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Chapter 1

1. Introduction
In 2018 Google introduced Android Jetpack to the developer community. Designed to make it quicker and 
easier to develop modern and reliable Android apps, Jetpack consists of a set of tools, libraries and architectural 
guidelines. The main elements of Android Jetpack consist of the Android Studio Integrated Development 
Environment (IDE), the Android Architecture Components and the Modern App Architecture Guidelines, all 
of which are covered in this latest edition of Android Studio Development Essentials.

Fully updated for Android Studio 3.6 and Android 10 (Q), the goal of this book is to teach the skills necessary 
to develop Android based applications using the Java programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android development 
and testing environment. An overview of Android Studio is included covering areas such as tool windows, the 
code editor and the Layout Editor tool. An introduction to the architecture of Android is followed by an in-
depth look at the design of Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle 
management, Room database access, app navigation, live data and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and 
the recording and playback of audio. This edition of the book also covers printing, transitions, cloud-based file 
storage and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars, 
tabbed interfaces, card views, navigation drawers and collapsing toolbars.

In addition to covering general Android development techniques, the book also includes Google Play specific 
topics such as implementing maps using the Google Maps Android API, and submitting apps to the Google Play 
Developer Console. 

Other key features of Android Studio 3.6 and Android 10 are also covered in detail including the Layout Editor, 
the ConstraintLayout and ConstraintSet classes, view binding, constraint chains, barriers and direct reply 
notifications. 

Chapters also cover advanced features of Android Studio such as App Links, Dynamic Delivery, the Android 
Studio Profiler and Gradle build configuration.

Assuming you already have some Java programming experience, are ready to download Android Studio and 
the Android SDK, have access to a Windows, Mac or Linux system and ideas for some apps to develop, you are 
ready to get started. 

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples contained in this book are available for 
download at:

https://www.ebookfrenzy.com/retail/androidstudio36/index.php

The steps to load a project from the code samples into Android Studio are as follows:

https://www.ebookfrenzy.com/retail/androidstudio36/index.php
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1.  From the Welcome to Android Studio dialog, select the Open an existing Android Studio project option.

2.  In the project selection dialog, navigate to and select the folder containing the project to be imported and 
click on OK.

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any 
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book 
covering a subject area of this size and complexity may include some errors and oversights. Any known issues 
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/androidstudio36.html

In the event that you find an error not listed in the errata, please let us know by emailing our technical support 
team at feedback@ebookfrenzy.com. They are there to help you and will work to resolve any problems you may 
encounter.

1.4 Download the eBook
Thank you for purchasing the print edition of this book. If you would like to download the PDF version of this 
book, please email proof of purchase (for example a receipt, delivery notice or photo of the physical book) to 
feedback@ebookfrenzy.com and we will provide you with a download link for the book in PDF format.

mailto:feedback%40ebookfrenzy.com?subject=
https://www.ebookfrenzy.com/errata/androidstudio36.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=


3

Chapter 2

2. Setting up an Android Studio 
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer 
system to act as the development platform. This involves a number of steps consisting of installing the Android 
Studio Integrated Development Environment (IDE) which also includes the Android Software Development Kit 
(SDK) and OpenJDK Java development environment. 

This chapter will cover the steps necessary to install the requisite components for Android application 
development on Windows, macOS and Linux based systems.

2.1 System Requirements
Android application development may be performed on any of the following system types:

•	 Windows 7/8/10 (32-bit or 64-bit though the Android emulator will only run on 64-bit systems)

•	 macOS 10.10 or later (Intel based systems only)

•	 ChromeOS device with Intel i5 or higher and minimum 8GB of RAM

•	 Linux systems with version 2.19 or later of GNU C Library (glibc)

•	 Minimum of 4GB of RAM (8GB is preferred)

•	 Approximately 4GB of available disk space

•	 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio Package
Most of the work involved in developing applications for Android will be performed using the Android Studio 
environment. The content and examples in this book were created based on Android Studio version 3.6 using 
the Android 10.0 (Q) API 29 SDK which, at the time writing are the current versions. 

Android Studio is, however, subject to frequent updates so a newer version may have been released since this 
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found 
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that 
there may be some minor differences between this book and the software. A web search for Android Studio 3.6 
should provide the option to download the older version in the event that these differences become a problem. 
Alternatively, visit the following web page to find Android Studio 3.6 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive
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2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which 
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-ide-<version>-
windows.exe) in a Windows Explorer window and double-click on it to start the installation process, clicking 
the Yes button in the User Account Control dialog if it appears. 

Once the Android Studio setup wizard appears, work through the various screens to configure the installation 
to meet your requirements in terms of the file system location into which Android Studio should be installed 
and whether or not it should be made available to other users of the system. When prompted to select the 
components to install, make sure that the Android Studio and Android Virtual Device options are all selected. 

Although there are no strict rules on where Android Studio should be installed on the system, the remainder 
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and 
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once 
the options have been configured, click on the Install button to begin the installation process. 

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry 
added to that menu during the installation. The executable may be pinned to the task bar for easy access by 
navigating to the Android Studio\bin directory, right-clicking on the executable and selecting the Pin to Taskbar 
menu option. Note that the executable is provided in 32-bit (studio) and 64-bit (studio64) executable versions. If 
you are running a 32-bit system be sure to use the studio executable.

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-ide-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as 
shown in Figure 2-1:

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The 
Android Studio package will then be installed into the Applications folder of the system, a process which will 
typically take a few minutes to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the 
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dock.

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the 
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a sub-directory named android-studio. Assuming, 
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory 
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it will be necessary to install some 32-bit support libraries before 
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio Setup Wizard
The first time that Android Studio is launched after being installed, a dialog will appear providing the option to 
import settings from a previous Android Studio version. If you have settings from a previous version and would 
like to import them into the latest installation, select the appropriate option and location. Alternatively, indicate 
that you do not need to import any previous settings and click on the OK button to proceed.

Next, the setup wizard may appear as shown in Figure 2-2 though this dialog does not appear on all platforms:

Figure 2-2

If the wizard appears, click on the Next button, choose the Standard installation option and click on Next once 
again.

Android Studio will proceed to download and configure the latest Android SDK and some additional components 
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and packages. Once this process has completed, click on the Finish button in the Downloading Components 
dialog at which point the Welcome to Android Studio screen should then appear:

Figure 2-3

2.5 Installing Additional Android SDK Packages
The steps performed so far have installed Java, the Android Studio IDE and the current set of default Android 
SDK packages. Before proceeding, it is worth taking some time to verify which packages are installed and to 
install any missing or updated packages.

This task can be performed using the Android SDK Settings screen, which may be launched from within the 
Android Studio tool by selecting the Configure -> SDK Manager option from within the Android Studio welcome 
dialog. Once invoked, the Android SDK screen of the default settings dialog will appear as shown in Figure 2-4:

Figure 2-4

Immediately after installing Android Studio for the first time it is likely that only the latest released version of 
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes 
corresponding to the versions and click on the Apply button.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information 
about the packages that are available for update, enable the Show Package Details option located in the lower 
right-hand corner of the screen. This will display information similar to that shown in Figure 2-5:
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Figure 2-5

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of 
the item name and click on the Apply button.

In addition to the Android SDK packages, a number of tools are also installed for building Android applications. 
To view the currently installed packages and check for updates, remain within the SDK settings screen and select 
the SDK Tools tab as shown in Figure 2-6:

Figure 2-6

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status 
column:

•	 Android SDK Build-tools

•	 Android Emulator

•	 Android SDK Platform-tools

•	 Android SDK Tools

•	 Google Play Services

•	 Intel x86 Emulator Accelerator (HAXM installer)

•	 Google USB Driver (Windows only)

In the event that any of the above packages are listed as Not Installed or requiring an update, simply select the 
checkboxes next to those packages and click on the Apply button to initiate the installation process. 
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Once the installation is complete, review the package list and make sure that the selected packages are now listed 
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the 
Apply button again.

2.6 Making the Android SDK Tools Command-line Accessible
Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio 
environment. That being said, however, there will also be instances where it will be useful to be able to invoke 
those tools from a command prompt or terminal window. In order for the operating system on which you are 
developing to be able to find these tools, it will be necessary to add them to the system’s PATH environment 
variable. 

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where 
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was 
installed):
<path_to_android_sdk_installation>/sdk/tools

<path_to_android_sdk_installation>/sdk/tools/bin

<path_to_android_sdk_installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the 
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-7:

Figure 2-7

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system 
dependent:

2.6.1 Windows 7
1.  Right-click on Computer in the desktop start menu and select Properties from the resulting menu.

2.  In the properties panel, select the Advanced System Settings link and, in the resulting dialog, click on the 
Environment Variables… button. 

