
Android Studio Dolphin
Essentials

Java Edition
Title

Android Studio Dolphin Essentials – Java Edition

ISBN-13: 978-1-951442-56-9

© 2022 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0
Copyright

i

Contents
Table of Contents
1. Introduction.. 1

1.1 Downloading the Code Samples.. 1
1.2 Feedback.. 1
1.3 Errata... 2

2. Setting up an Android Studio Development Environment.. 3
2.1 System requirements.. 3
2.2 Downloading the Android Studio package.. 3
2.3 Installing Android Studio.. 4

2.3.1 Installation on Windows.. 4
2.3.2 Installation on macOS.. 4
2.3.3 Installation on Linux... 5

2.4 The Android Studio setup wizard.. 5
2.5 Installing additional Android SDK packages... 6
2.6 Making the Android SDK tools command-line accessible... 9

2.6.1 Windows 8.1.. 9
2.6.2 Windows 10... 10
2.6.3 Windows 11... 10
2.6.4 Linux... 10
2.6.5 macOS... 10

2.7 Android Studio memory management... 11
2.8 Updating Android Studio and the SDK.. 11
2.9 Summary... 11

3. Creating an Example Android App in Android Studio.. 13
3.1 About the Project... 13
3.2 Creating a New Android Project.. 13
3.3 Creating an Activity... 14
3.4 Defining the Project and SDK Settings... 14
3.5 Modifying the Example Application.. 15
3.6 Modifying the User Interface ... 16
3.7 Reviewing the Layout and Resource Files... 21
3.8 Adding Interaction... 24
3.9 Summary... 25

4. Creating an Android Virtual Device (AVD) in Android Studio.. 27
4.1 About Android Virtual Devices... 27
4.2 Starting the Emulator... 28
4.3 Running the Application in the AVD.. 29
4.4 Running on Multiple Devices... 31
4.5 Stopping a Running Application.. 31
4.6 Supporting Dark Theme.. 32
4.7 Running the Emulator in a Separate Window.. 33
4.8 Enabling the Device Frame... 34

Contents

ii

Table of Contents

4.9 AVD Command-line Creation... 35
4.10 Android Virtual Device Configuration Files.. 37
4.11 Moving and Renaming an Android Virtual Device.. 37
4.12 Summary... 37

5. Using and Configuring the Android Studio AVD Emulator ... 39
5.1 The Emulator Environment.. 39
5.2 Emulator Toolbar Options.. 39
5.3 Working in Zoom Mode... 41
5.4 Resizing the Emulator Window... 41
5.5 Extended Control Options.. 41

5.5.1 Location.. 42
5.5.2 Displays... 42
5.5.3 Cellular... 42
5.5.4 Battery... 42
5.5.5 Camera.. 42
5.5.6 Phone.. 42
5.5.7 Directional Pad.. 42
5.5.8 Microphone.. 42
5.5.9 Fingerprint... 42
5.5.10 Virtual Sensors.. 43
5.5.11 Snapshots.. 43
5.5.12 Record and Playback.. 43
5.5.13 Google Play.. 43
5.5.14 Settings... 43
5.5.15 Help... 43

5.6 Working with Snapshots.. 43
5.7 Configuring Fingerprint Emulation.. 44
5.8 The Emulator in Tool Window Mode.. 45
5.9 Summary... 46

6. A Tour of the Android Studio User Interface... 47
6.1 The Welcome Screen.. 47
6.2 The Main Window... 48
6.3 The Tool Windows... 49
6.4 Android Studio Keyboard Shortcuts... 52
6.5 Switcher and Recent Files Navigation... 53
6.6 Changing the Android Studio Theme... 54
6.7 Summary... 55

7. Testing Android Studio Apps on a Physical Android Device... 57
7.1 An Overview of the Android Debug Bridge (ADB).. 57
7.2 Enabling USB Debugging ADB on Android Devices.. 57

7.2.1 macOS ADB Configuration... 58
7.2.2 Windows ADB Configuration... 59
7.2.3 Linux adb Configuration.. 60

7.3 Resolving USB Connection Issues... 60
7.4 Enabling Wireless Debugging on Android Devices.. 61
7.5 Testing the adb Connection.. 63
7.6 Summary... 63

iii

Table of Contents

8. The Basics of the Android Studio Code Editor... 65
8.1 The Android Studio Editor... 65
8.2 Splitting the Editor Window... 67
8.3 Code Completion... 68
8.4 Statement Completion... 69
8.5 Parameter Information.. 70
8.6 Parameter Name Hints.. 70
8.7 Code Generation.. 70
8.8 Code Folding... 71
8.9 Quick Documentation Lookup.. 72
8.10 Code Reformatting.. 73
8.11 Finding Sample Code.. 73
8.12 Live Templates.. 74
8.13 Summary... 74

9. An Overview of the Android Architecture... 75
9.1 The Android Software Stack... 75
9.2 The Linux Kernel.. 76
9.3 Android Runtime – ART... 76
9.4 Android Libraries... 76

9.4.1 C/C++ Libraries.. 77
9.5 Application Framework... 77
9.6 Applications.. 78
9.7 Summary... 78

10. The Anatomy of an Android Application... 79
10.1 Android Activities.. 79
10.2 Android Fragments.. 79
10.3 Android Intents.. 80
10.4 Broadcast Intents.. 80
10.5 Broadcast Receivers... 80
10.6 Android Services.. 80
10.7 Content Providers.. 81
10.8 The Application Manifest.. 81
10.9 Application Resources... 81
10.10 Application Context... 81
10.11 Summary... 81

11. An Overview of Android View Binding.. 83
11.1 Find View by Id.. 83
11.2 View Binding ... 83
11.3 Converting the AndroidSample project.. 84
11.4 Enabling View Binding.. 84
11.5 Using View Binding... 84
11.6 Choosing an Option.. 85
11.7 View Binding in the Book Examples... 86
11.8 Migrating a Project to View Binding... 86
11.9 Summary... 87

12. Understanding Android Application and Activity Lifecycles.. 89
12.1 Android Applications and Resource Management.. 89

iv

Table of Contents

12.2 Android Process States.. 89
12.2.1 Foreground Process.. 90
12.2.2 Visible Process... 90
12.2.3 Service Process.. 90
12.2.4 Background Process.. 90
12.2.5 Empty Process... 91

12.3 Inter-Process Dependencies .. 91
12.4 The Activity Lifecycle... 91
12.5 The Activity Stack... 91
12.6 Activity States... 92
12.7 Configuration Changes... 92
12.8 Handling State Change.. 93
12.9 Summary... 93

13. Handling Android Activity State Changes... 95
13.1 New vs. Old Lifecycle Techniques.. 95
13.2 The Activity and Fragment Classes.. 95
13.3 Dynamic State vs. Persistent State.. 97
13.4 The Android Lifecycle Methods... 98
13.5 Lifetimes.. 99
13.6 Foldable Devices and Multi-Resume... 100
13.7 Disabling Configuration Change Restarts.. 100
13.8 Lifecycle Method Limitations... 100
13.9 Summary... 101

14. Android Activity State Changes by Example.. 103
14.1 Creating the State Change Example Project... 103
14.2 Designing the User Interface.. 104
14.3 Overriding the Activity Lifecycle Methods.. 104
14.4 Filtering the Logcat Panel... 106
14.5 Running the Application... 108
14.6 Experimenting with the Activity.. 108
14.7 Summary... 109

15. Saving and Restoring the State of an Android Activity.. 111
15.1 Saving Dynamic State.. 111
15.2 Default Saving of User Interface State... 111
15.3 The Bundle Class.. 112
15.4 Saving the State... 113
15.5 Restoring the State... 114
15.6 Testing the Application.. 114
15.7 Summary... 114

16. Understanding Android Views, View Groups and Layouts... 117
16.1 Designing for Different Android Devices... 117
16.2 Views and View Groups.. 117
16.3 Android Layout Managers.. 117
16.4 The View Hierarchy... 119
16.5 Creating User Interfaces.. 120
16.6 Summary... 120

17. A Guide to the Android Studio Layout Editor Tool... 121

v

Table of Contents

17.1 Basic vs. Empty Activity Templates... 121
17.2 The Android Studio Layout Editor.. 125
17.3 Design Mode... 125
17.4 The Palette... 126
17.5 Design Mode and Layout Views.. 127
17.6 Night Mode... 128
17.7 Code Mode.. 128
17.8 Split Mode... 129
17.9 Setting Attributes... 129
17.10 Transforms.. 131
17.11 Tools Visibility Toggles.. 132
17.12 Converting Views... 134
17.13 Displaying Sample Data.. 134
17.14 Creating a Custom Device Definition.. 135
17.15 Changing the Current Device.. 136
17.16 Layout Validation (Multi Preview).. 136
17.17 Summary... 137

18. A Guide to the Android ConstraintLayout... 139
18.1 How ConstraintLayout Works.. 139

18.1.1 Constraints... 139
18.1.2 Margins... 140
18.1.3 Opposing Constraints.. 140
18.1.4 Constraint Bias.. 141
18.1.5 Chains... 142
18.1.6 Chain Styles.. 142

18.2 Baseline Alignment.. 143
18.3 Configuring Widget Dimensions... 143
18.4 Guideline Helper.. 144
18.5 Group Helper.. 144
18.6 Barrier Helper... 144
18.7 Flow Helper... 146
18.8 Ratios... 147
18.9 ConstraintLayout Advantages.. 147
18.10 ConstraintLayout Availability.. 148
18.11 Summary... 148

19. A Guide to Using ConstraintLayout in Android Studio.. 149
19.1 Design and Layout Views.. 149
19.2 Autoconnect Mode.. 150
19.3 Inference Mode... 151
19.4 Manipulating Constraints Manually.. 151
19.5 Adding Constraints in the Inspector... 152
19.6 Viewing Constraints in the Attributes Window... 153
19.7 Deleting Constraints.. 154
19.8 Adjusting Constraint Bias... 154
19.9 Understanding ConstraintLayout Margins... 155
19.10 The Importance of Opposing Constraints and Bias.. 156
19.11 Configuring Widget Dimensions... 158
19.12 Design Time Tools Positioning.. 159

vi

Table of Contents

19.13 Adding Guidelines... 160
19.14 Adding Barriers.. 162
19.15 Adding a Group.. 163
19.16 Working with the Flow Helper... 164
19.17 Widget Group Alignment and Distribution... 165
19.18 Converting other Layouts to ConstraintLayout... 166
19.19 Summary .. 166

20. Working with ConstraintLayout Chains and Ratios in Android Studio... 167
20.1 Creating a Chain.. 167
20.2 Changing the Chain Style... 169
20.3 Spread Inside Chain Style... 169
20.4 Packed Chain Style... 170
20.5 Packed Chain Style with Bias.. 170
20.6 Weighted Chain.. 170
20.7 Working with Ratios.. 171
20.8 Summary... 173

21. An Android Studio Layout Editor ConstraintLayout Tutorial.. 175
21.1 An Android Studio Layout Editor Tool Example.. 175
21.2 Creating a New Activity.. 175
21.3 Preparing the Layout Editor Environment... 177
21.4 Adding the Widgets to the User Interface.. 178
21.5 Adding the Constraints... 181
21.6 Testing the Layout.. 182
21.7 Using the Layout Inspector... 183
21.8 Summary... 184

22. Manual XML Layout Design in Android Studio.. 185
22.1 Manually Creating an XML Layout... 185
22.2 Manual XML vs. Visual Layout Design... 188
22.3 Summary... 188

23. Managing Constraints using Constraint Sets... 189
23.1 Java Code vs. XML Layout Files... 189
23.2 Creating Views.. 189
23.3 View Attributes... 190
23.4 Constraint Sets.. 190

23.4.1 Establishing Connections.. 190
23.4.2 Applying Constraints to a Layout... 190
23.4.3 Parent Constraint Connections... 190
23.4.4 Sizing Constraints... 191
23.4.5 Constraint Bias.. 191
23.4.6 Alignment Constraints... 191
23.4.7 Copying and Applying Constraint Sets.. 191
23.4.8 ConstraintLayout Chains... 191
23.4.9 Guidelines.. 192
23.4.10 Removing Constraints.. 192
23.4.11 Scaling.. 192
23.4.12 Rotation.. 193

23.5 Summary... 193

vii

Table of Contents

24. An Android ConstraintSet Tutorial.. 195
24.1 Creating the Example Project in Android Studio.. 195
24.2 Adding Views to an Activity... 195
24.3 Setting View Attributes.. 196
24.4 Creating View IDs.. 197
24.5 Configuring the Constraint Set.. 198
24.6 Adding the EditText View... 199
24.7 Converting Density Independent Pixels (dp) to Pixels (px)... 200
24.8 Summary... 201

25. A Guide to using Apply Changes in Android Studio... 203
25.1 Introducing Apply Changes.. 203
25.2 Understanding Apply Changes Options... 203
25.3 Using Apply Changes... 204
25.4 Configuring Apply Changes Fallback Settings... 205
25.5 An Apply Changes Tutorial.. 205
25.6 Using Apply Code Changes.. 205
25.7 Using Apply Changes and Restart Activity... 206
25.8 Using Run App... 206
25.9 Summary... 206

26. An Overview and Example of Android Event Handling.. 207
26.1 Understanding Android Events... 207
26.2 Using the android:onClick Resource... 207
26.3 Event Listeners and Callback Methods... 208
26.4 An Event Handling Example.. 208
26.5 Designing the User Interface.. 209
26.6 The Event Listener and Callback Method... 210
26.7 Consuming Events... 211
26.8 Summary... 212

27. Android Touch and Multi-touch Event Handling.. 213
27.1 Intercepting Touch Events.. 213
27.2 The MotionEvent Object... 213
27.3 Understanding Touch Actions.. 214
27.4 Handling Multiple Touches.. 214
27.5 An Example Multi-Touch Application.. 214
27.6 Designing the Activity User Interface... 215
27.7 Implementing the Touch Event Listener... 215
27.8 Running the Example Application.. 218
27.9 Summary... 219

28. Detecting Common Gestures Using the Android Gesture Detector Class.. 221
28.1 Implementing Common Gesture Detection... 221
28.2 Creating an Example Gesture Detection Project... 222
28.3 Implementing the Listener Class.. 222
28.4 Creating the GestureDetectorCompat Instance... 224
28.5 Implementing the onTouchEvent() Method... 225
28.6 Testing the Application.. 225
28.7 Summary... 226

viii

Table of Contents

29. Implementing Custom Gesture and Pinch Recognition on Android.. 227
29.1 The Android Gesture Builder Application.. 227
29.2 The GestureOverlayView Class.. 227
29.3 Detecting Gestures... 227
29.4 Identifying Specific Gestures.. 227
29.5 Installing and Running the Gesture Builder Application... 228
29.6 Creating a Gestures File.. 228
29.7 Creating the Example Project... 228
29.8 Extracting the Gestures File from the SD Card... 228
29.9 Adding the Gestures File to the Project.. 229
29.10 Designing the User Interface.. 229
29.11 Loading the Gestures File... 230
29.12 Registering the Event Listener.. 231
29.13 Implementing the onGesturePerformed Method.. 231
29.14 Testing the Application... 232
29.15 Configuring the GestureOverlayView... 233
29.16 Intercepting Gestures.. 233
29.17 Detecting Pinch Gestures.. 233
29.18 A Pinch Gesture Example Project.. 234
29.19 Summary... 236

30. An Introduction to Android Fragments... 237
30.1 What is a Fragment?.. 237
30.2 Creating a Fragment.. 237
30.3 Adding a Fragment to an Activity using the Layout XML File.. 238
30.4 Adding and Managing Fragments in Code.. 240
30.5 Handling Fragment Events... 241
30.6 Implementing Fragment Communication... 242
30.7 Summary .. 243

31. Using Fragments in Android Studio - An Example.. 245
31.1 About the Example Fragment Application... 245
31.2 Creating the Example Project... 245
31.3 Creating the First Fragment Layout... 245
31.4 Migrating a Fragment to View Binding.. 247
31.5 Adding the Second Fragment... 248
31.6 Adding the Fragments to the Activity... 249
31.7 Making the Toolbar Fragment Talk to the Activity... 250
31.8 Making the Activity Talk to the Text Fragment... 253
31.9 Testing the Application.. 254
31.10 Summary... 255

32. Modern Android App Architecture with Jetpack... 257
32.1 What is Android Jetpack?... 257
32.2 The “Old” Architecture.. 257
32.3 Modern Android Architecture... 257
32.4 The ViewModel Component.. 258
32.5 The LiveData Component... 258
32.6 ViewModel Saved State... 259
32.7 LiveData and Data Binding... 260

ix

Table of Contents

32.8 Android Lifecycles... 260
32.9 Repository Modules... 260
32.10 Summary... 261

33. An Android Jetpack ViewModel Tutorial... 263
33.1 About the Project... 263
33.2 Creating the ViewModel Example Project.. 263
33.3 Reviewing the Project.. 264

33.3.1 The Main Activity.. 264
33.3.2 The Content Fragment... 264
33.3.3 The ViewModel... 266

33.4 Designing the Fragment Layout... 266
33.5 Implementing the View Model... 267
33.6 Associating the Fragment with the View Model.. 267
33.7 Modifying the Fragment... 268
33.8 Accessing the ViewModel Data.. 269
33.9 Testing the Project.. 270
33.10 Summary... 270

34. An Android Jetpack LiveData Tutorial... 271
34.1 LiveData - A Recap.. 271
34.2 Adding LiveData to the ViewModel.. 271
34.3 Implementing the Observer.. 273
34.4 Summary... 275

35. An Overview of Android Jetpack Data Binding... 277
35.1 An Overview of Data Binding.. 277
35.2 The Key Components of Data Binding... 277

35.2.1 The Project Build Configuration... 277
35.2.2 The Data Binding Layout File.. 278
35.2.3 The Layout File Data Element... 279
35.2.4 The Binding Classes... 280
35.2.5 Data Binding Variable Configuration... 280
35.2.6 Binding Expressions (One-Way)... 281
35.2.7 Binding Expressions (Two-Way)... 282
35.2.8 Event and Listener Bindings.. 282

35.3 Summary... 283
36. An Android Jetpack Data Binding Tutorial.. 285

36.1 Removing the Redundant Code... 285
36.2 Enabling Data Binding.. 286
36.3 Adding the Layout Element.. 287
36.4 Adding the Data Element to Layout File... 288
36.5 Working with the Binding Class.. 288
36.6 Assigning the ViewModel Instance to the Data Binding Variable.. 289
36.7 Adding Binding Expressions.. 290
36.8 Adding the Conversion Method.. 291
36.9 Adding a Listener Binding.. 291
36.10 Testing the App... 291
36.11 Summary... 292

37. An Android ViewModel Saved State Tutorial... 293

x

Table of Contents

37.1 Understanding ViewModel State Saving... 293
37.2 Implementing ViewModel State Saving.. 293
37.3 Saving and Restoring State.. 295
37.4 Adding Saved State Support to the ViewModelDemo Project... 295
37.5 Summary... 297

38. Working with Android Lifecycle-Aware Components... 299
38.1 Lifecycle Awareness... 299
38.2 Lifecycle Owners.. 299
38.3 Lifecycle Observers.. 300
38.4 Lifecycle States and Events.. 301
38.5 Summary... 302

39. An Android Jetpack Lifecycle Awareness Tutorial... 303
39.1 Creating the Example Lifecycle Project... 303
39.2 Creating a Lifecycle Observer... 303
39.3 Adding the Observer... 305
39.4 Testing the Observer.. 305
39.5 Creating a Lifecycle Owner... 305
39.6 Testing the Custom Lifecycle Owner... 307
39.7 Summary... 308

40. An Overview of the Navigation Architecture Component... 309
40.1 Understanding Navigation.. 309
40.2 Declaring a Navigation Host... 310
40.3 The Navigation Graph... 312
40.4 Accessing the Navigation Controller... 313
40.5 Triggering a Navigation Action.. 313
40.6 Passing Arguments... 314
40.7 Summary... 314

41. An Android Jetpack Navigation Component Tutorial... 315
41.1 Creating the NavigationDemo Project.. 315
41.2 Adding Navigation to the Build Configuration... 315
41.3 Creating the Navigation Graph Resource File.. 316
41.4 Declaring a Navigation Host... 317
41.5 Adding Navigation Destinations.. 318
41.6 Designing the Destination Fragment Layouts.. 320
41.7 Adding an Action to the Navigation Graph... 321
41.8 Implement the OnFragmentInteractionListener... 322
41.9 Adding View Binding Support to the Destination Fragments... 323
41.10 Triggering the Action.. 324
41.11 Passing Data Using Safeargs... 325
41.12 Summary... 328

42. An Introduction to MotionLayout.. 329
42.1 An Overview of MotionLayout.. 329
42.2 MotionLayout... 329
42.3 MotionScene... 329
42.4 Configuring ConstraintSets.. 330
42.5 Custom Attributes.. 331

xi

Table of Contents

42.6 Triggering an Animation... 332
42.7 Arc Motion.. 334
42.8 Keyframes.. 334

42.8.1 Attribute Keyframes.. 334
42.8.2 Position Keyframes... 335

42.9 Time Linearity.. 338
42.10 KeyTrigger... 338
42.11 Cycle and Time Cycle Keyframes.. 339
42.12 Starting an Animation from Code... 339
42.13 Summary... 340

43. An Android MotionLayout Editor Tutorial.. 341
43.1 Creating the MotionLayoutDemo Project.. 341
43.2 ConstraintLayout to MotionLayout Conversion... 341
43.3 Configuring Start and End Constraints.. 343
43.4 Previewing the MotionLayout Animation.. 345
43.5 Adding an OnClick Gesture... 346
43.6 Adding an Attribute Keyframe to the Transition... 347
43.7 Adding a CustomAttribute to a Transition... 350
43.8 Adding Position Keyframes.. 351
43.9 Summary... 354

44. A MotionLayout KeyCycle Tutorial.. 355
44.1 An Overview of Cycle Keyframes.. 355
44.2 Using the Cycle Editor... 359
44.3 Creating the KeyCycleDemo Project... 360
44.4 Configuring the Start and End Constraints.. 360
44.5 Creating the Cycles.. 362
44.6 Previewing the Animation.. 364
44.7 Adding the KeyFrameSet to the MotionScene... 364
44.8 Summary... 366

45. Working with the Floating Action Button and Snackbar... 367
45.1 The Material Design... 367
45.2 The Design Library.. 367
45.3 The Floating Action Button (FAB) .. 367
45.4 The Snackbar... 368
45.5 Creating the Example Project... 369
45.6 Reviewing the Project.. 369
45.7 Removing Navigation Features.. 370
45.8 Changing the Floating Action Button... 371
45.9 Adding an Action to the Snackbar... 372
45.10 Summary... 372

46. Creating a Tabbed Interface using the TabLayout Component... 375
46.1 An Introduction to the ViewPager2.. 375
46.2 An Overview of the TabLayout Component.. 375
46.3 Creating the TabLayoutDemo Project... 376
46.4 Creating the First Fragment.. 377
46.5 Duplicating the Fragments... 378
46.6 Adding the TabLayout and ViewPager2.. 379

xii

Table of Contents

46.7 Creating the Pager Adapter... 380
46.8 Performing the Initialization Tasks.. 381
46.9 Testing the Application.. 383
46.10 Customizing the TabLayout.. 383
46.11 Summary... 385

47. Working with the RecyclerView and CardView Widgets... 387
47.1 An Overview of the RecyclerView... 387
47.2 An Overview of the CardView... 389
47.3 Summary... 390

48. An Android RecyclerView and CardView Tutorial.. 391
48.1 Creating the CardDemo Project.. 391
48.2 Modifying the Basic Activity Project... 391
48.3 Designing the CardView Layout.. 392
48.4 Adding the RecyclerView.. 393
48.5 Adding the Image Files.. 393
48.6 Creating the RecyclerView Adapter... 394
48.7 Initializing the RecyclerView Component.. 396
48.8 Testing the Application.. 397
48.9 Responding to Card Selections.. 397
48.10 Summary... 399

49. A Layout Editor Sample Data Tutorial... 401
49.1 Adding Sample Data to a Project... 401
49.2 Using Custom Sample Data.. 405
49.3 Summary... 408

50. Working with the AppBar and Collapsing Toolbar Layouts.. 409
50.1 The Anatomy of an AppBar.. 409
50.2 The Example Project.. 410
50.3 Coordinating the RecyclerView and Toolbar... 410
50.4 Introducing the Collapsing Toolbar Layout... 412
50.5 Changing the Title and Scrim Color... 415
50.6 Summary... 416

51. An Android Studio Primary/Detail Flow Tutorial... 417
51.1 The Primary/Detail Flow... 417
51.2 Creating a Primary/Detail Flow Activity.. 418
51.3 Modifying the Primary/Detail Flow Template... 418
51.4 Changing the Content Model... 419
51.5 Changing the Detail Pane... 420
51.6 Modifying the ItemDetailFragment Class.. 421
51.7 Modifying the ItemListFragment Class... 423
51.8 Adding Manifest Permissions... 423
51.9 Running the Application... 423
51.10 Summary... 424

52. An Overview of Android Intents.. 425
52.1 An Overview of Intents... 425
52.2 Explicit Intents.. 425
52.3 Returning Data from an Activity... 426

xiii

Table of Contents

52.4 Implicit Intents... 427
52.5 Using Intent Filters... 428
52.6 Automatic Link Verification... 429
52.7 Manually Enabling Links.. 431
52.8 Checking Intent Availability... 433
52.9 Summary... 433

53. Android Explicit Intents – A Worked Example.. 435
53.1 Creating the Explicit Intent Example Application... 435
53.2 Designing the User Interface Layout for MainActivity... 435
53.3 Creating the Second Activity Class.. 436
53.4 Designing the User Interface Layout for SecondActivity... 437
53.5 Reviewing the Application Manifest File.. 437
53.6 Creating the Intent... 438
53.7 Extracting Intent Data... 439
53.8 Launching SecondActivity as a Sub-Activity.. 440
53.9 Returning Data from a Sub-Activity... 441
53.10 Testing the Application... 441
53.11 Summary... 441

