
	5.5.4 Battery
	5.5.5 Phone
	5.5.6 Directional Pad
	5.5.7 Microphone
	5.5.8 Fingerprint
	5.5.9 Virtual Sensors
	5.5.10 Snapshots
	5.5.11 Screen Record
	5.5.12 Settings
	5.5.13 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling ADB on Android based Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Testing the adb Connection
	7.4 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. Understanding Android Application and Activity Lifecycles
	11.1 Android Applications and Resource Management
	11.2 Android Process States
	11.2.1 Foreground Process
	11.2.2 Visible Process
	11.2.3 Service Process
	11.2.4 Background Process
	11.2.5 Empty Process

	11.3 Inter-Process Dependencies
	11.4 The Activity Lifecycle
	11.5 The Activity Stack
	11.6 Activity States
	11.7 Configuration Changes
	11.8 Handling State Change
	11.9 Summary

	12. Handling Android Activity State Changes
	12.1 New vs. Old Lifecycle Techniques
	12.2 The Activity and Fragment Classes
	12.3 Dynamic State vs. Persistent State
	12.4 The Android Lifecycle Methods
	12.5 Lifetimes
	12.6 Disabling Configuration Change Restarts
	12.7 Lifecycle Method Limitations
	12.8 Summary

	13. Android Activity State Changes by Example
	13.1 Creating the State Change Example Project
	13.2 Designing the User Interface
	13.3 Overriding the Activity Lifecycle Methods
	13.4 Filtering the Logcat Panel
	13.5 Running the Application
	13.6 Experimenting with the Activity
	13.7 Summary

	14. Saving and Restoring the State of an Android Activity
	14.1 Saving Dynamic State
	14.2 Default Saving of User Interface State
	14.3 The Bundle Class
	14.4 Saving the State
	14.5 Restoring the State
	14.6 Testing the Application
	14.7 Summary

	15. Understanding Android Views, View Groups and Layouts
	15.1 Designing for Different Android Devices
	15.2 Views and View Groups
	15.3 Android Layout Managers
	15.4 The View Hierarchy
	15.5 Creating User Interfaces
	15.6 Summary

	16. A Guide to the Android Studio Layout Editor Tool
	16.1 Basic vs. Empty Activity Templates
	16.2 The Android Studio Layout Editor
	16.3 Design Mode
	16.4 The Palette
	16.5 Design and Layout Views
	16.6 Text Mode
	16.7 Setting Attributes
	16.8 Converting Views
	16.9 Displaying Sample Data
	16.10 Creating a Custom Device Definition
	16.11 Changing the Current Device
	16.12 Summary

	17. A Guide to the Android ConstraintLayout
	17.1 How ConstraintLayout Works
	17.1.1 Constraints
	17.1.2 Margins
	17.1.3 Opposing Constraints
	17.1.4 Constraint Bias
	17.1.5 Chains
	17.1.6 Chain Styles

	17.2 Baseline Alignment
	17.3 Working with Guidelines
	17.4 Configuring Widget Dimensions
	17.5 Working with Barriers
	17.6 Ratios
	17.7 ConstraintLayout Advantages
	17.8 ConstraintLayout Availability
	17.9 Summary

	18. A Guide to using ConstraintLayout in Android Studio
	18.1 Design and Layout Views
	18.2 Autoconnect Mode
	18.3 Inference Mode
	18.4 Manipulating Constraints Manually
	18.5 Adding Constraints in the Inspector
	18.6 Deleting Constraints
	18.7 Adjusting Constraint Bias
	18.8 Understanding ConstraintLayout Margins
	18.9 The Importance of Opposing Constraints and Bias
	18.10 Configuring Widget Dimensions
	18.11 Adding Guidelines
	18.12 Adding Barriers
	18.13 Widget Group Alignment and Distribution
	18.14 Converting other Layouts to ConstraintLayout
	18.15 Summary

	19. Working with ConstraintLayout Chains and Ratios in Android Studio
	19.1 Creating a Chain
	19.2 Changing the Chain Style
	19.3 Spread Inside Chain Style
	19.4 Packed Chain Style
	19.5 Packed Chain Style with Bias
	19.6 Weighted Chain
	19.7 Working with Ratios
	19.8 Summary

	20. An Android Studio Layout Editor ConstraintLayout Tutorial
	20.1 An Android Studio Layout Editor Tool Example
	20.2 Creating a New Activity
	20.3 Preparing the Layout Editor Environment
	20.4 Adding the Widgets to the User Interface
	20.5 Adding the Constraints
	20.6 Testing the Layout
	20.7 Using the Layout Inspector
	20.8 Summary

