Android Studio Bumble Bee
Essentials

Java Edition

Android Studio Bumble Bee Essentials — Java Edition
ISBN-13: 978-1-951442-42-2
© 2022 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

1. INEFOAUCHION ..ceeenreieieeeiceeeereeecsneeeseeeesaeesssneesssesssssssssnssssssasssnsssssnssssssssssnssssanssssssasssnssssssessssessssnssssnsssssnanss 1
1.1 Downloading the Code SAMPIEScccreureeureurineiriirieirerseeneireerei et sesseseens 1
1.2 FEEADACK ...ttt sttt bttt b bbb b s s assssebebebebeb s s s ssssasansesetesas 1
1.3 B At ettt b e b et et a e e a e b ae b et et et et e b s be b et et et e s 2

2. Setting up an Android Studio Development Environment............cocevuereereencenes

2.1 System ReqUirements.........ccoccceuviieiricriinicininiciniieceiceeensessaesensssees

2.2 Downloading the Android Studio Package

2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene
2.3.1 Installation 0n WINAOWSccueureerirrieriirieeireeneeseeenetsese e sseesesesssasesessssessesssssssesssasesens 4
2.3.2 Installation 0n MACOSc.cveiireceiericeiree et ese s ese s sse s sse s ansns 4
2.3.3 Installation 0N LINUX.......cccvuureemirreerierieniireeeiseeeneesesesessesessssesesssssesessessssessssssessssssesssssssens 5

2.4 The Android Studio Setup WizZard.......ccc.eveeurireecurenicinineeineeieinecieseeietsescsetseess e eeesesseesesseneaes 5

2.5 Installing Additional Android SDK Packagescccceeueueecrnimeererieeremneeeeneeeeneeeenseeenessesenne 6

2.6 Making the Android SDK Tools Command-line Accessible...........ccoeuviemrerreeenernecenernecnnernennn. 9
2.6.1 WINAOWS 8.1 ..ot sseasesessessese s ese s ese s ese s esesssasssssssassscsnssssssnsassens 9
2.6.2 WINAOWS 10 ...ttt sse s sse s s sse s sse s sse s sse s ssssesessssesscsens
2.6.3 WINAOWS 11 oot sse s ese s s sse s sse s sessessesesens
2.0.4 LINUX oottt sttt
2.6.5 MACOS.......c it

2.7 Android Studio Memory Management
2.8 Updating Android Studio and the SDK
2.9 SUINIMATY ottt st b s

3. Creating an Example Android App in Android Studio.........cocevevieviienenriniiniisininenniniiniisenenensenninenne

3.1 ADOUL the PIOJECL c.ceuveeuicicicireieecireiseetneieeeirei sttt sttt sttt
3.2 Creating a New AnNdroid ProjJecCt.......ocveurirnciniurencineineeineineeinesseesessesessessesessessesessessesessesscsenns
3.3 Creating an ACHIVILYcccciiiiiiiiiiicc e
3.4 Defining the Project and SDK Settingscecveureurereureurereireinereerersenessessesessessesessessesessessescssesscsenns
3.5 Modifying the Example APPIiCAtion......c.ccoeureurereureurecireuneneineiseetrerneessesseseasessesessessesessessesessesscsenns
3.6 Modifying the User INtErfacec..eveureeeereureinineineinicireirecineiseereisee ettt ssessesesessesenns
3.7 Reviewing the Layout and Resource Files........cocvurrneininencineinineineinecineiseeeneiseessessesessessesenne
3.8 AddINg INtEIaCTION ..cevuievricireeeecirctrectret ettt b sttt ettt eae
3.9 SUMIMATY w.oviiiiiiitc et

4. Creating an Android Virtual Device (AVD) in Android Studio

4.1 About Android Virtual Devicesc.cocoeuverrecmrenneee
4.2 Starting the Emulator.........ccocecvevenenecncrnecnnenne.
4.3 Running the Application in the AVD...........cc........
4.4 Running on Multiple Devices........cccocveueurerrecurenneee
4.5 Stopping a RUNNING APPICAtIONcevuevieeeerireieireecierreeeeeeeeeeneseeesseseesensese s s ssesensessesennes
4.6 Supporting Dark TREMIE..........c.veverieeieirereeeirereeeieee et nsensese s eses s sesensessesensessesenaes
4.7 Running the Emulator in a Separate WindoW..........ccccveeeeireeenerneeenerneeeenennenenenreenensesenensesennes
4.8 Enabling the Device FIame ..ot esessesessessesessessesessessesensessesenses

Table of Contents

5. Using and Configuring the Android Studio AVD Emulator

4.9 AVD Command-line Creation ...
4.10 Android Virtual Device Configuration Files...........cccocveenerreeenerrecenerneeenenneeenresenenseneeennenes
4.11 Moving and Renaming an Android Virtual Device
4.12 SUMMATY .ot

5.1 The Emulator ENVIFONMENTc.cuiiiiiiciieiiieriiiietsesese s ssesssssssssssssse s ssenas
5.2 EMUIAtor TOOIDAr OPLiONS ...ccuueeeecereurencireieeeireinecisetsesetsesseseasessese s ssesessessesessessesessessesesesecas
5.3 Working in Zoom MOGEcucueuucuiciniiiiiiieiseisessese e s sse s ssssss s ssenas
5.4 Resizing the EMulator WIndOW.......c.cc.ccciiiiiniiccceeeese e senas
5.5 Extended COntrol OPLIONSc.cuecureurecirevrecireineeiresseetsesseessessesessessesessessesessessessssessesssessesesesscas
5.5.1 LOCAION ...ttt bbbt
5.5.2 DISPLAYS...triuiriiririniirieeieireeeieiseseseisese st sese i sese ettt
5.5.3 CIULAT ...ttt s
5.5.4 BAtOIY..ocuiiiiiiiiicicc s
5.5.5 CIMEI A ..ottt
5.5.6 PRONE ... s
5.5.7 Directional Pad.........ccccuiuiiiiiiiiciciciicceicccicsise s
5.5.8 Microphone.........
5.5.9 Fingerprint..............
5.5.10 Virtual Sensors
5.5.11 Snapshots...............
5.5.12 Record and Playbackcccccoeecureurecuneunnces
5.5.13 GOOGLE PLaYoccumimiiiiiiiiiccic e s
5.5.14 SEHHNGS ...ouvviiiriiiciic s
5.5.15 HEIP vttt st
5.6 Working with SNapshots..........ccceiiiiciiiicc e
5.7 Configuring Fingerprint EMUlation ..o
5.8 The Emulator in Tool Window Mode...........cccuiiniiniiniiiinernincicicie e senas
5.9 SUITIMATY ..ottt bbb

6. A Tour of the Android Studio USer INTEITACEcccecueeeeeerrveneeerirereesisrneeesessneessssssnessssssssessssssssssssssasssssssns

7. Testing Android Studio Apps on a Physical Android Device

ii

6.1 The WElCome SCreemn ... s
6.2 The Main Window
6.3 The Tool Windows ...,
6.4 Android Studio Keyboard Shortcuts..................
6.5 Switcher and Recent Files Navigation
6.6 Changing the Android Studio Theme
0.7 SUITITIATY ..ottt b bbb bbbt

7.1 An Overview of the Android Debug Bridge (ADB).........cccvcuviuneincucenciciieieinercseseeeseeenas
7.2 Enabling USB Debugging ADB on Android Devices...........cucvcuvcucucierrieenniuneeniniesessesenenenns
7.2.1 macOS ADB COnfIGUrationc.ccccuceeiuriuriuniuniuniinerieseesesessessessessssesssssssssssssssesssssesssssenas
7.2.2 Windows ADB CONfIgUIAtioN.c.cucuiuiuiuniunimniineiieseie e ssessessessssesssssssssesssssesssssesssssenas
7.2.3 Linux adb Configuration ... ssssenas
7.3 Resolving USB CoNNection ISSUES ..o ssessessessssssssssse s ssenas
7.4 Enabling Wireless Debugging on Android Devicesocuviuvcuvcucencicinieenieneiniesesseseseeenns
7.5 Testing the adb Connection
7.6 SUITIITIATY ...ooovniniececicicneieneses ettt bbb bbb bbb s bbb ns

Table of Contents

8. The Basics of the Android Studio Code EdItOr........uciierrvveeerrrieeeerrrreeeesssneeesssssseesssssssesessssnsessssssssssssssas 63

8.1 The Android Studio EdItOr. ..o eaeeae
8.2 Splitting the Editor Window
8.3 Code Completion.......c.ccceerecurereucnee

8.4 Statement Completion..........cecuuee..

8.5 Parameter Information............c........

8.6 Parameter Name Hintsccoovviiiiiicc s
8.7 COde GNETALION ...t
8.8 COde FOLAING ...t
8.9 Quick Documentation LOOKUPcccvueeueureiueirincreineeeeireeersieietseesessessaetsesesesseesesseseseessacssssesesseneans 70
8.10 COde REFOIMALLING......ucvuereerereeeiriereritrerteseneese e ssesaessesssase e e s s s ssnsesassssnesnsens 71
8.11 Finding Sample Code ...t 71
8.12 LiVe TeMPIALES «..cucvuvreueeiicirieecieeeicirieie ettt seses ettt sttt s st ese et saseseseeasacs 72
8.13 SUIMIMATIY ..ttt bbb 72

9. An Overview of the ANAroid AXCRILECHULEuuueeeeeeeeeeeiiiiciirierrereeeeeeeeeeeesrreesseeeeeeessssssssssssssssesesessssssnns 73

9.1 The Android Software Stack
9.2 The Linux Kernel..........ccccceeeennnnnee.
9.3 Android Runtime — ART...................
9.4 Android Libraries.........cccccevvvevevennnen.
9.4.1 C/C++ Librariesc.ccecevevererenene.
9.5 Application Framework....................
9.6 APPLICALIONS «.ecvrveeeireiecireirectrei ettt bttt ettt bbb nas
0.7 SUIMIMATY ..ottt bbb bbb bbb bbb

10. The Anatomy of an Android APPLiCAtioncccceerreeiiirinneciniininnininecncstseecee st sssessessessessesses 77

10.1 ANAIOId ACHVITIES ...veveverereieieceectcteretetete e ettt et s s s bbb bbb sasssasasanaesesenes 77
10.2 ANATrOid Fragments........ccouecueeueureuiirememensenensensersenseessssessessssesssssesessessessessessessessessessssesssssesnes 77
10.3 ANAIOId INTENES ..vvvvrreeeiceceictetetet ettt sttt st et s bbb bbb s sasasasasanaesesenen 78
10.4 BroadCast INTENLES.......cceeiririererereeeeistetesereestsse e e sesesssssesesesessssssssesesesassssssesesesesesssssssesesesesessnnns 78
10.5 BroadCast RECEIVETSccovviruererereeenisteteseseesissesetesesesssssesesesessssssssssesesassssssssesesesessssssssssesesessssnns 78
10.6 ANAIOIA SEIVICES ...v.vvvereeeieieeeeteteteteretee et b ettt et bbb s s s e bbb bbb sasasasasasassetenes 78
10.7 CONLENE PTOVIAETS ..vveveeeeieiieietetcieiieteteteseeeiste et sesssssssesese e ssssssssesesesassssssesesesesesssssssesesesessssnnns 79
10.8 The Application MAanifest..........cveiureuerererererenenieceeneeessesesseseesesessessessessessessensessessessessssssesnes 79
10.9 APPLiCAtion RESOUICESceucerieecriniieiricieireeietreseieeseese et sasese et sesseasaesseaesesseasssssescsnen 79
10.10 APPLICAtiON CONEXL...c.cuveucrrueecrreiietricieereneueeresesesseesesseseseeseaessaesessestaessesesesseassessesesesseasssssescses 79

1011 SUIMIMATY cocviiieiiinciiincnitcss it ses bbb s bbb 79
11. An Overview of Android View Binding.........cocevevuerimnininisisinsinninisisisnninisiscssssisiinsssssecs 81
11.1 FINA VIEW DY I coceiiiicicicicicicireicctceectreeetetseseee st sese et seseese st sesessessesessessesesssssesesacs 81
11.2 VIEW BINAING orevviteeeicireieicieieietneicictreeetetsese et sesetet st sese st seseese s st sesessessesessessesesssssesesncs 81
11.3 Converting the AndroidSample PIrOJECtcvcureuererreeeererreeeinerreeeeserrereesesseseesesseseesesseseesessesenses 82
11.4 Enabling VIew BINAING......ccocveeureureuemnerrereenerreeeietneeeiseeseseeesseseesessesesessesesessesessessesessessesesessesesses 82
11.5 USING VIEW BINAINGvuvreveeiereieireieietreeeietrereeetseseeetseseeesseseesesseseesessesessessesessessesessessesessessesesss 82
11.6 ChOOSING QN OPHOI c..cuvreeerceeeeietreeeieeseeeeetsereesetseseeetsese et sesessesseseesessesessessesessessesessessesessessesesaes 83
11.7 View Binding in the BOOK EXAMPLESc.covueueuerrereinerrereieireeeietreeeietseneeessesessesseseesesseseesessesennes 83
11.8 Migrating a Project t0 VIEW Bindingcocveevveureeeenerreueenerreeeinenneeeeetsereesesseseeesseseesessesessessesennes 84
11,9 SUIMMATY ¢ttt bbb bbbt 85
12. Understanding Android Application and Activity Lifecycles........cccovueververruiiinrersucnennerncnscnsensncnennne 87
12.1 Android Applications and Resource Management.............cecveereueerererseremserensersensecsssssesnenns 87

iii

Table of Contents

12.2 ANAroid PrOCESS STALES ...ccuvreeermieecrreriecnsierieensetsesesseasesesseasese e s sssssesesssssssesssasssesssassesssssssenseses
12.2.1 FOreground PIOCESScvueecrreueererrirreeireireetnessesesessesessessesessesseseaesesesessesessessesesessesesesens
12.2.2 Visible Process
12.2.3 Service Process
12.2.4 Background Process..........ceceeuneurecureunennn.
12.2.5 Empty Process

12.3 Inter-Process Dependenciescoceveveeenee

12.4 The ACtiVItY LIfECYCL....c.cviiieceireccicirecceeeteeeeeee st ese s sse s nsenssanes

12.5 The ACHVILY SEACK. ... ittt sese s ssa s sese s ese s sse s s nsenssanes

12.6 ACHIVILY SEAtES ...cucuieiiiiiiiciii s

12.7 Configuration CRANEEScccvureeuirrecrirriereireeseiseeesteeese s ssasesesssssesesssasssesssasssesssssssenseses

12.8 Handling State Changeccocuveeueureerirreereireeneineeeseenesesssessesssesesesssssesesssssssessssessesesssseneses

12.9 SUIMIMATY oot bbb bbb

13. Handling Android Activity State Changes...........ccccevervuerenrirrnsinsinnenininncsenenscseseesesesessscsesssnes 93

13.1 New vs. Old Lifecycle TEChNIQUES.......ccoeureveueereeeieireeeieireieieiseneeeesesesessesessessesesessesessessesesessenes
13.2 The Activity and Fragment Classes..........ccocceuuruiuniurimiinemneiseseeeeeesesscesessessssssssssssesssasessesesssae
13.3 Dynamic State vs. Persistent State..........ccocoeirriiniiiiieiiiiiccieceess e
13.4 The Android Lifecycle Methods.........ccoccreuene.
13.5 Lifetimesccocuveueuiurerniireneieicieieiseceecseeaennens
13.6 Foldable Devices and Multi-Resume...............
13.7 Disabling Configuration Change Restarts
13.8 Lifecycle Method Limitations............cceeeerevenee
13.9 SUMMATY ..ttt

14. Android Activity State Changes by EXample........cccovvuiriivninininininininininiinicniienens. 101

14.1 Creating the State Change EXample PrOjectccvvevcueemncrniemernecmrenneenereenenseeenersesensenens 101
14.2 Designing the User INterface ..o ssesessessesessesnens 102
14.3 Overriding the Activity Lifecycle Methodscoceeurercrnicencrnicecnneccrneceneeneneeenenene 102
14.4 Filtering the Logcat Panel..........cccciueeeiieecrniieeernieecreieneneeeeeseseeensesessesesessessesessessesesesens 104
14.5 Running the APPLICAtIONcvureeuiuercriiercreeeeereeerereie e ssese e ssesessessesssensens 105
14.6 Experimenting with the ACHVILYcocccvirrcrnieeerniecncereeeeeee e seneens 106
14.7 SUININATY oottt as 107

15. Saving and Restoring the State of an Android ACtiVityccoccevevvirreiinrnncninnnncnsnnecscnesnncsesenaees 109

15.1 Saving DynNamic Statecoviiiiiimiinicicii s 109
15.2 Default Saving of User Interface State ... ssesesees 109
15.3 The BUNALE CLaSS ..ot st saes 110
15.4 SaVING the STALE.......c.cviiiiiicicicc e s 111
15.5 RESLOrING the SALecoiuuiiciicicci et ss st saes 112
15.6 Testing the APPLICALION........ccuiuciciciciciiiciceeee et saes 112
15.7 SUIMMATY ..ttt et s st 112

16. Understanding Android Views, View Groups and Layoutsccocevevesresrisnsensesessesesessessessessesesenne 115

16.1 Designing for Different Android DeVICeS.........cceueureerriuememnieemnernenemerneeeneneeeersesensessesensenens
16.2 VIEWS QNd VIEW GIOUPS c.ceuvueeeereeirineieieneesiseaeistesetseesesseesesseaesessessssssesesessesssssesesssnssesssnesesscnces
16.3 Android Layout MaANAELScccueueeeemiurecreuemseresemseresemsesesessessessssesesssesesssessesessessesessesens
16.4 The View Hierarchycocooecneuvecmniurecrneeennee
16.5 Creating User Interfaces.......cccoceeeeuneuvecrneerence
16.6 SUIMIMNATY ..ottt bbb bbb bbb s as

17. A Guide to the Android Studio Layout Editor Tool

v

Table of Contents

17.1 Basic vs. Empty Activity TemPLatesccovvveuiereeriereemierienerneeeneesesenseesesessssesesessesessessesens 119
17.2 The Android Studio Layout EItOrcccvreeriurecrniereceierieneieeeeneeeeeeneesesenssesessssssesessesens 123
17.3 DESIZN MOME......cevurierniriecieireeeneireeeeneaseeesseaseae s sseasese st ese s sae s ese s sasas s sasasnscsassssscns 123
17.4 THe Paletteouieiieiiiiiiiiiic s ss s 124
17.5 Design Mode and Layout VIEWS.......c..cewceeureeriureecrniuneenieseenessesensessssensesssesssssssessessssesessssens 125

17.6 NIGHE MOAE ...ttt ese s ese st sse s sse st sse st eassasnscsassssacen 126
17.7 COde MOdE.....ouiiiiiiiiiiic s 126
17.8 SPLt MOAE ...ttt sseseee s sse st ese st nsc s aenacnn 127
17.9 Setting AtIIDULES......cecvuiveeereireeeietreeertereeerees et sas s ese s sse e s sssas s sssasnsessssesscns 127
17.10 TIANSTOIINS ...ttt eae st ese s sae s sse st sae s esc s aenacns 129
17.11 ToOlS ViSIDIlity TOGGLES.......cveuemireeernirriecrnireeeeeereeeseieeesseaseee st ese e s sssasesesssssnsessssssses 130
17.12 ConVErting VIEWS.....coviiiimiiiiiiiiiiici s 132
17.13 Displaying Sample Dataccccveeeiureemerreeriineenineeseeeeenessesessessssesssssssesssssesesessssessessssens 132
17.14 Creating a Custom Device DefINitionccvvureeriureceiureerirneeniereeneesesensseesesseseesesessesens 133
17.15 Changing the Current DEeVICe........ccuuermrecrrirreerieneenieeeeneseesesseaeesenssesssesssssssessssessesessssens

17.16 Layout Validation (MUlti PreVIEW)ccovureeriurecriurecrierieneiseeeneesesensesesessssesesessesessessesens

17.17 SUININATY w.cuiiiiiiiiiiri bbb bbb bbb bbb bbbt

18. A Guide to the Android ConstraintLayout

18.1 How ConstraintLayout Works
18.1.1 Constraints........ccccvuverevrerucnnee.
18.1.2 Margins
18.1.3 Opposing Constraints..............