54. Android Implicit Intents – A Worked Example... 443
54.1 Creating the Android Studio Implicit Intent Example Project.. 443
54.2 Designing the User Interface.. 443
54.3 Creating the Implicit Intent.. 444
54.4 Adding a Second Matching Activity.. 445
54.5 Adding the Web View to the UI... 445
54.6 Obtaining the Intent URL... 446
54.7 Modifying the MyWebView Project Manifest File.. 447
54.8 Installing the MyWebView Package on a Device... 448
54.9 Testing the Application.. 449
54.10 Manually Enabling the Link... 449
54.11 Automatic Link Verification... 451
54.12 Summary... 453

55. Android Broadcast Intents and Broadcast Receivers... 455
55.1 An Overview of Broadcast Intents... 455
55.2 An Overview of Broadcast Receivers.. 456
55.3 Obtaining Results from a Broadcast.. 457
55.4 Sticky Broadcast Intents.. 457
55.5 The Broadcast Intent Example.. 458
55.6 Creating the Example Application... 458
55.7 Creating and Sending the Broadcast Intent.. 458
55.8 Creating the Broadcast Receiver.. 459
55.9 Registering the Broadcast Receiver.. 460
55.10 Testing the Broadcast Example.. 461
55.11 Listening for System Broadcasts... 461
55.12 Summary... 462

56. Android Local Bound Services – A Worked Example.. 463
56.1 Understanding Bound Services.. 463
56.2 Bound Service Interaction Options... 463

xiv

Table of Contents

56.3 A Local Bound Service Example.. 463
56.4 Adding a Bound Service to the Project... 464
56.5 Implementing the Binder.. 464
56.6 Binding the Client to the Service... 467
56.7 Completing the Example... 468
56.8 Testing the Application.. 469
56.9 Summary... 469

57. Android Remote Bound Services – A Worked Example.. 473
57.1 Client to Remote Service Communication... 473
57.2 Creating the Example Application... 473
57.3 Designing the User Interface.. 473
57.4 Implementing the Remote Bound Service.. 474
57.5 Configuring a Remote Service in the Manifest File... 475
57.6 Launching and Binding to the Remote Service.. 476
57.7 Sending a Message to the Remote Service.. 477
57.8 Summary... 478

58. A Basic Overview of Java Threads, Handlers and Executors.. 479
58.1 The Application Main Thread... 479
58.2 Thread Handlers... 479
58.3 A Threading Example.. 479
58.4 Building the App.. 480
58.5 Creating a New Thread.. 481
58.6 Implementing a Thread Handler.. 482
58.7 Passing a Message to the Handler.. 483
58.8 Java Executor Concurrency.. 484
58.9 Working with Runnable Tasks.. 485
58.10 Shutting down an Executor Service... 486
58.11 Working with Callable Tasks and Futures.. 486
58.12 Handling a Future Result.. 488
58.13 Scheduling Tasks.. 489
58.14 Summary... 490

59. An Android Notifications Tutorial... 491
59.1 An Overview of Notifications... 491
59.2 Creating the NotifyDemo Project.. 493
59.3 Designing the User Interface.. 493
59.4 Creating the Second Activity.. 493
59.5 Creating a Notification Channel.. 494
59.6 Creating and Issuing a Notification... 496
59.7 Launching an Activity from a Notification... 498
59.8 Adding Actions to a Notification... 500
59.9 Bundled Notifications.. 500
59.10 Summary... 502

60. An Android Direct Reply Notification Tutorial... 505
60.1 Creating the DirectReply Project... 505
60.2 Designing the User Interface.. 505
60.3 Creating the Notification Channel... 506
60.4 Building the RemoteInput Object.. 507

xv

Table of Contents

60.5 Creating the PendingIntent... 508
60.6 Creating the Reply Action... 508
60.7 Receiving Direct Reply Input.. 511
60.8 Updating the Notification... 512
60.9 Summary... 513

61. Foldable Devices and Multi-Window Support.. 515
61.1 Foldables and Multi-Window Support.. 515
61.2 Using a Foldable Emulator.. 516
61.3 Entering Multi-Window Mode.. 517
61.4 Enabling and using Freeform Support.. 518
61.5 Checking for Freeform Support... 518
61.6 Enabling Multi-Window Support in an App.. 518
61.7 Specifying Multi-Window Attributes.. 519
61.8 Detecting Multi-Window Mode in an Activity.. 520
61.9 Receiving Multi-Window Notifications.. 520
61.10 Launching an Activity in Multi-Window Mode.. 521
61.11 Configuring Freeform Activity Size and Position.. 521
61.12 Summary... 522

62. An Overview of Android SQLite Databases... 523
62.1 Understanding Database Tables... 523
62.2 Introducing Database Schema ... 523
62.3 Columns and Data Types ... 523
62.4 Database Rows ... 524
62.5 Introducing Primary Keys ... 524
62.6 What is SQLite?.. 524
62.7 Structured Query Language (SQL).. 524
62.8 Trying SQLite on an Android Virtual Device (AVD)... 525
62.9 The Android Room Persistence Library.. 527
62.10 Summary... 527

63. The Android Room Persistence Library... 529
63.1 Revisiting Modern App Architecture.. 529
63.2 Key Elements of Room Database Persistence... 529

63.2.1 Repository.. 530
63.2.2 Room Database... 530
63.2.3 Data Access Object (DAO).. 530
63.2.4 Entities.. 530
63.2.5 SQLite Database.. 530

63.3 Understanding Entities.. 531
63.4 Data Access Objects... 534
63.5 The Room Database... 535
63.6 The Repository.. 536
63.7 In-Memory Databases... 537
63.8 Database Inspector... 537
63.9 Summary... 537

64. An Android TableLayout and TableRow Tutorial.. 539
64.1 The TableLayout and TableRow Layout Views... 539
64.2 Creating the Room Database Project.. 540

xvi

Table of Contents

64.3 Converting to a LinearLayout.. 540
64.4 Adding the TableLayout to the User Interface... 541
64.5 Configuring the TableRows.. 542
64.6 Adding the Button Bar to the Layout.. 543
64.7 Adding the RecyclerView.. 544
64.8 Adjusting the Layout Margins.. 545
64.9 Summary... 545

65. An Android Room Database and Repository Tutorial... 547
65.1 About the RoomDemo Project... 547
65.2 Modifying the Build Configuration... 547
65.3 Building the Entity... 548
65.4 Creating the Data Access Object.. 549
65.5 Adding the Room Database.. 550
65.6 Adding the Repository.. 551
65.7 Modifying the ViewModel.. 554
65.8 Creating the Product Item Layout... 555
65.9 Adding the RecyclerView Adapter... 555
65.10 Preparing the Main Fragment.. 557
65.11 Adding the Button Listeners... 558
65.12 Adding LiveData Observers... 559
65.13 Initializing the RecyclerView.. 560
65.14 Testing the RoomDemo App.. 560
65.15 Using the Database Inspector... 561
65.16 Summary... 561

66. Accessing Cloud Storage using the Android Storage Access Framework.. 563
66.1 The Storage Access Framework.. 563
66.2 Working with the Storage Access Framework... 564
66.3 Filtering Picker File Listings... 564
66.4 Handling Intent Results... 565
66.5 Reading the Content of a File... 565
66.6 Writing Content to a File.. 566
66.7 Deleting a File... 567
66.8 Gaining Persistent Access to a File.. 567
66.9 Summary... 567

67. An Android Storage Access Framework Example.. 569
67.1 About the Storage Access Framework Example... 569
67.2 Creating the Storage Access Framework Example... 569
67.3 Designing the User Interface.. 569
67.4 Adding the Activity Launchers... 570
67.5 Creating a New Storage File.. 571
67.6 Saving to a Storage File.. 574
67.7 Opening and Reading a Storage File... 575
67.8 Testing the Storage Access Application... 576
67.9 Summary... 577

68. Video Playback on Android using the VideoView and MediaController Classes............................... 579
68.1 Introducing the Android VideoView Class.. 579
68.2 Introducing the Android MediaController Class.. 580

xvii

Table of Contents

68.3 Creating the Video Playback Example.. 580
68.4 Designing the VideoPlayer Layout.. 580
68.5 Downloading the Video File... 581
68.6 Configuring the VideoView.. 581
68.7 Adding the MediaController to the Video View.. 583
68.8 Setting up the onPreparedListener.. 583
68.9 Summary... 584

69. Android Picture-in-Picture Mode... 585
69.1 Picture-in-Picture Features... 585
69.2 Enabling Picture-in-Picture Mode... 586
69.3 Configuring Picture-in-Picture Parameters... 586
69.4 Entering Picture-in-Picture Mode... 587
69.5 Detecting Picture-in-Picture Mode Changes... 587
69.6 Adding Picture-in-Picture Actions.. 588
69.7 Summary... 588

70. An Android Picture-in-Picture Tutorial... 591
70.1 Adding Picture-in-Picture Support to the Manifest.. 591
70.2 Adding a Picture-in-Picture Button.. 591
70.3 Entering Picture-in-Picture Mode... 591
70.4 Detecting Picture-in-Picture Mode Changes... 593
70.5 Adding a Broadcast Receiver.. 594
70.6 Adding the PiP Action... 595
70.7 Testing the Picture-in-Picture Action... 597
70.8 Summary... 598

71. Making Runtime Permission Requests in Android.. 599
71.1 Understanding Normal and Dangerous Permissions.. 599
71.2 Creating the Permissions Example Project... 601
71.3 Checking for a Permission.. 601
71.4 Requesting Permission at Runtime.. 603
71.5 Providing a Rationale for the Permission Request.. 604
71.6 Testing the Permissions App... 606
71.7 Summary... 606

72. Android Audio Recording and Playback using MediaPlayer and MediaRecorder............................. 607
72.1 Playing Audio... 607
72.2 Recording Audio and Video using the MediaRecorder Class.. 608
72.3 About the Example Project... 609
72.4 Creating the AudioApp Project.. 609
72.5 Designing the User Interface.. 609
72.6 Checking for Microphone Availability.. 610
72.7 Initializing the Activity.. 611
72.8 Implementing the recordAudio() Method.. 612
72.9 Implementing the stopAudio() Method.. 612
72.10 Implementing the playAudio() method.. 613
72.11 Configuring and Requesting Permissions.. 613
72.12 Testing the Application... 615
72.13 Summary... 616

73. Working with the Google Maps Android API in Android Studio... 617

xviii

Table of Contents

73.1 The Elements of the Google Maps Android API... 617
73.2 Creating the Google Maps Project... 618
73.3 Obtaining Your Developer Signature.. 618
73.4 Adding the Apache HTTP Legacy Library Requirement... 619
73.5 Testing the Application.. 619
73.6 Understanding Geocoding and Reverse Geocoding... 620
73.7 Adding a Map to an Application.. 622
73.8 Requesting Current Location Permission... 622
73.9 Displaying the User’s Current Location.. 623
73.10 Changing the Map Type.. 625
73.11 Displaying Map Controls to the User.. 625
73.12 Handling Map Gesture Interaction.. 626

73.12.1 Map Zooming Gestures.. 626
73.12.2 Map Scrolling/Panning Gestures.. 626
73.12.3 Map Tilt Gestures.. 627
73.12.4 Map Rotation Gestures... 627

73.13 Creating Map Markers... 627
73.14 Controlling the Map Camera... 628
73.15 Summary... 629

74. Printing with the Android Printing Framework.. 631
74.1 The Android Printing Architecture... 631
74.2 The Print Service Plugins.. 631
74.3 Google Cloud Print.. 632
74.4 Printing to Google Drive... 632
74.5 Save as PDF... 633
74.6 Printing from Android Devices... 633
74.7 Options for Building Print Support into Android Apps... 634

74.7.1 Image Printing... 634
74.7.2 Creating and Printing HTML Content.. 635
74.7.3 Printing a Web Page.. 636
74.7.4 Printing a Custom Document... 637

74.8 Summary... 637
75. An Android HTML and Web Content Printing Example.. 639

75.1 Creating the HTML Printing Example Application.. 639
75.2 Printing Dynamic HTML Content.. 639
75.3 Creating the Web Page Printing Example... 642
75.4 Removing the Floating Action Button.. 642
75.5 Removing Navigation Features.. 642
75.6 Designing the User Interface Layout... 644
75.7 Accessing the WebView from the Main Activity... 644
75.8 Loading the Web Page into the WebView... 645
75.9 Adding the Print Menu Option.. 646
75.10 Summary... 647

76. A Guide to Android Custom Document Printing.. 649
76.1 An Overview of Android Custom Document Printing.. 649

76.1.1 Custom Print Adapters... 649
76.2 Preparing the Custom Document Printing Project... 650
76.3 Creating the Custom Print Adapter... 651

xix

Table of Contents

76.4 Implementing the onLayout() Callback Method... 652
76.5 Implementing the onWrite() Callback Method... 655
76.6 Checking a Page is in Range... 657
76.7 Drawing the Content on the Page Canvas.. 658
76.8 Starting the Print Job... 660
76.9 Testing the Application.. 661
76.10 Summary... 661

77. An Introduction to Android App Links.. 663
77.1 An Overview of Android App Links... 663
77.2 App Link Intent Filters.. 663
77.3 Handling App Link Intents... 664
77.4 Associating the App with a Website.. 664
77.5 Summary... 665

78. An Android Studio App Links Tutorial.. 667
78.1 About the Example App.. 667
78.2 The Database Schema.. 667
78.3 Loading and Running the Project.. 668
78.4 Adding the URL Mapping... 669
78.5 Adding the Intent Filter... 672
78.6 Adding Intent Handling Code.. 672
78.7 Testing the App... 675
78.8 Creating the Digital Asset Links File... 675
78.9 Testing the App Link.. 676
78.10 Summary... 676

79. An Android Biometric Authentication Tutorial.. 677
79.1 An Overview of Biometric Authentication... 677
79.2 Creating the Biometric Authentication Project... 677
79.3 Configuring Device Fingerprint Authentication... 678
79.4 Adding the Biometric Permission to the Manifest File... 678
79.5 Designing the User Interface.. 679
79.6 Adding a Toast Convenience Method... 679
79.7 Checking the Security Settings... 680
79.8 Configuring the Authentication Callbacks... 681
79.9 Adding the CancellationSignal... 682
79.10 Starting the Biometric Prompt... 682
79.11 Testing the Project.. 683
79.12 Summary... 684

80. Creating, Testing and Uploading an Android App Bundle.. 685
80.1 The Release Preparation Process.. 685
80.2 Android App Bundles.. 685
80.3 Register for a Google Play Developer Console Account... 686
80.4 Configuring the App in the Console... 687
80.5 Enabling Google Play App Signing.. 688
80.6 Creating a Keystore File.. 688
80.7 Creating the Android App Bundle... 690
80.8 Generating Test APK Files.. 691
80.9 Uploading the App Bundle to the Google Play Developer Console.. 692

xx

Table of Contents

80.10 Exploring the App Bundle.. 693
80.11 Managing Testers... 694
80.12 Rolling the App Out for Testing... 694
80.13 Uploading New App Bundle Revisions... 695
80.14 Analyzing the App Bundle File.. 696
80.15 Summary... 696

81. An Overview of Android In-App Billing.. 699
81.1 Preparing a Project for In-App Purchasing.. 699
81.2 Creating In-App Products and Subscriptions.. 699
81.3 Billing Client Initialization... 700
81.4 Connecting to the Google Play Billing Library.. 701
81.5 Querying Available Products.. 702
81.6 Starting the Purchase Process... 702
81.7 Completing the Purchase.. 703
81.8 Querying Previous Purchases... 704
81.9 Summary... 705

82. An Android In-App Purchasing Tutorial... 707
82.1 About the In-App Purchasing Example Project... 707
82.2 Creating the InAppPurchase Project... 707
82.3 Adding Libraries to the Project.. 707
82.4 Designing the User Interface.. 708
82.5 Adding the App to the Google Play Store... 708
82.6 Creating an In-App Product... 709
82.7 Enabling License Testers... 709
82.8 Initializing the Billing Client.. 710
82.9 Querying the Product.. 712
82.10 Launching the Purchase Flow.. 713
82.11 Handling Purchase Updates... 713
82.12 Consuming the Product.. 714
82.13 Restoring a Previous Purchase... 715
82.14 Testing the App... 716
82.15 Troubleshooting... 717
82.16 Summary... 717

83. An Overview of Android Dynamic Feature Modules... 719
83.1 An Overview of Dynamic Feature Modules... 719
83.2 Dynamic Feature Module Architecture.. 719
83.3 Creating a Dynamic Feature Module.. 720
83.4 Converting an Existing Module for Dynamic Delivery.. 722
83.5 Working with Dynamic Feature Modules... 725
83.6 Handling Large Dynamic Feature Modules... 727
83.7 Summary... 728

84. An Android Studio Dynamic Feature Tutorial... 729
84.1 Creating the DynamicFeature Project... 729
84.2 Adding Dynamic Feature Support to the Project.. 729
84.3 Designing the Base Activity User Interface.. 730
84.4 Adding the Dynamic Feature Module... 731
84.5 Reviewing the Dynamic Feature Module... 732

xxi

Table of Contents

84.6 Adding the Dynamic Feature Activity... 733
84.7 Implementing the launchIntent() Method... 736
84.8 Uploading the App Bundle for Testing.. 737
84.9 Implementing the installFeature() Method.. 738
84.10 Adding the Update Listener.. 740
84.11 Using Deferred Installation.. 743
84.12 Removing a Dynamic Module... 743
84.13 Summary... 744

85. Working with Material Design 3 Theming... 745
85.1 Material Design 2 vs Material Design 3.. 745
85.2 Understanding Material Design Theming.. 745
85.3 Material Design 2 Theming.. 745
85.4 Material Design 3 Theming.. 747
85.5 Building a Custom Theme.. 748
85.6 Summary... 749

86. Migrating from Material Design 2 to Material Design 3.. 751
86.1 Creating the ThemeMigration Project.. 751
86.2 Designing the User Interface.. 751
86.3 Migrating to Material Design 3.. 753
86.4 Building a New Theme.. 754
86.5 Adding the Theme to the Project... 755
86.6 Enabling Dynamic Color Support... 756
86.7 Summary... 757

87. An Overview of Gradle in Android Studio... 759
87.1 An Overview of Gradle... 759
87.2 Gradle and Android Studio.. 759

87.2.1 Sensible Defaults... 759
87.2.2 Dependencies.. 759
87.2.3 Build Variants.. 760
87.2.4 Manifest Entries.. 760
87.2.5 APK Signing... 760
87.2.6 ProGuard Support... 760

87.3 The Property and Settings Gradle Build File.. 760
87.4 The Top-level Gradle Build File.. 761
87.5 Module Level Gradle Build Files.. 762
87.6 Configuring Signing Settings in the Build File... 764
87.7 Running Gradle Tasks from the Command-line... 765
87.8 Summary... 766

Index.. 767

1

Chapter 1

1. Introduction
Fully updated for Android Studio Dolphin, this book aims to teach you how to develop Android-based
applications using the Java programming language.

This book begins with the basics and outlines the steps necessary to set up an Android development and testing
environment. An overview of Android Studio is included covering areas such as tool windows, the code editor,
and the Layout Editor tool. An introduction to the architecture of Android is followed by an in-depth look at the
design of Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle
management, Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This edition of the book also covers printing, transitions, and foldable device
support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio Dolphin and Android are also covered in detail including the Layout
Editor, the ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains,
barriers, and direct reply notifications.

Chapters also cover advanced features of Android Studio such as App Links, Dynamic Delivery, Gradle build
configuration, in-app billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/dolphinjava/index.php

The steps to load a project from the code samples into Android Studio are as follows:

1.  From the Welcome to Android Studio dialog, click on the Open button option.

2.  In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/dolpinjava/index.php
mailto:feedback%40ebookfrenzy.com?subject=

2

Introduction

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/dolphinjava.html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com. They are there to help you and will work to resolve any problems you may encounter.

https://www.ebookfrenzy.com/errata/dolphinjava.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK)
and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

•	 Windows 8/10/11 64-bit

•	 macOS 10.14 or later running on Intel or Apple silicon

•	 Chrome OS device with Intel i5 or higher

•	 Linux systems with version 2.31 or later of the GNU C Library (glibc)

•	 Minimum of 8GB of RAM (see below)

•	 Approximately 8GB of available disk space

•	 1280 x 800 minimum screen resolution

Although Android Studio will run on computers with 8GB of RAM, performance will be greatly improved on
systems containing more memory. This is particularly an issue if you plan to test your apps using the Android
Virtual Device emulator (AVD).

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Dolphin 2021.3.1
using the Android API 33 SDK (Tiramisu) which, at the time of writing, are the latest versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note
that there may be some minor differences between this book and the software. A web search for “Android
Studio Dolphin” should provide the option to download the older version if these differences become a problem.

https://developer.android.com/studio/index.html

4

Setting up an Android Studio Development Environment

Alternatively, visit the following web page to find Android Studio Dolphin 2021.3.1 in the archives:

https://developer.android.com/studio/archive

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1
To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

https://developer.android.com/studio/archive

5

Setting up an Android Studio Development Environment

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora-based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio setup wizard
If you are installing Android Studio for the first time the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the SDK Components Setup dialog (Figure 2-3). Within
this dialog, make sure that the Android SDK option is selected along with the latest API package before clicking
on the Next button:

6

Setting up an Android Studio Development Environment

Figure 2-3
After clicking Next, Android Studio will download and install the Android SDK and tools.

If you have previously installed an earlier version of Android Studio, the first time that this new version is
launched, a dialog may appear providing the option to import settings from a previous Android Studio version.
If you have settings from a previous version and would like to import them into the latest installation, select the
appropriate option and location. Alternatively, indicate that you do not need to import any previous settings and
click on the OK button to proceed.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

7

Setting up an Android Studio Development Environment

Figure 2-5
Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

8

Setting up an Android Studio Development Environment

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

•	 Android SDK Build-tools

•	 Android Emulator

•	 Android SDK Platform-tools

•	 Google Play Services

•	 Intel x86 Emulator Accelerator (HAXM installer)

•	 Google USB Driver (Windows only)

•	 Layout Inspector image server for API 31 and T

Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8
Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

9

Setting up an Android Studio Development Environment

2.6 Making the Android SDK tools command-line accessible
Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. For the operating system on which you are developing
to be able to find these tools, it will be necessary to add them to the system’s PATH environment variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):
<path_to_android_sdk_installation>/sdk/tools

<path_to_android_sdk_installation>/sdk/tools/bin

<path_to_android_sdk_installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-9:

Figure 2-9
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1.  On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2.  Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3.  In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit… button. Using the New button in the edit dialog, add three new entries to the path. For
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

C:\Users\demo\AppData\Local\Android\Sdk\tools

C:\Users\demo\AppData\Local\Android\Sdk\tools\bin

4.  Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that

10

Setting up an Android Studio Development Environment

the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

11

Setting up an Android Studio Development Environment

2.7 Android Studio memory management
Android Studio is a large and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-10
To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->
Preferences... on macOS) menu option and, in the resulting dialog, select the Memory Settings option listed
under System Settings in the left-hand navigation panel as illustrated in Figure 2-11 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

Figure 2-11

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

13

Chapter 3

3. Creating an Example Android App
in Android Studio
The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of an Android application project using Android Studio. Once the project
has been created, a later chapter will explore the use of the Android emulator environment to perform a test run
of the application.

3.1 About the Project
The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also make use of one of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project
The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
simply click on the New Project option to display the first screen of the New Project wizard.

14

Creating an Example Android App in Android Studio

3.3 Creating an Activity
The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the Phone and Tablet option from the
Templates panel followed by the option to create an Empty Activity. The Empty Activity option creates a template
user interface consisting of a single TextView object.

Figure 3-2
With the Empty Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:
com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for the purposes of testing, though this will need to be changed before an application can be
published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in
most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK

15

Creating an Example Android App in Android Studio

setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose button (highlighted in Figure 3-3) to see a full breakdown of the various Android versions still
in use:

Figure 3-3
Finally, change the Language menu to Java and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application
At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4
The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

16

Creating an Example Android App in Android Studio

Figure 3-5

3.6 Modifying the User Interface
The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. Once located in the Project tool window, double-click on
the file to load it into the user interface Layout Editor tool which will appear in the center panel of the Android
Studio main window:

Figure 3-6
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon. Use the night button ()
to turn Night mode on and off.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category

17

Creating an Example Android App in Android Studio

consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7
As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, also check that the Layout Editor’s Autoconnect mode is enabled. This means that as
components are added to the layout, the Layout Editor will automatically add constraints to make sure the
components are correctly positioned for different screen sizes and device orientations (a topic that will be
covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar
and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure
3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

Figure 3-9
Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

18

Creating an Example Android App in Android Studio

Figure 3-10
The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-11:

Figure 3-11
The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12

19

Creating an Example Android App in Android Studio

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-13. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-13
When clicked, a panel (Figure 3-14) will appear describing the nature of the problems and offering some possible
corrective measures:

Figure 3-14
Currently, the only warning listed reads as follows:
Hardcoded string "Convert", should use @string resource

This I18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-15).
Within this panel, change the resource name field to convert_string and leave the resource value set to Convert
before clicking on the OK button.

20

Creating an Example Android App in Android Studio

Figure 3-15
The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-16:

Figure 3-16
Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-17
Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-18:

21

Creating an Example Android App in Android Studio

Figure 3-18

3.7 Reviewing the Layout and Resource Files
Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly to make user interface changes and, in some instances, this may actually be quicker
than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are three buttons as
highlighted in Figure 3-19 below:

Figure 3-19
By default, the editor will be in Design mode whereby just the visual representation of the layout is displayed.
The left-most button will switch to Code mode to display the XML for the layout, while the middle button enters
Split mode where both the layout and XML are displayed, as shown in Figure 3-20:

22

Creating an Example Android App in Android Studio

Figure 3-20
As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although varying in complexity and content, all
user interface layouts are structured in this hierarchical, XML based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:background="#ff2438" >
.

.

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the color of the layout changes in real-time to match the new setting in the XML file. Note also that a
small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Clicking
on the red square will display a color chooser allowing a different color to be selected:

23

Creating an Example Android App in Android Studio

Figure 3-21
Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:
<resources>

 <string name="app_name">AndroidSample</string>

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights and then press
Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and
take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource
back to the original “Convert” text and to add the following additional entry for a string resource that will be
referenced later in the app code:
<resources>

.

.