	21. Manual XML Layout Design in Android Studio
	21.1 Manually Creating an XML Layout
	21.2 Manual XML vs. Visual Layout Design
	21.3 Summary

	22. Managing Constraints using Constraint Sets
	22.1 Java Code vs. XML Layout Files
	22.2 Creating Views
	22.3 View Attributes
	22.4 Constraint Sets
	22.4.1 Establishing Connections
	22.4.2 Applying Constraints to a Layout
	22.4.3 Parent Constraint Connections
	22.4.4 Sizing Constraints
	22.4.5 Constraint Bias
	22.4.6 Alignment Constraints
	22.4.7 Copying and Applying Constraint Sets
	22.4.8 ConstraintLayout Chains
	22.4.9 Guidelines
	22.4.10 Removing Constraints
	22.4.11 Scaling
	22.4.12 Rotation

	22.5 Summary

	23. An Android ConstraintSet Tutorial
	23.1 Creating the Example Project in Android Studio
	23.2 Adding Views to an Activity
	23.3 Setting View Attributes
	23.4 Creating View IDs
	23.5 Configuring the Constraint Set
	23.6 Adding the EditText View
	23.7 Converting Density Independent Pixels (dp) to Pixels (px)
	23.8 Summary

	24. A Guide to using Instant Run in Android Studio
	24.1 Introducing Instant Run
	24.2 Understanding Instant Run Swapping Levels
	24.3 Enabling and Disabling Instant Run
	24.4 Using Instant Run
	24.5 An Instant Run Tutorial
	24.6 Triggering an Instant Run Hot Swap
	24.7 Triggering an Instant Run Warm Swap
	24.8 Triggering an Instant Run Cold Swap
	24.9 The Run Button
	24.10 Summary

	25. An Overview and Example of Android Event Handling
	25.1 Understanding Android Events
	25.2 Using the android:onClick Resource
	25.3 Event Listeners and Callback Methods
	25.4 An Event Handling Example
	25.5 Designing the User Interface
	25.6 The Event Listener and Callback Method
	25.7 Consuming Events
	25.8 Summary

	26. Android Touch and Multi-touch Event Handling
	26.1 Intercepting Touch Events
	26.2 The MotionEvent Object
	26.3 Understanding Touch Actions
	26.4 Handling Multiple Touches
	26.5 An Example Multi-Touch Application
	26.6 Designing the Activity User Interface
	26.7 Implementing the Touch Event Listener
	26.8 Running the Example Application
	26.9 Summary

	27. Detecting Common Gestures using the Android Gesture Detector Class
	27.1 Implementing Common Gesture Detection
	27.2 Creating an Example Gesture Detection Project
	27.3 Implementing the Listener Class
	27.4 Creating the GestureDetectorCompat Instance
	27.5 Implementing the onTouchEvent() Method
	27.6 Testing the Application
	27.7 Summary

	28. Implementing Custom Gesture and Pinch Recognition on Android
	28.1 The Android Gesture Builder Application
	28.2 The GestureOverlayView Class
	28.3 Detecting Gestures
	28.4 Identifying Specific Gestures
	28.5 Building and Running the Gesture Builder Application
	28.6 Creating a Gestures File
	28.7 Creating the Example Project
	28.8 Extracting the Gestures File from the SD Card
	28.9 Adding the Gestures File to the Project
	28.10 Designing the User Interface
	28.11 Loading the Gestures File
	28.12 Registering the Event Listener
	28.13 Implementing the onGesturePerformed Method
	28.14 Testing the Application
	28.15 Configuring the GestureOverlayView
	28.16 Intercepting Gestures
	28.17 Detecting Pinch Gestures
	28.18 A Pinch Gesture Example Project
	28.19 Summary

	29. An Introduction to Android Fragments
	29.1 What is a Fragment?
	29.2 Creating a Fragment
	29.3 Adding a Fragment to an Activity using the Layout XML File
	29.4 Adding and Managing Fragments in Code
	29.5 Handling Fragment Events
	29.6 Implementing Fragment Communication
	29.7 Summary