3.  In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click 
on the Edit… button. Using the New button in the edit dialog, add three new entries to the path. For 
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the 
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

C:\Users\demo\AppData\Local\Android\Sdk\tools 

C:\Users\demo\AppData\Local\Android\Sdk\tools\bin

4.  Click on OK in each dialog box and close the system properties control panel.

Once the above steps are complete, verify that the path is correctly set by opening a Command Prompt window 
(Start -> All Programs -> Accessories -> Command Prompt) and at the prompt enter:
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echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that 
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command line options when executed. 

Similarly, check the tools path setting by attempting to launch the AVD Manager command line tool (don’t 
worry if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most 
likely that an incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 8.1
1.  On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from 

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the 
results area, click on it to launch the tool on the desktop.

2.  Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons 
select the one labeled System.

3.  Follow the steps outlined for Windows 7 starting from step 2 through to step 4.

Open the command prompt window (move the mouse to the bottom right-hand corner of the screen, select the 
Search option and enter cmd into the search box). Select Command Prompt from the search results.

Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that 
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command line options when executed. 

Similarly, check the tools path setting by attempting to run the AVD Manager command line tool (don’t worry if 
the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most 
likely that an incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.3 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment 
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables... 
button. Follow the steps outlined for Windows 7 starting from step 3.
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2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home 
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the 
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file 
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable 
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
A number of techniques may be employed to modify the $PATH environment variable on macOS. Arguably 
the cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to 
$PATH. Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be 
configured by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file. 
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio Memory Management
Android Studio is a large and complex software application that consists of many background processes. Although 
Android Studio has been criticized in the past for providing less than optimal performance, Google has made 
significant performance improvements in recent releases and continues to do so with each new version. Part of 
these improvements include allowing the user to configure the amount of memory used by both the Android 
Studio IDE and the background processes used to build and run apps. This allows the software to take advantage 
of systems with larger amounts of RAM. 

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature 
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance 
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also 
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-8

To view and modify the current memory configuration, select the File -> Settings... (Android Studio -> 
Preferences... on macOS) menu option and, in the resulting dialog, select the Memory Settings option listed 
under System Settings in the left-hand navigation panel as illustrated in Figure 2-9 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your 
system can spare without slowing down other processes.



11

Setting up an Android Studio Development Environment

Figure 2-9

The IDE memory setting adjusts the memory allocated to Android Studio and applies regardless of the currently 
loaded project. When a project is built and run from within Android Studio, on the other hand, a number of 
background processes (referred to as daemons) perform the task of compiling and running the app. When 
compiling and running large and complex projects, build time may potentially be improved by adjusting the 
daemon heap settings. Unlike the IDE heap settings, these settings apply only to the current project.

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK 
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready 
to be installed. 

To manually check for Android Studio updates, click on the Configure -> Check for Updates menu option 
within the Android Studio welcome screen, or use the Help -> Check for Updates... (Android Studio -> Check for 
Updates... on macOS) menu option accessible from within the Android Studio main window.

2.9 Summary
Prior to beginning the development of Android based applications, the first step is to set up a suitable development 
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK 
development environment). In this chapter, we have covered the steps necessary to install these packages on 
Windows, macOS and Linux.
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3. Creating an Example Android App 
in Android Studio
The preceding chapters of this book have covered the steps necessary to configure an environment suitable for 
the development of Android applications using the Android Studio IDE. Before moving on to slightly more 
advanced topics, now is a good time to validate that all of the required development packages are installed and 
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run 
it. This chapter will cover the creation of a simple Android application project using Android Studio. Once the 
project has been created, a later chapter will explore the use of the Android emulator environment to perform a 
test run of the application. 

3.1 About the Project
The project created in this chapter takes the form of a very simple currency conversion calculator (so simple, in 
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will 
also make use of one of the most basic of Android Studio project templates. This simplicity allows us to introduce 
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce 
too many concepts, such as the recommended app architecture and Android architecture components, at once. 
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial 
example project will be covered in much greater detail in later chapters. 

3.2 Creating a New Android Project
The first step in the application development process is to create a new project within the Android Studio 
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen 
appears as illustrated in Figure 3-1:

Figure 3-1
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Once this window appears, Android Studio is ready for a new project to be created. To create the new project, 
simply click on the Start a new Android Studio project option to display the first screen of the New Project wizard.

3.3  Creating an Activity
The first step is to define the type of initial activity that is to be created for the application. Options are available 
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different 
activity types is available when developing Android applications, many of which will be covered extensively in 
later chapters. For the purposes of this example, however, simply select the option to create an Empty Activity on 
the Phone and Tablet screen. The Empty Activity option creates a template user interface consisting of a single 
TextView object.

Figure 3-2

With the Empty Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is 
the name by which the application will be referenced and identified within Android Studio and is also the name 
that would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem. 
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed 
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified 
as follows:
com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may 
use example.com for the purposes of testing, though this will need to be changed before an application can be 
published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your 
home directory and may be changed by clicking on the folder icon to the right of the text field containing the 
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the SDK that will be used in most of the 
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projects created in this book unless a necessary feature is only available in a more recent version. 

Figure 3-3

Finally, change the Language menu to Java and click on Finish to initiate the project creation process. 

3.5 Modifying the Example Application
At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4

The newly created project and references to associated files are listed in the Project tool window located on 
the left-hand side of the main project window. The Project tool window has a number of modes in which 
information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the 
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the 
menu to switch mode:
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Figure 3-5

3.6 Modifying the User Interface 
The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located 
under app -> res -> layout in the project file hierarchy. Once located in the Project tool window, double-click on 
the file to load it into the user interface Layout Editor tool which will appear in the center panel of the Android 
Studio main window:

Figure 3-6

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure) 
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other 
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down 
menu immediately to the left of the device selection menu showing the  icon.

As can be seen in the device screen, the content layout already includes a label that displays a “Hello World!” 
message. Running down the left-hand side of the panel is a palette containing different categories of user interface 
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be 
noted, however, that not all user interface components are obviously visible to the user. One such category 
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual 
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user interface components are positioned and managed on the screen. Though it is difficult to tell from looking 
at the visual representation of the user interface, the current design has been created using a ConstraintLayout. 
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located 
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent 
and a TextView child object. 

Before proceeding, also check that the Layout Editor’s Autoconnect mode is enabled. This means that as 
components are added to the layout, the Layout Editor will automatically add constraints to make sure the 
components are correctly positioned for different screen sizes and device orientations (a topic that will be 
covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar 
and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure 
3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

Figure 3-8

The next step in modifying the application is to add some additional components to the layout, the first of which 
will be a Button for the user to press to initiate the currency conversion. 

The Palette panel consists of two columns with the left-hand column containing a list of view component 
categories. The right-hand column lists the components contained within the currently selected category. In 
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

Figure 3-9
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Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface 
design so that it is positioned beneath the existing TextView widget:

Figure 3-10

The next step is to change the text that is currently displayed by the Button component. The panel located to 
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently 
selected component in the layout. Within this panel, locate the text property in the Common Attributes section 
and change the current value from “Button” to “Convert” as shown in Figure 3-11:

Figure 3-11

The second text property with a wrench next to it allows a text property to be set which only appears within the 
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component 
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints 
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button (Figure 3-12) to add any missing constraints to the layout: 

Figure 3-12

At this point it is important to explain the warning button located in the top right-hand corner of the Layout 
Editor tool as indicated in Figure 3-13. Obviously, this is indicating potential problems with the layout. For 
details on any problems, click on the button:

Figure 3-13

When clicked, a panel (Figure 3-14) will appear describing the nature of the problems and offering some possible 
corrective measures:

Figure 3-14

Currently, the only warning listed reads as follows:
Hardcoded string "Convert", should use @string resource

This I18N message is informing us that a potential issue exists with regard to the future internationalization of 
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an 
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications, 
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so 
enables changes to the appearance of the application to be made by modifying resource files instead of changing 
the application source code. This can be especially valuable when translating a user interface to a different 
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can 
be given to a translator who will then perform the translation work and return the translated file for inclusion in 
the application. This enables multiple languages to be targeted without the necessity for any source code changes 
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the 
string “Convert”. 

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-15). 
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Within this panel, change the resource name field to convert_string and leave the resource value set to Convert 
before clicking on the OK button.

Figure 3-15

It is also worth noting that the string could also have been assigned to a resource when it was entered into the 
Attributes panel. This involves clicking on the narrow button to the right of the property field in the Attributes 
panel and selecting the Add new resource -> New String Value… menu option from the resulting Resources 
dialog. In practice, however, it is often quicker to simply set values directly into the Attributes panel fields for 
any widgets in the layout, then work sequentially through the list in the warnings dialog to extract any necessary 
resources when the layout is complete.

The next widget to be added is an EditText widget into which the user will enter the dollar amount to be 
converted. From the widget palette, select the Text category and click and drag a Number (Decimal) component 
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the 
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon 
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText 
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id 
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window 
when the widget is selected in the layout as shown in Figure 3-16:

Figure 3-16

Change the id to dollarText before proceeding.

