Android Studio Chipmunk
Essentials

Java Edition

Android Studio Chipmunk Essentials - Java Edition
ISBN-13: 978-1-951442-48-4
© 2022 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

1. INEFOAUCHION ..ceeenreieieeeiceeeereeecsneeeseeeesaeesssneesssesssssssssnssssssasssnsssssnssssssssssnssssanssssssasssnssssssessssessssnssssnsssssnanss 1
1.1 Downloading the Code SAMPIEScccreureeureurineiriirieirerseeneireerei et sesseseens 1
1.2 FEEADACK ...ttt sttt bttt b bbb b s s assssebebebebeb s s s ssssasansesetesas 1
1.3 B At ettt b e b et et a e e a e b ae b et et et et e b s be b et et et e s 2

2. Setting up an Android Studio Development Environment............cocevuereereencenes

2.1 System ReqUirements.........ccoccceuviieiricriinicininiciniieceiceeensessaesensssees

2.2 Downloading the Android Studio Package

2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene
2.3.1 Installation 0n WINAOWSccueureerirrieriirieeireeneeseeenetsese e sseesesesssasesessssessesssssssesssasesens 4
2.3.2 Installation 0n MACOSc.cveiireceiericeiree et ese s ese s sse s sse s ansns 4
2.3.3 Installation 0N LINUX.......cccvuureemirreerierieniireeeiseeeneesesesessesessssesesssssesessessssessssssessssssesssssssens 5

2.4 The Android Studio Setup WizZard.......ccc.eveeurireecurenicinineeineeieinecieseeietsescsetseess e eeesesseesesseneaes 5

2.5 Installing Additional Android SDK Packagescccceeueueecrnimeererieeremneeeeneeeeneeeenseeenessesenne 6

2.6 Making the Android SDK Tools Command-line Accessible...........ccoeuviemrerreeenernecenernecnnernennn. 9
2.6.1 WINAOWS 8.1 ..ot sseasesessessese s ese s ese s ese s esesssasssssssassscsnssssssnsassens 9
2.6.2 WINAOWS 10 ...ttt sse s sse s s sse s sse s sse s sse s ssssesessssesscsens
2.6.3 WINAOWS 11 oot sse s ese s s sse s sse s sessessesesens
2.0.4 LINUX oottt sttt
2.6.5 MACOS.......c it

2.7 Android Studio Memory Management
2.8 Updating Android Studio and the SDK
2.9 SUINIMATY ottt st b s

3. Creating an Example Android App in Android Studio.........cocevevieviienenriniiniisininenniniiniisenenensenninenne

3.1 ADOUL the PIOJECL c.ceuveeuicicicireieecireiseetneieeeirei sttt sttt sttt
3.2 Creating a New AnNdroid ProjJecCt.......ocveurirnciniurencineineeineineeinesseesessesessessesessessesessessesessesscsenns
3.3 Creating an ACHIVILYcccciiiiiiiiiiicc e
3.4 Defining the Project and SDK Settingscecveureurereureurereireinereerersenessessesessessesessessesessessescssesscsenns
3.5 Modifying the Example APPIiCAtion......c.ccoeureurereureurecireuneneineiseetrerneessesseseasessesessessesessessesessesscsenns
3.6 Modifying the User INtErfacec..eveureeeereureinineineinicireirecineiseereisee ettt ssessesesessesenns
3.7 Reviewing the Layout and Resource Files........cocvurrneininencineinineineinecineiseeeneiseessessesessessesenne
3.8 AddINg INtEIaCTION ..cevuievricireeeecirctrectret ettt b sttt ettt eae
3.9 SUMIMATY w.oviiiiiiitc et

4. Creating an Android Virtual Device (AVD) in Android Studio

4.1 About Android Virtual Devicesc.cocoeuverrecmrenneee
4.2 Starting the Emulator.........ccocecvevenenecncrnecnnenne.
4.3 Running the Application in the AVD...........cc........
4.4 Running on Multiple Devices........cccocveueurerrecurenneee
4.5 Stopping a RUNNING APPICAtIONcevuevieeeerireieireecierreeeeeeeeeeneseeesseseesensese s s ssesensessesennes
4.6 Supporting Dark TREMIE..........c.veverieeieirereeeirereeeieee et nsensese s eses s sesensessesensessesenaes
4.7 Running the Emulator in a Separate WindoW..........ccccveeeeireeenerneeenerneeeenennenenenreenensesenensesennes
4.8 Enabling the Device FIame ..ot esessesessessesessessesessessesensessesenses

Table of Contents

5. Using and Configuring the Android Studio AVD Emulator

4.9 AVD Command-line Creation ...
4.10 Android Virtual Device Configuration Files...........cccocveenerreeenerrecenerneeenenneeenresenenseneeennenes
4.11 Moving and Renaming an Android Virtual Device
4.12 SUMMATY .ot

5.1 The Emulator ENVIFONMENTc.cuiiiiiiciieiiieriiiietsesese s ssesssssssssssssse s ssenas
5.2 EMUIAtor TOOIDAr OPLiONS ...ccuueeeecereurencireieeeireinecisetsesetsesseseasessese s ssesessessesessessesessessesesesecas
5.3 Working in Zoom MOGEcucueuucuiciniiiiiiieiseisessese e s sse s ssssss s ssenas
5.4 Resizing the EMulator WIndOW.......c.cc.ccciiiiiniiccceeeese e senas
5.5 Extended COntrol OPLIONSc.cuecureurecirevrecireineeiresseetsesseessessesessessesessessesessessessssessesssessesesesscas
5.5.1 LOCAION ...ttt bbbt
5.5.2 DISPLAYS...triuiriiririniirieeieireeeieiseseseisese st sese i sese ettt
5.5.3 CIULAT ...ttt s
5.5.4 BAtOIY..ocuiiiiiiiiicicc s
5.5.5 CIMEI A ..ottt
5.5.6 PRONE ... s
5.5.7 Directional Pad.........ccccuiuiiiiiiiiciciciicceicccicsise s
5.5.8 Microphone.........
5.5.9 Fingerprint..............
5.5.10 Virtual Sensors
5.5.11 Snapshots...............
5.5.12 Record and Playbackcccccoeecureurecuneunnces
5.5.13 GOOGLE PLaYoccumimiiiiiiiiiccic e s
5.5.14 SEHHNGS ...ouvviiiriiiciic s
5.5.15 HEIP vttt st
5.6 Working with SNapshots..........ccceiiiiciiiicc e
5.7 Configuring Fingerprint EMUlation ..o
5.8 The Emulator in Tool Window Mode...........cccuiiniiniiniiiinernincicicie e senas
5.9 SUITIMATY ..ottt bbb

6. A Tour of the Android Studio USer INTEITACEcccecueeeeeerrveneeerirereesisrneeesessneessssssnessssssssessssssssssssssasssssssns

7. Testing Android Studio Apps on a Physical Android Device

ii

6.1 The WElCome SCreemn ... s
6.2 The Main Window
6.3 The Tool Windows ...,
6.4 Android Studio Keyboard Shortcuts..................
6.5 Switcher and Recent Files Navigation
6.6 Changing the Android Studio Theme
0.7 SUITITIATY ..ottt b bbb bbbt

7.1 An Overview of the Android Debug Bridge (ADB).........cccvcuviuneincucenciciieieinercseseeeseeenas
7.2 Enabling USB Debugging ADB on Android Devices...........cucvcuvcucucierrieenniuneeniniesessesenenenns
7.2.1 macOS ADB COnfIGUrationc.ccccuceeiuriuriuniuniuniinerieseesesessessessessssesssssssssssssssesssssesssssenas
7.2.2 Windows ADB CONfIgUIAtioN.c.cucuiuiuiuniunimniineiieseie e ssessessessssesssssssssesssssesssssesssssenas
7.2.3 Linux adb Configuration ... ssssenas
7.3 Resolving USB CoNNection ISSUES ..o ssessessessssssssssse s ssenas
7.4 Enabling Wireless Debugging on Android Devicesocuviuvcuvcucencicinieenieneiniesesseseseeenns
7.5 Testing the adb Connection
7.6 SUITIITIATY ...ooovniniececicicneieneses ettt bbb bbb bbb s bbb ns

Table of Contents

8. The Basics of the Android Studio Code EdItOr........uciierrvveeerrrieeeerrrreeeesssneeesssssseesssssssesessssnsessssssssssssssas 63

8.1 The Android Studio EdItOr. ..o eaeeae
8.2 Splitting the Editor Window
8.3 Code Completion.......c.ccceerecurereucnee

8.4 Statement Completion..........cecuuee..

8.5 Parameter Information............c........

8.6 Parameter Name Hintsccoovviiiiiicc s
8.7 COde GNETALION ...t
8.8 COde FOLAING ...t
8.9 Quick Documentation LOOKUPcccvueeueureiueirincreineeeeireeersieietseesessessaetsesesesseesesseseseessacssssesesseneans 70
8.10 COde REFOIMALLING......ucvuereerereeeiriereritrerteseneese e ssesaessesssase e e s s s ssnsesassssnesnsens 71
8.11 Finding Sample Code ...t 71
8.12 LiVe TeMPIALES «..cucvuvreueeiicirieecieeeicirieie ettt seses ettt sttt s st ese et saseseseeasacs 72
8.13 SUIMIMATIY ..ttt bbb 72

9. An Overview of the ANAroid AXCRILECHULEuuueeeeeeeeeeeiiiiciirierrereeeeeeeeeeeesrreesseeeeeeessssssssssssssssesesessssssnns 73

9.1 The Android Software Stack
9.2 The Linux Kernel..........ccccceeeennnnnee.
9.3 Android Runtime — ART...................
9.4 Android Libraries.........cccccevvvevevennnen.
9.4.1 C/C++ Librariesc.ccecevevererenene.
9.5 Application Framework....................
9.6 APPLICALIONS «.ecvrveeeireiecireirectrei ettt bttt ettt bbb nas
0.7 SUIMIMATY ..ottt bbb bbb bbb bbb

10. The Anatomy of an Android APPLiCAtioncccceerreeiiirinneciniininnininecncstseecee st sssessessessessesses 77

10.1 ANAIOId ACHVITIES ...veveverereieieceectcteretetete e ettt et s s s bbb bbb sasssasasanaesesenes 77
10.2 ANATrOid Fragments........ccouecueeueureuiirememensenensensersenseessssessessssesssssesessessessessessessessessessssesssssesnes 77
10.3 ANAIOId INTENES ..vvvvrreeeiceceictetetet ettt sttt st et s bbb bbb s sasasasasanaesesenen 78
10.4 BroadCast INTENLES.......cceeiririererereeeeistetesereestsse e e sesesssssesesesessssssssesesesassssssesesesesesssssssesesesesessnnns 78
10.5 BroadCast RECEIVETSccovviruererereeenisteteseseesissesetesesesssssesesesessssssssssesesassssssssesesesessssssssssesesessssnns 78
10.6 ANAIOIA SEIVICES ...v.vvvereeeieieeeeteteteteretee et b ettt et bbb s s s e bbb bbb sasasasasasassetenes 78
10.7 CONLENE PTOVIAETS ..vveveeeeieiieietetcieiieteteteseeeiste et sesssssssesese e ssssssssesesesassssssesesesesesssssssesesesessssnnns 79
10.8 The Application MAanifest..........cveiureuerererererenenieceeneeessesesseseesesessessessessessessensessessessessssssesnes 79
10.9 APPLiCAtion RESOUICESceucerieecriniieiricieireeietreseieeseese et sasese et sesseasaesseaesesseasssssescsnen 79
10.10 APPLICAtiON CONEXL...c.cuveucrrueecrreiietricieereneueeresesesseesesseseseeseaessaesessestaessesesesseassessesesesseasssssescses 79

1011 SUIMIMATY cocviiieiiinciiincnitcss it ses bbb s bbb 79
11. An Overview of Android View Binding.........cocevevuerimnininisisinsinninisisisnninisiscssssisiinsssssecs 81
11.1 FINA VIEW DY I coceiiiicicicicicicireicctceectreeetetseseee st sese et seseese st sesessessesessessesesssssesesacs 81
11.2 VIEW BINAING orevviteeeicireieicieieietneicictreeetetsese et sesetet st sese st seseese s st sesessessesessessesesssssesesncs 81
11.3 Converting the AndroidSample PIrOJECtcvcureuererreeeererreeeinerreeeeserrereesesseseesesseseesesseseesessesenses 82
11.4 Enabling VIew BINAING......ccocveeureureuemnerrereenerreeeietneeeiseeseseeesseseesessesesessesesessesessessesessessesesessesesses 82
11.5 USING VIEW BINAINGvuvreveeiereieireieietreeeietrereeetseseeetseseeesseseesesseseesessesessessesessessesessessesessessesesss 82
11.6 ChOOSING QN OPHOI c..cuvreeerceeeeietreeeieeseeeeetsereesetseseeetsese et sesessesseseesessesessessesessessesessessesessessesesaes 83
11.7 View Binding in the BOOK EXAMPLESc.covueueuerrereinerrereieireeeietreeeietseneeessesessesseseesesseseesessesennes 83
11.8 Migrating a Project t0 VIEW Bindingcocveevveureeeenerreueenerreeeinenneeeeetsereesesseseeesseseesessesessessesennes 84
11,9 SUIMMATY ¢ttt bbb bbbt 85
12. Understanding Android Application and Activity Lifecycles........cccovueververruiiinrersucnennerncnscnsensncnennne 87
12.1 Android Applications and Resource Management.............cecveereueerererseremserensersensecsssssesnenns 87

iii

Table of Contents

12.2 ANAroid PrOCESS STALES ...ccuvreeermieecrreriecnsierieensetsesesseasesesseasese e s sssssesesssssssesssasssesssassesssssssenseses
12.2.1 FOreground PIOCESScvueecrreueererrirreeireireetnessesesessesessessesessesseseaesesesessesessessesesessesesesens
12.2.2 Visible Process
12.2.3 Service Process
12.2.4 Background Process..........ceceeuneurecureunennn.
12.2.5 Empty Process

12.3 Inter-Process Dependenciescoceveveeenee

12.4 The ACtiVItY LIfECYCL....c.cviiieceireccicirecceeeteeeeeee st ese s sse s nsenssanes

12.5 The ACHVILY SEACK. ... ittt sese s ssa s sese s ese s sse s s nsenssanes

12.6 ACHIVILY SEAtES ...cucuieiiiiiiiciii s

12.7 Configuration CRANEEScccvureeuirrecrirriereireeseiseeesteeese s ssasesesssssesesssasssesssasssesssssssenseses

12.8 Handling State Changeccocuveeueureerirreereireeneineeeseenesesssessesssesesesssssesesssssssessssessesesssseneses

12.9 SUIMIMATY oot bbb bbb

13. Handling Android Activity State Changes...........ccccevervuerenrirrnsinsinnenininncsenenscseseesesesessscsesssnes 93

13.1 New vs. Old Lifecycle TEChNIQUES.......ccoeureveueereeeieireeeieireieieiseneeeesesesessesessessesesessesessessesesessenes
13.2 The Activity and Fragment Classes..........ccocceuuruiuniurimiinemneiseseeeeeesesscesessessssssssssssesssasessesesssae
13.3 Dynamic State vs. Persistent State..........ccocoeirriiniiiiieiiiiiccieceess e
13.4 The Android Lifecycle Methods.........ccoccreuene.
13.5 Lifetimesccocuveueuiurerniireneieicieieiseceecseeaennens
13.6 Foldable Devices and Multi-Resume...............
13.7 Disabling Configuration Change Restarts
13.8 Lifecycle Method Limitations............cceeeerevenee
13.9 SUMMATY ..ttt

14. Android Activity State Changes by EXample........cccovvuiriivninininininininininiinicniienens. 101

14.1 Creating the State Change EXample PrOjectccvvevcueemncrniemernecmrenneenereenenseeenersesensenens 101
14.2 Designing the User INterface ..o ssesessessesessesnens 102
14.3 Overriding the Activity Lifecycle Methodscoceeurercrnicencrnicecnneccrneceneeneneeenenene 102
14.4 Filtering the Logcat Panel..........cccciueeeiieecrniieeernieecreieneneeeeeseseeensesessesesessessesessessesesesens 104
14.5 Running the APPLICAtIONcvureeuiuercriiercreeeeereeerereie e ssese e ssesessessesssensens 105
14.6 Experimenting with the ACHVILYcocccvirrcrnieeerniecncereeeeeee e seneens 106
14.7 SUININATY oottt as 107

15. Saving and Restoring the State of an Android ACtiVityccoccevevvirreiinrnncninnnncnsnnecscnesnncsesenaees 109

15.1 Saving DynNamic Statecoviiiiiimiinicicii s 109
15.2 Default Saving of User Interface State ... ssesesees 109
15.3 The BUNALE CLaSS ..ot st saes 110
15.4 SaVING the STALE.......c.cviiiiiicicicc e s 111
15.5 RESLOrING the SALecoiuuiiciicicci et ss st saes 112
15.6 Testing the APPLICALION........ccuiuciciciciciiiciceeee et saes 112
15.7 SUIMMATY ..ttt et s st 112

16. Understanding Android Views, View Groups and Layoutsccocevevesresrisnsensesessesesessessessessesesenne 115

16.1 Designing for Different Android DeVICeS.........cceueureerriuememnieemnernenemerneeeneneeeersesensessesensenens
16.2 VIEWS QNd VIEW GIOUPS c.ceuvueeeereeirineieieneesiseaeistesetseesesseesesseaesessessssssesesessesssssesesssnssesssnesesscnces
16.3 Android Layout MaANAELScccueueeeemiurecreuemseresemseresemsesesessessessssesesssesesssessesessessesessesens
16.4 The View Hierarchycocooecneuvecmniurecrneeennee
16.5 Creating User Interfaces.......cccoceeeeuneuvecrneerence
16.6 SUIMIMNATY ..ottt bbb bbb bbb s as

17. A Guide to the Android Studio Layout Editor Tool

v

Table of Contents

17.1 Basic vs. Empty Activity TemPLatesccovvveuiereeriereemierienerneeeneesesenseesesessssesesessesessessesens 119
17.2 The Android Studio Layout EItOrcccvreeriurecrniereceierieneieeeeneeeeeeneesesenssesessssssesessesens 123
17.3 DESIZN MOME......cevurierniriecieireeeneireeeeneaseeesseaseae s sseasese st ese s sae s ese s sasas s sasasnscsassssscns 123
17.4 THe Paletteouieiieiiiiiiiiiic s ss s 124
17.5 Design Mode and Layout VIEWS.......c..cewceeureeriureecrniuneenieseenessesensessssensesssesssssssessessssesessssens 125

17.6 NIGHE MOAE ...ttt ese s ese st sse s sse st sse st eassasnscsassssacen 126
17.7 COde MOdE.....ouiiiiiiiiiiic s 126
17.8 SPLt MOAE ...ttt sseseee s sse st ese st nsc s aenacnn 127
17.9 Setting AtIIDULES......cecvuiveeereireeeietreeertereeerees et sas s ese s sse e s sssas s sssasnsessssesscns 127
17.10 TIANSTOIINS ...ttt eae st ese s sae s sse st sae s esc s aenacns 129
17.11 ToOlS ViSIDIlity TOGGLES.......cveuemireeernirriecrnireeeeeereeeseieeesseaseee st ese e s sssasesesssssnsessssssses 130
17.12 ConVErting VIEWS.....coviiiimiiiiiiiiiiici s 132
17.13 Displaying Sample Dataccccveeeiureemerreeriineenineeseeeeenessesessessssesssssssesssssesesessssessessssens 132
17.14 Creating a Custom Device DefINitionccvvureeriureceiureerirneeniereeneesesensseesesseseesesessesens 133
17.15 Changing the Current DEeVICe........ccuuermrecrrirreerieneenieeeeneseesesseaeesenssesssesssssssessssessesessssens

17.16 Layout Validation (MUlti PreVIEW)ccovureeriurecriurecrierieneiseeeneesesensesesessssesesessesessessesens

17.17 SUININATY w.cuiiiiiiiiiiri bbb bbb bbb bbb bbbt

18. A Guide to the Android ConstraintLayout

18.1 How ConstraintLayout Works
18.1.1 Constraints........ccccvuverevrerucnnee.
18.1.2 Margins
18.1.3 Opposing Constraints..............

18.1.4 Constraint Biascccoceuiiiiiiiiiciiici s

18.1.5 CRAINS ... s s

18.1.6 Chainl SLYLES....cueuivieeencireieeeireieeeret sttt sttt bttt st
18.2 Baseline ALIGNMENT ..ot ees
18.3 Configuring Widget DIMeNSIONS.........cccucucuumumrmmeiimniiimiesessssse s ssesse s ssssssssssssssssens
18.4 GUIAElINE HEIPETcueuiieiaireeeiireecitireici ittt seaeen
18.5 GIOUD HEIPET ..ottt st seaeen
18.6 BAITIEr HEIPET ...ecvuirieiniiecictreiceisei ettt ettt
18.7 FLOW HEIPET ...ereeiriieieireectctreieisee ettt s st
18.8 RALIOS ...ttt bbbt
18.9 ConstraintLayout AdVANTAZeSocueiucucucueicieiseiirieeiieiesisessss s s ss s ssesassasssens
18.10 ConstraintLayout AVAIlabDility........ccoceeeireureeeeniinieiniinicineirceisieeiseseeeesese e ssessesesseseeaees
18,11 SUIMIMATY ..ttt bt bbbt

19. A Guide to Using ConstraintLayout in Android Studioceceevveeririsnsniscsnininnsnescneseeesennees 147

19.1 Design and Layout VIEWS........cceureeeiureecrerreeerieneeeseisesessessesessessesessessesesssssesesssssesessssssessessssens 147
19.2 AUtocoNNect MOAE ... 148
19.3 INfErence MOde.........oimimiiiiiicii s 149
19.4 Manipulating Constraints Manually.............cccerenireceniirecenierereeeeeneeeeesseseeesesensens 149
19.5 Adding Constraints in the INSPECtOrc.cvveuiureeriirecriirieieeeneeseeneeeesessseesesesenseneesesens 150
19.6 Viewing Constraints in the Attributes Window........ccccveureeernerrecrnierecrninecnneeeecnneeseenseeeneens 151
19.7 Deleting CONSIIAINESvevmereeermerreeensiereeensesseeessesseeesseaesesseasesesssssssessessssessessssessssssesssssssesssssssens 152
19.8 Adjusting Constraint BIasccocveeeiureererreerirneerieeerieesenessesensessssesssssssesssssesesssssssesesessens 152
19.9 Understanding ConstraintLayout Margins..........cccveeeeeceeereererreememreereesesersessesessessnsenessnsens 153
19.10 The Importance of Opposing Constraints and Biascccueeeerreureccenierecrnierecrneeeecnseeneens 154
19.11 Configuring Widget DImMeNSIONS.........ecceurureeeriereeemiureersiereeeneseeeenseesesenseasssesssssssesessssesessssens 156
19.12 Design Time Tools POSIIONINGccuvueeermirreeermiiriecriireeenieeeenesseeenseesesenseasesessasesesessesessessesens 157

Table of Contents

19.13 AAding GUIAELINEScecvmrveeeemiiricriereeiieeeneeeeereeeese e ssese e seesesseseessseseeas
19.14 AAdINg BAITIETScuvreeeeriereerniereeerieeeeenieeeseseee e ese s ssesessssesesessesessnesnees
19.15 Adding @ Group........ceeeeeeereecrerrecreeeecreeennens
19.16 Working with the Flow Helper.........c.ccccccecuunce.
19.17 Widget Group Alignment and Distribution........
19.18 Converting other Layouts to ConstraintLayout
19.19 SUIMIMATY oottt bbb as
20. Working with ConstraintLayout Chains and Ratios in Android Studiocceceverueveiveivenenncnennene
20.1 Creating @ CRAiN........c.ccuiiiiiciccic i saes 165
20.2 Changing the Chain StYle ... saes 167
20.3 Spread Inside Chain StYle........c.oveureeeiiinieeiiirieieiseieieiseeceiseie et ssss et sssees 167
20.4 Packed Chainl StYLe.....ccuiiieiirieieirecitir ettt ssies 168
20.5 Packed Chain Style With Bias.......ccoceeeuniurieineunieieiniecineinecineiseeeeseiesseesesesssssesessessesesessssesssnes 168
20.6 Weighted CRaiN ..ot saes 168
20.7 Working With RAtiOSc.ccueuiuciciciieciciiiiiiicsie s sse s saes 169
20.8 SUIMMATY ..ttt bbb s s s s 171
21. An Android Studio Layout Editor ConstraintLayout Tutorial.........ccececevererrrsnrenisucsensessessesscsnesennes
21.1 An Android Studio Layout Editor Tool EXampleccccvvureeuimrecrniurecrnienecneeeneneneeeneens 173
21.2 Creating a New ACtiVItyccccovviviviiiiiiicccns
21.3 Preparing the Layout Editor Environment
21.4 Adding the Widgets to the User INterface.........cocvveeeureceniurecrirrecrniereernieeeenseseneseeeesenseeens
21.5 Adding the CONSIIAINES «....cevueveeererrieerierieereereeereeseeeseseeeesseasese s sssasesessssssesssssssessessssessses
21.6 Testing the LAYOULccceureeeierecierreeeetieeaeeeeesesseeessessesesseaseae s ese s s ssasssesssssssesssasssesnsenes
21.7 Using the Layout INSPECLOTveueueeeerieriereerieeneeseeeseeseeesseesesensessesesssasesessssssssssssssessessesesssees
21.8 SUMMIATY w.viiiiiiiic bbbt
22. Manual XML Layout Design in Android Studiocccceveereivuinsennucninnenncsinninnncninniencninecseneneene
22.1 Manually Creating an XIML Layoutccceuiriniinimniencrceseieieneieseeiseesessesssesesssesssssessssesses 183
22.2 Manual XML vs. Visual Layout Design..........ccriuiuriuieremiunceieneneieisessssesssesssssessssessssessees 186
22.3 SUIMIMATY ..ttt et b s s st 186
23. Managing Constraints using Constraint Sets.........cccuevviiiiiiiiniiniinieniinnncreeese e
23.1 Java Code vs. XML Layout Files........ccouurueuirrierniirecriireeeiireeneireeneeeesesseeseesessesesssssseseses 187
23.2 Creating VIEWS......coiviiiiiiiiirii st 187
23.3 VIEW AtTIDULES ...ovviiii s 188
23.4 CONSTIANT SEES.....cucvviecteiitcteie et nen 188
23.4.1 Establishing CONNECtiONS........c.coeuevecurerrenemrerneenrerneenereeensessesessessesesessesessessesessessesessesens 188
23.4.2 Applying Constraints t0 @ LayOULc..ceeecureurercrneurencrnernecnneineeeereeenseseeseaeseesensessesenenens 188
23.4.3 Parent Constraint CONNECIONS.........covvvereiriereieeeie s 188
23.4.4 Sizing CONSLIAINTScciviiiiiiiiii s 189
23.4.5 Constraint Bialscocuevirieiiicictec s 189
23.4.6 Alignment CONSLIAINESccceurvrerrirrererrerrereerereeetsereeesseseesessessesesessesesseseesesessesessessescsesens 189
23.4.7 Copying and Applying Constraint Sets.........eveururererrerrererrerrercmrerrerenrerseensessesensessesensenens 189
23.4.8 ConstraintLayout ChaiNsc.ccccveeercrneirencinernecneeeeeeeenseesessesesessesesessesesessesssenens 189
23.4.9 GUIAEIINESoueveiiiic e
23.4.10 Removing Constraints
23.4.11 Scaling..............

