
Android Studio 3.6
Development Essentials

Java Edition

Android Studio 3.6 Development Essentials – Java Edition

ISBN-13: 978-1-951442-15-6

© 2020 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

i

Contents
Table of Contents
1. Introduction.. 1

1.1 Downloading the Code Samples.. 1
1.2 Feedback.. 2
1.3 Errata... 2
1.4 Download the eBook... 2

2. Setting up an Android Studio Development Environment.. 3
2.1 System Requirements... 3
2.2 Downloading the Android Studio Package.. 3
2.3 Installing Android Studio.. 4

2.3.1 Installation on Windows.. 4
2.3.2 Installation on macOS.. 4
2.3.3 Installation on Linux... 5

2.4 The Android Studio Setup Wizard... 5
2.5 Installing Additional Android SDK Packages.. 6
2.6 Making the Android SDK Tools Command-line Accessible.. 8

2.6.1 Windows 7... 8
2.6.2 Windows 8.1.. 9
2.6.3 Windows 10... 9
2.6.4 Linux... 10
2.6.5 macOS... 10

2.7 Android Studio Memory Management... 10
2.8 Updating Android Studio and the SDK.. 11
2.9 Summary... 11

3. Creating an Example Android App in Android Studio.. 13
3.1 About the Project... 13
3.2 Creating a New Android Project.. 13
3.3 Creating an Activity.. 14
3.4 Defining the Project and SDK Settings... 14
3.5 Modifying the Example Application.. 15
3.6 Modifying the User Interface ... 16
3.7 Reviewing the Layout and Resource Files... 21
3.8 Adding Interaction... 23
3.9 Summary... 25

4. Creating an Android Virtual Device (AVD) in Android Studio.. 27
4.1 About Android Virtual Devices... 27
4.2 Creating a New AVD... 28
4.3 Starting the Emulator... 29
4.4 Running the Application in the AVD.. 29
4.5 Stopping a Running Application.. 31
4.6 Supporting Dark Theme.. 31
4.7 AVD Command-line Creation... 33

ii

Table of Contents

4.8 Android Virtual Device Configuration Files.. 34
4.9 Moving and Renaming an Android Virtual Device.. 34
4.10 Summary... 35

5. Using and Configuring the Android Studio AVD Emulator ... 37
5.1 The Emulator Environment.. 37
5.2 The Emulator Toolbar Options... 37
5.3 Working in Zoom Mode... 39
5.4 Resizing the Emulator Window... 39
5.5 Extended Control Options.. 39

5.5.1 Location.. 39
5.5.2 Displays... 39
5.5.3 Cellular... 40
5.5.4 Camera.. 40
5.5.5 Battery... 40
5.5.6 Phone.. 40
5.5.7 Directional Pad.. 40
5.5.8 Microphone.. 40
5.5.9 Fingerprint... 40
5.5.10 Virtual Sensors.. 40
5.5.11 Snapshots.. 40
5.5.12 Record and Playback.. 40
5.5.13 Google Play.. 41
5.5.14 Settings... 41
5.5.15 Help... 41

5.6 Working with Snapshots.. 41
5.7 Configuring Fingerprint Emulation.. 42
5.8 Summary... 43

6. A Tour of the Android Studio User Interface... 45
6.1 The Welcome Screen.. 45
6.2 The Main Window... 46
6.3 The Tool Windows... 47
6.4 Android Studio Keyboard Shortcuts... 50
6.5 Switcher and Recent Files Navigation... 50
6.6 Changing the Android Studio Theme... 51
6.7 Summary... 51

7. Testing Android Studio Apps on a Physical Android Device... 53
7.1 An Overview of the Android Debug Bridge (ADB).. 53
7.2 Enabling ADB on Android based Devices... 53

7.2.1 macOS ADB Configuration... 54
7.2.2 Windows ADB Configuration... 55
7.2.3 Linux adb Configuration.. 56

7.3 Testing the adb Connection.. 56
7.4 Summary... 57

8. The Basics of the Android Studio Code Editor... 59
8.1 The Android Studio Editor... 59
8.2 Splitting the Editor Window... 61
8.3 Code Completion... 62

iii

Table of Contents

8.4 Statement Completion... 63
8.5 Parameter Information.. 64
8.6 Parameter Name Hints.. 64
8.7 Code Generation.. 64
8.8 Code Folding... 65
8.9 Quick Documentation Lookup.. 67
8.10 Code Reformatting.. 67
8.11 Finding Sample Code.. 68
8.12 Summary... 68

9. An Overview of the Android Architecture... 69
9.1 The Android Software Stack... 69
9.2 The Linux Kernel.. 70
9.3 Android Runtime – ART... 70
9.4 Android Libraries... 70

9.4.1 C/C++ Libraries.. 71
9.5 Application Framework... 71
9.6 Applications.. 72
9.7 Summary... 72

10. The Anatomy of an Android Application... 73
10.1 Android Activities.. 73
10.2 Android Fragments.. 73
10.3 Android Intents.. 74
10.4 Broadcast Intents.. 74
10.5 Broadcast Receivers... 74
10.6 Android Services.. 74
10.7 Content Providers.. 75
10.8 The Application Manifest.. 75
10.9 Application Resources... 75
10.10 Application Context... 75
10.11 Summary... 75

11. An Overview of Android View Binding.. 77
11.1 Find View by ID... 77
11.2 View Bindings .. 77
11.3 Converting the AndroidSample Project.. 78
11.4 Enabling View Binding.. 78
11.5 Using View Bindings.. 78
11.6 Choosing an Option.. 79
11.7 Summary... 80

12. Understanding Android Application and Activity Lifecycles.. 81
12.1 Android Applications and Resource Management.. 81
12.2 Android Process States.. 81

12.2.1 Foreground Process.. 82
12.2.2 Visible Process... 82
12.2.3 Service Process.. 82
12.2.4 Background Process.. 82
12.2.5 Empty Process... 83

12.3 Inter-Process Dependencies .. 83

iv

Table of Contents

12.4 The Activity Lifecycle... 83
12.5 The Activity Stack... 83
12.6 Activity States... 84
12.7 Configuration Changes... 84
12.8 Handling State Change.. 85
12.9 Summary... 85

13. Handling Android Activity State Changes... 87
13.1 New vs. Old Lifecycle Techniques.. 87
13.2 The Activity and Fragment Classes.. 87
13.3 Dynamic State vs. Persistent State.. 89
13.4 The Android Lifecycle Methods... 89
13.5 Lifetimes.. 91
13.6 Foldable Devices and Multi-Resume... 92
13.7 Disabling Configuration Change Restarts.. 92
13.8 Lifecycle Method Limitations... 92
13.9 Summary... 93

14. Android Activity State Changes by Example.. 95
14.1 Creating the State Change Example Project... 95
14.2 Designing the User Interface.. 96
14.3 Overriding the Activity Lifecycle Methods.. 96
14.4 Filtering the Logcat Panel... 98
14.5 Running the Application... 99
14.6 Experimenting with the Activity.. 100
14.7 Summary... 101

15. Saving and Restoring the State of an Android Activity.. 103
15.1 Saving Dynamic State.. 103
15.2 Default Saving of User Interface State... 103
15.3 The Bundle Class.. 104
15.4 Saving the State... 105
15.5 Restoring the State... 106
15.6 Testing the Application.. 106
15.7 Summary... 107

16. Understanding Android Views, View Groups and Layouts... 109
16.1 Designing for Different Android Devices... 109
16.2 Views and View Groups.. 109
16.3 Android Layout Managers.. 109
16.4 The View Hierarchy... 111
16.5 Creating User Interfaces.. 112
16.6 Summary... 112

17. A Guide to the Android Studio Layout Editor Tool... 113
17.1 Basic vs. Empty Activity Templates... 113
17.2 The Android Studio Layout Editor.. 117
17.3 Design Mode... 117
17.4 The Palette... 118
17.5 Design Mode and Layout Views.. 119
17.6 Code Mode.. 120

v

Table of Contents

17.7 Split Mode... 120
17.8 Setting Attributes... 121
17.9 Converting Views... 123
17.10 Displaying Sample Data.. 123
17.11 Creating a Custom Device Definition.. 124
17.12 Changing the Current Device.. 125
17.13 Multi Preview... 125
17.14 Summary... 126

18. A Guide to the Android ConstraintLayout... 127
18.1 How ConstraintLayout Works.. 127

18.1.1 Constraints... 127
18.1.2 Margins... 128
18.1.3 Opposing Constraints.. 128
18.1.4 Constraint Bias.. 129
18.1.5 Chains... 130
18.1.6 Chain Styles.. 130

18.2 Baseline Alignment.. 131
18.3 Working with Guidelines.. 132
18.4 Configuring Widget Dimensions... 132
18.5 Working with Barriers... 132
18.6 Ratios... 134
18.7 ConstraintLayout Advantages.. 134
18.8 ConstraintLayout Availability... 134
18.9 Summary... 135

19. A Guide to using ConstraintLayout in Android Studio... 137
19.1 Design and Layout Views.. 137
19.2 Autoconnect Mode.. 138
19.3 Inference Mode... 139
19.4 Manipulating Constraints Manually.. 139
19.5 Adding Constraints in the Inspector... 141
19.6 Viewing Constraints in the Attributes Window... 141
19.7 Deleting Constraints.. 142
19.8 Adjusting Constraint Bias... 143
19.9 Understanding ConstraintLayout Margins... 143
19.10 The Importance of Opposing Constraints and Bias.. 145
19.11 Configuring Widget Dimensions... 147
19.12 Adding Guidelines... 148
19.13 Adding Barriers.. 149
19.14 Widget Group Alignment and Distribution... 151
19.15 Converting other Layouts to ConstraintLayout... 152
19.16 Summary .. 152

20. Working with ConstraintLayout Chains and Ratios in Android Studio... 153
20.1 Creating a Chain.. 153
20.2 Changing the Chain Style... 155
20.3 Spread Inside Chain Style... 156
20.4 Packed Chain Style... 156
20.5 Packed Chain Style with Bias.. 156
20.6 Weighted Chain.. 156

vi

Table of Contents

20.7 Working with Ratios.. 157
20.8 Summary... 159

21. An Android Studio Layout Editor ConstraintLayout Tutorial.. 161
21.1 An Android Studio Layout Editor Tool Example.. 161
21.2 Creating a New Activity.. 161
21.3 Preparing the Layout Editor Environment... 163
21.4 Adding the Widgets to the User Interface.. 164
21.5 Adding the Constraints... 167
21.6 Testing the Layout.. 168
21.7 Using the Layout Inspector... 169
21.8 Summary... 169

22. Manual XML Layout Design in Android Studio.. 171
22.1 Manually Creating an XML Layout... 171
22.2 Manual XML vs. Visual Layout Design... 174
22.3 Summary... 174

23. Managing Constraints using Constraint Sets... 175
23.1 Java Code vs. XML Layout Files... 175
23.2 Creating Views.. 175
23.3 View Attributes... 176
23.4 Constraint Sets.. 176

23.4.1 Establishing Connections.. 176
23.4.2 Applying Constraints to a Layout... 176
23.4.3 Parent Constraint Connections... 176
23.4.4 Sizing Constraints... 177
23.4.5 Constraint Bias.. 177
23.4.6 Alignment Constraints... 177
23.4.7 Copying and Applying Constraint Sets.. 177
23.4.8 ConstraintLayout Chains... 177
23.4.9 Guidelines.. 178
23.4.10 Removing Constraints.. 178
23.4.11 Scaling.. 178
23.4.12 Rotation.. 179

23.5 Summary... 179
24. An Android ConstraintSet Tutorial.. 181

24.1 Creating the Example Project in Android Studio.. 181
24.2 Adding Views to an Activity... 181
24.3 Setting View Attributes.. 182
24.4 Creating View IDs.. 183
24.5 Configuring the Constraint Set.. 184
24.6 Adding the EditText View... 185
24.7 Converting Density Independent Pixels (dp) to Pixels (px)... 186
24.8 Summary... 187

25. A Guide to using Apply Changes in Android Studio... 189
25.1 Introducing Apply Changes.. 189
25.2 Understanding Apply Changes Options... 189
25.3 Using Apply Changes... 190

vii

Table of Contents

25.4 Configuring Apply Changes Fallback Settings... 191
25.5 An Apply Changes Tutorial.. 191
25.6 Using Apply Code Changes.. 191
25.7 Using Apply Changes and Restart Activity... 192
25.8 Using Run App... 192
25.9 Summary... 193

26. An Overview and Example of Android Event Handling.. 195
26.1 Understanding Android Events... 195
26.2 Using the android:onClick Resource... 195
26.3 Event Listeners and Callback Methods... 196
26.4 An Event Handling Example.. 196
26.5 Designing the User Interface.. 197
26.6 The Event Listener and Callback Method... 198
26.7 Consuming Events... 199
26.8 Summary... 201

27. Android Touch and Multi-touch Event Handling.. 203
27.1 Intercepting Touch Events.. 203
27.2 The MotionEvent Object... 203
27.3 Understanding Touch Actions.. 204
27.4 Handling Multiple Touches.. 204
27.5 An Example Multi-Touch Application.. 204
27.6 Designing the Activity User Interface... 205
27.7 Implementing the Touch Event Listener... 205
27.8 Running the Example Application.. 208
27.9 Summary... 209

28. Detecting Common Gestures using the Android Gesture Detector Class... 211
28.1 Implementing Common Gesture Detection... 211
28.2 Creating an Example Gesture Detection Project... 212
28.3 Implementing the Listener Class.. 212
28.4 Creating the GestureDetectorCompat Instance... 215
28.5 Implementing the onTouchEvent() Method... 215
28.6 Testing the Application.. 216
28.7 Summary... 216

29. Implementing Custom Gesture and Pinch Recognition on Android.. 217
29.1 The Android Gesture Builder Application.. 217
29.2 The GestureOverlayView Class.. 217
29.3 Detecting Gestures... 217
29.4 Identifying Specific Gestures.. 217
29.5 Installing and Running the Gesture Builder Application... 218
29.6 Creating a Gestures File.. 218
29.7 Creating the Example Project... 218
29.8 Extracting the Gestures File from the SD Card... 219
29.9 Adding the Gestures File to the Project.. 219
29.10 Designing the User Interface.. 219
29.11 Loading the Gestures File... 220
29.12 Registering the Event Listener.. 221
29.13 Implementing the onGesturePerformed Method.. 221

viii

Table of Contents

29.14 Testing the Application... 222
29.15 Configuring the GestureOverlayView... 223
29.16 Intercepting Gestures.. 223
29.17 Detecting Pinch Gestures.. 223
29.18 A Pinch Gesture Example Project.. 224
29.19 Summary... 226

30. An Introduction to Android Fragments... 227
30.1 What is a Fragment?.. 227
30.2 Creating a Fragment.. 227
30.3 Adding a Fragment to an Activity using the Layout XML File.. 228
30.4 Adding and Managing Fragments in Code.. 230
30.5 Handling Fragment Events... 231
30.6 Implementing Fragment Communication... 231
30.7 Summary .. 233

31. Using Fragments in Android Studio - An Example.. 235
31.1 About the Example Fragment Application... 235
31.2 Creating the Example Project... 235
31.3 Creating the First Fragment Layout... 235
31.4 Creating the First Fragment Class... 237
31.5 Creating the Second Fragment Layout.. 238
31.6 Adding the Fragments to the Activity... 240
31.7 Making the Toolbar Fragment Talk to the Activity... 241
31.8 Making the Activity Talk to the Text Fragment... 245
31.9 Testing the Application.. 246
31.10 Summary... 246

32. Modern Android App Architecture with Jetpack... 247
32.1 What is Android Jetpack?... 247
32.2 The “Old” Architecture.. 247
32.3 Modern Android Architecture... 247
32.4 The ViewModel Component.. 248
32.5 The LiveData Component... 248
32.6 ViewModel Saved State... 249
32.7 LiveData and Data Binding... 250
32.8 Android Lifecycles... 250
32.9 Repository Modules... 250
32.10 Summary... 251