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should 
resemble that shown in Figure 3-17:
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Figure 3-17

3.7 Reviewing the Layout and Resource Files
Before moving on to the next step, we are going to look at some of the internal aspects of user interface design 
and resource handling. In the previous section, we made some changes to the user interface by modifying the 
activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a 
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot 
modify the XML directly in order to make user interface changes and, in some instances, this may actually be 
quicker than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are three 
buttons as highlighted in Figure 3-18 below:

Figure 3-18

By default, the editor will be in Design mode whereby just the visual representation of the layout is displayed. 
The left-most button will switch to Code mode to display the XML for the layout, while the middle button enters 
Split mode where both the layout and XML are displayed, as shown in Figure 3-19:
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Figure 3-19

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component, 
which in turn, is the parent of the TextView, Button and EditText objects. We can also see, for example, that the 
text property of the Button is set to our convert_string resource. Although varying in complexity and content, all 
user interface layouts are structured in this hierarchical, XML based way. 

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be 
modified visually from within the layout canvas panel with the changes appearing in the XML listing. To 
see this in action, switch to Split mode and modify the XML layout to change the background color of the 
ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

    xmlns:app="http://schemas.android.com/apk/res-auto"

    xmlns:tools="http://schemas.android.com/tools"

    android:layout_width="match_parent"

    android:layout_height="match_parent"

    tools:context=".MainActivity"

    android:background="#ff2438" >
.

.

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the color of the layout changes in real-time to match the new setting in the XML file. Note also that 
a small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the 
line containing the color setting. This is a visual cue to the fact that the color red has been set on a property. 

Before proceeding, delete the background property from the layout file so that the background returns to the 
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it 
into the editor. Currently the XML should read as follows:
<resources>

    <string name="app_name">AndroidSample</string>
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    <string name="convert_string">Convert</string>

    <string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string 
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file 
in the editor panel. Note that the layout has picked up the new resource value for the string. 

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool 
in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights and then press 
Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and 
take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource 
back to the original “Convert” text and to add the following additional entry for a string resource that will be 
referenced later in the app code:
<resources>

.

.

    <string name="convert_string">Convert</string>

    <string name="dollars_hint">dollars</string>

    <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open Translations Editor menu option. This will 
display the Translation Editor in the main panel of the Android Studio window:

Figure 3-20

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages 
to be managed.

3.8 Adding Interaction
The final step in this example project is to make the app interactive so that when the user enters a dollar value 
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This 
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be 
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be 
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and 
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the 
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:
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Figure 3-21

Note that the text field for the onClick property is now highlighted with a red border to warn us that the button 
has been configured to call a method which does not yet exist. To address this, double-click on the MainActivity.
java file in the Project tool window (app -> java -> <package name> -> MainActivity) to load it into the code 
editor and add the code for the convertCurrency method to the class file so that it reads as follows, noting that 
it is also necessary to import some additional Android packages:
package com.ebookfrenzy.androidsample;

 

import androidx.appcompat.app.AppCompatActivity;

 

import android.os.Bundle;

import android.view.View;
import android.widget.EditText;
import android.widget.TextView;
 

public class MainActivity extends AppCompatActivity {

 

    @Override

    protected void onCreate(Bundle savedInstanceState) {

        super.onCreate(savedInstanceState);

        setContentView(R.layout.activity_main);

    }

 

    public void convertCurrency(View view) {
 
        EditText dollarText = findViewById(R.id.dollarText);
        TextView textView = findViewById(R.id.textView);
 
        if (!dollarText.getText().toString().equals("")) {
 
            Float dollarValue = Float.valueOf(dollarText.getText().toString());
            Float euroValue = dollarValue * 0.85F;
            textView.setText(euroValue.toString());
        } else {
            textView.setText(R.string.no_value_string);
        }
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    } 
}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method 
named findViewById, passing through the id assigned within the layout file. A check is then made to ensure that 
the user has entered a dollar value and if so, that value is extracted, converted from a String to a floating point 
value and converted to euros. Finally, the result is displayed on the TextView widget. If any of this is unclear, rest 
assured that these concepts will be covered in greater detail in later chapters.

3.9 Summary
While not excessively complex, a number of steps are involved in setting up an Android development 
environment. Having performed those steps, it is worth working through a simple example to make sure the 
environment is correctly installed and configured. In this chapter, we have created a simple application and then 
used the Android Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the 
importance of using resources wherever possible, particularly in the case of string values, and briefly touched 
on the topic of layouts. Next we looked at the underlying XML that is used to store the user interface designs of 
Android applications. 

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user 
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in 
detail in the next chapter. 
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Chapter 4

4. Creating an Android Virtual 
Device (AVD) in Android Studio
In the course of developing Android apps in Android Studio it will be necessary to compile and run an application 
multiple times. An Android application may be tested by installing and running it either on a physical device or 
in an Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created 
and configured to match the specifications of a particular device model. The goal of this chapter, therefore, is to 
work through the steps involved in creating such a virtual device using the Pixel 3 phone as a reference example.

4.1 About Android Virtual Devices
AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the 
application on a physical Android based device. An AVD may be configured to emulate a variety of hardware 
features including options such as screen size, memory capacity and the presence or otherwise of features such 
as a camera, GPS navigation support or an accelerometer. As part of the standard Android Studio installation, 
a number of emulator templates are installed allowing AVDs to be configured for a range of different devices. 
Custom configurations may be created to match any physical Android device by specifying properties such as 
processor type, memory capacity and the size and pixel density of the screen. 

When launched, an AVD will appear as a window containing an emulated Android device environment. Figure 
4-1, for example, shows an AVD session configured to emulate the Google Pixel 3 model.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in 
command-line mode or with a more user-friendly graphical user interface.

Figure 4-1
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4.2 Creating a New AVD
In order to test the behavior of an application in the absence of a physical device, it will be necessary to create an 
AVD for a specific Android device configuration. 

To create a new AVD, the first step is to launch the AVD Manager. This can be achieved from within the Android 
Studio environment by selecting the Tools -> AVD Manager menu option from within the main window. 

Once launched, the tool will appear as outlined in Figure 4-2 if existing AVD instances have been created:

Figure 4-2

To add an additional AVD, begin by clicking on the Create Virtual Device button in order to invoke the Virtual 
Device Configuration dialog:

Figure 4-3

Within the dialog, perform the following steps to create a Pixel 3 compatible emulator:

1.  From the Category panel, select the Phone option to display the list of available Android phone AVD 
templates.
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2.  Select the Pixel 3 device option and click Next.

3.  On the System Image screen, select the latest version of Android for the x86 ABI. Note that if the system 
image has not yet been installed a Download link will be provided next to the Release Name. Click this link 
to download and install the system image before selecting it. If the image you need is not listed, click on the 
x86 images and Other images tabs to view alternative lists.

4.  Click Next to proceed and enter a descriptive name (for example Pixel 3 API 29) into the name field or 
simply accept the default name.

5.  Click Finish to create the AVD.

6.  With the AVD created, the AVD Manager may now be closed. If future modifications to the AVD are 
necessary, simply re-open the AVD Manager, select the AVD from the list and click on the pencil icon in 
the Actions column of the device row in the AVD Manager.

4.3 Starting the Emulator
To perform a test run of the newly created AVD emulator, simply select the emulator from the AVD Manager 
and click on the launch button (the green triangle in the Actions column). The emulator will appear in a new 
window and begin the startup process. The amount of time it takes for the emulator to start will depend on the 
configuration of both the AVD and the system on which it is running. 

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options 
can be changed. Within the AVD Manager, select the new Pixel 3 entry and click on the pencil icon in the 
Actions column of the device row. In the configuration screen locate the Startup and orientation section and 
change the orientation setting. Exit and restart the emulator session to see this change take effect. More details 
on the emulator are covered in the next chapter (“Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.4 Running the Application in the AVD
With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now 
can be compiled and run. With the AndroidSample project loaded into Android Studio, make sure that the 
newly created Pixel 3 AVD is displayed in the device menu (marked A in Figure 4-4 below), then either click on 
the run button represented by a green triangle (B), select the Run -> Run ‘app’ menu option or use the Ctrl-R 
keyboard shortcut:

Figure 4-4

The device menu (A) may be used to select a different AVD instance or physical device as the run target, and also 
to run the app on multiple devices. The menu also provides access to the AVD Manager and device connection 
trouble shooting options:
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Figure 4-5

Once the application is installed and running, the user interface for the first fragment will appear within the 
emulator:

Figure 4-6

In the event that the activity does not automatically launch, check to see if the launch icon has appeared among 
the apps on the emulator. If it has, simply click on it to launch the application. Once the run process begins, 
the Run tool window will become available. The Run tool window will display diagnostic information as the 
application package is installed and launched. Figure 4-7 shows the Run tool window output from a successful 
application launch:

Figure 4-7

If problems are encountered during the launch process, the Run tool window will provide information that will 
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the 
Android development environment is correctly installed and configured.
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4.5 Stopping a Running Application
To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure 
4-8:

Figure 4-8

An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the 
window bar button that becomes available when the app is running. Once the Run tool window appears, click 
the stop button highlighted in Figure 4-9 below:

Figure 4-9

4.6 Supporting Dark Theme
Android 10 introduced the much awaited dark theme, support for which is not enabled by default in Android 
Studio app projects. To test dark theme in the AVD emulator, open the Settings app within the running Android 
instance in the emulator. There are a number of different ways to access the settings app. The quickest is to 
display the home screen and then click and drag upwards from the bottom of the screen (just below the search 
bar). This will display all of the apps installed on the device, one of which will be the Settings app.