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

 <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open editor menu option. This will display the
Translation Editor in the main panel of the Android Studio window:

24

Creating an Example Android App in Android Studio

Figure 3-22
This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.8 Adding Interaction
The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

Figure 3-23
Note that the text field for the onClick property is now highlighted with a red border to warn us that the button
has been configured to call a method which does not yet exist. To address this, double-click on the MainActivity.
java file in the Project tool window (app -> java -> <package name> -> MainActivity) to load it into the code
editor and add the code for the convertCurrency method to the class file so that it reads as follows, noting that it
is also necessary to import some additional Android packages:
package com.ebookfrenzy.androidsample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;
import android.widget.EditText;
import android.widget.TextView;
.

25

Creating an Example Android App in Android Studio

.

import java.util.Locale;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void convertCurrency(View view) {

 EditText dollarText = findViewById(R.id.dollarText);
 TextView textView = findViewById(R.id.textView);

 if (!dollarText.getText().toString().equals("")) {

 float dollarValue = Float.parseFloat(dollarText.getText().toString());
 float euroValue = dollarValue * 0.85F;
 textView.setText(String.format(Locale.ENGLISH,"%.2f", euroValue));
 } else {
 textView.setText(R.string.no_value_string);
 }
 }
}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewById, passing through the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value and if so, that value is extracted, converted from a String to a floating point
value and converted to euros. Finally, the result is displayed on the TextView widget. If any of this is unclear, rest
assured that these concepts will be covered in greater detail in later chapters.

3.9 Summary
While not excessively complex, a number of steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to make sure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly in the case of string values, and briefly touched on the topic of layouts.
Next we looked at the underlying XML that is used to store the user interface designs of Android applications.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

47

Chapter 6

6. A Tour of the Android Studio User
Interface
While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen
The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will bypass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1
In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening
and creating projects along with access to projects currently under version control. In addition, the Customize
screen provides options to change the theme and font settings used by both the IDE and the editor. Android
Studio plugins may be viewed, installed, and managed using the Plugins option.

48

A Tour of the Android Studio User Interface

Additional options are available by clicking on the menu button as shown in Figure 6-2:

Figure 6-2

6.2 The Main Window
When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-3.

Figure 6-3
The various elements of the main window can be summarized as follows:

A – Menu Bar – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick access
to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting
the Customize Menus and Toolbars… menu option. If the toolbar is not visible, it can be displayed using the View
-> Appearance -> Toolbar menu option.

C – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class. Select a method from the list to be taken to the corresponding location within the
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.

D – Editor Window – The editor window displays the content of the file on which the developer is currently

49

A Tour of the Android Studio User Interface

working. When multiple files are open, each file is represented by a tab located along the top edge of the editor
as shown in Figure 6-4:

Figure 6-4
E – Status Bar – The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will display a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in
several different ways. The default setting is the Android view which is the mode primarily used in the remainder
of this book.

The project tool window is just one of many tool windows available within the Android Studio environment.

6.3 The Tool Windows
In addition to the project view tool window, Android Studio also includes many other windows which, when
enabled, are displayed along the bottom and sides of the main window. The tool window quick access menu can
be displayed by hovering the mouse pointer over the button located in the far left-hand corner of the status bar
(Figure 6-5) without clicking the mouse button.

Figure 6-5
Selecting an item from the quick access menu will cause the corresponding tool window to appear within the

50

A Tour of the Android Studio User Interface

main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right, and bottom edges of the main window (as indicated by the arrows in
Figure 6-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 6-6
Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window toolbars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-7 shows the settings menu for the Project tool window. Options
are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android
Studio main window, and to move and resize the tool panel.

51

A Tour of the Android Studio User Interface

Figure 6-7
All of the windows also include a far-right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s toolbar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

•	 App Inspector - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

•	 Build - The build tool window displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

•	 Build Variants – The build variants tool window provides a quick way to configure different build targets
for the current application project (for example different builds for debugging and release versions of the
application, or multiple builds to target different device categories).

•	 Device File Explorer – Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator allowing the
filesystem to be browsed and files copied to the local filesystem.

•	 Device Manager - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

•	 Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

•	 Event Log – The event log window displays messages relating to events and activities performed within
Android Studio. The successful build of a project, for example, or the fact that an application is now running
will be reported within this tool window.

•	 Favorites – A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list
can be accessed through this Favorites tool window.

•	 Gradle – The Gradle tool window provides a view of the Gradle tasks that make up the project build

52

A Tour of the Android Studio User Interface

configuration. The window lists the tasks that are involved in compiling the various elements of the project
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater
detail later in this book.

•	 Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

•	 Logcat – The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

•	 Problems - A central location in which to view all of the current errors or warnings within the project.
Double-clicking on an item in the problem list will take you to the problem file and location.

•	 Profiler – The Android Profiler tool window provides real-time monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

•	 Project – The project view provides an overview of the file structure that makes up the project allowing for
quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be
loaded into the appropriate editing tool.

•	 Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout
files contained with the project.

•	 Run – The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing
to install and run on a device or emulator, this window will typically provide diagnostic information relating
to the problem.

•	 Structure – The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the source file in the editor window.

•	 Terminal – Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

•	 TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting
the File -> Settings… menu option (Android Studio -> Preferences… on macOS) and navigating to the TODO
page listed under Editor.

•	 Version Control - This tool window is used when the project files are under source code version control,
allowing access to Git repositories and code change history.

6.4 Android Studio Keyboard Shortcuts
Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option. You may also list and modify the
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS)
and clicking on the Keymap entry as shown in Figure 6-8 below:

53

A Tour of the Android Studio User Interface

Figure 6-8

6.5 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-9).

Figure 6-9
Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure
6-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the
mouse pointer can be used to select an option or the keyboard arrow keys used to scroll through the file name
and tool window options. Pressing the Enter key will select the currently highlighted item.

54

A Tour of the Android Studio User Interface

Figure 6-10

6.6 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option or via the File -> Settings… menu option (Android Studio -> Preferences… on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance & Behavior option followed by Appearance in the
left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes
available will depend on the platform but usually include options such as Light, IntelliJ, Windows, High Contrast,
and Darcula. Figure 6-11 shows an example of the main window with the Darcula theme selected:

Figure 6-11
To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

55

A Tour of the Android Studio User Interface

Figure 6-12

6.7 Summary
The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar or via the
optional tool window bars.

There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of
default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

65

Chapter 8

8. The Basics of the Android Studio
Code Editor
Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor
The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Java source code
file loaded:

Figure 8-1
The elements that comprise the editor window can be summarized as follows:

A – Document Tabs – Android Studio is capable of holding multiple files open for editing at any one time. As
each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top

66

The Basics of the Android Studio Code Editor

edge of the editor window. A small drop-down menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-
Right keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism
(accessible via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B – The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched
on by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu
option.

C – Code Structure Location - This bar at the top of the editor displays the current position of the cursor as
it relates to the overall structure of the code. In the following figure, for example, the bar indicates that the
convertCurrency method is currently being edited, and that this method is contained within the MainActivity
class.

Figure 8-2
Double-clicking an element within the bar will move the cursor to the corresponding location within the
code file. For example, double-clicking on the convertCurrency entry will move the cursor to the top of the
convertCurrency method within the source code. Similarly clicking on the MainActivity entry will drop down a
list of available code navigation points for selection:

Figure 8-3
D – The Editor Area – This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E – The Validation and Marker Sidebar – Android Studio incorporates a feature referred to as “on-the-fly code
analysis”. What this essentially means is that as you are typing code, the editor is analyzing the code to check for
warnings and syntax errors. The indicators at the top of the validation sidebar will update in real-time to indicate
the number of errors and warnings found as code is added. Clicking on this indicator will display a popup
containing a summary of the issues found with the code in the editor as illustrated in Figure 8-4:

67

The Basics of the Android Studio Code Editor

Figure 8-4
The up and down arrows may be used to move between the error locations within the code. A green check mark
indicates that no warnings or errors have been detected.

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup
containing a description of the issue:

Figure 8-5
Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area
of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-6)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-6
It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over
any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

F – The Status Bar – Though the status bar is actually part of the main window, as opposed to the editor, it does
contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line dialog.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window
By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into
multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 8-7, for example, shows the splitter in action with the editor

68

The Basics of the Android Studio Code Editor

split into three panels:

Figure 8-7
The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion
The Android Studio editor has a considerable amount of built-in knowledge of Java programming syntax and
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-8, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-8
If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the
keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

69

The Basics of the Android Studio Code Editor

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred to
as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-
Ctrl-Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings… menu option (or Android Studio -> Preferences… on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-9:

Figure 8-9

8.4 Statement Completion
Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:
myMethod()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:
myMethod() {

}

70

The Basics of the Android Studio Code Editor

8.5 Parameter Information
It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-10

8.6 Parameter Name Hints
The code editor may be configured to display parameter name hints within method calls. Figure 8-11, for
example, highlights the parameter name hints within the calls to the make() and setAction() methods of the
Snackbar class:

Figure 8-11
The settings for this mode may be configured by selecting the File -> Settings menu (Android Studio -> Preferences
on macOS) option followed by Editor -> Inlay Hints -> Java in the left-hand panel. On the resulting screen, select
the Parameter Hints item from the list and enable or disable the Show parameter hints option. To adjust the hint
settings, click on the Exclude list... link and make any necessary adjustments.

8.7 Code Generation
In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-12 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-12
For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio
generate a stub method for this, simply select the Override Methods… option from the code generation list and

71

The Basics of the Android Studio Code Editor

select the onStop() method from the resulting list of available methods:

Figure 8-13
Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Java source file as follows:
@Override

protected void onStop() {

 super.onStop();

}

8.8 Code Folding
Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-14, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-14
Clicking on either of these markers will fold the statement such that only the signature line is visible as shown

72

The Basics of the Android Studio Code Editor

in Figure 8-15:

Figure 8-15
To unfold a collapsed section of code, simply click on the ‘+’ marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{…}” indicator as shown in Figure 8-16. The editor will
then display the lens overlay containing the folded code block:

Figure 8-16
All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings… (Android Studio -> Preferences… on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-17):

Figure 8-17

8.9 Quick Documentation Lookup
Context sensitive Java and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will

73

The Basics of the Android Studio Code Editor

display a popup containing the relevant reference documentation for the item. Figure 8-18, for example, shows
the documentation for the Android FloatingActionButton class.

Figure 8-18
Once displayed, the documentation popup can be moved around the screen as needed.

8.10 Code Reformatting
In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a website), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display
the Reformat Code dialog (Figure 8-19) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire source file currently active in the
editor or only code that has changed as the result of a source code control update.

Figure 8-19
The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences… on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog,
for example, unfold the Code Style section, select Java and, from the Java settings, select the Arrangement tab.

8.11 Finding Sample Code
The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample
Code menu option. The Find Sample Code panel (Figure 8-20) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

74

The Basics of the Android Studio Code Editor

Figure 8-20

8.12 Live Templates
As you write Android code you will find that there are common constructs that are used frequently. For example,
a common requirement is to display a popup message to the user using the Android Toast class. Live templates
are a collection of common code constructs that can be entered into the editor by typing the initial characters
followed by a special key (set to the Tab key by default) to insert template code. To experience this in action, type
toast in the code editor followed by the Tab key and Android Studio will insert the following code at the cursor
position ready for editing:
Toast.makeText(, "", Toast.LENGTH_SHORT).show();

To list and edit existing templates, change the special key, or add your own templates, open the Preferences
dialog and select Live Templates from the Editor section of the left-hand navigation panel:

Figure 8-21
Add, remove, duplicate or reset templates using the buttons marked A in Figure 8-21 above. To modify a
template, select it from the list (B) and change the settings in the panel marked C.

8.13 Summary
The Android Studio editor goes to great length to reduce the amount of typing needed to write code and to
make that code easier to read and navigate. In this chapter we have covered a number of the key editor features
including code completion, code generation, editor window splitting, code folding, reformatting, documentation
lookup and live templates.

89

Chapter 12

12. Understanding Android
Application and Activity Lifecycles
In earlier chapters we have learned that Android applications run within processes and that they are comprised
of multiple components in the form of activities, services and broadcast receivers. The goal of this chapter is to
expand on this knowledge by looking at the lifecycle of applications and activities within the Android runtime
system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that both the operating system and the applications running on
it remain responsive to the user at all times. To achieve this, Android is given full control over the lifecycle and
state of both the processes in which the applications run, and the individual components that comprise those
applications.

An important factor in developing Android applications, therefore, is to gain an understanding of both the
application and activity lifecycle management models of Android, and the ways in which an application can
react to the state changes that are likely to be imposed upon it during its execution lifetime.

12.1 Android Applications and Resource Management
Each running Android application is viewed by the operating system as a separate process. If the system identifies
that resources on the device are reaching capacity it will take steps to terminate processes to free up memory.

When making a determination as to which process to terminate to free up memory, the system takes into
consideration both the priority and state of all currently running processes, combining these factors to create
what is referred to by Google as an importance hierarchy. Processes are then terminated starting with the lowest
priority and working up the hierarchy until sufficient resources have been liberated for the system to function.

12.2 Android Process States
Processes host applications and applications are made up of components. Within an Android system, the current
state of a process is defined by the highest-ranking active component within the application that it hosts. As
outlined in Figure 12-1, a process can be in one of the following five states at any given time:

90

Understanding Android Application and Activity Lifecycles

Figure 12-1
12.2.1 Foreground Process
These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active and these are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

•	 Hosts an activity with which the user is currently interacting.

•	 Hosts a Service connected to the activity with which the user is interacting.

•	 Hosts a Service that has indicated, via a call to startForeground(), that termination would be disruptive to the
user experience.

•	 Hosts a Service executing either its onCreate(), onResume() or onStart() callbacks.

•	 Hosts a Broadcast Receiver that is currently executing its onReceive() method.

12.2.2 Visible Process
A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

12.2.3 Service Process
Processes that contain a Service that has already been started and is currently executing.

12.2.4 Background Process
A process that contains one or more activities that are not currently visible to the user, and does not host a
Service that qualifies for Service Process status. Processes that fall into this category are at high risk of termination
if additional memory needs to be freed for higher priority processes. Android maintains a dynamic list of
background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

91

Understanding Android Application and Activity Lifecycles

12.2.5 Empty Process
Empty processes no longer contain any active applications and are held in memory ready to serve as hosts for
newly launched applications. This is somewhat analogous to keeping the doors open and the engine running on
a bus in anticipation of passengers arriving. Such processes are, obviously, considered the lowest priority and are
the first to be killed to free up resources.

12.3 Inter-Process Dependencies
The situation with regard to determining the highest priority process is slightly more complex than outlined in
the preceding section for the simple reason that processes can often be inter-dependent. As such, when making
a determination as to the priority of a process, the Android system will also take into consideration whether the
process is in some way serving another process of higher priority (for example, a service process acting as the
content provider for a foreground process). As a basic rule, the Android documentation states that a process can
never be ranked lower than another process that it is currently serving.

12.4 The Activity Lifecycle
As we have previously determined, the state of an Android process is determined largely by the status of the
activities and components that make up the application that it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

12.5 The Activity Stack
For each application that is running on an Android device, the runtime system maintains an Activity Stack.
When an application is launched, the first of the application’s activities to be started is placed onto the stack.
When a second activity is started, it is placed on the top of the stack and the previous activity is pushed down.
The activity at the top of the stack is referred to as the active (or running) activity. When the active activity exits,
it is popped off the stack by the runtime and the activity located immediately beneath it in the stack becomes
the current active activity. The activity at the top of the stack might, for example, simply exit because the task
for which it is responsible has been completed. Alternatively, the user may have selected a “Back” button on the
screen to return to the previous activity, causing the current activity to be popped off the stack by the runtime
system and therefore destroyed. A visual representation of the Android Activity Stack is illustrated in Figure
12-2.

As shown in the diagram, new activities are pushed on to the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity, or
popped off the stack when it exits or the user navigates to the previous activity. If resources become constrained,
the runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

92

Understanding Android Application and Activity Lifecycles

Figure 12-2

12.6 Activity States
An activity can be in one of a number of different states during the course of its execution within an application:

·	 Active / Running – The activity is at the top of the Activity Stack, is the foreground task visible on the
device screen, has focus and is currently interacting with the user. This is the least likely activity to be
terminated in the event of a resource shortage.

·	 Paused – The activity is visible to the user but does not currently have focus (typically because this activity
is partially obscured by the current active activity). Paused activities are held in memory, remain attached
to the window manager, retain all state information and can quickly be restored to active status when
moved to the top of the Activity Stack.

·	 Stopped – The activity is currently not visible to the user (in other words it is totally obscured on the
device display by other activities). As with paused activities, it retains all state and member information,
but is at higher risk of termination in low memory situations.

·	 Killed – The activity has been terminated by the runtime system in order to free up memory and is no
longer present on the Activity Stack. Such activities must be restarted if required by the application.

12.7 Configuration Changes
So far in this chapter, we have looked at two of the causes for the change in state of an Android activity, namely the
movement of an activity between the foreground and background, and termination of an activity by the runtime
system to free up memory. In fact, there is a third scenario in which the state of an activity can dramatically
change and this involves a change to the device configuration.

93

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape, or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of
the user interface and simply destroying and recreating impacted activities is the quickest way for an activity to
respond to the configuration change. It is, however, possible to configure an activity so that it is not restarted by
the system in response to specific configuration changes.

12.8 Handling State Change
If nothing else, it should be clear from this chapter that an application and, by definition, the components
contained therein will transition through many states during the course of its lifespan. Of particular importance
is the fact that these state changes (up to and including complete termination) are imposed upon the application
by the Android runtime subject to the actions of the user and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple,
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within in app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach, and one that is recommended by Google, involves the lifecycle classes included with the
Jetpack Android Architecture components, introduced in “Modern Android App Architecture with Jetpack” and
explained in more detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

12.9 Summary
Mobile devices are typically considered to be resource constrained, particularly in terms of on-board memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, is made up of components in
the form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities to free up
memory. Process state is taken into consideration by the runtime system when deciding whether a process is a
suitable candidate for termination. The state of a process is largely dependent upon the status of the activities
hosted by that process.

The key message of this chapter is that an application moves through a variety of states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes and
activities that are not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

95

Chapter 13

13. Handling Android Activity State
Changes
Based on the information outlined in the chapter entitled “Understanding Android Application and Activity
Lifecycles” it is now evident that the activities and fragments that make up an application pass through a variety
of different states during the course of the application’s lifespan. The change from one state to the other is
imposed by the Android runtime system and is, therefore, largely beyond the control of the activity itself. That
does not, however, mean that the app cannot react to those changes and take appropriate actions.

The primary objective of this chapter is to provide a high-level overview of the ways in which an activity may
be notified of a state change and to outline the areas where it is advisable to save or restore state information.
Having covered this information, the chapter will then touch briefly on the subject of activity lifetimes.

13.1 New vs. Old Lifecycle Techniques
Up until recently, there was a standard way to build lifecycle awareness into an app. This is the approach covered
in this chapter and involves implementing a set of methods (one for each lifecycle state) within an activity or
fragment instance that get called by the operating system when the lifecycle status of that object changes. This
approach has remained unchanged since the early years of the Android operating system and, while still a viable
option today, it does have some limitations which will be explained later in this chapter.

With the introduction of the lifecycle classes with the Jetpack Android Architecture Components, a better
approach to lifecycle handling is now available. This modern approach to lifecycle management (together
with the Jetpack components and architecture guidelines) will be covered in detail in later chapters. It is still
important, however, to understand the traditional lifecycle methods for a couple of reasons. First, as an Android
developer you will not be completely insulated from the traditional lifecycle methods and will still make use
of some of them. More importantly, understanding the older way of handling lifecycles will provide a good
knowledge foundation on which to begin learning the new approach later in the book.

13.2 The Activity and Fragment Classes
With few exceptions, activities and fragments in an application are created as subclasses of the Android
AppCompatActivity class and Fragment classes respectively.

Consider, for example, the AndroidSample project created in “Creating an Example Android App in Android
Studio” and subsequently converted to use view binding. Load this project into the Android Studio environment
and locate the MainActivity.java file (located in app -> java -> com -> <your domain> -> androidsample). Having
located the file, double-click on it to load it into the editor where it should read as follows:
package com.example.androidsample;

import androidx.appcompat.app.AppCompatActivity;

import android.view.View;

import android.os.Bundle;

import java.util.Locale;

96

Handling Android Activity State Changes

import com.example.androidsample.databinding.ActivityMainBinding;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 }

 public void convertCurrency(View view) {

 if (!binding.dollarText.getText().toString().equals("")) {

 float dollarValue = Float.parseFloat(

 binding.dollarText.getText().toString());

 float euroValue = dollarValue * 0.85F;

 binding.textView.setText(

 String.format(Locale.ENGLISH,"%f", euroValue));

 } else {

 binding.textView.setText(R.string.no_value_string);

 }

 }

}

When the project was created, we instructed Android Studio also to create an initial activity named
MainActivity.java As is evident from the above code, the MainActivity class is a subclass of the AppCompatActivity
class.

A review of the reference documentation for the AppCompatActivity class would reveal that it is itself a subclass
of the Activity class. This can be verified within the Android Studio editor using the Hierarchy tool window.
With the MainActivity.java file loaded into the editor, click on AppCompatActivity in the class declaration line
and press the Ctrl-H keyboard shortcut. The hierarchy tool window will subsequently appear displaying the class
hierarchy for the selected class. As illustrated in Figure 13-1, AppCompatActivity is clearly subclassed from the
FragmentActivity class which is itself ultimately a subclass of the Activity class:

97

Handling Android Activity State Changes

Figure 13-1
The Activity and Fragment classes contain a range of methods that are intended to be called by the Android
runtime to notify the object when its state is changing. For the purposes of this chapter, we will refer to these as
the lifecycle methods. An activity or fragment class simply needs to override these methods and implement the
necessary functionality within them to react accordingly to state changes.

One such method is named onCreate() and, turning once again to the above code fragment, we can see that this
method has already been overridden and implemented for us in the MainActivity class. In a later section we will
explore in detail both onCreate() and the other relevant lifecycle methods of the Activity and Fragment classes.

13.3 Dynamic State vs. Persistent State
A key objective of lifecycle management is ensuring that the state of the activity is saved and restored at
appropriate times. When talking about state in this context we mean the data that is currently being held within
the activity and the appearance of the user interface. The activity might, for example, maintain a data model in
memory that needs to be saved to a database, content provider or file. Such state information, because it persists
from one invocation of the application to another, is referred to as the persistent state.

The appearance of the user interface (such as text entered into a text field but not yet committed to the
application’s internal data model) is referred to as the dynamic state, since it is typically only retained during a
single invocation of the application (and also referred to as user interface state or instance state).

Understanding the differences between these two states is important because both the ways they are saved, and
the reasons for doing so, differ.

The purpose of saving the persistent state is to avoid the loss of data that may result from an activity being killed
by the runtime system while in the background. The dynamic state, on the other hand, is saved and restored for
reasons that are slightly more complex.

Consider, for example, that an application contains an activity (which we will refer to as Activity A) containing
a text field and some radio buttons. During the course of using the application, the user enters some text into
the text field and makes a selection from the radio buttons. Before performing an action to save these changes,
however, the user then switches to another activity causing Activity A to be pushed down the Activity Stack
and placed into the background. After some time, the runtime system ascertains that memory is low and
consequently kills Activity A to free up resources. As far as the user is concerned, however, Activity A was simply
placed into the background and is ready to be moved to the foreground at any time. On returning Activity A to
the foreground the user would, quite reasonably, expect the entered text and radio button selections to have been
retained. In this scenario, however, a new instance of Activity A will have been created and, if the dynamic state
was not saved and restored, the previous user input lost.

The main purpose of saving dynamic state, therefore, is to give the perception of seamless switching between
foreground and background activities, regardless of the fact that activities may actually have been killed and
restarted without the user’s knowledge.

98

Handling Android Activity State Changes

The mechanisms for saving persistent and dynamic state will become clearer in the following sections of this
chapter.

13.4 The Android Lifecycle Methods
As previously explained, the Activity and Fragment classes contain a number of lifecycle methods which act as
event handlers when the state of an instance changes. The primary methods supported by the Android Activity
and Fragment class are as follows:

•	 onCreate(Bundle savedInstanceState) – The method that is called when the activity is first created and the
ideal location for most initialization tasks to be performed. The method is passed an argument in the form of a
Bundle object that may contain dynamic state information (typically relating to the state of the user interface)
from a prior invocation of the activity.

•	 onRestart() – Called when the activity is about to restart after having previously been stopped by the runtime
system.

•	 onStart() – Always called immediately after the call to the onCreate() or onRestart() methods, this method
indicates to the activity that it is about to become visible to the user. This call will be followed by a call to
onResume() if the activity moves to the top of the activity stack, or onStop() in the event that it is pushed down
the stack by another activity.

•	 onResume() – Indicates that the activity is now at the top of the activity stack and is the activity with which
the user is currently interacting.

•	 onPause() – Indicates that a previous activity is about to become the foreground activity. This call will be
followed by a call to either the onResume() or onStop() method depending on whether the activity moves back
to the foreground or becomes invisible to the user. Steps may be taken within this method to store persistent
state information not yet saved by the app. To avoid delays in switching between activities, time consuming
operations such as storing data to a database or performing network operations should be avoided within this
method. This method should also ensure that any CPU intensive tasks such as animation are stopped.

•	 onStop() – The activity is now no longer visible to the user. The two possible scenarios that may follow this
call are a call to onRestart() in the event that the activity moves to the foreground again, or onDestroy() if the
activity is being terminated.

•	 onDestroy() – The activity is about to be destroyed, either voluntarily because the activity has completed its
tasks and has called the finish() method or because the runtime is terminating it either to release memory or
due to a configuration change (such as the orientation of the device changing). It is important to note that a
call will not always be made to onDestroy() when an activity is terminated.

•	 onConfigurationChanged() – Called when a configuration change occurs for which the activity has indicated
it is not to be restarted. The method is passed a Configuration object outlining the new device configuration
and it is then the responsibility of the activity to react to the change.

The following lifecycle methods only apply to the Fragment class:

•	 onAttach() - Called when the fragment is assigned to an activity.

•	 onCreateView() - Called to create and return the fragment’s user interface layout view hierarchy.

•	 onViewCreated() - Called after onCreateView() returns.

•	 onViewStatusRestored() - The fragment’s saved view hierarchy has been restored.