33. An Android Jetpack ViewModel Tutorial... 253
33.1 About the Project... 253
33.2 Creating the ViewModel Example Project.. 253
33.3 Reviewing the Project.. 253

33.3.1 The Main Activity.. 254
33.3.2 The Content Fragment... 254
33.3.3 The ViewModel... 255

33.4 Designing the Fragment Layout... 255
33.5 Implementing the View Model... 256
33.6 Associating the Fragment with the View Model.. 257
33.7 Modifying the Fragment... 257

ix

Table of Contents

33.8 Accessing the ViewModel Data.. 259
33.9 Testing the Project.. 259
33.10 Summary... 260

34. An Android Jetpack LiveData Tutorial... 261
34.1 LiveData - A Recap.. 261
34.2 Adding LiveData to the ViewModel.. 261
34.3 Implementing the Observer.. 263
34.4 Summary... 265

35. An Overview of Android Jetpack Data Binding... 267
35.1 An Overview of Data Binding.. 267
35.2 The Key Components of Data Binding... 267

35.2.1 The Project Build Configuration... 267
35.2.2 The Data Binding Layout File.. 268
35.2.3 The Layout File Data Element... 269
35.2.4 The Binding Classes... 270
35.2.5 Data Binding Variable Configuration... 270
35.2.6 Binding Expressions (One-Way)... 271
35.2.7 Binding Expressions (Two-Way)... 272
35.2.8 Event and Listener Bindings.. 272

35.3 Summary... 273
36. An Android Jetpack Data Binding Tutorial.. 275

36.1 Removing the Redundant Code... 275
36.2 Enabling Data Binding.. 277
36.3 Adding the Layout Element.. 278
36.4 Adding the Data Element to Layout File... 279
36.5 Working with the Binding Class.. 279
36.6 Assigning the ViewModel Instance to the Data Binding Variable.. 280
36.7 Adding Binding Expressions.. 281
36.8 Adding the Conversion Method.. 282
36.9 Adding a Listener Binding.. 282
36.10 Testing the App... 283
36.11 Summary... 283

37. An Android ViewModel Saved State Tutorial... 285
37.1 Understanding ViewModel State Saving... 285
37.2 Implementing ViewModel State Saving.. 286
37.3 Saving and Restoring State.. 287
37.4 Adding Saved State Support to the ViewModelDemo Project... 287
37.5 Summary... 289

38. Working with Android Lifecycle-Aware Components... 291
38.1 Lifecycle Awareness... 291
38.2 Lifecycle Owners.. 291
38.3 Lifecycle Observers.. 292
38.4 Lifecycle States and Events.. 293
38.5 Summary... 294

39. An Android Jetpack Lifecycle Awareness Tutorial... 295
39.1 Creating the Example Lifecycle Project... 295

x

Table of Contents

39.2 Creating a Lifecycle Observer... 295
39.3 Adding the Observer... 297
39.4 Testing the Observer.. 297
39.5 Creating a Lifecycle Owner... 298
39.6 Testing the Custom Lifecycle Owner... 300
39.7 Summary... 300

40. An Overview of the Navigation Architecture Component... 301
40.1 Understanding Navigation.. 301
40.2 Declaring a Navigation Host... 302
40.3 The Navigation Graph... 304
40.4 Accessing the Navigation Controller... 305
40.5 Triggering a Navigation Action.. 305
40.6 Passing Arguments... 306
40.7 Summary... 306

41. An Android Jetpack Navigation Component Tutorial... 307
41.1 Creating the NavigationDemo Project.. 307
41.2 Adding Navigation to the Build Configuration... 307
41.3 Creating the Navigation Graph Resource File.. 308
41.4 Declaring a Navigation Host... 309
41.5 Adding Navigation Destinations.. 311
41.6 Designing the Destination Fragment Layouts.. 313
41.7 Adding an Action to the Navigation Graph... 314
41.8 Implement the OnFragmentInteractionListener... 315
41.9 Triggering the Action.. 316
41.10 Passing Data Using Safeargs... 317
41.11 Summary... 320

42. Creating and Managing Overflow Menus on Android... 321
42.1 The Overflow Menu... 321
42.2 Creating an Overflow Menu... 321
42.3 Displaying an Overflow Menu.. 322
42.4 Responding to Menu Item Selections.. 323
42.5 Creating Checkable Item Groups... 323
42.6 Menus and the Android Studio Menu Editor... 324
42.7 Creating the Example Project... 325
42.8 Designing the Menu.. 325
42.9 Modifying the onOptionsItemSelected() Method... 328
42.10 Testing the Application... 329
42.11 Summary... 329

43. Animating User Interfaces with the Android Transitions Framework.. 331
43.1 Introducing Android Transitions and Scenes.. 331
43.2 Using Interpolators with Transitions... 332
43.3 Working with Scene Transitions.. 332
43.4 Custom Transitions and TransitionSets in Code... 334
43.5 Custom Transitions and TransitionSets in XML.. 334
43.6 Working with Interpolators.. 336
43.7 Creating a Custom Interpolator... 337
43.8 Using the beginDelayedTransition Method.. 338

xi

Table of Contents

43.9 Summary... 338
44. An Android Transition Tutorial using beginDelayedTransition... 339

44.1 Creating the Android Studio TransitionDemo Project... 339
44.2 Preparing the Project Files.. 339
44.3 Implementing beginDelayedTransition Animation.. 339
44.4 Customizing the Transition.. 342
44.5 Summary... 343

45. Implementing Android Scene Transitions – A Tutorial... 345
45.1 An Overview of the Scene Transition Project.. 345
45.2 Creating the Android Studio SceneTransitions Project.. 345
45.3 Identifying and Preparing the Root Container.. 345
45.4 Designing the First Scene.. 345
45.5 Designing the Second Scene... 346
45.6 Entering the First Scene.. 347
45.7 Loading Scene 2.. 348
45.8 Implementing the Transitions.. 349
45.9 Adding the Transition File.. 349
45.10 Loading and Using the Transition Set... 350
45.11 Configuring Additional Transitions.. 351
45.12 Summary... 351

46. Working with the Floating Action Button and Snackbar... 353
46.1 The Material Design... 353
46.2 The Design Library.. 353
46.3 The Floating Action Button (FAB) .. 353
46.4 The Snackbar... 354
46.5 Creating the Example Project... 355
46.6 Reviewing the Project.. 355
46.7 Removing Navigation Features.. 356
46.8 Changing the Floating Action Button... 357
46.9 Adding the ListView to the Content Layout... 358
46.10 Adding Items to the ListView... 358
46.11 Adding an Action to the Snackbar... 361
46.12 Summary... 362

47. Creating a Tabbed Interface using the TabLayout Component... 363
47.1 An Introduction to the ViewPager... 363
47.2 An Overview of the TabLayout Component.. 363
47.3 Creating the TabLayoutDemo Project... 364
47.4 Creating the First Fragment.. 364
47.5 Duplicating the Fragments... 365
47.6 Adding the TabLayout and ViewPager.. 366
47.7 Creating the Pager Adapter... 367
47.8 Performing the Initialization Tasks.. 368
47.9 Testing the Application.. 371
47.10 Customizing the TabLayout.. 372
47.11 Displaying Icon Tab Items.. 373
47.12 Summary... 374

48. Working with the RecyclerView and CardView Widgets... 375

xii

Table of Contents

48.1 An Overview of the RecyclerView... 375
48.2 An Overview of the CardView... 377
48.3 Summary... 378

49. An Android RecyclerView and CardView Tutorial.. 379
49.1 Creating the CardDemo Project.. 379
49.2 Modifying the Basic Activity Project... 379
49.3 Designing the CardView Layout.. 380
49.4 Adding the RecyclerView.. 381
49.5 Creating the RecyclerView Adapter... 381
49.6 Adding the Image Files.. 383
49.7 Initializing the RecyclerView Component.. 384
49.8 Testing the Application.. 385
49.9 Responding to Card Selections.. 385
49.10 Summary... 387

50. A Layout Editor Sample Data Tutorial... 389
50.1 Adding Sample Data to a Project... 389
50.2 Using Custom Sample Data.. 393
50.3 Summary... 395

51. Working with the AppBar and Collapsing Toolbar Layouts.. 397
51.1 The Anatomy of an AppBar.. 397
51.2 The Example Project.. 398
51.3 Coordinating the RecyclerView and Toolbar... 398
51.4 Introducing the Collapsing Toolbar Layout... 400
51.5 Changing the Title and Scrim Color... 403
51.6 Summary... 404

52. An Android Studio Master/Detail Flow Tutorial... 405
52.1 The Master/Detail Flow... 405
52.2 Creating a Master/Detail Flow Activity... 406
52.3 The Anatomy of the Master/Detail Flow Template.. 407
52.4 Modifying the Master/Detail Flow Template... 408
52.5 Changing the Content Model... 408
52.6 Changing the Detail Pane... 410
52.7 Modifying the WebsiteDetailFragment Class... 411
52.8 Modifying the WebsiteListActivity Class.. 412
52.9 Adding Manifest Permissions... 413
52.10 Running the Application... 413
52.11 Summary... 414

53. An Overview of Android Intents.. 415
53.1 An Overview of Intents... 415
53.2 Explicit Intents.. 415
53.3 Returning Data from an Activity... 416
53.4 Implicit Intents... 417
53.5 Using Intent Filters... 418
53.6 Checking Intent Availability... 419
53.7 Summary... 419

54. Android Explicit Intents – A Worked Example.. 421

xiii

Table of Contents

54.1 Creating the Explicit Intent Example Application... 421
54.2 Designing the User Interface Layout for MainActivity... 421
54.3 Creating the Second Activity Class.. 422
54.4 Designing the User Interface Layout for ActivityB.. 423
54.5 Reviewing the Application Manifest File.. 423
54.6 Creating the Intent... 424
54.7 Extracting Intent Data... 425
54.8 Launching ActivityB as a Sub-Activity.. 426
54.9 Returning Data from a Sub-Activity... 427
54.10 Testing the Application... 427
54.11 Summary... 427

55. Android Implicit Intents – A Worked Example... 429
55.1 Creating the Android Studio Implicit Intent Example Project.. 429
55.2 Designing the User Interface.. 429
55.3 Creating the Implicit Intent.. 430
55.4 Adding a Second Matching Activity.. 430
55.5 Adding the Web View to the UI... 431
55.6 Obtaining the Intent URL... 431
55.7 Modifying the MyWebView Project Manifest File.. 432
55.8 Installing the MyWebView Package on a Device... 434
55.9 Testing the Application.. 434
55.10 Summary... 435

56. Android Broadcast Intents and Broadcast Receivers... 437
56.1 An Overview of Broadcast Intents... 437
56.2 An Overview of Broadcast Receivers.. 438
56.3 Obtaining Results from a Broadcast.. 439
56.4 Sticky Broadcast Intents.. 439
56.5 The Broadcast Intent Example.. 440
56.6 Creating the Example Application... 440
56.7 Creating and Sending the Broadcast Intent.. 440
56.8 Creating the Broadcast Receiver.. 441
56.9 Registering the Broadcast Receiver.. 442
56.10 Testing the Broadcast Example.. 443
56.11 Listening for System Broadcasts... 443
56.12 Summary... 444

57. A Basic Overview of Threads and AsyncTasks.. 445
57.1 An Overview of Threads... 445
57.2 The Application Main Thread... 445
57.3 Thread Handlers... 445
57.4 A Basic AsyncTask Example... 445
57.5 Subclassing AsyncTask.. 447
57.6 Testing the App... 450
57.7 Canceling a Task... 450
57.8 Summary... 451

58. An Overview of Android Started and Bound Services... 453
58.1 Started Services... 453
58.2 Intent Service.. 453

xiv

Table of Contents

58.3 Bound Service... 454
58.4 The Anatomy of a Service... 454
58.5 Controlling Destroyed Service Restart Options.. 455
58.6 Declaring a Service in the Manifest File.. 455
58.7 Starting a Service Running on System Startup... 456
58.8 Summary... 456

59. Implementing an Android Started Service – A Worked Example... 457
59.1 Creating the Example Project... 457
59.2 Creating the Service Class... 457
59.3 Adding the Service to the Manifest File.. 458
59.4 Starting the Service.. 459
59.5 Testing the IntentService Example... 460
59.6 Using the Service Class.. 460
59.7 Creating the New Service.. 460
59.8 Modifying the User Interface.. 462
59.9 Running the Application... 463
59.10 Creating an AsyncTask for Service Tasks.. 463
59.11 Summary... 465

60. Android Local Bound Services – A Worked Example.. 467
60.1 Understanding Bound Services.. 467
60.2 Bound Service Interaction Options... 467
60.3 An Android Studio Local Bound Service Example... 467
60.4 Adding a Bound Service to the Project... 468
60.5 Implementing the Binder.. 468
60.6 Binding the Client to the Service... 471
60.7 Completing the Example... 472
60.8 Testing the Application.. 473
60.9 Summary... 473

61. Android Remote Bound Services – A Worked Example.. 475
61.1 Client to Remote Service Communication... 475
61.2 Creating the Example Application... 475
61.3 Designing the User Interface.. 475
61.4 Implementing the Remote Bound Service.. 476
61.5 Configuring a Remote Service in the Manifest File... 477
61.6 Launching and Binding to the Remote Service.. 478
61.7 Sending a Message to the Remote Service.. 479
61.8 Summary... 480

62. An Android Notifications Tutorial... 481
62.1 An Overview of Notifications... 481
62.2 Creating the NotifyDemo Project.. 483
62.3 Designing the User Interface.. 483
62.4 Creating the Second Activity.. 483
62.5 Creating a Notification Channel.. 484
62.6 Creating and Issuing a Basic Notification... 486
62.7 Launching an Activity from a Notification... 489
62.8 Adding Actions to a Notification... 490
62.9 Bundled Notifications.. 491

xv

Table of Contents

62.10 Summary... 493
63. An Android Direct Reply Notification Tutorial... 495

63.1 Creating the DirectReply Project... 495
63.2 Designing the User Interface.. 495
63.3 Creating the Notification Channel... 496
63.4 Building the RemoteInput Object.. 497
63.5 Creating the PendingIntent... 498
63.6 Creating the Reply Action... 498
63.7 Receiving Direct Reply Input.. 501
63.8 Updating the Notification... 502
63.9 Summary... 503

64. Foldable Devices and Multi-Window Support.. 505
64.1 Foldables and Multi-Window Support.. 505
64.2 Using a Foldable Emulator.. 506
64.3 Entering Multi-Window Mode.. 507
64.4 Enabling and using Freeform Support.. 508
64.5 Checking for Freeform Support... 508
64.6 Enabling Multi-Window Support in an App.. 508
64.7 Specifying Multi-Window Attributes.. 509
64.8 Detecting Multi-Window Mode in an Activity.. 510
64.9 Receiving Multi-Window Notifications.. 510
64.10 Launching an Activity in Multi-Window Mode.. 511
64.11 Configuring Freeform Activity Size and Position.. 511
64.12 Summary... 512

65. An Overview of Android SQLite Databases... 513
65.1 Understanding Database Tables... 513
65.2 Introducing Database Schema ... 513
65.3 Columns and Data Types ... 513
65.4 Database Rows ... 514
65.5 Introducing Primary Keys ... 514
65.6 What is SQLite?.. 514
65.7 Structured Query Language (SQL).. 514
65.8 Trying SQLite on an Android Virtual Device (AVD)... 515
65.9 The Android Room Persistence Library.. 517
65.10 Summary... 517

66. The Android Room Persistence Library... 519
66.1 Revisiting Modern App Architecture.. 519
66.2 Key Elements of Room Database Persistence... 519

66.2.1 Repository.. 520
66.2.2 Room Database... 520
66.2.3 Data Access Object (DAO).. 520
66.2.4 Entities.. 520
66.2.5 SQLite Database.. 520