18.1.4 Constraint Biascccoceuiiiiiiiiiciiici s

18.1.5 CRAINS ... s s

18.1.6 Chainl SLYLES....cueuivieeencireieeeireieeeret sttt sttt bttt st
18.2 Baseline ALIGNMENT ..ot ees
18.3 Configuring Widget DIMeNSIONS.........cccucucuumumrmmeiimniiimiesessssse s ssesse s ssssssssssssssssens
18.4 GUIAElINE HEIPETcueuiieiaireeeiireecitireici ittt seaeen
18.5 GIOUD HEIPET ..ottt st seaeen
18.6 BAITIEr HEIPET ...ecvuirieiniiecictreiceisei ettt ettt
18.7 FLOW HEIPET ...ereeiriieieireectctreieisee ettt s st
18.8 RALIOS ...ttt bbbt
18.9 ConstraintLayout AdVANTAZeSocueiucucucueicieiseiirieeiieiesisessss s s ss s ssesassasssens
18.10 ConstraintLayout AVAIlabDility........ccoceeeireureeeeniinieiniinicineirceisieeiseseeeesese e ssessesesseseeaees
18,11 SUIMIMATY ..ttt bt bbbt

19. A Guide to Using ConstraintLayout in Android Studioceceevveeririsnsniscsnininnsnescneseeesennees 147

19.1 Design and Layout VIEWS........cceureeeiureecrerreeerieneeeseisesessessesessessesessessesesssssesesssssesessssssessessssens 147
19.2 AUtocoNNect MOAE ... 148
19.3 INfErence MOde.........oimimiiiiiicii s 149
19.4 Manipulating Constraints Manually.............cccerenireceniirecenierereeeeeneeeeesseseeesesensens 149
19.5 Adding Constraints in the INSPECtOrc.cvveuiureeriirecriirieieeeneeseeneeeesessseesesesenseneesesens 150
19.6 Viewing Constraints in the Attributes Window........ccccveureeernerrecrnierecrninecnneeeecnneeseenseeeneens 151
19.7 Deleting CONSIIAINESvevmereeermerreeensiereeensesseeessesseeesseaesesseasesesssssssessessssessessssessssssesssssssesssssssens 152
19.8 Adjusting Constraint BIasccocveeeiureererreerirneerieeerieesenessesensessssesssssssesssssesesssssssesesessens 152
19.9 Understanding ConstraintLayout Margins..........cccveeeeeceeereererreememreereesesersessesessessnsenessnsens 153
19.10 The Importance of Opposing Constraints and Biascccueeeerreureccenierecrnierecrneeeecnseeneens 154
19.11 Configuring Widget DImMeNSIONS.........ecceurureeeriereeemiureersiereeeneseeeenseesesenseasssesssssssesessssesessssens 156
19.12 Design Time Tools POSIIONINGccuvueeermirreeermiiriecriireeenieeeenesseeenseesesenseasesessasesesessesessessesens 157

Table of Contents

19.13 AAding GUIAELINEScecvmrveeeemiiricriereeiieeeneeeeereeeese e ssese e seesesseseessseseeas
19.14 AAdINg BAITIETScuvreeeeriereerniereeerieeeeenieeeseseee e ese s ssesessssesesessesessnesnees
19.15 Adding @ Group........ceeeeeeereecrerrecreeeecreeennens
19.16 Working with the Flow Helper.........c.ccccccecuunce.
19.17 Widget Group Alignment and Distribution........
19.18 Converting other Layouts to ConstraintLayout
19.19 SUIMIMATY oottt bbb as
20. Working with ConstraintLayout Chains and Ratios in Android Studiocceceverueveiveivenenncnennene
20.1 Creating @ CRAiN........c.ccuiiiiiciccic i saes 165
20.2 Changing the Chain StYle ... saes 167
20.3 Spread Inside Chain StYle........c.oveureeeiiinieeiiirieieiseieieiseeceiseie et ssss et sssees 167
20.4 Packed Chainl StYLe.....ccuiiieiirieieirecitir ettt ssies 168
20.5 Packed Chain Style With Bias.......ccoceeeuniurieineunieieiniecineinecineiseeeeseiesseesesesssssesessessesesessssesssnes 168
20.6 Weighted CRaiN ..ot saes 168
20.7 Working With RAtiOSc.ccueuiuciciciieciciiiiiiicsie s sse s saes 169
20.8 SUIMMATY ..ttt bbb s s s s 171
21. An Android Studio Layout Editor ConstraintLayout Tutorial.........ccececevererrrsnrenisucsensessessesscsnesennes
21.1 An Android Studio Layout Editor Tool EXampleccccvvureeuimrecrniurecrnienecneeeneneneeeneens 173
21.2 Creating a New ACtiVItyccccovviviviiiiiiicccns
21.3 Preparing the Layout Editor Environment
21.4 Adding the Widgets to the User INterface.........cocvveeeureceniurecrirrecrniereernieeeenseseneseeeesenseeens
21.5 Adding the CONSIIAINES «....cevueveeererrieerierieereereeereeseeeseseeeesseasese s sssasesessssssesssssssessessssessses
21.6 Testing the LAYOULccceureeeierecierreeeetieeaeeeeesesseeessessesesseaseae s ese s s ssasssesssssssesssasssesnsenes
21.7 Using the Layout INSPECLOTveueueeeerieriereerieeneeseeeseeseeesseesesensessesesssasesessssssssssssssessessesesssees
21.8 SUMMIATY w.viiiiiiiic bbbt
22. Manual XML Layout Design in Android Studiocccceveereivuinsennucninnenncsinninnncninniencninecseneneene
22.1 Manually Creating an XIML Layoutccceuiriniinimniencrceseieieneieseeiseesessesssesesssesssssessssesses 183
22.2 Manual XML vs. Visual Layout Design..........ccriuiuriuieremiunceieneneieisessssesssesssssessssessssessees 186
22.3 SUIMIMATY ..ttt et b s s st 186
23. Managing Constraints using Constraint Sets.........cccuevviiiiiiiiniiniinieniinnncreeese e
23.1 Java Code vs. XML Layout Files........ccouurueuirrierniirecriireeeiireeneireeneeeesesseeseesessesesssssseseses 187
23.2 Creating VIEWS......coiviiiiiiiiirii st 187
23.3 VIEW AtTIDULES ...ovviiii s 188
23.4 CONSTIANT SEES.....cucvviecteiitcteie et nen 188
23.4.1 Establishing CONNECtiONS........c.coeuevecurerrenemrerneenrerneenereeensessesessessesesessesessessesessessesessesens 188
23.4.2 Applying Constraints t0 @ LayOULc..ceeecureurercrneurencrnernecnneineeeereeenseseeseaeseesensessesenenens 188
23.4.3 Parent Constraint CONNECIONS.........covvvereiriereieeeie s 188
23.4.4 Sizing CONSLIAINTScciviiiiiiiiii s 189
23.4.5 Constraint Bialscocuevirieiiicictec s 189
23.4.6 Alignment CONSLIAINESccceurvrerrirrererrerrereerereeetsereeesseseesessessesesessesesseseesesessesessessescsesens 189
23.4.7 Copying and Applying Constraint Sets.........eveururererrerrererrerrercmrerrerenrerseensessesensessesensenens 189
23.4.8 ConstraintLayout ChaiNsc.ccccveeercrneirencinernecneeeeeeeenseesessesesessesesessesesessesssenens 189
23.4.9 GUIAEIINESoueveiiiic e
23.4.10 Removing Constraints
23.4.11 Scaling..............

23.4.12 Rotation
23.5 Summary......cccueueee

vi

Table of Contents

24. An Android ConstraintSet TULOXIAl........cccovveeerrrrreeerrrrineeeeerineeecssseeeeessssasessssssssesssssasesssssssssssssssnsssssns 193

24.1 Creating the Example Project in Android Studiocceeeeeeeuvcenernirnerneenerernerenereneceneencenennes 193
24.2 Adding Views to an Activity..........
24.3 Setting View Attributes

24.4 Creating View IDs.......ccccceveuruvennnes
24.5 Configuring the Constraint Set
24.6 Adding the EdItText VIEWcocuriuiiciriiiiriceereecreeeesee et ssessesesssssesenaes
24.7 Converting Density Independent Pixels (dp) to Pixels (PX).....cccceeureeurerreemncerereencerereenenrenennee 198
24.8 SUIIMATY ..ovuieiiiiiiiriici it ses bbb st s bbb bbb a s 199
25. A Guide to using Apply Changes in Android Studio..........ccccevvevuererreenenenseinensenncninennncnennesnenennne 201
25.1 Introducing APPLY Changes..........cccreeeereureeeeneireueenctreeeenenseseeesseseesessesessessesessessesessessesessessesesses 201
25.2 Understanding Apply Changes OPLiONScveeeereereeeererrereereerereesersemeesesseseesessesessessesessessesesses 201
25.3 USING APPLY CRANGES.....c.cvveveeecirieeietrereieireieietseeeeetseaeeessesessessesessessesessessesessessesessessesessessesesnes 202
25.4 Configuring Apply Changes Fallback Settings...........ccecveureveureerereercireueererrereesersereeseeseseesersesennes 203
25.5 An Apply Changes TULOTIAL........c.oceuveureeeeneireeeineineeeietreeeeessereeetseseeetseseasesseseesessesessessesessessesesse 203
25.6 Using Apply Code Changesccvcureveereureeeeneereeeeseereueeessesenessesesessesessessesessessesessessesessessesesses 203
25.7 Using Apply Changes and Restart ACHIVITYoceveureueererreveereerereencireeeeenreseesesseseeesseseeessesenne 204
25.8 USING RUN APD .ot 204
25.9 SUMMATY ..ottt bbb 205
26. An Overview and Example of Android Event Handlingccecceveeveivciernunncnnenncscnnennecscnnensscsennes 207
26.1 Understanding Android EVENtS............ccceieiiinicincinieieieereeeeeeeseseneesesessessesensensesennes 207
26.2 Using the android:onClick RESOUICE........c.ceviiieeiiiriiciciriccreecreeeeeee e 207
26.3 Event Listeners and Callback Methods ... 208
26.4 An Event Handling EXamPIecovcuiiiiiiiiiiniccrccreeeeneeeeieee s ssessesensessesenaas 208
26.5 Designing the User INTErfacecoviuremerreincenerererenieieeeneeneineiseessesessesessessessessessssssscssesnes 209
26.6 The Event Listener and Callback Method........c..cccouiiinininiicinriceceecesiseceennne 210
26.7 Consuming EVENLSceuiuiiiiimiiiiiiiiiii s sssae s 211
26.8 SUIIMATIY ..ovuivriniiiicieiici st ses bbbt st 212
27. Android Touch and Multi-touch Event Handlingcoccovvveeveninnecninsennininnennecnensennscsennessesennne 213
27.1 Intercepting TOUCh EVENTSc.cocueueincirieeineiriieieireeeietreieeetseseietseveeetseaessessesessessesessessesessessesesses
27.2 The MotionEvent Object................
27.3 Understanding Touch Actions
27.4 Handling Multiple TOUCRESccvvuevveireeeieireieicireicictreieictneee e setseseesetsese et sesessessesessessesennes
27.5 An Example Multi-Touch APpliCationceueureeeercrreeeererrereeeireeeietreeeeetseseeeeseseesesseseesessesenses 214
27.6 Designing the Activity User INtEIfaceoeuveureeeercrreeinerreeeeeireeeinctneeeeetseeeeetseseesesseseesessesennes 215
27.7 Implementing the Touch Event LiSteNnercocveuvcureueererreeeereerereeneireeeeerseseesessesenesseseesessesenne 215
27.8 Running the Example APPliCAtion......c.ccocueueureureeeercrreueenerneeeieirereeetseseeensesesessesesessesessessesense 218
27.9 SUMMATY ..ottt bbb bbb 219
28. Detecting Common Gestures Using the Android Gesture Detector Classcoccevevrerrucecrsersucscnnee 221
28.1 Implementing Common Gesture Detection.........ccccvueueureueeeurieeencirieeerieeseseeeesseneeensenennes
28.2 Creating an Example Gesture Detection Project ...
28.3 Implementing the Listener Class..........cccouieuveuriureneerieieirineeereeeetreeeeessesenessesesessesessessesennes
28.4 Creating the GestureDetectorCompat Instance...
28.5 Implementing the onTouchEvent() Method.........
28.6 Testing the Application

28.7 SUMMALY c..oovieiriincriicniinenicnenes

vii

Table of Contents

29. Implementing Custom Gesture and Pinch Recognition on Androidcocevevveverncnirensencnncsneennes 227

29.1 The Android Gesture Builder Application
29.2 The GestureOverlayView Class........cccccecuveuneen.
29.3 Detecting Gestures..........coocvveiricnsivicnsirencnens
29.4 Identifying Specific Gestures
29.5 Installing and Running the Gesture Bullder Apphcatlon
29.6 Creating a GeStUIres File ... ssees
29.7 Creating the EXample PTOJECt.......c.cevreeeiuniuneereeiirenemrenenenensensensessessssssssssesssssessssesessensens
29.8 Extracting the Gestures File from the SD Cardcovcuvenerererereieieeneneneneereesenensenens
29.9 Adding the Gestures File t0 the PrOJECtcvuveviurerniirereenerenereneeenieeeneeeesesseesenessesessensens
29.10 Designing the USer INTErfaceccueeueeeereuneeremniineriirereseensenensessesseessssessessessessssessessensens
29.11 Loading the GeStUres Filec.cucueeeeieeeniniineiineiieeneesenensessesaeessesssssesssssessssesessensens
29.12 Registering the EVent LIStENETcccouuieuiuiceniiriceiiiceieeeiieeneiesesssss s s s esesssenes
29.13 Implementing the onGesturePerformed Method.........c.cceueuerercreieenineneneerenereneerennens
29.14 Testing the APPLICALION.......c.cvevercrereereereeeieeereieeseseese e s saesssassssesssssesssssesessessens
29.15 Configuring the GestureOVerlayVIEW.........cocreueurerirremerserererensersenseesssssessessessessessessessensens
29.16 INtercepting GESLUIES........cvviuiiriimiiciii s ssas
29.17 Detecting Pinch GESTULES.........cccveuiueeiiriceiiriceicciecei e ssessas s esenssenes
29.18 A Pinch Gesture Example Project..................

29.19 SUMMATY ..ovuviiiriieiicnciesesenesssesssesenens

30. An Introduction to Android Fragments

30.1 What is @ Fragment?ccceeureeincireeeneineieicineeeeetreeeeetsesesetsesessessesessessesessessesessessesessessesessesseses 237
30.2 Creating @ Fragment ..o s 237
30.3 Adding a Fragment to an Activity using the Layout XML File.......cocceceereeunerreeencereenrcenenee 238
30.4 Adding and Managing Fragments in Codecoeuveureueeneureeeererreueinerneeeereineneesesseseesessesensessenes 240
30.5 Handling Fragment EVENLSc.ccocurceureireurencineeeineireeeicireeeeenseeeeessesetsessesessessesessessesessessesessessenes 241
30.6 Implementing Fragment COmMMUNICAION.cccueueereureeeeneereeeeserrereesetrerenesseseesessesessessesessessenes 242
30.7 SUIMIMATY ..ottt bbb bbb bbb bbb 243

31. Using Fragments in Android Studio - An Example........ccccoeevininneinvinenncninnennnncnnensecscssensscsesssenes 245

31.1 About the Example Fragment Application
31.2 Creating the Example Project...........ccccccovuuucee.
31.3 Creating the First Fragment Layout.................
31.4 Migrating a Fragment to View Binding
31.5 Adding the Second Fragment...........cccccecereuneen.
31.6 Adding the Fragments to the Activity..........
31.7 Making the Toolbar Fragment Talk to the Activity
31.8 Making the Activity Talk to the Text Fragmentcccocrveveuricincirieenereeenereeeneereneeenenee
31.9 Testing the APPLICAtION.......cvvueuieercirerereerereeaeieeseaseesesseese e s ssesssasassssssesssasesssasensenses
31.10 SUIMIMATY coucuiiieiiiiiicneici et s

32. Modern Android App Architecture with JetpacK........cccevivviiivinsinninnsinnsiiniinninninninneneesncsnacnaees 257

32.1 What is Android JEtPACK?c.cueuveereueeerreieieireeeeetreeeeetreseeetseseesessesessessesessessesessessesessessesesesseses 257
32.2 The “Old” ATCRItECTUTIEcucvuereveecirereictreieietreeeeetreee et sese et sebease st sese et sese st sesessetsesessesenes
32.3 Modern Android Architecture
32.4 The ViewModel COMPONENLccureveerreeeeeirereeetreeeeetreseeesseseesessesessessesessessesessessesessessesessesseses
32.5 The LiveData Component..........eoceveeeecercveneene

32.6 ViewModel Saved State........ccooeureerrerrercrrerrenene

32.7 LiveData and Data Binding........ccocveeererreueeneireeeencineeieineeeienneeeesesseseesesseseesesseseesessesessessesessesseses

viii

Table of Contents

32.8 ANAIOId LIfECYCLESucvreerrireecinciriecicirerceeireeeeeteeeeset e nsese st sese s s ssessesensessesensessesenses 260
32.9 RePOSItOrY MOAUIES........cecveieeicieiecirercieereieeeteeeeset et sese st sese s s ssessesensessesensessesennes 260
32.10 SUIMMATY ..ottt bbb 261
33. An Android Jetpack ViewModel TUtorialc.coovvuivirversinsinreinininnincninnecncsinsscssesessscsesssessesesnes
33.1 ADOUL the PIOJECL ..ceueuereeieireeeicireicicireeetctreeeteisesete sttt sese st sese bbbt ses et ses st sesesacs 263
33.2 Creating the ViewModel Example Project.........ccociininininincncscieeeicieceieseesnesesens 263
33.3 ReVIEWING the PrOJECt........viieieiiiiiiiiccicicc st 264
33.3.1 The Main ACHVITY..c.ovueeeuierieieerieeineeseeietseeisesstse e s s sese s ese et ssesens 264
33.3.2 The Content Fragmentcccocvuinciniincincieiieieieisiseisessese s ssesssssssscssens 264
33.3.3 The VIEWMOUEL ...ttt 266
33.4 Designing the Fragment LayOuL...........ccccvcunincincieicininieiisisessese et ssessessesssssesasssns 266
33.5 Implementing the View Model..........ccvuiniinciniiiieieiiiiseese e 267
33.6 Associating the Fragment with the View Model.........ccccocoourinininincincincincnciccinicceceenennns 267
33.7 Modifying the Fragment ..ot sssssssssssssssns
33.8 Accessing the VieWMOodel Data........c.ccvcuuiicicieiciinineiicisesise e ssesssssessssesasssns
33.9 TeSting the PrOJct ...ttt
33,10 SUIMMATY ..ttt bbb
34. An Android Jetpack LiveData Tutorial..........cccceeueeuernen.
34.1 LiveData - A Recapccoevevevevvncnnnnn
34.2 Adding LiveData to the ViewModel....
34.3 Implementing the ODSEIVeTc..ccciirieicereceree et seseesessesennes
344 SUMMATY ..ot bbb bbb
35. An Overview of Android Jetpack Data Bindingc..coeceeuevinrernininscscnnenncninnennncnensensscsesseessesennes
35.1 An Overview of Data BiNding..........cocvuviuncincincicinicieinieiiisesse e ssessessessssessssnns 277
35.2 The Key Components of Data Bindingcccocueuociininininininisescscciescsecessecissnesenenns 277
35.2.1 The Project Build Configuration............cocuocucucucecininiuneiniisessseseesese e ssesssssessessens 277
35.2.2 The Data Binding Layout File...........ccocecvuincicieiniiniiniisesseseese e ssessessesscssens 278
35.2.3 The Layout File Data EIeMentcoccuveereeuniericeninieineeeieseieeeiseseeessesesessesessessesesesseseens 279
35.2.4 The Binding Classes........ccceuriuiurimiireriineicieneieeneisesisesesssesssese e ssssesssssssssssens 280
35.2.5 Data Binding Variable CONfiguration..........cccccucueueiniunininiincrniencisesese e 280
35.2.6 Binding Expressions (One-Way)........c.ccucuuveuuemrmninimniininiesessesesessese s ssesssssssscssens 281
35.2.7 Binding Expressions (TWO-WAY).........cccuvcuriueuucmrmmnimnimniisisssisessesesessese s ssessssssscssens 282
35.2.8 Event and Listener BINdings............ccocuveuvcuciciciciciniiinesese e ssessessesscssens 282
35.3 SUMMATY ..ottt bbb 283
36. An Android Jetpack Data Binding Tutorial...........cccevvevinivuinnsnnninninnsnnnininninnsnsneenes
36.1 Removing the Redundant Code...........eeincincrrieeerneenereenetsenenenseseeesseseesessesessessesenses 285
36.2 Enabling Data BINAINGccvveveirieeicirieieirieeineeietreieeenseee s ssessesessessesessessesensessesensessesense 287
36.3 Adding the Layout EIEMEntc.ocevcurieeeirrieeeineeeieireeeeenneeenetseseesessesensessesensessesessessesensessesenses 287
36.4 Adding the Data Element to Layout File.........c.ocevcurienerneecineencineeenreenenneeenesseneeensenennes 288
36.5 Working with the Binding Classcccveureeererreueenerreeemennerenenreeenesseneesessesensessesensessesessessesenses 288
36.6 Assigning the ViewModel Instance to the Data Binding Variablecccocvevevcrreevencrnencnnee 289
36.7 Adding Binding EXPIreSSIONSccveureeeuerriuemerrieeeerreeenensesenessesensessesensessesessessesessessesessessesense
36.8 Adding the Conversion Method
36.9 Adding a Listener Binding.............
36.10 Testing the App.....ccecereuvecercrrennnne
36.11 SUIMMATY ..ottt bbb bbb bbb

37. An Android ViewModel Saved State Tutorial

Table of Contents

37.1 Understanding ViewModel State SAVING..........ccocureueererreeemnerreeeerernereierrereeenseseeessesensessesenessenes
37.2 Implementing ViewModel State SaVINgccceeureueereureeemnerrereererrereienrereeenseseeesseseesessesensessenes
37.3 Saving and Restoring State..........cccveevcrerrererrerrencmnerreennernecnnenene
37.4 Adding Saved State Support to the ViewModelDemo Project
37.5 SUMMATY ..ottt

38. Working with Android Lifecycle-Aware COMPONENLScccererirreininsensucsinsensucsessesssesessessscsesssesses 299
38.1 LifECYCle AWATEIIESS ...cvuvreverirereiacireieisetseseesetsesetsetsesesaeasesessetsesesset st ssesessessesesastsesessstsesesssseses 299
38.2 LIfECYCLe OWIIELS ..ucvuvienieeircireeciciseiete sttt sesetse bt sese st seb st st ses et sese st sebesaetsesesaetnenes 299
38.3 LifeCYCle ODSEIVETScuvreeeacieeeincireieietseeeesetseseeetsesesseasese et sebesset st ssesessessesessetsesesssssesesssseses 300
38.4 Lifecycle States and EVENLS.........ccocreueureireueicirereineireeeieireeeteeseseeetsesessessesessessesesessesesessesesesseses 301
38.5 SUIMMATY ..ottt bbb 302
39. An Android Jetpack Lifecycle Awareness Tutorialcccevceuiveirninsenisiinisnsnseniscsssnesesesnessesnes 303

39.1 Creating the Example Lifecycle Project
39.2 Creating a Lifecycle Observer..........c.ccccveueuee.
39.3 Adding the Observer
39.4 Testing the Observer
39.5 Creating a Lifecycle Owner.........ccccocveeeunerenee.
39.6 Testing the Custom Lifecycle Owner...............
39.7 SUMMATY ..o