Within the Settings app, choose the Display category and enable the Dark Theme option as shown in Figure 4-10 
so that the screen background turns black:

Figure 4-10

With dark theme enabled, run the AndroidSample app and note that it appears as before and does not conform 
to the dark theme.

In order for an app to adopt dark theme, it must be derived from the Android DayNight theme. By default, new 
projects use the Light.DarkActionBar theme. To change this setting, navigate to the res -> values -> styles.xml file 
in the Project window as shown in Figure 4-11 and double-click on it to load it into the editor:
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Figure 4-11

Once loaded, edit the AppTheme style entry so that it reads as follows:
<resources>

    <!-- Base application theme. -->

    <style name="AppTheme" parent="Theme.AppCompat.DayNight">
        <!-- Customize your theme here. -->

.

.

After making the change, re-run the app on the emulator and note that it now conforms to the dark theme as 
shown in Figure 4-12:

Figure 4-12

Open the Settings app, turn off dark theme and return to the AndroidSample app. The app should have 
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automatically switched back to light mode.

4.7 AVD Command-line Creation
As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly 
from the command-line. This is achieved using the avdmanager tool in conjunction with some command-line 
options. Once initiated, the tool will prompt for additional information before creating the new AVD.

The avdmanager tool requires access to the Java Runtime Environment (JRE) in order to run. If, when attempting 
run avdmanager, an error message appears indicating that the ‘java’ command cannot be found, the command 
prompt or terminal window within which you are running the command can be configured to use the OpenJDK 
environment bundled with Android Studio. Begin by identifying the location of the OpenJDK JRE as follows:

1.  Launch Android Studio and open the AndroidSample project created earlier in the book.

2.  Select the File -> Project Structure... menu option.

3.  Copy the path contained within the JDK location field of the Project Structure dialog. This represents the 
location of the JRE bundled with Android Studio.

On Windows, execute the following command within the command prompt window from which avdmanager is 
to be run (where <path to jre> is replaced by the path copied from the Project Structure dialog above):
set JAVA_HOME=<path to jre>

On macOS or Linux, execute the following command:
export JAVA_HOME="<path to jre>"

If you expect to use the avdmanager tool frequently, follow the environment variable steps for your operating 
system outlined in the chapter entitled “Setting up an Android Studio Development Environment” to configure 
JAVA_HOME on a system-wide basis. 

Assuming that the system has been configured such that the Android SDK tools directory is included in the 
PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following 
command in a terminal or command window:
avdmanager list targets

The resulting output from the above command will contain a list of Android SDK versions that are available on 
the system. For example:
Available Android targets:

----------

id: 1 or "android-29"

     Name: Android API 29

     Type: Platform

     API level: 29

     Revision: 1

----------

id: 2 or "android-26"

     Name: Android API 26

     Type: Platform

     API level: 26

     Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command line. For example, to 
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create a new AVD named myAVD using the target ID for the Android API level 29 device using the x86 ABI, the 
following command may be used:
avdmanager create avd -n myAVD -k "system-images;android-29;google_apis_
playstore;x86"

The android tool will create the new AVD to the specifications required for a basic Android 8 device, also 
providing the option to create a custom configuration to match the specification of a specific device if required. 
Once a new AVD has been created from the command line, it may not show up in the Android Device Manager 
tool until the Refresh button is clicked.

In addition to the creation of new AVDs, a number of other tasks may be performed from the command line. 
For example, a list of currently available AVDs may be obtained using the list avd command line arguments:
avdmanager list avd

 

Available Android Virtual Devices:

    Name: Pixel_XL_API_28_No_Play

  Device: pixel_xl (Google)

    Path: /Users/neilsmyth/.android/avd/Pixel_XL_API_28_No_Play.avd

  Target: Google APIs (Google Inc.)

          Based on: Android API 28 Tag/ABI: google_apis/x86

    Skin: pixel_xl_silver

  Sdcard: 512M

Similarly, to delete an existing AVD, simply use the delete option as follows:
avdmanager delete avd –n <avd name>

4.8 Android Virtual Device Configuration Files
By default, the files associated with an AVD are stored in the .android/avd sub-directory of the user’s home 
directory, the structure of which is as follows (where <avd name> is replaced by the name assigned to the AVD):
<avd name>.avd/config.ini

<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions and memory specified 
during the AVD creation process. These settings may be changed directly within the configuration file and will 
be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD files. Note that 
a change to the image.sysdir value in the config.ini file will also need to be reflected in the target value of this file. 

4.9 Moving and Renaming an Android Virtual Device
The current name or the location of the AVD files may be altered from the command line using the avdmanager 
tool’s move avd argument. For example, to rename an AVD named Nexus9 to Nexus9B, the following command 
may be executed:
avdmanager move avd -n Nexus9 -r Nexus9B

To physically relocate the files associated with the AVD, the following command syntax should be used:
avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Nexus9Test:
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avdmanager move avd -n Nexus9 -p /tmp/Nexus9Test

Note that the destination directory must not already exist prior to executing the command to move an AVD.

4.10 Summary
A typical application development process follows a cycle of coding, compiling and running in a test environment. 
Android applications may be tested on either a physical Android device or using an Android Virtual Device 
(AVD) emulator. AVDs are created and managed using the Android AVD Manager tool which may be used 
either as a command line tool or using a graphical user interface. When creating an AVD to simulate a specific 
Android device model it is important that the virtual device be configured with a hardware specification that 
matches that of the physical device.
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5. Using and Configuring the 
Android Studio AVD Emulator 
The Android Virtual Device (AVD) emulator environment bundled with Android Studio 1.x was an 
uncharacteristically weak point in an otherwise reputable application development environment. Regarded by 
many developers as slow, inflexible and unreliable, the emulator was long overdue for an overhaul. Fortunately, 
Android Studio 2 introduced an enhanced emulator environment providing significant improvements in terms 
of configuration flexibility and overall performance and further enhancements have been made in subsequent 
releases.

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide 
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are 
available to customize the environment.

5.1 The Emulator Environment
When launched, the emulator displays an initial splash screen during the loading process. Once loaded, the 
main emulator window appears containing a representation of the chosen device type (in the case of Figure 5-1 
this is a Nexus 5X device):

Figure 5-1

Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator 
controls and configuration options.

5.2 The Emulator Toolbar Options
The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior 
of the emulator environment.
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Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by 
hovering the mouse pointer over the button and waiting for the tooltip to appear, or via the help option of the 
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for 
the sake of completeness:

•	 Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the emulator session when selected while the 
‘-’ option minimizes the entire window.

•	 Power – The Power button simulates the hardware power button on a physical Android device. Clicking and 
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate 
the device “Power off ” request sequence.

•	 Volume Up / Down – Two buttons that control the audio volume of playback within the simulator environment.

•	 Rotate Left/Right – Rotates the emulated device between portrait and landscape orientations.

•	 Take Screenshot – Takes a screenshot of the content currently displayed on the device screen. The captured 
image is stored at the location specified in the Settings screen of the extended controls panel as outlined later 
in this chapter.

•	 Zoom Mode – This button toggles in and out of zoom mode, details of which will be covered later in this 
chapter.

•	 Back – Simulates selection of the standard Android “Back” button. As with the Home and Overview buttons 
outlined below, the same results can be achieved by selecting the actual buttons on the emulator screen.

•	 Home – Simulates selection of the standard Android “Home” button. 

•	 Overview – Simulates selection of the standard Android “Overview” button which displays the currently 
running apps on the device.

•	 Fold Device – Simulates the folding and unfolding of a foldable device. This option is only available if the 
emulator is running a foldable device system image. 
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•	 Extended Controls – Displays the extended controls panel, allowing for the configuration of options such as 
simulated location and telephony activity, battery strength, cellular network type and fingerprint identification.

5.3 Working in Zoom Mode
The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active 
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the 
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point 
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button 
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when 
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars 
located within the emulator window.