66.3 Understanding Entities.. 521
66.4 Data Access Objects... 524
66.5 The Room Database... 525
66.6 The Repository.. 526

xvi

Table of Contents

66.7 In-Memory Databases... 527
66.8 Summary... 527

67. An Android TableLayout and TableRow Tutorial.. 529
67.1 The TableLayout and TableRow Layout Views... 529
67.2 Creating the Room Database Project.. 530
67.3 Converting to a LinearLayout.. 530
67.4 Adding the TableLayout to the User Interface... 531
67.5 Configuring the TableRows.. 532
67.6 Adding the Button Bar to the Layout.. 533
67.7 Adding the RecyclerView.. 534
67.8 Adjusting the Layout Margins.. 535
67.9 Summary... 535

68. An Android Room Database and Repository Tutorial... 537
68.1 About the RoomDemo Project... 537
68.2 Modifying the Build Configuration... 537
68.3 Building the Entity... 537
68.4 Creating the Data Access Object.. 539
68.5 Adding the Room Database.. 541
68.6 Adding the Repository.. 542
68.7 Modifying the ViewModel.. 546
68.8 Creating the Product Item Layout... 547
68.9 Adding the RecyclerView Adapter... 547
68.10 Preparing the Main Fragment.. 549
68.11 Adding the Button Listeners... 550
68.12 Adding LiveData Observers... 551
68.13 Initializing the RecyclerView.. 552
68.14 Testing the RoomDemo App.. 553
68.15 Summary... 553

69. Accessing Cloud Storage using the Android Storage Access Framework.. 555
69.1 The Storage Access Framework.. 555
69.2 Working with the Storage Access Framework... 556
69.3 Filtering Picker File Listings... 556
69.4 Handling Intent Results... 557
69.5 Reading the Content of a File... 558
69.6 Writing Content to a File.. 558
69.7 Deleting a File... 559
69.8 Gaining Persistent Access to a File.. 559
69.9 Summary... 560

70. An Android Storage Access Framework Example.. 561
70.1 About the Storage Access Framework Example... 561
70.2 Creating the Storage Access Framework Example... 561
70.3 Designing the User Interface.. 561
70.4 Declaring Request Codes.. 562
70.5 Creating a New Storage File.. 563
70.6 The onActivityResult() Method... 564
70.7 Saving to a Storage File.. 566
70.8 Opening and Reading a Storage File... 568

xvii

Table of Contents

70.9 Testing the Storage Access Application... 570
70.10 Summary... 571

71. Implementing Video Playback on Android using the VideoView and MediaController Classes...... 573
71.1 Introducing the Android VideoView Class.. 573
71.2 Introducing the Android MediaController Class.. 574
71.3 Creating the Video Playback Example.. 574
71.4 Designing the VideoPlayer Layout.. 574
71.5 Downloading the Video File... 575
71.6 Configuring the VideoView.. 576
71.7 Adding the MediaController to the Video View.. 577
71.8 Setting up the onPreparedListener.. 578
71.9 Summary... 579

72. Android Picture-in-Picture Mode... 581
72.1 Picture-in-Picture Features... 581
72.2 Enabling Picture-in-Picture Mode... 582
72.3 Configuring Picture-in-Picture Parameters... 582
72.4 Entering Picture-in-Picture Mode... 583
72.5 Detecting Picture-in-Picture Mode Changes... 583
72.6 Adding Picture-in-Picture Actions.. 584
72.7 Summary... 584

73. An Android Picture-in-Picture Tutorial... 587
73.1 Adding Picture-in-Picture Support to the Manifest.. 587
73.2 Adding a Picture-in-Picture Button.. 587
73.3 Entering Picture-in-Picture Mode... 587
73.4 Detecting Picture-in-Picture Mode Changes... 589
73.5 Adding a Broadcast Receiver.. 590
73.6 Adding the PiP Action... 591
73.7 Testing the Picture-in-Picture Action... 594
73.8 Summary... 594

74. Making Runtime Permission Requests in Android.. 595
74.1 Understanding Normal and Dangerous Permissions.. 595
74.2 Creating the Permissions Example Project... 597
74.3 Checking for a Permission.. 597
74.4 Requesting Permission at Runtime.. 599
74.5 Providing a Rationale for the Permission Request.. 600
74.6 Testing the Permissions App... 602
74.7 Summary... 602

75. Android Audio Recording and Playback using MediaPlayer and MediaRecorder............................. 603
75.1 Playing Audio... 603
75.2 Recording Audio and Video using the MediaRecorder Class.. 604
75.3 About the Example Project... 605
75.4 Creating the AudioApp Project.. 605
75.5 Designing the User Interface.. 605
75.6 Checking for Microphone Availability.. 606
75.7 Performing the Activity Initialization... 607
75.8 Implementing the recordAudio() Method.. 608

xviii

Table of Contents

75.9 Implementing the stopAudio() Method.. 609
75.10 Implementing the playAudio() method.. 609
75.11 Configuring and Requesting Permissions.. 610
75.12 Testing the Application... 612
75.13 Summary... 613

76. Working with the Google Maps Android API in Android Studio... 615
76.1 The Elements of the Google Maps Android API... 615
76.2 Creating the Google Maps Project... 616
76.3 Obtaining Your Developer Signature.. 616
76.4 Adding the Apache HTTP Legacy Library Requirement... 617
76.5 Testing the Application.. 617
76.6 Understanding Geocoding and Reverse Geocoding... 618
76.7 Adding a Map to an Application.. 620
76.8 Requesting Current Location Permission... 620
76.9 Displaying the User’s Current Location.. 621
76.10 Changing the Map Type.. 622
76.11 Displaying Map Controls to the User.. 623
76.12 Handling Map Gesture Interaction.. 624

76.12.1 Map Zooming Gestures.. 624
76.12.2 Map Scrolling/Panning Gestures.. 624
76.12.3 Map Tilt Gestures.. 625
76.12.4 Map Rotation Gestures... 625

76.13 Creating Map Markers... 625
76.14 Controlling the Map Camera... 626
76.15 Summary... 627

77. Printing with the Android Printing Framework.. 629
77.1 The Android Printing Architecture... 629
77.2 The Print Service Plugins.. 629
77.3 Google Cloud Print.. 630
77.4 Printing to Google Drive... 630
77.5 Save as PDF... 631
77.6 Printing from Android Devices... 631
77.7 Options for Building Print Support into Android Apps... 632

77.7.1 Image Printing... 632
77.7.2 Creating and Printing HTML Content.. 633
77.7.3 Printing a Web Page.. 634
77.7.4 Printing a Custom Document... 635

77.8 Summary... 635
78. An Android HTML and Web Content Printing Example.. 637

78.1 Creating the HTML Printing Example Application.. 637
78.2 Printing Dynamic HTML Content.. 637
78.3 Creating the Web Page Printing Example... 640
78.4 Removing the Floating Action Button.. 640
78.5 Removing Navigation Features.. 640
78.6 Designing the User Interface Layout... 641
78.7 Loading the Web Page into the WebView... 642
78.8 Adding the Print Menu Option.. 643
78.9 Summary... 645

xix

Table of Contents

79. A Guide to Android Custom Document Printing.. 647
79.1 An Overview of Android Custom Document Printing.. 647

79.1.1 Custom Print Adapters... 647
79.2 Preparing the Custom Document Printing Project... 648
79.3 Creating the Custom Print Adapter... 649
79.4 Implementing the onLayout() Callback Method... 650
79.5 Implementing the onWrite() Callback Method... 653
79.6 Checking a Page is in Range... 655
79.7 Drawing the Content on the Page Canvas.. 656
79.8 Starting the Print Job... 658
79.9 Testing the Application.. 659
79.10 Summary... 659

80. An Introduction to Android App Links.. 661
80.1 An Overview of Android App Links... 661
80.2 App Link Intent Filters.. 661
80.3 Handling App Link Intents... 662
80.4 Associating the App with a Website.. 662
80.5 Summary... 663

81. An Android Studio App Links Tutorial.. 665
81.1 About the Example App.. 665
81.2 The Database Schema.. 665
81.3 Loading and Running the Project.. 666
81.4 Adding the URL Mapping... 667
81.5 Adding the Intent Filter... 670
81.6 Adding Intent Handling Code.. 670
81.7 Testing the App Link.. 674
81.8 Associating an App Link with a Web Site... 674
81.9 Summary... 676

82. A Guide to the Android Studio Profiler.. 677
82.1 Accessing the Android Profiler.. 677
82.2 Enabling Advanced Profiling.. 677
82.3 The Android Profiler Tool Window... 678
82.4 The Sessions Panel.. 679
82.5 The CPU Profiler.. 680
82.6 Memory Profiler... 683
82.7 Network Profiler... 684
82.8 Energy Profiler.. 686
82.9 Summary... 686

83. An Android Biometric Authentication Tutorial.. 687
83.1 An Overview of Biometric Authentication... 687
83.2 Creating the Biometric Authentication Project... 687
83.3 Configuring Device Fingerprint Authentication... 688
83.4 Adding the Biometric Permission to the Manifest File... 688
83.5 Designing the User Interface.. 689
83.6 Adding a Toast Convenience Method... 689
83.7 Checking the Security Settings... 690
83.8 Configuring the Authentication Callbacks... 691

xx

Table of Contents

83.9 Adding the CancellationSignal... 692
83.10 Starting the Biometric Prompt... 693
83.11 Testing the Project.. 693
83.12 Summary... 695

84. Creating, Testing and Uploading an Android App Bundle.. 697
84.1 The Release Preparation Process.. 697
84.2 Android App Bundles.. 697
84.3 Register for a Google Play Developer Console Account... 698
84.4 Configuring the App in the Console... 699
84.5 Enabling Google Play App Signing.. 699
84.6 Creating a Keystore File.. 700
84.7 Creating the Android App Bundle... 702
84.8 Generating Test APK Files.. 703
84.9 Uploading the App Bundle to the Google Play Developer Console.. 704
84.10 Exploring the App Bundle.. 704
84.11 Managing Testers... 706
84.12 Uploading New App Bundle Revisions... 707
84.13 Analyzing the App Bundle File.. 708
84.14 Enabling Google Play Signing for an Existing App... 709
84.15 Summary... 710

85. An Overview of Android Dynamic Feature Modules... 711
85.1 An Overview of Dynamic Feature Modules... 711
85.2 Dynamic Feature Module Architecture.. 711
85.3 Creating a Dynamic Feature Module.. 712
85.4 Converting an Existing Module for Dynamic Delivery.. 714
85.5 Working with Dynamic Feature Modules... 717
85.6 Handling Large Dynamic Feature Modules... 719
85.7 Summary... 720

86. An Android Studio Dynamic Feature Tutorial... 721
86.1 Creating the DynamicFeature Project... 721
86.2 Adding Dynamic Feature Support to the Project.. 721
86.3 Designing the Base Activity User Interface.. 722
86.4 Adding the Dynamic Feature Module... 723
86.5 Reviewing the Dynamic Feature Module... 724
86.6 Adding the Dynamic Feature Activity... 726
86.7 Implementing the launchIntent() Method... 728
86.8 Uploading the App Bundle for Testing.. 729
86.9 Implementing the installFeature() Method.. 730
86.10 Adding the Update Listener.. 732
86.11 Handling Large Downloads.. 735
86.12 Using Deferred Installation.. 736
86.13 Removing a Dynamic Module... 737
86.14 Summary... 737

87. An Overview of Gradle in Android Studio... 739
87.1 An Overview of Gradle... 739
87.2 Gradle and Android Studio.. 739

87.2.1 Sensible Defaults... 739

xxi

Table of Contents

87.2.2 Dependencies.. 739
87.2.3 Build Variants.. 740
87.2.4 Manifest Entries.. 740
87.2.5 APK Signing... 740
87.2.6 ProGuard Support... 740

87.3 The Top-level Gradle Build File.. 740
87.4 Module Level Gradle Build Files.. 742
87.5 Configuring Signing Settings in the Build File... 744
87.6 Running Gradle Tasks from the Command-line... 745
87.7 Summary... 745

Index.. 747

1

Chapter 1

1. Introduction
In 2018 Google introduced Android Jetpack to the developer community. Designed to make it quicker and
easier to develop modern and reliable Android apps, Jetpack consists of a set of tools, libraries and architectural
guidelines. The main elements of Android Jetpack consist of the Android Studio Integrated Development
Environment (IDE), the Android Architecture Components and the Modern App Architecture Guidelines, all
of which are covered in this latest edition of Android Studio Development Essentials.

Fully updated for Android Studio 3.6 and Android 10 (Q), the goal of this book is to teach the skills necessary
to develop Android based applications using the Java programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android development
and testing environment. An overview of Android Studio is included covering areas such as tool windows, the
code editor and the Layout Editor tool. An introduction to the architecture of Android is followed by an in-
depth look at the design of Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle
management, Room database access, app navigation, live data and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and
the recording and playback of audio. This edition of the book also covers printing, transitions, cloud-based file
storage and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers and collapsing toolbars.

In addition to covering general Android development techniques, the book also includes Google Play specific
topics such as implementing maps using the Google Maps Android API, and submitting apps to the Google Play
Developer Console.

Other key features of Android Studio 3.6 and Android 10 are also covered in detail including the Layout Editor,
the ConstraintLayout and ConstraintSet classes, view binding, constraint chains, barriers and direct reply
notifications.

Chapters also cover advanced features of Android Studio such as App Links, Dynamic Delivery, the Android
Studio Profiler and Gradle build configuration.

Assuming you already have some Java programming experience, are ready to download Android Studio and
the Android SDK, have access to a Windows, Mac or Linux system and ideas for some apps to develop, you are
ready to get started.

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/androidstudio36/index.php

The steps to load a project from the code samples into Android Studio are as follows:

https://www.ebookfrenzy.com/retail/androidstudio36/index.php

2

Introduction

1.  From the Welcome to Android Studio dialog, select the Open an existing Android Studio project option.

2.  In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/androidstudio36.html

In the event that you find an error not listed in the errata, please let us know by emailing our technical support
team at feedback@ebookfrenzy.com. They are there to help you and will work to resolve any problems you may
encounter.

1.4 Download the eBook
Thank you for purchasing the print edition of this book. If you would like to download the PDF version of this
book, please email proof of purchase (for example a receipt, delivery notice or photo of the physical book) to
feedback@ebookfrenzy.com and we will provide you with a download link for the book in PDF format.

mailto:feedback%40ebookfrenzy.com?subject=
https://www.ebookfrenzy.com/errata/androidstudio36.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves a number of steps consisting of installing the Android
Studio Integrated Development Environment (IDE) which also includes the Android Software Development Kit
(SDK) and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS and Linux based systems.

2.1 System Requirements
Android application development may be performed on any of the following system types:

•	 Windows 7/8/10 (32-bit or 64-bit though the Android emulator will only run on 64-bit systems)

•	 macOS 10.10 or later (Intel based systems only)

•	 ChromeOS device with Intel i5 or higher and minimum 8GB of RAM

•	 Linux systems with version 2.19 or later of GNU C Library (glibc)

•	 Minimum of 4GB of RAM (8GB is preferred)

•	 Approximately 4GB of available disk space

•	 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio Package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio version 3.6 using
the Android 10.0 (Q) API 29 SDK which, at the time writing are the current versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for Android Studio 3.6
should provide the option to download the older version in the event that these differences become a problem.
Alternatively, visit the following web page to find Android Studio 3.6 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

4

Setting up an Android Studio Development Environment

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-ide-<version>-
windows.exe) in a Windows Explorer window and double-click on it to start the installation process, clicking
the Yes button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the task bar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the executable and selecting the Pin to Taskbar
menu option. Note that the executable is provided in 32-bit (studio) and 64-bit (studio64) executable versions. If
you are running a 32-bit system be sure to use the studio executable.

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-ide-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The
Android Studio package will then be installed into the Applications folder of the system, a process which will
typically take a few minutes to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the

5

Setting up an Android Studio Development Environment

dock.

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a sub-directory named android-studio. Assuming,
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it will be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio Setup Wizard
The first time that Android Studio is launched after being installed, a dialog will appear providing the option to
import settings from a previous Android Studio version. If you have settings from a previous version and would
like to import them into the latest installation, select the appropriate option and location. Alternatively, indicate
that you do not need to import any previous settings and click on the OK button to proceed.

Next, the setup wizard may appear as shown in Figure 2-2 though this dialog does not appear on all platforms:

Figure 2-2

If the wizard appears, click on the Next button, choose the Standard installation option and click on Next once
again.