40. An Overview of the Navigation Architecture Component

40.1 Understanding Naviation........cc.ccucucueeeimriunimniuimiesesieseseesese e sssssssssssesssssssssesssssesssssessees
40.2 Declaring a Navigation HOSt.........c.ccccuirimriniiniirininciscicsee e sees
40.3 The Navigation GIaph ... sees
40.4 Accessing the Navigation Controller...........ooiinnincinieicieeieeeeseessesssssesssese s
40.5 Triggering a Navigation ACtiON ...
40.6 Passing ATZUMENLS.........coceuiiiiiiiiiiii s sss s saas
40.7 SUIMIMATY ..ottt b bbb s st

41. An Android Jetpack Navigation Component Tutorialccocceuvvurrervninirisnsnininisnsnsnenscsensennes

41.1 Creating the NavigationNDemo PIOJEctcocvveuiurieriericeiireeneieennieseeneeseeseesesesessnseneees
41.2 Adding Navigation to the Build Configuration.....
41.3 Creating the Navigation Graph Resource File....
41.4 Declaring a Navigation HOSt.......ccccureeuiuricrniirierniereeniireeeneeseeneeesesessesesssessessssssesessesesesees
41.5 Adding Navigation DestiNations.........ccueeeueureerirrecrnimreeniereeneeeeseseesesessessssessessssesessesesesees
41.6 Designing the Destination Fragment Layouts..........ccoceecceriurecemirreemniunecrnieeeerseeseensesseeneeens
41.7 Adding an Action to the Navigation Graph.........cecccveueeeeeniurevcrirrecnniunecrnieneeneeenenessnenseeens
41.8 Implement the OnFragmentInteractionLiStENnerocccurvreeuirrecmniureernieneenieeneneeeeeneees 323
41.9 Adding View Binding Support to the Destination Fragments..........ceecveueeerneurevernereeernennn 324
41.10 Triggering the ACHIONoceueureeeiereeetireeete ettt sse s ese st sae s s esesnsees 325
41.11 Passing Data Using Safeargsceceeureeuirriernirreerniereeerieseeneesesesessesesssssssesssssssessessssesesses 325
41,12 SUIMIMNATY «.oviiiiiiiic bbb bbb bbb bbb bbb 329

42. An Introduction to MOtionLayouUL..........ececiviereinininneininsinsicnineincsisessscsesiesseeessessesssssssssessssssesne 331

42.1 An Overview of MotionLayout
42.2 MotionLayout
42.3 MOtionSCene.ccvvviciriinciiinccnnes
42.4 Configuring ConstraintSets............ccccecreureunen.
42.5 CUStOM AHIIDULESoueiiici e

Table of Contents

42.6 Triggering an ANIMAtiON......c.occceuviiuiiriiiiinieiriccr et sessaesens 334
42.7 ATC MOTION ..ottt
42.8 Keyframes.........cccveereeeererreeemrerrenennes
42.8.1 Attribute Keyframes
42.8.2 Position Keyframes...................
42.9 Time Linearityc.ccccoeeevvevcrvvrennees
42.10 KeyTrigger.......cccovuvvvuvinicrvinicrricnnees
42.11 Cycle and Time Cycle Keyframesccouveeueurecriereerierecniineeeneeneenessesesssessessesessessessesens 341
42.12 Starting an Animation from Code.........cuveiurecriireceiireciecieiseeeeeeesseeese e eseseaensens 341

43. An Android MotionLayout Editor Tutorial...........cceccevrrerncirinsieninsinncninsisscnininscsessesscseessesscseens 343

43.1 Creating the MotionLayoutDemo Project ... eieiseceesseessessenens 343
43.2 ConstraintLayout to MotionLayout CONVErSIONcccccceuiuriririniiceeeienieeieiesceeenenenns 343
43.3 Configuring Start and End Constraints ... sessessecssssesssessssens 345
43.4 Previewing the MotionLayout ANIMation.........ccccccueiuriuriniineiniincrnieseieieseseneeseseessesssesesaens 347
43.5 Adding an ONCLCK GEStUIEc.ccucuiiciciciciicieiirereitieise s saees 348
43.6 Adding an Attribute Keyframe to the Transition...........ccceveeerernencincencineiciciecnieeseeeens 349
43.7 Adding a CustomAttribute t0 @ Transitionccccoceeeriririnenincneneieee s 352
43.8 Adding Position Keyframes...........cccocoveurerviuncrncunee

43.9 SUMMATY ...

44. A MotionLayout KeyCycle Tutorial

44.1 An Overview of Cycle KeyfIames.........occuuureerirrecrnirreerierecnieeeseeneenessesessssssesessssesessesens
44.2 USIng the Cycle EQITOT ..ottt ssessssessssssessssessesssasesens
44.3 Creating the KeyCycleDemo PrOJECt.......coueueureeriurecriericrieeeereeneeneeeesesseeesesesessessessesens
44 .4 Configuring the Start and End Constraints..........cccceeeeeeereerneurecrnienecrneeneenneeeeensesenensessesens
44.5 Creating the CYCLeS ...ttt sse e sse s sae s saensens
44.6 Previewing the ANIMAtiONc.cvvureeerierieriirieeieeetseesttsese e eeesseesesessesessesssessessssessesssasesens
44.7 Adding the KeyFrameSet to the MOtiONSCENEc.uevvcumiereecrierrecriereenieeeeenseeeeenesenseneaeesens
44.8 SUINIMATY ..ottt bbb bbb bbb bbb bbbt

45. Working with the Floating Action Button and Snackbar

45.1 The Material Design.........ccccecoeuuee.
45.2 The Design Libraryccccoecoveveunennee
45.3 The Floating Action Button (FAB) ...
45.4 The Snackbar........ccccvcivinviniincnnnn.
45.5 Creating the EXample PIOJECt ..ot s ss e ssessssssaens
45.6 RevIieWINg the PrOJECt ..o saees
45.7 Removing Navigation Features...........ocoviiiieiiieiniininiiciete s
45.8 Changing the Floating Action Button
45.9 Adding an Action to the Snackbar
45.10 Summary

46. Creating a Tabbed Interface using the TabLayout COmMPONentccceceverrensesresunsessessessessesessessessenne 377

46.1 An Introduction to the VIEWPAZEI2ccovuvveriirieriiriceirecreieeeneeseeeneseesesseeesesesessesessesens 377
46.2 An Overview of the TabLayout COMPONENLveevrivreeermiereecriireeereeneeneeeeeerseeesenesesseseasesens 377
46.3 Creating the TabLayoutDemo PrOJECt........cveureeriereceierecriereeereeneeneeeesessseesessesesseseasesens

46.4 Creating the First Fragment
46.5 Duplicating the Fragments........c.occeeveuveeuncrrecnnennee
46.6 Adding the TabLayout and ViewPager2
46.7 Creating the Pager Adapter..........ccccocveveuncrrecunenneee

xi

Table of Contents

47. Working with the RecyclerView and CardView Widgets

46.8 Performing the Initialization Tasks........cccccveureemnimrecmirnecrnierieireeeiseeseeeeeeseseese s esensenes
46.9 Testing the APPLICALION.......ccciurieiirrecetireeetr et ssae s sas s esesasaes
46.10 Customizing the TabLayout........c.ccocceverreunnce
46.11 SUMMATY ..ocviiiiiiiiiic s

47.1 An Overview of the ReCYCLErVIEWc.cuiueuiirieeiniinicieireecirtireeeiseeeseisese et easeaessees
47.2 An Overview Of the CardVIEWc.ccciureeiriurieeiniinieineiseecitesee it sssssese s sasssessenes
47.3 SUIMIMATY ..ttt ettt n st

48. An Android RecyclerView and CardView Tutorial........c.ccocvvvueriseisnsninisnnsnsenenenisnsenesesscsnsennes

48.1 Creating the CardDemOo PIOJECt.......ccciurierirreemiiniciiireerieeeneesesessasesesssessesessnsessssssessses
48.2 Modifying the Basic ACHVItY PIOJECT.......ovceuiureeriiricieireeeeiireeneeseeeneeseseseeeesensssesessessssessenes
48.3 Designing the CardVIEW LaYOULccovuvveueureeriunecrierierieeeneesesenessesessssesessssssesesssseseses
48.4 Adding the ReCYCIEIVIEW......cucuieeuiieeceiiicieiree it ese s esesssss s sasssesssanes
48.5 Adding the Image Files.........ccocovueunerreeenerreenncs

48.6 Creating the RecyclerView Adapter.................

48.7 Initializing the RecyclerView Component
48.8 Testing the Application.........ccocveeeeverreecercrrerennes
48.9 Responding to Card Selections..........cccecureuenee
48.10 SUMMAIY ..cuviiiiiiiiiic e

49. A Layout Editor Sample Data Tutorialccccovevevinnerninsinnicninnennininincsinicncsiniessesesesssesesseene

49.1 Adding Sample Data to @ PrOJECtcccccuiiiiiiiniincniircicicceic e saes
49.2 Using Custom Sample DAtc.cc.ccucuirimriinimiiniiiiseiieseieiese e ssessessesssssesssssssssesssssessssesses
49.3 SUIMMATY ..ttt et b s s

50. Working with the AppBar and Collapsing Toolbar Layouts...........cccevcvrerucrensensesiscsensensessessessessesesnes 411

50.1 The Anatomy Of AN APPBAT ..ottt sesessessesenseaenes
50.2 The EXAMPLE PIOJECToucviueeeieecieireeeeerreieeetreeeeetesenessesenensesessessesessessesensessesssessesessessesessessenes
50.3 Coordinating the RecyclerView and Toolbar
50.4 Introducing the Collapsing Toolbar Layout ...
50.5 Changing the Title and Scrim Color
50.6 SUMMATY ...

51. An Android Studio Primary/Detail Flow Tutorial.........cccceceevinimrucnvinrinsuinsinensucnensenscncnsensscsenseenes 419

51.1 The Primary/Detail FLOW........ccociiiiiciriiiciciseiresise et ssssesss s sssesessasessenes 419
51.2 Creating a Primary/Detail FLOW ACHVILYcccovuiuniiiiniiiiircieiciscciecccnieeecsisenssesesseseseenes 420
51.3 Modifying the Primary/Detail Flow Template...........cocvuneuniuncincineeneicinieinieisessisenssesenseenes 421
51.4 Changing the Content Model..........ccccocuiiininininiicccie e

51.5 Changing the Detail Pane ...

51.6 Modifying the WebsiteDetailFragment Class
51.7 Modifying the WebsiteListFragment Class...........ccoceuuriuniureuneinceneeneeeieinieeeresseesesssesesssesesseenes
51.8 Adding Manifest PErMISSIONS.c.ccucuuuirimiurimiiriiiiseisiese e ssessssesssssesssesssesessssesassnes
51.9 Running the APPlICAtiONcucucucucicicicieiiiiesesisese et ssssesas s
51.10 SUMMATY .ottt bbb

52. An Overview of Android Intentscccceruuveenn...

xii

52.1 An Overview of Intentscccveveeeurervevcrrerrenenne
52.2 EXPlicit INteNTS...cucvvecerirencireecerirceeieecneeeenenenns
52.3 Returning Data from an Activity
52.4 TMPLICIE INEEIES cuecvvuieirieeeiricietreeieisectet ettt sttt ese st eae st b et es ettt st seaesesncs

Table of Contents

52.5 USING INtENt FIILETS......eviverireecieeeicireieeetrerreereieeienseseee e ese e seese e ssesssesesnsessesnne
52.6 Automatic Link Verification ...
52.7 Manually Enabling Links................

52.8 Checking Intent Availability
52.9 SUMIMATY ..ottt

53. Android Explicit Intents — A Worked EXample...........coocevirrinrerninrinsnncnnenncninsennncsensessscseneessesesnes

53.1 Creating the Explicit Intent Example Application...........c.ccvcuviuneuncuncencicineieceieeeieesiseenenns
53.2 Designing the User Interface Layout for MainACHVILYocecuvevvcivcuncicineicicieceiecrcneeinennas
53.3 Creating the Second ACtiVity Class.......cccccuruiuriuniiriiiinerniinceise e ssessessessessssseseseses
53.4 Designing the User Interface Layout for SecOndACHIVILYcocucucucicicecicieieiecrciecinennas
53.5 Reviewing the Application Manifest File.........ccccoonininiiincninincincccecceieceiecseeenes
53.6 Creating the INTENT ...t sse s
53.7 Extracting Intent Data ... s
53.8 Launching SecondActivity as @ SuUb-ACtVItY........cocviuiiniiniiriniinciscrccceeceieceeneeesiees
53.9 Returning Data from a SUb-ACHVILY......c.cceiriririniiriincirccisc e
53.10 Testing the APPLCAtION.ccucuiicicicicieicieieeireise et sae e
53,11 SUMMATY c..ouiiiiiiiiii ettt

54. Android Implicit Intents - A Worked Example

54.1 Creating the Android Studio Implicit Intent Example Project
54.2 Designing the User INterfacecocveverreeeenerrereenerreeeenerreeeesenseseesessenensensesennes

54.3 Creating the IMpPlicit INTENTc.cuveuieeercirerrecirerecreeeereee e ssesesenseseeanne
54.4 Adding a Second Matching ACHVILYc.ocuveveureurercirerreneireineeireireenerseenesee e ssesesesesenseseesenne
54.5 Adding the Web View t0 the Ul......c..ccoocnivcinrcnircnereereneeneneeeneseesenesseseaessesessessesenne
54.6 Obtaining the Intent URL......cccoccevcnurencrnirrenemneinecirerneenesneessessesessessesesessesessessesessessesesessesenns
54.7 Modifying the MyWebView Project Manifest Fileccococneuvevcrnerrcncrnerncrcnenecnenccnnernenenne
54.8 Installing the MyWebView Package 0n @ Device.........ccvuveecurernercunernencnnernecnnenneennennesenerseeenne
54.9 Testing the APPLICAtION......c.ocucvverrierercireieeeirerreereietreieee e sese e s seeanns
54.10 Manually Enabling the LInkcccoeeenrnnnncincneeerereenerseeeseeensessesenessesessessesenne
54.11 Automatic Link Verificationcccvceecreerercineirencineneenerecneneenenseesessesenessesesessesensessesenne
54.12 SUMMATY ..ottt bbb bbb

55. Android Broadcast Intents and Broadcast Receivers

55.1 An Overview of Broadcast Intents..........c.cecveucunee.
55.2 An Overview of Broadcast Receivers ..
55.3 Obtaining Results from a Broadcast ..o
55.4 Sticky Broadcast INTENLSc.evcueueecureeeereireireeireiseetrei et seb st sse e sessesnns
55.5 The Broadcast Intent EXAMPIe.......cccveueereurerrencinienencineinieineiseeineiseessesseessessesessessesessessesessesscsenns
55.6 Creating the Example APPLCAtionccccucuiuiuiniiniiniineiieircsise e
55.7 Creating and Sending the Broadcast INtent..........ccevuiuneuiircrniineincinencicieeeccieceeseeeiscseseseans
55.8 Creating the Broadcast RECEIVETc.ccucuiiiiniiniiiineirccisee e
55.9 Registering the Broadcast RECEIVET..........cccouuiiiiriniiniinirecise e
55.10 Testing the Broadcast EXAMPIEcc.ccucuiirininiiniinccseesee e saessesaesssssesesenns
55.11 Listening for System BroadCasts..........ccccueuuiinininiineniinccisese e ssessessessessesssssesesesns
55.12 SUIMMATY c..ouiiiiiiiiiiii ettt

56. A Basic Overview of Java Threads, Handlers and Executors

56.1 An Overview of Threads................
56.2 The Application Main Thread
56.3 Thread Handlers.........ccoovevveverennnee.

xiii

Table of Contents

56.4 A Threading EXAMPLecccocuiueieirieierrieeireeetreeeeetnere e ssesessessesessessesessessesessessesessessenes
56.5 BUILAING the APD ..eucvreereieieieirercieieeietreeeeetreeeeensese s sses s ssesessessesessessessssessesessessessssessenes
56.6 Creating a New Thread........cccoocveeernervercurernennn.
56.7 Implementing a Thread Handler......................
56.8 Passing a Message to the Handler
56.9 Java Executor CONCUITencycccevvvevicncnee.
56.10 Working with Runnable Tasks..........ccccocuueeee.
56.11 Shutting down an EXeCUtOr SEIVICE.........cvuueuerirreueeerrieemerreeeeerseseeensesensesseseesessesessessesenessenes
56.12 Working with Callable Tasks and FULULESccveureuemrerrereerernenceenneeeneineneeenseneesensenenennenes
56.13 Handling a FUture RESULLccccueeeerrieeecrreecirecetreeeeeteeeeenseseesensese s esessesessessesensesenes
56.14 SChedUINgG TaSKSc.cceueueeerreeeieireeeerreeeeetseeeeessese s nsessesensessesessessesessessesessessesessessesessessenes
56.15 SUMMATY ..oviiiiiiiiii bbb bbb bbb

57. An OVerview of ANAIOid SEIVICES......uuiiiiirrereerrrreereeerrreeeeessssseeessssseeessssssseesssssssessssssssessssssssssssssssssssnns

57.1 SArted SEIVICES.....ccovumiuriuiiiiiireicie st
57.2 INEENE SEIVICE c..vuviiiiieiiceicic s s
57.3 BOUINA SEIVICE.ouiuimiiiiiiiiiieicie et e
57.4 The ANAtOMY Of @ SEIVICE c.vuvurviiirieeieireieicireieieiseeetet st seb et sesete bt sese st sese st s saesnenes
57.5 Controlling Destroyed Service Restart Options....
57.6 Declaring a Service in the Manifest File..............
57.7 Starting a Service Running on System Startup...
57.8 SUMMATY ...oviiiiciiiiiiieiicee e

58. Implementing an Android Started Service - A Worked Examplecccocevuvreneninuisnsensnsesscsscsnesennes

58.1 Creating the EXample PrOJECt......cvcverreeeeerrieeeeirieeeeineeeeeneeeeesseseeessesensesseseesessesessessesensessenes
58.2 Designing the USer INTErfacec.vueuerreueecrreeeenerrieeieireeeeeneeeeessesensessesessesseseesessesessessesessessenes
58.3 Creating the SErvice Class........couererrereeerreremerrereeetreeemesseseeessesessessesessessesessessesessessesessessenes
58.4 Adding the Service to the Manifest File.........cccocvereineneineenernicnerecereeeereeeeensenenenenes
58.5 Starting the SEIVICEcocuuuererreeeiciriieeetreeeeetreeeeetreee et sese s sese s s ssesessessesessessesessessenes
58.6 Testing the IntentService EXample.......c..ccveureueencireeeeneineeenenreeeeereeeiennesenenseseeessesessessesenessenes
58.7 USING the SErvice Class.......ccoceueuerieeeerreeeeeirieeeerreeenetseseeesseseesessesessessesessessesessessesessessesessessenes
58.8 Creating the NeW SEIVICEcviiierrerreeeeireeetreieeetreee et ssessese e ssesessessesessessesensessenes
58.9 Launching the Serviceccccoveveeernervcrcrnernennn.

58.10 Running the Application
58.11 Adding Threading to the Service
58.12 SUMMATIY ..oviiiiiicr s

59. Android Local Bound Services — A Worked Example..........ccocvvurruininrennucninnenscninsenncsensecsscsessnenes
59.1 Understanding Bound SErvices...........c.cccuiiininiininiencescie e esesseesesssesesasesssesesssesessssnes 489
59.2 Bound Service Interaction OPLONSc.eueereveeeereveeeereremseereresessesetessesesessesessessesessessesessessenes 489
59.3 A Local Bound Service EXamPIe.......cocureueeeureueineireeeineirereineineieieiseseteesesesessesessessesessessesesessenes 489
59.4 Adding a Bound Service to the Project ... 490
59.5 Implementing the BINder ... 490
59.6 Binding the Client to the SEIVICE ... 493
59.7 Completing the EXamPple.........occcuiuiiiiiieiriiiiissisesese e ssssessssesase s sesesssaes 494
59.8 Testing the APPLICAtION.......c.ccucuiicicicicicicieicicieni et 495
59.9 SUIMMATY ..ottt 495

60. Android Remote Bound Services — A Worked Exampleccccocervueeeinirnricnninncincnnenncsscsnenscsseenenns
60.1 Client to Remote Service COMMUNICAtION......cccueueverrieemerrereeerrereeenrereneeseseeenseseesessesensensenes 497

60.2 Creating the Example Application

Xiv

Table of Contents

60.3 Designing the User INEIfacecccveueueeeureeerirreuceerreeeeenreeenetsesensetseseesessesessessesensessesensessesenses 497
60.4 Implementing the Remote Bound Service..........ccveuruenerreeeneireeeeneireeeeerreeenensesenesseseeensesennes 498
60.5 Configuring a Remote Service in the Manifest File.........ccooereerneirenerneenenecreneeereennes 499

60.6 Launching and Binding to the Remote Service..........coveureemerreeeneireecenerreenerreneeesseseeensenennes 500
60.7 Sending a Message to the Remote SEIVICecvueuiireeeererreeererreeeeeireeeeerreeeeesseseeesseseesensenennes 501
60.8 Summary

61. An Android Notifications TULOIIAlccccvveeeeerrrieeerinrieeeeririeeeeeisseeeeessssseeeesssssseessssssesessssssssessssssssssss

61.1 An Overview of NOtHfICAtIONS.cviuiuriuiireicicieieieieciseeeeic et sae s
61.2 Creating the NotifyDemo PIOJECt..........cccuvuucicueiciiiniiniiiisisessese e ssessessssesasssns
61.3 Designing the User INTerface ..o ssesessss
61.4 Creating the Second ACHVILYccviuiuriiiircicicieieicie et sae s
61.5 Creating a Notification Channelcccucuvuvciiiiniirininiincseecee e
61.6 Creating and Issuing a NOtIfICAtIONc.cucucicicieciciirieniicctsesse e sae e
61.7 Launching an Activity from @ NOtiiCAtionc.ccccucueiriininininciiseccccieieceieececeesineens
61.8 Adding Actions t0 @ NOTHICAONc.cucuiicicicicicicie e
61.9 Bundled NOtHICAONS.........ccouuiuiiiiriiiirciciseicieie i sse s s
61,10 SUIMMATY ..ottt

62. An Android Direct Reply Notification Tutorial

62.1 Creating the DirectReply Project

62.2 Designing the User Interface..............
62.3 Creating the Notification Channel.........ccccoceereeneireenerneeeeeeeneeeeeeessesenessesensessesennes
62.4 Building the RemoteInput ODJect........covueueverrieeencirieeireeeireeneireeeeetreeeeesseseesesseseesessesennes
62.5 Creating the PendingINtent..........ccecureemverrieenerneeeencrreeeerneeeneisesenessesessesseseesessesessessesessessesense
62.6 Creating the Reply ACHON.ccocueuercrreeeeeirieceeineiceetreeeesenseneesetsesessetsesessessesessessesensessesensessesense
62.7 Receiving Direct Reply INPUL........ccveuriueeiireeeieiniieeerreeeierneeeeetsenenetsesessessesessessesessessesensessesenses
62.8 Updating the NOTACAtIONc.cvcrieererreeeeeiriceireieicireeeieeee s nsessese s ssesessessesensessesensessesenses
62.9 SUMMATY ..ot

63. Foldable Devices and Multi-Window Support

63.1 Foldables and Multi-Window SUPPOIt........cccveureueereirieeineereeeeeireseeetrereseesesesessesesessesessessesesne
63.2 Using a Foldable Emulator.............
63.3 Entering Multi-Window Mode
63.4 Enabling and using Freeform Support..................