	30. Using Fragments in Android Studio - An Example
	30.1 About the Example Fragment Application
	30.2 Creating the Example Project
	30.3 Creating the First Fragment Layout
	30.4 Creating the First Fragment Class
	30.5 Creating the Second Fragment Layout
	30.6 Adding the Fragments to the Activity
	30.7 Making the Toolbar Fragment Talk to the Activity
	30.8 Making the Activity Talk to the Text Fragment
	30.9 Testing the Application
	30.10 Summary

	31. Modern Android App Architecture with Jetpack
	31.1 What is Android Jetpack?
	31.2 The “Old” Architecture
	31.3 Modern Android Architecture
	31.4 The ViewModel Component
	31.5 The LiveData Component
	31.6 LiveData and Data Binding
	31.7 Android Lifecycles
	31.8 Repository Modules
	31.9 Summary

	32. An Android Jetpack ViewModel Tutorial
	32.1 About the Project
	32.2 Creating the ViewModel Example Project
	32.3 Reviewing the Project
	32.3.1 The Main Activity
	32.3.2 The Content Fragment
	32.3.3 The ViewModel

	32.4 Designing the Fragment Layout
	32.5 Implementing the View Model
	32.6 Associating the Fragment with the View Model
	32.7 Modifying the Fragment
	32.8 Accessing the ViewModel Data
	32.9 Testing the Project
	32.10 Summary

	33. An Android Jetpack LiveData Tutorial
	33.1 LiveData - A Recap
	33.2 Adding LiveData to the ViewModel
	33.3 Implementing the Observer
	33.4 Summary

	34. An Overview of Android Jetpack Data Binding
	34.1 An Overview of Data Binding
	34.2 The Key Components of Data Binding
	34.2.1 The Project Build Configuration
	34.2.2 The Data Binding Layout File
	34.2.3 The Layout File Data Element
	34.2.4 The Binding Classes
	34.2.5 Data Binding Variable Configuration
	34.2.6 Binding Expressions (One-Way)
	34.2.7 Binding Expressions (Two-Way)
	34.2.8 Event and Listener Bindings

	34.3 Summary

	35. An Android Jetpack Data Binding Tutorial
	35.1 Removing the Redundant Code
	35.2 Enabling Data Binding
	35.3 Adding the Layout Element
	35.4 Adding the Data Element to Layout File
	35.5 Working with the Binding Class
	35.6 Assigning the ViewModel Instance to the Data Binding Variable
	35.7 Adding Binding Expressions
	35.8 Adding the Conversion Method
	35.9 Adding a Listener Binding
	35.10 Testing the App
	35.11 Summary

	36. Working with Android Lifecycle-Aware Components
	36.1 Lifecycle Awareness
	36.2 Lifecycle Owners
	36.3 Lifecycle Observers
	36.4 Lifecycle States and Events
	36.5 Summary

	37. An Android Jetpack Lifecycle Awareness Tutorial
	37.1 Creating the Example Lifecycle Project
	37.2 Creating a Lifecycle Observer
	37.3 Adding the Observer
	37.4 Testing the Observer
	37.5 Creating a Lifecycle Owner
	37.6 Testing the Custom Lifecycle Owner
	37.7 Summary

	38. An Overview of the Navigation Architecture Component
	38.1 Understanding Navigation
	38.2 Declaring a Navigation Host
	38.3 The Navigation Graph
	38.4 Accessing the Navigation Controller
	38.5 Triggering a Navigation Action
	38.6 Passing Arguments
	38.7 Summary

	39. An Android Jetpack Navigation Component Tutorial
	39.1 Creating the NavigationDemo Project
	39.2 Adding Navigation to the Build Configuration
	39.3 Creating the Navigation Graph Resource File
	39.4 Declaring a Navigation Host
	39.5 Adding Navigation Destinations
	39.6 Designing the Destination Fragment Layouts
	39.7 Adding an Action to the Navigation Graph
	39.8 Implement the OnFragmentInteractionListener
	39.9 Triggering the Action
	39.10 Passing Data Using Safeargs
	39.11 Summary

	40. Creating and Managing Overflow Menus on Android
	40.1 The Overflow Menu
	40.2 Creating an Overflow Menu
	40.3 Displaying an Overflow Menu
	40.4 Responding to Menu Item Selections
	40.5 Creating Checkable Item Groups
	40.6 Menus and the Android Studio Menu Editor
	40.7 Creating the Example Project
	40.8 Designing the Menu
	40.9 Modifying the onOptionsItemSelected() Method
	40.10 Testing the Application
	40.11 Summary