23.4.12 Rotation
23.5 Summary......cccueueee

vi

24. An Android ConstraintSet Tutorial

27. Android Touch and Multi-touch Event Handling

28. Detecting Common Gestures Using the Android Gesture Detector Class

Table of Contents

24.1 Creating the Example Project in Android Studiocceeeeeeeuvcenernirnerneenerernerenereneceneencenennes 193

24.2 Adding Views to an Activity..........

24.3 Setting View Attributes

24.4 Creating View IDs.......ccccceveuruvennnes

24.5 Configuring the Constraint Set

24.6 Adding the EdItText VIEWcocuriuiiciriiiiriceereecreeeesee et ssessesesssssesenaes

24.7 Converting Density Independent Pixels (dp) to Pixels (PX).....cccceeureeurerreemncerereencerereenenrenennee 198

24.8 SUIIMATY ..ovuieiiiiiiiriici it ses bbb st s bbb bbb a s 199
25. A Guide to using Apply Changes in Android Studio..........ccocceevuerreevinennecninsenncnennecnensennecsenenns

25.1 Introducing APPLY Changes..........cccreeeereureeeeneireueenctreeeenenseseeesseseesessesessessesessessesessessesessessesesses 201

25.2 Understanding Apply Changes OPLiONScveeeereereeeererrereereerereesersemeesesseseesessesessessesessessesesses 201

25.3 USING APPLY CRANGES.....c.cvveveeecirieeietrereieireieietseeeeetseaeeessesessessesessessesessessesessessesessessesessessesesnes 202

25.4 Configuring Apply Changes Fallback Settings...........ccecveureveureerereercireueererrereesersereeseeseseesersesennes 203

25.5 An Apply Changes TULOTIAL........c.oceuveureeeeneireeeineineeeietreeeeessereeetseseeetseseasesseseesessesessessesessessesesse 203

25.6 Using Apply Code Changesccvcureveereureeeeneereeeeseereueeessesenessesesessesessessesessessesessessesessessesesses 203
25.7 Using Apply Changes and Restart ACHIVITYoceveureueererreveereerereencireeeeenreseesesseseeesseseeessesenne 204

25.8 USING RUN APD .ot 204
25.9 SUMMATY ..ottt bbb 204
26. An Overview and Example of Android Event Handling........ccccoceeveeviiinnucnennensucnennenncccnsucsncnennne
26.1 Understanding Android EVENtS............ccceieiiinicincinieieieereeeeeeeseseneesesessessesensensesennes 205
26.2 Using the android:onClick RESOUICE........c.ceviiieeiiiriiciciriccreecreeeeeee e 205
26.3 Event Listeners and Callback Methodsccueueeereeneeneeneineinenninnenersenenersensessensessssssesseses 206
26.4 An Event Handling EXamPIecovcuiiiiiiiiiiniccrccreeeeneeeeieee s ssessesensessesenaas 206
26.5 Designing the User INTErfacecoviuremerreincenerererenieieeeneeneineiseessesessesessessessessessssssscssesnes 207
26.6 The Event Listener and Callback Method.........cccueveveinineneninininneneneeneneneneneeceesaseenenns 208
26.7 Consuming EVENLSceuiuiiiiimiiiiiiiiiii s sssae s 209
26.8 SUIIMATIY ..ovuivriniiiicieiici st ses bbbt st 210

27.1 Intercepting TOUCh EVENTSc.cocueueincirieeineiriieieireeeietreieeetseseietseveeetseaessessesessessesessessesessessesesses
27.2 The MotionEvent Object................

27.3 Understanding Touch Actions

27.4 Handling Multiple TOUCRESccvvuevveireeeieireieicireicictreieictneee e setseseesetsese et sesessessesessessesennes
27.5 An Example Multi-Touch APpliCationceueureeeercrreeeererrereeeireeeietreeeeetseseeeeseseesesseseesessesenses 212
27.6 Designing the Activity User INtEIfaceoeuveureeeercrreeinerreeeeeireeeinctneeeeetseeeeetseseesesseseesessesennes 213
27.7 Implementing the Touch Event LiSteNnercocveuvcureueererreeeereerereeneireeeeerseseesessesenesseseesessesenne 213
27.8 Running the Example APPliCAtion......c.ccocueueureureeeercrreueenerneeeieirereeetseseeensesesessesesessesessessesense 216
27.9 SUMMATY ..ottt bbb bbb 217

28.1 Implementing Common Gesture Detection.........ccccvueueureueeeurieeencirieeerieeseseeeesseneeensenennes
28.2 Creating an Example Gesture Detection Project ...
28.3 Implementing the Listener Class..........cccouieuveuriureneerieieirineeereeeetreeeeessesenessesesessesessessesennes
28.4 Creating the GestureDetectorCompat Instance...
28.5 Implementing the onTouchEvent() Method.........
28.6 Testing the Application
28.7 SUMMALY c..oovieiriincriicniinenicnenes

..

.......................................

vii

Table of Contents

29. Implementing Custom Gesture and Pinch Recognition on Androidcocevevveverncnirensencnncsneennes 225

29.1 The Android Gesture Builder Application
29.2 The GestureOverlayView Class........cccccecuveuneen.
29.3 Detecting Gestures..........coocvveiricnsivicnsirencnens
29.4 Identifying Specific Gestures
29.5 Installing and Running the Gesture Bullder Apphcatlon
29.6 Creating a GeStUIres File ... ssees
29.7 Creating the EXample PTOJECt.......c.cevreeeiuniuneereeiirenemrenenenensensensessessssssssssesssssessssesessensens
29.8 Extracting the Gestures File from the SD Cardcovcuvenerererereieieeneneneneereesenensenens
29.9 Adding the Gestures File t0 the PrOJECtcvuveviurerniirereenerenereneeenieeeneeeesesseesenessesessensens
29.10 Designing the USer INTErfaceccueeueeeereuneeremniineriirereseensenensessesseessssessessessessssessessensens
29.11 Loading the GeStUres Filec.cucueeeeieeeniniineiineiieeneesenensessesaeessesssssesssssessssesessensens
29.12 Registering the EVent LIStENETcccouuieuiuiceniiriceiiiceieeeiieeneiesesssss s s s esesssenes
29.13 Implementing the onGesturePerformed Method.........c.cceueuerercreieenineneneerenereneerennens
29.14 Testing the APPLICALION.......c.cvevercrereereereeeieeereieeseseese e s saesssassssesssssesssssesessessens
29.15 Configuring the GestureOVerlayVIEW.........cocreueurerirremerserererensersenseesssssessessessessessessessensens
29.16 INtercepting GESLUIES........cvviuiiriimiiciii s ssas
29.17 Detecting Pinch GESTULES.........cccveuiueeiiriceiiriceicciecei e ssessas s esenssenes
29.18 A Pinch Gesture Example Project..................

29.19 SUMMATY ..ovuviiiriieiicnciesesenesssesssesenens

30. An Introduction to Android Fragments

30.1 What is @ Fragment?ccceeureeincireeeneineieicineeeeetreeeeetsesesetsesessessesessessesessessesessessesessessesessesseses 235
30.2 Creating @ Fragment ..o s 235
30.3 Adding a Fragment to an Activity using the Layout XML File.......cocceceereeunerreeencereenrcenenee 236
30.4 Adding and Managing Fragments in Codecoeuveureueeneureeeererreueinerneeeereineneesesseseesessesensessenes 238
30.5 Handling Fragment EVENLSc.ccocurceureireurencineeeineireeeicireeeeenseeeeessesetsessesessessesessessesessessesessessenes 239
30.6 Implementing Fragment COmMMUNICAION.cccueueereureeeeneereeeeserrereesetrerenesseseesessesessessesessessenes 240
30.7 SUIMIMATY ..ottt bbb bbb bbb bbb 241

31. Using Fragments in Android Studio - An Example........ccccoeevininneinvinenncninnennnncnnensecscssensscsesssenes 243

31.1 About the Example Fragment Application
31.2 Creating the Example Project...........ccccccovuuucee.
31.3 Creating the First Fragment Layout.................
31.4 Migrating a Fragment to View Binding
31.5 Adding the Second Fragment...........cccccecereuneen.
31.6 Adding the Fragments to the Activity..........
31.7 Making the Toolbar Fragment Talk to the Activity
31.8 Making the Activity Talk to the Text Fragmentcccocrveveuricincirieenereeenereeeneereneeenenee
31.9 Testing the APPLICAtION.......cvvueuieercirerereerereeaeieeseaseesesseese e s ssesssasassssssesssasesssasensenses
31.10 SUIMIMATY coucuiiieiiiiiicneici et s

32. Modern Android App Architecture with JetpacK........cccevivviiivinsinninnsinnsiiniinninninninneneesncsnacnaees 255

32.1 What is Android JEtPACK?c.cueuveereueeerreieieireeeeetreeeeetreseeetseseesessesessessesessessesessessesessessesesesseses 255
32.2 The “Old” ATCRItECTUTIEcucvuereveecirereictreieietreeeeetreee et sese et sebease st sese et sese st sesessetsesessesenes
32.3 Modern Android Architecture
32.4 The ViewModel COMPONENLccureveerreeeeeirereeetreeeeetreseeesseseesessesessessesessessesessessesessessesessesseses
32.5 The LiveData Component..........eoceveeeecercveneene

32.6 ViewModel Saved State........ccooeureerrerrercrrerrenene

32.7 LiveData and Data Binding........ccocveeererreueeneireeeencineeieineeeienneeeesesseseesesseseesesseseesessesessessesessesseses

viii

Table of Contents

32.8 ANAIOId LIfECYCLESucvreerrireecinciriecicirerceeireeeeeteeeeset e nsese st sese s s ssessesensessesensessesenses 258
32.9 RePOSItOrY MOAUIES........cecveieeicieiecirercieereieeeteeeeset et sese st sese s s ssessesensessesensessesennes 258
32.10 SUIMMATY ..ottt bbb 259
33. An Android Jetpack ViewModel TUtorialc.coovvuivirversinsinreinininnincninnecncsinsscssesessscsesssessesesnes
33.1 ADOUL the PIOJECL ..ceueuereeieireeeicireicicireeetctreeeteisesete sttt sese st sese bbbt ses et ses st sesesacs 261
33.2 Creating the ViewModel Example Project.........ccociininininincncscieeeicieceieseesnesesens 261
33.3 ReVIEWING the PrOJECt........viieieiiiiiiiiccicicc st 262
33.3.1 The Main ACHVITY..c.ovueeeuierieieerieeineeseeietseeisesstse e s s sese s ese et ssesens 262
33.3.2 The Content Fragmentcccocvuinciniincincieiieieieisiseisessese s ssesssssssscssens 262
33.3.3 The VIEWMOUEL ...ttt 264
33.4 Designing the Fragment LayOuL...........ccccvcunincincieicininieiisisessese et ssessessesssssesasssns 264
33.5 Implementing the View Model..........ccvuiniinciniiiieieiiiiseese e 265
33.6 Associating the Fragment with the View Model.........ccccocoourinininincincincincnciccinicceceenennns 265
33.7 Modifying the Fragment ..ot sssssssssssssssns
33.8 Accessing the VieWMOodel Data........c.ccvcuuiicicieiciinineiicisesise e ssesssssessssesasssns
33.9 TeSting the PrOJct ...ttt
33,10 SUIMMATY ..ttt bbb
34. An Android Jetpack LiveData Tutorial..........cccceeueeuernen.
34.1 LiveData - A Recapccoevevevevvncnnnnn
34.2 Adding LiveData to the ViewModel....
34.3 Implementing the ODSEIVeTc..ccciirieicereceree et seseesessesennes
344 SUMMATY ..ot bbb bbb
35. An Overview of Android Jetpack Data Bindingc..coeceeuevinrernininscscnnenncninnennncnensensscsesseessesennes
35.1 An Overview of Data BiNding..........cocvuviuncincincicinicieinieiiisesse e ssessessessssessssnns 275
35.2 The Key Components of Data Bindingcccocueuociininininininisescscciescsecessecissnesenenns 275
35.2.1 The Project Build Configuration............cocuocucucucecininiuneiniisessseseesese e ssesssssessessens 275
35.2.2 The Data Binding Layout File...........ccocecvuincicieiniiniiniisesseseese e ssessessesscssens 276
35.2.3 The Layout File Data EIeMentcoccuveereeuniericeninieineeeieseieeeiseseeessesesessesessessesesesseseens 277
35.2.4 The Binding Classes........ccceuriuiurimiireriineicieneieeneisesisesesssesssese e ssssesssssssssssens 278
35.2.5 Data Binding Variable CONfiguration..........cccccucueueiniunininiincrniencisesese e 278
35.2.6 Binding Expressions (One-Way)........c.ccucuuveuuemrmninimniininiesessesesessese s ssesssssssscssens 279
35.2.7 Binding Expressions (TWO-WAY).........cccuvcuriueuucmrmmnimnimniisisssisessesesessese s ssessssssscssens 280
35.2.8 Event and Listener BINdings............ccocuveuvcuciciciciciniiinesese e ssessessesscssens 280
35.3 SUMMATY ..ottt bbb 281
36. An Android Jetpack Data Binding Tutorial...........cccevvevinivuinnsnnninninnsnnnininninnsnsneenes
36.1 Removing the Redundant Code...........eeincincrrieeerneenereenetsenenenseseeesseseesessesessessesenses 283
36.2 Enabling Data BINAINGccvveveirieeicirieieirieeineeietreieeenseee s ssessesessessesessessesensessesensessesense 285
36.3 Adding the Layout EIEMEntc.ocevcurieeeirrieeeineeeieireeeeenneeenetseseesessesensessesensessesessessesensessesenses 285
36.4 Adding the Data Element to Layout File.........c.ocevcurienerneecineencineeenreenenneeenesseneeensenennes 286
36.5 Working with the Binding Classcccveureeererreueenerreeemennerenenreeenesseneesessesensessesensessesessessesenses 286
36.6 Assigning the ViewModel Instance to the Data Binding Variablecccocvevevcrreevencrnencnnee 287
36.7 Adding Binding EXPIreSSIONSccveureeeuerriuemerrieeeerreeenensesenessesensessesensessesessessesessessesessessesense
36.8 Adding the Conversion Method
36.9 Adding a Listener Binding.............
36.10 Testing the App.....ccecereuvecercrrennnne
36.11 SUIMMATY ..ottt bbb bbb bbb

37. An Android ViewModel Saved State Tutorial

Table of Contents

37.1 Understanding ViewModel State Saving
37.2 Implementing ViewModel State SaVINgccceeureueereureeemnerrereererrereienrereeenseseeesseseesessesensessenes
37.3 Saving and Restoring State..........cccveevcrerrererrerrencmnerreennernecnnenene
37.4 Adding Saved State Support to the ViewModelDemo Project
37.5 Summary

38. Working with Android Lifecycle-Aware COMPONENLScccererirreininsensucsinsensucsessesssesessessscsesssesses 297
38.1 LifECYCle AWATEIIESS ...cvuvreverirereiacireieisetseseesetsesetsetsesesaeasesessetsesesset st ssesessessesesastsesessstsesesssseses 297
38.2 LIfECYCLe OWIIELS ..ucvuvienieeircireeciciseiete sttt sesetse bt sese st seb st st ses et sese st sebesaetsesesaetnenes 297
38.3 LifeCYCle ODSEIVETScuvreeeacieeeincireieietseeeesetseseeetsesesseasese et sebesset st ssesessessesessetsesesssssesesssseses 298
38.4 Lifecycle States and EVENLS.........ccocreueureireueicirereineireeeieireeeteeseseeetsesessessesessessesesessesesessesesesseses 299
38.5 SUIMMATY ..ottt bbb 300
39. An Android Jetpack Lifecycle Awareness Tutorialcccevceuiveirninsenisiinisnsnseniscsssnesesesnessesnes 301

39.1 Creating the Example Lifecycle Project
39.2 Creating a Lifecycle Observer..........c.ccccveueuee.
39.3 Adding the Observer
39.4 Testing the Observer
39.5 Creating a Lifecycle Owner.........ccccocveeeunerenee.
39.6 Testing the Custom Lifecycle Owner...............
39.7 SUMMATY ..o

40. An Overview of the Navigation Architecture Component

40.1 Understanding Naviation........cc.ccucucueeeimriunimniuimiesesieseseesese e sssssssssssesssssssssesssssesssssessees
40.2 Declaring a Navigation Host
40.3 The Navigation GIaph ... sees
40.4 Accessing the Navigation Controller
40.5 Triggering a Navigation Action
40.6 Passing Arguments
40.7 Summary

41. An Android Jetpack Navigation Component Tutorial

41.1 Creating the NavigationNDemo PIOJEctcocvveuiurieriericeiireeneieennieseeneeseeseesesesessnseneees
41.2 Adding Navigation to the Build Configuration.....
41.3 Creating the Navigation Graph Resource File....
41.4 Declaring a Navigation HOSt.......ccccureeuiuricrniirierniereeniireeeneeseeneeesesessesesssessessssssesessesesesees
41.5 Adding Navigation DestiNations.........ccueeeueureerirrecrnimreeniereeneeeeseseesesessessssessessssesessesesesees
41.6 Designing the Destination Fragment Layouts
41.7 Adding an Action to the Navigation Graph

41.8 Implement the OnFragmentInteractionLiStENnerocccurvreeuirrecmniureernieneenieeneneeeeeneees 321
41.9 Adding View Binding Support to the Destination Fragments..........ceecveueeerneurevernereeernennn 322
41.10 Triggering the ACHIONoceueureeeiereeetireeete ettt sse s ese st sae s s esesnsees 323
41.11 Passing Data Using Safeargsceceeureeuirriernirreerniereeerieseeneesesesessesesssssssesssssssessessssesesses 323
41,12 SUIMIMNATY «.oviiiiiiiic bbb bbb bbb bbb bbb 327
42. An Introduction to MOtionLayouUL..........ececiviereinininneininsinsicnineincsisessscsesiesseeessessesssssssssessssssesne 329
42.1 An Overview of MotionLayout
42.2 MotionLayout
42.3 MOtionSCene.ccvvviciriinciiinccnnes

42.4 Configuring ConstraintSets............ccccecreureunen.
42.5 Custom Attributes

Table of Contents

42.6 Triggering an ANIMAtiON......c.occceuviiuiiriiiiinieiriccr et sessaesens 332
42.7 ATC MOTION ..ottt
42.8 Keyframes.........cccveereeeererreeemrerrenennes

42.8.1 Attribute Keyframes

42.8.2 Position Keyframes...................
42.9 Time Linearityc.ccccoeeevvevcrvvrennees
42.10 KeyTrigger.......cccovuvvvuvinicrvinicrricnnees
42.11 Cycle and Time Cycle Keyframesccouveeueurecriereerierecniineeeneeneenessesesssessessesessessessesens 339
42.12 Starting an Animation from Code.........cuveiurecriireceiireciecieiseeeeeeesseeese e eseseaensens 339
42,13 SUINIMATY wocuiiiiiiiiiiiiiis i b bbb bbb bbbt 340

43. An Android MotionLayout Editor Tutorial...........cceccevrrerncirinsieninsinncninsisscnininscsessesscseessesscseens 341

43.1 Creating the MotionLayoutDemo Project ... eieiseceesseessessenens 341
43.2 ConstraintLayout to MotionLayout CONVErSIONccccceuiuriririniicceeeenieeiiesseeenenenns 341
43.3 Configuring Start and End Constraints ... sessessecssssesssessssens 343
43.4 Previewing the MotionLayout ANIMation.........ccccccueiuriuriniineiniincrnieseieieseseneeseseessesssesesaens 345
43.5 Adding an ONCLCK GEStUIEc.ccucuiiciciciciicieiirereitieise s saees 346
43.6 Adding an Attribute Keyframe to the Transition...........ccoeeveeincneincincinceneicicieceieeseeens 347

43.7 Adding a CustomAttribute to a Transition
43.8 Adding Position Keyframes
43.9 SUIMNMATY 1.ttt ettt

44. A MotionLayout KeyCycle TUtorialcoceverrirrisuirensninisrisininsininsisisiininininieissssmeses 355
44.1 An Overview of Cycle KeyfIames.........occuuureerirrecrnirreerierecnieeeseeneenessesessssssesessssesessesens 355
44.2 USIng the Cycle EQITOT ..ottt ssessssessssssessssessesssasesens 359
44.3 Creating the KeyCycleDemo PrOJECt.......coueueureeriurecriericrieeeereeneeneeeesesseeesesesessessessesens 360
44 .4 Configuring the Start and End Constraints..........cccceeeeeeerecrneerecrneeneerneeseennieeeensesensessessesens 360
44.5 Creating the CYCLeS ...ttt sse e sse s sae s saensens 362
44.6 Previewing the ANIMAtiONc.cvvureeerierieriirieeieeetseesttsese e eeesseesesessesessesssessessssessesssasesens 364
44.7 Adding the KeyFrameSet to the MOtIONSCENEccucvvecumivreecrireecrrieeneeeeeenseeeeeneseneeneaeesens 364
44.8 SUINIMATY ..ottt bbb bbb bbb bbb bbbt 366
45. Working with the Floating Action Button and Snackbar...........ccreiinniincninnnncninncncnennecncnnenns 367
45.1 The Material DESIGIN.......ccvuuiuiuiuriiiireicicic e

45.2 The Design Libraryccccoeeoveuveuneunes
45.3 The Floating Action Button (FAB) ...
45.4 The SNACKDAT ...
45.5 Creating the EXample PIOJECt ..ot s ss e ssessssssaens
45.6 RevIieWINg the PrOJECT ..o s saees
45.7 Removing Navigation Features...........ooiiinieiciniiniiiiicste e
45.8 Changing the Floating Action BUtton ... seessessssessesssesesaens 371
45.9 Adding an Action to the Snackbar ... s 372
45.10 SUIMIMATY «.eviiiiiieiiitte ettt e s ettt s bbb sesne 372

46. Creating a Tabbed Interface using the TabLayout COmMPONentccceeverrensesresuisensessessessesessessessense 375

46.1 An Introduction to the VIEWPAZEI2ccovuvveriirieriiriceirecreieeeneeseeeneseesesseeesesesessesessesens
46.2 An Overview of the TabLayout Component
46.3 Creating the TabLayoutDemo Project...................
46.4 Creating the First Fragment
46.5 Duplicating the Fragments........c.occeeveuveeuncrrecnnennee
46.6 Adding the TabLayout and ViewPager2................

xi

Table of Contents

46.7 Creating the Pager AdapLer.........cc et ssssesessssssessasssessses
46.8 Performing the Initialization Tasks
46.9 Testing the Application.........ccocveeeeverreecercrrenennes
46.10 Customizing the TabLayout........c.ccocceverreunnce
46.11 SUIMIMATY «.oviviiiiiiicc bbb bbb bbb bbbt

47. Working with the RecyclerView and CardView Widgets........c.cocrvurverrerrciensinsucnsenncscssensecscssessecne

47.1 An Overview of the ReCYCLErVIEWc.cuiueuiirieeiniinicieireecirtireeeiseeeseisese et easeaessees 385
47.2 An Overview Of the CardVIEWc.ccciuriciriurieeiniinieireineecineiseeeestae e sssssese st sssssaessses 387
47.3 SUIMIMATY ..ttt ettt n st 388

48. An Android RecyclerView and CardView Tutorial..........ccocvvevisuisuisnsininisnnsnsninisnsnsenencsncnsenes

48.1 Creating the CardDemOo PIOJECt.......occiurierirreemiiriciiirecrieseeneeeesessaeesesssessesesessesssssseseses
48.2 Modifying the Basic ACHVItY PIOJECT.......ouceuirreerierecieireecriereenteseeeneesesesseeeeensssesessessssensees
48.3 Designing the CardVIeW LayOULcovuvveuiureerniereerniinieniereeneeseseneaeesessssessesssssssessssssseseses
48.4 Adding the RecyclerView........cocoeverreeercrrencnnee
48.5 Adding the Image Files........cccocovueuverreeererreennes
48.6 Creating the RecyclerView Adapter.................
48.7 Initializing the RecyclerView Component
48.8 Testing the Application.........ccccoveeeeverreecererreuennes
48.9 Responding to Card Selections..........ccceeueuenee
48.10 SUIMIMATY ..viiiiiiiiccii bbb bbb bbb bbb bbb

49. A Layout Editor Sample Data Tutorialccccovevevirnerninsinnicnininnnniniicsinicncsiniesscsisessseseeeene

49.1 Adding Sample Data to @ PrOJEct ..o sees 399
49.2 Using Custom Sample DAtc.cc.ccuueeeimrinimnieniiiiseiieseseeese e ssessessesssssssssssssssesssssessssesses 403
49.3 SUIMMATY ..ttt bbbttt s s st 406

50. Working with the AppBar and Collapsing Toolbar Layouts...........cccevcrueruerensensesiscsnsensessessessessesenses

50.1 The Anatomy Of AN APPBAT ..ottt sesessessesensensenes
50.2 The Example Projectcccouvveecuneuveccmneenecrneenenens

50.3 Coordinating the RecyclerView and Toolbar
50.4 Introducing the Collapsing Toolbar Layout
50.5 Changing the Title and Scrim Color
50.6 SUIMIMATY ...ttt

51. An Android Studio Primary/Detail Flow Tutorialccocevveruiriiiinsenenennisnisnnsenenennesnisensesessesnesnenns

51.1 The Primary/Detail FLOW........ocociiiiiiciciiieircninessese et sssssssssssase s sssesssaes 415
51.2 Creating a Primary/Detail FLOW ACHVILYcccovuiuriuiiiriiiiirciciciccieecceiieeecsesisessesesseseneenes 416
51.3 Modifying the Primary/Detail Flow Template...........cocvuuneuniincrncinceeieinieenieinessesenseesenseenes 417
51.4 Changing the Content Model..........ccccocuiiiiinininncece e sesseseseeaes 417
51.5 Changing the Detail Pane ... sssesesssae 419
51.6 Modifying the WebsiteDetailFragment CLass............ccecuiureueurcrnceseremmeirieerisenesessesesssesesseenes 420
51.7 Modifying the WebsiteListFragment Class...........ccoceuuriuniurcuneinceneeneeeieinieeinisseesesssesesssesesseenes 421
51.8 Adding Manifest PErMISSIONS.c.ccueuuiurimimrimiiriisiiseisese e ssessssesssssesssesssesessesessssnes 422
51.9 Running the APPlICAtIONcucucuciciicicieiiiieesise et 422
51.10 SUMMATY ..ottt bbb 422

52. An Overview Of ANAIOid INTENLSceeeererveeeeierrrreeeessseeeeessssseessssssseessasesssne

52.1 AN OVErVIEW Of INTENLScueverreeicieeceerreecieireeeeetreee s sesesses s esessesessessesessessesensesenes 423
52.2 EXPLICIE INEENES ..ecveueutieeetnencieirieietseceet ettt b stsese st ese bbbt es ettt st beseaesesnen 423
52.3 Returning Data from an ACHVILYccocveeeeerreemnerreeereineeeneneeeeenseseeensesensensesensessesessessesessessenes 424

xii

Table of Contents

52.4 TMPLCIE INTENLS c.cvvueieniieiriceeireeietrecietseetet et steae sttt st b st sae st etaeaes
52.5 USING INtENt FIILETS......eviverireecieeeicireieeetrerreereieeienseseee e ese e seese e ssesssesesnsessesnne
52.6 Automatic Link Verification
52.7 Manually Enabling Links................
52.8 Checking Intent Availability
52.9 Summary ...