63.5 Checking for Freeform Support..........coceeuvcucunce.

63.6 Enabling Multi-Window Support in an App ... 530
63.7 Specifying Multi-Window AHIIDULESc.ccucueueicieieieirieiseese e 531
63.8 Detecting Multi-Window Mode in an ACHVILYccccueeririnieniininernciseiceeieeeseiaecaeeneseneas 532
63.9 Receiving Multi-Window NOHHCAONSc..c.ccuucicicininirisiiseeisecee e 532
63.10 Launching an Activity in Multi-Window Modeccceurinininincrncincineineicicicieceieenens 533
63.11 Configuring Freeform Activity Size and POSItION.........ccoceiuviuniiniererncinciscicicicieieeeceencinns 533
63.12 SUIMIMATY ..ottt e 534

64. An Overview of Android SQLite Databasescccceeereerevreeeererecreeeesseeesseesesseeesssseesssssessssssssssessassessans 535

64.1 Understanding Database Tablesccceiueeerreeencrreeeenneeeeirereeetreneeessesensessesenessesessessesenses
64.2 Introducing Database SChEeMA ...t nsessesessessesenses
64.3 Columns and Data Types
64.4 Database ROWscccccocuvivinincnnce
64.5 Introducing Primary Keys
64.6 What is SQLIite?ccoovevvveverrrerenee.

XV

Table of Contents

64.7 Structured Query Language (SQL)coveeureueeerrereererreeemenrereeensereeensesenessesemsessesessessesessessenes
64.8 Trying SQLite on an Android Virtual Device (AVD)
64.9 The Android Room Persistence Library
64.10 SUMMATY ...

65. The Android Room Persistence Library

65.1 Revisiting Modern App ArchiteCture ..o ieceiieeisesesesesssesessesessenes
65.2 Key Elements of Room Database PersisteniCe........ccvuuueuneurereeneurereineireseereereseeseesesesseesesesseesenns
65.2.1 REPOSITOIY ..vviiiiiiiicicciicci s e
65.2.2 ROOM DAtabasecocuiucmiciieicieiiiiiiiasisessise e sse s s s
65.2.3 Data Access ObJect (DAQ) c.c.cuecerevrereureirereireineeiseiseesessese s ssessesessesseseasessesessessessseseens
65.2.4 ENILES c.ovvvreteiitcct e
65.2.5 SQLILE DAtADASE ...ttt ettt ettt se st ne st b s sae e saenestens
65.3 Understanding ENtities...........ococcuciciiciriiiiieiscsse e ssessesssssssssssesssesesssssesssses
65.4 Data ACCESS ODJECES ..vuvuvrevireirereieireieieireeetsetsesetetsesetset st seb st sebessessebe s tsesessstsesesastsesessssneses
65.5 The ROOM Database...........ccuiuiiiciciciiciciiiiiciesise e sse s
65.6 THE REPOSILOIY ...euvuvrieireireieineireeeieireietet st sesetse s st sese et seb et s bbbt sese st sesesaetsesesassneses
65.7 In-MeMOTY DAtaDaSesc.ccveureveieiriueieirireieirereieireeeeeeseseeet st tsesetsessesesseasesessessesessessesessssneses
65.8 Database Inspector
65.9 SUMMATY ...ooviiiiicicicieiee e

66. An Android TableLayout and TableRow Tutorial

66.1 The TableLayout and TableROW Layout VIEWS........cccveueveureeeererrereenerrerenenresenensesensessesenensenee 551
66.2 Creating the ROOm Database PIOJECtccocueueverreeeenerrieeeeireieeerereienrereeesseseeessesessessesensessenes 552
66.3 Converting to a LinearLayout............cccooviiiiiiiii s 552
66.4 Adding the TableLayout to the User INterface..........cocveeveureeeererrereenerreremneereneesenreseesensenensennenee 553
66.5 Configuring the TabIEROWScccuveierrieeicireecireccirecereieee s sses s nsensenes 554
66.6 Adding the Button Bar t0 the Layoutccceceveureeeeneereeeenerreceerreeeienneneeenseneeesseseeensesensensenes 555
66.7 AddIng the ReCYCIEIVIEW........cucviiieeieireiecirececteeeeeteeeeeneeeeensesessessese s ssessesessessesensessenes 556
66.8 Adjusting the Layout Marginscccecreeererreeemerreeeenerneremsensesenessesessessesensessesessessesessessesesesseses 557
06.9 SUIMIMATY ..ot bbb bbb 557

67. An Android Room Database and Repository Tutorial..........ccoccevervuevenrersucienninnecninncncnsensecsensessecne 559

67.1 About the ROOMDEMO PrOJECt.....c.eueuieiueireireeeieireieieireieieiseietetseseteeseseseesesessetsesessetsesesesnenes
67.2 Modifying the Build Configuration
67.3 Building the Entitycccocoeveieininininininenn.

67.4 Creating the Data ACCess ODJECT......c.cuuuiimiiiiiriiiircstiseecie e
67.5 Adding the ROOM Database..........c.ccuuiiriuiiiiiiiiirerseeeese e ssessssessssesase e sesesssaes
67.6 Adding the REPOSILOTYc.cuiuiiiiciciiecieiiiiiiiiesi e ss st
67.7 Modifying the VIEWMOdEL..........cccvcuiiiiriiiiniiirccise et
67.8 Creating the Product Item Layoutccccccuiiuniuriuniireinieseiescicieneeseciesesssesesesesssesessesessnnes
67.9 Adding the RecyclerView Adapter...........cccciiininiincniincieincise e esecieiseessssssssesssesesssesessenes
67.10 Preparing the Main Fragmentcc.ccccuciiinininiincniscecee e csecieseeiscsssesesssesessesessenes
67.11 Adding the Button LISENETS........cccucuueiriuiiiriiriiiiseisiese e ssessssessssesssesssesessssesssses
67.12 Adding LiveData ODSEIVELSccccuiucirimiiiiiiiiiseissese e ssssssssssssesssesessesesssaes
67.13 Initializing the ReCYClEerVIEW.......c.ccucuiciimiiiiiriiiiresise et
67.14 Testing the ROOMDEMO APccuiuiicirimiiiiireisiseise e ssesss s sesesssaes
67.15 Using the Database INSPECLOLcc.cuuurimiiiiiiiiisesriseieicse e ssene
67.16 SUIMIMATY ...coeeiiiiiiii ettt bbb

68. Accessing Cloud Storage using the Android Storage Access Framework..........cccovcvuivevrervencnncsnnene 575

Xvi

Table of Contents

68.1 The Storage Access FrameWOIKc.occueuiueincinieincinecieneeeneeeetreneeesseseeessesensessesessessesennes 575
68.2 Working with the Storage Access Framework...........ccocveerreeneirecenernecenenneeeenerreeeenrenennes 576
68.3 Filtering Picker File Listingsccccvvuveerrevrecrnennee

68.4 Handling Intent Results..................
68.5 Reading the Content of a File.........
68.6 Writing Content to a File
68.7 Deleting a File........ccccovvurernrureccrninnnnce
68.8 Gaining Persistent Access to a File
68.9 SUMMIATY ..ottt bbb

69. An Android Storage Access Framework EXample........c.ccoccvvierernininniincnnenncninnennncnennennscsennesscsennee 581

69.1 About the Storage Access Framework EXample..........cccovirininiiniincincincincencicicnciesscnenenns 581
69.2 Creating the Storage Access Framework Example.........cccocoeivininiincincincincencincieceiecrcnenenns 581
69.3 Designing the User INterface ..o ssessessesssssesessss
69.4 Adding the Activity LaUuNChers.........ocviuiiiniicincicicicie i
69.5 Creating a New Storage File...........coiiiininiciicicieieiececise et ssessssessssses
69.6 Saving t0 @ StOrage File........cooiiiiiiiicicsciccic e
69.7 Opening and Reading a Storage Filecccociiinininininincccccicieceseciesnesinees
69.8 Testing the Storage Access Application
69.9 Summary

70. Video Playback on Android using the VideoView and MediaController Classes........c..cecerurrurrernennes 591
70.1 Introducing the Android VideoVIew Classcccveeveunirrercrnerrencrnerneennerneennenseenressesensersesenne 591
70.2 Introducing the Android MediaController CLassceeeeureurercurerrererrerneemnerseensernecnsersesenne 592
70.3 Creating the Video Playback EXampleccccvvureecunirneciniinencineinecnneieeeereeenensesensesseseneseesenne 592
70.4 Designing the VideoPlayer Layoutc..c.eecureurercuneurenceneineneinerneennenneeneseesensessesessessesensessesenne 592
70.5 Downloading the Video File.........ccociinirncininecnenicereereseenerseenesseseaessesensessesessessesenne 593
70.6 Configuring the VIdEOVIEW......c..c.cvcueeercrrerreneireiecireieeenseseeesessesessessesesessesesessesessesesensessesenns 593
70.7 Adding the MediaController to the Video VIEW........ccccvuveecrnirrencunirrenernerneennerneennesneenereenenne 595
70.8 Setting up the OnPreparedLIStENer ..o aessesesesesesseseesenne 596
70.9 SUIMIMATY ..ottt bbb bbb 597
71. Android Picture-in-Picture MOde..........ccoueueerrierineninieniniiintieniienisesssesssseessssessssessssesssssssssssessssenss 599
71.1 Picture-in-Picture FEatures........ccooiiiiniiiiiiiiiicc s

71.2 Enabling Picture-in-Picture Mode
71.3 Configuring Picture-in-Picture Parameters
71.4 Entering Picture-in-Picture Mode

71.5 Detecting Picture-in-Picture Mode Changes............cccceeiriniininiincrncincineeneieicicieseceeenenns 601
71.6 Adding Picture-in-Picture ACHONS........c.ccuvcucucicueicieiirieeeircisise st ssesssssesassaes 602
71.7 SUIMIMATY ..ottt ettt e 602
72. An Android Picture-in-Picture Tutorial...........ccoceveviniimniieniieniiciniciicntcetceicsscnseeseseseseans 605

72.1 Adding Picture-in-Picture Support to the Manifest
72.2 Adding a Picture-in-Picture Button
72.3 Entering Picture-in-Picture MOdecc.ouvveuerercireirencineineeinerneennenseeneseesensessesessessesessessesenne
72.4 Detecting Picture-in-Picture Mode Changesc.ccccvuveeernerrercrnerrencmnernenennenneennessecnserseenne
72.5 Adding a Broadcast RECEIVETccccuuereireurencirernecieineeereseeressesensessesesesese e sseseasesesensessesnns
72.6 Adding the PiP Action.........cceeureeeercrrecererrercnnennenee

72.7 Testing the Picture-in-Picture Action
72.8 SUIMIMATY ..ottt bbb bbb bbb bbb bbb

73. Making Runtime Permission Requests in Android..........cceeveiveivenvenenninnisinnnenninnininnennennennininne 613

Table of Contents

74. Android Audio Recording and Playback using MediaPlayer and MediaRecorder

75. Working with the Google Maps Android API in Android Studio

76. Printing with the Android Printing Framework

Xviii

73.1 Understanding Normal and Dangerous Permissions............cceeuveeeereureeemreereeeesersevenserserensennenee 613
73.2 Creating the Permissions Example Project
73.3 Checking for a Permission..........cccveeeecurereneen.
73.4 Requesting Permission at Runtime
73.5 Providing a Rationale for the Permission Request
73.6 Testing the Permissions App
73.7 SUIMMATY ..ot bbbt

74.1 PIaying AUGIO «....cccuimieiiiiiiicicicie st st 621
74.2 Recording Audio and Video using the MediaRecorder Class..........ccccoeueuuriuriunirniirerncencrncenas 622
74.3 About the EXamPle PrOJECTcccueueineireeeieireeeieireieieiseseeetsetetetsesetetsesessessesessessesesessesesssssenes
74.4 Creating the AUdIOADPDP PrOJECt.......cccuuiuiiiiiiicirceisce e
74.5 Designing the User INterface ..o
74.6 Checking for Microphone Availability..........ccccooniiininiincniinciscecicceeceeserseseseeenes
74.7 InitialiZing the ACHVILYccoiuiiiiiciccccccicceese e
74.8 Implementing the record Audio() Method...........ccocviuriiiiiniiniincincincicciceeescseseeenes
74.9 Implementing the stopAudio() Method..........cccoviuiiniiniiniinincincicieicceeeceesesesesesereenes
74.10 Implementing the playAudio() method........
74.11 Configuring and Requesting Permissions
74.12 Testing the Application.........cccccoeeeeureureuriunnn.
74.13 SUMMATY ..o

75.1 The Elements of the Google Maps Android APTccccoeveerneeneneeeeneneeenenreeesenrenenennenes 631
75.2 Creating the Google Maps PrOJECt.......cvvueveureeeecrreeeeeirieeeerreeeeeseseisensesensenseseesessesessessesensessenes 632
75.3 Obtaining Your Developer SIZNAtUrec.ccreeeererreeemnerreeeeersereeensesenesseseesessesessesseseesessenes 632
75.4 Adding the Apache HTTP Legacy Library Requirementc..cceeureeerrerreueenerreeeencerenenrennenee 633
75.5 Testing the APPLICAtION.......ccovueuercireeeeerreeeetreeeeetreeeeetsese et ssese s ssesessessesessessesensessenes 633
75.6 Understanding Geocoding and Reverse GeoCOdINg.........cveevereveereurereeeureeeererreveesenrevensennenee 634
75.7 Adding a Map t0 an APPLICAtIONc.cueveueeerreeeeetreeeietreeeeenreeeeeneeeeensese s ssesessessesensessenes
75.8 Requesting Current Location Permission
75.9 Displaying the User’s Current Location
75.10 Changing the Map Type......ccocoveeeurervercrrerrennnne
75.11 Displaying Map Controls to the User............
75.12 Handling Map Gesture Interaction................

75.12.1 Map Zooming Gestures..............cceureuenees

75.12.2 Map Scrolling/Panning Gestures.............

75.12.3 Map Tilt Gestures......c..coccerevcuerrercrrerenennes

75.12.4 Map Rotation GESLULES........ccceururreueuiiiriniirereeetntreeteneetttsse et sae s sessasssesesesesesessans
75.13 Creating Map MATKETIS.........c.vcuevcireererreeeecireeenenreseeesseseeessesessessesessessesessessesessessesessessesesessenes
75.14 Controlling the Map CamMeraccceeureueeerrereeerreeeeerrerenesseseesessesessessesessessesessessesessesseseresseses
75.15 SUMMATY ..ot

76.1 The Android Printing ArChIteCtUIEcccuuiiuiuniiniiriiiiseescie e 645
76.2 The Print Service PIUGINScc.ccucuiiiiiciciiiicieicsese et
76.3 GOOgle CloUd PriNf......c.oiuiiiiiiiiciciciciciiiiciciese s s
76.4 Printing to Google Drive
76.58ave as PDF ...,
76.6 Printing from Android Devices

..........................

...

Table of Contents

76.7 Options for Building Print Support into Android APpS........c.eeeeeveuveveenerrercenerreeenerneennernenenne 648
76.7.1 Image Printing ...
76.7.2 Creating and Printing HTML Content
76.7.3 Printing a Web Page........cccocoveeernerrcecrnerncncrnennes
76.7.4 Printing a Custom Document.............cccceueunne

76.8 SUMMATY ..o

77. An Android HTML and Web Content Printing EXamplecccccovuvvuenennerninensennecnensenscssenseessesennee

77.1 Creating the HTML Printing Example Application.ccececveunieneuncincineencencieccinenncneenenns
77.2 Printing Dynamic HTML Content ...
77.3 Creating the Web Page Printing Example.........cccccocuininininininincncncscecscieneseessssnssenenns
77.4 Removing the Floating Action BUttONc.ccccucuciricinininiineseisecseceese e
77.5 Removing Navigation FEAtUTES..........coeeieiiiiiiiiiiciciicct e
77.6 Designing the User Interface Layoutcccccuvcucucicicininininiinesiseseseseeesessessessessssssesenns
77.7 Accessing the WebView from the Main ACHVILYccccvuuriuriniiniiniincrncineiseieeieceieeieenesinennns
77.8 Loading the Web Page into the WebVIew ...
77.9 Adding the Print Menu OPtion..........ccvcuiuveucicicueicieinieeeiiissisessese e s ssessesssssesssssns
77.10 SUIIMATY ..ottt e

78. A Guide to Android Custom Document Printing

78.1 An Overview of Android Custom Document Printing
78.1.1 Custom Print Adapters.......ceveeerercueunercieinecinineeisineeeseseeeeseesesseesessesesees
78.2 Preparing the Custom Document Printing Project..........ccocvveecuneurevcmnernenennernercenerneennerneenne
78.3 Creating the Custom Print Adapter.......c..eecrrercurerreneeneineneenerneennenseeseseeseasessesessessesessessesenne
78.4 Implementing the onLayout() Callback Method ..o
78.5 Implementing the onWrite() Callback Method ...
78.6 Checking a Page is in RANEEc..c.evveuireercrriurecireiecirereeeeeiseese e ssessesessesesensessesenns
78.7 Drawing the Content on the Page Canvasccvvvenerencrnernencenernenennerneensesseensesseessesseenne
78.8 Starting the Print JOD ... sese e seesenns
78.9 Testing the APPLICAtION......c.ccvvcrierircireieecireereereieetreee e seeaenns
78.10 SUMMATY c..ouiiiiiiciiiic bbb

79. An Introduction to Android APP LinKS.......cccovievieveinvinrirnininnecnininncncninnncnisissssesessenesssscnees

79.1 An Overview of Android APP Linkscccvceeeveureeeineirieeineineeieneeeieineeeieiseseeetseseeessesesessesesnes
79.2 App Link Intent Filters........ccccoveeuennce.
79.3 Handling App Link Intents
79.4 Associating the App with @ Website..........cocoiuiioiiiiciriniice e
79.5 SUIMMATY ..ottt e

80. An Android Studio App Links Tutorialccccccevereuiiviininiiniininiininencctnenacse st sesesestessessesaes

80.1 About the EXAMPLe APD ..cecvreceeireeieiricieireeietseaeietseaetstsesetseeae s eesessesese s sseess s ssesessssesesees
80.2 The Database SChema ...ttt sese et sesessessesenaes
80.3 Loading and RUNNINg the PTOJECtcceeeeiirieeincrrieeeineeererenctrenensesseneesessesensessesensessesennes
80.4 Adding the URL MapPing.......ccocreeeererreremerrevememeeeeesseaemsessesemsessesessessesessessesessessesessessesessessesesss
80.5 Adding the INtent Filter ..ottt seseesessesensessesenses
80.6 Adding Intent Handling Code........c.ccveueuieeeirecencrrieierneeeeirerenetsenensessesensessesensessesessessesenses
80.7 TeStING the APD..cucrieeieieeeeireecreeeirec ettt sese et sese et sese st st sesensessesenac
80.8 Creating the Digital Asset Links File...
80.9 Testing the App Link........ccccveunee.
80.10 SUIMMATY ..ottt bbb bbb

81. An Android Biometric Authentication Tutorial

Table of Contents

81.1 An Overview of Biometric Authentication...........cccoocvivinniiinciciiiciines
81.2 Creating the Biometric Authentication PrOjectcvecreeeenerreecenerneeenenneeesenreneesenrenenennenes
81.3 Configuring Device Fingerprint Authentication....................

81.4 Adding the Biometric Permission to the Manifest File
81.5 Designing the User Interfacecccovveeernvureccrnivrecrneeeecnnennns
81.6 Adding a Toast Convenience Method
81.7 Checking the Security Settings.........ccccveueueen.

81.8 Configuring the Authentication Callbacks............ccveureuemnerrieeenerrercenerreeereeenreeeeenresenennenes
81.9 Adding the CancellationSIiNal........cccocureuevcrreuemrcirieeeeirieeeerreieeerreeeeesseseeenseseesessesessessesensessenes
81.10 Starting the BIometric PIOMPLccveveeeecrreeeeeireeeeeirieeeenreeeeesseseesenseseesensesensessesessessesensessenes
81.11 Testing the PrOJECt.....ccveeerreeeeeireieeerreeeieireeeeetreeeeetsese s ssessesessessesessessesessessesessessenes
8112 SUMMATIY ..ttt bbb bbb bbb

82. Creating, Testing and Uploading an Android App Bundle.............cccovuveninririsinvenenninnisnnsensenesnesnenes

82.1 The Release Preparation PrOCeSS. ... eeureeeeneirereieireeeineiseseeessesetessesesessesesessesessessesessessenes 699
82.2 ANdroid APP BUNALES.......c.cueuiueiiiriieicireieicireeeieireietciseeetet bttt sese et sese st sese st s saessene 699
82.3 Register for a Google Play Developer Console ACCOUNL.........cccuccuuecirininimrieniesierereieseneenes 700
82.4 Configuring the App in the Console
82.5 Enabling Google Play App Signing..................