	41. Animating User Interfaces with the Android Transitions Framework
	41.1 Introducing Android Transitions and Scenes
	41.2 Using Interpolators with Transitions
	41.3 Working with Scene Transitions
	41.4 Custom Transitions and TransitionSets in Code
	41.5 Custom Transitions and TransitionSets in XML
	41.6 Working with Interpolators
	41.7 Creating a Custom Interpolator
	41.8 Using the beginDelayedTransition Method
	41.9 Summary

	42. An Android Transition Tutorial using beginDelayedTransition
	42.1 Creating the Android Studio TransitionDemo Project
	42.2 Preparing the Project Files
	42.3 Implementing beginDelayedTransition Animation
	42.4 Customizing the Transition
	42.5 Summary

	43. Implementing Android Scene Transitions – A Tutorial
	43.1 An Overview of the Scene Transition Project
	43.2 Creating the Android Studio SceneTransitions Project
	43.3 Identifying and Preparing the Root Container
	43.4 Designing the First Scene
	43.5 Designing the Second Scene
	43.6 Entering the First Scene
	43.7 Loading Scene 2
	43.8 Implementing the Transitions
	43.9 Adding the Transition File
	43.10 Loading and Using the Transition Set
	43.11 Configuring Additional Transitions
	43.12 Summary

	44. Working with the Floating Action Button and Snackbar
	44.1 The Material Design
	44.2 The Design Library
	44.3 The Floating Action Button (FAB)
	44.4 The Snackbar
	44.5 Creating the Example Project
	44.6 Reviewing the Project
	44.7 Changing the Floating Action Button
	44.8 Adding the ListView to the Content Layout
	44.9 Adding Items to the ListView
	44.10 Adding an Action to the Snackbar
	44.11 Summary

	45. Creating a Tabbed Interface using the TabLayout Component
	45.1 An Introduction to the ViewPager
	45.2 An Overview of the TabLayout Component
	45.3 Creating the TabLayoutDemo Project
	45.4 Creating the First Fragment
	45.5 Duplicating the Fragments
	45.6 Adding the TabLayout and ViewPager
	45.7 Creating the Pager Adapter
	45.8 Performing the Initialization Tasks
	45.9 Testing the Application
	45.10 Customizing the TabLayout
	45.11 Displaying Icon Tab Items
	45.12 Summary

	46. Working with the RecyclerView and CardView Widgets
	46.1 An Overview of the RecyclerView
	46.2 An Overview of the CardView
	46.3 Adding the Libraries to the Project
	46.4 Summary

	47. An Android RecyclerView and CardView Tutorial
	47.1 Creating the CardDemo Project
	47.2 Removing the Floating Action Button
	47.3 Adding the RecyclerView and CardView Libraries
	47.4 Designing the CardView Layout
	47.5 Adding the RecyclerView
	47.6 Creating the RecyclerView Adapter
	47.7 Adding the Image Files
	47.8 Initializing the RecyclerView Component
	47.9 Testing the Application
	47.10 Responding to Card Selections
	47.11 Summary

	48. A Layout Editor Sample Data Tutorial
	48.1 Adding Sample Data to a Project
	48.2 Using Custom Sample Data
	48.3 Summary

	49. Working with the AppBar and Collapsing Toolbar Layouts
	49.1 The Anatomy of an AppBar
	49.2 The Example Project
	49.3 Coordinating the RecyclerView and Toolbar
	49.4 Introducing the Collapsing Toolbar Layout
	49.5 Changing the Title and Scrim Color
	49.6 Summary

	50. Implementing an Android Navigation Drawer
	50.1 An Overview of the Navigation Drawer
	50.2 Opening and Closing the Drawer
	50.3 Responding to Drawer Item Selections
	50.4 Using the Navigation Drawer Activity Template
	50.5 Creating the Navigation Drawer Template Project
	50.6 The Template Layout Resource Files
	50.7 The Header Coloring Resource File
	50.8 The Template Menu Resource File
	50.9 The Template Code
	50.10 Running the App
	50.11 Summary

	51. An Android Studio Master/Detail Flow Tutorial
	51.1 The Master/Detail Flow
	51.2 Creating a Master/Detail Flow Activity
	51.3 The Anatomy of the Master/Detail Flow Template
	51.4 Modifying the Master/Detail Flow Template
	51.5 Changing the Content Model
	51.6 Changing the Detail Pane
	51.7 Modifying the WebsiteDetailFragment Class
	51.8 Modifying the WebsiteListActivity Class
	51.9 Adding Manifest Permissions
	51.10 Running the Application
	51.11 Summary