Android Studio will proceed to download and configure the latest Android SDK and some additional components

6

Setting up an Android Studio Development Environment

and packages. Once this process has completed, click on the Finish button in the Downloading Components
dialog at which point the Welcome to Android Studio screen should then appear:

Figure 2-3

2.5 Installing Additional Android SDK Packages
The steps performed so far have installed Java, the Android Studio IDE and the current set of default Android
SDK packages. Before proceeding, it is worth taking some time to verify which packages are installed and to
install any missing or updated packages.

This task can be performed using the Android SDK Settings screen, which may be launched from within the
Android Studio tool by selecting the Configure -> SDK Manager option from within the Android Studio welcome
dialog. Once invoked, the Android SDK screen of the default settings dialog will appear as shown in Figure 2-4:

Figure 2-4

Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are available for update, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-5:

7

Setting up an Android Studio Development Environment

Figure 2-5

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, a number of tools are also installed for building Android applications.
To view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-6:

Figure 2-6

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

•	 Android SDK Build-tools

•	 Android Emulator

•	 Android SDK Platform-tools

•	 Android SDK Tools

•	 Google Play Services

•	 Intel x86 Emulator Accelerator (HAXM installer)

•	 Google USB Driver (Windows only)

In the event that any of the above packages are listed as Not Installed or requiring an update, simply select the
checkboxes next to those packages and click on the Apply button to initiate the installation process.

8

Setting up an Android Studio Development Environment

Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

2.6 Making the Android SDK Tools Command-line Accessible
Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. In order for the operating system on which you are
developing to be able to find these tools, it will be necessary to add them to the system’s PATH environment
variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):
<path_to_android_sdk_installation>/sdk/tools

<path_to_android_sdk_installation>/sdk/tools/bin

<path_to_android_sdk_installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-7:

Figure 2-7

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 7
1.  Right-click on Computer in the desktop start menu and select Properties from the resulting menu.

2.  In the properties panel, select the Advanced System Settings link and, in the resulting dialog, click on the
Environment Variables… button.

3.  In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit… button. Using the New button in the edit dialog, add three new entries to the path. For
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

C:\Users\demo\AppData\Local\Android\Sdk\tools

C:\Users\demo\AppData\Local\Android\Sdk\tools\bin

4.  Click on OK in each dialog box and close the system properties control panel.

Once the above steps are complete, verify that the path is correctly set by opening a Command Prompt window
(Start -> All Programs -> Accessories -> Command Prompt) and at the prompt enter:

9

Setting up an Android Studio Development Environment

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command line options when executed.

Similarly, check the tools path setting by attempting to launch the AVD Manager command line tool (don’t
worry if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most
likely that an incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 8.1
1.  On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2.  Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3.  Follow the steps outlined for Windows 7 starting from step 2 through to step 4.

Open the command prompt window (move the mouse to the bottom right-hand corner of the screen, select the
Search option and enter cmd into the search box). Select Command Prompt from the search results.

Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command line tool (don’t worry if
the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most
likely that an incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.3 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 7 starting from step 3.

10

Setting up an Android Studio Development Environment

2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
A number of techniques may be employed to modify the $PATH environment variable on macOS. Arguably
the cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to
$PATH. Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be
configured by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio Memory Management
Android Studio is a large and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. Part of
these improvements include allowing the user to configure the amount of memory used by both the Android
Studio IDE and the background processes used to build and run apps. This allows the software to take advantage
of systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-8

To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->
Preferences... on macOS) menu option and, in the resulting dialog, select the Memory Settings option listed
under System Settings in the left-hand navigation panel as illustrated in Figure 2-9 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

11

Setting up an Android Studio Development Environment

Figure 2-9

The IDE memory setting adjusts the memory allocated to Android Studio and applies regardless of the currently
loaded project. When a project is built and run from within Android Studio, on the other hand, a number of
background processes (referred to as daemons) perform the task of compiling and running the app. When
compiling and running large and complex projects, build time may potentially be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these settings apply only to the current project.

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, click on the Configure -> Check for Updates menu option
within the Android Studio welcome screen, or use the Help -> Check for Updates... (Android Studio -> Check for
Updates... on macOS) menu option accessible from within the Android Studio main window.

2.9 Summary
Prior to beginning the development of Android based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS and Linux.

13

Chapter 3

3. Creating an Example Android App
in Android Studio
The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of a simple Android application project using Android Studio. Once the
project has been created, a later chapter will explore the use of the Android emulator environment to perform a
test run of the application.

3.1 About the Project
The project created in this chapter takes the form of a very simple currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also make use of one of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project
The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

14

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
simply click on the Start a new Android Studio project option to display the first screen of the New Project wizard.

3.3 Creating an Activity
The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the option to create an Empty Activity on
the Phone and Tablet screen. The Empty Activity option creates a template user interface consisting of a single
TextView object.

Figure 3-2

With the Empty Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:
com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for the purposes of testing, though this will need to be changed before an application can be
published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the SDK that will be used in most of the

15

Creating an Example Android App in Android Studio

projects created in this book unless a necessary feature is only available in a more recent version.

Figure 3-3

Finally, change the Language menu to Java and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application
At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4

The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

16

Creating an Example Android App in Android Studio

Figure 3-5

3.6 Modifying the User Interface
The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. Once located in the Project tool window, double-click on
the file to load it into the user interface Layout Editor tool which will appear in the center panel of the Android
Studio main window:

Figure 3-6

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon.

As can be seen in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual

17

Creating an Example Android App in Android Studio

user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, also check that the Layout Editor’s Autoconnect mode is enabled. This means that as
components are added to the layout, the Layout Editor will automatically add constraints to make sure the
components are correctly positioned for different screen sizes and device orientations (a topic that will be
covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar
and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure
3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

Figure 3-8

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

Figure 3-9

18

Creating an Example Android App in Android Studio

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-10

The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-11:

Figure 3-11

The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints

19

Creating an Example Android App in Android Studio

button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-13. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-13

When clicked, a panel (Figure 3-14) will appear describing the nature of the problems and offering some possible
corrective measures:

Figure 3-14

Currently, the only warning listed reads as follows:
Hardcoded string "Convert", should use @string resource

This I18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-15).

20

Creating an Example Android App in Android Studio

Within this panel, change the resource name field to convert_string and leave the resource value set to Convert
before clicking on the OK button.

Figure 3-15

It is also worth noting that the string could also have been assigned to a resource when it was entered into the
Attributes panel. This involves clicking on the narrow button to the right of the property field in the Attributes
panel and selecting the Add new resource -> New String Value… menu option from the resulting Resources
dialog. In practice, however, it is often quicker to simply set values directly into the Attributes panel fields for
any widgets in the layout, then work sequentially through the list in the warnings dialog to extract any necessary
resources when the layout is complete.

The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the widget palette, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-16:

Figure 3-16

Change the id to dollarText before proceeding.

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-17:

21

Creating an Example Android App in Android Studio

Figure 3-17

3.7 Reviewing the Layout and Resource Files
Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly in order to make user interface changes and, in some instances, this may actually be
quicker than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are three
buttons as highlighted in Figure 3-18 below:

Figure 3-18

By default, the editor will be in Design mode whereby just the visual representation of the layout is displayed.
The left-most button will switch to Code mode to display the XML for the layout, while the middle button enters
Split mode where both the layout and XML are displayed, as shown in Figure 3-19:

22

Creating an Example Android App in Android Studio

Figure 3-19

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although varying in complexity and content, all
user interface layouts are structured in this hierarchical, XML based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:background="#ff2438" >
.

.

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the color of the layout changes in real-time to match the new setting in the XML file. Note also that
a small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the
line containing the color setting. This is a visual cue to the fact that the color red has been set on a property.

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:
<resources>

 <string name="app_name">AndroidSample</string>

23

Creating an Example Android App in Android Studio

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights and then press
Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and
take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource
back to the original “Convert” text and to add the following additional entry for a string resource that will be
referenced later in the app code:
<resources>

.

.

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

 <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open Translations Editor menu option. This will
display the Translation Editor in the main panel of the Android Studio window:

Figure 3-20

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.8 Adding Interaction
The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

24

Creating an Example Android App in Android Studio

Figure 3-21

Note that the text field for the onClick property is now highlighted with a red border to warn us that the button
has been configured to call a method which does not yet exist. To address this, double-click on the MainActivity.
java file in the Project tool window (app -> java -> <package name> -> MainActivity) to load it into the code
editor and add the code for the convertCurrency method to the class file so that it reads as follows, noting that
it is also necessary to import some additional Android packages:
package com.ebookfrenzy.androidsample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;
import android.widget.EditText;
import android.widget.TextView;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void convertCurrency(View view) {

 EditText dollarText = findViewById(R.id.dollarText);
 TextView textView = findViewById(R.id.textView);

 if (!dollarText.getText().toString().equals("")) {

 Float dollarValue = Float.valueOf(dollarText.getText().toString());
 Float euroValue = dollarValue * 0.85F;
 textView.setText(euroValue.toString());
 } else {
 textView.setText(R.string.no_value_string);
 }

25

Creating an Example Android App in Android Studio

 }
}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewById, passing through the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value and if so, that value is extracted, converted from a String to a floating point
value and converted to euros. Finally, the result is displayed on the TextView widget. If any of this is unclear, rest
assured that these concepts will be covered in greater detail in later chapters.

3.9 Summary
While not excessively complex, a number of steps are involved in setting up an Android development
environment. Having performed those steps, it is worth working through a simple example to make sure the
environment is correctly installed and configured. In this chapter, we have created a simple application and then
used the Android Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the
importance of using resources wherever possible, particularly in the case of string values, and briefly touched
on the topic of layouts. Next we looked at the underlying XML that is used to store the user interface designs of
Android applications.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

27

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio
In the course of developing Android apps in Android Studio it will be necessary to compile and run an application
multiple times. An Android application may be tested by installing and running it either on a physical device or
in an Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created
and configured to match the specifications of a particular device model. The goal of this chapter, therefore, is to
work through the steps involved in creating such a virtual device using the Pixel 3 phone as a reference example.

4.1 About Android Virtual Devices
AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity and the presence or otherwise of features such
as a camera, GPS navigation support or an accelerometer. As part of the standard Android Studio installation,
a number of emulator templates are installed allowing AVDs to be configured for a range of different devices.
Custom configurations may be created to match any physical Android device by specifying properties such as
processor type, memory capacity and the size and pixel density of the screen.

When launched, an AVD will appear as a window containing an emulated Android device environment. Figure
4-1, for example, shows an AVD session configured to emulate the Google Pixel 3 model.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface.

Figure 4-1

28

Creating an Android Virtual Device (AVD) in Android Studio

4.2 Creating a New AVD
In order to test the behavior of an application in the absence of a physical device, it will be necessary to create an
AVD for a specific Android device configuration.

To create a new AVD, the first step is to launch the AVD Manager. This can be achieved from within the Android
Studio environment by selecting the Tools -> AVD Manager menu option from within the main window.

Once launched, the tool will appear as outlined in Figure 4-2 if existing AVD instances have been created:

Figure 4-2

To add an additional AVD, begin by clicking on the Create Virtual Device button in order to invoke the Virtual
Device Configuration dialog:

Figure 4-3

Within the dialog, perform the following steps to create a Pixel 3 compatible emulator:

1.  From the Category panel, select the Phone option to display the list of available Android phone AVD
templates.

29

Creating an Android Virtual Device (AVD) in Android Studio

2.  Select the Pixel 3 device option and click Next.

3.  On the System Image screen, select the latest version of Android for the x86 ABI. Note that if the system
image has not yet been installed a Download link will be provided next to the Release Name. Click this link
to download and install the system image before selecting it. If the image you need is not listed, click on the
x86 images and Other images tabs to view alternative lists.

4.  Click Next to proceed and enter a descriptive name (for example Pixel 3 API 29) into the name field or
simply accept the default name.

5.  Click Finish to create the AVD.

6.  With the AVD created, the AVD Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the AVD Manager, select the AVD from the list and click on the pencil icon in
the Actions column of the device row in the AVD Manager.

4.3 Starting the Emulator
To perform a test run of the newly created AVD emulator, simply select the emulator from the AVD Manager
and click on the launch button (the green triangle in the Actions column). The emulator will appear in a new
window and begin the startup process. The amount of time it takes for the emulator to start will depend on the
configuration of both the AVD and the system on which it is running.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the AVD Manager, select the new Pixel 3 entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen locate the Startup and orientation section and
change the orientation setting. Exit and restart the emulator session to see this change take effect. More details
on the emulator are covered in the next chapter (“Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.4 Running the Application in the AVD
With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, make sure that the
newly created Pixel 3 AVD is displayed in the device menu (marked A in Figure 4-4 below), then either click on
the run button represented by a green triangle (B), select the Run -> Run ‘app’ menu option or use the Ctrl-R
keyboard shortcut:

Figure 4-4

The device menu (A) may be used to select a different AVD instance or physical device as the run target, and also
to run the app on multiple devices. The menu also provides access to the AVD Manager and device connection
trouble shooting options:

30

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-5

Once the application is installed and running, the user interface for the first fragment will appear within the
emulator:

Figure 4-6

In the event that the activity does not automatically launch, check to see if the launch icon has appeared among
the apps on the emulator. If it has, simply click on it to launch the application. Once the run process begins,
the Run tool window will become available. The Run tool window will display diagnostic information as the
application package is installed and launched. Figure 4-7 shows the Run tool window output from a successful
application launch:

Figure 4-7

If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured.

31

Creating an Android Virtual Device (AVD) in Android Studio

4.5 Stopping a Running Application
To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
4-8:

Figure 4-8

An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running. Once the Run tool window appears, click
the stop button highlighted in Figure 4-9 below:

Figure 4-9

4.6 Supporting Dark Theme
Android 10 introduced the much awaited dark theme, support for which is not enabled by default in Android
Studio app projects. To test dark theme in the AVD emulator, open the Settings app within the running Android
instance in the emulator. There are a number of different ways to access the settings app. The quickest is to
display the home screen and then click and drag upwards from the bottom of the screen (just below the search
bar). This will display all of the apps installed on the device, one of which will be the Settings app.

Within the Settings app, choose the Display category and enable the Dark Theme option as shown in Figure 4-10
so that the screen background turns black:

Figure 4-10

With dark theme enabled, run the AndroidSample app and note that it appears as before and does not conform
to the dark theme.

In order for an app to adopt dark theme, it must be derived from the Android DayNight theme. By default, new
projects use the Light.DarkActionBar theme. To change this setting, navigate to the res -> values -> styles.xml file
in the Project window as shown in Figure 4-11 and double-click on it to load it into the editor:

32

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-11

Once loaded, edit the AppTheme style entry so that it reads as follows:
<resources>

 <!-- Base application theme. -->

 <style name="AppTheme" parent="Theme.AppCompat.DayNight">
 <!-- Customize your theme here. -->

.

.

After making the change, re-run the app on the emulator and note that it now conforms to the dark theme as
shown in Figure 4-12:

Figure 4-12

Open the Settings app, turn off dark theme and return to the AndroidSample app. The app should have

33

Creating an Android Virtual Device (AVD) in Android Studio

automatically switched back to light mode.

4.7 AVD Command-line Creation
As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly
from the command-line. This is achieved using the avdmanager tool in conjunction with some command-line
options. Once initiated, the tool will prompt for additional information before creating the new AVD.

The avdmanager tool requires access to the Java Runtime Environment (JRE) in order to run. If, when attempting
run avdmanager, an error message appears indicating that the ‘java’ command cannot be found, the command
prompt or terminal window within which you are running the command can be configured to use the OpenJDK
environment bundled with Android Studio. Begin by identifying the location of the OpenJDK JRE as follows:

1.  Launch Android Studio and open the AndroidSample project created earlier in the book.

2.  Select the File -> Project Structure... menu option.

3.  Copy the path contained within the JDK location field of the Project Structure dialog. This represents the
location of the JRE bundled with Android Studio.