82.6 Creating a Keystore Filecccccccoeuviririninnn.

82.7 Creating the Android App Bundle...................

82.8 Generating Test APK Files.......ccccooeeviviuninnnen.

82.9 Uploading the App Bundle to the Google Play Developer Console.............ccccveuriurerriurcuncenee 706
82.10 Exploring the App BUundle ... 707
82.11 Managing TESErSccceuviiiiiiiiiiiiii s 709
82.12 Rolling the App Out fOr TESHING........c.ccuueiriuiieiiriiirerse e 709
82.13 Uploading New App Bundle ReVISIONS..........ccevuiuiuriiniercriincincieieiecceeieeeiscsesesesssesessseseseenes 709
82.14 Analyzing the App Bundle File ... 710
82.15 SUMMATY ...onieiiiiii bbb 711

83. An Overview of Android Dynamic Feature Modules..........cccovvuirerrerrenesisnsnsensesisnisnsessesesscssssenses

83.1 An Overview of Dynamic Feature Modules............ccocveerrerenerrereincrneeeenenneneeerrereesensesensennenee
83.2 Dynamic Feature Module Architecture
83.3 Creating a Dynamic Feature Modulec..ccocccvvurvcrniurevcrnennne
83.4 Converting an Existing Module for Dynamic Delivery
83.5 Working with Dynamic Feature Modules.......
83.6 Handling Large Dynamic Feature Modules ...
83.7 SUMmMATYooviiiriiii s

84. An Android Studio Dynamic Feature Tutorial.........c.ccevvvernuininrernucninnnncsinninnncninecncninnecscsenseene

84.1 Creating the DynamicFeature Project.........coninincncincincieieiecsieeisesesesesssesesssesesseenes 723
84.2 Adding Dynamic Feature Support to the Project ... 723
84.3 Designing the Base Activity User INterface ..o
84.4 Adding the Dynamic Feature Module.........cccouiiiiiniiniinciniincinceicinieecessesseseseseseseenes
84.5 Reviewing the Dynamic Feature Module............cccoiviiiiiiniiniincinincicicineencsenessesesssesenseenes
84.6 Adding the Dynamic Featture ACHVIY.......ccccoeuiiniiiinciniincieicieieieiecisiieeiscsesesesssesesssesessenes
84.7 Implementing the launchIntent() Method...........ccocviiiinciniincincincccciecceescssceseenes
84.8 Uploading the App Bundle for Testing.........ccceuuiuiuniuriiniincrneincineieiencieieeeeesssisesssesesssesesseenes
84.9 Implementing the installFeature() Method.....
84.10 Adding the Update Listener.........c.ccccoeuureunee.
84.11 Using Deferred INStallation ... eeecieeseeisssesesesssesesssssessenes

Table of Contents

84.12 Removing @ Dynamic MOAUIEc.occeurieeeinieenerriecreeetreneeetsenensesseseeessesensessesessessesenses
84.13 SUIMMATY ..ottt bbb bbbt

85. Working with Material Design 3 Themingccccceuuee.

85.1 Material Design 2 vs Material Design 3
85.2 Understanding Material Design Theming
85.3 Material Design 2 TREMINGcc.cviiiiiiiincicicieieicii et sae s
85.4 Material Design 3 TRemMUINGcc.ccviuiiiiiincicieieieicie s sae s s
85.5 Building @ Custom TREME..........cc.ccviuiiiiiincicicie et sae e
85.6 SUMMIATY ..ottt bbb

86. A Material Design 3 Theming and Dynamic Color Tutorial..........cccevcvurrrrenrenisnisnsnsesenscsnnsensesennes 745

86.1 Creating the ThemeDemo Projectcceeeeeencrreeeerneeneireeenetreeeeesseneeesseseesessesessessesennes
86.2 Designing the User INEIfaceccveueueeerreeernerneieecirieeeennerenetseseesetseseesessesensessesessessesessessesenses
86.3 Migrating to Material DesiZI 3cccvueueureerrerreeeererreeeeernerenenserensessesensessesensessesessessesensessesenses
86.4 Building a New Theme....................
86.5 Adding the Theme to the Project......
86.6 Enabling Dynamic Color Support....
86.7 SUMMATY ...

87. An Overview of Gradle in Android Studio

87.1 An OVerview of Gradlecoiiiiiiiniincinicicieicie st sae s
87.2 Gradle and Android StUAIO ...
87.2.1 Sensible Defaultsccccriiiiiiniiiiccccee e
87.2.2 DEPENAEIICIES.euvuereeeinirieeitireicitis ettt ettt
87.2.3 BUIld VATTANTS ...
87.2.4 MANIfest ENIIESuvuieiiieiiiiiieeiceesc e s
87.2.5 APK SIGNING....oiuiiiiiiiiiiiicr s
87.2.6 PrOGUATd SUPPOIL....eueuerieieciiereecitireieieieeaeiseieese bbb sese s ese bbb seaesns
87.3 The Property and Settings Gradle Build File..........cccceoviiiniiininincincicccicceiececeenenes
87.4 The Top-level Gradle Build File.......ccvceiireueiniiriieincirieeicneeereieectneeeieiseeeeetsesesetsesesessesesnes
87.5 Module Level Gradle Build Files..........c.ccccovcuucnce.
87.6 Configuring Signing Settings in the Build File.........
87.7 Running Gradle Tasks from the Command-line
87.8 Summary

XXi

Chapter 1

1. Introduction

Fully updated for Android Studio Bumble Bee, the goal of this book is to teach the skills necessary to develop
Android-based applications using the Java programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android development
and testing environment. An overview of Android Studio is included covering areas such as tool windows, the
code editor and the Layout Editor tool. An introduction to the architecture of Android is followed by an in-
depth look at the design of Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle
management, Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and
the recording and playback of audio. This edition of the book also covers printing, transitions, cloud-based file
storage, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio Bumble Bee and Android are also covered in detail including the Layout
Editor, the ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains,
barriers, and direct reply notifications.

Chapters also cover advanced features of Android Studio such as App Links, Dynamic Delivery, Gradle build
configuration, and submitting apps to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/bumblebeejava/index.php
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/bumblebeejava/index.php
mailto:feedback%40ebookfrenzy.com?subject=

Introduction

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/bumblebeejava.html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com. They are there to help you and will work to resolve any problems you may encounter.

https://www.ebookfrenzy.com/errata/bumblebeejava.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK)
and Open]DK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System Requirements

Android application development may be performed on any of the following system types:
« Windows 8/10/11 64-bit

« macOS 10.14 or later running on Intel or Apple silicon

« Chrome OS device with Intel i5 or higher

o Linux systems with version 2.31 or later of the GNU C Library (glibc)

o Minimum of 8GB of RAM (see below)

« Approximately 8GB of available disk space

« 1280 x 800 minimum screen resolution

Although Android Studio will run on computers with 8GB of RAM, performance will be greatly improved on
systems containing more memory. This is particularly an issue if you plan to test your apps using the Android
Virtual Device emulator (AVD).

2.2 Downloading the Android Studio Package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Bumble Bee 2021.1.1
using the Android API 32 SDK which, at the time of writing, are the current versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for “Android Studio
Bumble Bee” should provide the option to download the older version if these differences become a problem.

3

https://developer.android.com/studio/index.html

Setting up an Android Studio Development Environment
Alternatively, visit the following web page to find Android Studio Bumble Bee 2021.1.1 in the archives:
https://developer.android.com/studio/archive

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS

Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

4

https://developer.android.com/studio/archive

Setting up an Android Studio Development Environment

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip
Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,

therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:

./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:

sudo apt-get install 1ibc6:1386 libncurses5:i1386 libstdc++6:1386 1ib32z1 libbz2-
1.0:1386

On Red Hat and Fedora-based 64-bit systems, use the following command:

sudo yum install z1ib.i686 ncurses-1ibs.1686 bzip2-1ibs.i1686

2.4 The Android Studio Setup Wizard

If you are installing Android Studio for the first time the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2

If this dialog appears, click the Next button to display the SDK Components Setup dialog (Figure 2-3). Within
this dialog, make sure that the Android SDK option is selected along with the latest API package before clicking
on the Next button:

Setting up an Android Studio Development Environment

Figure 2-3
After clicking Next, Android Studio will download and install the Android SDK and tools.

If you have previously installed an earlier version of Android Studio, the first time that this new version is
launched, a dialog may appear providing the option to import settings from a previous Android Studio version.
If you have settings from a previous version and would like to import them into the latest installation, select the
appropriate option and location. Alternatively, indicate that you do not need to import any previous settings and
click on the OK button to proceed.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen:

Figure 2-4
2.5 Installing Additional Android SDK Packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK

packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

6

Setting up an Android Studio Development Environment

Figure 2-5
Immediately after installing Android Studio for the first, time it is likely that only the latest released version of

the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Setting up an Android Studio Development Environment

Figure 2-7

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

 Android SDK Build-tools

 Android Emulator

 Android SDK Platform-tools

» Google Play Services

« Intel x86 Emulator Accelerator (HAXM installer)

+ Google USB Driver (Windows only)

o Layout Inspector image server for API S

Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8

Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

Setting up an Android Studio Development Environment

2.6 Making the Android SDK Tools Command-line Accessible

Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. For the operating system on which you are developing
to be able to find these tools, it will be necessary to add them to the system’s PATH environment variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):

<path to android sdk installation>/sdk/tools

<path to android sdk installation>/sdk/tools/bin

<path to android sdk installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-9:

Figure 2-9

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit... button. Using the New button in the edit dialog, add three new entries to the path. For
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools
C:\Users\demo\AppData\Local\Android\Sdk\tools
C:\Users\demo\AppData\Local\Android\Sdk\tools\bin

4. Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering c¢md into the Run
dialog. Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that

9

Setting up an Android Studio Development Environment

the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the fools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11

Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux

On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin: /home/demo/android-studio/bin: $PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:

sudo vi /etc/paths.d/android-sdk

10

Setting up an Android Studio Development Environment

2.7 Android Studio Memory Management

Android Studio is alarge and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-10

To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->
Preferences... on macOS) menu option and, in the resulting dialog, select the Memory Settings option listed
under System Settings in the left-hand navigation panel as illustrated in Figure 2-11 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

Figure 2-11

11

Setting up an Android Studio Development Environment

The IDE memory setting adjusts the memory allocated to Android Studio and applies regardless of the currently
loaded project. When a project is built and run from within Android Studio, on the other hand, a number of
background processes (referred to as daemons) perform the task of compiling and running the app. When
compiling and running large and complex projects, build time may potentially be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these settings apply only to the current project and can only
be accessed when a project is open in Android Studio.

2.8 Updating Android Studio and the SDK

From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary

Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the Open]JDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

12

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of an Android application project using Android Studio. Once the project
has been created, a later chapter will explore the use of the Android emulator environment to perform a test run
of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also make use of one of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
simply click on the New Project option to display the first screen of the New Project wizard.

13

Creating an Example Android App in Android Studio

3.3 Creating an Activity

The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the Phone and Tablet option from the
Templates panel followed by the option to create an Empty Activity. The Empty Activity option creates a template
user interface consisting of a single TextView object.

Figure 3-2
With the Empty Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:

com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for the purposes of testing, though this will need to be changed before an application can be
published:

com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in
most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK

14

Creating an Example Android App in Android Studio

setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose button (highlighted in Figure 3-3) to see a full breakdown of the various Android versions still
in use:

Figure 3-3

Finally, change the Language menu to Java and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application

At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4

The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

15

Creating an Example Android App in Android Studio

Figure 3-5
3.6 Modifying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. Once located in the Project tool window, double-click on
the file to load it into the user interface Layout Editor tool which will appear in the center panel of the Android
Studio main window:

Figure 3-6

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down

menu immediately to the left of the device selection menu showing the icon.

1”

As can be seen in the device screen, the content layout already includes a label that displays a “Hello World
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual

16

Creating an Example Android App in Android Studio

user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, also check that the Layout Editor’s Autoconnect mode is enabled. This means that as
components are added to the layout, the Layout Editor will automatically add constraints to make sure the
components are correctly positioned for different screen sizes and device orientations (a topic that will be
covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar
and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure
3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

Figure 3-9

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

17

Creating an Example Android App in Android Studio

Figure 3-10

The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-11:

Figure 3-11

The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12
18

Creating an Example Android App in Android Studio

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-13. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-13

When clicked, a panel (Figure 3-14) will appear describing the nature of the problems and offering some possible
corrective measures:

Figure 3-14
Currently, the only warning listed reads as follows:

Hardcoded string "Convert", should use @string resource

This 18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “T’, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-15).
Within this panel, change the resource name field to convert_string and leave the resource value set to Convert
before clicking on the OK button.

19

Creating an Example Android App in Android Studio

Figure 3-15

The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-16:

Figure 3-16

Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-17

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-18:

20

Creating an Example Android App in Android Studio

Figure 3-18
3.7 Reviewing the Layout and Resource Files

Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly to make user interface changes and, in some instances, this may actually be quicker
than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are three buttons as
highlighted in Figure 3-19 below:

Figure 3-19

By default, the editor will be in Desigh mode whereby just the visual representation of the layout is displayed.
The left-most button will switch to Code mode to display the XML for the layout, while the middle button enters
Split mode where both the layout and XML are displayed, as shown in Figure 3-20:

21

Creating an Example Android App in Android Studio

Figure 3-20
As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button and EditText objects. We can also see, for example, that the

text property of the Button is set to our convert_string resource. Although varying in complexity and content, all
user interface layouts are structured in this hierarchical, XML based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"
tools:context=".MainActivity"
android:background="#££2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the color of the layout changes in real-time to match the new setting in the XML file. Note also that a
small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Clicking
on the red square will display a color chooser allowing a different color to be selected:

22

Creating an Example Android App in Android Studio

Figure 3-21

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:
<resources>

<string name="app name">AndroidSample</string>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights and then press
Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and
take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource
back to the original “Convert” text and to add the following additional entry for a string resource that will be
referenced later in the app code:

<resources>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

<string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open editor menu option. This will display the
Translation Editor in the main panel of the Android Studio window:

23

Creating an Example Android App in Android Studio

Figure 3-22

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.8 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

Figure 3-23

Note that the text field for the onClick property is now highlighted with a red border to warn us that the button
has been configured to call a method which does not yet exist. To address this, double-click on the MainActivity.
java file in the Project tool window (app -> java -> <package name> -> MainActivity) to load it into the code
editor and add the code for the convertCurrency method to the class file so that it reads as follows, noting that it
is also necessary to import some additional Android packages:

package com.ebookfrenzy.androidsample;

import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.TextView;

24

Creating an Example Android App in Android Studio

import java.util.Locale;
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity main);

public void convertCurrency (View view) {

EditText dollarText = findViewById(R.id.dollarText) ;
TextView textView = findViewById (R.id.textView) ;

if ('dollarText.getText().toString() .equals("")) {

float dollarValue = Float.parseFloat(dollarText.getText () .toString()) ;
float euroValue = dollarValue * 0.85F;
textView.setText (String. format (Locale.ENGLISH, "%$f", euroValue)) ;

} else {
textView.setText (R.string.no_value_string) ;

}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value and if so, that value is extracted, converted from a String to a floating point
value and converted to euros. Finally, the result is displayed on the TextView widget. If any of this is unclear, rest
assured that these concepts will be covered in greater detail in later chapters.

3.9 Summary

While not excessively complex, anumber of steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to make sure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly in the case of string values, and briefly touched on the topic of layouts.
Next we looked at the underlying XML that is used to store the user interface designs of Android applications.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

25

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio

Although the Android Studio Preview panel allows us to see the layout we are designing and test basic
functionality using interactive mode, it be will necessary to compile and run an entire app to fully test that it
works. An Android application may be tested by installing and running it either on a physical device or in an
Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and
configured to match the specifications of a particular device model. In this chapter, we will work through the
creation of such a virtual device using the Pixel 4 phone as a reference example.

4.1 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android-based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity, and the presence or otherwise of features such
as a camera, GPS navigation support, or an accelerometer. As part of the standard Android Studio installation,
several emulator templates are installed allowing AVDs to be configured for a range of different devices. Custom
configurations may be created to match any physical Android device by specifying properties such as processor
type, memory capacity, and the size and pixel density of the screen.

An AVD session can appear either as a separate window or embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step
is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting
the Tools -> Device Manager menu option from within the main window.

Once launched, the manager will appear as a tool window as shown in Figure 4-1:

Figure 4-1
To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device

27

Creating an Android Virtual Device (AVD) in Android Studio

button to open the Virtual Device Configuration dialog:

Figure 4-2

Within the dialog, perform the following steps to create a Pixel 4 compatible emulator:

L.

From the Category panel, select the Phone option to display the list of available Android phone AVD
templates.

Select the Pixel 4 device option and click Next.

On the System Image screen, select the latest version of Android. Note that if the system image has not yet
been installed a Download link will be provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or
ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

Click Next to proceed and enter a descriptive name (for example Pixel 4 API 32) into the name field or
simply accept the default name.

Click Finish to create the AVD.

With the AVD created, the Device Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the Device Manager, select the AVD from the list, and click on the pencil icon in
the Actions column to edit the settings.

4.2 Starting the Emulator

To perform a test run of the newly created AVD emulator, simply select the emulator from the Device Manager
and click on the launch button (the triangle in the Actions column). The emulator will appear embedded into
the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to
start will depend on the configuration of both the AVD and the system on which it is running:

28

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-3

To hide and show the emulator tool window, click on the Emulator tool window button (marked A above). Click
on the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can accommodate
multiple emulator sessions, with each session represented by a tab. Figure 4-4, for example, shows a tool window

with two emulator sessions:

Figure 4-4

To switch between sessions, simply click on the corresponding tab.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the Device Manager, select the new Pixel 4 entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change
the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the
emulator are covered in the next chapter (“Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.3 Running the Application in the AVD

With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, make sure that the
newly created Pixel 4 AVD is displayed in the device menu (marked A in Figure 4-5 below), then either click on
the run button represented by a green triangle (B), select the Run -> Run app’ menu option or use the Ctrl-R

29

Creating an Android Virtual Device (AVD) in Android Studio

keyboard shortcut:

Figure 4-5

The device menu (A) may be used to select a different AVD instance or physical device as the run target, and
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 4-6

Once the application is installed and running, the user interface for the first fragment will appear within the
emulator (a fragment is a reusable section of an Android project typically consisting of a user interface layout and
some code, a topic which will be covered later in the chapter entitled “An Introduction to Android Fragments”):

Figure 4-7

30

Creating an Android Virtual Device (AVD) in Android Studio

If the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the
emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run tool window
will become available. The Run tool window will display diagnostic information as the application package is
installed and launched. Figure 4-8 shows the Run tool window output from a typical successful application
launch:

Figure 4-8
If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured. With the app now running, try
performing a temperature conversion to verify that the app works as intended.

4.4 Running on Multiple Devices

The run menu shown in Figure 4-6 above includes an option to run the app on multiple emulators and devices
in parallel. When selected, this option displays the dialog shown in Figure 4-9 providing a list of both the AVDs
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or
devices to be targeted before clicking on the Run button:

Figure 4-9
After the Run button is clicked, Android Studio will launch the app on the selected emulators and devices.

4.5 Stopping a Running Application

To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
4-10:

Figure 4-10

An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running. Once the Run tool window appears, click

31

Creating an Android Virtual Device (AVD) in Android Studio

the stop button highlighted in Figure 4-11 below:

Figure 4-11
4.6 Supporting Dark Theme

Android 10 introduced the much-awaited dark theme, support for which is enabled by default in Android
Studio app projects. To test dark theme in the AVD emulator, open the Settings app within the running Android
instance in the emulator. Within the Settings app, choose the Display category and enable the Dark theme option
as shown in Figure 4-12 so that the screen background turns black:

Figure 4-12

With dark theme enabled, run the AndroidSample app and note that it appears using a dark theme including a
black background and a purple background color on the button as shown in Figure 4-13:

Figure 4-13

Return to the Settings app and turn oftf Dark theme mode before continuing.

32

Creating an Android Virtual Device (AVD) in Android Studio

4.7 Running the Emulator in a Separate Window

So far in this chapter, we have only used the emulator as a tool window embedded within the main Android
Studio window. To run the emulator in a separate window, select the File -> Settings... menu option (Android
Studio -> Preferences... on macOS), navigate to Tools -> Emulator in the left-hand navigation panel of the
preferences dialog, and disable the Launch in a tool window option:

Figure 4-14

With the option disabled, click the Apply button followed by OK to commit the change, then exit the current
emulator session by clicking on the close button on the tab marked B in Figure 4-3 above.

Run the sample app once again, at which point the emulator will appear as a separate window as shown below:

Figure 4-15
33

Creating an Android Virtual Device (AVD) in Android Studio

The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before
committing to standalone mode, however, keep in mind that the emulator tool window may also be detached
from the main Android Studio window by clicking on the settings button (represented by the gear icon) in the
tool emulator toolbar and selecting the View Mode -> Float menu option:

Figure 4-16
4.8 Enabling the Device Frame

The emulator can be configured to appear with (Figure 4-17) or without the device frame (Figure 4-15).

Figure 4-17

To change the setting, open the Device Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings. In the settings screen, locate and change the Enable Device Frame option:

34

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-18
4.9 AVD Command-line Creation

As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly
from the command-line. This is achieved using the avdmanager tool in conjunction with some command-line
options. Once initiated, the tool will prompt for additional information before creating the new AVD.