53. Android Explicit Intents — A Worked EXample........cc.coocevivrinreinininnincnsennininnennecsenessscseneessesesnee 433
53.1 Creating the Explicit Intent Example Application...........cccvcueieveincencencicineieccieesieereseenenns 433
53.2 Designing the User Interface Layout for MainACHVILYocecuvevvcivcuncicineicicieceiecrcneeinennas 433
53.3 Creating the Second ACtiVity Class.......cccccuruiuriuniiriiiinerniinceise e ssessessessessssseseseses 434
53.4 Designing the User Interface Layout for SecOndACHIVILYcocucucuciciciciciciniecrcnenennes 435
53.5 Reviewing the Application Manifest File.........ccccoonininiiincninincincccecceieceiecseeenes 435
53.6 Creating the INTENT ...t sse s 436
53.7 Extracting Intent Data ... s 437
53.8 Launching SecondActivity as @ SuUb-ACtVItY........cocviuvininiinciniinciscrccceeceeceeeessiena 438
53.9 Returning Data from a SUb-ACHVILY......cccueiririririiriinccirce e 439
53.10 Testing the APPLCAtION.ccucuiicicicicieicieieeireise et sae e 439
53,11 SUMMATY c..ouiiiiiiiiii ettt 439
54. Android Implicit Intents - A Worked EXamplecccocevervinnerninninnenncininnennnciinesescssessssesessssssesesnes 441
54.1 Creating the Android Studio Implicit Intent Example Projectcccvcveeeunervevcenerrercunernennne 441
54.2 Designing the USer INTErfacecocvuvevcureurercureurercireineennereeeseseeessessesesessesessessesessessesessessesenne 441
54.3 Creating the IMpPlicit INTENTc.cuveuieeercirerrecirerecreeeereee e ssesesenseseeanne 442
54.4 Adding a Second Matching ACHVILYc.ocuveveureurercirerreneireineeireireenerseenesee e ssesesesesenseseesenne 443
54.5 Adding the Web View t0 the Ul......c..ccoocnivcinrcnircnereereneeneneeeneseesenesseseaessesessessesenne 443
54.6 Obtaining the Intent URL.......cc.occeveunurnerneirincmneinereinerneennesseesessesessessesesessesessessesessessesesessesenns 444
54.7 Modifying the MyWebView Project Manifest Filecocoeneuvvcrnerrnernencncnenecnenccnnerneenne 445
54.8 Installing the MyWebView Package 0n @ Device.........ccvuuveeeureurercunerrencrnerneennenneennenneensereenenne 446
54.9 Testing the APPLICAtION......c.ocueveuiurercireieeeireireereiee e aseseeanns 447
54.10 Manually Enabling the LInkcccoeeenrnnnncincneeerereenerseeeseeensessesenessesessessesenne 447
54.11 Automatic Link Verification ... 449
54.12 SUMMATY ..ottt bbb bbb 451
55. Android Broadcast Intents and Broadcast RECEIVETScuuuverurrerinieeniereniieninneniniennteensesessssenssens 453
55.1 An Overview of Broadcast INENLS.........c.cucuiiuiniiniiniineiiiscssise s ssessessessesssssesescsns 453
55.2 An Overview of Broadcast RECEIVELScccuiuiuiurimiineriireieise e sesessesessessessessessesssssesescnns 454
55.3 Obtaining Results from a Broadcast ..o 455
55.4 Sticky Broadcast INTENLS ..c..c.evcueerecureeeeeireireeireiseeireisee et sses st b s ssessesesesseseens 455
55.5 The Broadcast Intent EXAMPIe.......cccveueereurerrencinienencineinieineiseeineiseessesseessessesessessesessessesessesscsenns 456
55.6 Creating the Example APPLCAtionccccucuiuiuiniiniiniineiieircsise e 456
55.7 Creating and Sending the Broadcast INtent..........ccevuiuneuiircrniineincinencicieeeccieceeseeeiscseseseans 456
55.8 Creating the Broadcast RECEIVETc.ccucuiiiiniiniiiineirccisee e 457
55.9 Registering the Broadcast RECEIVET..........cccouuiiiiriniiniinirecise e 458
55.10 Testing the Broadcast EXAMPIEcc.ccucuiirininiiniinccseesee e saessesaesssssesesenns 459
55.11 Listening for System BroadCasts..........ccccueuuiinininiineniinccisese e ssessessessessesssssesesesns 459
55.12 SUIMMATY c..cuiiiiiiiiiii ettt 460
56. A Basic Overview of Java Threads, Handlers and EXECULOIS..........ccveeeeererereerrrneeesessneeesssssneesssssnsessses 461
56.1 An OVerview of Threads ...

56.2 The Application Main Thread

xiii

Table of Contents

56.3 Thread Handlers ...
56.4 A Threading EXAMPLecccocueueicirieecrriieeirieeteeeeeiseeeeenseseesessesessessesessessesessessesessessesessessenes
56.5 Building the App
56.6 Creating a New Thread

56.7 Implementing a Thread Handler......................
56.8 Passing a Message to the Handler
56.9 Java Executor CONCUITencycccevvvevicncnee.
56.10 Working with RUnnable Tasks.........ccocveeeureeiiirieeiniinieeieceeeeeienseseensesesessesessessesensessenes
56.11 Shutting down an EXeCUtOr SEIVICE.........couuiueuirriueeerrirererreeeeerseseesesseseesenseseesessesessessesessessenes
56.12 Working with Callable Tasks and FULULESccveureuerrerrereenerrercenenneeeeineeeeenseneeensenenenenes
56.13 Handling a FUture RESULLccccueeeerrieeecrreecirecetreeeeeteeeeenseseesensese s esessesessessesensesenes
56.14 SChedUINgG TaSKSc.ccoeueuemerreeeieireeeerreeeeetseeenesseae s nsessesensessesessessesessessesessessesessessesessessenes
56.15 SUMMATY ..oviiiiiiiiii bbb bbb bbb

57. An OVerview of ANAIOid SEIVICES......uuiiiiirrereerrrreereeerrreeeeessssseeessssseeessssssseesssssssessssssssessssssssssssssssssssnns 473

57.1 SArted SEIVICES.....ccovuiuiuiiiiiireicicic sttt
57.2 INEENE SEIVICE c..vuviiiiieiiceicic s s
57.3 BOUINA SEIVICE.ouiuimiiiiiiiiiieicie et e
57.4 The Anatomy of @ SErviceccoeveueuverrereererrecenennene
57.5 Controlling Destroyed Service Restart Options....
57.6 Declaring a Service in the Manifest File.................
57.7 Starting a Service Running on System Startup...
57.8 SUIMIMATY ..ottt bbb

58. Implementing an Android Started Service - A Worked Examplecccoccvurrenrenisuisnsnsensescsscsenennes 477

58.1 Creating the EXample PrOJECt.......cveerreeeecrreeeeneireecieineeeeneeeeetseseeessesessesseseesessesessessesensessenes
58.2 Designing the USer INTErfacecoveverreueecrreueenerrieeieireeeeeneeeeessesessessesessesseseesessesessessesessessenes
58.3 Creating the SErvice Class........couererrereeerreremerrereeetreeemesseseeessesessessesessessesessessesessessesessessenes
58.4 Adding the Service to the Manifest File.........cccoevenenenerneenernecncneceneeereeeeennenenenenes
58.5 Starting the SEIVICEcocuvvererreeeeeirieeerreieecireeeeetreee et sese et sese s s ssesessessesessessesessessesensesenes
58.6 Testing the IntentService EXample.......c..ccveureueencireeeeneineeenenreeeeereeeiennesenenseseeessesessessesenessenes
58.7 USING the SErvice Class.......ccoceueuerieeeerreeeeeirieeeerreeenetseseeesseseesessesessessesessessesessessesessessesessessenes
58.8 Creating the New Service........cceeeuvervevcrrerrenncne
58.9 Launching the Serviceccccoveveeernervcrcrnernennn.
58.10 Running the Application..........cccoveuveecrrerrenecn.
58.11 Adding Threading to the Service....................
58.12 SUMMATY ..ttt

59. Android Local Bound Services — A Worked Example..........ccocvvurruininrennucninnenscninsenncsensecsscsessnenes

59.1 Understanding Bound SErvices..........c.ccuiiininiininiincescie e ssesseeseessssesesesssesesssssessssses
59.2 Bound Service Interaction OPLONSc.eueereveeeereveeeereremseereresessesetessesesessesessessesessessesessessenes
59.3 A Local Bound Service EXamPIe.......cocureueeeureueineireeeineirereineineieieiseseteesesesessesessessesessessesesessenes
59.4 Adding a Bound Service to the Project ...
59.5 Implementing the BINder ...
59.6 Binding the Client to the SEIVICE ...
59.7 Completing the EXamPple.........oc.ccuiuiiiiiiciiiiiiiiiisessise e ssssssss s ssssesssaes
59.8 Testing the APPLICAtION.......c.ccuiuiiciciciciciciicicieni e
59.9 SUIMMATY ..ottt

60. Android Remote Bound Services - A Worked Example

60.1 Client to Remote Service Communication............cccoeevevenveneee.

Xiv

Table of Contents

60.2 Creating the Example APPliCation.......cccoeueueeeureecererreeemenrenenenrerensetsesensessesensessesessessesensessesenses 493
60.3 Designing the User INEIfacecccveueueeeureeerirreuceerreeeeenreeenetsesensetseseesessesessessesensessesensessesenses 493
60.4 Implementing the Remote Bound Service..........ccveuruenerreeeneireeeeneireeeeerreeenensesenesseseeensesennes 494
60.5 Configuring a Remote Service in the Manifest File.........ccooereerneirenerneenenecreneeereennes 495
60.6 Launching and Binding to the Remote Service.........coveurererreeceneireecenerreeeerreeeeerseneeensenennes 496
60.7 Sending a Message to the Remote SEIVICecveuiureeeererreererreeeeeireeeeereeeeesseseesesseseesensenennes 497
60.8 SUMMATY ..ot 498
61. An Android Notifications TUtorialceeeeeeeriieniniininiiintienienneieetseieesssse e sssesessssessssenns 499
61.1 An Overview of NOtHfICAtIONS.cviuiuriuiireicicieieieieciseeeeic et sae s 499
61.2 Creating the NotifyDemo PIOJECt..........cccuviuiuveucueicieinieniiiicisessese et sse s sssasssens 501
61.3 Designing the User INterfacecocviuviincincincieieicieinieicecsesese e 501
61.4 Creating the Second ACHVILYccviuiuriiiircicicieieicie et sae s 501
61.5 Creating a Notification Channelcccocuvuciiiiniinininiesecscc e 502
61.6 Creating and Issuing a NOtIfICAtIONc.cucucicicieciciirieniicctsesse e sae e 504
61.7 Launching an Activity from @ NOtIfiCAtioNc.ccccucueiriniriiinenineeccecieieceie s 506
61.8 Adding Actions t0 @ NOTHICAONc.cucuiicicicicicicie e 508
61.9 Bundled NOtHICAONS.........ccouuiuiiiiriiiirciciseicieie i sse s s 508
61,10 SUIMMATY ..ottt 510
62. An Android Direct Reply Notification Tutorialcccocevvvuirersnsinisisisnsnininnnnnnnencncnseene 513
62.1 Creating the DirectRepLY PrOJECtccvvueveueeeireireecictreieienreeenetrerensetseneesessesensessesensessesensensesenses 513
62.2 Designing the User INEIfaceccveueueeerreerneiriecectrieeeenneeenetsesenessesessessesensessesessessesessessesenses 513
62.3 Creating the Notification Channel.........ccccoceereeneireenerneeeeeeeneeeeeeessesenessesensessesennes 514
62.4 Building the RemoteInput ODJect........ceeueueiiireeeierrieeireeeireenctreeeeesseeenesseseesesseseesessesennes 515
62.5 Creating the PendingINtent..........ccecureemverrieenerneeeencrreeeerneeeneisesenessesessesseseesessesessessesessessesense 516
62.6 Creating the Reply ACHON.ccocueuercrreeeeeirieceeineiceetreeeesenseneesetsesessetsesessessesessessesensessesensessesense 516
62.7 Receiving Direct Reply INPUL........ccveuriueeiireeeieiniieeerreeeierneeeeetsenenetsesessessesessessesessessesensessesenses 519
62.8 Updating the NOTHICAtION ..c..c.evereeererreeeieireeeeineecietreieeereeeessesensessese s ssesessessesensessesensessesense 520
62.9 SUMMATY ..ot 521
63. Foldable Devices and Multi-Window SUPPOTItcccevevirrinrernininnincnninninisesnncsesessscsessessesesnee 523
63.1 Foldables and Multi-Window SUPPOIt........cccveureueureireeeineeremeeeirereeetseseseesesesessesesessesesessesesnes 523
63.2 Using a Foldable EMUIAtOrccviiiiiiinciciciciciciccisiieiccise e sse s sssasnens 524
63.3 Entering Multi-Window MOde ... ssessesssssesassnes 525
63.4 Enabling and using Freeform SUPPOIt ..o 526
63.5 Checking for Freeform SUPPOIT ..o sse s sasassses 526
63.6 Enabling Multi-Window Support in an App ... 526
63.7 Specifying Multi-Window AHIIDULESc.ccucueueicieieieirieiseese e 527
63.8 Detecting Multi-Window Mode in an ACHVILYccccueeririnieniininernciseiceeieeeseiaecaeeneseneas 528
63.9 Receiving Multi-Window NOHHCAONSc..c.ccuucicicininirisiiseeisecee e 528
63.10 Launching an Activity in Multi-Window Modeccceurinininincrncincineineicicicieceieenens 529
63.11 Configuring Freeform Activity Size and POSItION........ccocviuviuniiniirerncincisciscicicccieeeceencines 529
63.12 SUIMIMATY ..ottt e 530
64. An Overview of Android SQLite Databasesccccceeereererreeerrereireeeesseeesseresseeesseessssssessssssssssessassessans 531
64.1 Understanding Database Tables
64.2 Introducing Database Schema
64.3 Columns and Data Types
64.4 Database ROWscccccocuvivinincnnce
64.5 Introducing Primary Keys

XV

Table of Contents

64.6 What iS SQLILE?cvrevieieeeeerreeeietreeeeerrereeset s nses s s s s ssesessessesessessesessessesessessesessessenes 532
64.7 Structured Query Language (SQL)coveeureueeerrereererreeemenrereeensereeensesenessesemsessesessessesessessenes

64.8 Trying SQLite on an Android Virtual Device (AVD)
64.9 The Android Room Persistence Library
64.10 SUMMATY ..ot bbb

65. The Android Room Persistence LIDIaryc.cococvinnecninsinncninnennencnnenncnenisnscsessessesisesnesessene 537

65.1 Revisiting Modern App ArchiteCture ..o eecesieeescsesesesssesessesessenes 537
65.2 Key Elements of Room Database PersisteniCe........cevuurueuneurereineurereinerrereeneeresesseeresesseesesesseesenes 537
65.2.1 REPOSITOIY ..vviiiiiiiicicciicci s e 538
65.2.2 ROOM DAtabasecocuiucmiciieicieiiiiiiiasisessise e sse s s s 538
65.2.3 Data Access ObJect (DAQ) c..cueeerevrereureineneireireeiseiseesessee e ssessesessessesessessesessessessseseens 538
65.2.4 ENILES c.ovvvreteiitcct e
65.2.5 SQLILE DAtADASE ...ttt ettt ettt se st ne st b s sae e saenestens
65.3 Understanding ENtities...........ococcuciciiciriiiiieiscsse e ssessesssssssssssesssesesssssesssses
65.4 Data ACCESS ODJECES ..vuvuvrevireirereieireieieireeetsetsesetetsesetset st seb st sebessessebe s tsesessstsesesastsesessssneses
65.5 The ROOIM Database...........ccuiuiiiciciciiciciiiiicicisise e ssesss s
65.6 THE REPOSILOIY ...euvuirieireireieireireeeieireieiet ettt sesetse st sese et seb et s et sese st sese st sesesaetsesesastseses
65.7 In-Memory Databases...
65.8 Database Inspector......
65.9 SUIMIMATY ..ottt bbb

66. An Android TableLayout and TableRow Tutorialcccovvivuiruireisensininisnsnnneninisnnenenessesssennes

66.1 The TableLayout and TableROW Layout VIEWS........cccveuemerreeeeerrereererrerenensenensensesenessesensessenee
66.2 Creating the ROOm Database PIOJECtccocueueverreeeenerrieeeeireieeerereienrereeesseseeessesessessesensessenes
66.3 Converting to a LinearLayout...........cccooviiiiiiiiccc s
66.4 Adding the TableLayout to the User INterface..........cocoveeeveureeeenerrereenerreremneenereesenreseesensenensennenee
66.5 Configuring the TabIEROWScccuveierrieeicireecireccirecereieee s sses s nsensenes
66.6 Adding the Button Bar t0 the Layoutccceceveureeeeneereeeenerreceerreeeienneneeenseneeesseseeensesensensenes
66.7 AddIng the ReCYCIEIVIEW........cucviiieeieireiecirececteeeeeteeeeeneeeeensesessessese s ssessesessessesensessenes
66.8 Adjusting the Layout Marginscccecreeererreeemerreeeenerneremsensesenessesessessesensessesessessesessessesesesseses
06.9 SUIMIMATY ..ot bbb bbb

67. An Android Room Database and Repository Tutorial

67.1 About the RoomDemo Project.........couveeeneereeeniereerneerecenennes
67.2 Modifying the Build Configuration
67.3 Building the ENtitycooiiiiiiiccciciciicieesises s ssssase e
67.4 Creating the Data ACCess ODJECT......c.cuuiriuiiiiniiiiiresiseecie e
67.5 Adding the ROOM Database..........c.ccuuiiriuiiiiiiiiirerseeeese e ssessssessssesase e sesesssaes
67.6 Adding the REPOSILOTYc.cuiuiiiiciciiecieiiiiiiiiesi e ss st
67.7 Modifying the VIEWMOdEL..........cccvcuiiiiriiiiniiirccise et
67.8 Creating the Product Item Layoutccccccuiiuriuniiniinciniescrescise e esecieseeisesesesesssesesssesessenes
67.9 Adding the RecyclerView Adapter...........cccciiiniiniinciniincieicie e esecseeseessssesssesssesessesessenes
67.10 Preparing the Main Fragmentcc.ccccuciiinininiincniscecee e csecieseeiscsssesesssesessesessenes
67.11 Adding the Button LISENETS........cccucuueiriuiiiriiriiiiseisiese e ssessssessssesssesssesessssesssses
67.12 Adding LiveData ODSEIVELSccccuiucirimiiiiiiiiiseissese e ssssssssssssesssesessesesssaes
67.13 Initializing the ReCYClEerVIEW.......c.ccucuiciimiiiiiriiiiresise et
67.14 Testing the ROOMDEMO APccuiuiicirimiiiiireisiseise e ssesss s sesesssaes
67.15 Using the Database Inspector
67.16 SUIMIMATY ...ooeieiiiiiiii ettt bbbt

Xvi

Table of Contents

68. Accessing Cloud Storage using the Android Storage Access FrameworK...........cecceeererrecicrnensncncnnee 571
68.1 The Storage Access FramewWOIKc..ccoiuiiiiiiiinciniineiccreecreee et 571

68.2 Working with the Storage Access FIameworK..........c.ccvveureunienernirnerernerererenerenessssascenens 572
68.3 Filtering Picker File LIStINGSc.ocevveurimiiierieiciriceeirieecreneeeeneeetseneee e nseesesensessesensessesenaes 572
68.4 Handling INtent RESULLS........cevuiuiureuirrererreiererensenenieeieeseeaessssesesse s ssessessensessessesssscsscsnes 573
68.5 Reading the Content 0f @ File ..o e ssessensessssscssenns 573
68.6 Writing Content t0 @ Filecccriiiiiiiiccrccreeereeeeeeeeee et 574
68.7 Deleting @ File ..ottt 575
68.8 Gaining Persistent Access t0 @ File........cociiiiiiiiiiiiiiccrccrccceeeeeeeeeee e 575
68.9 SUIMIMATIY ..vuvriiniiiiiriici bbbt s bbb 575
69. An Android Storage Access Framework Example..........ccocvvevvervuinennenninnenncninnenncnenennecnenncnsenennne 577
69.1 About the Storage Access Framework EXample.........cccoeveeereureeeencireeenerneeenenneeeeseeseneesessenennes 577
69.2 Creating the Storage Access Framework Example..........coceuvcureueuncireueenerreeeneereeeenesneseesensenennes 577
69.3 Designing the USer INErfaceccveueueueureeeencireeeinetrieeietnereeetseseeetsesessessesessessesessessesessessesesses 577
69.4 Adding the Activity LaUNCRETS.....c.ccoeureveireirieeieireeeictreieienreeeeiseveeetseseeset st sesessessesessessesennes 578
69.5 Creating a New StOrage File.......c.oircinieincinecictreeieneeeetneseeetseseesessesesessesessessesessessesesses 580
69.6 SavINg 10 @ StOrae File ...ttt sese et sese et sese et sesenaes 582
69.7 Opening and Reading a Storage Fileoevereeincireeneineeicireeeeineeeeetreeeeesseseeesseseesessesennes 583
69.8 Testing the Storage Access APPLICALIONc.cveureueercrreueererreeeietrereeetreaeeerseeeeetseseeesseseesesseseene 584
69.9 SUMMIATY ..ot bbbt 585
70. Video Playback on Android using the VideoView and MediaController Classes...........cccocerurrueeuennee 587
70.1 Introducing the Android VideoVIew Classovevereniererniinernerserersenenmessensesesssecssessessenns 587
70.2 Introducing the Android MediaController Classc.oceueurererrerererermerenereenaecaneeseesenns 588
70.3 Creating the Video Playback EXAmpIec.ccuevuriuriuremniinerniireiineeneressenensensensesssssecssesscssenns 588
70.4 Designing the VideoPlayer Layoutc..c.occureecuniiniemnirnecinecenereeeeseeeseseeseasessesenseseesenns 588
70.5 Downloading the Video File.........cccciiiciccrecenee e seesenne 589
70.6 Configuring the VIdEOVIEWc.cucurcrerciiiiniineineieiseeaseeise e ssensessessessessssssssssssssesnes 589
70.7 Adding the MediaController to the VIdeo VIEW........cccveviureriinerernercrerenereneneeeaecssesseenenns 591
70.8 Setting up the ONPreparedLiSIENETccccwerereriureureuirrerierereesesenersessensensessensessessessssscsscsnes 592
70.9 SUIMIMATY w.ocoviiiiiiniii st 593
71. Android Picture-in-Picture Mode.........cocieiveieirinnrininniinininiininiicsesessesesesssssesessssesssssssesse 595
71.1 Picture-in-Picture FEatures...........ccooviiiiiiiiiiiiiccc s 595
71.2 Enabling Picture-in-Picture MoOde........cccvureveureerercirernencineinecireinecinenseesessesessesseseasessesessesseseens 596
71.3 Configuring Picture-in-Picture Parametersc.cooceeeureurercirerrencenerneneenersereeserseeesessesessessesenne 596
71.4 Entering Picture-in-Picture MOdecocveureveureerercirernercireinencineineesneiseesnessesessesseseasessesessessesenne 597
71.5 Detecting Picture-in-Picture Mode Changesecoereurevcererrercenerneernerneseenesseeesesseeesessesenne 597
71.6 Adding Picture-in-Picture ACHIONS.......cocveurereureurercireirecireineetsesseessensesessessesessesseseasessesessessesenns 598
71,7 SUIMIMATY ..ottt bbb bbb bbb 598
72. An Android Picture-in-Picture Tutorial...........ccoceeeverermnriiniiieniieninieinicniieisennensseesseesseseseseans 601
72.1 Adding Picture-in-Picture Support to the Manifest.........cocveververrerrcrernerecemecenecnenneenennes 601
72.2 Adding a Picture-in-Picture BUtIONc..ccocunimiicciniiricinircreccreeeecee e

72.3 Entering Picture-in-Picture Mode ... sseseeaenns
72.4 Detecting Picture-in-Picture Mode Changes
72.5 Adding a Broadcast Receiver
72.6 Adding the PiP Action.........ccceeveeencurecencnrecincnnenne
72.7 Testing the Picture-in-Picture Action
72.8 SUIMIMATY ..ottt bbb bbbt s

xvii

Table of Contents

73. Making Runtime Permission Requests in Android

74. Android Audio Recording and Playback using MediaPlayer and MediaRecorder

75. Working with the Google Maps Android API in Android Studio

76. Printing with the Android Printing Framework

Xviii

73.1 Understanding Normal and Dangerous Permissions
73.2 Creating the Permissions Example Project
73.3 Checking for a Permissioncccceceeuveureunene
73.4 Requesting Permission at Runtime....
73.5 Providing a Rationale for the Permission Request

73.6 Testing the PermiSsions APP.......cccoeeuriueeeurimeeneirireeeirireeenireeessesessessesessssesessessesesssssesesessenes
73.7 SUINIMATY ..ottt bbb s s s

74.1 PLAYING AUAIO «..ocveveieeicireicicireecictneieeet ettt sese et sese et sese st se st sese st sesessessesesssssesesscseses 617
74.2 Recording Audio and Video using the MediaRecorder Class........c.coeeeuveureueeneereueencererenreenenee 618
74.3 About the EXamPple PrOJECTccuveuiueercireeeieineieictreeeietnereeetseeeeetseseesessesessessesessessesessessesesessenes

74.4 Creating the AUAIOAPD PrOJECt......ccueureueencireeeecirieieireeeietreeeeetseneeesseseeesseseeessesessessesessessenes

74.5 Designing the USer INTErfaceocvvuevveureueereireeeencireieieireeeietreeeeetseseeessesessessesessessesessessesesesseses

74.6 Checking for Microphone Availability............
74.7 Initializing the ACtiVIty.....cococvevrerernerrcrcrrernennne
74.8 Implementing the recordAudio() Method......
74.9 Implementing the stopAudio() Method..........
74.10 Implementing the playAudio() method........
74.11 Configuring and Requesting Permissions
74.12 Testing the Application.......ccoceeeeevevrercererrenene
74.13 SUMIMATY ..o bbb bbb bbbt

75.1 The Elements of the Google Maps Android APc.ccoveueucrneeererceennenenneenenneesensensensennes
75.2 Creating the Google Maps PrOJECt.......c.occvcuiueiiirieciiirieeeieeereseeeiseseeeeseseesesesessessesesesenes
75.3 Obtaining Your Developer SIZNAtUurecceeneurieeneerieeenenrereeeerereeeeseseeesseseesessesenensenes
75.4 Adding the Apache HTTP Legacy Library Requirement
75.5 Testing the APPLICAtION.......c.ovueueeercererrrerenaeaeeieeseaeesessese s s ssessssssssssssesssasessssesense
75.6 Understanding Geocoding and Reverse Geocoding..........c.ccueeermerecceerueeenemneenemseesensensensennes
75.7 Adding a Map to an Applicationccceeeereereererneerersenenne
75.8 Requesting Current Location Permission
75.9 Displaying the User’s Current Location...........
75.10 Changing the Map Type......ccoccececvervevcurcrnenncn.
75.11 Displaying Map Controls to the User............
75.12 Handling Map Gesture Interaction................
75.12.1 Map Zooming Gestures............cccecvureuenees
75.12.2 Map Scrolling/Panning GeSTUIESceucueurecmiurmmcmememcreneeserseseesesseseesesseseasessssensenens
75.12.3 Map Tilt GESLUIES......cueueureciricieireeietricieireeie ettt bttt s sseaens
75.12.4 Map ROtation GESTUIES.......ccoveueueuerereiririiicecieiererereaeseeseesesteeaeseseseseasesesesescsssesesesessasssnens
75.13 Creating Map MAaTrKeTS.........c.occcuiiiiiriiieiieeeirceeeteieen s ssesesssssesesssssenes
75.14 Controlling the Map Cameraccceeureueecerimeecerimeeeirineeeeseieeessesesessesesessesessessesessessesessessenes
75.15 SUIMIMATY .ocuviiniiiiiicneiiciies st s

76.1 The Android Printing ArchiteCtUrec.ccocureveercireeeineireeeienreteietreeetee s eetseseesessesesessesessessenes
76.2 The Print Service Pluginsccecocvevvercrrerncnccn.
76.3 Google Cloud Print.......coceeecureurercenerrencerernennne
76.4 Printing t0 GOOGIE DIIVE.......c.vcueuverriueercrreieeeireeeieireieietreseeetseeeeessesetsessesessessesessessesesessesessessenes

..

..