On Windows, execute the following command within the command prompt window from which avdmanager is
to be run (where <path to jre> is replaced by the path copied from the Project Structure dialog above):
set JAVA_HOME=<path to jre>

On macOS or Linux, execute the following command:
export JAVA_HOME="<path to jre>"

If you expect to use the avdmanager tool frequently, follow the environment variable steps for your operating
system outlined in the chapter entitled “Setting up an Android Studio Development Environment” to configure
JAVA_HOME on a system-wide basis.

Assuming that the system has been configured such that the Android SDK tools directory is included in the
PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following
command in a terminal or command window:
avdmanager list targets

The resulting output from the above command will contain a list of Android SDK versions that are available on
the system. For example:
Available Android targets:

id: 1 or "android-29"

 Name: Android API 29

 Type: Platform

 API level: 29

 Revision: 1

id: 2 or "android-26"

 Name: Android API 26

 Type: Platform

 API level: 26

 Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command line. For example, to

34

Creating an Android Virtual Device (AVD) in Android Studio

create a new AVD named myAVD using the target ID for the Android API level 29 device using the x86 ABI, the
following command may be used:
avdmanager create avd -n myAVD -k "system-images;android-29;google_apis_
playstore;x86"

The android tool will create the new AVD to the specifications required for a basic Android 8 device, also
providing the option to create a custom configuration to match the specification of a specific device if required.
Once a new AVD has been created from the command line, it may not show up in the Android Device Manager
tool until the Refresh button is clicked.

In addition to the creation of new AVDs, a number of other tasks may be performed from the command line.
For example, a list of currently available AVDs may be obtained using the list avd command line arguments:
avdmanager list avd

Available Android Virtual Devices:

 Name: Pixel_XL_API_28_No_Play

 Device: pixel_xl (Google)

 Path: /Users/neilsmyth/.android/avd/Pixel_XL_API_28_No_Play.avd

 Target: Google APIs (Google Inc.)

 Based on: Android API 28 Tag/ABI: google_apis/x86

 Skin: pixel_xl_silver

 Sdcard: 512M

Similarly, to delete an existing AVD, simply use the delete option as follows:
avdmanager delete avd –n <avd name>

4.8 Android Virtual Device Configuration Files
By default, the files associated with an AVD are stored in the .android/avd sub-directory of the user’s home
directory, the structure of which is as follows (where <avd name> is replaced by the name assigned to the AVD):
<avd name>.avd/config.ini

<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions and memory specified
during the AVD creation process. These settings may be changed directly within the configuration file and will
be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD files. Note that
a change to the image.sysdir value in the config.ini file will also need to be reflected in the target value of this file.

4.9 Moving and Renaming an Android Virtual Device
The current name or the location of the AVD files may be altered from the command line using the avdmanager
tool’s move avd argument. For example, to rename an AVD named Nexus9 to Nexus9B, the following command
may be executed:
avdmanager move avd -n Nexus9 -r Nexus9B

To physically relocate the files associated with the AVD, the following command syntax should be used:
avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Nexus9Test:

35

Creating an Android Virtual Device (AVD) in Android Studio

avdmanager move avd -n Nexus9 -p /tmp/Nexus9Test

Note that the destination directory must not already exist prior to executing the command to move an AVD.

4.10 Summary
A typical application development process follows a cycle of coding, compiling and running in a test environment.
Android applications may be tested on either a physical Android device or using an Android Virtual Device
(AVD) emulator. AVDs are created and managed using the Android AVD Manager tool which may be used
either as a command line tool or using a graphical user interface. When creating an AVD to simulate a specific
Android device model it is important that the virtual device be configured with a hardware specification that
matches that of the physical device.

37

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator
The Android Virtual Device (AVD) emulator environment bundled with Android Studio 1.x was an
uncharacteristically weak point in an otherwise reputable application development environment. Regarded by
many developers as slow, inflexible and unreliable, the emulator was long overdue for an overhaul. Fortunately,
Android Studio 2 introduced an enhanced emulator environment providing significant improvements in terms
of configuration flexibility and overall performance and further enhancements have been made in subsequent
releases.

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
available to customize the environment.

5.1 The Emulator Environment
When launched, the emulator displays an initial splash screen during the loading process. Once loaded, the
main emulator window appears containing a representation of the chosen device type (in the case of Figure 5-1
this is a Nexus 5X device):

Figure 5-1

Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.

5.2 The Emulator Toolbar Options
The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

38

Using and Configuring the Android Studio AVD Emulator

Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear, or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

•	 Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the emulator session when selected while the
‘-’ option minimizes the entire window.

•	 Power – The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power off ” request sequence.

•	 Volume Up / Down – Two buttons that control the audio volume of playback within the simulator environment.

•	 Rotate Left/Right – Rotates the emulated device between portrait and landscape orientations.

•	 Take Screenshot – Takes a screenshot of the content currently displayed on the device screen. The captured
image is stored at the location specified in the Settings screen of the extended controls panel as outlined later
in this chapter.

•	 Zoom Mode – This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

•	 Back – Simulates selection of the standard Android “Back” button. As with the Home and Overview buttons
outlined below, the same results can be achieved by selecting the actual buttons on the emulator screen.

•	 Home – Simulates selection of the standard Android “Home” button.

•	 Overview – Simulates selection of the standard Android “Overview” button which displays the currently
running apps on the device.

•	 Fold Device – Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

39

Using and Configuring the Android Studio AVD Emulator

•	 Extended Controls – Displays the extended controls panel, allowing for the configuration of options such as
simulated location and telephony activity, battery strength, cellular network type and fingerprint identification.

5.3 Working in Zoom Mode
The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

5.4 Resizing the Emulator Window
The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options
The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3

5.5.1 Location
The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format. Alternatively, the integrated Google Maps panel may be used to
visually select single points or travel routes.

5.5.2 Displays
In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual screen

40

Using and Configuring the Android Studio AVD Emulator

devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

5.5.3 Cellular
The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

5.5.4 Camera
The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.5 Battery
A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health and whether the AC charger is currently connected.

5.5.6 Phone
The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing the way in which an app handles high level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad
A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

5.5.10 Virtual Sensors
The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement and tilting through yaw, pitch and roll settings.

5.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in detail later in this chapter.

5.5.12 Record and Playback
Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

41

Using and Configuring the Android Studio AVD Emulator

5.5.13 Google Play
If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version and provides the option to update the emulator to the latest version.

5.5.14 Settings
The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and to configure the emulator window to appear on top of other windows on
the desktop.

5.5.15 Help
The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots
When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

Figure 5-4

42

Using and Configuring the Android Studio AVD Emulator

The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by
default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to
reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous
quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager), click on the down arrow in the actions
column for the emulator and select the Cold Boot Now menu option.

Figure 5-5

5.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a
backup screen unlocking method (such as a PIN number) must be configured. Click on the Fingerprint + PIN
button and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN
number and complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-6

Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will
report the successful addition of the fingerprint:

43

Using and Configuring the Android Studio AVD Emulator

Figure 5-7

To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch the Sensor button once again. The topic of building
fingerprint authentication into an Android app is covered in detail in the chapter entitled “An Android Biometric
Authentication Tutorial”.

5.8 Summary
Android Studio 3.6 contains a new and improved Android Virtual Device emulator environment designed
to make it easier to test applications without the need to run on a physical Android device. This chapter has
provided a brief tour of the emulator and highlighted key features that are available to configure and customize
the environment to simulate different testing conditions

45

Chapter 6

6. A Tour of the Android Studio User
Interface
While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen
The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will by-pass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1

In addition to a list of recent projects, the Quick Start menu provides a range of options for performing tasks
such as opening, creating and importing projects along with access to projects currently under version control.
In addition, the Configure menu at the bottom of the window provides access to the SDK Manager along with a
vast array of settings and configuration options. A review of these options will quickly reveal that there is almost
no aspect of Android Studio that cannot be configured and tailored to your specific needs.

The Configure menu also includes an option to check if updates to Android Studio are available for download.

46

A Tour of the Android Studio User Interface

6.2 The Main Window
When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-2.

Figure 6-2

The various elements of the main window can be summarized as follows:

A – Menu Bar – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quicker
access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and
selecting the Customize Menus and Toolbars… menu option. If the toolbar is not visible, it can be displayed using
the View -> Appearance -> Toolbar menu option.

C – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the subfolders
and files at that location ready for selection. This provides an alternative to the Project tool window. Hide and
display this bar using the View -> Appearance -> Navigation Bar menu option.

D – Editor Window – The editor window displays the content of the file on which the developer is currently
working. What gets displayed in this location, however, is subject to context. When editing code, for example,
the code editor will appear. When working on a user interface layout file, on the other hand, the user interface
Layout Editor tool will appear. When multiple files are open, each file is represented by a tab located along the

47

A Tour of the Android Studio User Interface

top edge of the editor as shown in Figure 6-3.

Figure 6-3

E – Status Bar – The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will provide a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project
in a number of different ways. The default setting is the Android view which is the mode primarily used in the
remainder of this book.

The project tool window is just one of a number of tool windows available within the Android Studio environment.

6.3 The Tool Windows
In addition to the project view tool window, Android Studio also includes a number of other windows which,
when enabled, are displayed along the bottom and sides of the main window. The tool window quick access
menu can be accessed by hovering the mouse pointer over the button located in the far left-hand corner of the
status bar (Figure 6-4) without clicking the mouse button.

Figure 6-4

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right and bottom edges of the main window (as indicated by the arrows in

48

A Tour of the Android Studio User Interface

Figure 6-5) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 6-5

Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window tool bars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-6 shows the settings menu for the project view tool window.
Options are available, for example, to undock a window and to allow it to float outside of the boundaries of the
Android Studio main window and to move and resize the tool panel.

Figure 6-6

49

A Tour of the Android Studio User Interface

All of the windows also include a far right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s tool bar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

Project – The project view provides an overview of the file structure that makes up the project allowing for quick
navigation between files. Generally, double-clicking on a file in the project view will cause that file to be loaded
into the appropriate editing tool.

Structure – The structure tool provides a high level view of the structure of the source file currently displayed in
the editor. This information includes a list of items such as classes, methods and variables in the file. Selecting an
item from the structure list will take you to that location in the source file in the editor window.

Layout Captures – Provides access to all of the layout hierarchy snapshots previously captured using the Layout
Inspector tool (Tools -> Layout Inspector).

Favorites – A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list can
be accessed through this Favorites tool window.

Build Variants – The build variants tool window provides a quick way to configure different build targets for the
current application project (for example different builds for debugging and release versions of the application, or
multiple builds to target different device categories).

TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look for
comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting the
File -> Settings… menu option (Android Studio -> Preferences… on macOS) and navigating to the TODO page
listed under Editor.

Logcat – The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Terminal – Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

Build - The build tool windows displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

Run – The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing to
install and run on a device or emulator, this window will typically provide diagnostic information relating to
the problem.

Event Log – The event log window displays messages relating to events and activities performed within Android
Studio. The successful build of a project, for example, or the fact that an application is now running will be
reported within this tool window.

Gradle – The Gradle tool window provides a view onto the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project into

50

A Tour of the Android Studio User Interface

an executable application. Right-click on a top level Gradle task and select the Open Gradle Config menu option
to load the Gradle build file for the current project into the editor. Gradle will be covered in greater detail later
in this book.

Profiler – The Android Profiler tool window provides realtime monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

Device File Explorer – The Device File Explorer tool window provides direct access to the filesystem of the
currently connected Android device or emulator allowing the filesystem to be browsed and files copied to the
local filesystem.

Resource Manager - A tool for adding and managing resources and assets such as images, colors and layout files
contained with the project.

6.4 Android Studio Keyboard Shortcuts
Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option.

6.5 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-7).

Figure 6-7

Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options, while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure 6-8).
This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse
pointer can be used to select an option or, alternatively, the keyboard arrow keys used to scroll through the file
name and tool window options. Pressing the Enter key will select the currently highlighted item.

51

A Tour of the Android Studio User Interface

Figure 6-8

6.6 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option, or via the File -> Settings… menu option (Android Studio -> Preferences… on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance option in the left-hand panel and then change the
setting of the Theme menu before clicking on the Apply button. The themes available will depend on the platform
but usually include options such as Light, IntelliJ, Windows, High Contrast and Darcula. Figure 6-9 shows an
example of the main window with the Darcula theme selected:

Figure 6-9

6.7 Summary
The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar, or via the
optional tool window bars.

There are very few actions within Android Studio which cannot be triggered via a keyboard shortcut. A keymap
of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

53

Chapter 7

7. Testing Android Studio Apps on a
Physical Android Device
While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no
substitute for performing real world application testing on a physical Android device and there are a number of
Android features that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). In this chapter we will work through the steps to configure the adb environment to enable
application testing on a physical Android device with macOS, Windows and Linux based systems.

7.1 An Overview of the Android Debug Bridge (ADB)
The primary purpose of the ADB is to facilitate interaction between a development system, in this case Android
Studio, and both AVD emulators and physical Android devices for the purposes of running and debugging
applications.

The ADB consists of a client, a server process running in the background on the development system and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active
virtual or physical devices may be obtained using the devices command-line argument. The following command
output indicates the presence of an AVD on the system but no physical devices:
$ adb devices

List of devices attached

emulator-5554 device

7.2 Enabling ADB on Android based Devices
Before ADB can connect to an Android device, that device must first be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1.  Open the Settings app on the device and select the About tablet or About phone option (on newer versions
of Android this can be found on the System page of the Settings app).

2.  On the About screen, scroll down to the Build number field (Figure 7-1) and tap on it seven times until a
message appears indicating that developer mode has been enabled. If the build number is not displayed,
unfold the Advanced section of the list.

54

Testing Android Studio Apps on a Physical Android Device

Figure 7-1

3.  Return to the main Settings screen and note the appearance of a new option titled Developer options. Select
this option and locate the setting on the developer screen entitled USB debugging. Enable the switch next
to this item as illustrated in Figure 7-2:

Figure 7-2

4.  Swipe downward from the top of the screen to display the notifications panel (Figure 7-3) and note that the
device is currently connected for debugging.

Figure 7-3

At this point, the device is now configured to accept debugging connections from adb on the development
system. All that remains is to configure the development system to detect the device when it is attached. While
this is a relatively straightforward process, the steps involved differ depending on whether the development
system is running Windows, macOS or Linux. Note that the following steps assume that the Android SDK
platform-tools directory is included in the operating system PATH environment variable as described in the
chapter entitled “Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration
In order to configure the ADB environment on a macOS system, connect the device to the computer system
using a USB cable, open a terminal window and execute the following command to restart the adb server:
$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:
$ adb devices

List of devices attached

74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure

55

Testing Android Studio Apps on a Physical Android Device

7-4 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as
being available:
List of devices attached

015d41d4454bf80c device

In the event that the device is not listed, try logging out and then back in to the macOS desktop and, if the
problem persists, rebooting the system.

7.2.2 Windows ADB Configuration
The first step in configuring a Windows based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
Android Device. If you have a Google Nexus device, then it will be necessary to install and configure the Google
USB Driver package on your Windows system. Detailed steps to achieve this are outlined on the following web
page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it will be necessary to download the drivers
provided by the device manufacturer. A listing of drivers together with download and installation information
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:
adb devices

This command should output information about the connected device similar to the following:
List of devices attached

HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
7-4 seeking permission to Allow USB debugging.

Figure 7-4

Enable the checkbox next to the option that reads Always allow from this computer, before clicking on OK.
Repeating the adb devices command should now list the device as being ready:
List of devices attached

HT4CTJT01906 device

In the event that the device is not listed, execute the following commands to restart the ADB server:

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

56

Testing Android Studio Apps on a Physical Android Device

adb kill-server

adb start-server

If the device is still not listed, try executing the following command:
android update adb

Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration
For the purposes of this chapter, we will once again use Ubuntu Linux as a reference example in terms of
configuring adb on Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not
listed, run the following command to add your account to the group:
sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:
sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server and check the list of attached devices:
$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 7-4 seeking permission to Allow USB debugging.