The avdmanager tool requires access to the Java Runtime Environment (JRE) to run. If, when attempting to
run avdmanager, an error message appears indicating that the java’ command cannot be found, the command
prompt or terminal window within which you are running the command can be configured to use the OpenJDK
environment bundled with Android Studio. Begin by identifying the location of the OpenJDK JRE as follows:

1. Launch Android Studio and open the ComposeDemo project created earlier in the book.
2. Select the File -> Settings... menu option (Android Studio -> Preferences... on macOS).

3. Navigate to the Build, Execution, Deployment section and select the Gradle option listed under the Build
Tools category.

4. Click on the Gradle JDK setting and make a note of the path for Android Studio default JDK:

Figure 4-19

On Windows, execute the following command within the command prompt window from which avdmanager is
to be run (where <path to jre> is replaced by the path copied from the Project Structure dialog above):

set JAVA HOME=<path to jre>

On macOS or Linux, execute the following command:
export JAVA HOME="<path to jre>"

If you expect to use the avdmanager tool frequently, follow the environment variable steps for your operating

35

Creating an Android Virtual Device (AVD) in Android Studio

system outlined in the chapter entitled “Setting up an Android Studio Development Environment” to configure
JAVA_HOME on a system-wide basis.

Assuming that the system has been configured such that the Android SDK tools directory is included in the
PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following
command in a terminal or command window:

avdmanager list targets

The resulting output from the above command will contain a list of Android SDK versions that are available on
the system. For example:
Available Android targets:
id: 1 or "android-29"
Name: Android API 29
Type: Platform
API level: 29
Revision: 1
id: 2 or "android-26"
Name: Android API 26
Type: Platform
API level: 26

Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command-line. For example, to
create a new AVD named myAVD using the target ID for the Android APIlevel 29 device using the x86 ABI, the
following command may be used:

avdmanager create avd -n myAVD -k "system-images;android-29;google apis_

playstore;x86"

The avdmanager tool will create the new AVD to the specifications required for a basic Android 8 device, also
providing the option to create a custom configuration to match the specification of a specific device if required.
Once anew AVD has been created from the command-line, it may not show up in the Android Device Manager
tool until the Refresh button is clicked.

In addition to the creation of new AVDs, several other tasks may be performed from the command-line. For
example, a list of currently available AVDs may be obtained using the list avd command-line arguments:

avdmanager list avd

Available Android Virtual Devices:

Name: Pixel XL API 28 No Play
Device: pixel x1 (Google)

Path: /Users/neilsmyth/.android/avd/Pixel XL API 28 No Play.avd
Target: Google APIs (Google Inc.)

Based on: Android API 28 Tag/ABI: google apis/x86

Skin: pixel x1 silver

Sdcard: 512M

Similarly, to delete an existing AVD, simply use the delete option as follows:

36

Creating an Android Virtual Device (AVD) in Android Studio

avdmanager delete avd —n <avd name>

4.10 Android Virtual Device Configuration Files

By default, the files associated with an AVD are stored in the .android/avd sub-directory of the user’s home
directory, the structure of which is as follows (where <avd name> is replaced by the name assigned to the AVD):

<avd name>.avd/config.ini
<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions and memory specified
during the AVD creation process. These settings may be changed directly within the configuration file and will
be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD files. Note that
a change to the image.sysdir value in the config.ini file will also need to be reflected in the target value of this file.

4.11 Moving and Renaming an Android Virtual Device

The current name or the location of the AVD files may be altered from the command-line using the avdmanager
tool’s move avd argument. For example, to rename an AVD named Pixel4 to Pixel4a, the following command
may be executed:

avdmanager move avd -n Pixeld4d -r Pixelda
To physically relocate the files associated with the AVD, the following command syntax should be used:
avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Pixel4 Test:

avdmanager move avd -n Pixeld4 -p /tmp/PixeldTest

Note that the destination directory must not already exist before executing the command to move an AVD.

4.12 Summary

A typical application development process follows a cycle of coding, compiling, and running in a test
environment. Android applications may be tested on either a physical Android device or using an Android
Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool
which may be used either as a command-line tool or via a graphical user interface. When creating an AVD to
simulate a specific Android device model, the virtual device should be configured with a hardware specification
matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android
Studio user interface.

37

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
available to customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment

When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears containing a representation of the chosen device type (in the
case of Figure 5-1 this is a Pixel 4 device):

Figure 5-1
Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.
5.2 Emulator Toolbar Options

The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

39

Using and Configuring the Android Studio AVD Emulator

Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

Exit / Minimize - The uppermost X’ button in the toolbar exits the emulator session when selected while the
‘-’ option minimizes the entire window.

Power - The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power oft” request sequence.

Volume Up / Down - Two buttons that control the audio volume of playback within the simulator environment.
Rotate Left/Right — Rotates the emulated device between portrait and landscape orientations.

Take Screenshot — Takes a screenshot of the content currently displayed on the device screen. The captured
image is stored at the location specified in the Settings screen of the extended controls panel as outlined later
in this chapter.

Zoom Mode - This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

Back - Performs the standard Android “Back” navigation to return to a previous screen.
Home - Displays the device home screen.

Overview — Simulates selection of the standard Android “Overview” navigation which displays the currently
running apps on the device.

40

Using and Configuring the Android Studio AVD Emulator

o Fold Device - Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

« Extended Controls - Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button oft reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

5.4 Resizing the Emulator Window

The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3

41

Using and Configuring the Android Studio AVD Emulator
5.5.1 Location

The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format. Alternatively, the integrated Google Maps panel may be used to
visually select single points or travel routes.

5.5.2 Displays

In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

5.5.3 Cellular

The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

5.5.4 Battery

A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

5.5.5 Camera

The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.6 Phone

The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing how an app handles high-level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad

A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone

The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

42

Using and Configuring the Android Studio AVD Emulator
5.5.10 Virtual Sensors

The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement, and tilting through yaw, pitch and roll settings.

5.5.11 Snapshots

Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in later in this chapter.

5.5.12 Record and Playback

Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

5.5.13 Google Play

If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version and provides the option to update the emulator to the latest version.

5.5.14 Settings

The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

5.5.15 Help

The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots

When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

43

Using and Configuring the Android Studio AVD Emulator

Figure 5-4

The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by
default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to
reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous
quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager), click on the down arrow in the Actions
column for the emulator and select the Cold Boot Now menu option.

Figure 5-5
5.7 Configuring Fingerprint Emulation

The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app, and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a
backup screen unlocking method (such as a PIN) must be configured. Click on the Fingerprint + PIN button
and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN and
complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that

44

Using and Configuring the Android Studio AVD Emulator

Finger 1 is selected in the main settings panel:

Figure 5-6

Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will
report the successful addition of the fingerprint:

Figure 5-7

To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch the Sensor button once again.

5.8 The Emulator in Tool Window Mode

As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator as an embedded tool window so that it does not appear in a
separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar as shown in Figure 5-8:

45

Using and Configuring the Android Studio AVD Emulator

Figure 5-8

From left to right, these buttons perform the following tasks (details of which match those for standalone mode):
» Power

o Volume Up

+ Volume Down

« Rotate Left

Rotate Right
« Back

o Home

o Overview

Screenshot

o Snapshots

» Extended Controls

5.9 Summary

Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without the need to run on a physical Android device. This chapter has provided a brief tour of the
emulator and highlighted key features that are available to configure and customize the environment to simulate
different testing conditions.

46

Chapter 6

6. A Tour of the Android Studio User
Interface

While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen

The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will by-pass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1

In addition to a list of recent projects, the welcome screen provides a range of options for performing tasks such
as opening and creating projects along with access to projects currently under version control. In addition, the
Customize screen provides options to change the theme and font settings used by both the IDE and the editor.
Android Studio plugins may be viewed, installed and managed using via the Plugins option.

Additional options are available by clicking on the menu button as shown in Figure 6-2:

47

A Tour of the Android Studio User Interface

Figure 6-2
6.2 The Main Window

When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-3.

Figure 6-3

The various elements of the main window can be summarized as follows:
A - Menu Bar - Contains a range of menus for performing tasks within the Android Studio environment.

B - Toolbar - A selection of shortcuts to frequently performed actions. The toolbar buttons provide quicker
access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and
selecting the Customize Menus and Toolbars... menu option. If the toolbar is not visible, it can be displayed using
the View -> Appearance -> Toolbar menu option.

C - Navigation Bar - The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class. Select a method from the list to be taken to the corresponding location within the

48

A Tour of the Android Studio User Interface
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.

D - Editor Window - The editor window displays the content of the file on which the developer is currently
working. What gets displayed in this location, however, is subject to context. When editing code, for example,
the code editor will appear. When working on a user interface layout file, on the other hand, the user interface
Layout Editor tool will appear. When multiple files are open, each file is represented by a tab located along the
top edge of the editor as shown in Figure 6-4.

Figure 6-4

E - Status Bar - The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will provide a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F - Project Tool Window - The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project
in a number of different ways. The default setting is the Android view which is the mode primarily used in the
remainder of this book.

The project tool window is just one of a number of tool windows available within the Android Studio environment.

6.3 The Tool Windows

In addition to the project view tool window, Android Studio also includes a number of other windows which,
when enabled, are displayed along the bottom and sides of the main window. The tool window quick access
menu can be accessed by hovering the mouse pointer over the button located in the far left-hand corner of the
status bar (Figure 6-5) without clicking the mouse button.

Figure 6-5

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status

49

A Tour of the Android Studio User Interface

bar. These bars appear along the left, right and bottom edges of the main window (as indicated by the arrows in
Figure 6-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 6-6

Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window tool bars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-7 shows the settings menu for the project view tool window.
Options are available, for example, to undock a window and to allow it to float outside of the boundaries of the
Android Studio main window and to move and resize the tool panel.

Figure 6-7

All of the windows also include a far right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window

50

A Tour of the Android Studio User Interface

focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s tool bar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

App Inspector - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

Build - The build tool window displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

Build Variants — The build variants tool window provides a quick way to configure different build targets
for the current application project (for example different builds for debugging and release versions of the
application, or multiple builds to target different device categories).

Device File Explorer — Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator allowing the
filesystem to be browsed and files copied to the local filesystem.

Device Manager - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

Event Log - The event log window displays messages relating to events and activities performed within
Android Studio. The successful build of a project, for example, or the fact that an application is now running
will be reported within this tool window.

Favorites — A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list
can be accessed through this Favorites tool window.

Gradle - The Gradle tool window provides a view of the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater
detail later in this book.

Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

Logcat — The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Problems - A central location in which to view all of the current errors or warnings within the project.
Double-clicking on an item in the problem list will take you to the problem file and location.

Profiler - The Android Profiler tool window provides real-time monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

Project — The project view provides an overview of the file structure that makes up the project allowing for

51

A Tour of the Android Studio User Interface

quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be
loaded into the appropriate editing tool.

Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout
files contained with the project.

Run - The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing
to install and run on a device or emulator, this window will typically provide diagnostic information relating
to the problem.

Structure - The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the source file in the editor window.

Terminal - Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

TODO - As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting
the File -> Settings... menu option (Android Studio -> Preferences... on macOS) and navigating to the TODO
page listed under Editor.

6.4 Android Studio Keyboard Shortcuts

Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option. You may also list and modify the
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS)
and clicking on the Keymap entry as shown in Figure 6-8 below:

Figure 6-8

52

A Tour of the Android Studio User Interface

6.5 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-9).

Figure 6-9
Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping

the Tab key while holding down the Ctrl key will cycle through the various selection options, while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure
6-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the
mouse pointer can be used to select an option or, alternatively, the keyboard arrow keys used to scroll through
the file name and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 6-10
6.6 Changing the Android Studio Theme

The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option, or via the File -> Settings... menu option (Android Studio -> Preferences... on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance & Behavior option followed by Appearance in the
53

A Tour of the Android Studio User Interface

left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes
available will depend on the platform but usually include options such as Light, Intelli], Windows, High Contrast
and Darcula. Figure 6-11 shows an example of the main window with the Darcula theme selected:

Figure 6-11

To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

Figure 6-12
6.7 Summary

The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar, or via the
optional tool window bars.

There are very few actions within Android Studio which cannot be triggered via a keyboard shortcut. A keymap
of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

54

Chapter 7

7. Testing Android Studio Apps on a
Physical Android Device

While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no substitute
for performing real-world application testing on a physical Android device and there are some Android features
that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). In this chapter, we explain how to configure the adb environment to enable application testing on
an Android device with macOS, Windows, and Linux-based systems.

7.1 An Overview of the Android Debug Bridge (ADB)

The primary purpose of the ADB is to facilitate interaction between a development system, in this case, Android
Studio, and both AVD emulators and Android devices to run and debug applications. ADB allows you to connect
to devices either over a WiFi network or directly using a USB cable.

The ADB consists of a client, a server process running in the background on the development system, and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active
virtual or physical devices may be obtained using the devices command-line argument. The following command
output indicates the presence of an AVD on the system but no physical devices:

$ adb devices

List of devices attached

emulator-5554 device

7.2 Enabling USB Debugging ADB on Android Devices

Before ADB can connect to an Android device, that device must first be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1. Open the Settings app on the device and select the About tablet or About phone option (on some versions of
Android this can be found on the System page of the Settings app).

2. On the About screen, scroll down to the Build number field (Figure 7-1) and tap on it seven times until a
message appears indicating that developer mode has been enabled. If the Build number is not listed on the
About screen it may be available via the Software information option. Alternatively, unfold the Advanced
section of the list if available.

55

Testing Android Studio Apps on a Physical Android Device

Figure 7-1
3. Return to the main Settings screen and note the appearance of a new option titled Developer options (on

newer versions of Android this option is listed on the System settings screen). Select this option and on the
resulting screen, locate the USB debugging option as illustrated in Figure 7-2:

Figure 7-2
4. Enable the USB debugging option and tap the Allow button when confirmation is requested.

At this point, the device is now configured to accept debugging connections from adb on the development
system over a USB connection. All that remains is to configure the development system to detect the device
when it is attached. While this is a relatively straightforward process, the steps involved differ depending on
whether the development system is running Windows, macOS, or Linux. Note that the following steps assume
that the Android SDK platform-tools directory is included in the operating system PATH environment variable
as described in the chapter entitled “Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration

To configure the ADB environment on a macOS system, connect the device to the computer system using a USB
cable, open a terminal window and execute the following command to restart the adb server:

$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:

$ adb devices

List of devices attached

74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure
7-3 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK.

56

Testing Android Studio Apps on a Physical Android Device

Figure 7-3
Repeating the adb devices command should now list the device as being available:

List of devices attached
015d41d4454bf80c device

If the device is not listed, try logging out and then back into the macOS desktop and, if the problem persists,
rebooting the system.

7.2.2 Windows ADB Configuration

The first step in configuring a Windows-based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
the Android Device. If you have a Google device such as a Pixel phone, then it will be necessary to install and
configure the Google USB Driver package on your Windows system. Detailed steps to achieve this are outlined
on the following web page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it will be necessary to download the drivers
provided by the device manufacturer. A listing of drivers together with download and installation information
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:

adb devices

This command should output information about the connected device similar to the following:

List of devices attached
HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
7-3 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as
being ready:

List of devices attached

HT4CTJT01906 device

If the device is not listed, execute the following commands to restart the ADB server:
adb kill-server

adb start-server

57

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

Testing Android Studio Apps on a Physical Android Device

If the device is still not listed, try executing the following command:

android update adb
Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration

For this chapter, we will once again use Ubuntu Linux as a reference example in terms of configuring adb on
Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not
listed, run the following command to add your account to the group:

sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:

sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server and check the list of attached devices:

$ adb start-server

* daemon not running. starting it now on port 5037 *
* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 7-3 seeking permission to Allow USB debugging.
7.3 Resolving USB Connection Issues

If you are unable to successfully connect to the device using the above steps, display the run target menu (Figure
7-4) and select the Troubleshoot Device Connections option:

Figure 7-4
The connection assistant will scan for devices and report problems and possible solutions.
58

Testing Android Studio Apps on a Physical Android Device

7.4 Enabling Wireless Debugging on Android Devices
Follow steps 1 through 3 from section 7.2 above, this time enabling the Wireless Debugging option as shown in

Figure 7-5:

Figure 7-5
Next, tap the above Wireless debugging entry to display the screen shown in Figure 7-6:

Figure 7-6
If the device you are using has a camera, select Pair device with QR code, otherwise select the Pair device with
pairing code option. Depending on your selection, the Settings app will either start a camera session or display a

pairing code as shown in Figure 7-7:

Figure 7-7
With an option selected, return to Android Studio and select the Pair Devices Using WiFi option from the run

target menu as illustrated in Figure 7-8:
59

Testing Android Studio Apps on a Physical Android Device

Figure 7-8

In the pairing dialog, select either Pair using QR code or Pair using pairing code depending on your previous
selection in the Settings app on the device:

Figure 7-9

Either scan the QR code using the Android device or enter the pairing code displayed on the device screen into
the Android Studio dialog (Figure 7-10) to complete the pairing process:

Figure 7-10
If the pairing process fails, try rebooting both the development system and Android device and try again.

60

Testing Android Studio Apps on a Physical Android Device

7.5 Testing the adb Connection

Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “Creating an Example Android App in Android
Studio” on the device. Launch Android Studio, open the AndroidSample project, and verify that the device
appears in the device selection menu as highlighted in Figure 7-11:

Figure 7-11

Select the device from the list and click on the run button (the green arrow button located immediately to the
right of the device menu) to install and run the app.

7.6 Summary

While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep
in mind that there is no real substitute for making sure an application functions correctly on a physical Android
device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps to be able to load applications directly onto an
Android device from within the Android Studio development environment either via a USB cable or over a WiFi
network. The exact steps to achieve this goal differ depending on the development platform being used. In this
chapter, we have covered those steps for Linux, macOS, and Windows-based platforms.

61

8. The Basics of the Android Studio
Code Editor

Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor

The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Java source code
file loaded:

Figure 8-1

The elements that comprise the editor window can be summarized as follows:

A - Document Tabs - Android Studio is capable of holding multiple files open for editing at any one time. As
each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top

63

The Basics of the Android Studio Code Editor

edge of the editor window. A small drop-down menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-
Right keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism
(accessible via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B - The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched
on by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu
option.

C - Code Structure Location - This bar at the bottom of the editor displays the current position of the cursor
as it relates to the overall structure of the code. In the following figure, for example, the bar indicates that the
convertCurrency method is currently being edited, and that this method is contained within the MainActivity
class.

Figure 8-2

Double-clicking an element within the bar will move the cursor to the corresponding location within the
code file. For example, double-clicking on the convertCurrency entry will move the cursor to the top of the
convertCurrency method within the source code. Similarly clicking on the MainActivity entry will drop down a
list of available code navigation points for selection:

Figure 8-3

D - The Editor Area - This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E - The Validation and Marker Sidebar — Android Studio incorporates a feature referred to as “on-the-fly code
analysis”. What this essentially means is that as you are typing code, the editor is analyzing the code to check for
warnings and syntax errors. The indicators at the top of the validation sidebar will update in real-time to indicate
the number of errors and warnings found as code is added. Clicking on this indicator will display a popup
containing a summary of the issues found with the code in the editor as illustrated in Figure 8-4:

64

The Basics of the Android Studio Code Editor

Figure 8-4

The up and down arrows may be used to move between the error locations within the code. A green check mark
indicates that no warnings or errors have been detected.

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup
containing a description of the issue:

Figure 8-5
Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area

of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-6)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-6
It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over

any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

F - The Status Bar - Though the status bar is actually part of the main window, as opposed to the editor, it does
contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line dialog.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window

By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into
multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 8-7, for example, shows the splitter in action with the editor

65

The Basics of the Android Studio Code Editor

split into three panels:

Figure 8-7
The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion

The Android Studio editor has a considerable amount of built-in knowledge of Java programming syntax and
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-8, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-8

If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the
keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

66

The Basics of the Android Studio Code Editor

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred to
as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-
Ctrl-Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings... menu option (or Android Studio -> Preferences... on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-9:

Figure 8-9
8.4 Statement Completion

Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:

myMethod ()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:

myMethod () {

67

The Basics of the Android Studio Code Editor

8.5 Parameter Information

It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-10
8.6 Parameter Name Hints

The code editor may be configured to display parameter name hints within method calls. Figure 8-11, for
example, highlights the parameter name hints within the calls to the make() and setAction() methods of the
Snackbar class:

Figure 8-11

The settings for this mode may be configured by selecting the File - > Settings menu (Android Studio -> Preferences
on macOS) option followed by Editor -> Inlay Hints -> Java in the left-hand panel. On the resulting screen, select
the Parameter Hints item from the list and enable or disable the Show parameter hints option. To adjust the hint
settings, click on the Exclude list... link and make any necessary adjustments.

8.7 Code Generation

In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-12 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-12

For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio
generate a stub method for this, simply select the Override Methods... option from the code generation list and

68

The Basics of the Android Studio Code Editor

select the onStop() method from the resulting list of available methods:

Figure 8-13
Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Java source file as follows:
@Override
protected void onStop () {
super.onStop () ;

}
8.8 Code Folding

Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-14, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-14

Clicking on either of these markers will fold the statement such that only the signature line is visible as shown

69

The Basics of the Android Studio Code Editor

in Figure 8-15:

Figure 8-15

To unfold a collapsed section of code, simply click on the ‘+” marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{...}” indicator as shown in Figure 8-16. The editor will
then display the lens overlay containing the folded code block:

Figure 8-16
All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings. .. (Android Studio -> Preferences... on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-17):

Figure 8-17
8.9 Quick Documentation Lookup

Context sensitive Java and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-] on macOS). This will

70

The Basics of the Android Studio Code Editor

display a popup containing the relevant reference documentation for the item. Figure 8-18, for example, shows
the documentation for the Android FloatingActionButton class.

Figure 8-18

Once displayed, the documentation popup can be moved around the screen as needed.

8.10 Code Reformatting

In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a website), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display
the Reformat Code dialog (Figure 8-19) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire source file currently active in the
editor or only code that has changed as the result of a source code control update.