Table of Contents

76.5 8aVe a8 PDF ... s 643
76.6 Printing from Android DEVICESc.eeeururereureurercirerneeineineeeresseessensesessesseseasessescasessesessessesenns 643
76.7 Options for Building Print Support into Android APpS........c.eeeeeveuveveenerrercenerreeenerneennernenenne 644

76.7.1 Image Printing ... 644
76.7.2 Creating and Printing HTML CONENtc.ovueverieercrienerieeeereeeeeresenensesessessesesessescens 645
76.7.3 Printing @ Web Page......c..c.occuiureerniurecriieeciieeeseeeee e esessesesessessessssessesens 646
76.7.4 Printing a Custom DOCUMENLt ... 647
76.8 SUIMIMATY ..ottt R bbbt 647
77. An Android HTML and Web Content Printing EXamplecccccovuvruenenrennuincnnensucncnsensscssensecssessennes 649
77.1 Creating the HTML Printing Example Application.ccececuveuniencuncineincenceneecesieeeiseenennns 649
77.2 Printing Dynamic HTML Content.........cccocvviiiiiniiicecscne s 649
77.3 Creating the Web Page Printing Example.........c.ccccocuininininininincncinciceeieseceenesiessesenenns 652
77.4 Removing the Floating Action BUttONc.cc.ccucuicirininiiincseisecsccesessecsesaesiessesensnens 652
77.5 Removing Navigation FEAtUTES..........ccoeeiiviiiriiiiiicieiectt s 652
77.6 Designing the User Interface Layoutcccccuvcucucicieininininiineinisecisee e 654
77.7 Accessing the WebView from the Main ACHVILYccccvuuriuriuriiniiniincrncincisccieiecciececneeinen 654

77.8 Loading the Web Page into the WebVIew ...
77.9 Adding the Print Menu Option
77.10 SUMMATY ..ot

78. A Guide to Android Custom Document Printing

78.1 An Overview of Android Custom Document Printingccocveeveeernerrcvernernercenernercenerneenne 659
78.1.1 Custom Print AdQPLers.......cocevercueirercieineeenirieietnecietseie st stseseseese st sseesetseaesessesesesens 659
78.2 Preparing the Custom Document Printing Project..........cccveveecuncureveunerncnernernercenennecnnerneenne 660
78.3 Creating the Custom Print AdapLer.......c..ecrrercenenenerneineneinerneenneneeeseseeensessesessessesessessesenns 661
78.4 Implementing the onLayout() Callback Method.........ccoceeeeunervecrniirencinernicnenecreccnnereeeenne 662
78.5 Implementing the onWrite() Callback Method ... 665
78.6 Checking a Page is in RANEEc.ccveueerererriurierreiecreieeeneseeessese e ssesessesesensesscsnns 667
78.7 Drawing the Content on the Page Canvasccveeenerercrnernercnnernenennerneennesseensesseessesseenne 668
78.8 Starting the Print JOD ... seesenns 670
78.9 Testing the APPLICAtION......c.cucvvcriericireieeeirerreereiecrereee e nse s nns 671
78.10 SUMMATY c..ouiiiiiiiiiii bbbt 671
79. An Introduction to Android APP LinKS.......cccovivvienuininniininsinnecnininnecncnennenisisscsesesscesssseees 673
79.1 An Overview of ANdroid APP Linkscccvceeeveereeeeneirienineineeieneeeeineeeieiseseeetseseeessesesessesesne 673
79.2 APP Link INtNt FIILETScueuiviiirieeicireecicircietcinceeect ettt sese st sesesse st sesesses s st sesesne 673
79.3 Handling App Link INTENEScucuiuiiieiiiicicicieieieiie et ssssesssssesassens 674
79.4 Associating the App with @ Website..........cococuviiiiiiiiriniiiccccccee s 674
79.5 SUIMIMATY ..ottt 675
80. An Android Studio App Links Tutorialccccccevrviiviininiinniinennininnenceenenacsesesesessesssesesssssessesnes 677
80.1 About the EXAMPLe APD ..cecvrevceeurieieirecieireeisireecieteaetstsese sttt seese st se s aseae e ssesessseseses
80.2 The Database SChema ..ottt sese et sesensessesenaes
80.3 Loading and RUNNINg the PTOJECtceeueueriirecencrrieeireeeeirereeetreneesesseseesessesensessesensessesennes
80.4 Adding the URL MapPing.......ccocreeerrerrerememrivemerreneeessenemsessesensessesessessessssessesessessesessessesessessesesss
80.5 Adding the INtent Filter.........ceireiirieeirieereceereeereeeeere et sesensessesessessesennes
80.6 Adding Intent Handling Code.......
80.7 Testing the APp.....ccvcveeeverrecererrecenennene
80.8 Creating the Digital Asset Links File...
80.9 Testing the App LinK.......ccovuvvverrirrecrnerrecrnienecrneenns

Xix

Table of Contents

80.10 SUMMATY ..ot 686
81. An Android Biometric Authentication Tutorial.........cceeeevevenintiieienrntntieeetetnne e
81.1 An Overview of Biometric AUthentication...........coceeuriuniircuneincencieieieirieeeeessesseseeseseneenes
81.2 Creating the Biometric Authentication Project
81.3 Configuring Device Fingerprint Authentication.....................
81.4 Adding the Biometric Permission to the Manifest File.........ccccocccuoiiiiorininininininciincnenes 688
81.5 Designing the User INterface ..o ssenes 689
81.6 Adding a Toast Convenience Method ..o 689
81.7 Checking the Security SEtNES........ccocuiuiriiriiriiriieireise et 690
81.8 Configuring the Authentication Callbacks............cccouuriuiiineiniincincincieicieieeeeeesesssesseeenes 691
81.9 Adding the CancellationSiGNal.........cccucuciiuiiiniiniiniircisc e 692
81.10 Starting the Biometric PrOMPLccccucuiiiiiiniiriiiiiresiseecse e sesessenes 693
81.11 TeStiNg the PIOJECt......ciuiuiicicicicicicieiiiaccicisest et 693
8112 SUMMATY ..ottt bbb s 694
82. Creating, Testing and Uploading an Android App Bundle...........ccocvviviniruirnsnininuisnsnsenesscsecsennes

82.1 The Release Preparation Process
82.2 Android App Bundles........coceurecuenencernecinnecnnecneneeseeenne
82.3 Register for a Google Play Developer Console Account
82.4 Configuring the App in the Console
82.5 Enabling Google Play App Signing.................

82.6 Creating a Keystore Filec.oceeirincinieenecetneeeeneeeeenseseesessese s esessesessessesensessenes
82.7 Creating the Android App Bundle..........ccocueueeinieiniinieneirecereeenreeeenreseeesseseeessesenensenes
82.8 Generating Test APK Filescccvuuieirreeenciniencinecietneeeetreieeeteseesessesensessesessessesessessesensessenes
82.9 Uploading the App Bundle to the Google Play Developer Console...........ccccoeureueererrererrenenee 702
82.10 Exploring the App BUndIec..c.ceeieiiiniecrecrceeieeieeeeeneseeenseseesensesessessesensessenes
82.11 Managing TESTETSccceuviieiriiieiiiieiiciieie ettt sssss
82.12 Rolling the App Out fOr TeSHNG......ccerreveeerrereeerrereeeireeeeerreeeeereseeenseseesenseseesessesessessesessessenes
82.13 Uploading New App Bundle ReVISIONS.........c.ccocureueererreremerreeeeerneeeeennerenenseneesensesensessesenessenes
82.14 Analyzing the App Bundle Fileccvocniencincecenecierereeseseeensesenensesensenenes
82.15 SUMMATY ..ottt bbb

83. An Overview of Android In-App Billing..............

83.1 Preparing a Project for In-App Purchasing........
83.2 Creating In-App Products and Subscriptions.....
83.3 Billing Client InitialiZation..........c.ccccucuieiciriiirirnirciseesese e ssesesssaes
83.4 Connecting to the Google Play Billing Library..........ccccocvcuvevcinciveineicionininieinesseseseisennennes
83.5 Displaying Available ProAUCES.........ccccccuciriiiniiniiirctiscccte e
83.6 Starting the PUrchase PrOCESS........cccuuiiuiniuniiiieiressise et ssssesssssssssesssese s
83.7 Completing the PUIChase. ..ot
83.8 Querying Previous PUIChases..........cccccuiiiiiniiniiniinciscecc e
83.9 SUMMATY ..ottt bbb

84. An Android In-App Purchasing TUtorialcvevivirinninisininnininiienieesse

84.1 About the In-App Purchasing Example Project........cveereenernecenenneeeeneineeeeenneneesennenensennenes
84.2 Creating the INAPPPUIchase Project ... ereiniinieneineceeneecieireeeeiseneeessesessensesensennenes
84.3 Adding Libraries to the Project.........ccccoveuuee.
84.4 Designing the User Interface.......c.ccoccoceeurerenec.
84.5 Adding the App to the Google Play Store
84.6 Creating an In-App Product.......ccccocveecrrerence.

Table of Contents

84.7 ENabling LiCenSe TESTELSc.vuevirreeererrereeerrieeeetreeeeetseaeesessesensessesensessesessessesessessesensessesessessesense
84.8 Initializing the Billing CHENTc.oceverreeeeeirieeeireeeeetreeeierreeeeetresensetsese e ssesessessesensessesensessesenses
84.9 Querying the Product.....................
84.10 Launching the Purchase Flow
84.11 Handling Purchase Updates........
84.12 Consuming the Product...............
84.13 Testing the App.....cccecurervecurerrennn.
84.14 TrOUDIESRHOOINGovurreercieeectreecetreecereie et sese st sese st se st sesensessesenacs
84.15 SUIMMATY ..ottt bbb

85. An Overview of Android Dynamic Feature Modules.........cccoouevinirruencnsennucncssenscnensenscssesseessessennes 727

85.1 An Overview of Dynamic Feature Modules..........ocveeereveieireeincineeeeeereeeneineeeereesesessesseneene 727
85.2 Dynamic Feature Module ATChItECTULEc.cueueueecureueieirereicireieiciseeeie et seseeetsesesesseseenes 727
85.3 Creating a Dynamic Feature Module ... 728
85.4 Converting an Existing Module for Dynamic Delivery...........ccocucvcunineuncencencucinieenineninnas 730
85.5 Working with Dynamic Feature Modules............cccccueininininiininincncincceiciecciesesesenens
85.6 Handling Large Dynamic Feature Modulesccccocueiininininincincinciscieicieccieesieenesenenns
85.7 SUIMMIATY ...ttt bbb

86. An Android Studio Dynamic Feature Tutorial................

86.1 Creating the DynamicFeature Project............
86.2 Adding Dynamic Feature Support to the Pro;ect
86.3 Designing the Base Activity User INterfacecccocveeeverreeeenerrereeneireeeernenemenseseesessesensensenennes
86.4 Adding the Dynamic Feature ModuULe...........ccocvueuerrieenerreemerneeneineeenensenenessesenesseseesessesennes
86.5 Reviewing the Dynamic Feature Module............cccureeineeeineemncineeeneeenreenenseneeensenennes
86.6 Adding the Dynamic Feature ACHVILY......c.ceveureueererreeeenerreeenerrenenetrenenensenenessesensesseseesessesenses
86.7 Implementing the launchIntent() Method..........ccecureeerreemeirecmneineecrreeereeeeseeeee e
86.8 Uploading the App Bundle for TeSting..........ccocvueererreeererreemerrereneireenenreeenessenenesseseesessesennes
86.9 Implementing the installFeature() Methodccocveeeeireeencineemneinecereeereeeeerseeeeensenennes
86.10 Adding the Update LISLENETccveueueeerreeeeerreeeeerreeeeersenenessesensessesensessesessessesessessesessessesenses
86.11 Using Deferred INStallationcccveeeeureeeeerreeeencrrieeeenneeeneirerenetsesensessesensessesensessesensessesenses
86.12 Removing @ Dynamic MOAUIEc.ceueuiuereinieincrricereeetreneeetseneesesseseesessesensessesessessesenses
86.13 SUIMMATY ..ottt bbb bbb

87. Working with Material Design 3 Themingcccceccvvirverninsinnerninninnnninninnenenennnesesessscsessessesesee

87.1 Material Design 2 vs Material Design 3ccccocueiimrinininiiniininiseseiseseeessessessessesssssesascnns
87.2 Understanding Material Design Themingc.ccccccuiriniriniineinieserseesessesesessessessesssssssessss
87.3 Material Design 2 TREMINGcoviiiiriiiiieicieieieiciecieiiei st sasassaes
87.4 Material Design 3 TREmMINGcc.ovriuiiniiiincicicieieicie et sae e
87.5 Building @ Custom TREME..........cc.ccuiuiiiiiincicicieieic et sae s sssassaes
87.6 SUIMMIATY ...ttt bbb

88. Migrating from Material Design 2 to Material Design 3........cccoevveririseisnsnsininnisnsnsesssscssssessesenes 759

88.1 Creating the ThemeMigration Project
88.2 Designing the User INEIfaceccveueueeerreeeeneireececireieeenneeenetseseesetsesensessesessessesessessesessessesense
88.3 Migrating to Material DesiZI 3cccvveurerreuemrerreeeererreeeeernerenessereesesseseesessesensessesessessesensessesense
88.4 BUilding @ NeW THEmIeccccvuevireeereireeeeeireeeeetneeeesetseaeese s nsessesessessesessessessssessesessessesessessesenne
88.5 Adding the Theme to the Project......
88.6 Enabling Dynamic Color Support....
88.7 SUMMATY ..ot

89. An Overview of Gradle in Android Studio

Table of Contents

89.1 An OVErview Of GIadle ...ttt ssese s ssesessessesensessenes
89.2 Gradle and Android StUAIOcccueeeeerreeeeeireeeireceireeeereeeee et sesesses s nseaenes
89.2.1 Sensible Defaultscccceuveuveeenerrecmnernennn.
89.2.2 Dependencies.........occevuveueuneeucerencuenneneennnene
89.2.3 Build Variantscccecveeeverreeenernecrnernenenne
89.2.4 Manifest ENtriescccooceverveeercrnccrnernennne
89.2.5 APK Signing........cccoovviiiiiiinniiiccncnnns
89.2.6 PrOGUATA SUPPOTL.uueiieiriiiciricieineeietseeteesee e tsesc ettt sttt ettt et sesseaens
89.3 The Property and Settings Gradle Build File.........ccccocveeirieneinecineineceneeenreeeennenenennenee
89.4 The Top-level Gradle Build File........ccoviiuiinencininceiniicirirccineecrieiesceieecietseeeesescbeeseseseenes
89.5 Module Level Gradle Build Files.......c.cveeireeiiireeeeneinieeeerreiceenneeeienseeeeennesenessesessessesenensenes
89.6 Configuring Signing Settings in the Build File........ccccoveereeinecnenicenecereeencreenenenee
89.7 Running Gradle Tasks from the Command-line
89.8 SUMMATY ..ot s

xxii

Chapter 1

1. Introduction

Fully updated for Android Studio Chipmunk, the goal of this book is to teach you how to develop Android-
based applications using the Java programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android development
and testing environment. An overview of Android Studio is included covering areas such as tool windows, the
code editor, and the Layout Editor tool. An introduction to the architecture of Android is followed by an in-
depth look at the design of Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle
management, Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This edition of the book also covers printing, transitions, and foldable device
support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio Chipmunk and Android are also covered in detail including the Layout
Editor, the ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains,
barriers, and direct reply notifications.

Chapters also cover advanced features of Android Studio such as App Links, Dynamic Delivery, Gradle build
configuration, and submitting apps to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/chipmunkjava/index.php
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/chipmunkjava/index.php
mailto:feedback%40ebookfrenzy.com?subject=

Introduction

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/chipmunkjava.html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com. They are there to help you and will work to resolve any problems you may encounter.

https://www.ebookfrenzy.com/errata/chipmunkjava.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK)
and Open]DK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System Requirements

Android application development may be performed on any of the following system types:
« Windows 8/10/11 64-bit

« macOS 10.14 or later running on Intel or Apple silicon

« Chrome OS device with Intel i5 or higher

o Linux systems with version 2.31 or later of the GNU C Library (glibc)

o Minimum of 8GB of RAM (see below)

« Approximately 8GB of available disk space

« 1280 x 800 minimum screen resolution

Although Android Studio will run on computers with 8GB of RAM, performance will be greatly improved on
systems containing more memory. This is particularly an issue if you plan to test your apps using the Android
Virtual Device emulator (AVD).

2.2 Downloading the Android Studio Package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Chipmunk 2021.2.1
using the Android API 32 SDK which, at the time of writing, are the current versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for “Android Studio
Chipmunk” should provide the option to download the older version if these differences become a problem.

3

https://developer.android.com/studio/index.html

Setting up an Android Studio Development Environment
Alternatively, visit the following web page to find Android Studio Chipmunk 2021.2.1 in the archives:
https://developer.android.com/studio/archive

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS

Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

4

https://developer.android.com/studio/archive

Setting up an Android Studio Development Environment

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip
Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,

therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:

./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:

sudo apt-get install 1ibc6:1386 libncurses5:i1386 libstdc++6:1386 1ib32z1 libbz2-
1.0:1386

On Red Hat and Fedora-based 64-bit systems, use the following command:

sudo yum install z1ib.i686 ncurses-1ibs.1686 bzip2-1ibs.i1686

2.4 The Android Studio Setup Wizard

If you are installing Android Studio for the first time the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2

If this dialog appears, click the Next button to display the SDK Components Setup dialog (Figure 2-3). Within
this dialog, make sure that the Android SDK option is selected along with the latest API package before clicking
on the Next button:

Setting up an Android Studio Development Environment

Figure 2-3
After clicking Next, Android Studio will download and install the Android SDK and tools.

If you have previously installed an earlier version of Android Studio, the first time that this new version is
launched, a dialog may appear providing the option to import settings from a previous Android Studio version.
If you have settings from a previous version and would like to import them into the latest installation, select the
appropriate option and location. Alternatively, indicate that you do not need to import any previous settings and
click on the OK button to proceed.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen:

Figure 2-4
2.5 Installing Additional Android SDK Packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK

packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

6

Setting up an Android Studio Development Environment

Figure 2-5
Immediately after installing Android Studio for the first, time it is likely that only the latest released version of

the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Setting up an Android Studio Development Environment

Figure 2-7

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

 Android SDK Build-tools

 Android Emulator

 Android SDK Platform-tools

» Google Play Services

« Intel x86 Emulator Accelerator (HAXM installer)

+ Google USB Driver (Windows only)

o Layout Inspector image server for API S

Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8

Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

Setting up an Android Studio Development Environment

2.6 Making the Android SDK Tools Command-line Accessible

Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. For the operating system on which you are developing
to be able to find these tools, it will be necessary to add them to the system’s PATH environment variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):

<path to android sdk installation>/sdk/tools

<path to android sdk installation>/sdk/tools/bin

<path to android sdk installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-9:

Figure 2-9

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit... button. Using the New button in the edit dialog, add three new entries to the path. For
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools
C:\Users\demo\AppData\Local\Android\Sdk\tools
C:\Users\demo\AppData\Local\Android\Sdk\tools\bin

4. Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering c¢md into the Run
dialog. Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that

9

Setting up an Android Studio Development Environment

the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the fools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11

Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux

On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin: /home/demo/android-studio/bin: $PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:

sudo vi /etc/paths.d/android-sdk

10

Setting up an Android Studio Development Environment

2.7 Android Studio Memory Management

Android Studio is alarge and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-10

To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->
Preferences... on macOS) menu option and, in the resulting dialog, select the Memory Settings option listed
under System Settings in the left-hand navigation panel as illustrated in Figure 2-11 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

Figure 2-11

11

Setting up an Android Studio Development Environment

The IDE memory setting adjusts the memory allocated to Android Studio and applies regardless of the currently
loaded project. When a project is built and run from within Android Studio, on the other hand, a number of
background processes (referred to as daemons) perform the task of compiling and running the app. When
compiling and running large and complex projects, build time may potentially be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these settings apply only to the current project and can only
be accessed when a project is open in Android Studio.

2.8 Updating Android Studio and the SDK

From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary

Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the Open]JDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

12

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of an Android application project using Android Studio. Once the project
has been created, a later chapter will explore the use of the Android emulator environment to perform a test run
of the application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also make use of one of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
simply click on the New Project option to display the first screen of the New Project wizard.

13

Creating an Example Android App in Android Studio

3.3 Creating an Activity

The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the Phone and Tablet option from the
Templates panel followed by the option to create an Empty Activity. The Empty Activity option creates a template
user interface consisting of a single TextView object.

Figure 3-2
With the Empty Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:

com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for the purposes of testing, though this will need to be changed before an application can be
published:

com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in
most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK

14

Creating an Example Android App in Android Studio

setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose button (highlighted in Figure 3-3) to see a full breakdown of the various Android versions still
in use:

Figure 3-3

Finally, change the Language menu to Java and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application

At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4

The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

15

Creating an Example Android App in Android Studio

Figure 3-5
3.6 Modifying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. Once located in the Project tool window, double-click on
the file to load it into the user interface Layout Editor tool which will appear in the center panel of the Android
Studio main window:

Figure 3-6

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon. Use the night button ()

to turn Night mode on and off.

As can be seen in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category

16

Creating an Example Android App in Android Studio

consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, also check that the Layout Editor’s Autoconnect mode is enabled. This means that as
components are added to the layout, the Layout Editor will automatically add constraints to make sure the
components are correctly positioned for different screen sizes and device orientations (a topic that will be
covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar
and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure
3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

Figure 3-9

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

17

Creating an Example Android App in Android Studio

Figure 3-10

The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-11:

Figure 3-11

The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12
18

Creating an Example Android App in Android Studio

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-13. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-13

When clicked, a panel (Figure 3-14) will appear describing the nature of the problems and offering some possible
corrective measures:

Figure 3-14
Currently, the only warning listed reads as follows:

Hardcoded string "Convert", should use @string resource

This 18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “T’, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-15).
Within this panel, change the resource name field to convert_string and leave the resource value set to Convert
before clicking on the OK button.

19

Creating an Example Android App in Android Studio

Figure 3-15

The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-16:

Figure 3-16

Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-17

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-18:

20

Creating an Example Android App in Android Studio

Figure 3-18
3.7 Reviewing the Layout and Resource Files

Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly to make user interface changes and, in some instances, this may actually be quicker
than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are three buttons as
highlighted in Figure 3-19 below:

Figure 3-19

By default, the editor will be in Desigh mode whereby just the visual representation of the layout is displayed.
The left-most button will switch to Code mode to display the XML for the layout, while the middle button enters
Split mode where both the layout and XML are displayed, as shown in Figure 3-20:

21

Creating an Example Android App in Android Studio

Figure 3-20
As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button and EditText objects. We can also see, for example, that the

text property of the Button is set to our convert_string resource. Although varying in complexity and content, all
user interface layouts are structured in this hierarchical, XML based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"
tools:context=".MainActivity"
android:background="#£{f2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the color of the layout changes in real-time to match the new setting in the XML file. Note also that a
small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Clicking
on the red square will display a color chooser allowing a different color to be selected:

22

Creating an Example Android App in Android Studio

Figure 3-21

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:
<resources>

<string name="app name">AndroidSample</string>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights and then press
Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and
take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource
back to the original “Convert” text and to add the following additional entry for a string resource that will be
referenced later in the app code:

<resources>

<string name="convert string">Convert</string>

<string name="dollars hint">dollars</string>

<string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open editor menu option. This will display the
Translation Editor in the main panel of the Android Studio window:

23

Creating an Example Android App in Android Studio

Figure 3-22

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.8 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

Figure 3-23

Note that the text field for the onClick property is now highlighted with a red border to warn us that the button
has been configured to call a method which does not yet exist. To address this, double-click on the MainActivity.
java file in the Project tool window (app -> java -> <package name> -> MainActivity) to load it into the code
editor and add the code for the convertCurrency method to the class file so that it reads as follows, noting that it
is also necessary to import some additional Android packages:

package com.ebookfrenzy.androidsample;

import androidx.appcompat.app.AppCompatActivity;
import android.os.Bundle;

import android.view.View;

import android.widget.EditText;

import android.widget.TextView;

24

Creating an Example Android App in Android Studio

import java.util.Locale;
public class MainActivity extends AppCompatActivity {

@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;

setContentView (R.layout.activity main);

public void convertCurrency (View view) {

EditText dollarText = findViewById(R.id.dollarText) ;
TextView textView = findViewById (R.id.textView) ;

if ('dollarText.getText().toString() .equals("")) {

float dollarValue = Float.parseFloat(dollarText.getText () .toString()) ;
float euroValue = dollarValue * 0.85F;
textView.setText (String. format (Locale.ENGLISH, "%$f", euroValue)) ;

} else {
textView.setText (R.string.no_value_string) ;

}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value and if so, that value is extracted, converted from a String to a floating point
value and converted to euros. Finally, the result is displayed on the TextView widget. If any of this is unclear, rest
assured that these concepts will be covered in greater detail in later chapters.

3.9 Summary

While not excessively complex, anumber of steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to make sure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly in the case of string values, and briefly touched on the topic of layouts.
Next we looked at the underlying XML that is used to store the user interface designs of Android applications.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

25

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio

Although the Android Studio Preview panel allows us to see the layout we are designing and test basic
functionality using interactive mode, it be will necessary to compile and run an entire app to fully test that it
works. An Android application may be tested by installing and running it either on a physical device or in an
Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and
configured to match the specifications of a particular device model. In this chapter, we will work through the
creation of such a virtual device using the Pixel 4 phone as a reference example.

4.1 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android-based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity, and the presence or otherwise of features such
as a camera, GPS navigation support, or an accelerometer. As part of the standard Android Studio installation,
several emulator templates are installed allowing AVDs to be configured for a range of different devices. Custom
configurations may be created to match any physical Android device by specifying properties such as processor
type, memory capacity, and the size and pixel density of the screen.

An AVD session can appear either as a separate window or embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step
is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting
the Tools -> Device Manager menu option from within the main window.

Once launched, the manager will appear as a tool window as shown in Figure 4-1:

Figure 4-1
To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device

27

Creating an Android Virtual Device (AVD) in Android Studio

button to open the Virtual Device Configuration dialog:

Figure 4-2

Within the dialog, perform the following steps to create a Pixel 4 compatible emulator:

L.

From the Category panel, select the Phone option to display the list of available Android phone AVD
templates.

Select the Pixel 4 device option and click Next.

On the System Image screen, select the latest version of Android. Note that if the system image has not yet
been installed a Download link will be provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or
ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

Click Next to proceed and enter a descriptive name (for example Pixel 4 API 32) into the name field or
simply accept the default name.

Click Finish to create the AVD.

With the AVD created, the Device Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the Device Manager, select the AVD from the list, and click on the pencil icon in
the Actions column to edit the settings.

4.2 Starting the Emulator

To perform a test run of the newly created AVD emulator, simply select the emulator from the Device Manager
and click on the launch button (the triangle in the Actions column). The emulator will appear embedded into
the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to
start will depend on the configuration of both the AVD and the system on which it is running:

28

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-3

To hide and show the emulator tool window, click on the Emulator tool window button (marked A above). Click
on the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can accommodate
multiple emulator sessions, with each session represented by a tab. Figure 4-4, for example, shows a tool window

with two emulator sessions:

Figure 4-4

To switch between sessions, simply click on the corresponding tab.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the Device Manager, select the new Pixel 4 entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change
the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the
emulator are covered in the next chapter “Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.3 Running the Application in the AVD

With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, make sure that the
newly created Pixel 4 AVD is displayed in the device menu (marked A in Figure 4-5 below), then either click on
the run button represented by a green triangle (B), select the Run -> Run app’ menu option or use the Ctrl-R

29

Creating an Android Virtual Device (AVD) in Android Studio

keyboard shortcut:

Figure 4-5

The device menu (A) may be used to select a different AVD instance or physical device as the run target, and
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 4-6

Once the application is installed and running, the user interface for the first fragment will appear within the
emulator (a fragment is a reusable section of an Android project typically consisting of a user interface layout and
some code, a topic which will be covered later in the chapter entitled “An Introduction to Android Fragments”):

Figure 4-7

30

Creating an Android Virtual Device (AVD) in Android Studio

If the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the
emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run tool window
will become available. The Run tool window will display diagnostic information as the application package is
installed and launched. Figure 4-8 shows the Run tool window output from a typical successful application
launch:

Figure 4-8
If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured. With the app now running, try
performing a temperature conversion to verify that the app works as intended.

4.4 Running on Multiple Devices

The run menu shown in Figure 4-6 above includes an option to run the app on multiple emulators and devices
in parallel. When selected, this option displays the dialog shown in Figure 4-9 providing a list of both the AVDs
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or
devices to be targeted before clicking on the Run button:

Figure 4-9
After the Run button is clicked, Android Studio will launch the app on the selected emulators and devices.

4.5 Stopping a Running Application

To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
4-10:

Figure 4-10

An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running. Once the Run tool window appears, click

31

Creating an Android Virtual Device (AVD) in Android Studio

the stop button highlighted in Figure 4-11 below:

Figure 4-11
4.6 Supporting Dark Theme

Android 10 introduced the much-awaited dark theme, support for which is enabled by default in Android
Studio app projects. To test dark theme in the AVD emulator, open the Settings app within the running Android
instance in the emulator. Within the Settings app, choose the Display category and enable the Dark theme option
as shown in Figure 4-12 so that the screen background turns black:

Figure 4-12

With dark theme enabled, run the AndroidSample app and note that it appears using a dark theme including a
black background and a purple background color on the button as shown in Figure 4-13:

Figure 4-13

Return to the Settings app and turn oftf Dark theme mode before continuing.

32

Creating an Android Virtual Device (AVD) in Android Studio

4.7 Running the Emulator in a Separate Window

So far in this chapter, we have only used the emulator as a tool window embedded within the main Android
Studio window. To run the emulator in a separate window, select the File -> Settings... menu option (Android
Studio -> Preferences... on macOS), navigate to Tools -> Emulator in the left-hand navigation panel of the
preferences dialog, and disable the Launch in a tool window option:

Figure 4-14

With the option disabled, click the Apply button followed by OK to commit the change, then exit the current
emulator session by clicking on the close button on the tab marked B in Figure 4-3 above.