	52. An Overview of Android Intents
	52.1 An Overview of Intents
	52.2 Explicit Intents
	52.3 Returning Data from an Activity
	52.4 Implicit Intents
	52.5 Using Intent Filters
	52.6 Checking Intent Availability
	52.7 Summary

	53. Android Explicit Intents – A Worked Example
	53.1 Creating the Explicit Intent Example Application
	53.2 Designing the User Interface Layout for MainActivity
	53.3 Creating the Second Activity Class
	53.4 Designing the User Interface Layout for ActivityB
	53.5 Reviewing the Application Manifest File
	53.6 Creating the Intent
	53.7 Extracting Intent Data
	53.8 Launching ActivityB as a Sub-Activity
	53.9 Returning Data from a Sub-Activity
	53.10 Testing the Application
	53.11 Summary

	54. Android Implicit Intents – A Worked Example
	54.1 Creating the Android Studio Implicit Intent Example Project
	54.2 Designing the User Interface
	54.3 Creating the Implicit Intent
	54.4 Adding a Second Matching Activity
	54.5 Adding the Web View to the UI
	54.6 Obtaining the Intent URL
	54.7 Modifying the MyWebView Project Manifest File
	54.8 Installing the MyWebView Package on a Device
	54.9 Testing the Application
	54.10 Summary

	55. Android Broadcast Intents and Broadcast Receivers
	55.1 An Overview of Broadcast Intents
	55.2 An Overview of Broadcast Receivers
	55.3 Obtaining Results from a Broadcast
	55.4 Sticky Broadcast Intents
	55.5 The Broadcast Intent Example
	55.6 Creating the Example Application
	55.7 Creating and Sending the Broadcast Intent
	55.8 Creating the Broadcast Receiver
	55.9 Registering the Broadcast Receiver
	55.10 Testing the Broadcast Example
	55.11 Listening for System Broadcasts
	55.12 Summary

	56. A Basic Overview of Threads and AsyncTasks
	56.1 An Overview of Threads
	56.2 The Application Main Thread
	56.3 Thread Handlers
	56.4 A Basic AsyncTask Example
	56.5 Subclassing AsyncTask
	56.6 Testing the App
	56.7 Canceling a Task
	56.8 Summary

	57. An Overview of Android Started and Bound Services
	57.1 Started Services
	57.2 Intent Service
	57.3 Bound Service
	57.4 The Anatomy of a Service
	57.5 Controlling Destroyed Service Restart Options
	57.6 Declaring a Service in the Manifest File
	57.7 Starting a Service Running on System Startup
	57.8 Summary

	58. Implementing an Android Started Service – A Worked Example
	58.1 Creating the Example Project
	58.2 Creating the Service Class
	58.3 Adding the Service to the Manifest File
	58.4 Starting the Service
	58.5 Testing the IntentService Example
	58.6 Using the Service Class
	58.7 Creating the New Service
	58.8 Modifying the User Interface
	58.9 Running the Application
	58.10 Creating an AsyncTask for Service Tasks
	58.11 Summary

	59. Android Local Bound Services – A Worked Example
	59.1 Understanding Bound Services
	59.2 Bound Service Interaction Options
	59.3 An Android Studio Local Bound Service Example
	59.4 Adding a Bound Service to the Project
	59.5 Implementing the Binder
	59.6 Binding the Client to the Service
	59.7 Completing the Example
	59.8 Testing the Application
	59.9 Summary

	60. Android Remote Bound Services – A Worked Example
	60.1 Client to Remote Service Communication
	60.2 Creating the Example Application
	60.3 Designing the User Interface
	60.4 Implementing the Remote Bound Service
	60.5 Configuring a Remote Service in the Manifest File
	60.6 Launching and Binding to the Remote Service
	60.7 Sending a Message to the Remote Service
	60.8 Summary

	61. An Android Notifications Tutorial
	61.1 An Overview of Notifications
	61.2 Creating the NotifyDemo Project
	61.3 Designing the User Interface
	61.4 Creating the Second Activity
	61.5 Creating a Notification Channel
	61.6 Creating and Issuing a Basic Notification
	61.7 Launching an Activity from a Notification
	61.8 Adding Actions to a Notification
	61.9 Bundled Notifications
	61.10 Summary