7.3 Testing the adb Connection
Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “Creating an Example Android App in Android
Studio” on the device. Launch Android Studio, open the AndroidSample project and verify that the device
appears in the device selection menu as highlighted in Figure 7-5:

Figure 7-5

Note that this menu also includes the option to test the app on multiple devices and emulators simultaneously.

57

Testing Android Studio Apps on a Physical Android Device

When selected, this option displays the dialog shown in Figure 7-6 where multiple deployment targets may be
selected.

Figure 7-6

7.4 Summary
While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep
in mind that there is no real substitute for making sure an application functions correctly on a physical Android
device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps in order to be able to load applications directly
onto an Android device from within the Android Studio development environment. The exact steps to achieve
this goal differ depending on the development platform being used. In this chapter, we have covered those steps
for Linux, macOS and Windows based platforms.

59

Chapter 8

8. The Basics of the Android Studio
Code Editor
Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor
The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Java source code
file loaded:

Figure 8-1

60

The Basics of the Android Studio Code Editor

The elements that comprise the editor window can be summarized as follows:

A – Document Tabs – Android Studio is capable of holding multiple files open for editing at any one time.
As each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top
edge of the editor window. A small dropdown menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-Right
keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism (accessible
via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B – The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched on
by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu option.

C – Code Structure Location - This bar at the bottom of the editor displays the current position of the
cursor as it relates to the overall structure of the code. In the following figure, for example, the bar indicates that
a setOnClickListener method call is currently being edited, and that this line of code is contained within the
onCreate method of the MainActivity class.

Figure 8-2

Selecting an element within the bar will move the cursor to the corresponding location within the code file.
For example, selecting the onCreate() entry will move the cursor to the top of the onCreate method within the
source code.

D – The Editor Area – This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E – The Validation and Marker Sidebar – Android Studio incorporates a feature referred to as “on-the-
fly code analysis”. What this essentially means is that as you are typing code, the editor is analyzing the code to
check for warnings and syntax errors. The indicator at the top of the validation sidebar will change from a green
check mark (no warnings or errors detected) to a yellow square (warnings detected) or red alert icon (errors
have been detected). Clicking on this indicator will display a popup containing a summary of the issues found
with the code in the editor as illustrated in Figure 8-3:

61

The Basics of the Android Studio Code Editor

Figure 8-3

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup
containing a description of the issue (Figure 8-4):

Figure 8-4

Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area
of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-5)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-5

It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over
any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

F – The Status Bar – Though the status bar is actually part of the main window, as opposed to the editor, it
does contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line dialog.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window
By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into

62

The Basics of the Android Studio Code Editor

multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 8-6, for example, shows the splitter in action with the editor
split into three panels:

Figure 8-6

The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion
The Android Studio editor has a considerable amount of built-in knowledge of Java programming syntax and
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-7, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-7

If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the

63

The Basics of the Android Studio Code Editor

keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred
to as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-Ctrl-
Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings… menu option (or Android Studio -> Preferences… on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-8:

Figure 8-8

8.4 Statement Completion
Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:
myMethod()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:
myMethod() {

}

64

The Basics of the Android Studio Code Editor

8.5 Parameter Information
It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-9

8.6 Parameter Name Hints
The code editor may be configured to display parameter name hints within method calls. Figure 8-10, for
example, highlights the parameter name hints within the calls to the make() and setAction() methods of the
Snackbar class:

Figure 8-10

The settings for this mode may be configured by selecting the File -> Settings (Android Studio -> Preferences
on macOS) menu option followed by Editor -> Appearance in the left-hand panel. On the Appearance screen,
enable or disable the Show parameter name hints option. To adjust the hint settings, click on the Configure...
button, select the programming language and make any necessary adjustments.

8.7 Code Generation
In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-11 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-11

For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio

65

The Basics of the Android Studio Code Editor

generate a stub method for this, simply select the Override Methods… option from the code generation list and
select the onStop() method from the resulting list of available methods:

Figure 8-12

Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Java source file as follows:
@Override

protected void onStop() {

 super.onStop();

}

8.8 Code Folding
Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-13, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-13

66

The Basics of the Android Studio Code Editor

Clicking on either of these markers will fold the statement such that only the signature line is visible as shown
in Figure 8-14:

Figure 8-14

To unfold a collapsed section of code, simply click on the ‘+’ marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{…}” indicator as shown in Figure 8-15. The editor will
then display the lens overlay containing the folded code block:

Figure 8-15

All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings… (Android Studio -> Preferences… on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-16):

Figure 8-16

67

The Basics of the Android Studio Code Editor

8.9 Quick Documentation Lookup
Context sensitive Java and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will
display a popup containing the relevant reference documentation for the item. Figure 8-17, for example, shows
the documentation for the Android Snackbar class.

Figure 8-17

Once displayed, the documentation popup can be moved around the screen as needed. Clicking on the push pin
icon located in the right-hand corner of the popup title bar will ensure that the popup remains visible once focus
moves back to the editor, leaving the documentation visible as a reference while typing code.

8.10 Code Reformatting
In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a web site), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display
the Reformat Code dialog (Figure 8-18) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire source file currently active in the
editor or only code that has changed as the result of a source code control update.

Figure 8-18

The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences… on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog, for
example, unfold the Code Style section, select Java and, from the Java settings, select the Arrangement tab.

68

The Basics of the Android Studio Code Editor

8.11 Finding Sample Code
The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample
Code menu option. The Find Sample Code panel (Figure 8-19) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

Figure 8-19

8.12 Summary
The Android Studio editor goes to great length to reduce the amount of typing needed to write code and
to make that code easier to read and navigate. In this chapter we have covered a number of the key editor
features including code completion, code generation, editor window splitting, code folding, reformatting and
documentation lookup.

69

Chapter 9

9. An Overview of the Android
Architecture
So far in this book, steps have been taken to set up an environment suitable for the development of Android
applications using Android Studio. An initial step has also been taken into the process of application development
through the creation of a simple Android Studio application project.

Before delving further into the practical matters of Android application development, however, it is important
to gain an understanding of some of the more abstract concepts of both the Android SDK and Android
development in general. Gaining a clear understanding of these concepts now will provide a sound foundation
on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of
this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack
Android is structured in the form of a software stack comprising applications, an operating system, run-time
environment, middleware, services and libraries. This architecture can, perhaps, best be represented visually
as outlined in Figure 9-1. Each layer of the stack, and the corresponding elements within each layer, are tightly
integrated and carefully tuned to provide the optimal application development and execution environment
for mobile devices. The remainder of this chapter will work through the different layers of the Android stack,
starting at the bottom with the Linux Kernel.

Figure 9-1

70

An Overview of the Android Architecture

9.2 The Linux Kernel
Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between
the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the
kernel provides preemptive multitasking, low-level core system services such as memory, process and power
management in addition to providing a network stack and device drivers for hardware such as the device display,
Wi-Fi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities
and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system
referred to as GNU/Linux. Various Linux distributions have been derived from these basic underpinnings such
as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the
Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In
fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to
both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find
this software at the heart of the Android software stack.

9.3 Android Runtime – ART
When an Android app is built within Android Studio it is compiled into an intermediate bytecode format
(referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime
(ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the
native instructions required by the device processor. This format is known as Executable and Linkable Format
(ELF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster
application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries
In addition to a set of standard Java development libraries (providing support for such general purpose tasks as
string handling, networking and file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples
of libraries in this category include the application framework libraries in addition to those that facilitate user
interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:

•	 android.app – Provides access to the application model and is the cornerstone of all Android applications.

•	 android.content – Facilitates content access, publishing and messaging between applications and application
components.

•	 android.database – Used to access data published by content providers and includes SQLite database
management classes.

•	 android.graphics – A low-level 2D graphics drawing API including colors, points, filters, rectangles and
canvases.

•	 android.hardware – Presents an API providing access to hardware such as the accelerometer and light sensor.

71

An Overview of the Android Architecture

•	 android.opengl – A Java interface to the OpenGL ES 3D graphics rendering API.

•	 android.os – Provides applications with access to standard operating system services including messages,
system services and inter-process communication.

•	 android.media – Provides classes to enable playback of audio and video.

•	 android.net – A set of APIs providing access to the network stack. Includes android.net.wifi, which provides
access to the device’s wireless stack.

•	 android.print – Includes a set of classes that enable content to be sent to configured printers from within
Android applications.

•	 android.provider – A set of convenience classes that provide access to standard Android content provider
databases such as those maintained by the calendar and contact applications.

•	 android.text – Used to render and manipulate text on a device display.

•	 android.util – A set of utility classes for performing tasks such as string and number conversion, XML
handling and date and time manipulation.

•	 android.view – The fundamental building blocks of application user interfaces.

•	 android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views,
layout managers, radio buttons etc.

•	 android.webkit – A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++ based libraries contained in this layer of the Android software stack.

9.4.1 C/C++ Libraries
The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary
APIs for developers writing Android applications. It is important to note, however, that the core libraries do
not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based
libraries. When making calls, for example, to the android.opengl library to draw 3D graphics on the device
display, the library actually ultimately makes calls to the OpenGL ES C++ library which, in turn, works with the
underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback,
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java based
Android core library APIs. In the event that direct access to these libraries is needed, this can be achieved using
the Android Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or
Kotlin programming languages (such as C and C++) from within Java code using the Java Native Interface (JNI).

9.5 Application Framework
The Application Framework is a set of services that collectively form the environment in which Android
applications run and are managed. This framework implements the concept that Android applications are
constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in
that an application is also able to publish its capabilities along with any corresponding data so that they can be

72

An Overview of the Android Architecture

found and reused by other applications.

The Android framework includes the following key services:

•	 Activity Manager – Controls all aspects of the application lifecycle and activity stack.

•	 Content Providers – Allows applications to publish and share data with other applications.

•	 Resource Manager – Provides access to non-code embedded resources such as strings, color settings and user
interface layouts.

•	 Notifications Manager – Allows applications to display alerts and notifications to the user.

•	 View System – An extensible set of views used to create application user interfaces.

•	 Package Manager – The system by which applications are able to find out information about other applications
currently installed on the device.

•	 Telephony Manager – Provides information to the application about the telephony services available on the
device such as status and subscriber information.

•	 Location Manager – Provides access to the location services allowing an application to receive updates about
location changes.

9.6 Applications
Located at the top of the Android software stack are the applications. These comprise both the native applications
provided with the particular Android implementation (for example web browser and email applications) and
the third party applications installed by the user after purchasing the device.

9.7 Summary
A good Android development knowledge foundation requires an understanding of the overall architecture of
Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel,
a runtime environment and corresponding libraries, an application framework and a set of applications.
Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the
Android Studio build environment. When the application is subsequently installed on a device, this bytecode
is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the
Android architecture are performance and efficiency, both in application execution and in the implementation
of reuse in application design.

73

Chapter 10

10. The Anatomy of an Android
Application
Regardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail both the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities
Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this
is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities. An activity
is a single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointments application might, for example, have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application, for example, might contain an activity specifically for composing
and sending an email message. A developer might be writing an application that also has a requirement to send
an email message. Rather than develop an email composition activity specifically for the new application, the
developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may make use of the activity in unanticipated ways)
and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved
using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be specifically started as a sub-activity of the originating activity.

10.2 Android Fragments
An activity, as described above, typically represents a single user interface screen within an app. One option is
to construct the activity using a single user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each of these sections is referred to as a
fragment, each of which consists of part of the user interface layout and a matching class file (declared as a
subclass of the Android Fragment class). In this scenario, an activity simply becomes a container into which one
or more fragments are embedded.

74

The Anatomy of an Android Application

In fact, fragments provide an efficient alternative to having each user interface screen represented by a
separate activity. Instead, an app can consist of a single activity that switches between different fragments, each
representing a different app screen.

10.3 Android Intents
Intents are the mechanism by which one activity is able to launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents
Another type of Intent, the Broadcast Intent, is a system wide intent that is sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status such as the completion of system start up, connection of an external
power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time, or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers
Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A
Broadcast Receiver must be registered by an application and configured with an Intent Filter to indicate the
types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked
by the Android runtime regardless of whether the application that registered the receiver is currently running.
The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service,
making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the
background and do not have a user interface.

10.6 Android Services
Android Services are processes that run in the background and do not have a user interface. They can be started
and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal
for situations where an application needs to continue performing tasks but does not necessarily need a user
interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events
using notifications and toasts (small notification messages that appear on the screen without interrupting the
currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be
terminated as a last resort by the system in order to free up resources. In the event that the runtime does need
to kill a Service, however, it will be automatically restarted as soon as adequate resources once again become
available. A Service can reduce the risk of termination by declaring itself as needing to run in the foreground. This
is achieved by making a call to startForeground(). This is only recommended for situations where termination
would be detrimental to the user experience (for example, if the user is listening to audio being streamed by the
Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming

75

The Anatomy of an Android Application

of audio that should continue when the application is no longer active, or a stock market tracking application
that needs to notify the user when a share hits a specified price.

10.7 Content Providers
Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data through the implementation of a Content Provider
including the ability to add, remove and query the data (subject to permissions). Access to the data is provided
via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a
file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access
data such as contacts and media files. The Content Providers currently available on an Android system may be
located using a Content Resolver.

10.8 The Application Manifest
The glue that pulls together the various elements that comprise an application is the Application Manifest file.
It is within this XML based file that the application outlines the activities, services, broadcast receivers, data
providers and permissions that make up the complete application.

10.9 Application Resources
In addition to the manifest file and the Dex files that contain the byte code, an Android application package will
also typically contain a collection of resource files. These files contain resources such as the strings, images, fonts
and colors that appear in the user interface together with the XML representation of the user interface layouts.
By default, these files are stored in the /res sub-directory of the application project’s hierarchy.

10.10 Application Context
When an application is compiled, a class named R is created that contains references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and make changes to the application’s environment at runtime.

10.11 Summary
A number of different elements can be brought together in order to create an Android application. In this
chapter, we have provided a high-level overview of Activities, Fragments, Services, Intents and Broadcast
Receivers together with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of
functionality in the form of activities and intents, while data sharing between applications is achieved by the
implementation of content providers.

While activities are focused on areas where the user interacts with the application (an activity essentially
equating to a single user interface screen and often made up of one or more fragments), background processing
is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however,
that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a
solid knowledge foundation on which to build your own applications.