In addition to the lifecycle methods outlined above, there are two methods intended specifically for saving and

99

Handling Android Activity State Changes

restoring the dynamic state of an activity:

•	 onRestoreInstanceState(Bundle savedInstanceState) – This method is called immediately after a call to
the onStart() method in the event that the activity is restarting from a previous invocation in which state
was saved. As with onCreate(), this method is passed a Bundle object containing the previous state data.
This method is typically used in situations where it makes more sense to restore a previous state after the
initialization of the activity has been performed in onCreate() and onStart().

•	 onSaveInstanceState(Bundle outState) – Called before an activity is destroyed so that the current dynamic
state (usually relating to the user interface) can be saved. The method is passed the Bundle object into which the
state should be saved and which is subsequently passed through to the onCreate() and onRestoreInstanceState()
methods when the activity is restarted. Note that this method is only called in situations where the runtime
ascertains that dynamic state needs to be saved.

When overriding the above methods, it is important to remember that, with the exception of
onRestoreInstanceState() and onSaveInstanceState(), the method implementation must include a call to the
corresponding method in the super class. For example, the following method overrides the onRestart() method
but also includes a call to the super class instance of the method:
protected void onRestart() {

 super.onRestart();

 Log.i(TAG, "onRestart");

}

Failure to make this super class call in method overrides will result in the runtime throwing an exception during
execution. While calls to the super class in the onRestoreInstanceState() and onSaveInstanceState() methods are
optional (they can, for example, be omitted when implementing custom save and restoration behavior) there are
considerable benefits to using them, a subject that will be covered in the chapter entitled “Saving and Restoring
the State of an Android Activity”.

13.5 Lifetimes
The final topic to be covered involves an outline of the entire, visible and foreground lifetimes through which an
activity or fragment will transition during execution:

•	 Entire Lifetime –The term “entire lifetime” is used to describe everything that takes place between the initial
call to the onCreate() method and the call to onDestroy() prior to the object terminating.

•	 Visible Lifetime – Covers the periods of execution between the call to onStart() and onStop(). During this
period the activity or fragment is visible to the user though may not be the object with which the user is
currently interacting.

•	 Foreground Lifetime – Refers to the periods of execution between calls to the onResume() and onPause()
methods.

It is important to note that an activity or fragment may pass through the foreground and visible lifetimes multiple
times during the course of the entire lifetime.

The concepts of lifetimes and lifecycle methods are illustrated in Figure 13-2:

100

Handling Android Activity State Changes

Figure 13-2

13.6 Foldable Devices and Multi-Resume
As discussed previously, an activity is considered to be in the resumed state when it has moved to the foreground
and is the activity with which the user is currently interacting. On standard devices an app can have one activity
in the resumed state at any one time and all other activities are likely to be in the paused or stopped state.

For some time now, Android has included multi-window support, allowing multiple activities to appear
simultaneously in either split-screen or freeform configurations. Although originally used primarily on large
screen tablet devices, this feature is likely to become more popular with the introduction of foldable devices.

On devices running Android 10 and on which multi-window support is enabled (as will be the case for most
foldables), it will be possible for multiple app activities to be in the resumed state at the same time (a concept
referred to as multi-resume) allowing those visible activities to continue functioning (for example streaming
content or updating visual data) even when another activity currently has focus. Although multiple activities can
be in the resumed state, only one of these activities will be considered to the topmost resumed activity (in other
words, the activity with which the user most recently interacted).

An activity can receive notification that it has gained or lost the topmost resumed status by implementing the
onTopResumedActivityChanged() callback method.

13.7 Disabling Configuration Change Restarts
As previously outlined, an activity may indicate that it is not to be restarted in the event of certain configuration
changes. This is achieved by adding an android:configChanges directive to the activity element within the project
manifest file. The following manifest file excerpt, for example, indicates that the activity should not be restarted
in the event of configuration changes relating to orientation or device-wide font size:
<activity android:name=".MainActivity"

 android:configChanges="orientation|fontScale"
 android:label="@string/app_name">

13.8 Lifecycle Method Limitations
As discussed at the start of this chapter, lifecycle methods have been in use for many years and, until recently,
were the only mechanism available for handling lifecycle state changes for activities and fragments. There are,
however, shortcomings to this approach.

101

Handling Android Activity State Changes

One issue with the lifecycle methods is that they do not provide an easy way for an activity or fragment to find
out its current lifecycle state at any given point during app execution. Instead the object would need to track the
state internally, or wait for the next lifecycle method call.

Also, the methods do not provide a simple way for one object to observe the lifecycle state changes of other
objects within an app. This is a serious consideration since many other objects within an app can potentially be
impacted by a lifecycle state change in a given activity or fragment.

The lifecycle methods are also only available on subclasses of the Fragment and Activity classes. It is not possible,
therefore, to build custom classes that are truly lifecycle aware.

Finally, the lifecycle methods result in most of the lifecycle handling code being written within the activity
or fragment which can lead to complex and error prone code. Ideally, much of this code should reside in the
other classes that are impacted by the state change. An app that streams video, for example, might include a
class designed specifically to manage the incoming stream. If the app needs to pause the stream when the main
activity is stopped, the code to do so should reside in the streaming class, not the main activity.

All of these problems and more are resolved by using lifecycle-aware components, a topic which will be covered
starting with the chapter entitled “Modern Android App Architecture with Jetpack”.

13.9 Summary
All activities are derived from the Android Activity class which, in turn, contains a number of lifecycle methods
that are designed to be called by the runtime system when the state of an activity changes. Similarly, the Fragment
class contains a number of comparable methods. By overriding these methods, activities and fragments can
respond to state changes and, where necessary, take steps to save and restore the current state of both the activity
and the application. Lifecycle state can be thought of as taking two forms. The persistent state refers to data that
needs to be stored between application invocations (for example to a file or database). Dynamic state, on the
other hand, relates instead to the current appearance of the user interface.

Although lifecycle methods have a number of limitations that can be avoided by making use of lifecycle-aware
components, an understanding of these methods is important to fully understand the new approaches to lifecycle
management covered later in this book.

In this chapter, we have highlighted the lifecycle methods available to activities and covered the concept of
activity lifetimes. In the next chapter, entitled “Android Activity State Changes by Example”, we will implement
an example application that puts much of this theory into practice.

117

Chapter 16

16. Understanding Android Views,
View Groups and Layouts
With the possible exception of listening to streaming audio, a user’s interaction with an Android device is primarily
visual and tactile in nature. All of this interaction takes place through the user interfaces of the applications
installed on the device, including both the built-in applications and any third party applications installed by the
user. It should come as no surprise, therefore, that a key element of developing Android applications involves the
design and creation of user interfaces.

Within this chapter, the topic of Android user interface structure will be covered, together with an overview of
the different elements that can be brought together to make up a user interface; namely Views, View Groups
and Layouts.

16.1 Designing for Different Android Devices
The term “Android device” covers a vast array of tablet and smartphone products with different screen sizes and
resolutions. As a result, application user interfaces must now be carefully designed to ensure correct presentation
on as wide a range of display sizes as possible. A key part of this is ensuring that the user interface layouts resize
correctly when run on different devices. This can largely be achieved through careful planning and the use of the
layout managers outlined in this chapter.

It is also important to keep in mind that the majority of Android based smartphones and tablets can be held
by the user in both portrait and landscape orientations. A well-designed user interface should be able to adapt
to such changes and make sensible layout adjustments to utilize the available screen space in each orientation.

16.2 Views and View Groups
Every item in a user interface is a subclass of the Android View class (to be precise android.view.View). The
Android SDK provides a set of pre-built views that can be used to construct a user interface. Typical examples
include standard items such as the Button, CheckBox, ProgressBar and TextView classes. Such views are also
referred to as widgets or components. For requirements that are not met by the widgets supplied with the SDK,
new views may be created either by subclassing and extending an existing class, or creating an entirely new
component by building directly on top of the View class.

A view can also be comprised of multiple other views (otherwise known as a composite view). Such views are
subclassed from the Android ViewGroup class (android.view.ViewGroup) which is itself a subclass of View. An
example of such a view is the RadioGroup, which is intended to contain multiple RadioButton objects such that
only one can be in the “on” position at any one time. In terms of structure, composite views consist of a single
parent view (derived from the ViewGroup class and otherwise known as a container view or root element) that is
capable of containing other views (known as child views).

Another category of ViewGroup based container view is that of the layout manager.

16.3 Android Layout Managers
In addition to the widget style views discussed in the previous section, the SDK also includes a set of views
referred to as layouts. Layouts are container views (and, therefore, subclassed from ViewGroup) designed for the

118

Understanding Android Views, View Groups and Layouts

sole purpose of controlling how child views are positioned on the screen.

The Android SDK includes the following layout views that may be used within an Android user interface design:

•	 ConstraintLayout – Introduced in Android 7, use of this layout manager is recommended for most layout
requirements. ConstraintLayout allows the positioning and behavior of the views in a layout to be defined
by simple constraint settings assigned to each child view. The flexibility of this layout allows complex layouts
to be quickly and easily created without the necessity to nest other layout types inside each other, resulting
in improved layout performance. ConstraintLayout is also tightly integrated into the Android Studio Layout
Editor tool. Unless otherwise stated, this is the layout of choice for the majority of examples in this book.

•	 LinearLayout – Positions child views in a single row or column depending on the orientation selected. A
weight value can be set on each child to specify how much of the layout space that child should occupy relative
to other children.

•	 TableLayout – Arranges child views into a grid format of rows and columns. Each row within a table is
represented by a TableRow object child, which, in turn, contains a view object for each cell.

•	 FrameLayout – The purpose of the FrameLayout is to allocate an area of screen, typically for the purposes of
displaying a single view. If multiple child views are added they will, by default, appear on top of each other
positioned in the top left-hand corner of the layout area. Alternate positioning of individual child views can be
achieved by setting gravity values on each child. For example, setting a center_vertical gravity value on a child
will cause it to be positioned in the vertical center of the containing FrameLayout view.

•	 RelativeLayout – The RelativeLayout allows child views to be positioned relative both to each other and the
containing layout view through the specification of alignments and margins on child views. For example,
child View A may be configured to be positioned in the vertical and horizontal center of the containing
RelativeLayout view. View B, on the other hand, might also be configured to be centered horizontally within
the layout view, but positioned 30 pixels above the top edge of View A, thereby making the vertical position
relative to that of View A. The RelativeLayout manager can be of particular use when designing a user interface
that must work on a variety of screen sizes and orientations.

•	 AbsoluteLayout – Allows child views to be positioned at specific X and Y coordinates within the containing
layout view. Use of this layout is discouraged since it lacks the flexibility to respond to changes in screen size
and orientation.

•	 GridLayout – A GridLayout instance is divided by invisible lines that form a grid containing rows and
columns of cells. Child views are then placed in cells and may be configured to cover multiple cells both
horizontally and vertically allowing a wide range of layout options to be quickly and easily implemented. Gaps
between components in a GridLayout may be implemented by placing a special type of view called a Space
view into adjacent cells, or by setting margin parameters.

•	 CoordinatorLayout – Introduced as part of the Android Design Support Library with Android 5.0, the
CoordinatorLayout is designed specifically for coordinating the appearance and behavior of the app bar
across the top of an application screen with other view elements. When creating a new activity using the
Basic Activity template, the parent view in the main layout will be implemented using a CoordinatorLayout
instance. This layout manager will be covered in greater detail starting with the chapter entitled “Working with
the Floating Action Button and Snackbar”.

When considering the use of layouts in the user interface for an Android application it is worth keeping in mind
that, as will be outlined in the next section, these can be nested within each other to create a user interface design
of just about any necessary level of complexity.

119

Understanding Android Views, View Groups and Layouts

16.4 The View Hierarchy
Each view in a user interface represents a rectangular area of the display. A view is responsible for what is drawn
in that rectangle and for responding to events that occur within that part of the screen (such as a touch event).

A user interface screen is comprised of a view hierarchy with a root view positioned at the top of the tree and
child views positioned on branches below. The child of a container view appears on top of its parent view and
is constrained to appear within the bounds of the parent view’s display area. Consider, for example, the user
interface illustrated in Figure 16-1:

Figure 16-1
In addition to the visible button and checkbox views, the user interface actually includes a number of layout views
that control how the visible views are positioned. Figure 16-2 shows an alternative view of the user interface, this
time highlighting the presence of the layout views in relation to the child views:

Figure 16-2

120

Understanding Android Views, View Groups and Layouts

As was previously discussed, user interfaces are constructed in the form of a view hierarchy with a root view at
the top. This being the case, we can also visualize the above user interface example in the form of the view tree
illustrated in Figure 16-3:

Figure 16-3
The view hierarchy diagram gives probably the clearest overview of the relationship between the various views
that make up the user interface shown in Figure 16-1. When a user interface is displayed to the user, the Android
runtime walks the view hierarchy, starting at the root view and working down the tree as it renders each view.

16.5 Creating User Interfaces
With a clearer understanding of the concepts of views, layouts and the view hierarchy, the following few chapters
will focus on the steps involved in creating user interfaces for Android activities. In fact, there are three different
approaches to user interface design: using the Android Studio Layout Editor tool, handwriting XML layout
resource files or writing Java code, each of which will be covered.

16.6 Summary
Each element within a user interface screen of an Android application is a view that is ultimately subclassed from
the android.view.View class. Each view represents a rectangular area of the device display and is responsible both
for what appears in that rectangle and for handling events that take place within the view’s bounds. Multiple
views may be combined to create a single composite view. The views within a composite view are children of a
container view which is generally a subclass of android.view.ViewGroup (which is itself a subclass of android.
view.View). A user interface is comprised of views constructed in the form of a view hierarchy.

The Android SDK includes a range of pre-built views that can be used to create a user interface. These include
basic components such as text fields and buttons, in addition to a range of layout managers that can be used
to control the positioning of child views. If the supplied views do not meet a specific requirement, custom
views may be created, either by extending or combining existing views, or by subclassing android.view.View and
creating an entirely new class of view.

User interfaces may be created using the Android Studio Layout Editor tool, handwriting XML layout resource
files or by writing Java code. Each of these approaches will be covered in the chapters that follow.

121

Chapter 17

17. A Guide to the Android Studio
Layout Editor Tool
It is difficult to think of an Android application concept that does not require some form of user interface. Most
Android devices come equipped with a touch screen and keyboard (either virtual or physical) and taps and
swipes are the primary form of interaction between the user and application. Invariably these interactions take
place through the application’s user interface.

A well designed and implemented user interface, an important factor in creating a successful and popular
Android application, can vary from simple to extremely complex, depending on the design requirements of the
individual application. Regardless of the level of complexity, the Android Studio Layout Editor tool significantly
simplifies the task of designing and implementing Android user interfaces.

17.1 Basic vs. Empty Activity Templates
As outlined in the chapter entitled “The Anatomy of an Android Application”, Android applications are made up
of one or more activities. An activity is a standalone module of application functionality that usually correlates
directly to a single user interface screen. As such, when working with the Android Studio Layout Editor we are
invariably working on the layout for an activity.

When creating a new Android Studio project, a number of different templates are available to be used as the
starting point for the user interface of the main activity. The most basic of these templates are the Basic Activity
and Empty Activity templates. Although these seem similar at first glance, there are actually considerable
differences between the two options. To see these differences within the layout editor, use the View Options
menu to enable Show System UI as shown in Figure 17-1 below:

Figure 17-1
The Empty Activity template creates a single layout file consisting of a ConstraintLayout manager instance
containing a TextView object as shown in Figure 17-2:

122

A Guide to the Android Studio Layout Editor Tool

Figure 17-2
The Basic Activity, on the other hand, consists of multiple layout files. The top level layout file has a
CoordinatorLayout as the root view, a configurable app bar (which contains a tool bar) that appears across the
top of the device screen (marked A in Figure 17-3) and a floating action button (the email button marked B).
In addition to these items, the activity_main.xml layout file contains a reference to a second file named content_
main.xml containing the content layout (marked C):

Figure 17-3
The Basic Activity contains layouts for two screens, both containing a button and a text view. The purpose of
this template is to demonstrate how to implement navigation between multiple screens within an app. If an
unmodified app using the Basic Activity template were to be run, the first of these two screens would appear
(marked A in Figure 17-4). Pressing the Next button, would navigate to the second screen (B) which, in turn,
contains a button to return to the first screen:

123

A Guide to the Android Studio Layout Editor Tool

Figure 17-4
This app behavior makes use of two Android features referred to as fragments and navigation, both of which will
be covered starting with the chapters entitled “An Introduction to Android Fragments” and “An Overview of the
Navigation Architecture Component” respectively.

The content_main.xml file contains a special fragment known as a Navigation Host Fragment which allows
different content to be switched in and out of view depending on the settings configured in the res -> layout
-> nav_graph.xml file. In the case of the Basic Activity template, the nav_graph.xml file is configured to switch
between the user interface layouts defined in the fragment_first.xml and fragment_second.xml files based on the
Next and Previous button selections made by the user.

Clearly the Empty Activity template is useful if you need neither a floating action button nor a menu in your
activity and do not need the special app bar behavior provided by the CoordinatorLayout such as options
to make the app bar and toolbar collapse from view during certain scrolling operations (a topic covered in
the chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”). The Basic Activity is useful,
however, in that it provides these elements by default. In fact, it is often quicker to create a new activity using the
Basic Activity template and delete the elements you do not require than to use the Empty Activity template and
manually implement behavior such as collapsing toolbars, a menu or floating action button.

Since not all of the examples in this book require the features of the Basic Activity template, however, most of
the examples in this chapter will use the Empty Activity template unless the example requires one or other of the
features provided by the Basic Activity template.

For future reference, if you need a menu but not a floating action button, use the Basic Activity and follow these
steps to delete the floating action button:

1.  Double-click on the main activity_main.xml layout file located in the Project tool window under app ->
res -> layout to load it into the Layout Editor. With the layout loaded into the Layout Editor tool, select the
floating action button and tap the keyboard Delete key to remove the object from the layout.

2.  Locate and edit the Java code for the activity (located under app -> java -> <package name> -> <activity
class name> and remove the floating action button code from the onCreate method as follows:

@Override

124

A Guide to the Android Studio Layout Editor Tool

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 setContentView(binding.getRoot());

 setSupportActionBar(binding.toolbar);

 NavController navController = Navigation.findNavController(this, R.id.nav_
host_fragment_content_main);

 appBarConfiguration = new AppBarConfiguration.Builder(navController.
getGraph()).build();

 NavigationUI.setupActionBarWithNavController(this, navController,
appBarConfiguration);

 binding.fab.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_
LONG)

 .setAction("Action", null).show();

 }

 });

}

If you need a floating action button but no menu, use the Basic Activity template and follow these steps:

1.  Edit the activity class file and delete the onCreateOptionsMenu and onOptionsItemSelected methods.

2.  Select the res -> menu item in the Project tool window and tap the keyboard Delete key to remove the folder
and corresponding menu resource files from the project.

If you need to use the Basic Activity template but need neither the navigation features nor the second content
fragment, follow these steps:

1.  Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

2.  Within the editor, select the SecondFragment entry in the graph panel and tap the keyboard delete key to
remove it from the graph.

3.  Locate and delete the SecondFragment.java (app -> java -> <package name> -> SecondFragment) and
fragment_second.xml (app -> res -> layout -> fragment_second.xml) files.

4.  The final task is to remove some code from the FirstFragment class so that the Button view no longer
navigates to the now non-existent second fragment when clicked. Locate the FirstFragment.java file, double
click on it to load it into the editor and remove the code from the onViewCreated() method so that it reads
as follows:

public void onViewCreated(@NonNull View view, Bundle savedInstanceState) {

 super.onViewCreated(view, savedInstanceState);

125

A Guide to the Android Studio Layout Editor Tool

 binding.buttonFirst.setOnClickListener(new View.OnClickListener() {

 @Override

 public void onClick(View view) {

 NavHostFragment.findNavController(FirstFragment.this)

 .navigate(R.id.action_FirstFragment_to_SecondFragment);

 }

 });

}

17.2 The Android Studio Layout Editor
As has been demonstrated in previous chapters, the Layout Editor tool provides a “what you see is what you
get” (WYSIWYG) environment in which views can be selected from a palette and then placed onto a canvas
representing the display of an Android device. Once a view has been placed on the canvas, it can be moved,
deleted and resized (subject to the constraints of the parent view). Further, a wide variety of properties relating
to the selected view may be modified using the Attributes tool window.

Under the surface, the Layout Editor tool actually constructs an XML resource file containing the definition
of the user interface that is being designed. As such, the Layout Editor tool operates in three distinct modes
referred to as Design, Code and Split modes.

17.3 Design Mode
In design mode, the user interface can be visually manipulated by directly working with the view palette and the
graphical representation of the layout. Figure 17-5 highlights the key areas of the Android Studio Layout Editor
tool in design mode:

Figure 17-5
A – Palette – The palette provides access to the range of view components provided by the Android SDK. These

126

A Guide to the Android Studio Layout Editor Tool

are grouped into categories for easy navigation. Items may be added to the layout by dragging a view component
from the palette and dropping it at the desired position on the layout.

B – Device Screen – The device screen provides a visual “what you see is what you get” representation of the
user interface layout as it is being designed. This layout allows for direct manipulation of the design in terms of
allowing views to be selected, deleted, moved and resized. The device model represented by the layout can be
changed at any time using a menu located in the toolbar.

C – Component Tree – As outlined in the previous chapter (“Understanding Android Views, View Groups and
Layouts”) user interfaces are constructed using a hierarchical structure. The component tree provides a visual
overview of the hierarchy of the user interface design. Selecting an element from the component tree will cause
the corresponding view in the layout to be selected. Similarly, selecting a view from the device screen layout will
select that view in the component tree hierarchy.

D – Attributes – All of the component views listed in the palette have associated with them a set of attributes
that can be used to adjust the behavior and appearance of that view. The Layout Editor’s attributes panel provides
access to the attributes of the currently selected view in the layout allowing changes to be made.

E – Toolbar – The Layout Editor toolbar provides quick access to a wide range of options including, amongst
other options, the ability to zoom in and out of the device screen layout, change the device model currently
displayed, rotate the layout between portrait and landscape and switch to a different Android SDK API level.
The toolbar also has a set of context sensitive buttons which will appear when relevant view types are selected
in the device screen layout.

F – Mode Switching Controls – These three buttons provide a way to switch back and forth between the Layout
Editor tool’s Design, Code and Split modes.

G - Zoom and Pan Controls - This control panel allows you to zoom in and out of the design canvas and to grab
the canvas and pan around to find areas that are obscured when zoomed in.

17.4 The Palette
The Layout Editor palette is organized into two panels designed to make it easy to locate and preview view
components for addition to a layout design. The category panel (marked A in Figure 17-6) lists the different
categories of view components supported by the Android SDK. When a category is selected from the list, the
second panel (B) updates to display a list of the components that fall into that category:

Figure 17-6

127

A Guide to the Android Studio Layout Editor Tool

To add a component from the palette onto the layout canvas, simply select the item either from the component
list or the preview panel, drag it to the desired location on the canvas and drop it into place.

A search for a specific component within the currently selected category may be initiated by clicking on the
search button (marked C in Figure 17-6 above) in the palette toolbar and typing in the component name. As
characters are typed, matching results will appear in real-time within the component list panel. If you are unsure
of the category in which the component resides, simply select the All category either before or during the search
operation.

17.5 Design Mode and Layout Views
By default, the layout editor will appear in Design mode as is the case in Figure 17-5 above. This mode provides a
visual representation of the user interface. Design mode can be selected at any time by clicking on the rightmost
mode switching control has shown in Figure 17-7:

Figure 17-7
When the Layout Editor tool is in Design mode, the layout can be viewed in two different ways. The view shown
in Figure 17-5 above is the Design view and shows the layout and widgets as they will appear in the running
app. A second mode, referred to as the Blueprint view can be shown either instead of, or concurrently with the
Design view. The toolbar menu shown in Figure 17-8 provides options to display the Design, Blueprint, or both
views. Settings are also available to adjust for color blindness. A fifth option, Force Refresh Layout, causes the
layout to rebuild and redraw. This can be useful when the layout enters an unexpected state or is not accurately
reflecting the current design settings:

Figure 17-8
Whether to display the layout view, design view or both is a matter of personal preference. A good approach is
to begin with both displayed as shown in Figure 17-9:

128

A Guide to the Android Studio Layout Editor Tool

Figure 17-9

17.6 Night Mode
To view the layout in night mode during the design work, select the menu shown in Figure 17-10 below and
change the setting to Night:

Figure 17-10

17.7 Code Mode
It is important to keep in mind when using the Android Studio Layout Editor tool that all it is really doing is
providing a user friendly approach to creating XML layout resource files. At any time during the design process,
the underlying XML can be viewed and directly edited simply by clicking on the Code button located in the top
right-hand corner of the Layout Editor tool panel as shown in Figure 17-11:

Figure 17-11
Figure 17-12 shows the Android Studio Layout Editor tool in Code mode, allowing changes to be made to the
user interface declaration by making changes to the XML:

129

A Guide to the Android Studio Layout Editor Tool

Figure 17-12

17.8 Split Mode
In Split mode, the editor shows the Design and Code views side-by-side allowing the user interface to be
modified both visually using the design canvas and by making changes directly to the XML declarations. To
enter Split mode, click on the middle button shown in Figure 17-13 below:

Figure 17-13
Any changes to the XML are automatically reflected in the design canvas and vice versa. Figure 17-14 shows the
editor in Split mode:

Figure 17-14

17.9 Setting Attributes
The Attributes panel provides access to all of the available settings for the currently selected component. Figure
17-15, for example, shows the attributes for the TextView widget:

130

A Guide to the Android Studio Layout Editor Tool

Figure 17-15
The Attributes tool window is divided into the following different sections.

•	 id - Contains the id property which defines the name by which the currently selected object will be referenced
in the source code of the app.

•	 Declared Attributes - Contains all of the properties which have already been assigned a value.

•	 Layout - The settings that define how the currently selected view object is positioned and sized in relation to
the screen and other objects in the layout.

•	 Transforms - Contains controls allowing the currently selected object to be rotated, scaled and offset.

•	 Common Attributes - A list of attributes that commonly need to be changed for the class of view object
currently selected.

•	 All Attributes - A complete list of all of the attributes available for the currently selected object.

A search for a specific attribute may also be performed by selecting the search button in the toolbar of the
attributes tool window and typing in the attribute name.