Run the sample app once again, at which point the emulator will appear as a separate window as shown below:

Figure 4-15
33

Creating an Android Virtual Device (AVD) in Android Studio

The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before
committing to standalone mode, however, keep in mind that the emulator tool window may also be detached
from the main Android Studio window by clicking on the settings button (represented by the gear icon) in the
tool emulator toolbar and selecting the View Mode -> Float menu option:

Figure 4-16
4.8 Enabling the Device Frame

The emulator can be configured to appear with (Figure 4-17) or without the device frame (Figure 4-15).

Figure 4-17

To change the setting, open the Device Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings. In the settings screen, locate and change the Enable Device Frame option:

34

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-18
4.9 AVD Command-line Creation

As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly
from the command-line. This is achieved using the avdmanager tool in conjunction with some command-line
options. Once initiated, the tool will prompt for additional information before creating the new AVD.

The avdmanager tool requires access to the Java Runtime Environment (JRE) to run. If, when attempting to
run avdmanager, an error message appears indicating that the java’ command cannot be found, the command
prompt or terminal window within which you are running the command can be configured to use the OpenJDK
environment bundled with Android Studio. Begin by identifying the location of the OpenJDK JRE as follows:

1. Launch Android Studio and open the ComposeDemo project created earlier in the book.
2. Select the File -> Settings... menu option (Android Studio -> Preferences... on macOS).

3. Navigate to the Build, Execution, Deployment section and select the Gradle option listed under the Build
Tools category.

4. Click on the Gradle JDK setting and make a note of the path for Android Studio default JDK:

Figure 4-19

On Windows, execute the following command within the command prompt window from which avdmanager is
to be run (where <path to jre> is replaced by the path copied from the Project Structure dialog above):

set JAVA HOME=<path to jre>

On macOS or Linux, execute the following command:
export JAVA HOME="<path to jre>"

If you expect to use the avdmanager tool frequently, follow the environment variable steps for your operating

35

Creating an Android Virtual Device (AVD) in Android Studio

system outlined in the chapter entitled “Setting up an Android Studio Development Environment” to configure
JAVA_HOME on a system-wide basis.

Assuming that the system has been configured such that the Android SDK tools directory is included in the
PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following
command in a terminal or command window:

avdmanager list targets

The resulting output from the above command will contain a list of Android SDK versions that are available on
the system. For example:
Available Android targets:
id: 1 or "android-29"
Name: Android API 29
Type: Platform
API level: 29
Revision: 1
id: 2 or "android-26"
Name: Android API 26
Type: Platform
API level: 26

Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command-line. For example, to
create a new AVD named myAVD using the target ID for the Android APIlevel 29 device using the x86 ABI, the
following command may be used:

avdmanager create avd -n myAVD -k "system-images;android-29;google apis_

playstore;x86"

The avdmanager tool will create the new AVD to the specifications required for a basic Android 8 device, also
providing the option to create a custom configuration to match the specification of a specific device if required.
Once anew AVD has been created from the command-line, it may not show up in the Android Device Manager
tool until the Refresh button is clicked.

In addition to the creation of new AVDs, several other tasks may be performed from the command-line. For
example, a list of currently available AVDs may be obtained using the list avd command-line arguments:

avdmanager list avd

Available Android Virtual Devices:

Name: Pixel XL API 28 No Play
Device: pixel x1 (Google)

Path: /Users/neilsmyth/.android/avd/Pixel XL API 28 No Play.avd
Target: Google APIs (Google Inc.)

Based on: Android API 28 Tag/ABI: google apis/x86

Skin: pixel x1 silver

Sdcard: 512M

Similarly, to delete an existing AVD, simply use the delete option as follows:

36

Creating an Android Virtual Device (AVD) in Android Studio

avdmanager delete avd —n <avd name>

4.10 Android Virtual Device Configuration Files

By default, the files associated with an AVD are stored in the .android/avd sub-directory of the user’s home
directory, the structure of which is as follows (where <avd name> is replaced by the name assigned to the AVD):

<avd name>.avd/config.ini
<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions and memory specified
during the AVD creation process. These settings may be changed directly within the configuration file and will
be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD files. Note that
a change to the image.sysdir value in the config.ini file will also need to be reflected in the target value of this file.

4.11 Moving and Renaming an Android Virtual Device

The current name or the location of the AVD files may be altered from the command-line using the avdmanager
tool’s move avd argument. For example, to rename an AVD named Pixel4 to Pixel4a, the following command
may be executed:

avdmanager move avd -n Pixeld4d -r Pixelda
To physically relocate the files associated with the AVD, the following command syntax should be used:
avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Pixel4 Test:

avdmanager move avd -n Pixeld4 -p /tmp/PixeldTest

Note that the destination directory must not already exist before executing the command to move an AVD.

4.12 Summary

A typical application development process follows a cycle of coding, compiling, and running in a test
environment. Android applications may be tested on either a physical Android device or using an Android
Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool
which may be used either as a command-line tool or via a graphical user interface. When creating an AVD to
simulate a specific Android device model, the virtual device should be configured with a hardware specification
matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android
Studio user interface.

37

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
available to customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment

When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears containing a representation of the chosen device type (in the
case of Figure 5-1 this is a Pixel 4 device):

Figure 5-1
Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.
5.2 Emulator Toolbar Options

The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

39

Using and Configuring the Android Studio AVD Emulator

Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

Exit / Minimize - The uppermost X’ button in the toolbar exits the emulator session when selected while the
‘-’ option minimizes the entire window.

Power - The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power oft” request sequence.

Volume Up / Down - Two buttons that control the audio volume of playback within the simulator environment.
Rotate Left/Right — Rotates the emulated device between portrait and landscape orientations.

Take Screenshot — Takes a screenshot of the content currently displayed on the device screen. The captured
image is stored at the location specified in the Settings screen of the extended controls panel as outlined later
in this chapter.

Zoom Mode - This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

Back - Performs the standard Android “Back” navigation to return to a previous screen.
Home - Displays the device home screen.

Overview — Simulates selection of the standard Android “Overview” navigation which displays the currently
running apps on the device.

40

Using and Configuring the Android Studio AVD Emulator

o Fold Device - Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

« Extended Controls - Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button oft reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

5.4 Resizing the Emulator Window

The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3

41

Using and Configuring the Android Studio AVD Emulator
5.5.1 Location

The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format. Alternatively, the integrated Google Maps panel may be used to
visually select single points or travel routes.

5.5.2 Displays

In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

5.5.3 Cellular

The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

5.5.4 Battery

A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

5.5.5 Camera

The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.6 Phone

The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing how an app handles high-level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad

A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone

The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

42

Using and Configuring the Android Studio AVD Emulator
5.5.10 Virtual Sensors

The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement, and tilting through yaw, pitch and roll settings.

5.5.11 Snapshots

Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in later in this chapter.

5.5.12 Record and Playback

Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

5.5.13 Google Play

If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version and provides the option to update the emulator to the latest version.

5.5.14 Settings

The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

5.5.15 Help

The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots

When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

43

Using and Configuring the Android Studio AVD Emulator

Figure 5-4

The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by
default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to
reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous
quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager), click on the down arrow in the Actions
column for the emulator and select the Cold Boot Now menu option.

Figure 5-5
5.7 Configuring Fingerprint Emulation

The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app, and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a
backup screen unlocking method (such as a PIN) must be configured. Click on the Fingerprint + PIN button
and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN and
complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that

44

Using and Configuring the Android Studio AVD Emulator

Finger 1 is selected in the main settings panel:

Figure 5-6

Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will
report the successful addition of the fingerprint:

Figure 5-7

To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch the Sensor button once again.

5.8 The Emulator in Tool Window Mode

As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator as an embedded tool window so that it does not appear in a
separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar as shown in Figure 5-8:

45

Using and Configuring the Android Studio AVD Emulator

Figure 5-8

From left to right, these buttons perform the following tasks (details of which match those for standalone mode):
» Power

o Volume Up

+ Volume Down

« Rotate Left

Rotate Right
« Back

o Home

o Overview

Screenshot

o Snapshots

» Extended Controls

5.9 Summary

Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without the need to run on a physical Android device. This chapter has provided a brief tour of the
emulator and highlighted key features that are available to configure and customize the environment to simulate
different testing conditions.

46

Chapter 6

6. A Tour of the Android Studio User
Interface

While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen

The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will by-pass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1

In addition to a list of recent projects, the welcome screen provides a range of options for performing tasks such
as opening and creating projects along with access to projects currently under version control. In addition, the
Customize screen provides options to change the theme and font settings used by both the IDE and the editor.
Android Studio plugins may be viewed, installed and managed using via the Plugins option.

Additional options are available by clicking on the menu button as shown in Figure 6-2:

47

A Tour of the Android Studio User Interface

Figure 6-2
6.2 The Main Window

When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-3.

Figure 6-3

The various elements of the main window can be summarized as follows:
A - Menu Bar - Contains a range of menus for performing tasks within the Android Studio environment.

B - Toolbar - A selection of shortcuts to frequently performed actions. The toolbar buttons provide quicker
access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and
selecting the Customize Menus and Toolbars... menu option. If the toolbar is not visible, it can be displayed using
the View -> Appearance -> Toolbar menu option.

C - Navigation Bar - The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class. Select a method from the list to be taken to the corresponding location within the

48

A Tour of the Android Studio User Interface
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.

D - Editor Window - The editor window displays the content of the file on which the developer is currently
working. What gets displayed in this location, however, is subject to context. When editing code, for example,
the code editor will appear. When working on a user interface layout file, on the other hand, the user interface
Layout Editor tool will appear. When multiple files are open, each file is represented by a tab located along the
top edge of the editor as shown in Figure 6-4.

Figure 6-4

E - Status Bar - The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will provide a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F - Project Tool Window - The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project
in a number of different ways. The default setting is the Android view which is the mode primarily used in the
remainder of this book.

The project tool window is just one of a number of tool windows available within the Android Studio environment.

6.3 The Tool Windows

In addition to the project view tool window, Android Studio also includes a number of other windows which,
when enabled, are displayed along the bottom and sides of the main window. The tool window quick access
menu can be accessed by hovering the mouse pointer over the button located in the far left-hand corner of the
status bar (Figure 6-5) without clicking the mouse button.

Figure 6-5

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status

49

A Tour of the Android Studio User Interface

bar. These bars appear along the left, right and bottom edges of the main window (as indicated by the arrows in
Figure 6-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 6-6

Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window tool bars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-7 shows the settings menu for the project view tool window.
Options are available, for example, to undock a window and to allow it to float outside of the boundaries of the
Android Studio main window and to move and resize the tool panel.

Figure 6-7

All of the windows also include a far right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window

50

A Tour of the Android Studio User Interface

focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s tool bar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

App Inspector - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

Build - The build tool window displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

Build Variants — The build variants tool window provides a quick way to configure different build targets
for the current application project (for example different builds for debugging and release versions of the
application, or multiple builds to target different device categories).

Device File Explorer — Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator allowing the
filesystem to be browsed and files copied to the local filesystem.

Device Manager - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

Event Log - The event log window displays messages relating to events and activities performed within
Android Studio. The successful build of a project, for example, or the fact that an application is now running
will be reported within this tool window.

Favorites — A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list
can be accessed through this Favorites tool window.

Gradle - The Gradle tool window provides a view of the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater
detail later in this book.

Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

Logcat — The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Problems - A central location in which to view all of the current errors or warnings within the project.
Double-clicking on an item in the problem list will take you to the problem file and location.

Profiler - The Android Profiler tool window provides real-time monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

Project — The project view provides an overview of the file structure that makes up the project allowing for

51

A Tour of the Android Studio User Interface

quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be
loaded into the appropriate editing tool.

Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout
files contained with the project.

Run - The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing
to install and run on a device or emulator, this window will typically provide diagnostic information relating
to the problem.

Structure - The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the source file in the editor window.

Terminal - Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

TODO - As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting
the File -> Settings... menu option (Android Studio -> Preferences... on macOS) and navigating to the TODO
page listed under Editor.

6.4 Android Studio Keyboard Shortcuts

Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option. You may also list and modify the
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS)
and clicking on the Keymap entry as shown in Figure 6-8 below:

Figure 6-8

52

A Tour of the Android Studio User Interface

6.5 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-9).

Figure 6-9
Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping

the Tab key while holding down the Ctrl key will cycle through the various selection options, while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure
6-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the
mouse pointer can be used to select an option or, alternatively, the keyboard arrow keys used to scroll through
the file name and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 6-10
6.6 Changing the Android Studio Theme

The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option, or via the File -> Settings... menu option (Android Studio -> Preferences... on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance & Behavior option followed by Appearance in the
53

A Tour of the Android Studio User Interface

left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes
available will depend on the platform but usually include options such as Light, Intelli], Windows, High Contrast
and Darcula. Figure 6-11 shows an example of the main window with the Darcula theme selected:

Figure 6-11

To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

Figure 6-12
6.7 Summary

The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar, or via the
optional tool window bars.

There are very few actions within Android Studio which cannot be triggered via a keyboard shortcut. A keymap
of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

54

Chapter 7

7. Testing Android Studio Apps on a
Physical Android Device

While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no substitute
for performing real-world application testing on a physical Android device and there are some Android features
that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). In this chapter, we explain how to configure the adb environment to enable application testing on
an Android device with macOS, Windows, and Linux-based systems.

7.1 An Overview of the Android Debug Bridge (ADB)

The primary purpose of the ADB is to facilitate interaction between a development system, in this case, Android
Studio, and both AVD emulators and Android devices to run and debug applications. ADB allows you to connect
to devices either over a WiFi network or directly using a USB cable.

The ADB consists of a client, a server process running in the background on the development system, and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active
virtual or physical devices may be obtained using the devices command-line argument. The following command
output indicates the presence of an AVD on the system but no physical devices:

$ adb devices

List of devices attached

emulator-5554 device

7.2 Enabling USB Debugging ADB on Android Devices

Before ADB can connect to an Android device, that device must first be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1. Open the Settings app on the device and select the About tablet or About phone option (on some versions of
Android this can be found on the System page of the Settings app).

2. On the About screen, scroll down to the Build number field (Figure 7-1) and tap on it seven times until a
message appears indicating that developer mode has been enabled. If the Build number is not listed on the
About screen it may be available via the Software information option. Alternatively, unfold the Advanced
section of the list if available.

55

Testing Android Studio Apps on a Physical Android Device

Figure 7-1
3. Return to the main Settings screen and note the appearance of a new option titled Developer options (on

newer versions of Android this option is listed on the System settings screen). Select this option and on the
resulting screen, locate the USB debugging option as illustrated in Figure 7-2:

Figure 7-2
4. Enable the USB debugging option and tap the Allow button when confirmation is requested.

At this point, the device is now configured to accept debugging connections from adb on the development
system over a USB connection. All that remains is to configure the development system to detect the device
when it is attached. While this is a relatively straightforward process, the steps involved differ depending on
whether the development system is running Windows, macOS, or Linux. Note that the following steps assume
that the Android SDK platform-tools directory is included in the operating system PATH environment variable
as described in the chapter entitled “Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration

To configure the ADB environment on a macOS system, connect the device to the computer system using a USB
cable, open a terminal window and execute the following command to restart the adb server:

$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:

$ adb devices

List of devices attached

74CE000600000001 offiine

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure
7-3 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK.

56

Testing Android Studio Apps on a Physical Android Device

Figure 7-3
Repeating the adb devices command should now list the device as being available:

List of devices attached
015d41d4454bf80c device

If the device is not listed, try logging out and then back into the macOS desktop and, if the problem persists,
rebooting the system.

7.2.2 Windows ADB Configuration

The first step in configuring a Windows-based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
the Android Device. If you have a Google device such as a Pixel phone, then it will be necessary to install and
configure the Google USB Driver package on your Windows system. Detailed steps to achieve this are outlined
on the following web page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it will be necessary to download the drivers
provided by the device manufacturer. A listing of drivers together with download and installation information
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:

adb devices

This command should output information about the connected device similar to the following:

List of devices attached
HT4CTJT01906 offiine

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
7-3 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as
being ready:

List of devices attached

HT4CTJT01906 device

If the device is not listed, execute the following commands to restart the ADB server:
adb kill-server

adb start-server

57

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

Testing Android Studio Apps on a Physical Android Device

If the device is still not listed, try executing the following command:

android update adb
Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration

For this chapter, we will once again use Ubuntu Linux as a reference example in terms of configuring adb on
Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not
listed, run the following command to add your account to the group:

sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:

sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server and check the list of attached devices:

$ adb start-server

* daemon not running. starting it now on port 5037 *
* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offiine

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 7-3 seeking permission to Allow USB debugging.
7.3 Resolving USB Connection Issues

If you are unable to successfully connect to the device using the above steps, display the run target menu (Figure
7-4) and select the Troubleshoot Device Connections option:

Figure 7-4
The connection assistant will scan for devices and report problems and possible solutions.
58

Testing Android Studio Apps on a Physical Android Device

7.4 Enabling Wireless Debugging on Android Devices
Follow steps 1 through 3 from section 7.2 above, this time enabling the Wireless Debugging option as shown in

Figure 7-5:

Figure 7-5
Next, tap the above Wireless debugging entry to display the screen shown in Figure 7-6:

Figure 7-6
If the device you are using has a camera, select Pair device with QR code, otherwise select the Pair device with
pairing code option. Depending on your selection, the Settings app will either start a camera session or display a

pairing code as shown in Figure 7-7:

Figure 7-7
With an option selected, return to Android Studio and select the Pair Devices Using WiFi option from the run

target menu as illustrated in Figure 7-8:
59

Testing Android Studio Apps on a Physical Android Device

Figure 7-8

In the pairing dialog, select either Pair using QR code or Pair using pairing code depending on your previous
selection in the Settings app on the device:

Figure 7-9

Either scan the QR code using the Android device or enter the pairing code displayed on the device screen into
the Android Studio dialog (Figure 7-10) to complete the pairing process:

Figure 7-10
If the pairing process fails, try rebooting both the development system and Android device and try again.

60

Testing Android Studio Apps on a Physical Android Device

7.5 Testing the adb Connection

Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “Creating an Example Android App in Android
Studio” on the device. Launch Android Studio, open the AndroidSample project, and verify that the device
appears in the device selection menu as highlighted in Figure 7-11:

Figure 7-11

Select the device from the list and click on the run button (the green arrow button located immediately to the
right of the device menu) to install and run the app.

7.6 Summary

While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep
in mind that there is no real substitute for making sure an application functions correctly on a physical Android
device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps to be able to load applications directly onto an
Android device from within the Android Studio development environment either via a USB cable or over a WiFi
network. The exact steps to achieve this goal differ depending on the development platform being used. In this
chapter, we have covered those steps for Linux, macOS, and Windows-based platforms.

61

8. The Basics of the Android Studio
Code Editor

Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor

The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Java source code
file loaded:

Figure 8-1

The elements that comprise the editor window can be summarized as follows:

A - Document Tabs - Android Studio is capable of holding multiple files open for editing at any one time. As
each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top

63

The Basics of the Android Studio Code Editor

edge of the editor window. A small drop-down menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-
Right keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism
(accessible via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B - The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched
on by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu
option.

C - Code Structure Location - This bar at the bottom of the editor displays the current position of the cursor
as it relates to the overall structure of the code. In the following figure, for example, the bar indicates that the
convertCurrency method is currently being edited, and that this method is contained within the MainActivity
class.

Figure 8-2

Double-clicking an element within the bar will move the cursor to the corresponding location within the
code file. For example, double-clicking on the convertCurrency entry will move the cursor to the top of the
convertCurrency method within the source code. Similarly clicking on the MainActivity entry will drop down a
list of available code navigation points for selection:

Figure 8-3

D - The Editor Area - This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E - The Validation and Marker Sidebar — Android Studio incorporates a feature referred to as “on-the-fly code
analysis”. What this essentially means is that as you are typing code, the editor is analyzing the code to check for
warnings and syntax errors. The indicators at the top of the validation sidebar will update in real-time to indicate
the number of errors and warnings found as code is added. Clicking on this indicator will display a popup
containing a summary of the issues found with the code in the editor as illustrated in Figure 8-4:

64

The Basics of the Android Studio Code Editor

Figure 8-4

The up and down arrows may be used to move between the error locations within the code. A green check mark
indicates that no warnings or errors have been detected.

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup
containing a description of the issue:

Figure 8-5
Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area

of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-6)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-6
It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over

any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

F - The Status Bar - Though the status bar is actually part of the main window, as opposed to the editor, it does
contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line dialog.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window

By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into
multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 8-7, for example, shows the splitter in action with the editor

65

The Basics of the Android Studio Code Editor

split into three panels:

Figure 8-7
The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion

The Android Studio editor has a considerable amount of built-in knowledge of Java programming syntax and
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-8, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-8

If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the
keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

66

The Basics of the Android Studio Code Editor

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred to
as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-
Ctrl-Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings... menu option (or Android Studio -> Preferences... on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-9:

Figure 8-9
8.4 Statement Completion

Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:

myMethod ()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:

myMethod () {

67

The Basics of the Android Studio Code Editor

8.5 Parameter Information

It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-10
8.6 Parameter Name Hints

The code editor may be configured to display parameter name hints within method calls. Figure 8-11, for
example, highlights the parameter name hints within the calls to the make() and setAction() methods of the
Snackbar class:

Figure 8-11

The settings for this mode may be configured by selecting the File - > Settings menu (Android Studio -> Preferences
on macOS) option followed by Editor -> Inlay Hints -> Java in the left-hand panel. On the resulting screen, select
the Parameter Hints item from the list and enable or disable the Show parameter hints option. To adjust the hint
settings, click on the Exclude list... link and make any necessary adjustments.

8.7 Code Generation

In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-12 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-12

For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio
generate a stub method for this, simply select the Override Methods... option from the code generation list and

68

The Basics of the Android Studio Code Editor

select the onStop() method from the resulting list of available methods:

Figure 8-13
Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Java source file as follows:
@Override
protected void onStop () {
super.onStop () ;

}
8.8 Code Folding

Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-14, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-14

Clicking on either of these markers will fold the statement such that only the signature line is visible as shown

69

The Basics of the Android Studio Code Editor

in Figure 8-15:

Figure 8-15

To unfold a collapsed section of code, simply click on the ‘+” marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{...}” indicator as shown in Figure 8-16. The editor will
then display the lens overlay containing the folded code block:

Figure 8-16
All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings. .. (Android Studio -> Preferences... on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-17):

Figure 8-17
8.9 Quick Documentation Lookup

Context sensitive Java and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-] on macOS). This will

70

The Basics of the Android Studio Code Editor

display a popup containing the relevant reference documentation for the item. Figure 8-18, for example, shows
the documentation for the Android FloatingActionButton class.

Figure 8-18

Once displayed, the documentation popup can be moved around the screen as needed.

8.10 Code Reformatting

In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a website), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display
the Reformat Code dialog (Figure 8-19) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire source file currently active in the
editor or only code that has changed as the result of a source code control update.

Figure 8-19

The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences... on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog,
for example, unfold the Code Style section, select Java and, from the Java settings, select the Arrangement tab.

8.11 Finding Sample Code

The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample
Code menu option. The Find Sample Code panel (Figure 8-20) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

71

The Basics of the Android Studio Code Editor

Figure 8-20
8.12 Live Templates
As you write Android code you will find that there are common constructs that are used frequently. For example,
a common requirement is to display a popup message to the user using the Android Toast class. Live templates
are a collection of common code constructs that can be entered into the editor by typing the initial characters
followed by a special key (set to the Tab key by default) to insert template code. To experience this in action, type
toast in the code editor followed by the Tab key and Android Studio will insert the following code at the cursor
position ready for editing:
Toast.makeText (, "", Toast.LENGTH SHORT) .show();

To list and edit existing templates, change the special key, or add your own templates, open the Preferences
dialog and select Live Templates from the Editor section of the left-hand navigation panel:

Figure 8-21

Add, remove, duplicate or reset templates using the buttons marked A in Figure 8-21 above. To modify a
template, select it from the list (B) and change the settings in the panel marked C.

8.13 Summary

The Android Studio editor goes to great length to reduce the amount of typing needed to write code and to
make that code easier to read and navigate. In this chapter we have covered a number of the key editor features
including code completion, code generation, editor window splitting, code folding, reformatting, documentation
lookup and live templates.

72

Chapter 9

9. An Overview of the Android
Architecture

So far in this book, steps have been taken to set up an environment suitable for the development of Android
applications using Android Studio. An initial step has also been taken into the process of application development
through the creation of an Android Studio application project.

Before delving further into the practical matters of Android application development, however, it is important
to gain an understanding of some of the more abstract concepts of both the Android SDK and Android
development in general. Gaining a clear understanding of these concepts now will provide a sound foundation
on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of
this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack

Android is structured in the form of a software stack comprising applications, an operating system, run-time
environment, middle-ware, services and libraries. This architecture can, perhaps, best be represented visually
as outlined in Figure 9-1. Each layer of the stack, and the corresponding elements within each layer, are tightly
integrated and carefully tuned to provide the optimal application development and execution environment
for mobile devices. The remainder of this chapter will work through the different layers of the Android stack,
starting at the bottom with the Linux Kernel.

Figure 9-1

73

An Overview of the Android Architecture

9.2 The Linux Kernel

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between
the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the
kernel provides preemptive multitasking, low-level core system services such as memory, process and power
management in addition to providing a network stack and device drivers for hardware such as the device display,
WiFi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities
and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system
referred to as GNU/Linux. Various Linux distributions have been derived from these basic underpinnings such
as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the
Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In
fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to
both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find
this software at the heart of the Android software stack.

9.3 Android Runtime — ART

When an Android app is built within Android Studio it is compiled into an intermediate bytecode format
(referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime
(ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the
native instructions required by the device processor. This format is known as Executable and Linkable Format
(ELEF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster
application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries

In addition to a set of standard Java development libraries (providing support for such general purpose tasks as
string handling, networking and file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples
of libraries in this category include the application framework libraries in addition to those that facilitate user
interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:
« android.app - Provides access to the application model and is the cornerstone of all Android applications.

« android.content — Facilitates content access, publishing and messaging between applications and application
components.

« android.database - Used to access data published by content providers and includes SQLite database
management classes.

o android.graphics - A low-level 2D graphics drawing API including colors, points, filters, rectangles and
canvases.

« android.hardware - Presents an API providing access to hardware such as the accelerometer and light sensor.

74

An Overview of the Android Architecture
« android.opengl - A Java interface to the OpenGL ES 3D graphics rendering API.

« android.os - Provides applications with access to standard operating system services including messages,
system services and inter-process communication.

« android.media - Provides classes to enable playback of audio and video.

« android.net — A set of APIs providing access to the network stack. Includes android.net.wifi, which provides
access to the device’s wireless stack.

o android.print - Includes a set of classes that enable content to be sent to configured printers from within
Android applications.

« android.provider - A set of convenience classes that provide access to standard Android content provider
databases such as those maintained by the calendar and contact applications.

« android.text — Used to render and manipulate text on a device display.

o android.util - A set of utility classes for performing tasks such as string and number conversion, XML
handling and date and time manipulation.

o android.view - The fundamental building blocks of application user interfaces.

« android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views,
layout managers, radio buttons etc.

« android.webkit - A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++ based libraries contained in this layer of the Android software stack.

9.4.1 C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary
APIs for developers writing Android applications. It is important to note, however, that the core libraries do
not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based
libraries. When making calls, for example, to the android.opengl library to draw 3D graphics on the device
display, the library actually ultimately makes calls to the OpenGL ES C++ library which, in turn, works with the
underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback,
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java based
Android core library APIs. If direct access to these libraries is needed, this can be achieved using the Android
Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or Kotlin
programming languages (such as C and C++) from within Java code using the Java Native Interface (JNT).

9.5 Application Framework

The Application Framework is a set of services that collectively form the environment in which Android
applications run and are managed. This framework implements the concept that Android applications are
constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in
that an application is also able to publish its capabilities along with any corresponding data so that they can be

75

An Overview of the Android Architecture

found and reused by other applications.

The Android framework includes the following key services:

o Activity Manager - Controls all aspects of the application lifecycle and activity stack.

o Content Providers — Allows applications to publish and share data with other applications.