Figure 8-19

The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences... on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog,
for example, unfold the Code Style section, select Java and, from the Java settings, select the Arrangement tab.

8.11 Finding Sample Code

The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample
Code menu option. The Find Sample Code panel (Figure 8-20) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

71

The Basics of the Android Studio Code Editor

Figure 8-20
8.12 Live Templates
As you write Android code you will find that there are common constructs that are used frequently. For example,
a common requirement is to display a popup message to the user using the Android Toast class. Live templates
are a collection of common code constructs that can be entered into the editor by typing the initial characters
followed by a special key (set to the Tab key by default) to insert template code. To experience this in action, type
toast in the code editor followed by the Tab key and Android Studio will insert the following code at the cursor
position ready for editing:
Toast.makeText (, "", Toast.LENGTH SHORT) .show();

To list and edit existing templates, change the special key, or add your own templates, open the Preferences
dialog and select Live Templates from the Editor section of the left-hand navigation panel:

Figure 8-21

Add, remove, duplicate or reset templates using the buttons marked A in Figure 8-21 above. To modify a
template, select it from the list (B) and change the settings in the panel marked C.

8.13 Summary

The Android Studio editor goes to great length to reduce the amount of typing needed to write code and to
make that code easier to read and navigate. In this chapter we have covered a number of the key editor features
including code completion, code generation, editor window splitting, code folding, reformatting, documentation
lookup and live templates.

72

Chapter 9

9. An Overview of the Android
Architecture

So far in this book, steps have been taken to set up an environment suitable for the development of Android
applications using Android Studio. An initial step has also been taken into the process of application development
through the creation of an Android Studio application project.

Before delving further into the practical matters of Android application development, however, it is important
to gain an understanding of some of the more abstract concepts of both the Android SDK and Android
development in general. Gaining a clear understanding of these concepts now will provide a sound foundation
on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of
this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack

Android is structured in the form of a software stack comprising applications, an operating system, run-time
environment, middle-ware, services and libraries. This architecture can, perhaps, best be represented visually
as outlined in Figure 9-1. Each layer of the stack, and the corresponding elements within each layer, are tightly
integrated and carefully tuned to provide the optimal application development and execution environment
for mobile devices. The remainder of this chapter will work through the different layers of the Android stack,
starting at the bottom with the Linux Kernel.

Figure 9-1

73

An Overview of the Android Architecture

9.2 The Linux Kernel

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between
the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the
kernel provides preemptive multitasking, low-level core system services such as memory, process and power
management in addition to providing a network stack and device drivers for hardware such as the device display,
WiFi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities
and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system
referred to as GNU/Linux. Various Linux distributions have been derived from these basic underpinnings such
as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the
Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In
fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to
both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find
this software at the heart of the Android software stack.

9.3 Android Runtime — ART

When an Android app is built within Android Studio it is compiled into an intermediate bytecode format
(referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime
(ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the
native instructions required by the device processor. This format is known as Executable and Linkable Format
(ELEF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster
application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries

In addition to a set of standard Java development libraries (providing support for such general purpose tasks as
string handling, networking and file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples
of libraries in this category include the application framework libraries in addition to those that facilitate user
interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:
« android.app - Provides access to the application model and is the cornerstone of all Android applications.

« android.content — Facilitates content access, publishing and messaging between applications and application
components.

« android.database - Used to access data published by content providers and includes SQLite database
management classes.

o android.graphics - A low-level 2D graphics drawing API including colors, points, filters, rectangles and
canvases.

« android.hardware - Presents an API providing access to hardware such as the accelerometer and light sensor.

74

An Overview of the Android Architecture
« android.opengl - A Java interface to the OpenGL ES 3D graphics rendering API.

« android.os - Provides applications with access to standard operating system services including messages,
system services and inter-process communication.

« android.media - Provides classes to enable playback of audio and video.

« android.net — A set of APIs providing access to the network stack. Includes android.net.wifi, which provides
access to the device’s wireless stack.

o android.print - Includes a set of classes that enable content to be sent to configured printers from within
Android applications.

« android.provider - A set of convenience classes that provide access to standard Android content provider
databases such as those maintained by the calendar and contact applications.

« android.text — Used to render and manipulate text on a device display.

o android.util - A set of utility classes for performing tasks such as string and number conversion, XML
handling and date and time manipulation.

o android.view - The fundamental building blocks of application user interfaces.

« android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views,
layout managers, radio buttons etc.

« android.webkit - A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++ based libraries contained in this layer of the Android software stack.

9.4.1 C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary
APIs for developers writing Android applications. It is important to note, however, that the core libraries do
not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based
libraries. When making calls, for example, to the android.opengl library to draw 3D graphics on the device
display, the library actually ultimately makes calls to the OpenGL ES C++ library which, in turn, works with the
underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback,
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java based
Android core library APIs. If direct access to these libraries is needed, this can be achieved using the Android
Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or Kotlin
programming languages (such as C and C++) from within Java code using the Java Native Interface (JNT).

9.5 Application Framework

The Application Framework is a set of services that collectively form the environment in which Android
applications run and are managed. This framework implements the concept that Android applications are
constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in
that an application is also able to publish its capabilities along with any corresponding data so that they can be

75

An Overview of the Android Architecture

found and reused by other applications.

The Android framework includes the following key services:

o Activity Manager - Controls all aspects of the application lifecycle and activity stack.

o Content Providers — Allows applications to publish and share data with other applications.

» Resource Manager — Provides access to non-code embedded resources such as strings, color settings and user
interface layouts.

o Notifications Manager - Allows applications to display alerts and notifications to the user.
» View System - An extensible set of views used to create application user interfaces.

o Package Manager - The system by which applications are able to find out information about other applications
currently installed on the device.

o Telephony Manager — Provides information to the application about the telephony services available on the
device such as status and subscriber information.

« Location Manager - Provides access to the location services allowing an application to receive updates about
location changes.

9.6 Applications

Located at the top of the Android software stack are the applications. These comprise both the native applications
provided with the particular Android implementation (for example web browser and email applications) and
the third party applications installed by the user after purchasing the device.

9.7 Summary

A good Android development knowledge foundation requires an understanding of the overall architecture of
Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel,
a runtime environment and corresponding libraries, an application framework and a set of applications.
Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the
Android Studio build environment. When the application is subsequently installed on a device, this bytecode
is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the
Android architecture are performance and efficiency, both in application execution and in the implementation
of reuse in application design.

76

Chapter 10

10. The Anatomy of an Android
Application

Regardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail both the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities

Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this
is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities. An activity
is a single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointments application might, for example, have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application, for example, might contain an activity specifically for composing
and sending an email message. A developer might be writing an application that also has a requirement to send
an email message. Rather than develop an email composition activity specifically for the new application, the
developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may make use of the activity in unanticipated ways)
and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved
using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be specifically started as a sub-activity of the originating activity.

10.2 Android Fragments

An activity, as described above, typically represents a single user interface screen within an app. One option is
to construct the activity using a single user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each of these sections is referred to as a
fragment, each of which consists of part of the user interface layout and a matching class file (declared as a
subclass of the Android Fragment class). In this scenario, an activity simply becomes a container into which one
or more fragments are embedded.

77

The Anatomy of an Android Application

In fact, fragments provide an efficient alternative to having each user interface screen represented by a
separate activity. Instead, an app can consist of a single activity that switches between different fragments, each
representing a different app screen.

10.3 Android Intents

Intents are the mechanism by which one activity is able to launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents

Another type of Intent, the Broadcast Intent, is a system wide intent that is sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status such as the completion of system start up, connection of an external
power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time, or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers

Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A
Broadcast Receiver must be registered by an application and configured with an Intent Filter to indicate the
types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked
by the Android runtime regardless of whether the application that registered the receiver is currently running.
The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service,
making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the
background and do not have a user interface.

10.6 Android Services

Android Services are processes that run in the background and do not have a user interface. They can be started
and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal
for situations where an application needs to continue performing tasks but does not necessarily need a user
interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events
using notifications and toasts (small notification messages that appear on the screen without interrupting the
currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be
terminated as a last resort by the system to free up resources. If the runtime does need to kill a Service, however,
it will be automatically restarted as soon as adequate resources once again become available. A Service can
reduce the risk of termination by declaring itself as needing to run in the foreground. This is achieved by making
a call to startForeground(). This is only recommended for situations where termination would be detrimental to
the user experience (for example, if the user is listening to audio being streamed by the Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming
of audio that should continue when the application is no longer active, or a stock market tracking application

78

The Anatomy of an Android Application

that needs to notify the user when a share hits a specified price.

10.7 Content Providers

Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data through the implementation of a Content Provider
including the ability to add, remove and query the data (subject to permissions). Access to the data is provided
via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a
file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access
data such as contacts and media files. The Content Providers currently available on an Android system may be
located using a Content Resolver.

10.8 The Application Manifest

The glue that pulls together the various elements that comprise an application is the Application Manifest file.
It is within this XML based file that the application outlines the activities, services, broadcast receivers, data
providers and permissions that make up the complete application.

10.9 Application Resources

In addition to the manifest file and the Dex files that contain the byte code, an Android application package will
also typically contain a collection of resource files. These files contain resources such as the strings, images, fonts
and colors that appear in the user interface together with the XML representation of the user interface layouts.
By default, these files are stored in the /res sub-directory of the application project’s hierarchy.

10.10 Application Context

When an application is compiled, a class named R is created that contains references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and make changes to the application’s environment at runtime.

10.11 Summary

A number of different elements can be brought together to create an Android application. In this chapter, we
have provided a high-level overview of Activities, Fragments, Services, Intents and Broadcast Receivers together
with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of
functionality in the form of activities and intents, while data sharing between applications is achieved by the
implementation of content providers.

While activities are focused on areas where the user interacts with the application (an activity essentially
equating to a single user interface screen and often made up of one or more fragments), background processing
is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however,
that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a
solid knowledge foundation on which to build your own applications.

79

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System Requirements
	2.2 Downloading the Android Studio Package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio Setup Wizard
	2.5 Installing Additional Android SDK Packages
	2.6 Making the Android SDK Tools Command-line Accessible
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio Memory Management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Enabling the Device Frame
	4.9 AVD Command-line Creation
	4.10 Android Virtual Device Configuration Files
	4.11 Moving and Renaming an Android Virtual Device
	4.12 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Overview of Android View Binding
	11.1 Find View by Id
	11.2 View Binding
	11.3 Converting the AndroidSample project
	11.4 Enabling View Binding
	11.5 Using View Binding
	11.6 Choosing an Option
	11.7 View Binding in the Book Examples
	11.8 Migrating a Project to View Binding
	11.9 Summary

	12. Understanding Android Application and Activity Lifecycles
	12.1 Android Applications and Resource Management
	12.2 Android Process States
	12.2.1 Foreground Process
	12.2.2 Visible Process
	12.2.3 Service Process
	12.2.4 Background Process
	12.2.5 Empty Process

	12.3 Inter-Process Dependencies
	12.4 The Activity Lifecycle
	12.5 The Activity Stack
	12.6 Activity States
	12.7 Configuration Changes
	12.8 Handling State Change
	12.9 Summary

	13. Handling Android Activity State Changes
	13.1 New vs. Old Lifecycle Techniques
	13.2 The Activity and Fragment Classes
	13.3 Dynamic State vs. Persistent State
	13.4 The Android Lifecycle Methods
	13.5 Lifetimes
	13.6 Foldable Devices and Multi-Resume
	13.7 Disabling Configuration Change Restarts
	13.8 Lifecycle Method Limitations
	13.9 Summary

	14. Android Activity State Changes by Example
	14.1 Creating the State Change Example Project
	14.2 Designing the User Interface
	14.3 Overriding the Activity Lifecycle Methods
	14.4 Filtering the Logcat Panel
	14.5 Running the Application
	14.6 Experimenting with the Activity
	14.7 Summary

	15. Saving and Restoring the State of an Android Activity
	15.1 Saving Dynamic State
	15.2 Default Saving of User Interface State
	15.3 The Bundle Class
	15.4 Saving the State
	15.5 Restoring the State
	15.6 Testing the Application
	15.7 Summary

	16. Understanding Android Views, View Groups and Layouts
	16.1 Designing for Different Android Devices
	16.2 Views and View Groups
	16.3 Android Layout Managers
	16.4 The View Hierarchy
	16.5 Creating User Interfaces
	16.6 Summary

	17. A Guide to the Android Studio Layout Editor Tool
	17.1 Basic vs. Empty Activity Templates
	17.2 The Android Studio Layout Editor
	17.3 Design Mode
	17.4 The Palette
	17.5 Design Mode and Layout Views
	17.6 Night Mode
	17.7 Code Mode
	17.8 Split Mode
	17.9 Setting Attributes
	17.10 Transforms
	17.11 Tools Visibility Toggles
	17.12 Converting Views
	17.13 Displaying Sample Data
	17.14 Creating a Custom Device Definition
	17.15 Changing the Current Device
	17.16 Layout Validation (Multi Preview)
	17.17 Summary

	18. A Guide to the Android ConstraintLayout
	18.1 How ConstraintLayout Works
	18.1.1 Constraints
	18.1.2 Margins
	18.1.3 Opposing Constraints
	18.1.4 Constraint Bias
	18.1.5 Chains
	18.1.6 Chain Styles

	18.2 Baseline Alignment
	18.3 Configuring Widget Dimensions
	18.4 Guideline Helper
	18.5 Group Helper
	18.6 Barrier Helper
	18.7 Flow Helper
	18.8 Ratios
	18.9 ConstraintLayout Advantages
	18.10 ConstraintLayout Availability
	18.11 Summary

	19. A Guide to Using ConstraintLayout in Android Studio
	19.1 Design and Layout Views
	19.2 Autoconnect Mode
	19.3 Inference Mode
	19.4 Manipulating Constraints Manually
	19.5 Adding Constraints in the Inspector
	19.6 Viewing Constraints in the Attributes Window
	19.7 Deleting Constraints
	19.8 Adjusting Constraint Bias
	19.9 Understanding ConstraintLayout Margins
	19.10 The Importance of Opposing Constraints and Bias
	19.11 Configuring Widget Dimensions
	19.12 Design Time Tools Positioning
	19.13 Adding Guidelines
	19.14 Adding Barriers
	19.15 Adding a Group
	19.16 Working with the Flow Helper
	19.17 Widget Group Alignment and Distribution
	19.18 Converting other Layouts to ConstraintLayout
	19.19 Summary

	20. Working with ConstraintLayout Chains and Ratios in Android Studio
	20.1 Creating a Chain
	20.2 Changing the Chain Style
	20.3 Spread Inside Chain Style
	20.4 Packed Chain Style
	20.5 Packed Chain Style with Bias
	20.6 Weighted Chain
	20.7 Working with Ratios
	20.8 Summary

	21. An Android Studio Layout Editor ConstraintLayout Tutorial
	21.1 An Android Studio Layout Editor Tool Example
	21.2 Creating a New Activity
	21.3 Preparing the Layout Editor Environment
	21.4 Adding the Widgets to the User Interface
	21.5 Adding the Constraints
	21.6 Testing the Layout
	21.7 Using the Layout Inspector
	21.8 Summary

	22. Manual XML Layout Design in Android Studio
	22.1 Manually Creating an XML Layout
	22.2 Manual XML vs. Visual Layout Design
	22.3 Summary

	23. Managing Constraints using Constraint Sets
	23.1 Java Code vs. XML Layout Files
	23.2 Creating Views
	23.3 View Attributes
	23.4 Constraint Sets
	23.4.1 Establishing Connections
	23.4.2 Applying Constraints to a Layout
	23.4.3 Parent Constraint Connections
	23.4.4 Sizing Constraints
	23.4.5 Constraint Bias
	23.4.6 Alignment Constraints
	23.4.7 Copying and Applying Constraint Sets
	23.4.8 ConstraintLayout Chains
	23.4.9 Guidelines
	23.4.10 Removing Constraints
	23.4.11 Scaling
	23.4.12 Rotation

	23.5 Summary

	24. An Android ConstraintSet Tutorial
	24.1 Creating the Example Project in Android Studio
	24.2 Adding Views to an Activity
	24.3 Setting View Attributes
	24.4 Creating View IDs
	24.5 Configuring the Constraint Set
	24.6 Adding the EditText View
	24.7 Converting Density Independent Pixels (dp) to Pixels (px)
	24.8 Summary

	25. A Guide to using Apply Changes in Android Studio
	25.1 Introducing Apply Changes
	25.2 Understanding Apply Changes Options
	25.3 Using Apply Changes
	25.4 Configuring Apply Changes Fallback Settings
	25.5 An Apply Changes Tutorial
	25.6 Using Apply Code Changes
	25.7 Using Apply Changes and Restart Activity
	25.8 Using Run App
	25.9 Summary

	26. An Overview and Example of Android Event Handling
	26.1 Understanding Android Events
	26.2 Using the android:onClick Resource
	26.3 Event Listeners and Callback Methods
	26.4 An Event Handling Example
	26.5 Designing the User Interface
	26.6 The Event Listener and Callback Method
	26.7 Consuming Events
	26.8 Summary

	27. Android Touch and Multi-touch Event Handling
	27.1 Intercepting Touch Events
	27.2 The MotionEvent Object
	27.3 Understanding Touch Actions
	27.4 Handling Multiple Touches
	27.5 An Example Multi-Touch Application
	27.6 Designing the Activity User Interface
	27.7 Implementing the Touch Event Listener
	27.8 Running the Example Application
	27.9 Summary

	28. Detecting Common Gestures Using the Android Gesture Detector Class
	28.1 Implementing Common Gesture Detection
	28.2 Creating an Example Gesture Detection Project
	28.3 Implementing the Listener Class
	28.4 Creating the GestureDetectorCompat Instance
	28.5 Implementing the onTouchEvent() Method
	28.6 Testing the Application
	28.7 Summary

	29. Implementing Custom Gesture and Pinch Recognition on Android
	29.1 The Android Gesture Builder Application
	29.2 The GestureOverlayView Class
	29.3 Detecting Gestures
	29.4 Identifying Specific Gestures
	29.5 Installing and Running the Gesture Builder Application
	29.6 Creating a Gestures File
	29.7 Creating the Example Project
	29.8 Extracting the Gestures File from the SD Card
	29.9 Adding the Gestures File to the Project
	29.10 Designing the User Interface
	29.11 Loading the Gestures File
	29.12 Registering the Event Listener
	29.13 Implementing the onGesturePerformed Method
	29.14 Testing the Application
	29.15 Configuring the GestureOverlayView
	29.16 Intercepting Gestures
	29.17 Detecting Pinch Gestures
	29.18 A Pinch Gesture Example Project
	29.19 Summary

	30. An Introduction to Android Fragments
	30.1 What is a Fragment?
	30.2 Creating a Fragment
	30.3 Adding a Fragment to an Activity using the Layout XML File
	30.4 Adding and Managing Fragments in Code
	30.5 Handling Fragment Events
	30.6 Implementing Fragment Communication
	30.7 Summary

	31. Using Fragments in Android Studio - An Example
	31.1 About the Example Fragment Application
	31.2 Creating the Example Project
	31.3 Creating the First Fragment Layout
	31.4 Migrating a Fragment to View Binding
	31.5 Adding the Second Fragment
	31.6 Adding the Fragments to the Activity
	31.7 Making the Toolbar Fragment Talk to the Activity
	31.8 Making the Activity Talk to the Text Fragment
	31.9 Testing the Application
	31.10 Summary

	32. Modern Android App Architecture with Jetpack
	32.1 What is Android Jetpack?
	32.2 The “Old” Architecture
	32.3 Modern Android Architecture
	32.4 The ViewModel Component
	32.5 The LiveData Component
	32.6 ViewModel Saved State
	32.7 LiveData and Data Binding
	32.8 Android Lifecycles
	32.9 Repository Modules
	32.10 Summary

	33. An Android Jetpack ViewModel Tutorial
	33.1 About the Project
	33.2 Creating the ViewModel Example Project
	33.3 Reviewing the Project
	33.3.1 The Main Activity
	33.3.2 The Content Fragment
	33.3.3 The ViewModel

	33.4 Designing the Fragment Layout
	33.5 Implementing the View Model
	33.6 Associating the Fragment with the View Model
	33.7 Modifying the Fragment
	33.8 Accessing the ViewModel Data
	33.9 Testing the Project
	33.10 Summary

	34. An Android Jetpack LiveData Tutorial
	34.1 LiveData - A Recap
	34.2 Adding LiveData to the ViewModel
	34.3 Implementing the Observer
	34.4 Summary

	35. An Overview of Android Jetpack Data Binding
	35.1 An Overview of Data Binding
	35.2 The Key Components of Data Binding
	35.2.1 The Project Build Configuration
	35.2.2 The Data Binding Layout File
	35.2.3 The Layout File Data Element
	35.2.4 The Binding Classes
	35.2.5 Data Binding Variable Configuration
	35.2.6 Binding Expressions (One-Way)
	35.2.7 Binding Expressions (Two-Way)
	35.2.8 Event and Listener Bindings

	35.3 Summary

	36. An Android Jetpack Data Binding Tutorial
	36.1 Removing the Redundant Code
	36.2 Enabling Data Binding
	36.3 Adding the Layout Element
	36.4 Adding the Data Element to Layout File
	36.5 Working with the Binding Class
	36.6 Assigning the ViewModel Instance to the Data Binding Variable
	36.7 Adding Binding Expressions
	36.8 Adding the Conversion Method
	36.9 Adding a Listener Binding
	36.10 Testing the App
	36.11 Summary

	37. An Android ViewModel Saved State Tutorial
	37.1 Understanding ViewModel State Saving
	37.2 Implementing ViewModel State Saving
	37.3 Saving and Restoring State
	37.4 Adding Saved State Support to the ViewModelDemo Project
	37.5 Summary

	38. Working with Android Lifecycle-Aware Components
	38.1 Lifecycle Awareness
	38.2 Lifecycle Owners
	38.3 Lifecycle Observers
	38.4 Lifecycle States and Events
	38.5 Summary