Some attributes contain a narrow button to the right of the value field. This indicates that the Resources dialog
is available to assist in selecting a suitable property value. To display the dialog, simply click on the button. The
appearance of this button changes to reflect whether or not the corresponding property value is stored in a
resource file or hard-coded. If the value is stored in a resource file, the button to the right of the text property

131

A Guide to the Android Studio Layout Editor Tool

field will be filled in to indicate that the value is not hard coded as highlighted in Figure 17-16 below:

Figure 17-16
Attributes for which a finite number of valid options are available will present a drop down menu (Figure 17-17)
from which a selection may be made.

Figure 17-17
A dropper icon (as shown in the backgroundTint field in Figure 17-16 above) can be clicked to display the color
selection palette. Similarly, when a flag icon appears in this position it can clicked to display a list of options
available for the attribute, while an image icon opens the resource manager panel allowing images and other
resource types to be selected for the attribute.

17.10 Transforms
The transforms panel within the Attributes tool window (Figure 17-18) provides a set of controls and properties
which control visual aspects of the currently selected object in terms of rotation, alpha (used to fade a view in
and out), scale (size), and translation (offset from current position):

Figure 17-18

132

A Guide to the Android Studio Layout Editor Tool

The panel contains a visual representation of the view which updates as properties are changed. These changes
are also reflected on the view within layout canvas.

17.11 Tools Visibility Toggles
When reviewing the content of an Android Studio XML layout file in Code mode you will notice that many
of the attributes that define how a view is to appear and behave begin with the android: prefix. This indicates
that the attributes are set within the android namespace and will take effect when the app is run. The following
excerpt from a layout file, for example, sets a variety of attributes on a Button view:
<Button

 android:id="@+id/button"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button"

.

.

In addition to the android namespace, Android Studio also provides a tools namespace. When attributes are
set within this namespace, they only take effect within the layout editor preview. While designing a layout you
might, for example, find it helpful for an EditText view to display some text, but require the view to be blank
when the app runs. To achieve this you would set the text property of the view using the tools namespace as
follows:
<EditText

 android:id="@+id/editTextTextPersonName"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:ems="10"

 android:inputType="textPersonName"

 tools:text="Sample Text"
.

.

A tool attribute of this type is set in the Attributes tool window by entering the value into the property fields
marked by the wrench icon as shown in Figure 17-19:

Figure 17-19
Tools attributes are particularly useful for changing the visibility of a view during the design process. A layout
may contain a view which is programmatically displayed and hidden when the app is running depending on
user actions. To simulate the hiding of the view the following tools attribute could be added to the view XML
declaration:
tools:visibility="invisible"

When using the invisible setting, although the view will no longer be visible, it is still present in the layout and
occupies the same space it did when it was visible. To make the layout behave as though the view no longer
exists, the visibility attribute should be set to gone as follows:

133

A Guide to the Android Studio Layout Editor Tool

tools:visibility="gone"

In both examples above, the visibility settings only apply within the layout editor and will have no effect in the
running app. To control visibility in both the layout editor and running app, the same attribute would be set
using the android namespace:

android:visibility="gone"

While these visibility tools attributes are useful, having to manually edit the XML layout file is a cumbersome
process. To make it easier to change these settings, Android Studio provides a set of toggles within the layout
editor Component Tree panel. To access these controls, click in the margin to the right of the corresponding
view in the panel. Figure 17-20, for example, shows the tools visibility toggle controls for a Button view named
myButton:

Figure 17-20
These toggles control the visibility of the corresponding view for both the android and tools namespaces and
provide not set, visible, invisible and gone options. When conflicting attributes are set (for example an android
namespace toggle is set to visible while the tools value set to invisible) the tools namespace takes precedence
within the layout preview. When a toggle selection is made, Android Studio automatically adds the appropriate
attribute to the XML view element in the layout file.

In addition to the visibility toggles in the Component Tree panel, the layout editor also includes the tools visibility
and position toggle button shown highlighted in Figure 17-21 below:

Figure 17-21
This button toggles the current tools visibility settings. If the Button view shown above currently has the tools
visibility attribute set to gone, for example, toggling this button will make it visible. This makes it easy to quickly
check the layout behavior as the view is added to and removed from the layout. This toggle is also useful for
checking that the views in the layout are correctly constrained, a topic which will be covered in the chapter
entitled “A Guide to Using ConstraintLayout in Android Studio”.

134

A Guide to the Android Studio Layout Editor Tool

17.12 Converting Views
Changing a view in a layout from one type to another (such as converting a TextView to an EditText) can be
performed easily within the Android Studio layout editor simply by right-clicking on the view either within the
screen layout or Component tree window and selecting the Convert view... menu option (Figure 17-22):

Figure 17-22
Once selected, a dialog will appear containing a list of compatible view types to which the selected object is
eligible for conversion. Figure 17-23, for example shows the types to which an existing TextView view may be
converted:

Figure 17-23
This technique is also useful for converting layouts from one type to another (for example converting a
ConstraintLayout to a LinearLayout).

17.13 Displaying Sample Data
When designing layouts in Android Studio situations will arise where the content to be displayed within the user
interface will not be available until the app is completed and running. This can sometimes make it difficult to
assess from within the layout editor how the layout will appear at app runtime. To address this issue, the layout
editor allows sample data to be specified that will populate views within the layout editor with sample images
and data. This sample data only appears within the layout editor and is not displayed when the app runs. Sample
data may be configured either by directly editing the XML for the layout, or visually using the design-time
helper by right-clicking on the widget in the design area and selecting the Set Sample Data menu option. The
design-time helper panel will display a range of preconfigured options for sample data to be displayed on the

135

A Guide to the Android Studio Layout Editor Tool

selected view item including combinations of text and images in a variety of configurations. Figure 17-24, for
example, shows the sample data options displayed when selecting sample data to appear in a RecyclerView list:

Figure 17-24
Alternatively, custom text and images may be provided for display during the layout design process. An example
of using sample data within the layout editor is included in a later chapter entitled “A Layout Editor Sample Data
Tutorial”. Since sample data is implemented as a tools attribute, the visibility of the data within the preview can
be controlled using the toggle button highlighted in Figure 17-21 above.

17.14 Creating a Custom Device Definition
The device menu in the Layout Editor toolbar (Figure 17-25) provides a list of pre-configured device types
which, when selected, will appear as the device screen canvas. In addition to the pre-configured device types,
any AVD instances that have previously been configured within the Android Studio environment will also be
listed within the menu. To add additional device configurations, display the device menu, select the Add Device
Definition option and follow the steps outlined in the chapter entitled “Creating an Android Virtual Device
(AVD) in Android Studio”.

Figure 17-25

136

A Guide to the Android Studio Layout Editor Tool

17.15 Changing the Current Device
As an alternative to the device selection menu, the current device format may be changed by selecting the
Custom option from the device menu, clicking on the resize handle located next to the bottom right-hand corner
of the device screen (Figure 17-26) and dragging to select an alternate device display format. As the screen
resizes, markers will appear indicating the various size options and orientations available for selection:

Figure 17-26

17.16 Layout Validation (Multi Preview)
The layout validation (also referred to as multi preview) option allows the user interface layout to be previewed
on a range of Pixel-sized screens simultaneously. To access multi preview, click on the tab located near the top
right-hand corner of the Android Studio main window as indicated in Figure 17-27:

Figure 17-27
Once loaded, the panel will appear as shown in Figure 17-28 with the layout rendered on multiple device screen
configurations:

137

A Guide to the Android Studio Layout Editor Tool

Figure 17-28

17.17 Summary
A key part of developing Android applications involves the creation of the user interface. Within the Android
Studio environment, this is performed using the Layout Editor tool which operates in three modes. In Design
mode, view components are selected from a palette and positioned on a layout representing an Android device
screen and configured using a list of attributes. In Code mode, the underlying XML that represents the user
interface layout can be directly edited. Split mode, on the other hand allows the layout to be created and
modified both visually and via direct XML editing. These modes combine to provide an extensive and intuitive
user interface design environment.

The layout validation panel allows user interface layouts to be quickly previewed on a range of different device
screen sizes.

175

Chapter 21

21. An Android Studio Layout Editor
ConstraintLayout Tutorial
By far the easiest and most productive way to design a user interface for an Android application is to make
use of the Android Studio Layout Editor tool. This chapter will provide an overview of how to create a
ConstraintLayout-based user interface using this approach. The exercise included in this chapter will also be
used as an opportunity to outline the creation of an activity starting with a “bare-bones” Android Studio project.

Having covered the use of the Android Studio Layout Editor, the chapter will also introduce the Layout Inspector
tool.

21.1 An Android Studio Layout Editor Tool Example
The first step in this phase of the example is to create a new Android Studio project. Start by launching Android
Studio and closing any previously opened projects by selecting the File -> Close Project menu option.

Select the New Project option from the welcome screen. In previous examples, we have requested that Android
Studio create a template activity for the project. We will, however, be using this tutorial to learn how to create an
entirely new activity and corresponding layout resource file manually, so make sure that the No Activity option
is selected before clicking on the Next button

Enter LayoutSample into the Name field and specify com.ebookfrenzy.layoutsample as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

21.2 Creating a New Activity
Once the project creation process is complete, the Android Studio main window should appear and we are ready
to create a new activity. This will be a valuable learning exercise since there are many instances in the course of
developing Android applications where new activities need to be created from the ground up.

Begin by displaying the Project tool window if it is not already visible using the Alt-1/Cmd-1 keyboard shortcut.
Once the Android hierarchy is displayed, unfold it by clicking on the right facing arrows next to the entries in
the Project window. The objective here is to gain access to the app -> java -> com -> ebookfrenzy -> layoutsample
folder in the project hierarchy. Once the package name is visible, right-click on it and select the New -> Activity
-> Empty Activity menu option as illustrated in Figure 21-1. Alternatively, select the New -> Activity -> Gallery...
option to browse the available templates and make a selection using the New Android Activity dialog.

176

An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 21-1
In the resulting New Android Activity dialog, name the new activity MainActivity and the layout activity_main.
The activity will, of course, need a layout resource file so make sure that the Generate a Layout File option is
enabled.

In order for an application to be able to run on a device it needs to have an activity designated as the launcher
activity. Without a launcher activity, the operating system will not know which activity to start up when the
application first launches and the application will fail to start. Since this example only has one activity, it needs
to be designated as the launcher activity for the application so make sure that the Launcher Activity option is
enabled before clicking on the Finish button.

At this point Android Studio should have added two files to the project. The Java source code file for the activity
should be located in the app -> java -> com -> ebookfrenzy -> layoutsample folder.

In addition, the XML layout file for the user interface should have been created in the app -> res -> layout folder.
Note that the Empty Activity template was chosen for this activity so the layout is contained entirely within the
activity_main.xml file and there is no separate content layout file. Also, since we will not be writing any code to
access views in the user interface layout, it is not necessary to convert the project to support view binding.

Finally, the new activity should have been added to the AndroidManifest.xml file and designated as the launcher
activity. The manifest file can be found in the project window under the app -> manifests folder and should
contain the following XML:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 package="com.ebookfrenzy.layoutsample">

 <application

 android:allowBackup="true"

 android:dataExtractionRules="@xml/data_extraction_rules"

 android:fullBackupContent="@xml/backup_rules"

177

An Android Studio Layout Editor ConstraintLayout Tutorial

 android:icon="@mipmap/ic_launcher"

 android:label="@string/app_name"

 android:roundIcon="@mipmap/ic_launcher_round"

 android:supportsRtl="true"

 android:theme="@style/Theme.LayoutSample"

 tools:targetApi="31">

 <activity

 android:name=".MainActivity"

 android:exported="true" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

21.3 Preparing the Layout Editor Environment
Locate and double-click on the activity_main.xml layout file located in the app -> res -> layout folder to load it
into the Layout Editor tool. Since the purpose of this tutorial is to gain experience with the use of constraints,
turn off the Autoconnect feature using the button located in the Layout Editor toolbar. Once disabled, the button
will appear with a line through it as is the case in Figure 21-2:

Figure 21-2
If the default margin value to the right of the Autoconnect button is not set to 8dp, click on it and select 8dp
from the resulting panel.

The user interface design will also make use of the ImageView object to display an image. Before proceeding, this
image should be added to the project ready for use later in the chapter. This file is named galaxys6.png and can
be found in the project_icons folder of the sample code download available from the following URL:

https://www.ebookfrenzy.com/retail/dolphinjava/index.php

Within Android Studio, display the Resource Manager tool window (View -> Tool Windows -> Resource
Manager). Locate the galaxy6s.png image in the file system navigator for your operating system and drag and
drop the image onto the Resource Manager tool window. In the resulting dialog, click Next followed by the
Import button to add the image to project. The image should now appear in the Resource Manager as shown in
Figure 21-3 below:

https://www.ebookfrenzy.com/retail/dolphinjava/index.php

178

An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 21-3
The image will also appear in the res -> drawables section of the Project tool window:

Figure 21-4

21.4 Adding the Widgets to the User Interface
From within the Common palette category, drag an ImageView object into the center of the display view. Note
that horizontal and vertical dashed lines appear indicating the center axes of the display. When centered, release
the mouse button to drop the view into position. Once placed within the layout, the Resources dialog will
appear seeking the image to be displayed within the view. In the search bar located at the top of the dialog, enter
“galaxy” to locate the galaxys6.png resource as illustrated in Figure 21-5.

Figure 21-5
Select the image and click on OK to assign it to the ImageView object. If necessary, adjust the size of the

179

An Android Studio Layout Editor ConstraintLayout Tutorial

ImageView using the resize handles and reposition it in the center of the layout. At this point the layout should
match Figure 21-6:

Figure 21-6
Click and drag a TextView object from the Common section of the palette and position it so that it appears above
the ImageView as illustrated in Figure 21-7.

Using the Attributes panel, unfold the textAppearance attribute entry in the Common Attributes section, change
the textSize property to 24sp, the textAlignment setting to center and the text to “Samsung Galaxy S6”.

Figure 21-7

180

An Android Studio Layout Editor ConstraintLayout Tutorial

Next, add three Button widgets along the bottom of the layout and set the text attributes of these views to “Buy
Now”, “Pricing” and “Details”. The completed layout should now match Figure 21-8:

Figure 21-8
At this point, the widgets are not sufficiently constrained for the layout engine to be able to position and size the
widgets at runtime. Were the app to run now, all of the widgets would be positioned in the top left-hand corner
of the display.

With the widgets added to the layout, use the device rotation button located in the Layout Editor toolbar
(indicated by the arrow in Figure 21-9) to view the user interface in landscape orientation:

Figure 21-9
The absence of constraints results in a layout that fails to adapt to the change in device orientation, leaving the
content off center and with part of the image and all three buttons positioned beyond the viewable area of the
screen. Clearly some work still needs to be done to make this into a responsive user interface.

181

An Android Studio Layout Editor ConstraintLayout Tutorial

21.5 Adding the Constraints
Constraints are the key to creating layouts that can adapt to device orientation changes and different screen
sizes. Begin by rotating the layout back to portrait orientation and selecting the TextView widget located above
the ImageView. With the widget selected, establish constraints from the left, right and top sides of the TextView
to the corresponding sides of the parent ConstraintLayout as shown in Figure 21-10:

Figure 21-10
With the TextView widget constrained, select the ImageView instance and establish opposing constraints on the
left and right-hand sides with each connected to the corresponding sides of the parent layout. Next, establish a
constraint connection from the top of the ImageView to the bottom of the TextView and from the bottom of the
ImageView to the top of the center Button widget. If necessary, click and drag the ImageView so that it is still
positioned in the vertical center of the layout.

With the ImageView still selected, use the Inspector in the attributes panel to change the top and bottom margins
on the ImageView to 24 and 8 respectively and to change both the widget height and width dimension properties
to match_constraint so that the widget will resize to match the constraints. These settings will allow the layout
engine to enlarge and reduce the size of the ImageView when necessary to accommodate layout changes:

Figure 21-11
Figure 21-12, shows the currently implemented constraints for the ImageView in relation to the other elements
in the layout:

182

An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 21-12
The final task is to add constraints to the three Button widgets. For this example, the buttons will be placed in a
chain. Begin by turning on Autoconnect within the Layout Editor by clicking the toolbar button highlighted in
Figure 21-2.

Next, click on the Buy Now button and then shift-click on the other two buttons so that all three are selected.
Right-click on the Buy Now button and select the Chains -> Create Horizontal Chain menu option from the
resulting menu. By default, the chain will be displayed using the spread style which is the correct behavior for
this example.

Finally, establish a constraint between the bottom of the Buy Now button and the bottom of the layout. Repeat
this step for the remaining buttons.

On completion of these steps the buttons should be constrained as outlined in Figure 21-13:

Figure 21-13

21.6 Testing the Layout
With the constraints added to the layout, rotate the screen into landscape orientation and verify that the layout
adapts to accommodate the new screen dimensions.

While the Layout Editor tool provides a useful visual environment in which to design user interface layouts,
when it comes to testing there is no substitute for testing the running app. Launch the app on a physical Android
device or emulator session and verify that the user interface reflects the layout created in the Layout Editor.

183

An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 21-14, for example, shows the running app in landscape orientation:

Figure 21-14
The user interface design is now complete. Designing a more complex user interface layout is a continuation of
the steps outlined above. Simply drag and drop views onto the display, position, constrain and set properties as
needed.

21.7 Using the Layout Inspector
The hierarchy of components that make up a user interface layout may be viewed at any time using the Layout
Inspector tool. To access this information the app must be running on a device or emulator running Android
API 29 or later. Once the app is running, select the Tools -> Layout Inspector menu option followed by the
process to be inspected using the menu marked A in Figure 21-15 below).

Once the inspector loads, the left most panel (B) shows the hierarchy of components that make up the user
interface layout. The center panel (C) shows a visual representation of the layout design. Clicking on a widget
in the visual layout will cause that item to highlight in the hierarchy list making it easy to find where a visual
component is situated relative to the overall layout hierarchy.

Finally, the right-most panel (marked D in Figure 21-15) contains all of the property settings for the currently
selected component, allowing for in-depth analysis of the component’s internal configuration. Where appropriate,
the value cell will contain a link to the location of the property setting within the project source code.

Figure 21-15
To view the layout in 3D, click on the button labeled E. This displays an “exploded” representation of the
hierarchy so that it can be rotated and inspected. This can be useful for tasks such as identifying obscured views:

184

An Android Studio Layout Editor ConstraintLayout Tutorial

Figure 21-16
Click and drag the rendering to rotate it in three dimensions, using the slider indicated by the arrow in the above
figure to increase the spacing between the layers. Click the button marked E again to return to the 2D view.

21.8 Summary
The Layout Editor tool in Android Studio has been tightly integrated with the ConstraintLayout class. This
chapter has worked through the creation of an example user interface intended to outline the ways in which
a ConstraintLayout-based user interface can be implemented using the Layout Editor tool in terms of adding
widgets and setting constraints. This chapter also introduced the Live Layout Inspector tool which is useful for
analyzing the structural composition of a user interface layout.

207

Chapter 26

26. An Overview and Example of
Android Event Handling
Much has been covered in the previous chapters relating to the design of user interfaces for Android applications.
An area that has yet to be covered, however, involves the way in which a user’s interaction with the user interface
triggers the underlying activity to perform a task. In other words, we know from the previous chapters how to
create a user interface containing a button view, but not how to make something happen within the application
when it is touched by the user.

The primary objective of this chapter, therefore, is to provide an overview of event handling in Android
applications together with an Android Studio based example project.

26.1 Understanding Android Events
Events in Android can take a variety of different forms, but are usually generated in response to an external
action. The most common form of events, particularly for devices such as tablets and smartphones, involve some
form of interaction with the touch screen. Such events fall into the category of input events.

The Android framework maintains an event queue into which events are placed as they occur. Events are then
removed from the queue on a first-in, first-out (FIFO) basis. In the case of an input event such as a touch on the
screen, the event is passed to the view positioned at the location on the screen where the touch took place. In
addition to the event notification, the view is also passed a range of information (depending on the event type)
about the nature of the event such as the coordinates of the point of contact between the user’s fingertip and the
screen.

To be able to handle the event that it has been passed, the view must have in place an event listener. The Android
View class, from which all user interface components are derived, contains a range of event listener interfaces,
each of which contains an abstract declaration for a callback method. To be able to respond to an event of a
particular type, a view must register the appropriate event listener and implement the corresponding callback.
For example, if a button is to respond to a click event (the equivalent to the user touching and releasing the
button view as though clicking on a physical button) it must both register the View.onClickListener event listener
(via a call to the target view’s setOnClickListener() method) and implement the corresponding onClick() callback
method. If a “click” event is detected on the screen at the location of the button view, the Android framework will
call the onClick() method of that view when that event is removed from the event queue. It is, of course, within
the implementation of the onClick() callback method that any tasks should be performed or other methods
called in response to the button click.

26.2 Using the android:onClick Resource
Before exploring event listeners in more detail it is worth noting that a shortcut is available when all that is
required is for a callback method to be called when a user “clicks” on a button view in the user interface. Consider
a user interface layout containing a button view named button1 with the requirement that when the user touches
the button, a method called buttonClick() declared in the activity class is called. All that is required to implement
this behavior is to write the buttonClick() method (which takes as an argument a reference to the view that
triggered the click event) and add a single line to the declaration of the button view in the XML file. For example:
<Button

208

An Overview and Example of Android Event Handling

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="buttonClick"
 android:text="Click me" />

This provides a simple way to capture click events. It does not, however, provide the range of options offered by
event handlers, which are the topic of the rest of this chapter. As will be outlined in later chapters, the onClick
property also has limitations in layouts involving fragments. When working within Android Studio Layout
Editor, the onClick property can be found and configured in the Attributes panel when a suitable view type is
selected in the device screen layout.

26.3 Event Listeners and Callback Methods
In the example activity outlined later in this chapter the steps involved in registering an event listener and
implementing the callback method will be covered in detail. Before doing so, however, it is worth taking some
time to outline the event listeners that are available in the Android framework and the callback methods
associated with each one.

•	 onClickListener – Used to detect click style events whereby the user touches and then releases an area of the
device display occupied by a view. Corresponds to the onClick() callback method which is passed a reference
to the view that received the event as an argument.

•	 onLongClickListener – Used to detect when the user maintains the touch over a view for an extended period.
Corresponds to the onLongClick() callback method which is passed as an argument the view that received the
event.

•	 onTouchListener – Used to detect any form of contact with the touch screen including individual or multiple
touches and gesture motions. Corresponding with the onTouch() callback, this topic will be covered in greater
detail in the chapter entitled “Android Touch and Multi-touch Event Handling”. The callback method is passed
as arguments the view that received the event and a MotionEvent object.

•	 onCreateContextMenuListener – Listens for the creation of a context menu as the result of a long click.
Corresponds to the onCreateContextMenu() callback method. The callback is passed the menu, the view that
received the event and a menu context object.

•	 onFocusChangeListener – Detects when focus moves away from the current view as the result of interaction
with a track-ball or navigation key. Corresponds to the onFocusChange() callback method which is passed the
view that received the event and a Boolean value to indicate whether focus was gained or lost.

•	 onKeyListener – Used to detect when a key on a device is pressed while a view has focus. Corresponds to
the onKey() callback method. Passed as arguments are the view that received the event, the KeyCode of the
physical key that was pressed and a KeyEvent object.

26.4 An Event Handling Example
In the remainder of this chapter, we will work through the creation of an Android Studio project designed to
demonstrate the implementation of an event listener and corresponding callback method to detect when the
user has clicked on a button. The code within the callback method will update a text view to indicate that the
event has been processed.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Activity template before clicking on the Next button.

Enter EventExample into the Name field and specify com.ebookfrenzy.eventexample as the package name. Before

209

An Overview and Example of Android Event Handling

clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Using the steps outlined in section 11.8 Migrating a Project to View Binding, convert the
project to use view binding.

26.5 Designing the User Interface
The user interface layout for the MainActivity class in this example is to consist of a ConstraintLayout, a Button
and a TextView as illustrated in Figure 26-1.

Figure 26-1
Locate and select the activity_main.xml file created by Android Studio (located in the Project tool window under
app -> res -> layouts) and double-click on it to load it into the Layout Editor tool.

Make sure that Autoconnect is enabled, then drag a Button widget from the palette and move it so that it is
positioned in the horizontal center of the layout and beneath the existing TextView widget. When correctly
positioned, drop the widget into place so that appropriate constraints are added by the autoconnect system.

Select the “Hello World!” TextView widget and use the Attributes panel to set the ID to statusText. Repeat this
step to change the ID of the Button widget to myButton.

Add any missing constraints by clicking on the Infer Constraints button in the layout editor toolbar.

With the Button widget selected, use the Attributes panel to set the text property to Press Me. Using the yellow
warning button located in the top right-hand corner of the Layout Editor (Figure 26-2), display the warnings list
and click on the Fix button to extract the text string on the button to a resource named press_me:

Figure 26-2

210

An Overview and Example of Android Event Handling

With the user interface layout now completed, the next step is to register the event listener and callback method.

26.6 The Event Listener and Callback Method
For the purposes of this example, an onClickListener needs to be registered for the myButton view. This is achieved
by making a call to the setOnClickListener() method of the button view, passing through a new onClickListener
object as an argument and implementing the onClick() callback method. Since this is a task that only needs to
be performed when the activity is created, a good location is the onCreate() method of the MainActivity class.

If the MainActivity.java file is already open within an editor session, select it by clicking on the tab in the editor
panel. Alternatively locate it within the Project tool window by navigating to (app -> java -> com -> ebookfrenzy
-> eventexample -> MainActivity) and double-click on it to load it into the code editor. Once loaded, locate the
template onCreate() method and modify it to obtain a reference to the button view, register the event listener and
implement the onClick() callback method:
package com.ebookfrenzy.eventexample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 binding.myButton.setOnClickListener(
 new Button.OnClickListener() {
 public void onClick(View v) {

 }
 }
);
 }

.

.

}

The above code has now registered the event listener on the button and implemented the onClick() method.
If the application were to be run at this point, however, there would be no indication that the event listener
installed on the button was working since there is, as yet, no code implemented within the body of the onClick()
callback method. The goal for the example is to have a message appear on the TextView when the button is
clicked, so some further code changes need to be made:

211

An Overview and Example of Android Event Handling

@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 binding.myButton.setOnClickListener(

 new Button.OnClickListener() {

 public void onClick(View v) {

 binding.statusText.setText("Button clicked");
 }

 }

);

}

Complete this phase of the tutorial by compiling and running the application on either an AVD emulator or
physical Android device. On touching and releasing the button view (otherwise known as “clicking”) the text
view should change to display the “Button clicked” text.