» Resource Manager — Provides access to non-code embedded resources such as strings, color settings and user
interface layouts.

o Notifications Manager - Allows applications to display alerts and notifications to the user.
» View System - An extensible set of views used to create application user interfaces.

o Package Manager - The system by which applications are able to find out information about other applications
currently installed on the device.

o Telephony Manager — Provides information to the application about the telephony services available on the
device such as status and subscriber information.

« Location Manager - Provides access to the location services allowing an application to receive updates about
location changes.

9.6 Applications

Located at the top of the Android software stack are the applications. These comprise both the native applications
provided with the particular Android implementation (for example web browser and email applications) and
the third party applications installed by the user after purchasing the device.

9.7 Summary

A good Android development knowledge foundation requires an understanding of the overall architecture of
Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel,
a runtime environment and corresponding libraries, an application framework and a set of applications.
Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the
Android Studio build environment. When the application is subsequently installed on a device, this bytecode
is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the
Android architecture are performance and efficiency, both in application execution and in the implementation
of reuse in application design.

76

Chapter 10

10. The Anatomy of an Android
Application

Regardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail both the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities

Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this
is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities. An activity
is a single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointments application might, for example, have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application, for example, might contain an activity specifically for composing
and sending an email message. A developer might be writing an application that also has a requirement to send
an email message. Rather than develop an email composition activity specifically for the new application, the
developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may make use of the activity in unanticipated ways)
and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved
using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be specifically started as a sub-activity of the originating activity.

10.2 Android Fragments

An activity, as described above, typically represents a single user interface screen within an app. One option is
to construct the activity using a single user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each of these sections is referred to as a
fragment, each of which consists of part of the user interface layout and a matching class file (declared as a
subclass of the Android Fragment class). In this scenario, an activity simply becomes a container into which one
or more fragments are embedded.

77

The Anatomy of an Android Application

In fact, fragments provide an efficient alternative to having each user interface screen represented by a
separate activity. Instead, an app can consist of a single activity that switches between different fragments, each
representing a different app screen.

10.3 Android Intents

Intents are the mechanism by which one activity is able to launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents

Another type of Intent, the Broadcast Intent, is a system wide intent that is sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status such as the completion of system start up, connection of an external
power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time, or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers

Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A
Broadcast Receiver must be registered by an application and configured with an Intent Filter to indicate the
types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked
by the Android runtime regardless of whether the application that registered the receiver is currently running.
The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service,
making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the
background and do not have a user interface.

10.6 Android Services

Android Services are processes that run in the background and do not have a user interface. They can be started
and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal
for situations where an application needs to continue performing tasks but does not necessarily need a user
interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events
using notifications and toasts (small notification messages that appear on the screen without interrupting the
currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be
terminated as a last resort by the system to free up resources. If the runtime does need to kill a Service, however,
it will be automatically restarted as soon as adequate resources once again become available. A Service can
reduce the risk of termination by declaring itself as needing to run in the foreground. This is achieved by making
a call to startForeground(). This is only recommended for situations where termination would be detrimental to
the user experience (for example, if the user is listening to audio being streamed by the Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming
of audio that should continue when the application is no longer active, or a stock market tracking application

78

The Anatomy of an Android Application

that needs to notify the user when a share hits a specified price.

10.7 Content Providers

Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data through the implementation of a Content Provider
including the ability to add, remove and query the data (subject to permissions). Access to the data is provided
via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a
file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access
data such as contacts and media files. The Content Providers currently available on an Android system may be
located using a Content Resolver.

10.8 The Application Manifest

The glue that pulls together the various elements that comprise an application is the Application Manifest file.
It is within this XML based file that the application outlines the activities, services, broadcast receivers, data
providers and permissions that make up the complete application.

10.9 Application Resources

In addition to the manifest file and the Dex files that contain the byte code, an Android application package will
also typically contain a collection of resource files. These files contain resources such as the strings, images, fonts
and colors that appear in the user interface together with the XML representation of the user interface layouts.
By default, these files are stored in the /res sub-directory of the application project’s hierarchy.

10.10 Application Context

When an application is compiled, a class named R is created that contains references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and make changes to the application’s environment at runtime.

10.11 Summary

A number of different elements can be brought together to create an Android application. In this chapter, we
have provided a high-level overview of Activities, Fragments, Services, Intents and Broadcast Receivers together
with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of
functionality in the form of activities and intents, while data sharing between applications is achieved by the
implementation of content providers.

While activities are focused on areas where the user interacts with the application (an activity essentially
equating to a single user interface screen and often made up of one or more fragments), background processing
is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however,
that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a
solid knowledge foundation on which to build your own applications.

79

Chapter 11

11. An Overview of Android View
Binding

An important part of developing Android apps involves the interaction between the code and the views that
make up the user interface layouts. This chapter will look at the options available for gaining access to layout
views in code with a particular emphasis on an option known as view binding. Once the basics of view bindings

have been covered, the chapter will outline the changes necessary to convert the AndroidSample project to use
this approach.

11.1 Find View by Id

As outlined in the chapter entitled “The Anatomy of an Android Application”, all of the resources that make up
an application are compiled into a class named R. Amongst those resources are those that define layouts. Within
the R class is a subclass named layout, which contains the layout resources, including the views that make up
the user interface. Most apps will need to implement interaction between the code and these views, for example
when reading the value entered into the EditText view or changing the content displayed on a TextView.

Before the introduction of Android Studio 3.6, the only option for gaining access to a view from within the app
code involved writing code to manually find a view based on its id via a method named findViewById(). For
example:

TextView exampleView = findViewById(R.id.exampleView) ;

With the reference obtained, the properties of the view can then be accessed. For example:

exampleView.setText ("Hello") ;

While finding views by id is still a viable option, it has some limitations, the biggest disadvantage of find ViewById()
being that it is possible to obtain a reference to a view that has not yet been created within the layout, leading to
a null pointer exception when an attempt is made to access the view’s properties.

Since Android Studio 3.6, an alternative way of accessing views from the app code has been available in the form
of view binding.

11.2 View Binding

When view binding is enabled in an app module, Android Studio automatically generates a binding class for
each layout file within the module. Using this binding class, the layout views can be accessed from within the
code without the need to use findViewByld().

The name of the binding class generated by Android Studio is based on the layout file name converted to so-
called “camel case” with the word “Binding” appended to the end. In the case of the activity_main.xml file, for
example, the binding class will be named ActivityMainBinding.

Android Studio Chipmunk is inconsistent in using view bindings within project templates. The Empty Activity
template used when we created the AndroidSample project, for example, does not use view bindings. The Basic
Activity template, on the other hand, is implemented using view binding. If you use a template that does not use
view binding, it is important to know how to migrate that project away from synthetic properties.

81

An Overview of Android View Binding

11.3 Converting the AndroidSample project

The remainder of this chapter we will practice migrating to view bindings by converting the AndroidSample
project to use view binding instead of using find ViewById().

Begin by launching Android Studio and opening the AndroidSample project created in the chapter entitled
“Creating an Example Android App in Android Studio”.

11.4 Enabling View Binding

To use view binding, some changes must first be made to the build.gradle file for each module in which view
binding is needed. In the case of the AndroidSample project, this will require a small change to the Gradle Scripts
-> build.gradle (Module: AndroidSample.app) file. Load this file into the editor, locate the android section and
add an entry to enable the viewBinding property as follows:
plugins {

id 'com.android.application'

android {

buildFeatures {

viewBinding true

Once this change has been made, click on the Sync Now link at the top of the editor panel, then use the Build
menu to clean and then rebuild the project to make sure the binding class is generated. The next step is to use
the binding class within the code.

11.5 Using View Binding

The first step in this process is to “inflate” the view binding class so that we can access the root view within the
layout. This root view will then be used as the content view for the layout.

The logical place to perform these tasks is within the onCreate() method of the activity associated with the
layout. A typical onCreate() method will read as follows:
@Override
protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView (R.layout.activity main);
}

To switch to using view binding, the view binding class will need to be imported and the class modified as follows.
Note that since the layout file is named activity_main.xml, we can surmise that the binding class generated by
Android Studio will be named ActivityMainBinding. Note that if you used a domain other than com.example
when creating the project, the import statement below will need to be changed to reflect this:

An Overview of Android View Binding

import com.example.androidsample.databinding.ActivityMainBinding;

public class MainActivity extends AppCompatActivity {

private ActivityMainBinding binding;

@Override
protected void onCreate (Bundle savedInstanceState) {

super.onCreate (savedInstanceState) ;
setContentView{RTayoutactivity maim—
binding = ActivityMainBinding.inflate (getLayoutInflater()) ;
View view = binding.getRoot() ;
setContentView (view) ;

}

Now that we have a reference to the binding we can access the views by name as follows:

public void convertCurrency (View view) {

if (!binding.dollarText.getText ().toString().equals("")) {

Float dollarValue = Float.valueOf (binding.dollarText.getText ().

toString());
Float euroValue = dollarValue * 0.85F;

binding.textView.setText (euroValue.toString());

} else {
binding.textView.setText (R.string.no value string);

}
Compile and run the app and verify that the currency conversion process still works as before.

11.6 Choosing an Option

Their failure to adopt view bindings in the Empty Activity project template not withstanding, Google strongly
recommends the use of view binding wherever possible. In fact, support for synthetic properties is now deprecated
and will likely be removed in a future release of Android Studio. When developing your own projects, therefore,

view binding should probably be used.
11.7 View Binding in the Book Examples

Any chapters in this book that rely on a project template that does not implement view binding will first be
migrated. Instead of replicating the steps every time a migration needs to be performed, however, these chapters

83

An Overview of Android View Binding

will refer you back here to refresh your memory (don’t worry, after a few chapters the necessary changes will
become second nature). To help with the process, the following section summarizes the migration steps more
concisely.

11.8 Migrating a Project to View Binding

The process for converting a project module to use view binding involves the following steps:

1. Edit the module level Gradle build script file listed in the Project tool window as Gradle Scripts -> build.
gradle (Module: <project name>.app) where <project name> is the name of the project (for example
AndroidSample).

2. Locate the android section of the file and add an entry to enable the viewBinding property as follows:

android {

buildFeatures {

viewBinding true

3. Click on the Sync Now link at the top of the editor to resynchronize the project with these new build settings.

4. Edit the MainActivityjava file and modify it to read as follows (where <reverse domain> represents
the domain name used when the project was created and <project name> is replaced by the lowercase
name of the project, for example androidsample) and <binding name> is the name of the binding for the
corresponding layout resource file (for example the binding for activity_main.xml is ActivityMainBinding).

import android.view.View;
import com.<reverse domain>.<project name>.databinding.<binding name>;
public class MainActivity extends AppCompatActivity {

private <binding name> binding;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
setContentView(R-tayoutactivity matimy+
binding = <binding name>.inflate (getLayoutInflater()) ;
View view = binding.getRoot() ;
setContentView (view) ;

}

5. Access views by name as properties of the binding object.

84

An Overview of Android View Binding

11.9 Summary

Before the introduction of Android Studio 3.6, access to layout views from within the code of an app involved the
use of the findViewById() method. An alternative is now available in the form of view bindings. View bindings
consist of classes which are automatically generated by Android Studio for each XML layout file. These classes
contain bindings to each of the views in the corresponding layout, providing a safer option to that offered by the
findViewByld() method. As of Android Studio Chipmunk, however, view bindings are not enabled by default in
some project templates and additional steps are required to manually enable and configure support within each
project module.

85

Chapter 12

12. Understanding Android
Application and Activity Lifecycles

In earlier chapters we have learned that Android applications run within processes and that they are comprised
of multiple components in the form of activities, services and broadcast receivers. The goal of this chapter is to
expand on this knowledge by looking at the lifecycle of applications and activities within the Android runtime
system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that both the operating system and the applications running on
it remain responsive to the user at all times. To achieve this, Android is given full control over the lifecycle and
state of both the processes in which the applications run, and the individual components that comprise those
applications.

An important factor in developing Android applications, therefore, is to gain an understanding of both the
application and activity lifecycle management models of Android, and the ways in which an application can
react to the state changes that are likely to be imposed upon it during its execution lifetime.

12.1 Android Applications and Resource Management
Each running Android application is viewed by the operating system as a separate process. If the system identifies

that resources on the device are reaching capacity it will take steps to terminate processes to free up memory.

When making a determination as to which process to terminate to free up memory, the system takes into
consideration both the priority and state of all currently running processes, combining these factors to create
what is referred to by Google as an importance hierarchy. Processes are then terminated starting with the lowest
priority and working up the hierarchy until sufficient resources have been liberated for the system to function.

12.2 Android Process States

Processes host applications and applications are made up of components. Within an Android system, the current
state of a process is defined by the highest-ranking active component within the application that it hosts. As
outlined in Figure 12-1, a process can be in one of the following five states at any given time:

87

Understanding Android Application and Activity Lifecycles

Figure 12-1
12.2.1 Foreground Process

These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active and these are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

« Hosts an activity with which the user is currently interacting.
 Hosts a Service connected to the activity with which the user is interacting.

« Hosts a Service that has indicated, via a call to startForeground(), that termination would be disruptive to the
user experience.

« Hosts a Service executing either its onCreate(), onResume() or onStart() callbacks.

« Hosts a Broadcast Receiver that is currently executing its onReceive() method.

12.2.2 Visible Process

A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

12.2.3 Service Process

Processes that contain a Service that has already been started and is currently executing.

12.2.4 Background Process

A process that contains one or more activities that are not currently visible to the user, and does not host a
Service that qualifies for Service Process status. Processes that fall into this category are at high risk of termination
if additional memory needs to be freed for higher priority processes. Android maintains a dynamic list of
background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

88

Understanding Android Application and Activity Lifecycles
12.2.5 Empty Process

Empty processes no longer contain any active applications and are held in memory ready to serve as hosts for
newly launched applications. This is somewhat analogous to keeping the doors open and the engine running on
a bus in anticipation of passengers arriving. Such processes are, obviously, considered the lowest priority and are
the first to be killed to free up resources.

12.3 Inter-Process Dependencies

The situation with regard to determining the highest priority process is slightly more complex than outlined in
the preceding section for the simple reason that processes can often be inter-dependent. As such, when making
a determination as to the priority of a process, the Android system will also take into consideration whether the
process is in some way serving another process of higher priority (for example, a service process acting as the
content provider for a foreground process). As a basic rule, the Android documentation states that a process can
never be ranked lower than another process that it is currently serving.

12.4 The Activity Lifecycle

As we have previously determined, the state of an Android process is determined largely by the status of the
activities and components that make up the application that it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

12.5 The Activity Stack

For each application that is running on an Android device, the runtime system maintains an Activity Stack.
When an application is launched, the first of the application’s activities to be started is placed onto the stack.
When a second activity is started, it is placed on the top of the stack and the previous activity is pushed down.
The activity at the top of the stack is referred to as the active (or running) activity. When the active activity exits,
it is popped off the stack by the runtime and the activity located immediately beneath it in the stack becomes
the current active activity. The activity at the top of the stack might, for example, simply exit because the task
for which it is responsible has been completed. Alternatively, the user may have selected a “Back” button on the
screen to return to the previous activity, causing the current activity to be popped off the stack by the runtime
system and therefore destroyed. A visual representation of the Android Activity Stack is illustrated in Figure
12-2.

As shown in the diagram, new activities are pushed on to the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity, or
popped oft the stack when it exits or the user navigates to the previous activity. If resources become constrained,
the runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

89

Understanding Android Application and Activity Lifecycles

Figure 12-2
12.6 Activity States

An activity can be in one of a number of different states during the course of its execution within an application:

Active / Running - The activity is at the top of the Activity Stack, is the foreground task visible on the
device screen, has focus and is currently interacting with the user. This is the least likely activity to be
terminated in the event of a resource shortage.

Paused - The activity is visible to the user but does not currently have focus (typically because this activity
is partially obscured by the current active activity). Paused activities are held in memory, remain attached
to the window manager, retain all state information and can quickly be restored to active status when
moved to the top of the Activity Stack.

Stopped - The activity is currently not visible to the user (in other words it is totally obscured on the
device display by other activities). As with paused activities, it retains all state and member information,
but is at higher risk of termination in low memory situations.

Killed - The activity has been terminated by the runtime system in order to free up memory and is no
longer present on the Activity Stack. Such activities must be restarted if required by the application.

12.7 Configuration Changes

So far in this chapter, we have looked at two of the causes for the change in state of an Android activity, namely the
movement of an activity between the foreground and background, and termination of an activity by the runtime
system to free up memory. In fact, there is a third scenario in which the state of an activity can dramatically
change and this involves a change to the device configuration.

90

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape, or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of
the user interface and simply destroying and recreating impacted activities is the quickest way for an activity to
respond to the configuration change. It is, however, possible to configure an activity so that it is not restarted by
the system in response to specific configuration changes.

12.8 Handling State Change

If nothing else, it should be clear from this chapter that an application and, by definition, the components
contained therein will transition through many states during the course of its lifespan. Of particular importance
is the fact that these state changes (up to and including complete termination) are imposed upon the application
by the Android runtime subject to the actions of the user and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple,
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within in app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach, and one that is recommended by Google, involves the lifecycle classes included with the
Jetpack Android Architecture components, introduced in “Modern Android App Architecture with Jetpack” and
explained in more detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

12.9 Summary

Mobile devices are typically considered to be resource constrained, particularly in terms of on-board memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, is made up of components in
the form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities to free up
memory. Process state is taken into consideration by the runtime system when deciding whether a process is a
suitable candidate for termination. The state of a process is largely dependent upon the status of the activities
hosted by that process.

The key message of this chapter is that an application moves through a variety of states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes and
activities that are not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

91

Chapter 13

13. Handling Android Activity State
Changes

Based on the information outlined in the chapter entitled “Understanding Android Application and Activity
Lifecycles” it is now evident that the activities and fragments that make up an application pass through a variety
of different states during the course of the application’s lifespan. The change from one state to the other is
imposed by the Android runtime system and is, therefore, largely beyond the control of the activity itself. That
does not, however, mean that the app cannot react to those changes and take appropriate actions.

The primary objective of this chapter is to provide a high-level overview of the ways in which an activity may
be notified of a state change and to outline the areas where it is advisable to save or restore state information.
Having covered this information, the chapter will then touch briefly on the subject of activity lifetimes.

13.1 New vs. Old Lifecycle Techniques

Up until recently, there was a standard way to build lifecycle awareness into an app. This is the approach covered
in this chapter and involves implementing a set of methods (one for each lifecycle state) within an activity or
fragment instance that get called by the operating system when the lifecycle status of that object changes. This
approach has remained unchanged since the early years of the Android operating system and, while still a viable
option today, it does have some limitations which will be explained later in this chapter.

With the introduction of the lifecycle classes with the Jetpack Android Architecture Components, a better
approach to lifecycle handling is now available. This modern approach to lifecycle management (together
with the Jetpack components and architecture guidelines) will be covered in detail in later chapters. It is still
important, however, to understand the traditional lifecycle methods for a couple of reasons. First, as an Android
developer you will not be completely insulated from the traditional lifecycle methods and will still make use
of some of them. More importantly, understanding the older way of handling lifecycles will provide a good
knowledge foundation on which to begin learning the new approach later in the book.

13.2 The Activity and Fragment Classes
With few exceptions, activities and fragments in an application are created as subclasses of the Android

AppCompatActivity class and Fragment classes respectively.

Consider, for example, the AndroidSample project created in “Creating an Example Android App in Android
Studio” and subsequently converted to use view binding. Load this project into the Android Studio environment
and locate the MainActivity.java file (located in app -> java -> com -> <your domain> -> androidsample). Having
located the file, double-click on it to load it into the editor where it should read as follows:

package com.example.androidsample;

import androidx.appcompat.app.AppCompatActivity;
import android.view.View;

import android.os.Bundle;

import java.util.Locale;

93

Handling Android Activity State Changes

import com.example.androidsample.databinding.ActivityMainBinding;
public class MainActivity extends AppCompatActivity {
private ActivityMainBinding binding;

@Override

protected void onCreate (Bundle savedInstanceState) {
super.onCreate (savedInstanceState) ;
binding = ActivityMainBinding.inflate (getLayoutInflater()):;
View view = binding.getRoot () ;

setContentView (view) ;

public void convertCurrency (View view) {
if (!binding.dollarText.getText ().toString().equals("")) {

float dollarValue = Float.parseFloat (
binding.dollarText.getText () .toString());
float euroValue = dollarValue * 0.85F;
binding.textView.setText (
String.format (Locale.ENGLISH,"%f", euroValue));
} else {

binding.textView.setText (R.string.no_value string);

}

When the project was created, we instructed Android Studio also to create an initial activity named
MainActivity.java Asis evident from the above code, the Main Activity class is a subclass of the AppCompatActivity
class.

A review of the reference documentation for the AppCompatActivity class would reveal that it is itself a subclass
of the Activity class. This can be verified within the Android Studio editor using the Hierarchy tool window.
With the MainActivity.java file loaded into the editor, click on AppCompatActivity in the class declaration line
and press the Ctrl-H keyboard shortcut. The hierarchy tool window will subsequently appear displaying the class
hierarchy for the selected class. As illustrated in Figure 13-1, AppCompatActivity is clearly subclassed from the
FragmentActivity class which is itself ultimately a subclass of the Activity class:

94

Handling Android Activity State Changes

Figure 13-1

The Activity and Fragment classes contain a range of methods that are intended to be called by the Android
runtime to notify the object when its state is changing. For the purposes of this chapter, we will refer to these as
the lifecycle methods. An activity or fragment class simply needs to override these methods and implement the
necessary functionality within them to react accordingly to state changes.

One such method is named onCreate() and, turning once again to the above code fragment, we can see that this
method has already been overridden and implemented for us in the MainActivity class. In a later section we will
explore in detail both onCreate() and the other relevant lifecycle methods of the Activity and Fragment classes.

13.3 Dynamic State vs. Persistent State

A key objective of lifecycle management is ensuring that the state of the activity is saved and restored at
appropriate times. When talking about state in this context we mean the data that is currently being held within
the activity and the appearance of the user interface. The activity might, for example, maintain a data model in
memory that needs to be saved to a database, content provider or file. Such state information, because it persists
from one invocation of the application to another, is referred to as the persistent state.

The appearance of the user interface (such as text entered into a text field but not yet committed to the
application’s internal data model) is referred to as the dynamic state, since it is typically only retained during a
single invocation of the application (and also referred to as user interface state or instance state).

Understanding the differences between these two states is important because both the ways they are saved, and
the reasons for doing so, differ.

The purpose of saving the persistent state is to avoid the loss of data that may result from an activity being killed
by the runtime system while in the background. The dynamic state, on the other hand, is saved and restored for
reasons that are slightly more complex.

Consider, for example, that an application contains an activity (which we will refer to as Activity A) containing
a text field and some radio buttons. During the course of using the application, the user enters some text into
the text field and makes a selection from the radio buttons. Before performing an action to save these changes,
however, the user then switches to another activity causing Activity A to be pushed down the Activity Stack
and placed into the background. After some time, the runtime system ascertains that memory is low and
consequently kills Activity A to free up resources. As far as the user is concerned, however, Activity A was simply
placed into the background and is ready to be moved to the foreground at any time. On returning Activity A to
the foreground the user would, quite reasonably, expect the entered text and radio button selections to have been
retained. In this scenario, however, a new instance of Activity A will have been created and, if the dynamic state
was not saved and restored, the previous user input lost.

The main purpose of saving dynamic state, therefore, is to give the perception of seamless switching between
foreground and background activities, regardless of the fact that activities may actually have been killed and
restarted without the user’s knowledge.

95

Handling Android Activity State Changes

The mechanisms for saving persistent and dynamic state will become clearer in the following sections of this
chapter.

13.4 The Android Lifecycle Methods

As previously explained, the Activity and Fragment classes contain a number of lifecycle methods which act as
event handlers when the state of an instance changes. The primary methods supported by the Android Activity
and Fragment class are as follows:

» onCreate(Bundle savedInstanceState) — The method that is called when the activity is first created and the
ideal location for most initialization tasks to be performed. The method is passed an argument in the form of a
Bundle object that may contain dynamic state information (typically relating to the state of the user interface)
from a prior invocation of the activity.

onRestart() - Called when the activity is about to restart after having previously been stopped by the runtime
system.

onStart() — Always called immediately after the call to the onCreate() or onRestart() methods, this method
indicates to the activity that it is about to become visible to the user. This call will be followed by a call to
onResume() if the activity moves to the top of the activity stack, or onStop() in the event that it is pushed down
the stack by another activity.

onResume() — Indicates that the activity is now at the top of the activity stack and is the activity with which
the user is currently interacting.

onPause() - Indicates that a previous activity is about to become the foreground activity. This call will be
followed by a call to either the onResume() or onStop() method depending on whether the activity moves back
to the foreground or becomes invisible to the user. Steps may be taken within this method to store persistent
state information not yet saved by the app. To avoid delays in switching between activities, time consuming
operations such as storing data to a database or performing network operations should be avoided within this
method. This method should also ensure that any CPU intensive tasks such as animation are stopped.

« onStop() - The activity is now no longer visible to the user. The two possible scenarios that may follow this
call are a call to onRestart() in the event that the activity moves to the foreground again, or onDestroy() if the
activity is being terminated.

« onDestroy() — The activity is about to be destroyed, either voluntarily because the activity has completed its
tasks and has called the finish() method or because the runtime is terminating it either to release memory or
due to a configuration change (such as the orientation of the device changing). It is important to note that a
call will not always be made to onDestroy() when an activity is terminated.

« onConfigurationChanged() - Called when a configuration change occurs for which the activity has indicated
it is not to be restarted. The method is passed a Configuration object outlining the new device configuration
and it is then the responsibility of the activity to react to the change.

The following lifecycle methods only apply to the Fragment class:
« onAttach() - Called when the fragment is assigned to an activity.
« onCreateView() - Called to create and return the fragment’s user interface layout view hierarchy.

« onActivityCreated() - The onCreate() method of the activity with which the fragment is associated has
completed execution.

» onViewStatusRestored() - The fragment’s saved view hierarchy has been restored.

96

Handling Android Activity State Changes

In addition to the lifecycle methods outlined above, there are two methods intended specifically for saving and
restoring the dynamic state of an activity:

« onRestorelnstanceState(Bundle savedInstanceState) — This method is called immediately after a call to
the onStart() method in the event that the activity is restarting from a previous invocation in which state
was saved. As with onCreate(), this method is passed a Bundle object containing the previous state data.
This method is typically used in situations where it makes more sense to restore a previous state after the
initialization of the activity has been performed in onCreate() and onStart().

« onSavelnstanceState(Bundle outState) — Called before an activity is destroyed so that the current dynamic
state (usually relating to the user interface) can be saved. The method is passed the Bundle object into which the
state should be saved and which is subsequently passed through to the onCreate() and onRestorelnstanceState()
methods when the activity is restarted. Note that this method is only called in situations where the runtime
ascertains that dynamic state needs to be saved.

When overriding the above methods, it is important to remember that, with the exception of
onRestorelnstanceState() and onSavelnstanceState(), the method implementation must include a call to the
corresponding method in the super class. For example, the following method overrides the onRestart() method
but also includes a call to the super class instance of the method:

protected void onRestart () {
super.onRestart () ;
Log.1i (TAG, "onRestart");
}

Failure to make this super class call in method overrides will result in the runtime throwing an exception during
execution. While calls to the super class in the onRestorelnstanceState() and onSavelnstanceState() methods are
optional (they can, for example, be omitted when implementing custom save and restoration behavior) there are
considerable benefits to using them, a subject that will be covered in the chapter entitled “Saving and Restoring
the State of an Android Activity”.

13.5 Lifetimes

The final topic to be covered involves an outline of the entire, visible and foreground lifetimes through which an
activity or fragment will transition during execution:

o Entire Lifetime —The term “entire lifetime” is used to describe everything that takes place between the initial
call to the onCreate() method and the call to onDestroy() prior to the object terminating,

« Visible Lifetime - Covers the periods of execution between the call to onStart() and onStop(). During this
period the activity or fragment is visible to the user though may not be the object with which the user is
currently interacting.

« Foreground Lifetime — Refers to the periods of execution between calls to the onResume() and onPause()
methods.

It is important to note that an activity or fragment may pass through the foreground and visible lifetimes multiple
times during the course of the entire lifetime.