	39. An Android Jetpack Lifecycle Awareness Tutorial
	39.1 Creating the Example Lifecycle Project
	39.2 Creating a Lifecycle Observer
	39.3 Adding the Observer
	39.4 Testing the Observer
	39.5 Creating a Lifecycle Owner
	39.6 Testing the Custom Lifecycle Owner
	39.7 Summary

	40. An Overview of the Navigation Architecture Component
	40.1 Understanding Navigation
	40.2 Declaring a Navigation Host
	40.3 The Navigation Graph
	40.4 Accessing the Navigation Controller
	40.5 Triggering a Navigation Action
	40.6 Passing Arguments
	40.7 Summary

	41. An Android Jetpack Navigation Component Tutorial
	41.1 Creating the NavigationDemo Project
	41.2 Adding Navigation to the Build Configuration
	41.3 Creating the Navigation Graph Resource File
	41.4 Declaring a Navigation Host
	41.5 Adding Navigation Destinations
	41.6 Designing the Destination Fragment Layouts
	41.7 Adding an Action to the Navigation Graph
	41.8 Implement the OnFragmentInteractionListener
	41.9 Adding View Binding Support to the Destination Fragments
	41.10 Triggering the Action
	41.11 Passing Data Using Safeargs
	41.12 Summary

	42. An Introduction to MotionLayout
	42.1 An Overview of MotionLayout
	42.2 MotionLayout
	42.3 MotionScene
	42.4 Configuring ConstraintSets
	42.5 Custom Attributes
	42.6 Triggering an Animation
	42.7 Arc Motion
	42.8 Keyframes
	42.8.1 Attribute Keyframes
	42.8.2 Position Keyframes

	42.9 Time Linearity
	42.10 KeyTrigger
	42.11 Cycle and Time Cycle Keyframes
	42.12 Starting an Animation from Code

	43. An Android MotionLayout Editor Tutorial
	43.1 Creating the MotionLayoutDemo Project
	43.2 ConstraintLayout to MotionLayout Conversion
	43.3 Configuring Start and End Constraints
	43.4 Previewing the MotionLayout Animation
	43.5 Adding an OnClick Gesture
	43.6 Adding an Attribute Keyframe to the Transition
	43.7 Adding a CustomAttribute to a Transition
	43.8 Adding Position Keyframes
	43.9 Summary

	44. A MotionLayout KeyCycle Tutorial
	44.1 An Overview of Cycle Keyframes
	44.2 Using the Cycle Editor
	44.3 Creating the KeyCycleDemo Project
	44.4 Configuring the Start and End Constraints
	44.5 Creating the Cycles
	44.6 Previewing the Animation
	44.7 Adding the KeyFrameSet to the MotionScene
	44.8 Summary

	45. Working with the Floating Action Button and Snackbar
	45.1 The Material Design
	45.2 The Design Library
	45.3 The Floating Action Button (FAB)
	45.4 The Snackbar
	45.5 Creating the Example Project
	45.6 Reviewing the Project
	45.7 Removing Navigation Features
	45.8 Changing the Floating Action Button
	45.9 Adding an Action to the Snackbar
	45.10 Summary

	46. Creating a Tabbed Interface using the TabLayout Component
	46.1 An Introduction to the ViewPager2
	46.2 An Overview of the TabLayout Component
	46.3 Creating the TabLayoutDemo Project
	46.4 Creating the First Fragment
	46.5 Duplicating the Fragments
	46.6 Adding the TabLayout and ViewPager2
	46.7 Creating the Pager Adapter
	46.8 Performing the Initialization Tasks
	46.9 Testing the Application
	46.10 Customizing the TabLayout
	46.11 Summary

	47. Working with the RecyclerView and CardView Widgets
	47.1 An Overview of the RecyclerView
	47.2 An Overview of the CardView
	47.3 Summary

	48. An Android RecyclerView and CardView Tutorial
	48.1 Creating the CardDemo Project
	48.2 Modifying the Basic Activity Project
	48.3 Designing the CardView Layout
	48.4 Adding the RecyclerView
	48.5 Adding the Image Files
	48.6 Creating the RecyclerView Adapter
	48.7 Initializing the RecyclerView Component
	48.8 Testing the Application
	48.9 Responding to Card Selections
	48.10 Summary

	49. A Layout Editor Sample Data Tutorial
	49.1 Adding Sample Data to a Project
	49.2 Using Custom Sample Data
	49.3 Summary

	50. Working with the AppBar and Collapsing Toolbar Layouts
	50.1 The Anatomy of an AppBar
	50.2 The Example Project
	50.3 Coordinating the RecyclerView and Toolbar
	50.4 Introducing the Collapsing Toolbar Layout
	50.5 Changing the Title and Scrim Color
	50.6 Summary

	51. An Android Studio Primary/Detail Flow Tutorial
	51.1 The Primary/Detail Flow
	51.2 Creating a Primary/Detail Flow Activity
	51.3 Modifying the Primary/Detail Flow Template
	51.4 Changing the Content Model
	51.5 Changing the Detail Pane
	51.6 Modifying the WebsiteDetailFragment Class
	51.7 Modifying the WebsiteListFragment Class
	51.8 Adding Manifest Permissions
	51.9 Running the Application
	51.10 Summary

	52. An Overview of Android Intents
	52.1 An Overview of Intents
	52.2 Explicit Intents
	52.3 Returning Data from an Activity
	52.4 Implicit Intents
	52.5 Using Intent Filters
	52.6 Automatic Link Verification
	52.7 Manually Enabling Links
	52.8 Checking Intent Availability
	52.9 Summary

	53. Android Explicit Intents – A Worked Example
	53.1 Creating the Explicit Intent Example Application
	53.2 Designing the User Interface Layout for MainActivity
	53.3 Creating the Second Activity Class
	53.4 Designing the User Interface Layout for SecondActivity
	53.5 Reviewing the Application Manifest File
	53.6 Creating the Intent
	53.7 Extracting Intent Data
	53.8 Launching SecondActivity as a Sub-Activity
	53.9 Returning Data from a Sub-Activity
	53.10 Testing the Application
	53.11 Summary

	54. Android Implicit Intents – A Worked Example
	54.1 Creating the Android Studio Implicit Intent Example Project
	54.2 Designing the User Interface
	54.3 Creating the Implicit Intent
	54.4 Adding a Second Matching Activity
	54.5 Adding the Web View to the UI
	54.6 Obtaining the Intent URL
	54.7 Modifying the MyWebView Project Manifest File
	54.8 Installing the MyWebView Package on a Device
	54.9 Testing the Application
	54.10 Manually Enabling the Link
	54.11 Automatic Link Verification
	54.12 Summary

	55. Android Broadcast Intents and Broadcast Receivers
	55.1 An Overview of Broadcast Intents
	55.2 An Overview of Broadcast Receivers
	55.3 Obtaining Results from a Broadcast
	55.4 Sticky Broadcast Intents
	55.5 The Broadcast Intent Example
	55.6 Creating the Example Application
	55.7 Creating and Sending the Broadcast Intent
	55.8 Creating the Broadcast Receiver
	55.9 Registering the Broadcast Receiver
	55.10 Testing the Broadcast Example
	55.11 Listening for System Broadcasts
	55.12 Summary

	56. A Basic Overview of Java Threads, Handlers and Executors
	56.1 An Overview of Threads
	56.2 The Application Main Thread
	56.3 Thread Handlers
	56.4 A Threading Example
	56.5 Building the App
	56.6 Creating a New Thread
	56.7 Implementing a Thread Handler
	56.8 Passing a Message to the Handler
	56.9 Java Executor Concurrency
	56.10 Working with Runnable Tasks
	56.11 Shutting down an Executor Service
	56.12 Working with Callable Tasks and Futures
	56.13 Handling a Future Result
	56.14 Scheduling Tasks
	56.15 Summary

	57. An Overview of Android Services
	57.1 Started Services
	57.2 Intent Service
	57.3 Bound Service
	57.4 The Anatomy of a Service
	57.5 Controlling Destroyed Service Restart Options
	57.6 Declaring a Service in the Manifest File
	57.7 Starting a Service Running on System Startup
	57.8 Summary

	58. Implementing an Android Started Service – A Worked Example
	58.1 Creating the Example Project
	58.2 Designing the User Interface
	58.3 Creating the Service Class
	58.4 Adding the Service to the Manifest File
	58.5 Starting the Service
	58.6 Testing the IntentService Example
	58.7 Using the Service Class
	58.8 Creating the New Service
	58.9 Launching the Service
	58.10 Running the Application
	58.11 Adding Threading to the Service
	58.12 Summary

	59. Android Local Bound Services – A Worked Example
	59.1 Understanding Bound Services
	59.2 Bound Service Interaction Options
	59.3 A Local Bound Service Example
	59.4 Adding a Bound Service to the Project
	59.5 Implementing the Binder
	59.6 Binding the Client to the Service
	59.7 Completing the Example
	59.8 Testing the Application
	59.9 Summary

	60. Android Remote Bound Services – A Worked Example
	60.1 Client to Remote Service Communication
	60.2 Creating the Example Application
	60.3 Designing the User Interface
	60.4 Implementing the Remote Bound Service
	60.5 Configuring a Remote Service in the Manifest File
	60.6 Launching and Binding to the Remote Service
	60.7 Sending a Message to the Remote Service
	60.8 Summary

	61. An Android Notifications Tutorial
	61.1 An Overview of Notifications
	61.2 Creating the NotifyDemo Project
	61.3 Designing the User Interface
	61.4 Creating the Second Activity
	61.5 Creating a Notification Channel
	61.6 Creating and Issuing a Notification
	61.7 Launching an Activity from a Notification
	61.8 Adding Actions to a Notification
	61.9 Bundled Notifications
	61.10 Summary

	62. An Android Direct Reply Notification Tutorial
	62.1 Creating the DirectReply Project
	62.2 Designing the User Interface
	62.3 Creating the Notification Channel
	62.4 Building the RemoteInput Object
	62.5 Creating the PendingIntent
	62.6 Creating the Reply Action
	62.7 Receiving Direct Reply Input
	62.8 Updating the Notification
	62.9 Summary

	63. Foldable Devices and Multi-Window Support
	63.1 Foldables and Multi-Window Support
	63.2 Using a Foldable Emulator
	63.3 Entering Multi-Window Mode
	63.4 Enabling and using Freeform Support
	63.5 Checking for Freeform Support
	63.6 Enabling Multi-Window Support in an App
	63.7 Specifying Multi-Window Attributes
	63.8 Detecting Multi-Window Mode in an Activity
	63.9 Receiving Multi-Window Notifications
	63.10 Launching an Activity in Multi-Window Mode
	63.11 Configuring Freeform Activity Size and Position
	63.12 Summary

	64. An Overview of Android SQLite Databases
	64.1 Understanding Database Tables
	64.2 Introducing Database Schema
	64.3 Columns and Data Types
	64.4 Database Rows
	64.5 Introducing Primary Keys
	64.6 What is SQLite?
	64.7 Structured Query Language (SQL)
	64.8 Trying SQLite on an Android Virtual Device (AVD)
	64.9 The Android Room Persistence Library
	64.10 Summary

	65. The Android Room Persistence Library
	65.1 Revisiting Modern App Architecture
	65.2 Key Elements of Room Database Persistence
	65.2.1 Repository
	65.2.2 Room Database
	65.2.3 Data Access Object (DAO)
	65.2.4 Entities
	65.2.5 SQLite Database

	65.3 Understanding Entities
	65.4 Data Access Objects
	65.5 The Room Database
	65.6 The Repository
	65.7 In-Memory Databases
	65.8 Database Inspector
	65.9 Summary

	66. An Android TableLayout and TableRow Tutorial
	66.1 The TableLayout and TableRow Layout Views
	66.2 Creating the Room Database Project
	66.3 Converting to a LinearLayout
	66.4 Adding the TableLayout to the User Interface
	66.5 Configuring the TableRows
	66.6 Adding the Button Bar to the Layout
	66.7 Adding the RecyclerView
	66.8 Adjusting the Layout Margins
	66.9 Summary

	67. An Android Room Database and Repository Tutorial
	67.1 About the RoomDemo Project
	67.2 Modifying the Build Configuration
	67.3 Building the Entity
	67.4 Creating the Data Access Object
	67.5 Adding the Room Database
	67.6 Adding the Repository
	67.7 Modifying the ViewModel
	67.8 Creating the Product Item Layout
	67.9 Adding the RecyclerView Adapter
	67.10 Preparing the Main Fragment
	67.11 Adding the Button Listeners
	67.12 Adding LiveData Observers
	67.13 Initializing the RecyclerView
	67.14 Testing the RoomDemo App
	67.15 Using the Database Inspector
	67.16 Summary

	68. Accessing Cloud Storage using the Android Storage Access Framework
	68.1 The Storage Access Framework
	68.2 Working with the Storage Access Framework
	68.3 Filtering Picker File Listings
	68.4 Handling Intent Results
	68.5 Reading the Content of a File
	68.6 Writing Content to a File
	68.7 Deleting a File
	68.8 Gaining Persistent Access to a File
	68.9 Summary

	69. An Android Storage Access Framework Example
	69.1 About the Storage Access Framework Example
	69.2 Creating the Storage Access Framework Example
	69.3 Designing the User Interface
	69.4 Adding the Activity Launchers
	69.5 Creating a New Storage File
	69.6 Saving to a Storage File
	69.7 Opening and Reading a Storage File
	69.8 Testing the Storage Access Application
	69.9 Summary

	70. Video Playback on Android using the VideoView and MediaController Classes
	70.1 Introducing the Android VideoView Class
	70.2 Introducing the Android MediaController Class
	70.3 Creating the Video Playback Example
	70.4 Designing the VideoPlayer Layout
	70.5 Downloading the Video File
	70.6 Configuring the VideoView
	70.7 Adding the MediaController to the Video View
	70.8 Setting up the onPreparedListener
	70.9 Summary

	71. Android Picture-in-Picture Mode
	71.1 Picture-in-Picture Features
	71.2 Enabling Picture-in-Picture Mode
	71.3 Configuring Picture-in-Picture Parameters
	71.4 Entering Picture-in-Picture Mode
	71.5 Detecting Picture-in-Picture Mode Changes
	71.6 Adding Picture-in-Picture Actions
	71.7 Summary

	72. An Android Picture-in-Picture Tutorial
	72.1 Adding Picture-in-Picture Support to the Manifest
	72.2 Adding a Picture-in-Picture Button
	72.3 Entering Picture-in-Picture Mode
	72.4 Detecting Picture-in-Picture Mode Changes
	72.5 Adding a Broadcast Receiver
	72.6 Adding the PiP Action
	72.7 Testing the Picture-in-Picture Action
	72.8 Summary

	73. Making Runtime Permission Requests in Android
	73.1 Understanding Normal and Dangerous Permissions
	73.2 Creating the Permissions Example Project
	73.3 Checking for a Permission
	73.4 Requesting Permission at Runtime
	73.5 Providing a Rationale for the Permission Request
	73.6 Testing the Permissions App
	73.7 Summary

	74. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	74.1 Playing Audio
	74.2 Recording Audio and Video using the MediaRecorder Class
	74.3 About the Example Project
	74.4 Creating the AudioApp Project
	74.5 Designing the User Interface
	74.6 Checking for Microphone Availability
	74.7 Initializing the Activity
	74.8 Implementing the recordAudio() Method
	74.9 Implementing the stopAudio() Method
	74.10 Implementing the playAudio() method
	74.11 Configuring and Requesting Permissions
	74.12 Testing the Application
	74.13 Summary

	75. Working with the Google Maps Android API in Android Studio
	75.1 The Elements of the Google Maps Android API
	75.2 Creating the Google Maps Project
	75.3 Obtaining Your Developer Signature
	75.4 Adding the Apache HTTP Legacy Library Requirement
	75.5 Testing the Application
	75.6 Understanding Geocoding and Reverse Geocoding
	75.7 Adding a Map to an Application
	75.8 Requesting Current Location Permission
	75.9 Displaying the User’s Current Location
	75.10 Changing the Map Type
	75.11 Displaying Map Controls to the User
	75.12 Handling Map Gesture Interaction
	75.12.1 Map Zooming Gestures
	75.12.2 Map Scrolling/Panning Gestures
	75.12.3 Map Tilt Gestures
	75.12.4 Map Rotation Gestures

	75.13 Creating Map Markers
	75.14 Controlling the Map Camera
	75.15 Summary

	76. Printing with the Android Printing Framework
	76.1 The Android Printing Architecture
	76.2 The Print Service Plugins
	76.3 Google Cloud Print
	76.4 Printing to Google Drive
	76.5 Save as PDF
	76.6 Printing from Android Devices
	76.7 Options for Building Print Support into Android Apps
	76.7.1 Image Printing
	76.7.2 Creating and Printing HTML Content
	76.7.3 Printing a Web Page
	76.7.4 Printing a Custom Document

	76.8 Summary

	77. An Android HTML and Web Content Printing Example
	77.1 Creating the HTML Printing Example Application
	77.2 Printing Dynamic HTML Content
	77.3 Creating the Web Page Printing Example
	77.4 Removing the Floating Action Button
	77.5 Removing Navigation Features
	77.6 Designing the User Interface Layout
	77.7 Accessing the WebView from the Main Activity
	77.8 Loading the Web Page into the WebView
	77.9 Adding the Print Menu Option
	77.10 Summary

	78. A Guide to Android Custom Document Printing
	78.1 An Overview of Android Custom Document Printing
	78.1.1 Custom Print Adapters

	78.2 Preparing the Custom Document Printing Project
	78.3 Creating the Custom Print Adapter
	78.4 Implementing the onLayout() Callback Method
	78.5 Implementing the onWrite() Callback Method
	78.6 Checking a Page is in Range
	78.7 Drawing the Content on the Page Canvas
	78.8 Starting the Print Job
	78.9 Testing the Application
	78.10 Summary

	79. An Introduction to Android App Links
	79.1 An Overview of Android App Links
	79.2 App Link Intent Filters
	79.3 Handling App Link Intents
	79.4 Associating the App with a Website
	79.5 Summary

	80. An Android Studio App Links Tutorial
	80.1 About the Example App
	80.2 The Database Schema
	80.3 Loading and Running the Project
	80.4 Adding the URL Mapping
	80.5 Adding the Intent Filter
	80.6 Adding Intent Handling Code
	80.7 Testing the App
	80.8 Creating the Digital Asset Links File
	80.9 Testing the App Link
	80.10 Summary

	81. An Android Biometric Authentication Tutorial
	81.1 An Overview of Biometric Authentication
	81.2 Creating the Biometric Authentication Project
	81.3 Configuring Device Fingerprint Authentication
	81.4 Adding the Biometric Permission to the Manifest File
	81.5 Designing the User Interface
	81.6 Adding a Toast Convenience Method
	81.7 Checking the Security Settings
	81.8 Configuring the Authentication Callbacks
	81.9 Adding the CancellationSignal
	81.10 Starting the Biometric Prompt
	81.11 Testing the Project
	81.12 Summary

	82. Creating, Testing and Uploading an Android App Bundle
	82.1 The Release Preparation Process
	82.2 Android App Bundles
	82.3 Register for a Google Play Developer Console Account
	82.4 Configuring the App in the Console
	82.5 Enabling Google Play App Signing
	82.6 Creating a Keystore File
	82.7 Creating the Android App Bundle
	82.8 Generating Test APK Files
	82.9 Uploading the App Bundle to the Google Play Developer Console
	82.10 Exploring the App Bundle
	82.11 Managing Testers
	82.12 Rolling the App Out for Testing
	82.13 Uploading New App Bundle Revisions
	82.14 Analyzing the App Bundle File
	82.15 Summary

	83. An Overview of Android Dynamic Feature Modules
	83.1 An Overview of Dynamic Feature Modules
	83.2 Dynamic Feature Module Architecture
	83.3 Creating a Dynamic Feature Module
	83.4 Converting an Existing Module for Dynamic Delivery
	83.5 Working with Dynamic Feature Modules
	83.6 Handling Large Dynamic Feature Modules
	83.7 Summary

	84. An Android Studio Dynamic Feature Tutorial
	84.1 Creating the DynamicFeature Project
	84.2 Adding Dynamic Feature Support to the Project
	84.3 Designing the Base Activity User Interface
	84.4 Adding the Dynamic Feature Module
	84.5 Reviewing the Dynamic Feature Module
	84.6 Adding the Dynamic Feature Activity
	84.7 Implementing the launchIntent() Method
	84.8 Uploading the App Bundle for Testing
	84.9 Implementing the installFeature() Method
	84.10 Adding the Update Listener
	84.11 Using Deferred Installation
	84.12 Removing a Dynamic Module
	84.13 Summary

	85. Working with Material Design 3 Theming
	85.1 Material Design 2 vs Material Design 3
	85.2 Understanding Material Design Theming
	85.3 Material Design 2 Theming
	85.4 Material Design 3 Theming
	85.5 Building a Custom Theme
	85.6 Summary

	86. A Material Design 3 Theming and Dynamic Color Tutorial
	86.1 Creating the ThemeDemo Project
	86.2 Designing the User Interface
	86.3 Migrating to Material Design 3
	86.4 Building a New Theme
	86.5 Adding the Theme to the Project
	86.6 Enabling Dynamic Color Support
	86.7 Summary

	87. An Overview of Gradle in Android Studio
	87.1 An Overview of Gradle
	87.2 Gradle and Android Studio
	87.2.1 Sensible Defaults
	87.2.2 Dependencies
	87.2.3 Build Variants
	87.2.4 Manifest Entries
	87.2.5 APK Signing
	87.2.6 ProGuard Support

	87.3 The Property and Settings Gradle Build File
	87.4 The Top-level Gradle Build File
	87.5 Module Level Gradle Build Files
	87.6 Configuring Signing Settings in the Build File
	87.7 Running Gradle Tasks from the Command-line
	87.8 Summary

	Index
	_Ref381877478
	_Ref382489559
	_Ref382490730
	_GoBack