26.7 Consuming Events
The detection of standard clicks (as opposed to long clicks) on views is a very simple case of event handling. The
example will now be extended to include the detection of long click events which occur when the user clicks and
holds a view on the screen and, in doing so, cover the topic of event consumption.

Consider the code for the onClick() method in the above section of this chapter. The callback is declared as void
and, as such, does not return a value to the Android framework after it has finished executing.

The code assigned to the onLongClickListener, on the other hand, is required to return a Boolean value to the
Android framework. The purpose of this return value is to indicate to the Android runtime whether or not the
callback has consumed the event. If the callback returns a true value, the event is discarded by the framework.
If, on the other hand, the callback returns a false value the Android framework will consider the event still to be
active and will consequently pass it along to the next matching event listener that is registered on the same view.

As with many programming concepts this is, perhaps, best demonstrated with an example. The first step is to
add an event listener and callback method for long clicks to the button view in the example activity:
@Override

protected void onCreate(Bundle savedInstanceState) {

.

.

 binding.myButton.setOnLongClickListener(
 new Button.OnLongClickListener() {
 public boolean onLongClick(View v) {
 binding.statusText.setText("Long button click");
 return true;
 }
 }
);

212

An Overview and Example of Android Event Handling

 }

}

Clearly, when a long click is detected, the onLongClick() callback method will display “Long button click” on the
text view. Note, however, that the callback method also returns a value of true to indicate that it has consumed
the event. Run the application and press and hold the Button view until the “Long button click” text appears in
the text view. On releasing the button, the text view continues to display the “Long button click” text indicating
that the onClick listener code was not called.

Next, modify the code so that the onLongClick listener now returns a false value:
button.setOnLongClickListener(

 new Button.OnLongClickListener() {

 public boolean onLongClick(View v) {

 TextView myTextView = findViewById(R.id.myTextView);

 myTextView.setText("Long button click");

 return false;
 }

 }

);

Once again, compile and run the application and perform a long click on the button until the long click message
appears. Upon releasing the button this time, however, note that the onClick listener is also triggered and the text
changes to “Button clicked”. This is because the false value returned by the onLongClick listener code indicated to
the Android framework that the event was not consumed by the method and was eligible to be passed on to the
next registered listener on the view. In this case, the runtime ascertained that the onClickListener on the button
was also interested in events of this type and subsequently called the onClick listener code.

26.8 Summary
A user interface is of little practical use if the views it contains do not do anything in response to user interaction.
Android bridges the gap between the user interface and the back end code of the application through the
concepts of event listeners and callback methods. The Android View class defines a set of event listeners, which
can be registered on view objects. Each event listener also has associated with it a callback method.

When an event takes place on a view in a user interface, that event is placed into an event queue and handled
on a first in, first out basis by the Android runtime. If the view on which the event took place has registered a
listener that matches the type of event, the corresponding callback method is called. This code then performs
any tasks required by the activity before returning. Some callback methods are required to return a Boolean
value to indicate whether the event needs to be passed on to any other event listeners registered on the view or
discarded by the system.

Having covered the basics of event handling, the next chapter will explore in some depth the topic of touch
events with a particular emphasis on handling multiple touches.

213

Chapter 27

27. Android Touch and Multi-touch
Event Handling
Most Android based devices use a touch screen as the primary interface between user and device. The previous
chapter introduced the mechanism by which a touch on the screen translates into an action within a running
Android application. There is, however, much more to touch event handling than responding to a single finger
tap on a view object. Most Android devices can, for example, detect more than one touch at a time. Nor are
touches limited to a single point on the device display. Touches can, of course, be dynamic as the user slides one
or more points of contact across the surface of the screen.

Touches can also be interpreted by an application as a gesture. Consider, for example, that a horizontal swipe
is typically used to turn the page of an eBook, or how a pinching motion can be used to zoom in and out of an
image displayed on the screen.

This chapter will explain the handling of touches that involve motion and explore the concept of intercepting
multiple concurrent touches. The topic of identifying distinct gestures will be covered in the next chapter.

27.1 Intercepting Touch Events
Touch events can be intercepted by a view object through the registration of an onTouchListener event listener
and the implementation of the corresponding onTouch() callback method. The following code, for example,
ensures that any touches on a ConstraintLayout view instance named myLayout result in a call to the onTouch()
method:
binding.myLayout.setOnTouchListener(

 new ConstraintLayout.OnTouchListener() {

 public boolean onTouch(View v, MotionEvent m) {

 // Perform tasks here

 return true;

 }

 }

);

As indicated in the code example, the onTouch() callback is required to return a Boolean value indicating to the
Android runtime system whether or not the event should be passed on to other event listeners registered on the
same view or discarded. The method is passed both a reference to the view on which the event was triggered and
an object of type MotionEvent.

27.2 The MotionEvent Object
The MotionEvent object passed through to the onTouch() callback method is the key to obtaining information
about the event. Information contained within the object includes the location of the touch within the view and
the type of action performed. The MotionEvent object is also the key to handling multiple touches.

214

Android Touch and Multi-touch Event Handling

27.3 Understanding Touch Actions
An important aspect of touch event handling involves being able to identify the type of action performed by
the user. The type of action associated with an event can be obtained by making a call to the getActionMasked()
method of the MotionEvent object which was passed through to the onTouch() callback method. When the first
touch on a view occurs, the MotionEvent object will contain an action type of ACTION_DOWN together with
the coordinates of the touch. When that touch is lifted from the screen, an ACTION_UP event is generated. Any
motion of the touch between the ACTION_DOWN and ACTION_UP events will be represented by ACTION_
MOVE events.

When more than one touch is performed simultaneously on a view, the touches are referred to as pointers.
In a multi-touch scenario, pointers begin and end with event actions of type ACTION_POINTER_DOWN
and ACTION_POINTER_UP respectively. To identify the index of the pointer that triggered the event, the
getActionIndex() callback method of the MotionEvent object must be called.

27.4 Handling Multiple Touches
The chapter entitled “An Overview and Example of Android Event Handling” began exploring event handling
within the narrow context of a single touch event. In practice, most Android devices possess the ability to
respond to multiple consecutive touches (though it is important to note that the number of simultaneous
touches that can be detected varies depending on the device).

As previously discussed, each touch in a multi-touch situation is considered by the Android framework to be
a pointer. Each pointer, in turn, is referenced by an index value and assigned an ID. The current number of
pointers can be obtained via a call to the getPointerCount() method of the current MotionEvent object. The ID
for a pointer at a particular index in the list of current pointers may be obtained via a call to the MotionEvent
getPointerId() method. For example, the following code excerpt obtains a count of pointers and the ID of the
pointer at index 0:
public boolean onTouch(View v, MotionEvent m) {

 int pointerCount = m.getPointerCount();

 int pointerId = m.getPointerId(0);

 return true;

}

Note that the pointer count will always be greater than or equal to 1 when the onTouch listener is triggered (since
at least one touch must have occurred for the callback to be triggered).

A touch on a view, particularly one involving motion across the screen, will generate a stream of events before
the point of contact with the screen is lifted. As such, it is likely that an application will need to track individual
touches over multiple touch events. While the ID of a specific touch gesture will not change from one event to
the next, it is important to keep in mind that the index value will change as other touch events come and go.
When working with a touch gesture over multiple events, therefore, it is essential that the ID value be used as
the touch reference to make sure the same touch is being tracked. When calling methods that require an index
value, this should be obtained by converting the ID for a touch to the corresponding index value via a call to the
findPointerIndex() method of the MotionEvent object.

27.5 An Example Multi-Touch Application
The example application created in the remainder of this chapter will track up to two touch gestures as they
move across a layout view. As the events for each touch are triggered, the coordinates, index and ID for each
touch will be displayed on the screen.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the

215

Android Touch and Multi-touch Event Handling

Empty Activity template before clicking on the Next button.

Enter MotionEvent into the Name field and specify com.ebookfrenzy.motionevent as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java.

Adapt the project to use view binding as outlined in section 11.8 Migrating a Project to View Binding.

27.6 Designing the Activity User Interface
The user interface for the application’s sole activity is to consist of a ConstraintLayout view containing two
TextView objects. Within the Project tool window, navigate to app -> res -> layout and double-click on the
activity_main.xml layout resource file to load it into the Android Studio Layout Editor tool.

Select and delete the default “Hello World!” TextView widget and then, with autoconnect enabled, drag and
drop a new TextView widget so that it is centered horizontally and positioned at the 16dp margin line on the
top edge of the layout:

Figure 27-1
Drag a second TextView widget and position and constrain it so that it is distanced by a 32dp margin from the
bottom of the first widget:

Figure 27-2
Using the Attributes tool window, change the IDs for the TextView widgets to textView1 and textView2
respectively. Change the text displayed on the widgets to read “Touch One Status” and “Touch Two Status” and
extract the strings to resources using the warning button in the top right-hand corner of the Layout Editor.

27.7 Implementing the Touch Event Listener
To receive touch event notifications it will be necessary to register a touch listener on the layout view within the
onCreate() method of the MainActivity activity class. Select the MainActivity.java tab from the Android Studio
editor panel to display the source code. Within the onCreate() method, add code to register the touch listener
and implement code which, in this case, is going to call a second method named handleTouch() to which is
passed the MotionEvent object:
package com.ebookfrenzy.motionevent;

import androidx.appcompat.app.AppCompatActivity;

import androidx.constraintlayout.widget.ConstraintLayout;

import android.os.Bundle;

import android.view.MotionEvent;
import android.view.View;

216

Android Touch and Multi-touch Event Handling

import com.ebookfrenzy.motionevent.databinding.ActivityMainBinding;

public class MainActivity extends AppCompatActivity {

 private ActivityMainBinding binding;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 binding.activityMain.setOnTouchListener(
 new ConstraintLayout.OnTouchListener() {
 public boolean onTouch(View v, MotionEvent m) {
 handleTouch(m);
 return true;
 }
 }
);
 }

When we designed the user interface, the parent ConstraintLayout was not assigned an ID that would allow us
to access it via the view binding mechanism. Since this layout component is the top-most component in the UI
layout hierarchy, we have been able to reference it using the root binding property in the code above.

The final task before testing the application is to implement the handleTouch() method called by the listener. The
code for this method reads as follows:
void handleTouch(MotionEvent m) {

 int pointerCount = m.getPointerCount();

 for (int i = 0; i < pointerCount; i++)

 {

 int x = (int) m.getX(i);

 int y = (int) m.getY(i);

 int id = m.getPointerId(i);

 int action = m.getActionMasked();

 int actionIndex = m.getActionIndex();

 String actionString;

 switch (action)

 {

 case MotionEvent.ACTION_DOWN:

 actionString = "DOWN";

 break;

217

Android Touch and Multi-touch Event Handling

 case MotionEvent.ACTION_UP:

 actionString = "UP";

 break;

 case MotionEvent.ACTION_POINTER_DOWN:

 actionString = "PNTR DOWN";

 break;

 case MotionEvent.ACTION_POINTER_UP:

 actionString = "PNTR UP";

 break;

 case MotionEvent.ACTION_MOVE:

 actionString = "MOVE";

 break;

 default:

 actionString = "";

 }

 String touchStatus = "Action: " + actionString + " Index: " + actionIndex
+ " ID: " + id + " X: " + x + " Y: " + y;

 if (id == 0)

 binding.textView1.setText(touchStatus);

 else

 binding.textView2.setText(touchStatus);

 }

}

Before compiling and running the application, it is worth taking the time to walk through this code systematically
to highlight the tasks that are being performed.

The code begins by obtaining references to the two TextView objects in the user interface and identifying how
many pointers are currently active on the view:
TextView textView1 = findViewById(R.id.textView1);

TextView textView2 = findViewById(R.id.textView2);

int pointerCount = m.getPointerCount();

Next, the pointerCount variable is used to initiate a for loop which performs a set of tasks for each active pointer.
The first few lines of the loop obtain the X and Y coordinates of the touch together with the corresponding event
ID, action type and action index. Lastly, a string variable is declared:
for (int i = 0; i < pointerCount; i++)

{

 int x = (int) m.getX(i);

 int y = (int) m.getY(i);

 int id = m.getPointerId(i);

 int action = m.getActionMasked();

 int actionIndex = m.getActionIndex();

 String actionString;

218

Android Touch and Multi-touch Event Handling

Since action types equate to integer values, a switch statement is used to convert the action type to a more
meaningful string value, which is stored in the previously declared actionString variable:
switch (action)

{

 case MotionEvent.ACTION_DOWN:

 actionString = "DOWN";

 break;

 case MotionEvent.ACTION_UP:

 actionString = "UP";

 break;

 case MotionEvent.ACTION_POINTER_DOWN:

 actionString = "PNTR DOWN";

 break;

 case MotionEvent.ACTION_POINTER_UP:

 actionString = "PNTR UP";

 break;

 case MotionEvent.ACTION_MOVE:

 actionString = "MOVE";

 break;

 default:

 actionString = "";

}

Finally, the string message is constructed using the actionString value, the action index, touch ID and X and Y
coordinates. The ID value is then used to decide whether the string should be displayed on the first or second
TextView object:
String touchStatus = "Action: " + actionString + " Index: "

 + actionIndex + " ID: " + id + " X: " + x + " Y: " + y;

if (id == 0)

 binding.textView1.setText(touchStatus);

else

 binding.textView2.setText(touchStatus);

27.8 Running the Example Application
Compile and run the application and, once launched, experiment with single and multiple touches on the screen
and note that the text views update to reflect the events as illustrated in Figure 27-3. When running on an
emulator, multiple touches may be simulated by holding down the Ctrl (Cmd on macOS) key while clicking the
mouse button (note that simulating multiple touches may not work if the emulator is running in a tool window):

219

Android Touch and Multi-touch Event Handling

Figure 27-3

27.9 Summary
Activities receive notifications of touch events by registering an onTouchListener event listener and implementing
the onTouch() callback method which, in turn, is passed a MotionEvent object when called by the Android
runtime. This object contains information about the touch such as the type of touch event, the coordinates of
the touch and a count of the number of touches currently in contact with the view.

When multiple touches are involved, each point of contact is referred to as a pointer with each assigned an index
and an ID. While the index of a touch can change from one event to another, the ID will remain unchanged until
the touch ends.

This chapter has worked through the creation of an example Android application designed to display the
coordinates and action type of up to two simultaneous touches on a device display.

Having covered touches in general, the next chapter (entitled “Detecting Common Gestures Using the Android
Gesture Detector Class”) will look further at touch screen event handling through the implementation of gesture
recognition.

237

Chapter 30

30. An Introduction to Android
Fragments
As you progress through the chapters of this book it will become increasingly evident that many of the design
concepts behind the Android system were conceived with the goal of promoting reuse of, and interaction
between, the different elements that make up an application. One such area that will be explored in this chapter
involves the use of Fragments.

This chapter will provide an overview of the basics of fragments in terms of what they are and how they can be
created and used within applications. The next chapter will work through a tutorial designed to show fragments
in action when developing applications in Android Studio, including the implementation of communication
between fragments.

30.1 What is a Fragment?
A fragment is a self-contained, modular section of an application’s user interface and corresponding behavior
that can be embedded within an activity. Fragments can be assembled to create an activity during the application
design phase, and added to or removed from an activity during application runtime to create a dynamically
changing user interface.

Fragments may only be used as part of an activity and cannot be instantiated as standalone application elements.
That being said, however, a fragment can be thought of as a functional “sub-activity” with its own lifecycle
similar to that of a full activity.

Fragments are stored in the form of XML layout files and may be added to an activity either by placing
appropriate <fragment> elements in the activity’s layout file, or directly through code within the activity’s class
implementation.

30.2 Creating a Fragment
The two components that make up a fragment are an XML layout file and a corresponding Java class. The XML
layout file for a fragment takes the same format as a layout for any other activity layout and can contain any
combination and complexity of layout managers and views. The following XML layout, for example, is for a
fragment consisting of a ConstraintLayout with a red background containing a single TextView with a white
foreground:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/constraintLayout"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="@android:color/holo_red_dark"

 tools:context=".FragmentOne">

238

An Introduction to Android Fragments

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="My First Fragment"

 android:textAppearance="@style/TextAppearance.AppCompat.Large"

 android:textColor="@color/white"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

The corresponding class to go with the layout must be a subclass of the Android Fragment class. This class
should, at a minimum, override the onCreateView() method which is responsible for loading the fragment
layout. For example:
package com.example.myfragmentdemo;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.fragment.app.Fragment;

public class FragmentOne extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 binding = FragmentTextBinding.inflate(inflater, container, false);

 return binding.getRoot();

 }

}

In addition to the onCreateView() method, the class may also override the standard lifecycle methods.

Once the fragment layout and class have been created, the fragment is ready to be used within application
activities.

30.3 Adding a Fragment to an Activity using the Layout XML File
Fragments may be incorporated into an activity either by writing Java code or by embedding the fragment
into the activity’s XML layout file. Regardless of the approach used, a key point to be aware of is that when the
support library is being used for compatibility with older Android releases, any activities using fragments must
be implemented as a subclass of FragmentActivity instead of the AppCompatActivity class:
package com.example.myfragmentdemo;

239

An Introduction to Android Fragments

import android.os.Bundle;

import androidx.fragment.app.FragmentActivity;
import android.view.Menu;

public class MainActivity extends FragmentActivity {
.

.

Fragments are embedded into activity layout files using the FragmentContainerView class. The following
example layout embeds the fragment created in the previous section of this chapter into an activity layout:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/fragment2"
 android:name="com.ebookfrenzy.myfragmentdemo.FragmentOne"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="32dp"
 android:layout_marginEnd="32dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:layout="@layout/fragment_one" />
</androidx.constraintlayout.widget.ConstraintLayout>

The key properties within the <fragment> element are android:name, which must reference the class associated
with the fragment, and tools:layout, which must reference the XML resource file containing the layout of the
fragment.

Once added to the layout of an activity, fragments may be viewed and manipulated within the Android Studio
Layout Editor tool. Figure 30-1, for example, shows the above layout with the embedded fragment within the
Android Studio Layout Editor:

240

An Introduction to Android Fragments

Figure 30-1

30.4 Adding and Managing Fragments in Code
The ease of adding a fragment to an activity via the activity’s XML layout file comes at the cost of the activity not
being able to remove the fragment at runtime. To achieve full dynamic control of fragments during runtime,
those activities must be added via code. This has the advantage that the fragments can be added, removed and
even made to replace one another dynamically while the application is running.

When using code to manage fragments, the fragment itself will still consist of an XML layout file and a
corresponding class. The difference comes when working with the fragment within the hosting activity. There is
a standard sequence of steps when adding a fragment to an activity using code:

1.  Create an instance of the fragment’s class.

2.  Pass any additional intent arguments through to the class instance.

3.  Obtain a reference to the fragment manager instance.

4.  Call the beginTransaction() method on the fragment manager instance. This returns a fragment transaction
instance.

5.  Call the add() method of the fragment transaction instance, passing through as arguments the resource ID
of the view that is to contain the fragment and the fragment class instance.

6.  Call the commit() method of the fragment transaction.

The following code, for example, adds a fragment defined by the FragmentOne class so that it appears in the
container view with an ID of LinearLayout1:
FragmentOne firstFragment = new FragmentOne();

firstFragment.setArguments(getIntent().getExtras());

FragmentManager fragManager = getSupportFragmentManager();

FragmentTransaction transaction = fragManager.beginTransaction();

241

An Introduction to Android Fragments

transaction.add(R.id.LinearLayout1, firstFragment);

transaction.commit();

The above code breaks down each step into a separate statement for the purposes of clarity. The last four lines
can, however, be abbreviated into a single line of code as follows:
getSupportFragmentManager().beginTransaction()

 .add(R.id.LinearLayout1, firstFragment).commit();

Once added to a container, a fragment may subsequently be removed via a call to the remove() method of the
fragment transaction instance, passing through a reference to the fragment instance that is to be removed:
transaction.remove(firstFragment);

Similarly, one fragment may be replaced with another by a call to the replace() method of the fragment
transaction instance. This takes as arguments the ID of the view containing the fragment and an instance of the
new fragment. The replaced fragment may also be placed on what is referred to as the back stack so that it can
be quickly restored if the user navigates back to it. This is achieved by making a call to the addToBackStack()
method of the fragment transaction object before making the commit() method call:
FragmentTwo secondFragment = new FragmentTwo();

transaction.replace(R.id.LinearLayout1, secondFragment);

transaction.addToBackStack(null);

transaction.commit();

30.5 Handling Fragment Events
As previously discussed, a fragment is very much like a sub-activity with its own layout, class and lifecycle. The
view components (such as buttons and text views) within a fragment are able to generate events just like those
in a regular activity. This raises the question as to which class receives an event from a view in a fragment; the
fragment itself, or the activity in which the fragment is embedded. The answer to this question depends on how
the event handler is declared.

In the chapter entitled “An Overview and Example of Android Event Handling”, two approaches to event handling
were discussed. The first method involved configuring an event listener and callback method within the code of
the activity. For example:
binding.button.setOnClickListener(

 new Button.OnClickListener() {

 public void onClick(View v) {

 // Code to be performed when
 // the button is clicked

 }

 }

);

In the case of intercepting click events, the second approach involved setting the android:onClick property
within the XML layout file:
<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="onClick"

 android:text="Click me" />

242

An Introduction to Android Fragments

The general rule for events generated by a view in a fragment is that if the event listener was declared in the
fragment class using the event listener and callback method approach, then the event will be handled first by
the fragment. If the android:onClick resource is used, however, the event will be passed directly to the activity
containing the fragment.

30.6 Implementing Fragment Communication
Once one or more fragments are embedded within an activity, the chances are good that some form of
communication will need to take place both between the fragments and the activity, and between one fragment
and another. In fact, good practice dictates that fragments do not communicate directly with one another. All
communication should take place via the encapsulating activity.

In order for an activity to communicate with a fragment, the activity must identify the fragment object via the
ID assigned to it. Once this reference has been obtained, the activity can simply call the public methods of the
fragment object.

Communicating in the other direction (from fragment to activity) is a little more complicated. In the first instance,
the fragment must define a listener interface, which is then implemented within the activity class. For example,
the following code declares an interface named ToolbarListener on a fragment class named ToolbarFragment.
The code also declares a variable in which a reference to the activity will later be stored:
public class ToolbarFragment extends Fragment {

 ToolbarListener activityCallback;

 public interface ToolbarListener {
 public void onButtonClick(int position, String text);
 }
.

.

}

The above code dictates that any class that implements the ToolbarListener interface must also implement a
callback method named onButtonClick which, in turn, accepts an integer and a String as arguments.

Next, the onAttach() method of the fragment class needs to be overridden and implemented. This method is
called automatically by the Android system when the fragment has been initialized and associated with an
activity. The method is passed a reference to the activity in which the fragment is contained. The method must
store a local reference to this activity and verify that it implements the ToolbarListener interface:
@Override

public void onAttach(Context context) {

 super.onAttach(context);

 try {

 activityCallback = (ToolbarListener) activity;

 } catch (ClassCastException e) {

 throw new ClassCastException(activity.toString()

 + " must implement ToolbarListener");

 }

}

243

An Introduction to Android Fragments

Upon execution of this example, a reference to the activity will be stored in the local activityCallback variable,
and an exception will be thrown if that activity does not implement the ToolbarListener interface.

The next step is to call the callback method of the activity from within the fragment. When and how this happens
is entirely dependent on the circumstances under which the activity needs to be contacted by the fragment. The
following code, for example, calls the callback method on the activity when a button is clicked:
public void buttonClicked (View view) {

 activityCallback.onButtonClick(arg1, arg2);

}

All that remains is to modify the activity class so that it implements the ToolbarListener interface. For example:
public class MainActivity extends FragmentActivity

 implements ToolbarFragment.ToolbarListener {

 public void onButtonClick(String arg1, int arg2) {
 // Implement code for callback method
 }
.
.
}

As we can see from the above code, the activity declares that it implements the ToolbarListener interface of the
ToolbarFragment class and then proceeds to implement the onButtonClick() method as required by the interface.

30.7 Summary
Fragments provide a powerful mechanism for creating re-usable modules of user interface layout and application
behavior, which, once created, can be embedded in activities. A fragment consists of a user interface layout file
and a class. Fragments may be utilized in an activity either by adding the fragment to the activity’s layout file, or
by writing code to manage the fragments at runtime. Fragments added to an activity in code can be removed and
replaced dynamically at runtime. All communication between fragments should be performed via the activity
within which the fragments are embedded.

Having covered the basics of fragments in this chapter, the next chapter will work through a tutorial designed to
reinforce the techniques outlined in this chapter.

245

Chapter 31

31. Using Fragments in Android
Studio - An Example
As outlined in the previous chapter, fragments provide a convenient mechanism for creating reusable modules
of application functionality consisting of both sections of a user interface and the corresponding behavior. Once
created, fragments can be embedded within activities.

Having explored the overall theory of fragments in the previous chapter, the objective of this chapter is to create
an example Android application using Android Studio designed to demonstrate the actual steps involved in
both creating and using fragments, and also implementing communication between one fragment and another
within an activity.

31.1 About the Example Fragment Application
The application created in this chapter will consist of a single activity and two fragments. The user interface
for the first fragment will contain a toolbar of sorts consisting of an EditText view, a SeekBar and a Button, all
contained within a ConstraintLayout view. The second fragment will consist solely of a TextView object, also
contained within a ConstraintLayout view.

The two fragments will be embedded within the main activity of the application and communication
implemented such that when the button in the first fragment is pressed, the text entered into the EditText view
will appear on the TextView of the second fragment using a font size dictated by the position of the SeekBar in
the first fragment.

Since this application is intended to work on earlier versions of Android, it will also be necessary to make use of
the appropriate Android support library.

31.2 Creating the Example Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Activity template before clicking on the Next button.

Enter FragmentExample into the Name field and specify com.ebookfrenzy.fragmentexample as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java. Using the steps outlined in section 11.8 Migrating a Project to View Binding, modify
the project to use view binding.