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata
	1.4 Download the eBook

	2. Setting up an Android Studio Development Environment
	2.1 System Requirements
	2.2 Downloading the Android Studio Package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio Setup Wizard
	2.5 Installing Additional Android SDK Packages
	2.6 Making the Android SDK Tools Command-line Accessible
	2.6.1 Windows 7
	2.6.2 Windows 8.1
	2.6.3 Windows 10
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio Memory Management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Creating a New AVD
	4.3 Starting the Emulator
	4.4 Running the Application in the AVD
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 AVD Command-line Creation
	4.8 Android Virtual Device Configuration Files
	4.9 Moving and Renaming an Android Virtual Device
	4.10 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 The Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Camera
	5.5.5 Battery
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling ADB on Android based Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Testing the adb Connection
	7.4 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Overview of Android View Binding
	11.1 Find View by ID
	11.2 View Bindings
	11.3 Converting the AndroidSample Project
	11.4 Enabling View Binding
	11.5 Using View Bindings
	11.6 Choosing an Option
	11.7 Summary

	12. Understanding Android Application and Activity Lifecycles
	12.1 Android Applications and Resource Management
	12.2 Android Process States
	12.2.1 Foreground Process
	12.2.2 Visible Process
	12.2.3 Service Process
	12.2.4 Background Process
	12.2.5 Empty Process

	12.3 Inter-Process Dependencies
	12.4 The Activity Lifecycle
	12.5 The Activity Stack
	12.6 Activity States
	12.7 Configuration Changes
	12.8 Handling State Change
	12.9 Summary

	13. Handling Android Activity State Changes
	13.1 New vs. Old Lifecycle Techniques
	13.2 The Activity and Fragment Classes
	13.3 Dynamic State vs. Persistent State
	13.4 The Android Lifecycle Methods
	13.5 Lifetimes
	13.6 Foldable Devices and Multi-Resume
	13.7 Disabling Configuration Change Restarts
	13.8 Lifecycle Method Limitations
	13.9 Summary

	14. Android Activity State Changes by Example
	14.1 Creating the State Change Example Project
	14.2 Designing the User Interface
	14.3 Overriding the Activity Lifecycle Methods
	14.4 Filtering the Logcat Panel
	14.5 Running the Application
	14.6 Experimenting with the Activity
	14.7 Summary

	15. Saving and Restoring the State of an Android Activity
	15.1 Saving Dynamic State
	15.2 Default Saving of User Interface State
	15.3 The Bundle Class
	15.4 Saving the State
	15.5 Restoring the State
	15.6 Testing the Application
	15.7 Summary

	16. Understanding Android Views, View Groups and Layouts
	16.1 Designing for Different Android Devices
	16.2 Views and View Groups
	16.3 Android Layout Managers
	16.4 The View Hierarchy
	16.5 Creating User Interfaces
	16.6 Summary

	17. A Guide to the Android Studio Layout Editor Tool
	17.1 Basic vs. Empty Activity Templates
	17.2 The Android Studio Layout Editor
	17.3 Design Mode
	17.4 The Palette
	17.5 Design Mode and Layout Views
	17.6 Code Mode
	17.7 Split Mode
	17.8 Setting Attributes
	17.9 Converting Views
	17.10 Displaying Sample Data
	17.11 Creating a Custom Device Definition
	17.12 Changing the Current Device
	17.13 Multi Preview
	17.14 Summary

	18. A Guide to the Android ConstraintLayout
	18.1 How ConstraintLayout Works
	18.1.1 Constraints
	18.1.2 Margins
	18.1.3 Opposing Constraints
	18.1.4 Constraint Bias
	18.1.5 Chains
	18.1.6 Chain Styles

	18.2 Baseline Alignment
	18.3 Working with Guidelines
	18.4 Configuring Widget Dimensions
	18.5 Working with Barriers
	18.6 Ratios
	18.7 ConstraintLayout Advantages
	18.8 ConstraintLayout Availability
	18.9 Summary

	19. A Guide to using ConstraintLayout in Android Studio
	19.1 Design and Layout Views
	19.2 Autoconnect Mode
	19.3 Inference Mode
	19.4 Manipulating Constraints Manually
	19.5 Adding Constraints in the Inspector
	19.6 Viewing Constraints in the Attributes Window
	19.7 Deleting Constraints
	19.8 Adjusting Constraint Bias
	19.9 Understanding ConstraintLayout Margins
	19.10 The Importance of Opposing Constraints and Bias
	19.11 Configuring Widget Dimensions
	19.12 Adding Guidelines
	19.13 Adding Barriers
	19.14 Widget Group Alignment and Distribution
	19.15 Converting other Layouts to ConstraintLayout
	19.16 Summary

	20. Working with ConstraintLayout Chains and Ratios in Android Studio
	20.1 Creating a Chain
	20.2 Changing the Chain Style
	20.3 Spread Inside Chain Style
	20.4 Packed Chain Style
	20.5 Packed Chain Style with Bias
	20.6 Weighted Chain
	20.7 Working with Ratios
	20.8 Summary

	21. An Android Studio Layout Editor ConstraintLayout Tutorial
	21.1 An Android Studio Layout Editor Tool Example
	21.2 Creating a New Activity
	21.3 Preparing the Layout Editor Environment
	21.4 Adding the Widgets to the User Interface
	21.5 Adding the Constraints
	21.6 Testing the Layout
	21.7 Using the Layout Inspector
	21.8 Summary

	22. Manual XML Layout Design in Android Studio
	22.1 Manually Creating an XML Layout
	22.2 Manual XML vs. Visual Layout Design
	22.3 Summary

	23. Managing Constraints using Constraint Sets
	23.1 Java Code vs. XML Layout Files
	23.2 Creating Views
	23.3 View Attributes
	23.4 Constraint Sets
	23.4.1 Establishing Connections
	23.4.2 Applying Constraints to a Layout
	23.4.3 Parent Constraint Connections
	23.4.4 Sizing Constraints
	23.4.5 Constraint Bias
	23.4.6 Alignment Constraints
	23.4.7 Copying and Applying Constraint Sets
	23.4.8 ConstraintLayout Chains
	23.4.9 Guidelines
	23.4.10 Removing Constraints
	23.4.11 Scaling
	23.4.12 Rotation

	23.5 Summary

	24. An Android ConstraintSet Tutorial
	24.1 Creating the Example Project in Android Studio
	24.2 Adding Views to an Activity
	24.3 Setting View Attributes
	24.4 Creating View IDs
	24.5 Configuring the Constraint Set
	24.6 Adding the EditText View
	24.7 Converting Density Independent Pixels (dp) to Pixels (px)
	24.8 Summary

	25. A Guide to using Apply Changes in Android Studio
	25.1 Introducing Apply Changes
	25.2 Understanding Apply Changes Options
	25.3 Using Apply Changes
	25.4 Configuring Apply Changes Fallback Settings
	25.5 An Apply Changes Tutorial
	25.6 Using Apply Code Changes
	25.7 Using Apply Changes and Restart Activity
	25.8 Using Run App
	25.9 Summary

	26. An Overview and Example of Android Event Handling
	26.1 Understanding Android Events
	26.2 Using the android:onClick Resource
	26.3 Event Listeners and Callback Methods
	26.4 An Event Handling Example
	26.5 Designing the User Interface
	26.6 The Event Listener and Callback Method
	26.7 Consuming Events
	26.8 Summary

	27. Android Touch and Multi-touch Event Handling
	27.1 Intercepting Touch Events
	27.2 The MotionEvent Object
	27.3 Understanding Touch Actions
	27.4 Handling Multiple Touches
	27.5 An Example Multi-Touch Application
	27.6 Designing the Activity User Interface
	27.7 Implementing the Touch Event Listener
	27.8 Running the Example Application
	27.9 Summary

	28. Detecting Common Gestures using the Android Gesture Detector Class
	28.1 Implementing Common Gesture Detection
	28.2 Creating an Example Gesture Detection Project
	28.3 Implementing the Listener Class
	28.4 Creating the GestureDetectorCompat Instance
	28.5 Implementing the onTouchEvent() Method
	28.6 Testing the Application
	28.7 Summary

	29. Implementing Custom Gesture and Pinch Recognition on Android
	29.1 The Android Gesture Builder Application
	29.2 The GestureOverlayView Class
	29.3 Detecting Gestures
	29.4 Identifying Specific Gestures
	29.5 Installing and Running the Gesture Builder Application
	29.6 Creating a Gestures File
	29.7 Creating the Example Project
	29.8 Extracting the Gestures File from the SD Card
	29.9 Adding the Gestures File to the Project
	29.10 Designing the User Interface
	29.11 Loading the Gestures File
	29.12 Registering the Event Listener
	29.13 Implementing the onGesturePerformed Method
	29.14 Testing the Application
	29.15 Configuring the GestureOverlayView
	29.16 Intercepting Gestures
	29.17 Detecting Pinch Gestures
	29.18 A Pinch Gesture Example Project
	29.19 Summary

	30. An Introduction to Android Fragments
	30.1 What is a Fragment?
	30.2 Creating a Fragment
	30.3 Adding a Fragment to an Activity using the Layout XML File
	30.4 Adding and Managing Fragments in Code
	30.5 Handling Fragment Events
	30.6 Implementing Fragment Communication
	30.7 Summary

	31. Using Fragments in Android Studio - An Example
	31.1 About the Example Fragment Application
	31.2 Creating the Example Project
	31.3 Creating the First Fragment Layout
	31.4 Creating the First Fragment Class
	31.5 Creating the Second Fragment Layout
	31.6 Adding the Fragments to the Activity
	31.7 Making the Toolbar Fragment Talk to the Activity
	31.8 Making the Activity Talk to the Text Fragment
	31.9 Testing the Application
	31.10 Summary

	32. Modern Android App Architecture with Jetpack
	32.1 What is Android Jetpack?
	32.2 The “Old” Architecture
	32.3 Modern Android Architecture
	32.4 The ViewModel Component
	32.5 The LiveData Component
	32.6 ViewModel Saved State
	32.7 LiveData and Data Binding
	32.8 Android Lifecycles
	32.9 Repository Modules
	32.10 Summary

	33. An Android Jetpack ViewModel Tutorial
	33.1 About the Project
	33.2 Creating the ViewModel Example Project
	33.3 Reviewing the Project
	33.3.1 The Main Activity
	33.3.2 The Content Fragment
	33.3.3 The ViewModel

	33.4 Designing the Fragment Layout
	33.5 Implementing the View Model
	33.6 Associating the Fragment with the View Model
	33.7 Modifying the Fragment
	33.8 Accessing the ViewModel Data
	33.9 Testing the Project
	33.10 Summary

	34. An Android Jetpack LiveData Tutorial
	34.1 LiveData - A Recap
	34.2 Adding LiveData to the ViewModel
	34.3 Implementing the Observer
	34.4 Summary

	35. An Overview of Android Jetpack Data Binding
	35.1 An Overview of Data Binding
	35.2 The Key Components of Data Binding
	35.2.1 The Project Build Configuration
	35.2.2 The Data Binding Layout File
	35.2.3 The Layout File Data Element
	35.2.4 The Binding Classes
	35.2.5 Data Binding Variable Configuration
	35.2.6 Binding Expressions (One-Way)
	35.2.7 Binding Expressions (Two-Way)
	35.2.8 Event and Listener Bindings

	35.3 Summary

	36. An Android Jetpack Data Binding Tutorial
	36.1 Removing the Redundant Code
	36.2 Enabling Data Binding
	36.3 Adding the Layout Element
	36.4 Adding the Data Element to Layout File
	36.5 Working with the Binding Class
	36.6 Assigning the ViewModel Instance to the Data Binding Variable
	36.7 Adding Binding Expressions
	36.8 Adding the Conversion Method
	36.9 Adding a Listener Binding
	36.10 Testing the App
	36.11 Summary

	37. An Android ViewModel Saved State Tutorial
	37.1 Understanding ViewModel State Saving
	37.2 Implementing ViewModel State Saving
	37.3 Saving and Restoring State
	37.4 Adding Saved State Support to the ViewModelDemo Project
	37.5 Summary

	38. Working with Android Lifecycle-Aware Components
	38.1 Lifecycle Awareness
	38.2 Lifecycle Owners
	38.3 Lifecycle Observers
	38.4 Lifecycle States and Events
	38.5 Summary

	39. An Android Jetpack Lifecycle Awareness Tutorial
	39.1 Creating the Example Lifecycle Project
	39.2 Creating a Lifecycle Observer
	39.3 Adding the Observer
	39.4 Testing the Observer
	39.5 Creating a Lifecycle Owner
	39.6 Testing the Custom Lifecycle Owner
	39.7 Summary

	40. An Overview of the Navigation Architecture Component
	40.1 Understanding Navigation
	40.2 Declaring a Navigation Host
	40.3 The Navigation Graph
	40.4 Accessing the Navigation Controller
	40.5 Triggering a Navigation Action
	40.6 Passing Arguments
	40.7 Summary

	41. An Android Jetpack Navigation Component Tutorial
	41.1 Creating the NavigationDemo Project
	41.2 Adding Navigation to the Build Configuration
	41.3 Creating the Navigation Graph Resource File
	41.4 Declaring a Navigation Host
	41.5 Adding Navigation Destinations
	41.6 Designing the Destination Fragment Layouts
	41.7 Adding an Action to the Navigation Graph
	41.8 Implement the OnFragmentInteractionListener
	41.9 Triggering the Action
	41.10 Passing Data Using Safeargs
	41.11 Summary

	42. Creating and Managing Overflow Menus on Android
	42.1 The Overflow Menu
	42.2 Creating an Overflow Menu
	42.3 Displaying an Overflow Menu
	42.4 Responding to Menu Item Selections
	42.5 Creating Checkable Item Groups
	42.6 Menus and the Android Studio Menu Editor
	42.7 Creating the Example Project
	42.8 Designing the Menu
	42.9 Modifying the onOptionsItemSelected() Method
	42.10 Testing the Application
	42.11 Summary

	43. Animating User Interfaces with the Android Transitions Framework
	43.1 Introducing Android Transitions and Scenes
	43.2 Using Interpolators with Transitions
	43.3 Working with Scene Transitions
	43.4 Custom Transitions and TransitionSets in Code
	43.5 Custom Transitions and TransitionSets in XML
	43.6 Working with Interpolators
	43.7 Creating a Custom Interpolator
	43.8 Using the beginDelayedTransition Method
	43.9 Summary

	44. An Android Transition Tutorial using beginDelayedTransition
	44.1 Creating the Android Studio TransitionDemo Project
	44.2 Preparing the Project Files
	44.3 Implementing beginDelayedTransition Animation
	44.4 Customizing the Transition
	44.5 Summary

	45. Implementing Android Scene Transitions – A Tutorial
	45.1 An Overview of the Scene Transition Project
	45.2 Creating the Android Studio SceneTransitions Project
	45.3 Identifying and Preparing the Root Container
	45.4 Designing the First Scene
	45.5 Designing the Second Scene
	45.6 Entering the First Scene
	45.7 Loading Scene 2
	45.8 Implementing the Transitions
	45.9 Adding the Transition File
	45.10 Loading and Using the Transition Set
	45.11 Configuring Additional Transitions
	45.12 Summary

	46. Working with the Floating Action Button and Snackbar
	46.1 The Material Design
	46.2 The Design Library
	46.3 The Floating Action Button (FAB)
	46.4 The Snackbar
	46.5 Creating the Example Project
	46.6 Reviewing the Project
	46.7 Removing Navigation Features
	46.8 Changing the Floating Action Button
	46.9 Adding the ListView to the Content Layout
	46.10 Adding Items to the ListView
	46.11 Adding an Action to the Snackbar
	46.12 Summary

	47. Creating a Tabbed Interface using the TabLayout Component
	47.1 An Introduction to the ViewPager
	47.2 An Overview of the TabLayout Component
	47.3 Creating the TabLayoutDemo Project
	47.4 Creating the First Fragment
	47.5 Duplicating the Fragments
	47.6 Adding the TabLayout and ViewPager
	47.7 Creating the Pager Adapter
	47.8 Performing the Initialization Tasks
	47.9 Testing the Application
	47.10 Customizing the TabLayout
	47.11 Displaying Icon Tab Items
	47.12 Summary

	48. Working with the RecyclerView and CardView Widgets
	48.1 An Overview of the RecyclerView
	48.2 An Overview of the CardView
	48.3 Summary

	49. An Android RecyclerView and CardView Tutorial
	49.1 Creating the CardDemo Project
	49.2 Modifying the Basic Activity Project
	49.3 Designing the CardView Layout
	49.4 Adding the RecyclerView
	49.5 Creating the RecyclerView Adapter
	49.6 Adding the Image Files
	49.7 Initializing the RecyclerView Component
	49.8 Testing the Application
	49.9 Responding to Card Selections
	49.10 Summary

	50. A Layout Editor Sample Data Tutorial
	50.1 Adding Sample Data to a Project
	50.2 Using Custom Sample Data
	50.3 Summary

	51. Working with the AppBar and Collapsing Toolbar Layouts
	51.1 The Anatomy of an AppBar
	51.2 The Example Project
	51.3 Coordinating the RecyclerView and Toolbar
	51.4 Introducing the Collapsing Toolbar Layout
	51.5 Changing the Title and Scrim Color
	51.6 Summary

	52. An Android Studio Master/Detail Flow Tutorial
	52.1 The Master/Detail Flow
	52.2 Creating a Master/Detail Flow Activity
	52.3 The Anatomy of the Master/Detail Flow Template
	52.4 Modifying the Master/Detail Flow Template
	52.5 Changing the Content Model
	52.6 Changing the Detail Pane
	52.7 Modifying the WebsiteDetailFragment Class
	52.8 Modifying the WebsiteListActivity Class
	52.9 Adding Manifest Permissions
	52.10 Running the Application
	52.11 Summary

	53. An Overview of Android Intents
	53.1 An Overview of Intents
	53.2 Explicit Intents
	53.3 Returning Data from an Activity
	53.4 Implicit Intents
	53.5 Using Intent Filters
	53.6 Checking Intent Availability
	53.7 Summary