The concepts of lifetimes and lifecycle methods are illustrated in Figure 13-2:

97

Handling Android Activity State Changes

Figure 13-2
13.6 Foldable Devices and Multi-Resume

As discussed previously, an activity is considered to be in the resumed state when it has moved to the foreground
and is the activity with which the user is currently interacting. On standard devices an app can have one activity
in the resumed state at any one time and all other activities are likely to be in the paused or stopped state.

For some time now, Android has included multi-window support, allowing multiple activities to appear
simultaneously in either split-screen or freeform configurations. Although originally used primarily on large
screen tablet devices, this feature is likely to become more popular with the introduction of foldable devices.

On devices running Android 10 and on which multi-window support is enabled (as will be the case for most
foldables), it will be possible for multiple app activities to be in the resumed state at the same time (a concept
referred to as multi-resume) allowing those visible activities to continue functioning (for example streaming
content or updating visual data) even when another activity currently has focus. Although multiple activities can
be in the resumed state, only one of these activities will be considered to the topmost resumed activity (in other
words, the activity with which the user most recently interacted).

An activity can receive notification that it has gained or lost the topmost resumed status by implementing the
onTopResumedActivityChanged() callback method.

13.7 Disabling Configuration Change Restarts

As previously outlined, an activity may indicate that it is not to be restarted in the event of certain configuration

changes. This is achieved by adding an android:configChanges directive to the activity element within the project

manifest file. The following manifest file excerpt, for example, indicates that the activity should not be restarted

in the event of configuration changes relating to orientation or device-wide font size:

<activity android:name=".MainActivity"
android:configChanges="orientation|fontScale"

android:label="@string/app name">

13.8 Lifecycle Method Limitations

As discussed at the start of this chapter, lifecycle methods have been in use for many years and, until recently,
were the only mechanism available for handling lifecycle state changes for activities and fragments. There are,
however, shortcomings to this approach.

98

Handling Android Activity State Changes

One issue with the lifecycle methods is that they do not provide an easy way for an activity or fragment to find
out its current lifecycle state at any given point during app execution. Instead the object would need to track the
state internally, or wait for the next lifecycle method call.

Also, the methods do not provide a simple way for one object to observe the lifecycle state changes of other
objects within an app. This is a serious consideration since many other objects within an app can potentially be
impacted by a lifecycle state change in a given activity or fragment.

The lifecycle methods are also only available on subclasses of the Fragment and Activity classes. It is not possible,
therefore, to build custom classes that are truly lifecycle aware.

Finally, the lifecycle methods result in most of the lifecycle handling code being written within the activity
or fragment which can lead to complex and error prone code. Ideally, much of this code should reside in the
other classes that are impacted by the state change. An app that streams video, for example, might include a
class designed specifically to manage the incoming stream. If the app needs to pause the stream when the main
activity is stopped, the code to do so should reside in the streaming class, not the main activity.

All of these problems and more are resolved by using lifecycle-aware components, a topic which will be covered
starting with the chapter entitled “Modern Android App Architecture with Jetpack”.

13.9 Summary

All activities are derived from the Android Activity class which, in turn, contains a number of lifecycle methods
that are designed to be called by the runtime system when the state of an activity changes. Similarly, the Fragment
class contains a number of comparable methods. By overriding these methods, activities and fragments can
respond to state changes and, where necessary, take steps to save and restore the current state of both the activity
and the application. Lifecycle state can be thought of as taking two forms. The persistent state refers to data that
needs to be stored between application invocations (for example to a file or database). Dynamic state, on the
other hand, relates instead to the current appearance of the user interface.

Although lifecycle methods have a number of limitations that can be avoided by making use of lifecycle-aware
components, an understanding of these methods is important to fully understand the new approaches to lifecycle
management covered later in this book.

In this chapter, we have highlighted the lifecycle methods available to activities and covered the concept of
activity lifetimes. In the next chapter, entitled “Android Activity State Changes by Example”, we will implement
an example application that puts much of this theory into practice.

99

Chapter 14

14. Android Activity State Changes by
Example

The previous chapters have discussed in some detail the different states and lifecycles of the activities that
comprise an Android application. In this chapter, we will put the theory of handling activity state changes into
practice through the creation of an example application. The purpose of this example application is to provide
a real world demonstration of an activity as it passes through a variety of different states within the Android
runtime. In the next chapter, entitled “Saving and Restoring the State of an Android Activity”, the example project
constructed in this chapter will be extended to demonstrate the saving and restoration of dynamic activity state.

14.1 Creating the State Change Example Project

The first step in this exercise is to create the new project. Begin by launching Android Studio and, if necessary,
closing any currently open projects using the File -> Close Project menu option so that the Welcome screen
appears.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Activity template before clicking on the Next button.

Enter StateChange into the Name field and specify com.ebookfrenzy.statechange as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Upon completion of the project creation process, the StateChange project should be
listed in the Project tool window located along the left-hand edge of the Android Studio main window. Use the
steps outlined in section 11.8 Migrating a Project to View Binding to convert the project to use view binding.

The next action to take involves the design of the user interface for the activity. This is stored in a file named
activity_main.xml which should already be loaded into the Layout Editor tool. If it is not, navigate to it in the
project tool window where it can be found in the app -> res -> layout folder. Once located, double-clicking on
the file will load it into the Android Studio Layout Editor tool.

Figure 14-1
101

Android Activity State Changes by Example

14.2 Designing the User Interface

With the user interface layout loaded into the Layout Editor tool, it is now time to design the user interface for
the example application. Instead of the “Hello World!” TextView currently present in the user interface design,
the activity actually requires an EditText view. Select the TextView object in the Layout Editor canvas and press
the Delete key on the keyboard to remove it from the design.

From the Palette located on the left side of the Layout Editor, select the Text category and, from the list of text
components, click and drag a Plain Text component over to the visual representation of the device screen. Move
the component to the center of the display so that the center guidelines appear and drop it into place so that the
layout resembles that of Figure 14-2.

Figure 14-2

When using the EditText widget it is necessary to specify an input type for the view. This simply defines the type
of text or data that will be entered by the user. For example, if the input type is set to Phone, the user will be
restricted to entering numerical digits into the view. Alternatively, if the input type is set to TextCapCharacters,
the input will default to upper case characters. Input type settings may also be combined.

For the purposes of this example, we will set the input type to support general text input. To do so, select the
EditText widget in the layout and locate the inputType entry within the Attributes tool window. Click on the flag
icon to the left of the current setting to open the list of options and, within the list, switch off textPersonName
and enable text before clicking on the Apply button. Remaining in the Attributes tool window, change the id of
the view to editText and click on the Refactor button in the resulting dialog.

By default the EditText is displaying text which reads “Name”. Remaining within the Attributes panel, delete this
from the text property field so that the view is blank within the layout.

Before continuing, click on the Infer Constraints button in the layout editor toolbar to add any missing constraints.

14.3 Overriding the Activity Lifecycle Methods

At this point, the project contains a single activity named MainActivity, which is derived from the Android
AppCompatActivity class. The source code for this activity is contained within the MainActivity.java file which
should already be open in an editor session and represented by a tab in the editor tab bar. If the file is no longer
open, navigate to it in the Project tool window panel (app -> java -> com -> ebookfrenzy -> statechange ->
MainActivity) and double-click on it to load the file into the editor.

So far the only lifecycle method overridden by the activity is the onCreate() method which has been implemented

102

Android Activity State Changes by Example

to call the super class instance of the method before setting up the user interface for the activity. We will now
modify this method so that it outputs a diagnostic message in the Android Studio Logcat panel each time it
executes. For this, we will use the Log class, which requires that we import android.util. Log and declare a tag that
will enable us to filter these messages in the log output:

package com.ebookfrenzy.statechange;

import
import

import

public

android.util.Log;
androidx.annotation.NonNull;

android.view.View;

class MainActivity extends AppCompatActivity {

private ActivityMainBinding binding;

private static final String TAG = "StateChange";

@QOverride

protected void onCreate (Bundle savedInstanceState) {

}

super.onCreate (savedInstanceState);
binding = ActivityMainBinding.inflate (getLayoutInflater())
View view = binding.getRoot();

setContentView (view) ;

Log.i (TAG, "onCreate");

The next task is to override some more methods, with each one containing a corresponding log call. These
override methods may be added manually or generated using the Alt-Insert keyboard shortcut as outlined in the
chapter entitled “The Basics of the Android Studio Code Editor”. Note that the Log calls will still need to be added
manually if the methods are being auto-generated:

@Override

protected void onStart () {

super.onStart ()
Log.1i(TAG, "onStart");

@Override

protected void onResume () {

super.onResume () ;

Log.1 (TAG, "onResume");

@Override

protected void onPause () {

super.onPause () ;

103

Android Activity State Changes by Example

Log.1i (TAG, "onPause");

@Override

protected void onStop () {
super.onStop () ;
Log.1(TAG, "onStop"):;

@Override

protected void onRestart () {
super.onRestart () ;
Log.1i (TAG, "onRestart");

@Override
protected void onDestroy () {
super.onDestroy () ;

Log.1(TAG, "onDestroy");

@Override
protected void onSaveInstanceState (@NonNull Bundle outState) {
super.onSavelnstanceState (outState);

Log.1i(TAG, "onSavelInstanceState");

@Override

protected void onRestoreInstanceState (@NonNull Bundle savedInstanceState) {
super.onRestoreInstanceState (savedInstanceState) ;
Log.1(TAG, "onRestorelnstanceState");

}
14.4 Filtering the Logcat Panel

The purpose of the code added to the overridden methods in MainActivity.java is to output logging information
to the Logcat tool window. This output can be configured to display all events relating to the device or emulator
session, or restricted to those events that relate to the currently selected app. The output can also be further
restricted to only those log events that match a specified filter.

Display the Logcat tool window and click on the filter menu (marked as B in Figure 14-3) to review the available
options. When this menu is set to Show only selected application, only those messages relating to the app selected
in the menu marked as A will be displayed in the Logcat panel. Choosing No Filters, on the other hand, will
display all the messages generated by the device or emulator.

104

Android Activity State Changes by Example

Figure 14-3

Before running the application, it is worth demonstrating the creation of a filter which, when selected, will
further restrict the log output to ensure that only those log messages containing the tag declared in our activity
are displayed.

From the filter menu (B), select the Edit Filter Configuration menu option. In the Create New Logcat Filter dialog
(Figure 14-4), name the filter Lifecycle and, in the Log Tag field, enter the Tag value declared in MainActivity.java
(in the above code example this was StateChange).

Figure 14-4

Enter the package identifier in the Package Name field and, when the changes are complete, click on the OK
button to create the filter and dismiss the dialog. Instead of listing No Filters, the newly created filter should now
be selected in the Logcat tool window.

14.5 Running the Application

For optimal results, the application should be run on a physical Android device or emulator. With the device
configured and connected to the development computer, click on the run button represented by a green triangle
located in the Android Studio toolbar as shown in Figure 14-5 below, select the Run -> Run... menu option or
use the Shift+F10 keyboard shortcut:

Figure 14-5

Select the physical Android device or emulator from the Choose Device dialog if it appears (assuming that
you have not already configured it to be the default target). After Android Studio has built the application and
installed it on the device it should start up and be running in the foreground.

A review of the Logcat panel should indicate which methods have so far been triggered (taking care to ensure
that the Lifecycle filter created in the preceding section is selected to filter out log events that are not currently
of interest to us):

105

Android Activity State Changes by Example

Figure 14-6
14.6 Experimenting with the Activity

With the diagnostics working, it is now time to exercise the application with a view to gaining an understanding
of the activity lifecycle state changes. To begin with, consider the initial sequence of log events in the Logcat
panel:

onCreate
onStart

onResume

Clearly, the initial state changes are exactly as outlined in “Understanding Android Application and Activity
Lifecycles”. Note, however, that a call was not made to onRestorelnstanceState() since the Android runtime
detected that there was no state to restore in this situation.

Tap on the Home icon in the bottom status bar on the device display and note the sequence of method calls
reported in the log as follows:

onPause
onStop

onSavelInstanceState

In this case, the runtime has noticed that the activity is no longer in the foreground, is not visible to the user
and has stopped the activity, but not without providing an opportunity for the activity to save the dynamic state.
Depending on whether the runtime ultimately destroyed the activity or simply restarted it, the activity will
either be notified it has been restarted via a call to onRestart() or will go through the creation sequence again
when the user returns to the activity.

As outlined in “Understanding Android Application and Activity Lifecycles”, the destruction and recreation of
an activity can be triggered by making a configuration change to the device, such as rotating from portrait to
landscape. To see this in action, simply rotate the device while the StateChange application is in the foreground.
When using the emulator, device rotation may be simulated using the rotation button located in the emulator
toolbar. To complete the rotation, it may also be necessary to tap on the rotation button. This appears at the
bottom of the device or emulator screen as shown in Figure 14-7:

Figure 14-7
The resulting sequence of method calls in the log should read as follows:
onPause
onStop

onSavelInstanceState

106

Android Activity State Changes by Example

onDestroy

onCreate

onStart
onRestoreInstanceState

onResume

Clearly, the runtime system has given the activity an opportunity to save state before being destroyed and
restarted.

14.7 Summary

The old adage that a picture is worth a thousand words holds just as true for examples when learning a new
programming paradigm. In this chapter, we have created an example Android application for the purpose of
demonstrating the different lifecycle states through which an activity is likely to pass. In the course of developing
the project in this chapter, we also looked at a mechanism for generating diagnostic logging information from
within an activity.

In the next chapter, we will extend the StateChange example project to demonstrate how to save and restore an
activity’s dynamic state.

107

Chapter 15

15. Saving and Restoring the State of
an Android Activity

If the previous few chapters have achieved their objective, it should now be a little clearer as to the importance
of saving and restoring the state of a user interface at particular points in the lifetime of an activity.

In this chapter, we will extend the example application created in “Android Activity State Changes by Example”
to demonstrate the steps involved in saving and restoring state when an activity is destroyed and recreated by
the runtime system.

A key component of saving and restoring dynamic state involves the use of the Android SDK Bundle class, a
topic that will also be covered in this chapter.

15.1 Saving Dynamic State

An activity, as we have already learned, is given the opportunity to save dynamic state information via a call from
the runtime system to the activity’s implementation of the onSavelnstanceState() method. Passed through as an
argument to the method is a reference to a Bundle object into which the method will need to store any dynamic
data that needs to be saved. The Bundle object is then stored by the runtime system on behalf of the activity and
subsequently passed through as an argument to the activity’s onCreate() and onRestorelnstanceState() methods
if and when they are called. The data can then be retrieved from the Bundle object within these methods and
used to restore the state of the activity.

15.2 Default Saving of User Interface State

In the previous chapter, the diagnostic output from the StateChange example application showed that an activity
goes through a number of state changes when the device on which it is running is rotated sufficiently to trigger
an orientation change.

Launch the StateChange application once again, this time entering some text into the EditText field Before
performing the device rotation (on devices or emulators running Android 9 or later it may be necessary to tap
the rotation button in the located in the status bar to complete the rotation). Having rotated the device, the
following state change sequence should appear in the Logcat window:

onPause

onStop

onSavelnstanceState

onDestroy

onCreate

onStart

onRestorelInstanceState

onResume

Clearly this has resulted in the activity being destroyed and re-created. A review of the user interface of the
running application, however, should show that the text entered into the EditText field has been preserved.
Given that the activity was destroyed and recreated, and that we did not add any specific code to make sure the
text was saved and restored, this behavior requires some explanation.

109

Saving and Restoring the State of an Android Activity

In fact, most of the view widgets included with the Android SDK already implement the behavior necessary to

automatically save and restore state when an activity is restarted. The only requirement to enable this behavior

is for the onSavelnstanceState() and onRestorelnstanceState() override methods in the activity to include calls to

the equivalent methods of the super class:

@Override

protected void onSaveInstanceState (@NonNull Bundle outState) {
super.onSaveInstanceState (outState) ;

@Override
protected void onRestorelnstanceState (@NonNull Bundle savedInstanceState) {
super.onRestoreInstanceState (savedInstanceState) ;

}

The automatic saving of state for a user interface view can be disabled in the XML layout file by setting the
android:saveEnabled property to false. For the purposes of an example, we will disable the automatic state saving
mechanism for the EditText view in the user interface layout and then add code to the application to manually
save and restore the state of the view.

To configure the EditText view such that state will not be saved and restored if the activity is restarted, edit the
activity_main.xml file so that the entry for the view reads as follows (note that the XML can be edited directly by
clicking on the Text tab on the bottom edge of the Layout Editor panel):
<EditText

android:id="@+id/editText"

android:layout width="wrap content"

android:layout height="wrap content"”

android:ems="10"

android:inputType="text"

android:saveEnabled="false"

app:layout constraintBottom toBottomOf="parent"

app:layout constraintEnd toEndOf="parent"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent" />

After making the change, run the application, enter text and rotate the device to verify that the text is no longer
saved and restored before proceeding.

15.3 The Bundle Class

For situations where state needs to be saved beyond the default functionality provided by the user interface view
components, the Bundle class provides a container for storing data using a key-value pair mechanism. The keys
take the form of string values, while the values associated with those keys can be in the form of a primitive value
or any object that implements the Android Parcelable interface. A wide range of classes already implements the
Parcelable interface. Custom classes may be made “parcelable” by implementing the set of methods defined in
the Parcelable interface, details of which can be found in the Android documentation at:

https://developer.android.com/reference/android/os/Parcelable.html

The Bundle class also contains a set of methods that can be used to get and set key-value pairs for a variety of
data types including both primitive types (including Boolean, char, double and float values) and objects (such

110

http://developer.android.com/reference/android/os/Parcelable.html

Saving and Restoring the State of an Android Activity
as Strings and CharSequences).

For the purposes of this example, and having disabled the automatic saving of text for the EditText view, we
need to make sure that the text entered into the EditText field by the user is saved into the Bundle object and
subsequently restored. This will serve as a demonstration of how to manually save and restore state within an
Android application and will be achieved using the putCharSequence() and getCharSequence() methods of the
Bundle class respectively.

15.4 Saving the State

The first step in extending the StateChange application is to make sure that the text entered by the user is
extracted from the EditText component within the onSavelnstanceState() method of the MainActivity activity,
and then saved as a key-value pair into the Bundle object.

To extract the text from the EditText object we first need to identify that object in the user interface. Clearly, this
involves bridging the gap between the Java code for the activity (contained in the MainActivity.java source code
file) and the XML representation of the user interface (contained within the activity_main.xml resource file). To
extract the text entered into the EditText component we need to gain access to that user interface object.

Each component within a user interface has associated with it a unique identifier. By default, the Layout Editor
tool constructs the id for a newly added component from the object type. If more than one view of the same
type is contained in the layout the type name is followed by a sequential number (though this can, and should,
be changed to something more meaningful by the developer). As can be seen by checking the Component Tree
panel within the Android Studio main window when the activity_main.xml file is selected and the Layout Editor
tool displayed, the EditText component has been assigned the id editText:

Figure 15-1

We can now obtain the text that the editText view contains via the object’s getText() method, which, in turn,
returns the current text:

CharSequence userText = binding.editText.getText () ;
Finally, we can save the text using the Bundle object’s putCharSequence() method, passing through the key

(this can be any string value but in this instance, we will declare it as “savedText”) and the userText object as
arguments:

outState.putCharSequence ("savedText", userText);

Bringing this all together gives us a modified onSavelnstanceState() method in the MainActivity.java file that
reads as follows:

package com.ebookfrenzy.statechange;

public class MainActivity extends AppCompatActivity {

111

Saving and Restoring the State of an Android Activity

protected void onSavelnstanceState (@NonNull Bundle outState) {
super.onSavelnstanceState (outState);

Log.1(TAG, "onSaveInstanceState");

CharSequence userText = binding.editText.getText() ;

outState.putCharSequence ("savedText", userText)

Now that steps have been taken to save the state, the next phase is to ensure that it is restored when needed.

15.5 Restoring the State

The saved dynamic state can be restored in those lifecycle methods that are passed the Bundle object as an
argument. This leaves the developer with the choice of using either onCreate() or onRestorelnstanceState(). The
method to use will depend on the nature of the activity. In instances where state is best restored after the activity’s
initialization tasks have been performed, the onRestorelnstanceState() method is generally more suitable. For the
purposes of this example we will add code to the onRestorelnstanceState() method to extract the saved state from
the Bundle using the “savedText” key. We can then display the text on the editText component using the object’s
setText() method:

@Override
protected void onRestorelInstanceState (@NonNull Bundle savedInstanceState) {
super.onRestoreInstanceState (savedInstanceState) ;

Log.1(TAG, "onRestorelInstanceState");

CharSequence userText =
savedInstanceState.getCharSequence ("savedText") ;

binding.editText.setText (userText) ;
}

15.6 Testing the Application

All that remains is once again to build and run the StateChange application. Once running and in the foreground,
touch the EditText component and enter some text before rotating the device to another orientation. Whereas
the text changes were previously lost, the new text is retained within the editText component thanks to the code
we have added to the activity in this chapter.

Having verified that the code performs as expected, comment out the super.onSavelnstanceState() and super.
onRestorelnstanceState() calls from the two methods, re-launch the app and note that the text is still preserved
after a device rotation. The default save and restoration system has essentially been replaced by a custom
implementation, thereby providing a way to dynamically and selectively save and restore state within an activity.

15.7 Summary

The saving and restoration of dynamic state in an Android application is simply a matter of implementing the
appropriate code in the appropriate lifecycle methods. For most user interface views, this is handled automatically
by the Activity super class. In other instances, this typically consists of extracting values and settings within the
onSavelnstanceState() method and saving the data as key-value pairs within the Bundle object passed through
to the activity by the runtime system.

112

Saving and Restoring the State of an Android Activity

State can be restored in either the onCreate() or the onRestorelnstanceState() methods of the activity by extracting
values from the Bundle object and updating the activity based on the stored values.

In this chapter, we have used these techniques to update the StateChange project so that the Activity retains
changes through the destruction and subsequent recreation of an activity.

113

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System Requirements
	2.2 Downloading the Android Studio Package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio Setup Wizard
	2.5 Installing Additional Android SDK Packages
	2.6 Making the Android SDK Tools Command-line Accessible
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio Memory Management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Enabling the Device Frame
	4.9 AVD Command-line Creation
	4.10 Android Virtual Device Configuration Files
	4.11 Moving and Renaming an Android Virtual Device
	4.12 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Overview of Android View Binding
	11.1 Find View by Id
	11.2 View Binding
	11.3 Converting the AndroidSample project
	11.4 Enabling View Binding
	11.5 Using View Binding
	11.6 Choosing an Option
	11.7 View Binding in the Book Examples
	11.8 Migrating a Project to View Binding
	11.9 Summary

	12. Understanding Android Application and Activity Lifecycles
	12.1 Android Applications and Resource Management
	12.2 Android Process States
	12.2.1 Foreground Process
	12.2.2 Visible Process
	12.2.3 Service Process
	12.2.4 Background Process
	12.2.5 Empty Process

	12.3 Inter-Process Dependencies
	12.4 The Activity Lifecycle
	12.5 The Activity Stack
	12.6 Activity States
	12.7 Configuration Changes
	12.8 Handling State Change
	12.9 Summary

	13. Handling Android Activity State Changes
	13.1 New vs. Old Lifecycle Techniques
	13.2 The Activity and Fragment Classes
	13.3 Dynamic State vs. Persistent State
	13.4 The Android Lifecycle Methods
	13.5 Lifetimes
	13.6 Foldable Devices and Multi-Resume
	13.7 Disabling Configuration Change Restarts
	13.8 Lifecycle Method Limitations
	13.9 Summary

	14. Android Activity State Changes by Example
	14.1 Creating the State Change Example Project
	14.2 Designing the User Interface
	14.3 Overriding the Activity Lifecycle Methods
	14.4 Filtering the Logcat Panel
	14.5 Running the Application
	14.6 Experimenting with the Activity
	14.7 Summary

	15. Saving and Restoring the State of an Android Activity
	15.1 Saving Dynamic State
	15.2 Default Saving of User Interface State
	15.3 The Bundle Class
	15.4 Saving the State
	15.5 Restoring the State
	15.6 Testing the Application
	15.7 Summary

	16. Understanding Android Views, View Groups and Layouts
	16.1 Designing for Different Android Devices
	16.2 Views and View Groups
	16.3 Android Layout Managers
	16.4 The View Hierarchy
	16.5 Creating User Interfaces
	16.6 Summary

	17. A Guide to the Android Studio Layout Editor Tool
	17.1 Basic vs. Empty Activity Templates
	17.2 The Android Studio Layout Editor
	17.3 Design Mode
	17.4 The Palette
	17.5 Design Mode and Layout Views
	17.6 Night Mode
	17.7 Code Mode
	17.8 Split Mode
	17.9 Setting Attributes
	17.10 Transforms
	17.11 Tools Visibility Toggles
	17.12 Converting Views
	17.13 Displaying Sample Data
	17.14 Creating a Custom Device Definition
	17.15 Changing the Current Device
	17.16 Layout Validation (Multi Preview)
	17.17 Summary

	18. A Guide to the Android ConstraintLayout
	18.1 How ConstraintLayout Works
	18.1.1 Constraints
	18.1.2 Margins
	18.1.3 Opposing Constraints
	18.1.4 Constraint Bias
	18.1.5 Chains
	18.1.6 Chain Styles

	18.2 Baseline Alignment
	18.3 Configuring Widget Dimensions
	18.4 Guideline Helper
	18.5 Group Helper
	18.6 Barrier Helper
	18.7 Flow Helper
	18.8 Ratios
	18.9 ConstraintLayout Advantages
	18.10 ConstraintLayout Availability
	18.11 Summary

	19. A Guide to Using ConstraintLayout in Android Studio
	19.1 Design and Layout Views
	19.2 Autoconnect Mode
	19.3 Inference Mode
	19.4 Manipulating Constraints Manually
	19.5 Adding Constraints in the Inspector
	19.6 Viewing Constraints in the Attributes Window
	19.7 Deleting Constraints
	19.8 Adjusting Constraint Bias
	19.9 Understanding ConstraintLayout Margins
	19.10 The Importance of Opposing Constraints and Bias
	19.11 Configuring Widget Dimensions
	19.12 Design Time Tools Positioning
	19.13 Adding Guidelines
	19.14 Adding Barriers
	19.15 Adding a Group
	19.16 Working with the Flow Helper
	19.17 Widget Group Alignment and Distribution
	19.18 Converting other Layouts to ConstraintLayout
	19.19 Summary

	20. Working with ConstraintLayout Chains and Ratios in Android Studio
	20.1 Creating a Chain
	20.2 Changing the Chain Style
	20.3 Spread Inside Chain Style
	20.4 Packed Chain Style
	20.5 Packed Chain Style with Bias
	20.6 Weighted Chain
	20.7 Working with Ratios
	20.8 Summary

	21. An Android Studio Layout Editor ConstraintLayout Tutorial
	21.1 An Android Studio Layout Editor Tool Example
	21.2 Creating a New Activity
	21.3 Preparing the Layout Editor Environment
	21.4 Adding the Widgets to the User Interface
	21.5 Adding the Constraints
	21.6 Testing the Layout
	21.7 Using the Layout Inspector
	21.8 Summary

	22. Manual XML Layout Design in Android Studio
	22.1 Manually Creating an XML Layout
	22.2 Manual XML vs. Visual Layout Design
	22.3 Summary

	23. Managing Constraints using Constraint Sets
	23.1 Java Code vs. XML Layout Files
	23.2 Creating Views
	23.3 View Attributes
	23.4 Constraint Sets
	23.4.1 Establishing Connections
	23.4.2 Applying Constraints to a Layout
	23.4.3 Parent Constraint Connections
	23.4.4 Sizing Constraints
	23.4.5 Constraint Bias
	23.4.6 Alignment Constraints
	23.4.7 Copying and Applying Constraint Sets
	23.4.8 ConstraintLayout Chains
	23.4.9 Guidelines
	23.4.10 Removing Constraints
	23.4.11 Scaling
	23.4.12 Rotation

	23.5 Summary

	24. An Android ConstraintSet Tutorial
	24.1 Creating the Example Project in Android Studio
	24.2 Adding Views to an Activity
	24.3 Setting View Attributes
	24.4 Creating View IDs
	24.5 Configuring the Constraint Set
	24.6 Adding the EditText View
	24.7 Converting Density Independent Pixels (dp) to Pixels (px)
	24.8 Summary