Return to the Gradle Scripts -> build.gradle (Module: FragmentExample.app) file and add the following directive
to the dependencies section (keeping in mind that a more recent version of the library may now be available):
implementation 'androidx.navigation:navigation-fragment:2.5.2'

31.3 Creating the First Fragment Layout
The next step is to create the user interface for the first fragment that will be used within our activity.

This user interface will consist of an XML layout file and a fragment class. While these could be added manually,
it is quicker to ask Android Studio to create them for us. Within the project tool window, locate the app -> java
-> com -> ebookfrenzy -> fragmentexample entry and right click on it. From the resulting menu, select the New

246

Using Fragments in Android Studio - An Example

-> Fragment -> Gallery... option to display the dialog shown in Figure 31-1 below:

Figure 31-1
Select the Fragment (Blank) template before clicking the Next button. On the subsequent screen, name the
fragment ToolbarFragment with a layout file named fragment_toolbar:

Figure 31-2
Load the fragment_toolbar.xml file into the layout editor using Design mode, right-click on the FrameLayout
entry in the Component Tree panel and select the Convert FrameLayout to ConstraintLayout menu option,
accepting the default settings in the confirmation dialog. Change the id from frameLayout to constraintLayout.
Select and delete the default TextView and add a Plain EditText, Seekbar and Button to the layout and change
the view ids to editText1, button1 and seekBar1 respectively.

Change the text on the button to read “Change Text”, extract the text to a string resource named change_text
and remove the Name text from the EditText view. Finally, set the layout_width property of the Seekbar to
match_constraint with margins set to 16dp on the left and right edges.

Use the Infer constraints toolbar button to add any missing constraints, at which point the layout should match
that shown in Figure 31-3 below:

247

Using Fragments in Android Studio - An Example

Figure 31-3

31.4 Migrating a Fragment to View Binding
As with the Empty Activity template, Android Studio does not enable view binding support when new fragments
are added to a project. Before moving to the next step of this tutorial, therefore, we will need to perform this
migration. Begin by editing the ToolbarFragment.java file and importing the binding for the fragment as follows:
import com.ebookfrenzy.fragmentexample.databinding.FragmentToolbarBinding;

Next, locate the onCreateView() method and make the following declarations and changes (which also include
adding the onDestroyView() method to ensure that the binding reference is removed when the fragment is
destroyed):
.
.
private FragmentToolbarBinding binding;

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 return inflater.inflate(R.layout.fragment_toolbar, container, false);

 binding = FragmentToolbarBinding.inflate(inflater, container, false);
 return binding.getRoot();
}

@Override
public void onDestroyView() {
 super.onDestroyView();
 binding = null;
}

Once these changes are complete, the fragment is ready to use view binding.

248

Using Fragments in Android Studio - An Example

31.5 Adding the Second Fragment
Repeating the steps used to create the toolbar fragment, add another empty fragment named TextFragment
with a layout file named fragment_text. Once again, convert the FrameLayout container to a ConstraintLayout
(changing the id to constraintLayout2) and remove the default TextView.

Drag a drop a TextView widget from the palette and position it in the center of the layout, using the Infer
constraints button to add any missing constraints. Change the id of the TextView to textView2, the text to read
“Fragment Two” and modify the textAppearance attribute to Large.

On completion, the layout should match that shown in Figure 31-4:

Figure 31-4
Repeat the steps performed in the previous section to migrate the TextFragment class to use view binding as
follows:
.

.

import com.ebookfrenzy.fragmentexample.databinding.FragmentTextBinding;
.

.
private FragmentTextBinding binding;

@Override

public View onCreateView(LayoutInflater inflater, ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 return inflater.inflate(R.layout.fragment_text, container, false);

 binding = FragmentTextBinding.inflate(inflater, container, false);
 return binding.getRoot();
}

@Override
public void onDestroyView() {

249

Using Fragments in Android Studio - An Example

 super.onDestroyView();
 binding = null;
}

31.6 Adding the Fragments to the Activity
The main activity for the application has associated with it an XML layout file named activity_main.xml. For the
purposes of this example, the fragments will be added to the activity using the <fragment> element within this
file. Using the Project tool window, navigate to the app -> res -> layout section of the FragmentExample project
and double-click on the activity_main.xml file to load it into the Android Studio Layout Editor tool.

With the Layout Editor tool in Design mode, select and delete the default TextView object from the layout and
select the Common category in the palette. Drag the FragmentContainerView component from the list of views
and drop it onto the layout so that it is centered horizontally and positioned such that the dashed line appears
indicating the top layout margin:

Figure 31-5
On dropping the fragment onto the layout, a dialog will appear displaying a list of Fragments available within
the current project as illustrated in Figure 31-6:

Figure 31-6
Select the ToolbarFragment entry from the list and click on the OK button to dismiss the Fragments dialog.
Once added, click on the red warning button in the top right-hand corner of the layout editor to display the
warnings panel. An unknown fragments message will be listed indicating that the Layout Editor tool needs to
know which fragment to display during the preview session. Click on the Pick Layout... link in the error message
as indicated in Figure 31-7:

Figure 31-7
In the resulting dialog (Figure 31-8) select the fragment_toolbar entry and before clicking the OK button:

250

Using Fragments in Android Studio - An Example

Figure 31-8
With the fragment selected, change the layout_width property to match_constraint so that it occupies the full
width of the screen. Click and drag another FragmentContainerView entry from the palette and position it so
that it is centered horizontally and located beneath the bottom edge of the first fragment. When prompted, select
the TextFragment entry from the fragment dialog before clicking on the OK button. Display the error panel
once again and click on the Use @layout/fragment_text option. Use the Infer constraints button to establish any
missing layout constraints.

Note that the fragments are now visible in the layout as demonstrated in Figure 31-9:

Figure 31-9
Before proceeding to the next step, select the TextFragment instance in the layout and, within the Attributes tool
window, change the ID of the fragment to text_fragment.

31.7 Making the Toolbar Fragment Talk to the Activity
When the user touches the button in the toolbar fragment, the fragment class is going to need to get the text
from the EditText view and the current value of the SeekBar and send them to the text fragment. As outlined in
“An Introduction to Android Fragments”, fragments should not communicate with each other directly, instead

251

Using Fragments in Android Studio - An Example

using the activity in which they are embedded as an intermediary.

The first step in this process is to make sure that the toolbar fragment responds to the button being clicked.
We also need to implement some code to keep track of the value of the SeekBar view. For the purposes of this
example, we will implement these listeners within the ToolbarFragment class. Select the ToolbarFragment.java
file and modify it so that it reads as shown in the following listing:
package com.ebookfrenzy.fragmentexample;

.

.
import androidx.annotation.NonNull;
import androidx.annotation.Nullable;
import android.content.Context;
import android.widget.SeekBar;

public class ToolbarFragment extends Fragment implements
 SeekBar.OnSeekBarChangeListener {

 private static int seekvalue = 10;
.

.

@Override
 public void onViewCreated(@NonNull View view,
 @Nullable Bundle savedInstanceState) {
 super.onViewCreated(view, savedInstanceState);

 binding.seekBar1.setOnSeekBarChangeListener(this);
 binding.button1.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 buttonClicked(v);
 }
 });
 }

 public void buttonClicked (View view) {

 }

 @Override
 public void onProgressChanged(SeekBar seekBar, int progress,
 boolean fromUser) {
 seekvalue = progress;
 }

 @Override
 public void onStartTrackingTouch(SeekBar arg0) {

252

Using Fragments in Android Studio - An Example

 }

 @Override
 public void onStopTrackingTouch(SeekBar arg0) {

 }
}

Before moving on, we need to take some time to explain the above code changes. First, the class is declared
as implementing the OnSeekBarChangeListener interface. This is because the user interface contains a
SeekBar instance and the fragment needs to receive notifications when the user slides the bar to change the
font size. Implementation of the OnSeekBarChangeListener interface requires that the onProgressChanged(),
onStartTrackingTouch() and onStopTrackingTouch() methods be implemented. These methods have been
implemented but only the onProgressChanged() method is actually required to perform a task, in this case storing
the new value in a variable named seekvalue which has been declared at the start of the class. Also declared is a
variable in which to store a reference to the EditText object.

The onViewCreated() method has been added to set up an onClickListener on the button which is configured
to call a method named buttonClicked() when a click event is detected. This method is also then implemented,
though at this point it does not do anything.

The next phase of this process is to set up the listener that will allow the fragment to call the activity when the
button is clicked. This follows the mechanism outlined in the previous chapter:
public class ToolbarFragment extends Fragment

 implements SeekBar.OnSeekBarChangeListener {

 private static int seekvalue = 10;

 private FragmentToolbarBinding binding;

 ToolbarListener activityCallback;

 public interface ToolbarListener {
 public void onButtonClick(int position, String text);
 }

 @Override
 public void onAttach(Context context) {
 super.onAttach(context);
 try {
 activityCallback = (ToolbarListener) context;
 } catch (ClassCastException e) {
 throw new ClassCastException(context.toString()
 + " must implement ToolbarListener");
 }
 }
.
.
 public void buttonClicked (View view) {

 activityCallback.onButtonClick(seekvalue,

253

Using Fragments in Android Studio - An Example

 binding.editText1.getText().toString());
 }

.

.

.

}

The above implementation will result in a method named onButtonClick() belonging to the activity class being
called when the button is clicked by the user. All that remains, therefore, is to declare that the activity class
implements the newly created ToolbarListener interface and to implement the onButtonClick() method.

Since the Android Support Library is being used for fragment support in earlier Android versions, the activity
also needs to be changed to subclass from FragmentActivity instead of AppCompatActivity. Bringing these
requirements together results in the following modified MainActivity.java file:
package com.ebookfrenzy.fragmentexample;

import androidx.appcompat.app.AppCompatActivity;

import androidx.fragment.app.FragmentActivity;
import android.os.Bundle;

public class MainActivity extends FragmentActivity implements ToolbarFragment.
ToolbarListener {
.

.

 public void onButtonClick(int fontsize, String text) {

 }
}

With the code changes as they currently stand, the toolbar fragment will detect when the button is clicked by the
user and call a method on the activity passing through the content of the EditText field and the current setting
of the SeekBar view. It is now the job of the activity to communicate with the Text Fragment and to pass along
these values so that the fragment can update the TextView object accordingly.

31.8 Making the Activity Talk to the Text Fragment
As outlined in “An Introduction to Android Fragments”, an activity can communicate with a fragment by
obtaining a reference to the fragment class instance and then calling public methods on the object. As such,
within the TextFragment class we will now implement a public method named changeTextProperties() which
takes as arguments an integer for the font size and a string for the new text to be displayed. The method will then
use these values to modify the TextView object. Within the Android Studio editing panel, locate and modify the
TextFragment.java file to add this new method:
package com.ebookfrenzy.fragmentexample;

.

.

public class TextFragment extends Fragment {

.

.

254

Using Fragments in Android Studio - An Example

 public void changeTextProperties(int fontsize, String text)
 {
 binding.textView2.setTextSize(fontsize);
 binding.textView2.setText(text);
 }
}

When the TextFragment fragment was placed in the layout of the activity, it was given an ID of text_fragment.
Using this ID, it is now possible for the activity to obtain a reference to the fragment instance and call the
changeTextProperties() method on the object. Edit the MainActivity.java file and modify the onButtonClick()
method as follows:
public void onButtonClick(int fontsize, String text) {

 TextFragment textFragment =
 (TextFragment)
 getSupportFragmentManager().findFragmentById(R.id.text_fragment);

 textFragment.changeTextProperties(fontsize, text);
}

31.9 Testing the Application
With the coding for this project now complete, the last remaining task is to run the application. When the
application is launched, the main activity will start and will, in turn, create and display the two fragments.
When the user touches the button in the toolbar fragment, the onButtonClick() method of the activity will be
called by the toolbar fragment and passed the text from the EditText view and the current value of the SeekBar.
The activity will then call the changeTextProperties() method of the second fragment, which will modify the
TextView to reflect the new text and font size:

Figure 31-10

255

Using Fragments in Android Studio - An Example

31.10 Summary
The goal of this chapter was to work through the creation of an example project intended specifically to
demonstrate the steps involved in using fragments within an Android application. Topics covered included
the use of the Android Support Library for compatibility with Android versions predating the introduction
of fragments, the inclusion of fragments within an activity layout and the implementation of inter-fragment
communication.

299

Chapter 38

38. Working with Android Lifecycle-
Aware Components
The earlier chapter entitled “Understanding Android Application and Activity Lifecycles” described the use of
lifecycle methods to track lifecycle state changes within a UI controller such as an activity or fragment. One
of the main problems with these methods is that they place the burden of handling lifecycle changes onto the
UI controller. On the surface this might seem like the logical approach since the UI controller is, after all, the
object going through the state change. The fact is, however, that the code that is typically impacted by the state
change invariably resides in other classes within the app. This led to complex code appearing in the UI controller
that needed to manage and manipulate other objects in response to changes in lifecycle state. Clearly this is a
scenario best avoided when following the Android architectural guidelines.

A much cleaner and logical approach would be for the objects within an app to be able to observe the lifecycle
state of other objects and to be responsible for taking any necessary actions in response to the changes. The class
responsible for tracking a user’s location, for example, could observe the lifecycle state of a UI controller and
suspend location updates when the controller enters a paused state. Tracking would then be restarted when the
controller enters the resumed state. This is made possible by the classes and interfaces provided by the Lifecycle
package bundled with the Android architecture components.

This chapter will introduce the terminology and key components that enable lifecycle awareness to be built into
Android apps.

38.1 Lifecycle Awareness
An object is said to be lifecycle-aware if it is able to detect and respond to changes in the lifecycle state of other
objects within an app. Some Android components, LiveData being a prime example, are already lifecycle-aware.
It is also possible to configure any class to be lifecycle-aware by implementing the LifecycleObserver interface
within the class.

38.2 Lifecycle Owners
Lifecycle-aware components can only observe the status of objects that are lifecycle owners. Lifecycle owners
implement the LifecycleOwner interface and are assigned a companion Lifecycle object which is responsible
for storing the current state of the component and providing state information to lifecycle observers. Most
standard Android Framework components (such as activity and fragment classes) are lifecycle owners. Custom
classes may also be configured as lifecycle owners by using the LifecycleRegistry class and implementing the
LifecycleObserver interface. For example:
public class SampleOwner implements LifecycleOwner {

 private LifecycleRegistry lifecycleRegistry;

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

300

Working with Android Lifecycle-Aware Components

 lifecycleRegistry = new LifecycleRegistry(this);

 }

 @NonNull

 @Override

 public Lifecycle getLifecycle() {

 return lifecycleRegistry;

 }

}

Unless the lifecycle owner is a subclass of another lifecycle-aware component, the class will need to trigger
lifecycle state changes itself via calls to methods of the LifecycleRegistry class. The markState() method can be
used to trigger a lifecycle state change passing through the new state value:
public void resuming() {

 lifecycleRegistry.markState(Lifecycle.State.RESUMED);

}

The above call will also result in a call to the corresponding event handler. Alternatively, the LifecycleRegistry
handleLifecycleEvent() method may be called and passed the lifecycle event to be triggered (which will also result
in the lifecycle state changing). For example:
lifecycleRegistry.handleLifecycleEvent(Lifecycle.Event.ON_START);

38.3 Lifecycle Observers
In order for a lifecycle-aware component to observe the state of a lifecycle owner it must implement the
DefaultLifecycleObserver interface and override methods for any lifecycle change events it needs to observe.
public class SampleObserver implements DefaultLifecycleObserver {

 // Lifecycle event methods overrides go here

}

An instance of this observer class is then created and added to the list of observers maintained by the Lifecycle
object.
getLifecycle().addObserver(new SampleObserver());

An observer may also be removed from the Lifecycle object at any time if it no longer needs to track the lifecycle
state.

Figure 38-1 illustrates the relationship between the key elements that provide lifecycle awareness:

Figure 38-1

301

Working with Android Lifecycle-Aware Components

38.4 Lifecycle States and Events
When the status of a lifecycle owner changes, the assigned Lifecycle object will be updated with the new state.
At any given time, a lifecycle owner will be in one of the following five states:

•	 Lifecycle.State.INITIALIZED

•	 Lifecycle.State.CREATED

•	 Lifecycle.State.STARTED

•	 Lifecycle.State.RESUMED

•	 Lifecycle.State.DESTROYED

As the component transitions through the different states, the Lifecycle object will trigger events on any
observers that have been added to the list. The following event methods are available to be overridden within
the lifecycle observer:

•	 onCreate()

•	 onResume()

•	 onPause()

•	 onStop()

•	 onStart()

•	 onDestroy()

The following code, for example, overrides the DefaultLifecycleObserver onResume() method:
@Override

public void onResume(@NonNull LifecycleOwner owner) {

 // Perform tasks in response to Resume status event

}

The flowchart in Figure 38-2 illustrates the sequence of state changes for a lifecycle owner and the lifecycle
events that will be triggered on observers between each state transition:

Figure 38-2

302

Working with Android Lifecycle-Aware Components

38.5 Summary
This chapter has introduced the basics of lifecycle awareness and the classes and interfaces of the Android
Lifecycle package included with Android Jetpack. The package contains a number of classes and interfaces that
are used to create lifecycle owners, lifecycle observers and lifecycle-aware components. A lifecycle owner has
assigned to it a Lifecycle object that maintains a record of the owners state and a list of subscribed observers.
When the owner’s state changes, the observer is notified via lifecycle event methods so that it can respond to
the change.

The next chapter will create an Android Studio project that demonstrates how to work with and create lifecycle-
aware components including the creation of both lifecycle observers and owners, and the handling of lifecycle
state changes and events.

329

Chapter 42

42. An Introduction to MotionLayout
The MotionLayout class provides an easy way to add animation effects to the views of a user interface layout.
This chapter will begin by providing an overview of MotionLayout and introduce the concepts of MotionScenes,
Transitions and Keyframes. Once these basics have been covered, the next two chapters (entitled “An Android
MotionLayout Editor Tutorial” and “A MotionLayout KeyCycle Tutorial”) will provide additional detail and
examples of MotionLayout animation in action through the creation of example projects.

42.1 An Overview of MotionLayout
MotionLayout is a layout container, the primary purpose of which is to animate the transition of views within
a layout from one state to another. MotionLayout could, for example, animate the motion of an ImageView
instance from the top left-hand corner of the screen to the bottom right-hand corner over a specified period of
time. In addition to the position of a view, other attribute changes may also be animated, such as the color, size
or rotation angle. These state changes can also be interpolated (such that a view moves, rotates and changes size
throughout the animation).

The motion of a view using MotionLayout may be performed in a straight line between two points, or
implemented to follow a path comprising intermediate points located at different positions between the start
and end points. MotionLayout also supports the use of touches and swipes to initiate and control animation.

MotionLayout animations are declared entirely in XML and do not typically require that any code be written.
These XML declarations may be implemented manually in the Android Studio code editor, visually using the
MotionLayout editor, or using a combination of both approaches.

42.2 MotionLayout
When implementing animation, the ConstraintLayout container typically used in a user interface must first be
converted to a MotionLayout instance (a task which can be achieved by right-clicking on the ConstraintLayout
in the layout editor and selecting the Convert to MotionLayout menu option). MotionLayout also requires at
least version 2.0.0 of the ConstraintLayout library.

Unsurprisingly since it is a subclass of ConstraintLayout, MotionLayout supports all of the layout features of
the ConstraintLayout. A user interface layout can, therefore, be designed in exactly the same way when using
MotionLayout for any views that do not require animation.

For views that are to be animated, two ConstraintSets are declared defining the appearance and location of the
view at the start and end of the animation. A transition declaration defines key frames to apply additional effects
to the target view between these start and end states, together with click and swipe handlers used to start and
control the animation.

Both the start and end ConstraintSets and the transitions are declared within a MotionScene XML file.

42.3 MotionScene
As we have seen in earlier chapters, an XML layout file contains the information necessary to configure the
appearance and layout behavior of the static views presented to the user, and this is still the case when using
MotionLayout. For non-static views (in other words the views that will be animated) those views are still
declared within the layout file, but the start, end and transition declarations related to those views are stored
in a separate XML file referred to as the MotionScene file (so called because all of the declarations are defined

330

An Introduction to MotionLayout

within a MotionScene element). This file is imported into the layout XML file and contains the start and end
ConstraintSets and Transition declarations (a single file can contain multiple ConstraintSet pairs and Transition
declarations allowing different animations to be targeted to specific views within the user interface layout).

The following listing shows a template for a MotionScene file:
<?xml version="1.0" encoding="utf-8"?>

<MotionScene

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:motion="http://schemas.android.com/apk/res-auto">

 <Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 </KeyFrameSet>

 </Transition>

 <ConstraintSet android:id="@+id/start">

 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">

 </ConstraintSet>

</MotionScene>

In the above XML, ConstraintSets named start and end (though any name can be used) have been declared
which, at this point, are yet to contain any constraint elements. The Transition element defines that these
ConstraintSets represent the animation start and end points and contains an empty KeyFrameSet element ready
to be populated with additional animation key frame entries. The Transition element also includes a millisecond
duration property to control the running time of the animation.

ConstraintSets do not have to imply motion of a view. It is possible, for example, to have the start and end sets
declare the same location on the screen, and then use the transition to animate other property changes such as
scale and rotation angle.

42.4 Configuring ConstraintSets
The ConstraintSets in the MotionScene file allow the full set of ConstraintLayout settings to be applied to a view
in terms of positioning, sizing and relation to the parent and other views. In addition, the following attributes
may also be included within the ConstraintSet declarations:

•	 alpha

•	 visibility

•	 elevation

•	 rotation

•	 rotationX

•	 rotationY

331

An Introduction to MotionLayout

•	 translationX

•	 translationY

•	 translationZ

•	 scaleX

•	 scaleY

For example, to rotate the view by 180° during the animation the following could be declared within the start
and end constraints:
<ConstraintSet android:id="@+id/start">

 <Constraint

.

.

 motion:layout_constraintStart_toStartOf="parent"

 android:rotation="0">
 </Constraint>

</ConstraintSet>

<ConstraintSet android:id="@+id/end">

 <Constraint

.

.

 motion:layout_constraintBottom_toBottomOf="parent"

 android:rotation="180">
 </Constraint>

</ConstraintSet>

The above changes tell MotionLayout that the view is to start at 0° and then, during the animation, rotate a full
180° before coming to rest upside-down.

42.5 Custom Attributes
In addition to the standard attributes listed above, it is also possible to specify a range of custom attributes
(declared using CustomAttribute). In fact, just about any property available on the view type can be specified
as a custom attribute for inclusion in an animation. To identify the name of the attribute, find the getter/setter
name from the documentation for the target view class, remove the get/set prefix and lower the case of the first
remaining character. For example, to change the background color of a Button view in code, we might call the
setBackgroundColor() setter method as follows:
myButton.setBackgroundColor(Color.RED)

When setting this attribute in a constraint set or key frame, the attribute name will be backgroundColor. In
addition to the attribute name, the value must also be declared using the appropriate type from the following
list of options:

•	 motion:customBoolean - Boolean attribute values.

•	 motion:customColorValue - Color attribute values.

•	 motion:customDimension - Dimension attribute values.

332

An Introduction to MotionLayout

•	 motion:customFloatValue - Floating point attribute values.

•	 motion:customIntegerValue - Integer attribute values.

•	 motion:customStringValue - String attribute values

For example, a color setting will need to be assigned using the customColorValue type:
<CustomAttribute

 motion:attributeName="backgroundColor"

 motion:customColorValue="#43CC76" />

The following excerpt from a MotionScene file, for example, declares start and end constraints for a view in
addition to changing the background color from green to red:
.

.

 <ConstraintSet android:id="@+id/start">

 <Constraint
 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteX="21dp"

 android:id="@+id/button"

 motion:layout_constraintTop_toTopOf="parent"

 motion:layout_constraintStart_toStartOf="parent" >

 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#33CC33" />
 </Constraint>
 </ConstraintSet>

 <ConstraintSet android:id="@+id/end">

 <Constraint

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteY="21dp"

 android:id="@+id/button"

 motion:layout_constraintEnd_toEndOf="parent"

 motion:layout_constraintBottom_toBottomOf="parent" >

 <CustomAttribute
 motion:attributeName="backgroundColor"
 motion:customColorValue="#F80A1F" />
 </Constraint>
 </ConstraintSet>

.

.

42.6 Triggering an Animation
Without some form of event to tell MotionLayout to start the animation, none of the settings in the MotionScene
file will have any effect on the layout (with the exception that the view will be positioned based on the setting in

333

An Introduction to MotionLayout

the start ConstraintSet).

The animation can be configured to start in response to either screen tap (OnClick) or swipe motion (OnSwipe)
gesture. The OnClick handler causes the animation to start and run until completion while OnSwipe will
synchronize the animation to move back and forth along the timeline to match the touch motion. The OnSwipe
handler will also respond to “flinging” motions on the screen. The OnSwipe handler also provides options
to configure how the animation reacts to dragging in different directions and the side of the target view to
which the swipe is to be anchored. This allows, for example, left-ward dragging motions to move a view in the
corresponding direction while preventing an upward motion from causing a view to move sideways (unless, of
course, that is the required behavior).

The OnSwipe and OnClick declarations are contained within the Transition element of a MotionScene file.
In both cases the view id must be specified. For example, to implement an OnSwipe handler responding to
downward drag motions anchored to the bottom edge of a view named button, the following XML would be
placed in the Transition element:
.

.

<Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 </KeyFrameSet>

 <OnSwipe
 motion:touchAnchorId="@+id/button"
 motion:dragDirection="dragDown"
 motion:touchAnchorSide="bottom" />
</Transition>

.

.

Alternatively, to add an OnClick handler to the same button:
<OnClick motion:targetId="@id/button"

 motion:clickAction="toggle" />

In the above example the action has been set to toggle mode. This mode, and the other available options can be
summarized as follows:

•	 toggle - Animates to the opposite state. For example, if the view is currently at the transition start point it will
transition to the end point, and vice versa.

•	 jumpToStart - Changes immediately to the start state without animation.

•	 jumpToEnd - Changes immediately to the end state without animation.

•	 transitionToStart - Transitions with animation to the start state.

•	 transitionToEnd - Transitions with animation to the end state.