	54. Android Explicit Intents – A Worked Example
	54.1 Creating the Explicit Intent Example Application
	54.2 Designing the User Interface Layout for MainActivity
	54.3 Creating the Second Activity Class
	54.4 Designing the User Interface Layout for ActivityB
	54.5 Reviewing the Application Manifest File
	54.6 Creating the Intent
	54.7 Extracting Intent Data
	54.8 Launching ActivityB as a Sub-Activity
	54.9 Returning Data from a Sub-Activity
	54.10 Testing the Application
	54.11 Summary

	55. Android Implicit Intents – A Worked Example
	55.1 Creating the Android Studio Implicit Intent Example Project
	55.2 Designing the User Interface
	55.3 Creating the Implicit Intent
	55.4 Adding a Second Matching Activity
	55.5 Adding the Web View to the UI
	55.6 Obtaining the Intent URL
	55.7 Modifying the MyWebView Project Manifest File
	55.8 Installing the MyWebView Package on a Device
	55.9 Testing the Application
	55.10 Summary

	56. Android Broadcast Intents and Broadcast Receivers
	56.1 An Overview of Broadcast Intents
	56.2 An Overview of Broadcast Receivers
	56.3 Obtaining Results from a Broadcast
	56.4 Sticky Broadcast Intents
	56.5 The Broadcast Intent Example
	56.6 Creating the Example Application
	56.7 Creating and Sending the Broadcast Intent
	56.8 Creating the Broadcast Receiver
	56.9 Registering the Broadcast Receiver
	56.10 Testing the Broadcast Example
	56.11 Listening for System Broadcasts
	56.12 Summary

	57. A Basic Overview of Threads and AsyncTasks
	57.1 An Overview of Threads
	57.2 The Application Main Thread
	57.3 Thread Handlers
	57.4 A Basic AsyncTask Example
	57.5 Subclassing AsyncTask
	57.6 Testing the App
	57.7 Canceling a Task
	57.8 Summary

	58. An Overview of Android Started and Bound Services
	58.1 Started Services
	58.2 Intent Service
	58.3 Bound Service
	58.4 The Anatomy of a Service
	58.5 Controlling Destroyed Service Restart Options
	58.6 Declaring a Service in the Manifest File
	58.7 Starting a Service Running on System Startup
	58.8 Summary

	59. Implementing an Android Started Service – A Worked Example
	59.1 Creating the Example Project
	59.2 Creating the Service Class
	59.3 Adding the Service to the Manifest File
	59.4 Starting the Service
	59.5 Testing the IntentService Example
	59.6 Using the Service Class
	59.7 Creating the New Service
	59.8 Modifying the User Interface
	59.9 Running the Application
	59.10 Creating an AsyncTask for Service Tasks
	59.11 Summary

	60. Android Local Bound Services – A Worked Example
	60.1 Understanding Bound Services
	60.2 Bound Service Interaction Options
	60.3 An Android Studio Local Bound Service Example
	60.4 Adding a Bound Service to the Project
	60.5 Implementing the Binder
	60.6 Binding the Client to the Service
	60.7 Completing the Example
	60.8 Testing the Application
	60.9 Summary

	61. Android Remote Bound Services – A Worked Example
	61.1 Client to Remote Service Communication
	61.2 Creating the Example Application
	61.3 Designing the User Interface
	61.4 Implementing the Remote Bound Service
	61.5 Configuring a Remote Service in the Manifest File
	61.6 Launching and Binding to the Remote Service
	61.7 Sending a Message to the Remote Service
	61.8 Summary

	62. An Android Notifications Tutorial
	62.1 An Overview of Notifications
	62.2 Creating the NotifyDemo Project
	62.3 Designing the User Interface
	62.4 Creating the Second Activity
	62.5 Creating a Notification Channel
	62.6 Creating and Issuing a Basic Notification
	62.7 Launching an Activity from a Notification
	62.8 Adding Actions to a Notification
	62.9 Bundled Notifications
	62.10 Summary

	63. An Android Direct Reply Notification Tutorial
	63.1 Creating the DirectReply Project
	63.2 Designing the User Interface
	63.3 Creating the Notification Channel
	63.4 Building the RemoteInput Object
	63.5 Creating the PendingIntent
	63.6 Creating the Reply Action
	63.7 Receiving Direct Reply Input
	63.8 Updating the Notification
	63.9 Summary

	64. Foldable Devices and Multi-Window Support
	64.1 Foldables and Multi-Window Support
	64.2 Using a Foldable Emulator
	64.3 Entering Multi-Window Mode
	64.4 Enabling and using Freeform Support
	64.5 Checking for Freeform Support
	64.6 Enabling Multi-Window Support in an App
	64.7 Specifying Multi-Window Attributes
	64.8 Detecting Multi-Window Mode in an Activity
	64.9 Receiving Multi-Window Notifications
	64.10 Launching an Activity in Multi-Window Mode
	64.11 Configuring Freeform Activity Size and Position
	64.12 Summary

	65. An Overview of Android SQLite Databases
	65.1 Understanding Database Tables
	65.2 Introducing Database Schema
	65.3 Columns and Data Types
	65.4 Database Rows
	65.5 Introducing Primary Keys
	65.6 What is SQLite?
	65.7 Structured Query Language (SQL)
	65.8 Trying SQLite on an Android Virtual Device (AVD)
	65.9 The Android Room Persistence Library
	65.10 Summary

	66. The Android Room Persistence Library
	66.1 Revisiting Modern App Architecture
	66.2 Key Elements of Room Database Persistence
	66.2.1 Repository
	66.2.2 Room Database
	66.2.3 Data Access Object (DAO)
	66.2.4 Entities
	66.2.5 SQLite Database

	66.3 Understanding Entities
	66.4 Data Access Objects
	66.5 The Room Database
	66.6 The Repository
	66.7 In-Memory Databases
	66.8 Summary

	67. An Android TableLayout and TableRow Tutorial
	67.1 The TableLayout and TableRow Layout Views
	67.2 Creating the Room Database Project
	67.3 Converting to a LinearLayout
	67.4 Adding the TableLayout to the User Interface
	67.5 Configuring the TableRows
	67.6 Adding the Button Bar to the Layout
	67.7 Adding the RecyclerView
	67.8 Adjusting the Layout Margins
	67.9 Summary

	68. An Android Room Database and Repository Tutorial
	68.1 About the RoomDemo Project
	68.2 Modifying the Build Configuration
	68.3 Building the Entity
	68.4 Creating the Data Access Object
	68.5 Adding the Room Database
	68.6 Adding the Repository
	68.7 Modifying the ViewModel
	68.8 Creating the Product Item Layout
	68.9 Adding the RecyclerView Adapter
	68.10 Preparing the Main Fragment
	68.11 Adding the Button Listeners
	68.12 Adding LiveData Observers
	68.13 Initializing the RecyclerView
	68.14 Testing the RoomDemo App
	68.15 Summary

	69. Accessing Cloud Storage using the Android Storage Access Framework
	69.1 The Storage Access Framework
	69.2 Working with the Storage Access Framework
	69.3 Filtering Picker File Listings
	69.4 Handling Intent Results
	69.5 Reading the Content of a File
	69.6 Writing Content to a File
	69.7 Deleting a File
	69.8 Gaining Persistent Access to a File
	69.9 Summary

	70. An Android Storage Access Framework Example
	70.1 About the Storage Access Framework Example
	70.2 Creating the Storage Access Framework Example
	70.3 Designing the User Interface
	70.4 Declaring Request Codes
	70.5 Creating a New Storage File
	70.6 The onActivityResult() Method
	70.7 Saving to a Storage File
	70.8 Opening and Reading a Storage File
	70.9 Testing the Storage Access Application
	70.10 Summary

	71. Implementing Video Playback on Android using the VideoView and MediaController Classes
	71.1 Introducing the Android VideoView Class
	71.2 Introducing the Android MediaController Class
	71.3 Creating the Video Playback Example
	71.4 Designing the VideoPlayer Layout
	71.5 Downloading the Video File
	71.6 Configuring the VideoView
	71.7 Adding the MediaController to the Video View
	71.8 Setting up the onPreparedListener
	71.9 Summary

	72. Android Picture-in-Picture Mode
	72.1 Picture-in-Picture Features
	72.2 Enabling Picture-in-Picture Mode
	72.3 Configuring Picture-in-Picture Parameters
	72.4 Entering Picture-in-Picture Mode
	72.5 Detecting Picture-in-Picture Mode Changes
	72.6 Adding Picture-in-Picture Actions
	72.7 Summary

	73. An Android Picture-in-Picture Tutorial
	73.1 Adding Picture-in-Picture Support to the Manifest
	73.2 Adding a Picture-in-Picture Button
	73.3 Entering Picture-in-Picture Mode
	73.4 Detecting Picture-in-Picture Mode Changes
	73.5 Adding a Broadcast Receiver
	73.6 Adding the PiP Action
	73.7 Testing the Picture-in-Picture Action
	73.8 Summary

	74. Making Runtime Permission Requests in Android
	74.1 Understanding Normal and Dangerous Permissions
	74.2 Creating the Permissions Example Project
	74.3 Checking for a Permission
	74.4 Requesting Permission at Runtime
	74.5 Providing a Rationale for the Permission Request
	74.6 Testing the Permissions App
	74.7 Summary

	75. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	75.1 Playing Audio
	75.2 Recording Audio and Video using the MediaRecorder Class
	75.3 About the Example Project
	75.4 Creating the AudioApp Project
	75.5 Designing the User Interface
	75.6 Checking for Microphone Availability
	75.7 Performing the Activity Initialization
	75.8 Implementing the recordAudio() Method
	75.9 Implementing the stopAudio() Method
	75.10 Implementing the playAudio() method
	75.11 Configuring and Requesting Permissions
	75.12 Testing the Application
	75.13 Summary

	76. Working with the Google Maps Android API in Android Studio
	76.1 The Elements of the Google Maps Android API
	76.2 Creating the Google Maps Project
	76.3 Obtaining Your Developer Signature
	76.4 Adding the Apache HTTP Legacy Library Requirement
	76.5 Testing the Application
	76.6 Understanding Geocoding and Reverse Geocoding
	76.7 Adding a Map to an Application
	76.8 Requesting Current Location Permission
	76.9 Displaying the User’s Current Location
	76.10 Changing the Map Type
	76.11 Displaying Map Controls to the User
	76.12 Handling Map Gesture Interaction
	76.12.1 Map Zooming Gestures
	76.12.2 Map Scrolling/Panning Gestures
	76.12.3 Map Tilt Gestures
	76.12.4 Map Rotation Gestures

	76.13 Creating Map Markers
	76.14 Controlling the Map Camera
	76.15 Summary

	77. Printing with the Android Printing Framework
	77.1 The Android Printing Architecture
	77.2 The Print Service Plugins
	77.3 Google Cloud Print
	77.4 Printing to Google Drive
	77.5 Save as PDF
	77.6 Printing from Android Devices
	77.7 Options for Building Print Support into Android Apps
	77.7.1 Image Printing
	77.7.2 Creating and Printing HTML Content
	77.7.3 Printing a Web Page
	77.7.4 Printing a Custom Document

	77.8 Summary

	78. An Android HTML and Web Content Printing Example
	78.1 Creating the HTML Printing Example Application
	78.2 Printing Dynamic HTML Content
	78.3 Creating the Web Page Printing Example
	78.4 Removing the Floating Action Button
	78.5 Removing Navigation Features
	78.6 Designing the User Interface Layout
	78.7 Loading the Web Page into the WebView
	78.8 Adding the Print Menu Option
	78.9 Summary

	79. A Guide to Android Custom Document Printing
	79.1 An Overview of Android Custom Document Printing
	79.1.1 Custom Print Adapters

	79.2 Preparing the Custom Document Printing Project
	79.3 Creating the Custom Print Adapter
	79.4 Implementing the onLayout() Callback Method
	79.5 Implementing the onWrite() Callback Method
	79.6 Checking a Page is in Range
	79.7 Drawing the Content on the Page Canvas
	79.8 Starting the Print Job
	79.9 Testing the Application
	79.10 Summary

	80. An Introduction to Android App Links
	80.1 An Overview of Android App Links
	80.2 App Link Intent Filters
	80.3 Handling App Link Intents
	80.4 Associating the App with a Website
	80.5 Summary

	81. An Android Studio App Links Tutorial
	81.1 About the Example App
	81.2 The Database Schema
	81.3 Loading and Running the Project
	81.4 Adding the URL Mapping
	81.5 Adding the Intent Filter
	81.6 Adding Intent Handling Code
	81.7 Testing the App Link
	81.8 Associating an App Link with a Web Site
	81.9 Summary

	82. A Guide to the Android Studio Profiler
	82.1 Accessing the Android Profiler
	82.2 Enabling Advanced Profiling
	82.3 The Android Profiler Tool Window
	82.4 The Sessions Panel
	82.5 The CPU Profiler
	82.6 Memory Profiler
	82.7 Network Profiler
	82.8 Energy Profiler
	82.9 Summary

	83. An Android Biometric Authentication Tutorial
	83.1 An Overview of Biometric Authentication
	83.2 Creating the Biometric Authentication Project
	83.3 Configuring Device Fingerprint Authentication
	83.4 Adding the Biometric Permission to the Manifest File
	83.5 Designing the User Interface
	83.6 Adding a Toast Convenience Method
	83.7 Checking the Security Settings
	83.8 Configuring the Authentication Callbacks
	83.9 Adding the CancellationSignal
	83.10 Starting the Biometric Prompt
	83.11 Testing the Project
	83.12 Summary

	84. Creating, Testing and Uploading an Android App Bundle
	84.1 The Release Preparation Process
	84.2 Android App Bundles
	84.3 Register for a Google Play Developer Console Account
	84.4 Configuring the App in the Console
	84.5 Enabling Google Play App Signing
	84.6 Creating a Keystore File
	84.7 Creating the Android App Bundle
	84.8 Generating Test APK Files
	84.9 Uploading the App Bundle to the Google Play Developer Console
	84.10 Exploring the App Bundle
	84.11 Managing Testers
	84.12 Uploading New App Bundle Revisions
	84.13 Analyzing the App Bundle File
	84.14 Enabling Google Play Signing for an Existing App
	84.15 Summary

	85. An Overview of Android Dynamic Feature Modules
	85.1 An Overview of Dynamic Feature Modules
	85.2 Dynamic Feature Module Architecture
	85.3 Creating a Dynamic Feature Module
	85.4 Converting an Existing Module for Dynamic Delivery
	85.5 Working with Dynamic Feature Modules
	85.6 Handling Large Dynamic Feature Modules
	85.7 Summary

	86. An Android Studio Dynamic Feature Tutorial
	86.1 Creating the DynamicFeature Project
	86.2 Adding Dynamic Feature Support to the Project
	86.3 Designing the Base Activity User Interface
	86.4 Adding the Dynamic Feature Module
	86.5 Reviewing the Dynamic Feature Module
	86.6 Adding the Dynamic Feature Activity
	86.7 Implementing the launchIntent() Method
	86.8 Uploading the App Bundle for Testing
	86.9 Implementing the installFeature() Method
	86.10 Adding the Update Listener
	86.11 Handling Large Downloads
	86.12 Using Deferred Installation
	86.13 Removing a Dynamic Module
	86.14 Summary

	87. An Overview of Gradle in Android Studio
	87.1 An Overview of Gradle
	87.2 Gradle and Android Studio
	87.2.1 Sensible Defaults
	87.2.2 Dependencies
	87.2.3 Build Variants
	87.2.4 Manifest Entries
	87.2.5 APK Signing
	87.2.6 ProGuard Support

	87.3 The Top-level Gradle Build File
	87.4 Module Level Gradle Build Files
	87.5 Configuring Signing Settings in the Build File
	87.6 Running Gradle Tasks from the Command-line
	87.7 Summary

	Index
	_GoBack
	_Ref381951250
	_Ref381951280
	_Ref381877478
	_Ref382489559
	_Ref382490730
	_GoBack