	62. An Android Direct Reply Notification Tutorial
	62.1 Creating the DirectReply Project
	62.2 Designing the User Interface
	62.3 Creating the Notification Channel
	62.4 Building the RemoteInput Object
	62.5 Creating the PendingIntent
	62.6 Creating the Reply Action
	62.7 Receiving Direct Reply Input
	62.8 Updating the Notification
	62.9 Summary

	63. An Introduction to Android Multi-Window Support
	63.1 Split-Screen, Freeform and Picture-in-Picture Modes
	63.2 Entering Multi-Window Mode
	63.3 Enabling Freeform Support
	63.4 Checking for Freeform Support
	63.5 Enabling Multi-Window Support in an App
	63.6 Specifying Multi-Window Attributes
	63.7 Detecting Multi-Window Mode in an Activity
	63.8 Receiving Multi-Window Notifications
	63.9 Launching an Activity in Multi-Window Mode
	63.10 Configuring Freeform Activity Size and Position
	63.11 Summary

	64. An Android Studio Multi-Window Split-Screen and Freeform Tutorial
	64.1 Creating the Multi-Window Project
	64.2 Designing the MainActivity User Interface
	64.3 Adding the Second Activity
	64.4 Launching the Second Activity
	64.5 Enabling Multi-Window Mode
	64.6 Testing Multi-Window Support
	64.7 Launching the Second Activity in a Different Window
	64.8 Summary

	65. An Overview of Android SQLite Databases
	65.1 Understanding Database Tables
	65.2 Introducing Database Schema
	65.3 Columns and Data Types
	65.4 Database Rows
	65.5 Introducing Primary Keys
	65.6 What is SQLite?
	65.7 Structured Query Language (SQL)
	65.8 Trying SQLite on an Android Virtual Device (AVD)
	65.9 The Android Room Persistence Library
	65.10 Summary

	66. The Android Room Persistence Library
	66.1 Revisiting Modern App Architecture
	66.2 Key Elements of Room Database Persistence
	66.2.1 Repository
	66.2.2 Room Database
	66.2.3 Data Access Object (DAO)
	66.2.4 Entities
	66.2.5 SQLite Database

	66.3 Understanding Entities
	66.4 Data Access Objects
	66.5 The Room Database
	66.6 The Repository
	66.7 In-Memory Databases
	66.8 Summary

	67. An Android TableLayout and TableRow Tutorial
	67.1 The TableLayout and TableRow Layout Views
	67.2 Creating the Room Database Project
	67.3 Converting to a LinearLayout
	67.4 Adding the TableLayout to the User Interface
	67.5 Configuring the TableRows
	67.6 Adding the Button Bar to the Layout
	67.7 Adding the RecyclerView
	67.8 Adjusting the Layout Margins
	67.9 Summary

	68. An Android Room Database and Repository Tutorial
	68.1 About the RoomDemo Project
	68.2 Modifying the Build Configuration
	68.3 Building the Entity
	68.4 Creating the Data Access Object
	68.5 Adding the Room Database
	68.6 Adding the Repository
	68.7 Modifying the ViewModel
	68.8 Creating the Product Item Layout
	68.9 Adding the RecyclerView Adapter
	68.10 Preparing the Main Fragment
	68.11 Adding the Button Listeners
	68.12 Adding LiveData Observers
	68.13 Initializing the RecyclerView
	68.14 Testing the RoomDemo App
	68.15 Summary

	69. Accessing Cloud Storage using the Android Storage Access Framework
	69.1 The Storage Access Framework
	69.2 Working with the Storage Access Framework
	69.3 Filtering Picker File Listings
	69.4 Handling Intent Results
	69.5 Reading the Content of a File
	69.6 Writing Content to a File
	69.7 Deleting a File
	69.8 Gaining Persistent Access to a File
	69.9 Summary

	70. An Android Storage Access Framework Example
	70.1 About the Storage Access Framework Example
	70.2 Creating the Storage Access Framework Example
	70.3 Designing the User Interface
	70.4 Declaring Request Codes
	70.5 Creating a New Storage File
	70.6 The onActivityResult() Method
	70.7 Saving to a Storage File
	70.8 Opening and Reading a Storage File
	70.9 Testing the Storage Access Application
	70.10 Summary

	71. Implementing Video Playback on Android using the VideoView and MediaController Classes
	71.1 Introducing the Android VideoView Class
	71.2 Introducing the Android MediaController Class
	71.3 Creating the Video Playback Example
	71.4 Designing the VideoPlayer Layout
	71.5 Configuring the VideoView
	71.6 Adding Internet Permission
	71.7 Adding the MediaController to the Video View
	71.8 Setting up the onPreparedListener
	71.9 Summary