	25. A Guide to using Apply Changes in Android Studio
	25.1 Introducing Apply Changes
	25.2 Understanding Apply Changes Options
	25.3 Using Apply Changes
	25.4 Configuring Apply Changes Fallback Settings
	25.5 An Apply Changes Tutorial
	25.6 Using Apply Code Changes
	25.7 Using Apply Changes and Restart Activity
	25.8 Using Run App
	25.9 Summary

	26. An Overview and Example of Android Event Handling
	26.1 Understanding Android Events
	26.2 Using the android:onClick Resource
	26.3 Event Listeners and Callback Methods
	26.4 An Event Handling Example
	26.5 Designing the User Interface
	26.6 The Event Listener and Callback Method
	26.7 Consuming Events
	26.8 Summary

	27. Android Touch and Multi-touch Event Handling
	27.1 Intercepting Touch Events
	27.2 The MotionEvent Object
	27.3 Understanding Touch Actions
	27.4 Handling Multiple Touches
	27.5 An Example Multi-Touch Application
	27.6 Designing the Activity User Interface
	27.7 Implementing the Touch Event Listener
	27.8 Running the Example Application
	27.9 Summary

	28. Detecting Common Gestures Using the Android Gesture Detector Class
	28.1 Implementing Common Gesture Detection
	28.2 Creating an Example Gesture Detection Project
	28.3 Implementing the Listener Class
	28.4 Creating the GestureDetectorCompat Instance
	28.5 Implementing the onTouchEvent() Method
	28.6 Testing the Application
	28.7 Summary

	29. Implementing Custom Gesture and Pinch Recognition on Android
	29.1 The Android Gesture Builder Application
	29.2 The GestureOverlayView Class
	29.3 Detecting Gestures
	29.4 Identifying Specific Gestures
	29.5 Installing and Running the Gesture Builder Application
	29.6 Creating a Gestures File
	29.7 Creating the Example Project
	29.8 Extracting the Gestures File from the SD Card
	29.9 Adding the Gestures File to the Project
	29.10 Designing the User Interface
	29.11 Loading the Gestures File
	29.12 Registering the Event Listener
	29.13 Implementing the onGesturePerformed Method
	29.14 Testing the Application
	29.15 Configuring the GestureOverlayView
	29.16 Intercepting Gestures
	29.17 Detecting Pinch Gestures
	29.18 A Pinch Gesture Example Project
	29.19 Summary

	30. An Introduction to Android Fragments
	30.1 What is a Fragment?
	30.2 Creating a Fragment
	30.3 Adding a Fragment to an Activity using the Layout XML File
	30.4 Adding and Managing Fragments in Code
	30.5 Handling Fragment Events
	30.6 Implementing Fragment Communication
	30.7 Summary

	31. Using Fragments in Android Studio - An Example
	31.1 About the Example Fragment Application
	31.2 Creating the Example Project
	31.3 Creating the First Fragment Layout
	31.4 Migrating a Fragment to View Binding
	31.5 Adding the Second Fragment
	31.6 Adding the Fragments to the Activity
	31.7 Making the Toolbar Fragment Talk to the Activity
	31.8 Making the Activity Talk to the Text Fragment
	31.9 Testing the Application
	31.10 Summary

	32. Modern Android App Architecture with Jetpack
	32.1 What is Android Jetpack?
	32.2 The “Old” Architecture
	32.3 Modern Android Architecture
	32.4 The ViewModel Component
	32.5 The LiveData Component
	32.6 ViewModel Saved State
	32.7 LiveData and Data Binding
	32.8 Android Lifecycles
	32.9 Repository Modules
	32.10 Summary

	33. An Android Jetpack ViewModel Tutorial
	33.1 About the Project
	33.2 Creating the ViewModel Example Project
	33.3 Reviewing the Project
	33.3.1 The Main Activity
	33.3.2 The Content Fragment
	33.3.3 The ViewModel

	33.4 Designing the Fragment Layout
	33.5 Implementing the View Model
	33.6 Associating the Fragment with the View Model
	33.7 Modifying the Fragment
	33.8 Accessing the ViewModel Data
	33.9 Testing the Project
	33.10 Summary

	34. An Android Jetpack LiveData Tutorial
	34.1 LiveData - A Recap
	34.2 Adding LiveData to the ViewModel
	34.3 Implementing the Observer
	34.4 Summary

	35. An Overview of Android Jetpack Data Binding
	35.1 An Overview of Data Binding
	35.2 The Key Components of Data Binding
	35.2.1 The Project Build Configuration
	35.2.2 The Data Binding Layout File
	35.2.3 The Layout File Data Element
	35.2.4 The Binding Classes
	35.2.5 Data Binding Variable Configuration
	35.2.6 Binding Expressions (One-Way)
	35.2.7 Binding Expressions (Two-Way)
	35.2.8 Event and Listener Bindings

	35.3 Summary

	36. An Android Jetpack Data Binding Tutorial
	36.1 Removing the Redundant Code
	36.2 Enabling Data Binding
	36.3 Adding the Layout Element
	36.4 Adding the Data Element to Layout File
	36.5 Working with the Binding Class
	36.6 Assigning the ViewModel Instance to the Data Binding Variable
	36.7 Adding Binding Expressions
	36.8 Adding the Conversion Method
	36.9 Adding a Listener Binding
	36.10 Testing the App
	36.11 Summary

	37. An Android ViewModel Saved State Tutorial
	37.1 Understanding ViewModel State Saving
	37.2 Implementing ViewModel State Saving
	37.3 Saving and Restoring State
	37.4 Adding Saved State Support to the ViewModelDemo Project
	37.5 Summary

	38. Working with Android Lifecycle-Aware Components
	38.1 Lifecycle Awareness
	38.2 Lifecycle Owners
	38.3 Lifecycle Observers
	38.4 Lifecycle States and Events
	38.5 Summary

	39. An Android Jetpack Lifecycle Awareness Tutorial
	39.1 Creating the Example Lifecycle Project
	39.2 Creating a Lifecycle Observer
	39.3 Adding the Observer
	39.4 Testing the Observer
	39.5 Creating a Lifecycle Owner
	39.6 Testing the Custom Lifecycle Owner
	39.7 Summary

	40. An Overview of the Navigation Architecture Component
	40.1 Understanding Navigation
	40.2 Declaring a Navigation Host
	40.3 The Navigation Graph
	40.4 Accessing the Navigation Controller
	40.5 Triggering a Navigation Action
	40.6 Passing Arguments
	40.7 Summary

	41. An Android Jetpack Navigation Component Tutorial
	41.1 Creating the NavigationDemo Project
	41.2 Adding Navigation to the Build Configuration
	41.3 Creating the Navigation Graph Resource File
	41.4 Declaring a Navigation Host
	41.5 Adding Navigation Destinations
	41.6 Designing the Destination Fragment Layouts
	41.7 Adding an Action to the Navigation Graph
	41.8 Implement the OnFragmentInteractionListener
	41.9 Adding View Binding Support to the Destination Fragments
	41.10 Triggering the Action
	41.11 Passing Data Using Safeargs
	41.12 Summary

	42. An Introduction to MotionLayout
	42.1 An Overview of MotionLayout
	42.2 MotionLayout
	42.3 MotionScene
	42.4 Configuring ConstraintSets
	42.5 Custom Attributes
	42.6 Triggering an Animation
	42.7 Arc Motion
	42.8 Keyframes
	42.8.1 Attribute Keyframes
	42.8.2 Position Keyframes

	42.9 Time Linearity
	42.10 KeyTrigger
	42.11 Cycle and Time Cycle Keyframes
	42.12 Starting an Animation from Code
	42.13 Summary

	43. An Android MotionLayout Editor Tutorial
	43.1 Creating the MotionLayoutDemo Project
	43.2 ConstraintLayout to MotionLayout Conversion
	43.3 Configuring Start and End Constraints
	43.4 Previewing the MotionLayout Animation
	43.5 Adding an OnClick Gesture
	43.6 Adding an Attribute Keyframe to the Transition
	43.7 Adding a CustomAttribute to a Transition
	43.8 Adding Position Keyframes
	43.9 Summary

	44. A MotionLayout KeyCycle Tutorial
	44.1 An Overview of Cycle Keyframes
	44.2 Using the Cycle Editor
	44.3 Creating the KeyCycleDemo Project
	44.4 Configuring the Start and End Constraints
	44.5 Creating the Cycles
	44.6 Previewing the Animation
	44.7 Adding the KeyFrameSet to the MotionScene
	44.8 Summary

	45. Working with the Floating Action Button and Snackbar
	45.1 The Material Design
	45.2 The Design Library
	45.3 The Floating Action Button (FAB)
	45.4 The Snackbar
	45.5 Creating the Example Project
	45.6 Reviewing the Project
	45.7 Removing Navigation Features
	45.8 Changing the Floating Action Button
	45.9 Adding an Action to the Snackbar
	45.10 Summary

	46. Creating a Tabbed Interface using the TabLayout Component
	46.1 An Introduction to the ViewPager2
	46.2 An Overview of the TabLayout Component
	46.3 Creating the TabLayoutDemo Project
	46.4 Creating the First Fragment
	46.5 Duplicating the Fragments
	46.6 Adding the TabLayout and ViewPager2
	46.7 Creating the Pager Adapter
	46.8 Performing the Initialization Tasks
	46.9 Testing the Application
	46.10 Customizing the TabLayout
	46.11 Summary

	47. Working with the RecyclerView and CardView Widgets
	47.1 An Overview of the RecyclerView
	47.2 An Overview of the CardView
	47.3 Summary

	48. An Android RecyclerView and CardView Tutorial
	48.1 Creating the CardDemo Project
	48.2 Modifying the Basic Activity Project
	48.3 Designing the CardView Layout
	48.4 Adding the RecyclerView
	48.5 Adding the Image Files
	48.6 Creating the RecyclerView Adapter
	48.7 Initializing the RecyclerView Component
	48.8 Testing the Application
	48.9 Responding to Card Selections
	48.10 Summary

	49. A Layout Editor Sample Data Tutorial
	49.1 Adding Sample Data to a Project
	49.2 Using Custom Sample Data
	49.3 Summary

	50. Working with the AppBar and Collapsing Toolbar Layouts
	50.1 The Anatomy of an AppBar
	50.2 The Example Project
	50.3 Coordinating the RecyclerView and Toolbar
	50.4 Introducing the Collapsing Toolbar Layout
	50.5 Changing the Title and Scrim Color
	50.6 Summary

	51. An Android Studio Primary/Detail Flow Tutorial
	51.1 The Primary/Detail Flow
	51.2 Creating a Primary/Detail Flow Activity
	51.3 Modifying the Primary/Detail Flow Template
	51.4 Changing the Content Model
	51.5 Changing the Detail Pane
	51.6 Modifying the WebsiteDetailFragment Class
	51.7 Modifying the WebsiteListFragment Class
	51.8 Adding Manifest Permissions
	51.9 Running the Application
	51.10 Summary

	52. An Overview of Android Intents
	52.1 An Overview of Intents
	52.2 Explicit Intents
	52.3 Returning Data from an Activity
	52.4 Implicit Intents
	52.5 Using Intent Filters
	52.6 Automatic Link Verification
	52.7 Manually Enabling Links
	52.8 Checking Intent Availability
	52.9 Summary

	53. Android Explicit Intents – A Worked Example
	53.1 Creating the Explicit Intent Example Application
	53.2 Designing the User Interface Layout for MainActivity
	53.3 Creating the Second Activity Class
	53.4 Designing the User Interface Layout for SecondActivity
	53.5 Reviewing the Application Manifest File
	53.6 Creating the Intent
	53.7 Extracting Intent Data
	53.8 Launching SecondActivity as a Sub-Activity
	53.9 Returning Data from a Sub-Activity
	53.10 Testing the Application
	53.11 Summary

	54. Android Implicit Intents – A Worked Example
	54.1 Creating the Android Studio Implicit Intent Example Project
	54.2 Designing the User Interface
	54.3 Creating the Implicit Intent
	54.4 Adding a Second Matching Activity
	54.5 Adding the Web View to the UI
	54.6 Obtaining the Intent URL
	54.7 Modifying the MyWebView Project Manifest File
	54.8 Installing the MyWebView Package on a Device
	54.9 Testing the Application
	54.10 Manually Enabling the Link
	54.11 Automatic Link Verification
	54.12 Summary

	55. Android Broadcast Intents and Broadcast Receivers
	55.1 An Overview of Broadcast Intents
	55.2 An Overview of Broadcast Receivers
	55.3 Obtaining Results from a Broadcast
	55.4 Sticky Broadcast Intents
	55.5 The Broadcast Intent Example
	55.6 Creating the Example Application
	55.7 Creating and Sending the Broadcast Intent
	55.8 Creating the Broadcast Receiver
	55.9 Registering the Broadcast Receiver
	55.10 Testing the Broadcast Example
	55.11 Listening for System Broadcasts
	55.12 Summary

	56. A Basic Overview of Java Threads, Handlers and Executors
	56.1 An Overview of Threads
	56.2 The Application Main Thread
	56.3 Thread Handlers
	56.4 A Threading Example
	56.5 Building the App
	56.6 Creating a New Thread
	56.7 Implementing a Thread Handler
	56.8 Passing a Message to the Handler
	56.9 Java Executor Concurrency
	56.10 Working with Runnable Tasks
	56.11 Shutting down an Executor Service
	56.12 Working with Callable Tasks and Futures
	56.13 Handling a Future Result
	56.14 Scheduling Tasks
	56.15 Summary

	57. An Overview of Android Services
	57.1 Started Services
	57.2 Intent Service
	57.3 Bound Service
	57.4 The Anatomy of a Service
	57.5 Controlling Destroyed Service Restart Options
	57.6 Declaring a Service in the Manifest File
	57.7 Starting a Service Running on System Startup
	57.8 Summary

	58. Implementing an Android Started Service – A Worked Example
	58.1 Creating the Example Project
	58.2 Designing the User Interface
	58.3 Creating the Service Class
	58.4 Adding the Service to the Manifest File
	58.5 Starting the Service
	58.6 Testing the IntentService Example
	58.7 Using the Service Class
	58.8 Creating the New Service
	58.9 Launching the Service
	58.10 Running the Application
	58.11 Adding Threading to the Service
	58.12 Summary

	59. Android Local Bound Services – A Worked Example
	59.1 Understanding Bound Services
	59.2 Bound Service Interaction Options
	59.3 A Local Bound Service Example
	59.4 Adding a Bound Service to the Project
	59.5 Implementing the Binder
	59.6 Binding the Client to the Service
	59.7 Completing the Example
	59.8 Testing the Application
	59.9 Summary

	60. Android Remote Bound Services – A Worked Example
	60.1 Client to Remote Service Communication
	60.2 Creating the Example Application
	60.3 Designing the User Interface
	60.4 Implementing the Remote Bound Service
	60.5 Configuring a Remote Service in the Manifest File
	60.6 Launching and Binding to the Remote Service
	60.7 Sending a Message to the Remote Service
	60.8 Summary

	61. An Android Notifications Tutorial
	61.1 An Overview of Notifications
	61.2 Creating the NotifyDemo Project
	61.3 Designing the User Interface
	61.4 Creating the Second Activity
	61.5 Creating a Notification Channel
	61.6 Creating and Issuing a Notification
	61.7 Launching an Activity from a Notification
	61.8 Adding Actions to a Notification
	61.9 Bundled Notifications
	61.10 Summary

	62. An Android Direct Reply Notification Tutorial
	62.1 Creating the DirectReply Project
	62.2 Designing the User Interface
	62.3 Creating the Notification Channel
	62.4 Building the RemoteInput Object
	62.5 Creating the PendingIntent
	62.6 Creating the Reply Action
	62.7 Receiving Direct Reply Input
	62.8 Updating the Notification
	62.9 Summary

	63. Foldable Devices and Multi-Window Support
	63.1 Foldables and Multi-Window Support
	63.2 Using a Foldable Emulator
	63.3 Entering Multi-Window Mode
	63.4 Enabling and using Freeform Support
	63.5 Checking for Freeform Support
	63.6 Enabling Multi-Window Support in an App
	63.7 Specifying Multi-Window Attributes
	63.8 Detecting Multi-Window Mode in an Activity
	63.9 Receiving Multi-Window Notifications
	63.10 Launching an Activity in Multi-Window Mode
	63.11 Configuring Freeform Activity Size and Position
	63.12 Summary

	64. An Overview of Android SQLite Databases
	64.1 Understanding Database Tables
	64.2 Introducing Database Schema
	64.3 Columns and Data Types
	64.4 Database Rows
	64.5 Introducing Primary Keys
	64.6 What is SQLite?
	64.7 Structured Query Language (SQL)
	64.8 Trying SQLite on an Android Virtual Device (AVD)
	64.9 The Android Room Persistence Library
	64.10 Summary

	65. The Android Room Persistence Library
	65.1 Revisiting Modern App Architecture
	65.2 Key Elements of Room Database Persistence
	65.2.1 Repository
	65.2.2 Room Database
	65.2.3 Data Access Object (DAO)
	65.2.4 Entities
	65.2.5 SQLite Database

	65.3 Understanding Entities
	65.4 Data Access Objects
	65.5 The Room Database
	65.6 The Repository
	65.7 In-Memory Databases
	65.8 Database Inspector
	65.9 Summary

	66. An Android TableLayout and TableRow Tutorial
	66.1 The TableLayout and TableRow Layout Views
	66.2 Creating the Room Database Project
	66.3 Converting to a LinearLayout
	66.4 Adding the TableLayout to the User Interface
	66.5 Configuring the TableRows
	66.6 Adding the Button Bar to the Layout
	66.7 Adding the RecyclerView
	66.8 Adjusting the Layout Margins
	66.9 Summary

	67. An Android Room Database and Repository Tutorial
	67.1 About the RoomDemo Project
	67.2 Modifying the Build Configuration
	67.3 Building the Entity
	67.4 Creating the Data Access Object
	67.5 Adding the Room Database
	67.6 Adding the Repository
	67.7 Modifying the ViewModel
	67.8 Creating the Product Item Layout
	67.9 Adding the RecyclerView Adapter
	67.10 Preparing the Main Fragment
	67.11 Adding the Button Listeners
	67.12 Adding LiveData Observers
	67.13 Initializing the RecyclerView
	67.14 Testing the RoomDemo App
	67.15 Using the Database Inspector
	67.16 Summary

	68. Accessing Cloud Storage using the Android Storage Access Framework
	68.1 The Storage Access Framework
	68.2 Working with the Storage Access Framework
	68.3 Filtering Picker File Listings
	68.4 Handling Intent Results
	68.5 Reading the Content of a File
	68.6 Writing Content to a File
	68.7 Deleting a File
	68.8 Gaining Persistent Access to a File
	68.9 Summary

	69. An Android Storage Access Framework Example
	69.1 About the Storage Access Framework Example
	69.2 Creating the Storage Access Framework Example
	69.3 Designing the User Interface
	69.4 Adding the Activity Launchers
	69.5 Creating a New Storage File
	69.6 Saving to a Storage File
	69.7 Opening and Reading a Storage File
	69.8 Testing the Storage Access Application
	69.9 Summary

	70. Video Playback on Android using the VideoView and MediaController Classes
	70.1 Introducing the Android VideoView Class
	70.2 Introducing the Android MediaController Class
	70.3 Creating the Video Playback Example
	70.4 Designing the VideoPlayer Layout
	70.5 Downloading the Video File
	70.6 Configuring the VideoView
	70.7 Adding the MediaController to the Video View
	70.8 Setting up the onPreparedListener
	70.9 Summary

	71. Android Picture-in-Picture Mode
	71.1 Picture-in-Picture Features
	71.2 Enabling Picture-in-Picture Mode
	71.3 Configuring Picture-in-Picture Parameters
	71.4 Entering Picture-in-Picture Mode
	71.5 Detecting Picture-in-Picture Mode Changes
	71.6 Adding Picture-in-Picture Actions
	71.7 Summary

	72. An Android Picture-in-Picture Tutorial
	72.1 Adding Picture-in-Picture Support to the Manifest
	72.2 Adding a Picture-in-Picture Button
	72.3 Entering Picture-in-Picture Mode
	72.4 Detecting Picture-in-Picture Mode Changes
	72.5 Adding a Broadcast Receiver
	72.6 Adding the PiP Action
	72.7 Testing the Picture-in-Picture Action
	72.8 Summary

	73. Making Runtime Permission Requests in Android
	73.1 Understanding Normal and Dangerous Permissions
	73.2 Creating the Permissions Example Project
	73.3 Checking for a Permission
	73.4 Requesting Permission at Runtime
	73.5 Providing a Rationale for the Permission Request
	73.6 Testing the Permissions App
	73.7 Summary

	74. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	74.1 Playing Audio
	74.2 Recording Audio and Video using the MediaRecorder Class
	74.3 About the Example Project
	74.4 Creating the AudioApp Project
	74.5 Designing the User Interface
	74.6 Checking for Microphone Availability
	74.7 Initializing the Activity
	74.8 Implementing the recordAudio() Method
	74.9 Implementing the stopAudio() Method
	74.10 Implementing the playAudio() method
	74.11 Configuring and Requesting Permissions
	74.12 Testing the Application
	74.13 Summary

	75. Working with the Google Maps Android API in Android Studio
	75.1 The Elements of the Google Maps Android API
	75.2 Creating the Google Maps Project
	75.3 Obtaining Your Developer Signature
	75.4 Adding the Apache HTTP Legacy Library Requirement
	75.5 Testing the Application
	75.6 Understanding Geocoding and Reverse Geocoding
	75.7 Adding a Map to an Application
	75.8 Requesting Current Location Permission
	75.9 Displaying the User’s Current Location
	75.10 Changing the Map Type
	75.11 Displaying Map Controls to the User
	75.12 Handling Map Gesture Interaction
	75.12.1 Map Zooming Gestures
	75.12.2 Map Scrolling/Panning Gestures
	75.12.3 Map Tilt Gestures
	75.12.4 Map Rotation Gestures

	75.13 Creating Map Markers
	75.14 Controlling the Map Camera
	75.15 Summary

	76. Printing with the Android Printing Framework
	76.1 The Android Printing Architecture
	76.2 The Print Service Plugins
	76.3 Google Cloud Print
	76.4 Printing to Google Drive
	76.5 Save as PDF
	76.6 Printing from Android Devices
	76.7 Options for Building Print Support into Android Apps
	76.7.1 Image Printing
	76.7.2 Creating and Printing HTML Content
	76.7.3 Printing a Web Page
	76.7.4 Printing a Custom Document

	76.8 Summary

	77. An Android HTML and Web Content Printing Example
	77.1 Creating the HTML Printing Example Application
	77.2 Printing Dynamic HTML Content
	77.3 Creating the Web Page Printing Example
	77.4 Removing the Floating Action Button
	77.5 Removing Navigation Features
	77.6 Designing the User Interface Layout
	77.7 Accessing the WebView from the Main Activity
	77.8 Loading the Web Page into the WebView
	77.9 Adding the Print Menu Option
	77.10 Summary

	78. A Guide to Android Custom Document Printing
	78.1 An Overview of Android Custom Document Printing
	78.1.1 Custom Print Adapters

	78.2 Preparing the Custom Document Printing Project
	78.3 Creating the Custom Print Adapter
	78.4 Implementing the onLayout() Callback Method
	78.5 Implementing the onWrite() Callback Method
	78.6 Checking a Page is in Range
	78.7 Drawing the Content on the Page Canvas
	78.8 Starting the Print Job
	78.9 Testing the Application
	78.10 Summary

	79. An Introduction to Android App Links
	79.1 An Overview of Android App Links
	79.2 App Link Intent Filters
	79.3 Handling App Link Intents
	79.4 Associating the App with a Website
	79.5 Summary

	80. An Android Studio App Links Tutorial
	80.1 About the Example App
	80.2 The Database Schema
	80.3 Loading and Running the Project
	80.4 Adding the URL Mapping
	80.5 Adding the Intent Filter
	80.6 Adding Intent Handling Code
	80.7 Testing the App
	80.8 Creating the Digital Asset Links File
	80.9 Testing the App Link
	80.10 Summary

	81. An Android Biometric Authentication Tutorial
	81.1 An Overview of Biometric Authentication
	81.2 Creating the Biometric Authentication Project
	81.3 Configuring Device Fingerprint Authentication
	81.4 Adding the Biometric Permission to the Manifest File
	81.5 Designing the User Interface
	81.6 Adding a Toast Convenience Method
	81.7 Checking the Security Settings
	81.8 Configuring the Authentication Callbacks
	81.9 Adding the CancellationSignal
	81.10 Starting the Biometric Prompt
	81.11 Testing the Project
	81.12 Summary

	82. Creating, Testing and Uploading an Android App Bundle
	82.1 The Release Preparation Process
	82.2 Android App Bundles
	82.3 Register for a Google Play Developer Console Account
	82.4 Configuring the App in the Console
	82.5 Enabling Google Play App Signing
	82.6 Creating a Keystore File
	82.7 Creating the Android App Bundle
	82.8 Generating Test APK Files
	82.9 Uploading the App Bundle to the Google Play Developer Console
	82.10 Exploring the App Bundle
	82.11 Managing Testers
	82.12 Rolling the App Out for Testing
	82.13 Uploading New App Bundle Revisions
	82.14 Analyzing the App Bundle File
	82.15 Summary

	83. An Overview of Android In-App Billing
	83.1 Preparing a Project for In-App Purchasing
	83.2 Creating In-App Products and Subscriptions
	83.3 Billing Client Initialization
	83.4 Connecting to the Google Play Billing Library
	83.5 Displaying Available Products
	83.6 Starting the Purchase Process
	83.7 Completing the Purchase
	83.8 Querying Previous Purchases
	83.9 Summary

	84. An Android In-App Purchasing Tutorial
	84.1 About the In-App Purchasing Example Project
	84.2 Creating the InAppPurchase Project
	84.3 Adding Libraries to the Project
	84.4 Designing the User Interface
	84.5 Adding the App to the Google Play Store
	84.6 Creating an In-App Product
	84.7 Enabling License Testers
	84.8 Initializing the Billing Client
	84.9 Querying the Product
	84.10 Launching the Purchase Flow
	84.11 Handling Purchase Updates
	84.12 Consuming the Product
	84.13 Testing the App
	84.14 Troubleshooting
	84.15 Summary

	85. An Overview of Android Dynamic Feature Modules
	85.1 An Overview of Dynamic Feature Modules
	85.2 Dynamic Feature Module Architecture
	85.3 Creating a Dynamic Feature Module
	85.4 Converting an Existing Module for Dynamic Delivery
	85.5 Working with Dynamic Feature Modules
	85.6 Handling Large Dynamic Feature Modules
	85.7 Summary

	86. An Android Studio Dynamic Feature Tutorial
	86.1 Creating the DynamicFeature Project
	86.2 Adding Dynamic Feature Support to the Project
	86.3 Designing the Base Activity User Interface
	86.4 Adding the Dynamic Feature Module
	86.5 Reviewing the Dynamic Feature Module
	86.6 Adding the Dynamic Feature Activity
	86.7 Implementing the launchIntent() Method
	86.8 Uploading the App Bundle for Testing
	86.9 Implementing the installFeature() Method
	86.10 Adding the Update Listener
	86.11 Using Deferred Installation
	86.12 Removing a Dynamic Module
	86.13 Summary

	87. Working with Material Design 3 Theming
	87.1 Material Design 2 vs Material Design 3
	87.2 Understanding Material Design Theming
	87.3 Material Design 2 Theming
	87.4 Material Design 3 Theming
	87.5 Building a Custom Theme
	87.6 Summary

	88. Migrating from Material Design 2 to Material Design 3
	88.1 Creating the ThemeMigration Project
	88.2 Designing the User Interface
	88.3 Migrating to Material Design 3
	88.4 Building a New Theme
	88.5 Adding the Theme to the Project
	88.6 Enabling Dynamic Color Support
	88.7 Summary

	89. An Overview of Gradle in Android Studio
	89.1 An Overview of Gradle
	89.2 Gradle and Android Studio
	89.2.1 Sensible Defaults
	89.2.2 Dependencies
	89.2.3 Build Variants
	89.2.4 Manifest Entries
	89.2.5 APK Signing
	89.2.6 ProGuard Support

	89.3 The Property and Settings Gradle Build File
	89.4 The Top-level Gradle Build File
	89.5 Module Level Gradle Build Files
	89.6 Configuring Signing Settings in the Build File
	89.7 Running Gradle Tasks from the Command-line
	89.8 Summary

	Index