5.4 Resizing the Emulator Window
The size of the emulator window (and the corresponding representation of the device) can be changed at any 
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options
The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings 
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group 
of controls:

Figure 5-3

5.5.1 Location
The location controls allow simulated location information to be sent to the emulator in the form of decimal or 
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points 
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or 
Keyhole Markup Language (KML) format. Alternatively, the integrated Google Maps panel may be used to 
visually select single points or travel routes.

5.5.2 Displays
In addition to the main display shown within the emulator screen, the Displays option allows additional displays 
to be added running within the same Android instance. This can be useful for testing apps for dual screen 



40

Using and Configuring the Android Studio AVD Emulator 

devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size 
and appear within the same emulator window as the main screen.

5.5.3 Cellular
The type of cellular connection being simulated can be changed within the cellular settings screen. Options are 
available to simulate different network types (CSM, EDGE, HSDPA etc) in addition to a range of voice and data 
scenarios such as roaming and denied access.

5.5.4 Camera
The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual 
building through which you can navigate by holding down the Option key (Alt on Windows) while using the 
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This 
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.5 Battery
A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen, 
including battery charge level, battery health and whether the AC charger is currently connected.

5.5.6 Phone
The phone extended controls provide two very simple but useful simulations within the emulator. The first 
option allows for the simulation of an incoming call from a designated phone number. This can be of particular 
use when testing the way in which an app handles high level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real 
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad
A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected 
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional 
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual headset and microphone connections 
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes 
it possible to test fingerprint authentication without the need to test apps on a physical device containing a 
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail 
later in this chapter.

5.5.10 Virtual Sensors
The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects 
of the physical motion of a device such as rotation, movement and tilting through yaw, pitch and roll settings.

5.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy 
to return the emulator to an exact state. Snapshots are covered in detail later in this chapter.

5.5.12 Record and Playback
Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.
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5.5.13 Google Play
If the emulator is running a version of Android with Google Play Services installed, this option displays the 
current Google Play version and provides the option to update the emulator to the latest version.

5.5.14 Settings
The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for 
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved, 
configure OpenGL support levels, and to configure the emulator window to appear on top of other windows on 
the desktop.

5.5.15 Help
The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator 
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots
When an emulator starts for the very first time it performs a cold boot much like a physical Android device when 
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the 
background processes are started. To avoid the necessity of going through this process every time the emulator 
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the 
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is 
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in 
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point 
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be 
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken 
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list 
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the 
snapshot name and description and to delete (E) the currently selected snapshot:

Figure 5-4



42

Using and Configuring the Android Studio AVD Emulator 

The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by 
default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to 
reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous 
quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager), click on the down arrow in the actions 
column for the emulator and select the Cold Boot Now menu option. 

Figure 5-5

5.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication 
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings 
app and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click 
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a 
backup screen unlocking method (such as a PIN number) must be configured. Click on the Fingerprint + PIN 
button and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN 
number and complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point 
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that 
Finger 1 is selected in the main settings panel:

Figure 5-6

Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will 
report the successful addition of the fingerprint:
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Figure 5-7

To add additional fingerprints click on the Add Another button and select another finger from the extended 
controls panel menu before clicking on the Touch the Sensor button once again. The topic of building 
fingerprint authentication into an Android app is covered in detail in the chapter entitled “An Android Biometric 
Authentication Tutorial”.

5.8 Summary
Android Studio 3.6 contains a new and improved Android Virtual Device emulator environment designed 
to make it easier to test applications without the need to run on a physical Android device. This chapter has 
provided a brief tour of the emulator and highlighted key features that are available to configure and customize 
the environment to simulate different testing conditions
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Chapter 6

6. A Tour of the Android Studio User 
Interface
While it is tempting to plunge into running the example application created in the previous chapter, doing so 
involves using aspects of the Android Studio user interface which are best described in advance. 

Android Studio is a powerful and feature rich development environment that is, to a large extent, intuitive to use. 
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio 
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this 
chapter will provide an initial overview of the various areas and components that make up the Android Studio 
environment.

6.1 The Welcome Screen
The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently 
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android 
Studio was previously exited while a project was still open, the tool will by-pass the welcome screen next time it 
is launched, automatically opening the previously active project.

Figure 6-1

In addition to a list of recent projects, the Quick Start menu provides a range of options for performing tasks 
such as opening, creating and importing projects along with access to projects currently under version control. 
In addition, the Configure menu at the bottom of the window provides access to the SDK Manager along with a 
vast array of settings and configuration options. A review of these options will quickly reveal that there is almost 
no aspect of Android Studio that cannot be configured and tailored to your specific needs.

The Configure menu also includes an option to check if updates to Android Studio are available for download.
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6.2 The Main Window
When a new project is created, or an existing one opened, the Android Studio main window will appear. When 
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration 
of the window will vary depending on which tools and panels were displayed the last time the project was open, 
but will typically resemble that of Figure 6-2.

Figure 6-2

The various elements of the main window can be summarized as follows:

A – Menu Bar – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quicker 
access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and 
selecting the Customize Menus and Toolbars… menu option. If the toolbar is not visible, it can be displayed using 
the View -> Appearance -> Toolbar menu option.

C – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that 
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the subfolders 
and files at that location ready for selection. This provides an alternative to the Project tool window. Hide and 
display this bar using the View -> Appearance -> Navigation Bar menu option.

D – Editor Window – The editor window displays the content of the file on which the developer is currently 
working. What gets displayed in this location, however, is subject to context. When editing code, for example, 
the code editor will appear. When working on a user interface layout file, on the other hand, the user interface 
Layout Editor tool will appear. When multiple files are open, each file is represented by a tab located along the 
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top edge of the editor as shown in Figure 6-3.

Figure 6-3

E – Status Bar – The status bar displays informational messages about the project and the activities of Android 
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar 
will provide a description of that field. Many fields are interactive, allowing the user to click to perform tasks or 
obtain more detailed status information.

F – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure 
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project 
in a number of different ways. The default setting is the Android view which is the mode primarily used in the 
remainder of this book.

The project tool window is just one of a number of tool windows available within the Android Studio environment. 

6.3 The Tool Windows
In addition to the project view tool window, Android Studio also includes a number of other windows which, 
when enabled, are displayed along the bottom and sides of the main window. The tool window quick access 
menu can be accessed by hovering the mouse pointer over the button located in the far left-hand corner of the 
status bar (Figure 6-4) without clicking the mouse button.

Figure 6-4

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the 
main window. 

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status 
bar. These bars appear along the left, right and bottom edges of the main window (as indicated by the arrows in 
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Figure 6-5) and contain buttons for showing and hiding each of the tool windows. When the tool window bars 
are displayed, a second click on the button in the status bar will hide them.

Figure 6-5

Clicking on a button will display the corresponding tool window while a second click will hide the window. 
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed 
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding 
number.

The location of a button in a tool window bar indicates the side of the window against which the window 
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different 
locations in other window tool bars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool 
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various 
aspects of the window to be changed. Figure 6-6 shows the settings menu for the project view tool window. 
Options are available, for example, to undock a window and to allow it to float outside of the boundaries of the 
Android Studio main window and to move and resize the tool panel. 

Figure 6-6
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All of the windows also include a far right button on the toolbar providing an additional way to hide the tool 
window from view. A search of the items within a tool window can be performed simply by giving that window 
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window). 
A search box will appear in the window’s tool bar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

Project – The project view provides an overview of the file structure that makes up the project allowing for quick 
navigation between files. Generally, double-clicking on a file in the project view will cause that file to be loaded 
into the appropriate editing tool.

Structure – The structure tool provides a high level view of the structure of the source file currently displayed in 
the editor. This information includes a list of items such as classes, methods and variables in the file. Selecting an 
item from the structure list will take you to that location in the source file in the editor window.

Layout Captures – Provides access to all of the layout hierarchy snapshots previously captured using the Layout 
Inspector tool (Tools -> Layout Inspector).

Favorites – A variety of project items can be added to the favorites list. Right-clicking on a file in the project 
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can 
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list can 
be accessed through this Favorites tool window.

Build Variants – The build variants tool window provides a quick way to configure different build targets for the 
current application project (for example different builds for debugging and release versions of the application, or 
multiple builds to target different device categories).

TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on 
the project. Android Studio compiles this list by scanning the source files that make up the project to look for 
comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting the 
File -> Settings… menu option (Android Studio -> Preferences… on macOS) and navigating to the TODO page 
listed under Editor.

Logcat – The Logcat tool window provides access to the monitoring log output from a running application in 
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Terminal – Provides access to a terminal window on the system on which Android Studio is running. On 
Windows systems this is the Command Prompt interface, while on Linux and macOS systems this takes the 
form of a Terminal prompt.

Build - The build tool windows displays information about the build process while a project is being compiled 
and packaged and displays details of any errors encountered.