	72. Android Picture-in-Picture Mode
	72.1 Picture-in-Picture Features
	72.2 Enabling Picture-in-Picture Mode
	72.3 Configuring Picture-in-Picture Parameters
	72.4 Entering Picture-in-Picture Mode
	72.5 Detecting Picture-in-Picture Mode Changes
	72.6 Adding Picture-in-Picture Actions
	72.7 Summary

	73. An Android Picture-in-Picture Tutorial
	73.1 Adding Picture-in-Picture Support to the Manifest
	73.2 Adding a Picture-in-Picture Button
	73.3 Entering Picture-in-Picture Mode
	73.4 Detecting Picture-in-Picture Mode Changes
	73.5 Adding a Broadcast Receiver
	73.6 Adding the PiP Action
	73.7 Testing the Picture-in-Picture Action
	73.8 Summary

	74. Video Recording and Image Capture on Android using Camera Intents
	74.1 Checking for Camera Support
	74.2 Calling the Video Capture Intent
	74.3 Calling the Image Capture Intent
	74.4 Creating an Android Studio Video Recording Project
	74.5 Designing the User Interface Layout
	74.6 Checking for the Camera
	74.7 Launching the Video Capture Intent
	74.8 Handling the Intent Return
	74.9 Testing the Application
	74.10 Summary

	75. Making Runtime Permission Requests in Android
	75.1 Understanding Normal and Dangerous Permissions
	75.2 Creating the Permissions Example Project
	75.3 Checking for a Permission
	75.4 Requesting Permission at Runtime
	75.5 Providing a Rationale for the Permission Request
	75.6 Testing the Permissions App
	75.7 Summary

	76. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	76.1 Playing Audio
	76.2 Recording Audio and Video using the MediaRecorder Class
	76.3 About the Example Project
	76.4 Creating the AudioApp Project
	76.5 Designing the User Interface
	76.6 Checking for Microphone Availability
	76.7 Performing the Activity Initialization
	76.8 Implementing the recordAudio() Method
	76.9 Implementing the stopAudio() Method
	76.10 Implementing the playAudio() method
	76.11 Configuring and Requesting Permissions
	76.12 Testing the Application
	76.13 Summary

	77. Working with the Google Maps Android API in Android Studio
	77.1 The Elements of the Google Maps Android API
	77.2 Creating the Google Maps Project
	77.3 Obtaining Your Developer Signature
	77.4 Adding the Apache HTTP Legacy Library Requirement
	77.5 Testing the Application
	77.6 Understanding Geocoding and Reverse Geocoding
	77.7 Adding a Map to an Application
	77.8 Requesting Current Location Permission
	77.9 Displaying the User’s Current Location
	77.10 Changing the Map Type
	77.11 Displaying Map Controls to the User
	77.12 Handling Map Gesture Interaction
	77.12.1 Map Zooming Gestures
	77.12.2 Map Scrolling/Panning Gestures
	77.12.3 Map Tilt Gestures
	77.12.4 Map Rotation Gestures

	77.13 Creating Map Markers
	77.14 Controlling the Map Camera
	77.15 Summary

	78. Printing with the Android Printing Framework
	78.1 The Android Printing Architecture
	78.2 The Print Service Plugins
	78.3 Google Cloud Print
	78.4 Printing to Google Drive
	78.5 Save as PDF
	78.6 Printing from Android Devices
	78.7 Options for Building Print Support into Android Apps
	78.7.1 Image Printing
	78.7.2 Creating and Printing HTML Content
	78.7.3 Printing a Web Page
	78.7.4 Printing a Custom Document

	78.8 Summary

	79. An Android HTML and Web Content Printing Example
	79.1 Creating the HTML Printing Example Application
	79.2 Printing Dynamic HTML Content
	79.3 Creating the Web Page Printing Example
	79.4 Removing the Floating Action Button
	79.5 Designing the User Interface Layout
	79.6 Loading the Web Page into the WebView
	79.7 Adding the Print Menu Option
	79.8 Summary

	80. A Guide to Android Custom Document Printing
	80.1 An Overview of Android Custom Document Printing
	80.1.1 Custom Print Adapters