Run – The run tool window becomes available when an application is currently running and provides a view 
of the results of the run together with options to stop or restart a running process. If an application is failing to 
install and run on a device or emulator, this window will typically provide diagnostic information relating to 
the problem.

Event Log – The event log window displays messages relating to events and activities performed within Android 
Studio. The successful build of a project, for example, or the fact that an application is now running will be 
reported within this tool window.

Gradle – The Gradle tool window provides a view onto the Gradle tasks that make up the project build 
configuration. The window lists the tasks that are involved in compiling the various elements of the project into 
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an executable application. Right-click on a top level Gradle task and select the Open Gradle Config menu option 
to load the Gradle build file for the current project into the editor. Gradle will be covered in greater detail later 
in this book.

Profiler – The Android Profiler tool window provides realtime monitoring and analysis tools for identifying 
performance issues within running apps, including CPU, memory and network usage. This option becomes 
available when an app is currently running.

Device File Explorer – The Device File Explorer tool window provides direct access to the filesystem of the 
currently connected Android device or emulator allowing the filesystem to be browsed and files copied to the 
local filesystem.

Resource Manager - A tool for adding and managing resources and assets such as images, colors and layout files 
contained with the project.

6.4 Android Studio Keyboard Shortcuts
Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common 
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio 
project window by selecting the Help -> Keymap Reference menu option.

6.5 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main window involves the use of the 
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool 
windows and currently open files (Figure 6-7). 

Figure 6-7

Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping 
the Tab key while holding down the Ctrl key will cycle through the various selection options, while releasing the 
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure 6-8). 
This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse 
pointer can be used to select an option or, alternatively, the keyboard arrow keys used to scroll through the file 
name and tool window options. Pressing the Enter key will select the currently highlighted item.
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Figure 6-8

6.6 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed either from the welcome screen using 
the Configure -> Settings option, or via the File -> Settings… menu option (Android Studio -> Preferences… on 
macOS) of the main window. 

Once the settings dialog is displayed, select the Appearance option in the left-hand panel and then change the 
setting of the Theme menu before clicking on the Apply button. The themes available will depend on the platform 
but usually include options such as Light, IntelliJ, Windows, High Contrast and Darcula. Figure 6-9 shows an 
example of the main window with the Darcula theme selected:

Figure 6-9

6.7 Summary
The primary elements of the Android Studio environment consist of the welcome screen and main window. 
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and 
design area, status bar and a collection of tool windows. Tool windows appear on the sides and bottom edges 
of the main window and can be accessed either using the quick access menu located in the status bar, or via the 
optional tool window bars.

There are very few actions within Android Studio which cannot be triggered via a keyboard shortcut. A keymap 
of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.
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7. Testing Android Studio Apps on a 
Physical Android Device
While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no 
substitute for performing real world application testing on a physical Android device and there are a number of 
Android features that are only available on physical Android devices. 

Communication with both AVD instances and connected Android devices is handled by the Android Debug 
Bridge (ADB). In this chapter we will work through the steps to configure the adb environment to enable 
application testing on a physical Android device with macOS, Windows and Linux based systems.

7.1 An Overview of the Android Debug Bridge (ADB)
The primary purpose of the ADB is to facilitate interaction between a development system, in this case Android 
Studio, and both AVD emulators and physical Android devices for the purposes of running and debugging 
applications.

The ADB consists of a client, a server process running in the background on the development system and a 
daemon background process running in either AVDs or real Android devices such as phones and tablets. 

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line 
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a 
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active 
virtual or physical devices may be obtained using the devices command-line argument. The following command 
output indicates the presence of an AVD on the system but no physical devices:
$ adb devices

List of devices attached

emulator-5554   device

7.2 Enabling ADB on Android  based Devices
Before ADB can connect to an Android device, that device must first be configured to allow the connection. On 
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1.  Open the Settings app on the device and select the About tablet or About phone option (on newer versions 
of Android this can be found on the System page of the Settings app).

2.  On the About screen, scroll down to the Build number field (Figure 7-1) and tap on it seven times until a 
message appears indicating that developer mode has been enabled. If the build number is not displayed, 
unfold the Advanced section of the list.
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Figure 7-1

3.  Return to the main Settings screen and note the appearance of a new option titled Developer options. Select 
this option and locate the setting on the developer screen entitled USB debugging. Enable the switch next 
to this item as illustrated in Figure 7-2:

Figure 7-2

4.  Swipe downward from the top of the screen to display the notifications panel (Figure 7-3) and note that the 
device is currently connected for debugging.

Figure 7-3

At this point, the device is now configured to accept debugging connections from adb on the development 
system. All that remains is to configure the development system to detect the device when it is attached. While 
this is a relatively straightforward process, the steps involved differ depending on whether the development 
system is running Windows, macOS or Linux. Note that the following steps assume that the Android SDK 
platform-tools directory is included in the operating system PATH environment variable as described in the 
chapter entitled “Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration
In order to configure the ADB environment on a macOS system, connect the device to the computer system 
using a USB cable, open a terminal window and execute the following command to restart the adb server:
$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been 
detected:
$ adb devices

List of devices attached

74CE000600000001        offline

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure 
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7-4 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow 
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as 
being available:
List of devices attached

015d41d4454bf80c        device

In the event that the device is not listed, try logging out and then back in to the macOS desktop and, if the 
problem persists, rebooting the system.

7.2.2 Windows ADB Configuration
The first step in configuring a Windows based development system to connect to an Android device using ADB 
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of 
Android Device. If you have a Google Nexus device, then it will be necessary to install and configure the Google 
USB Driver package on your Windows system. Detailed steps to achieve this are outlined on the following web 
page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it will be necessary to download the drivers 
provided by the device manufacturer. A listing of drivers together with download and installation information 
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command 
Prompt window and execute the following command:
adb devices

This command should output information about the connected device similar to the following:
List of devices attached

HT4CTJT01906        offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure 
7-4 seeking permission to Allow USB debugging. 

Figure 7-4

Enable the checkbox next to the option that reads Always allow from this computer, before clicking on OK. 
Repeating the adb devices command should now list the device as being ready:
List of devices attached

HT4CTJT01906    device

In the event that the device is not listed, execute the following commands to restart the ADB server:

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html
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adb kill-server

adb start-server

If the device is still not listed, try executing the following command:
android update adb

Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration
For the purposes of this chapter, we will once again use Ubuntu Linux as a reference example in terms of 
configuring adb on Linux to connect to a physical Android device for application testing. 

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which, 
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user 
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not 
listed, run the following command to add your account to the group:
sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by 
executing the following command:
sudo apt-get install android-tools-adb 

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a 
Terminal window, start the adb server and check the list of attached devices:
$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c        offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in 
Figure 7-4 seeking permission to Allow USB debugging.

7.3 Testing the adb Connection
Assuming that the adb configuration has been successful on your chosen development platform, the next step is 
to try running the test application created in the chapter entitled “Creating an Example Android App in Android 
Studio” on the device. Launch Android Studio, open the AndroidSample project and verify that the device 
appears in the device selection menu as highlighted in Figure 7-5:

Figure 7-5

Note that this menu also includes the option to test the app on multiple devices and emulators simultaneously. 
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When selected, this option displays the dialog shown in Figure 7-6 where multiple deployment targets may be 
selected.

 
Figure 7-6

7.4 Summary
While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep 
in mind that there is no real substitute for making sure an application functions correctly on a physical Android 
device. This, after all, is where the application will be used in the real world. 

By default, however, the Android Studio environment is not configured to detect Android devices as a target 
testing device. It is necessary, therefore, to perform some steps in order to be able to load applications directly 
onto an Android device from within the Android Studio development environment. The exact steps to achieve 
this goal differ depending on the development platform being used. In this chapter, we have covered those steps 
for Linux, macOS and Windows based platforms.
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8. The Basics of the Android Studio 
Code Editor
Developing applications for Android involves a considerable amount of programming work which, by definition, 
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a 
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting. 
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the 
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to 
detect and highlight programming errors in real-time as the code is being written. As will become evident in this 
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a 
guide to the key features of the tool. Experienced programmers will find that some of these features are common 
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor
The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text 
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Java source code 
file loaded:

Figure 8-1
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The elements that comprise the editor window can be summarized as follows:

A – Document Tabs – Android Studio is capable of holding multiple files open for editing at any one time. 
As each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top 
edge of the editor window. A small dropdown menu will appear in the far right-hand corner of the tab bar when 
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open 
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more 
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-Right 
keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism (accessible 
via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click 
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main 
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab 
bar in the main window.

B – The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls. 
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls 
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched on 
by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu option.

C – Code Structure Location - This bar at the bottom of the editor displays the current position of the 
cursor as it relates to the overall structure of the code. In the following figure, for example, the bar indicates that 
a setOnClickListener method call is currently being edited, and that this line of code is contained within the 
onCreate method of the MainActivity class.

Figure 8-2

Selecting an element within the bar will move the cursor to the corresponding location within the code file. 
For example, selecting the onCreate() entry will move the cursor to the top of the onCreate method within the 
source code. 

D – The Editor Area – This is the main area where the code is displayed, entered and edited by the user. Later 
sections of this chapter will cover the key features of the editing area in detail.

E – The Validation and Marker Sidebar – Android Studio incorporates a feature referred to as “on-the-
fly code analysis”. What this essentially means is that as you are typing code, the editor is analyzing the code to 
check for warnings and syntax errors. The indicator at the top of the validation sidebar will change from a green 
check mark (no warnings or errors detected) to a yellow square (warnings detected) or red alert icon (errors 
have been detected). Clicking on this indicator will display a popup containing a summary of the issues found 
with the code in the editor as illustrated in Figure 8-3:
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Figure 8-3

The sidebar also displays markers at the locations where issues have been detected using the same color coding. 
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup 
containing a description of the issue (Figure 8-4):

Figure 8-4

Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area 
of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-5) 
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-5

It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over 
any part of the sidebar will result in a lens appearing containing the code present at that location within the 
source file.

F – The Status Bar – Though the status bar is actually part of the main window, as opposed to the editor, it 
does contain some information about the currently active editing session. This information includes the current 
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.). 
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line 
number, for example, displays the Go to Line dialog.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this 
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window
By default, the editor will display a single panel showing the content of the currently selected file. A particularly 
useful feature when working simultaneously with multiple source code files is the ability to split the editor into 
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multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split 
Vertically or Split Horizontally menu option. Figure 8-6, for example, shows the splitter in action with the editor 
split into three panels:

Figure 8-6

The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and 
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time 
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab 
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file, 
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion
The Android Studio editor has a considerable amount of built-in knowledge of Java programming syntax and 
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is 
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might 
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel 
will appear containing a list of suggestions. In Figure 8-7, for example, the editor is suggesting possibilities for 
the beginning of a String declaration:

Figure 8-7

If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine 
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the 
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keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the 
Enter or Tab key to select the highlighted item. 

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful 
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that 
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the 
current word with the currently highlighted item in the suggestion list, simply press the Tab key. 

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred 
to as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when 
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-Ctrl-
Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact, 
Android Studio provides a high level of control over the auto completion settings. These can be viewed and 
modified by selecting the File -> Settings… menu option (or Android Studio -> Preferences… on macOS) and 
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-8:

Figure 8-8

8.4 Statement Completion
Another form of auto completion provided by the Android Studio editor is statement completion. This can 
be used to automatically fill out the parentheses and braces for items such as methods and loop statements. 
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence. 
Consider for example the following code:
myMethod()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically 
add the braces to the method:
myMethod() {

 

}
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8.5 Parameter Information
It is also possible to ask the editor to provide information about the argument parameters accepted by a method. 
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard 
sequence will display the parameters known to be accepted by that method, with the most likely suggestion 
highlighted in bold:

Figure 8-9

8.6 Parameter Name Hints
The code editor may be configured to display parameter name hints within method calls. Figure 8-10, for 
example, highlights the parameter name hints within the calls to the make() and setAction() methods of the 
Snackbar class:

Figure 8-10

The settings for this mode may be configured by selecting the File -> Settings (Android Studio -> Preferences 
on macOS) menu option followed by Editor -> Appearance in the left-hand panel. On the Appearance screen, 
enable or disable the Show parameter name hints option. To adjust the hint settings, click on the Configure... 
button, select the programming language and make any necessary adjustments.

8.7 Code Generation
In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you. 
The list of available code generation options shown in Figure 8-11 can be accessed using the Alt-Insert (Cmd-N 
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-11

For the purposes of an example, consider a situation where we want to be notified when an Activity in our 
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this 
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio 
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generate a stub method for this, simply select the Override Methods… option from the code generation list and 
select the onStop() method from the resulting list of available methods:

Figure 8-12

Having selected the method to override, clicking on OK will generate the stub method at the current cursor 
location in the Java source file as follows:
@Override

protected void onStop() {

    super.onStop();

} 

8.8 Code Folding
Once a source code file reaches a certain size, even the most carefully formatted and well organized code can 
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to 
have the content of every code block visible at all times. Code navigation can be made easier through the use of 
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the 
editor gutter at the beginning and end of each block of code in a source file. Figure 8-13, for example, highlights 
the start and end markers for a method declaration which is not currently folded:

Figure 8-13
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Clicking on either of these markers will fold the statement such that only the signature line is visible as shown 
in Figure 8-14:

Figure 8-14

To unfold a collapsed section of code, simply click on the ‘+’ marker in the editor gutter. To see the hidden code 
without unfolding it, hover the mouse pointer over the “{…}” indicator as shown in Figure 8-15. The editor will 
then display the lens overlay containing the folded code block:

Figure 8-15

All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard 
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure 
the conditions under which this happens, select File -> Settings… (Android Studio -> Preferences… on macOS) 
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-16):

Figure 8-16
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8.9 Quick Documentation Lookup
Context sensitive Java and Android documentation can be accessed by placing the cursor over the declaration 
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will 
display a popup containing the relevant reference documentation for the item. Figure 8-17, for example, shows 
the documentation for the Android Snackbar class.

Figure 8-17

Once displayed, the documentation popup can be moved around the screen as needed. Clicking on the push pin 
icon located in the right-hand corner of the popup title bar will ensure that the popup remains visible once focus 
moves back to the editor, leaving the documentation visible as a reference while typing code.

8.10 Code Reformatting
In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting 
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a 
common occurrence, for example, when cutting and pasting sample code from a web site), the editor provides a 
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing 
code style. 

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display 
the Reformat Code dialog (Figure 8-18) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog 
provides the option to reformat only the currently selected code, the entire source file currently active in the 
editor or only code that has changed as the result of a source code control update.

Figure 8-18

The full range of code style preferences can be changed from within the project settings dialog. Select the File 
-> Settings menu option (Android Studio -> Preferences… on macOS) and choose Code Style in the left-hand 
panel to access a list of supported programming and markup languages. Selecting a language will provide access 
to a vast array of formatting style options, all of which may be modified from the Android Studio default to 
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog, for 
example, unfold the Code Style section, select Java and, from the Java settings, select the Arrangement tab.
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8.11 Finding Sample Code
The Android Studio editor provides a way to access sample code relating to the currently highlighted entry 
within the code listing. This feature can be useful for learning how a particular Android class or method is used. 
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample 
Code menu option. The Find Sample Code panel (Figure 8-19) will appear beneath the editor with a list of 
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

Figure 8-19

8.12 Summary
The Android Studio editor goes to great length to reduce the amount of typing needed to write code and 
to make that code easier to read and navigate. In this chapter we have covered a number of the key editor 
features including code completion, code generation, editor window splitting, code folding, reformatting and 
documentation lookup.
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9. An Overview of the Android 
Architecture
So far in this book, steps have been taken to set up an environment suitable for the development of Android 
applications using Android Studio. An initial step has also been taken into the process of application development 
through the creation of a simple Android Studio application project. 

Before delving further into the practical matters of Android application development, however, it is important 
to gain an understanding of some of the more abstract concepts of both the Android SDK and Android 
development in general. Gaining a clear understanding of these concepts now will provide a sound foundation 
on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of 
this book, the goal is to provide a detailed overview of the fundamentals of Android development. 

9.1 The Android Software Stack
Android is structured in the form of a software stack comprising applications, an operating system, run-time 
environment, middleware, services and libraries. This architecture can, perhaps, best be represented visually 
as outlined in Figure 9-1. Each layer of the stack, and the corresponding elements within each layer, are tightly 
integrated and carefully tuned to provide the optimal application development and execution environment 
for mobile devices. The remainder of this chapter will work through the different layers of the Android stack, 
starting at the bottom with the Linux Kernel.

Figure 9-1
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9.2 The Linux Kernel
Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between 
the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the 
kernel provides preemptive multitasking, low-level core system services such as memory, process and power 
management in addition to providing a network stack and device drivers for hardware such as the device display, 
Wi-Fi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities 
and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system 
referred to as GNU/Linux. Various Linux distributions have been derived from these basic underpinnings such 
as Ubuntu and Red Hat Enterprise Linux. 

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the 
Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In 
fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to 
both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find 
this software at the heart of the Android software stack.

9.3 Android Runtime – ART
When an Android app is built within Android Studio it is compiled into an intermediate bytecode format 
(referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime 
(ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the 
native instructions required by the device processor. This format is known as Executable and Linkable Format 
(ELF). 

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster 
application performance and improved battery life. 