	80.2 Preparing the Custom Document Printing Project
	80.3 Creating the Custom Print Adapter
	80.4 Implementing the onLayout() Callback Method
	80.5 Implementing the onWrite() Callback Method
	80.6 Checking a Page is in Range
	80.7 Drawing the Content on the Page Canvas
	80.8 Starting the Print Job
	80.9 Testing the Application
	80.10 Summary

	81. An Introduction to Android App Links
	81.1 An Overview of Android App Links
	81.2 App Link Intent Filters
	81.3 Handling App Link Intents
	81.4 Associating the App with a Website
	81.5 Summary

	82. An Android Studio App Links Tutorial
	82.1 About the Example App
	82.2 The Database Schema
	82.3 Loading and Running the Project
	82.4 Adding the URL Mapping
	82.5 Adding the Intent Filter
	82.6 Adding Intent Handling Code
	82.7 Testing the App Link
	82.8 Associating an App Link with a Web Site
	82.9 Summary

	83. A Guide to the Android Studio Profiler
	83.1 Accessing the Android Profiler
	83.2 Enabling Advanced Profiling
	83.3 The Android Profiler Tool Window
	83.4 The Sessions Panel
	83.5 The CPU Profiler
	83.6 Memory Profiler
	83.7 Network Profiler
	83.8 Energy Profiler
	83.9 Summary

	84. An Android Biometric Authentication Tutorial
	84.1 An Overview of Biometric Authentication
	84.2 Creating the Biometric Authentication Project
	84.3 Configuring Device Fingerprint Authentication
	84.4 Adding the Biometric Permission to the Manifest File
	84.5 Designing the User Interface
	84.6 Adding a Toast Convenience Method
	84.7 Checking the Security Settings
	84.8 Configuring the Authentication Callbacks
	84.9 Adding the CancellationSignal
	84.10 Starting the Biometric Prompt
	84.11 Testing the Project
	84.12 Summary

	85. Creating, Testing and Uploading an Android App Bundle
	85.1 The Release Preparation Process
	85.2 Android App Bundles
	85.3 Register for a Google Play Developer Console Account
	85.4 Configuring the App in the Console
	85.5 Enabling Google Play App Signing
	85.6 Creating a Keystore File
	85.7 Creating the Android App Bundle
	85.8 Generating Test APK Files
	85.9 Uploading the App Bundle to the Google Play Developer Console
	85.10 Exploring the App Bundle
	85.11 Managing Testers
	85.12 Uploading New App Bundle Revisions
	85.13 Analyzing the App Bundle File
	85.14 Enabling Google Play Signing for an Existing App
	85.15 Summary

	86. An Overview of Android Dynamic Feature Modules
	86.1 An Overview of Dynamic Feature Modules
	86.2 Dynamic Feature Module Architecture
	86.3 Creating a Dynamic Feature Module
	86.4 Converting an Existing Module for Dynamic Delivery
	86.5 Working with Dynamic Feature Modules
	86.6 Handling Large Dynamic Feature Modules
	86.7 Summary

	87. An Android Studio Dynamic Feature Tutorial
	87.1 Creating the DynamicFeature Project
	87.2 Adding Dynamic Feature Support to the Project
	87.3 Designing the Base Activity User Interface
	87.4 Adding the Dynamic Feature Module
	87.5 Reviewing the Dynamic Feature Module
	87.6 Adding the Dynamic Feature Activity
	87.7 Implementing the launchIntent() Method
	87.8 Uploading the App Bundle for Testing
	87.9 Implementing the installFeature() Method
	87.10 Adding the Update Listener
	87.11 Handling Large Downloads
	87.12 Using Deferred Installation
	87.13 Removing a Dynamic Module
	87.14 Summary

	88. An Overview of Gradle in Android Studio
	88.1 An Overview of Gradle
	88.2 Gradle and Android Studio
	88.2.1 Sensible Defaults
	88.2.2 Dependencies
	88.2.3 Build Variants
	88.2.4 Manifest Entries
	88.2.5 APK Signing
	88.2.6 ProGuard Support

	88.3 The Top-level Gradle Build File
	88.4 Module Level Gradle Build Files
	88.5 Configuring Signing Settings in the Build File
	88.6 Running Gradle Tasks from the Command-line
	88.7 Summary

	Index
	_GoBack
	_Ref381951250
	_Ref381951280
	_Ref381877478
	_Ref381877919
	_Ref382489559
	_Ref381949033
	_Ref382490730
	_GoBack
	_GoBack
	_Ref384718331
	_Ref324774345