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations 
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries
In addition to a set of standard Java development libraries (providing support for such general purpose tasks as 
string handling, networking and file manipulation), the Android development environment also includes the 
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples 
of libraries in this category include the application framework libraries in addition to those that facilitate user 
interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:

•	 android.app – Provides access to the application model and is the cornerstone of all Android applications.

•	 android.content – Facilitates content access, publishing and messaging between applications and application 
components.

•	 android.database – Used to access data published by content providers and includes SQLite database 
management classes.

•	 android.graphics – A low-level 2D graphics drawing API including colors, points, filters, rectangles and 
canvases.

•	 android.hardware – Presents an API providing access to hardware such as the accelerometer and light sensor.
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•	 android.opengl – A Java interface to the OpenGL ES 3D graphics rendering API.

•	 android.os – Provides applications with access to standard operating system services including messages, 
system services and inter-process communication.

•	 android.media – Provides classes to enable playback of audio and video.

•	 android.net – A set of APIs providing access to the network stack. Includes android.net.wifi, which provides 
access to the device’s wireless stack.

•	 android.print – Includes a set of classes that enable content to be sent to configured printers from within 
Android applications.

•	 android.provider – A set of convenience classes that provide access to standard Android content provider 
databases such as those maintained by the calendar and contact applications.

•	 android.text – Used to render and manipulate text on a device display.

•	 android.util – A set of utility classes for performing tasks such as string and number conversion, XML 
handling and date and time manipulation.

•	 android.view – The fundamental building blocks of application user interfaces.

•	 android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views, 
layout managers, radio buttons etc.

•	 android.webkit – A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++ based libraries contained in this layer of the Android software stack.

9.4.1 C/C++ Libraries
The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary 
APIs for developers writing Android applications. It is important to note, however, that the core libraries do 
not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based 
libraries. When making calls, for example, to the android.opengl library to draw 3D graphics on the device 
display, the library actually ultimately makes calls to the OpenGL ES C++ library which, in turn, works with the 
underlying Linux kernel to perform the drawing tasks. 

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics 
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback, 
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of 
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java based 
Android core library APIs. In the event that direct access to these libraries is needed, this can be achieved using 
the Android Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or 
Kotlin programming languages (such as C and C++) from within Java code using the Java Native Interface (JNI).

9.5 Application Framework
The Application Framework is a set of services that collectively form the environment in which Android 
applications run and are managed. This framework implements the concept that Android applications are 
constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in 
that an application is also able to publish its capabilities along with any corresponding data so that they can be 
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found and reused by other applications. 

The Android framework includes the following key services:

•	 Activity Manager – Controls all aspects of the application lifecycle and activity stack.

•	 Content Providers – Allows applications to publish and share data with other applications.

•	 Resource Manager – Provides access to non-code embedded resources such as strings, color settings and user 
interface layouts.

•	 Notifications Manager – Allows applications to display alerts and notifications to the user.

•	 View System – An extensible set of views used to create application user interfaces.

•	 Package Manager – The system by which applications are able to find out information about other applications 
currently installed on the device.

•	 Telephony Manager – Provides information to the application about the telephony services available on the 
device such as status and subscriber information.

•	 Location Manager – Provides access to the location services allowing an application to receive updates about 
location changes.

9.6 Applications
Located at the top of the Android software stack are the applications. These comprise both the native applications 
provided with the particular Android implementation (for example web browser and email applications) and 
the third party applications installed by the user after purchasing the device. 

9.7 Summary
A good Android development knowledge foundation requires an understanding of the overall architecture of 
Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel, 
a runtime environment and corresponding libraries, an application framework and a set of applications. 
Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the 
Android Studio build environment. When the application is subsequently installed on a device, this bytecode 
is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the 
Android architecture are performance and efficiency, both in application execution and in the implementation 
of reuse in application design.
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10. The Anatomy of an Android 
Application
Regardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the 
chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the 
architecture of Android applications. In doing so, we will explore in detail both the various components that can 
be used to construct an application and the mechanisms that allow these to work together to create a cohesive 
application.

10.1 Android Activities
Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar 
with the concept of encapsulating elements of application functionality into classes that are then instantiated as 
objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this 
is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities. An activity 
is a single, standalone module of application functionality that usually correlates directly to a single user interface 
screen and its corresponding functionality. An appointments application might, for example, have an activity 
screen that displays appointments set up for the current day. The application might also utilize a second activity 
consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different 
applications. An existing email application, for example, might contain an activity specifically for composing 
and sending an email message. A developer might be writing an application that also has a requirement to send 
an email message. Rather than develop an email composition activity specifically for the new application, the 
developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely 
independent of other activities in the application. In other words, a shared activity cannot rely on being called at 
a known point in a program flow (since other applications may make use of the activity in unanticipated ways) 
and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved 
using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is 
required, the activity must be specifically started as a sub-activity of the originating activity.

10.2 Android Fragments
An activity, as described above, typically represents a single user interface screen within an app. One option is 
to construct the activity using a single user interface layout and one corresponding activity class file. A better 
alternative, however, is to break the activity into different sections. Each of these sections is referred to as a 
fragment, each of which consists of part of the user interface layout and a matching class file (declared as a 
subclass of the Android Fragment class). In this scenario, an activity simply becomes a container into which one 
or more fragments are embedded. 
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In fact, fragments provide an efficient alternative to having each user interface screen represented by a 
separate activity. Instead, an app can consist of a single activity that switches between different fragments, each 
representing a different app screen.

10.3 Android Intents
Intents are the mechanism by which one activity is able to launch another and implement the flow through the 
activities that make up an application. Intents consist of a description of the operation to be performed and, 
optionally, the data on which it is to be performed. 

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class 
name, or implicit by stating either the type of action to be performed or providing data of a specific type on 
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity 
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent 
Resolution.

10.4 Broadcast Intents
Another type of Intent, the Broadcast Intent, is a system wide intent that is sent out to all applications that have 
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast 
Intents to indicate changes in device status such as the completion of system start up, connection of an external 
power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more 
or less the same time, or ordered in that it is sent to one receiver at a time where it can be processed and then 
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers
Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A 
Broadcast Receiver must be registered by an application and configured with an Intent Filter to indicate the 
types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked 
by the Android runtime regardless of whether the application that registered the receiver is currently running. 
The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service, 
making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the 
background and do not have a user interface.

10.6 Android Services
Android Services are processes that run in the background and do not have a user interface. They can be started 
and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal 
for situations where an application needs to continue performing tasks but does not necessarily need a user 
interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events 
using notifications and toasts (small notification messages that appear on the screen without interrupting the 
currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be 
terminated as a last resort by the system in order to free up resources. In the event that the runtime does need 
to kill a Service, however, it will be automatically restarted as soon as adequate resources once again become 
available. A Service can reduce the risk of termination by declaring itself as needing to run in the foreground. This 
is achieved by making a call to startForeground(). This is only recommended for situations where termination 
would be detrimental to the user experience (for example, if the user is listening to audio being streamed by the 
Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming 
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of audio that should continue when the application is no longer active, or a stock market tracking application 
that needs to notify the user when a share hits a specified price.

10.7 Content Providers
Content Providers implement a mechanism for the sharing of data between applications. Any application can 
provide other applications with access to its underlying data through the implementation of a Content Provider 
including the ability to add, remove and query the data (subject to permissions). Access to the data is provided 
via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a 
file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access 
data such as contacts and media files. The Content Providers currently available on an Android system may be 
located using a Content Resolver.

10.8 The Application Manifest
The glue that pulls together the various elements that comprise an application is the Application Manifest file. 
It is within this XML based file that the application outlines the activities, services, broadcast receivers, data 
providers and permissions that make up the complete application. 

10.9 Application Resources
In addition to the manifest file and the Dex files that contain the byte code, an Android application package will 
also typically contain a collection of resource files. These files contain resources such as the strings, images, fonts 
and colors that appear in the user interface together with the XML representation of the user interface layouts. 
By default, these files are stored in the /res sub-directory of the application project’s hierarchy. 

10.10 Application Context
When an application is compiled, a class named R is created that contains references to the application resources. 
The application manifest file and these resources combine to create what is known as the Application Context. 
This context, represented by the Android Context class, may be used in the application code to gain access to the 
application resources at runtime. In addition, a wide range of methods may be called on an application’s context 
to gather information and make changes to the application’s environment at runtime.

10.11 Summary
A number of different elements can be brought together in order to create an Android application. In this 
chapter, we have provided a high-level overview of Activities, Fragments, Services, Intents and Broadcast 
Receivers together with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of 
functionality in the form of activities and intents, while data sharing between applications is achieved by the 
implementation of content providers. 

While activities are focused on areas where the user interacts with the application (an activity essentially 
equating to a single user interface screen and often made up of one or more fragments), background processing 
is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file 
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however, 
that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a 
solid knowledge foundation on which to build your own applications.
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