334

An Introduction to MotionLayout

42.7 Arc Motion
By default, a movement of view position will travel in a straight-line between the start and end points. To
change the motion to an arc path, simply use the pathMotionArc attribute as follows within the start constraint,
configured with either a startHorizontal or startVertical setting to define whether arc is to be concave or convex:
<ConstraintSet android:id="@+id/start">

 <Constraint

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 motion:layout_editor_absoluteX="21dp"

 android:id="@+id/button"

 motion:layout_constraintTop_toTopOf="parent"

 motion:layout_constraintStart_toStartOf="parent"

 motion:pathMotionArc="startVertical" >

Figure 42-1 illustrates startVertical and startHorizontal arcs in comparison to the default straight line motion:

Figure 42-1

42.8 Keyframes
All of the ConstraintSet attributes outlined so far only apply to the start and end points of the animation. In
other words if the rotation property were set to 180° on the end point, the rotation will begin when animation
starts and complete when the end point is reached. It is not, therefore, possible to configure the rotation to reach
the full 180° at a point 50% of the way through the animation and then rotate back to the original orientation by
the end of the animation. Fortunately, this type of effect is available using Keyframes.

Keyframes are used to define intermediate points during the animation at which state changes are to occur.
Keyframes could, for example, be declared such that the background color of a view is to have transitioned to
blue at a point 50% of the way through the animation, green at the 75% point and then back to the original color
by the end of the animation. Keyframes are implemented within the Transition element of the MotionScene file
embedded into the KeyFrameSet element.

MotionLayout supports several types of Keyframe which can be summarized as follows:

42.8.1 Attribute Keyframes
Attribute Keyframes (declared using KeyAttribute) allow view attributes to be changed at intermediate points
in the animation timeline. KeyAttribute supports the same set of attributes listed above for ConstraintSets
combined with the ability to specify where in the animation timeline the change is to take effect. For example,

335

An Introduction to MotionLayout

the following Keyframe declaration will cause the button view to double in size gradually both horizontally
(scaleX) and vertically (scaleY), reaching full size at a point 50% through the timeline. For the remainder of the
timeline, the view will decrease in size to its original dimensions:
<Transition

 motion:constraintSetEnd="@+id/end"

 motion:constraintSetStart="@id/start"

 motion:duration="1000">

 <KeyFrameSet>

 <KeyAttribute
 motion:motionTarget="@+id/button"
 motion:framePosition="50"
 android:scaleX="2.0" />
 <KeyAttribute
 motion:motionTarget="@+id/button"
 motion:framePosition="50"
 android:scaleY="2.0" />
 </KeyFrameSet>

42.8.2 Position Keyframes
Position keyframes (KeyPosition) are used to modify the path followed by a view as it moves between the start
and end locations. By placing key positions at different points on the timeline, a path of just about any level of
complexity can be applied to an animation. Positions are declared using x and y coordinates combined with the
corresponding points in the transition timeline. These coordinates must be declared in relation to one of the
following coordinate systems:

•	 parentRelative - The x and y coordinates are relative to the parent container where the coordinates are
specified as a percentage (represented as a value between 0.0 and 1.0):

Figure 42-2
•	 deltaRelative - Instead of being relative to the parent, the x and y coordinates are relative to the start and end

336

An Introduction to MotionLayout

positions. For example, the start point is (0, 0) the end point (1, 1). Keep in mind that the x and y coordinates
can be negative values):

Figure 42-3
•	 pathRelative - The x and y coordinates are relative to the path, where the straight line between start and end

points serves as the X-axis of the graph. Once again, coordinates are represented as a percentage (0.0 to 1.0).
This is similar to the deltaRelative coordinate space but takes into consideration the angle of the path. Once
again coordinates may be negative:

Figure 42-4
As an example, the following ConstraintSets declare start and end points on either side of a device screen. By

337

An Introduction to MotionLayout

default, a view transition using these points would move in a straight line across the screen as illustrated in
Figure 42-5:

Figure 42-5
Suppose, however, that the view is required to follow a path similar to that shown in Figure 42-6 below:

Figure 42-6
To achieve this, key frame position points could be declared within the transition as follows:
<KeyPosition

 motion:motionTarget="@+id/button"

 motion:framePosition="25"

 motion:keyPositionType="pathRelative"

 motion:percentY="0.3"

 motion:percentX="0.25"/>

<KeyPosition

 motion:motionTarget="@+id/button"

 motion:framePosition="75"

 motion:keyPositionType="pathRelative"

 motion:percentY="-0.3"

 motion:percentX="0.75"/>

The above elements create key frame position points 25% and 75% through the path using the pathRelative
coordinate system. The first position is placed at coordinates (0.25, 0.3) and the second at (0.75, -0.3). These
position key frames can be visualized as illustrated in Figure 42-7 below:

338

An Introduction to MotionLayout

Figure 42-7

42.9 Time Linearity
In the absence of any additional settings, the animations outlined above will be performed at a constant speed.
To vary the speed of an animation (for example so that it accelerates and the decelerates) the transition easing
attribute (transitionEasing) can be used either within a ConstraintSet or Keyframe.

For complex easing requirements, the linearity can be defined by plotting points on a cubic Bézier curve, for
example:
.

.

 motion:layout_constraintBottom_toBottomOf="parent"

 motion:transitionEasing="cubic(0.2, 0.7, 0.3, 1)"
 android:rotation="360">

.

.

If you are unfamiliar with Bézier curves, consider using the curve generator online at the following URL:

https://cubic-bezier.com/

For most requirements, however, easing can be specified using the built-in standard, accelerate and decelerate
values:
.

.

 motion:layout_constraintBottom_toBottomOf="parent"

 motion:transitionEasing="decelerate"
 android:rotation="360">

.

.

42.10 KeyTrigger
The trigger keyframe (KeyTrigger) allows a method on a view to be called when the animation reaches a
specified frame position within the animation timeline. This also takes into consideration the direction of the

https://cubic-bezier.com/

339

An Introduction to MotionLayout

animations. For example, different methods can be called depending on whether the animation is running
forward or backward. Consider a button that is to be made visible when the animation moves beyond 20% of the
timeline. The KeyTrigger would be implemented within the KeyFrameSet of the Transition element as follows
using the onPositiveCross property:
.

.

 <KeyFrameSet>

 <KeyTrigger
 motion:framePosition="20"
 motion:onPositiveCross="show"
 motion:motionTarget="@id/button"/>
.

.

Similarly, if the same button is to be hidden when the animation is reversed and drops below the 10%, a second
key trigger could be added using the onNegativeCross property:
<KeyTrigger

 motion:framePosition="20"

 motion:onNegativeCross="show"
 motion:motionTarget="@id/button2"/>

If the animation is using toggle action, simply use the onCross property:
<KeyTrigger

 motion:framePosition="20"

 motion:onCross="show"

 motion:motionTarget="@id/button2"/>

42.11 Cycle and Time Cycle Keyframes
While position keyframes can be used to add intermediate state changes into the animation this would quickly
become cumbersome if large numbers of repetitive positions and changes needed to be implemented. For
situations where state changes need to be performed repetitively with predictable changes, MotionLayout
includes the Cycle and Time Cycle keyframes, a topic which will be covered in detail in the chapter entitled “A
MotionLayout KeyCycle Tutorial”.

42.12 Starting an Animation from Code
So far in this chapter we have only looked at controlling an animation using the OnSwipe and OnClick handlers.
It is also possible to start an animation from within code by calling methods on the MotionLayout instance. The
following code, for example, runs the transition from start to end with a duration of 2000ms for a layout named
motionLayout:
motionLayout.setTransitionDuration(2000);

motionLayout.transitionToEnd();

In the absence of addition settings, the start and end states used for the animation will be those declared in the
Transition declaration of the MotionScene file. To use specific start and end constraint sets, simply reference
them by id in a call to the setTransition() method of the MotionLayout instance:
motionLayout.setTransitionDuration(2000);

motionLayout.transitionToEnd();

To monitor the state of an animation while it is running, add a transition listener to the MotionLayout instance

340

An Introduction to MotionLayout

as follows:
motionLayout.setTransitionListener(transitionListener);

MotionLayout.TransitionListener transitionListener =

 new MotionLayout.TransitionListener() {

 @Override

 public void onTransitionStarted(MotionLayout motionLayout,

 int startId, int endId) {

		 // Called when the transition starts

 }

 @Override

 public void onTransitionChange(MotionLayout motionLayout, int startId,

 int endId, float progress) {

		 // Called each time a preoperty changes. Track progress value to find

		 // current position

 }

 @Override

 public void onTransitionCompleted(MotionLayout motionLayout, int currentId) {

 // Called when the transition is complete

 }

 @Override

 public void onTransitionTrigger(MotionLayout motionLayout, int triggerId,

 boolean positive, float progress) {

		 // Called when a trigger keyframe threshold is crossed

 }

};

42.13 Summary
MotionLayout is a subclass of ConstraintLayout designed specifically to add animation effects to the views in
user interface layouts. MotionLayout works by animating the transition of a view between two states defined by
start and end constraint sets. Additional animation effects may be added between these start and end points by
making use of keyframes.

Animations may be triggered either via OnClick or OnSwipe handlers or programmatically via method calls on
the MotionLayout instance.

387

Chapter 47

47. Working with the RecyclerView
and CardView Widgets
The RecyclerView and CardView widgets work together to provide scrollable lists of information to the user in
which the information is presented in the form of individual cards. Details of both classes will be covered in this
chapter before working through the design and implementation of an example project.

47.1 An Overview of the RecyclerView
Much like the ListView class outlined in the chapter entitled “Working with the Floating Action Button and
Snackbar”, the purpose of the RecyclerView is to allow information to be presented to the user in the form of
a scrollable list. The RecyclerView, however, provides a number of advantages over the ListView. In particular,
the RecyclerView is significantly more efficient in the way it manages the views that make up a list, essentially
reusing existing views that make up list items as they scroll off the screen instead if creating new ones (hence the
name “recycler”). This both increases the performance and reduces the resources used by a list, a feature that is
of particular benefit when presenting large amounts of data to the user.

Unlike the ListView, the RecyclerView also provides a choice of three built-in layout managers to control the way
in which the list items are presented to the user:

•	 LinearLayoutManager – The list items are presented as either a horizontal or vertical scrolling list.

Figure 47-1
•	 GridLayoutManager – The list items are presented in grid format. This manager is best used when the list

items are of uniform size.

Figure 47-2
•	 StaggeredGridLayoutManager - The list items are presented in a staggered grid format. This manager is best

388

Working with the RecyclerView and CardView Widgets

used when the list items are not of uniform size.

Figure 47-3
For situations where none of the three built-in managers provide the necessary layout, custom layout managers
may be implemented by subclassing the RecyclerView.LayoutManager class.

Each list item displayed in a RecyclerView is created as an instance of the ViewHolder class. The ViewHolder
instance contains everything necessary for the RecyclerView to display the list item, including the information
to be displayed and the view layout used to display the item.

As with the ListView, the RecyclerView depends on an adapter to act as the intermediary between the
RecyclerView instance and the data that is to be displayed to the user. The adapter is created as a subclass of the
RecyclerView.Adapter class and must, at a minimum, implement the following methods, which will be called at
various points by the RecyclerView object to which the adapter is assigned:

•	 getItemCount() – This method must return a count of the number of items that are to be displayed in the list.

•	 onCreateViewHolder() – This method creates and returns a ViewHolder object initialized with the view that
is to be used to display the data. This view is typically created by inflating the XML layout file.

•	 onBindViewHolder() – This method is passed the ViewHolder object created by the onCreateViewHolder()
method together with an integer value indicating the list item that is about to be displayed. Contained within
the ViewHolder object is the layout assigned by the onCreateViewHolder() method. It is the responsibility of
the onBindViewHolder() method to populate the views in the layout with the text and graphics corresponding
to the specified item and to return the object to the RecyclerView where it will be presented to the user.

Adding a RecyclerView to a layout is simply a matter of adding the appropriate element to the XML content
layout file of the activity in which it is to appear. For example:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout

 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 app:layout_behavior="@string/appbar_scrolling_view_behavior"

 tools:context=".MainActivity"

 tools:showIn="@layout/activity_card_demo">

 <androidx.recyclerview.widget.RecyclerView
 android:id="@+id/recycler_view"

389

Working with the RecyclerView and CardView Widgets

 android:layout_width="0dp"
 android:layout_height="0dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:listItem="@layout/card_layout" />

</androidx.constraintlayout.widget.ConstraintLayout>

.

.

In the above example the RecyclerView has been embedded into the CoordinatorLayout of a main activity
layout file along with the AppBar and Toolbar. This provides some additional features, such as configuring the
Toolbar and AppBar to scroll off the screen when the user scrolls up within the RecyclerView (a topic covered in
more detail in the chapter entitled “Working with the AppBar and Collapsing Toolbar Layouts”).

47.2 An Overview of the CardView
The CardView class is a user interface view that allows information to be presented in groups using a card
metaphor. Cards are usually presented in lists using a RecyclerView instance and may be configured to appear
with shadow effects and rounded corners. Figure 47-4, for example, shows three CardView instances configured
to display a layout consisting of an ImageView and two TextViews:

Figure 47-4
The user interface layout to be presented with a CardView instance is defined within an XML layout resource file
and loaded into the CardView at runtime. The CardView layout can contain a layout of any complexity using the
standard layout managers such as RelativeLayout and LinearLayout. The following XML layout file represents a
card view layout consisting of a RelativeLayout and a single ImageView. The card is configured to be elevated to
create shadowing effect and to appear with rounded corners:
<?xml version="1.0" encoding="utf-8"?>

 <androidx.cardview.widget.CardView

 xmlns:card_view="http://schemas.android.com/apk/res-auto"

 xmlns:android="http://schemas.android.com/apk/res/android"

 android:id="@+id/card_view"

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:layout_margin="5dp"

390

Working with the RecyclerView and CardView Widgets

 card_view:cardCornerRadius="12dp"

 card_view:cardElevation="3dp"

 card_view:contentPadding="4dp">

 <RelativeLayout

 android:layout_width="match_parent"

 android:layout_height="wrap_content"

 android:padding="16dp" >

 <ImageView

 android:layout_width="100dp"

 android:layout_height="100dp"

 android:id="@+id/item_image"

 android:layout_alignParentLeft="true"

 android:layout_alignParentTop="true"

 android:layout_marginRight="16dp" />

 </RelativeLayout>

</androidx.cardview.widget.CardView>

When combined with the RecyclerView to create a scrollable list of cards, the onCreateViewHolder() method of
the recycler view inflates the layout resource file for the card, assigns it to the ViewHolder instance and returns
it to the RecyclerView instance.

47.3 Summary
This chapter has introduced the Android RecyclerView and CardView components. The RecyclerView provides
a resource efficient way to display scrollable lists of views within an Android app. The CardView is useful when
presenting groups of data (such as a list of names and addresses) in the form of cards. As previously outlined,
and demonstrated in the tutorial contained in the next chapter, the RecyclerView and CardView are particularly
useful when combined.

699

Chapter 81

81. An Overview of Android In-App
Billing
In the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. Another
revenue opportunity was soon introduced in the form of embedding advertising within applications. Perhaps the
most common and lucrative option is now to charge the user for purchasing items from within the application
after it has been installed. This typically takes the form of access to a higher level in a game, acquiring virtual
goods or currency, or subscribing to premium content in the digital edition of a magazine or newspaper.

Google provides support for the integration of in-app purchasing through the Google Play In-App Billing API
and the Play Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app
billing into your Android projects. Once these topics have been explored, the next chapter will walk you through
creating an example app that includes in-app purchasing features.

81.1 Preparing a Project for In-App Purchasing
Building in-app purchasing into an app will require a Google Play Developer Console account, details of which
were covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. You will also
need to register a Google merchant account and configure your payment settings. These settings can be found
by navigating to Setup -> Payments profile in the Play Console. Note that merchant registration is not available
in all countries. For details, refer to the following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app will then need to be uploaded to the console and enabled for in-app purchasing. The console will not
activate in-app purchasing support for an app, however, unless the Google Play Billing Library has been added
to the module-level build.gradle file. When working with Kotlin, the Google Play Kotlin Extensions Library is
also recommended:
dependencies {

.

.

 implementation 'com.android.billingclient:billing:<latest version>'
.

.

}

Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

81.2 Creating In-App Products and Subscriptions
Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel as highlighted in Figure 81-1 below:

https://support.google.com/googleplay/android-developer/answer/9306917

700

An Overview of Android In-App Billing

Figure 81-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into
the categories of consumable (the item must be purchased each time it is required by the user such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed on a regular schedule such as access to news
content or the premium features of an app. When creating a subscription, a base plan is defined specifying the
price, renewal period (monthly, annually, etc.), and whether the subscription auto-renews. Users can also be
provided with discount offers and given the option of pre-purchasing a subscription.

81.3 Billing Client Initialization
Communication between your app and the Google Play Billing Library is handled by a BillingClient instance.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private final PurchasesUpdatedListener purchasesUpdatedListener =

 new PurchasesUpdatedListener() {

 @Override

 public void onPurchasesUpdated(BillingResult billingResult,

 List<Purchase> purchases) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK

 && purchases != null) {

 // Purchase(s) successful

 for (Purchase purchase : purchases) {

 // Process purchases

701

An Overview of Android In-App Billing

 }

 } else if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.USER_CANCELED) {

 // User cancelled purchase

 } else {

 // handle errors here

 }

 }

};

private BillingClient billingClient = BillingClient.newBuilder(context)

 .setListener(purchasesUpdatedListener)

 .enablePendingPurchases()

 .build();

81.4 Connecting to the Google Play Billing Library
After the successful creation of the Billing Client, the next step is to initialize a connection to the Google Play
Billing Library. To establish this connection, a call needs to be made to the startConnection() method of the
billing client instance. Since the connection is performed asynchronously, a BillingClientStateListener handler
needs to be implemented to receive a callback indicating whether the connection was successful. Code should
also be added to override the onBillingServiceDisconnected() method. This is called if the connection to the
Billing Library is lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method which can be used to check that the client is ready:
billingClient.startConnection(new BillingClientStateListener() {

 @Override

 public void onBillingSetupFinished(

 @NonNull BillingResult billingResult) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK) {

 // Connection successful

 } else {

 // Connection failed

 }

 }

 @Override

 public void onBillingServiceDisconnected() {

 // Existing connection lost

 }

});

702

An Overview of Android In-App Billing

81.5 Querying Available Products
Once the billing environment is initialized and ready to go, the next step is to request the details of the products or
subscriptions that are available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):
QueryProductDetailsParams queryProductDetailsParams =

 QueryProductDetailsParams.newBuilder()

 .setProductList(

 ImmutableList.of(

 QueryProductDetailsParams.Product.newBuilder()

 .setProductId("one_button_click")

 .setProductType(BillingClient.ProductType.INAPP)

 .build()))

 .build();

billingClient.queryProductDetailsAsync(queryProductDetailsParams,

 new ProductDetailsResponseListener() {

 public void onProductDetailsResponse(

 @NonNull BillingResult billingResult,

 @NonNull List<ProductDetails> productDetailsList) {

 if (!productDetailsList.isEmpty()) {

 // Process list of matching products

 } else {

 // No product matches found

 }

 }

 }

);

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler which, in turn,
is called and passed a list of ProductDetail objects containing information about the matching products. For
example, we can call methods on these objects to get information such as the product name, title, description,
price, and offer details.

81.6 Starting the Purchase Process
Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the item being purchased.
BillingFlowParams billingFlowParams =

 BillingFlowParams.newBuilder()

 .setProductDetailsParamsList(

 ImmutableList.of(

 BillingFlowParams.ProductDetailsParams.newBuilder()

703

An Overview of Android In-App Billing

 .setProductDetails(productDetails)

 .build()

)

)

 .build();

billingClient.launchBillingFlow(this, billingFlowParams);

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.

81.7 Completing the Purchase
When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:
if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED) {

 // Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {

 // Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it will need to be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance together with an AcknowledgePurchaseResponseListener handler. Managed product purchases and
subscriptions are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
AcknowledgePurchaseParams acknowledgePurchaseParams =

 AcknowledgePurchaseParams.newBuilder()

 .setPurchaseToken(purchase.getPurchaseToken())

 .build();

AcknowledgePurchaseResponseListener acknowledgePurchaseResponseListener =

 new AcknowledgePurchaseResponseListener() {

 @Override

 public void onAcknowledgePurchaseResponse(

 @NonNull BillingResult billingResult) {

 // Check acknowledgement result

 }

};

For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token, a ConsumeResponseListener, and a call to the billing client’s consumeAsync() method:
ConsumeParams consumeParams =

704

An Overview of Android In-App Billing

 ConsumeParams.newBuilder()

 .setPurchaseToken(purchase.getPurchaseToken())

 .build();

ConsumeResponseListener listener = new ConsumeResponseListener() {

 @Override

 public void onConsumeResponse(BillingResult billingResult,

 @NonNull String purchaseToken) {

 if (billingResult.getResponseCode() ==

 BillingClient.BillingResponseCode.OK) {

 // Purchase consumed successfully

 }

 }

};

billingClient.consumeAsync(consumeParams, listener);

81.8 Querying Previous Purchases
When working with in-app billing it is a common requirement to check whether a user has already purchased a
product or subscription. A list of all the user’s previous purchases of a specific type can be generated by calling
the queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:
QueryPurchasesParams queryPurchasesParams =

 QueryPurchasesParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build();

billingClient.queryPurchasesAsync(queryPurchasesParams,

 new PurchasesResponseListener() {

 @Override

 public void onQueryPurchasesResponse(@NonNull BillingResult billingResult,

 @NonNull List<Purchase> list) {

 // Process list of purchases

 }

});

To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:
QueryPurchaseHistoryParams queryPurchaseHistoryParams =

 QueryPurchaseHistoryParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build();

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams,

 new PurchaseHistoryResponseListener() {

705

An Overview of Android In-App Billing

 @Override

 public void onPurchaseHistoryResponse(@NonNull BillingResult billingResult,

 @NonNull List<PurchaseHistoryRecord> list) {

 // Process purchase history

 }

});

81.9 Summary
In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. In this chapter, we have explored managed products and subscriptions and explained
the difference between consumable and non-consumable products. In-app purchasing support is added to
an app using the Google Play In-app Billing Library and involves creating and initializing a billing client on
which methods are called to perform tasks such as making purchases, listing available products, and consuming
existing purchases. The next chapter contains a tutorial demonstrating the addition of in-app purchases to an
Android Studio project.

767

Index

Index

Symbols
<fragment> 239

<fragment> element 239

<receiver> 456

<service> 466, 475

 Code Reformatting 73

.well-known folder 429, 452, 664

A
AbsoluteLayout 118

ACCESS_COARSE_LOCATION permission 600

ACCESS_FINE_LOCATION permission 600

acknowledgePurchase() method 703

ACTION_CREATE_DOCUMENT 571

ACTION_CREATE_INTENT 572

ACTION_DOWN 214

ACTION_MOVE 214

ACTION_OPEN_DOCUMENT intent 564

ACTION_POINTER_DOWN 214

ACTION_POINTER_UP 214

ACTION_UP 214

ACTION_VIEW 447

Active / Running state 92

Activity 79, 95

adding to a project 175

adding views in Java code 195

class 95

creation 14

Entire Lifetime 99

Foreground Lifetime 99

lifecycle methods 98

lifecycles 89

returning data from 426

state change example 103

state changes 95

states 92

Visible Lifetime 99

ActivityCompat class 605

Activity Lifecycle 91

Activity Manager 78

ActivityResultLauncher 427

Activity Stack 91

Actual screen pixels 186

adb

command-line tool 57

connection testing 63

device pairing 61

enabling on Android devices 57

Linux configuration 60

list devices 57

macOS configuration 58

overview 57

restart server 58

testing connection 63

WiFi debugging 61

Windows configuration 59

Wireless debugging 61

Wireless pairing 61

addCategory() method 455

addMarker() method 627

addView() method 190

ADD_VOICEMAIL permission 600

android

command-line tool 35

gestureColor 233

layout_behavior property 411

onClick 241

process 475

uncertainGestureColor 233

Android

Activity 79

architecture 75

events 207

intents 80

768

Index

onClick Resource 207

runtime 76

SDK Packages 6

android.app 76

Android Architecture Components 257

android.content 76

android.content.Intent 425

android.database 76

Android Debug Bridge. See ADB

Android Design Support Library 367

Android Development

System Requirements 3

Android Devices

designing for different 117

android.graphics 76

android.hardware 76

android.intent.action 461

android.intent.action.MAIN 447

android.intent.category.LAUNCHER 447

Android Libraries 76

AndroidManifest.xml file 176

android.media 77

Android Monitor tool window 31

Android Native Development Kit 77

android.net 77

android.opengl 77

android.os 77

android.permission.RECORD_AUDIO 609

android.print 77

Android Project

create new 13

android.provider 77

Android SDK Location

identifying 9

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 10

macOS 10

Windows 7 9

Windows 8 9

Android Software Stack 75

Android Storage Access Framework 564

Android Studio

changing theme 54

downloading 3

Editor Window 48

installation 4

Linux installation 5

macOS installation 4

Main Window 48

Menu Bar 48

Navigation Bar 48

Project tool window 49

setup wizard 5

Status Bar 49

Toolbar 48

Tool window bars 50

tool windows 49

updating 11

Welcome Screen 47

Windows installation 4

android.text 77

android.util 77

android.view 77

android.view.View 120

android.view.ViewGroup 117, 120

Android Virtual Device. See AVD

overview 27

Android Virtual Device Manager 27

android.webkit 77

android.widget 77

AndroidX libraries 760

APK analyzer 696

APK file 690

split 720

APK File

analyzing 696

APK Signing 760

APK Wizard dialog 688

App Architecture

modern 257

769

Index
AppBar

anatomy of 409

appbar_scrolling_view_behavior 411

App Bundles 685

creating 690

overview 685

revisions 695

uploading 692

AppCompatActivity class 96

App Inspector 51

Application

stopping 31

Application Context 81

Application Framework 77

Application Manifest 81

Application Resources 81

App Link

Adding Intent Filter 672

Assistant 667

Digital Asset Links file 664, 429

Intent Filter Handling 672

Intent Filters 663

Intent Handling 664

Testing 676

tutorial 667

URL Mapping 669

App Link Assistant 667

App Links 663

auto verification 429

autoVerify 429

manually enabling 431

overview 663

Apply Changes 203

Apply Changes and Restart Activity 203

Apply Code Changes 203

fallback settings 205

options 203

Run App 203

tutorial 205

applyToActivitiesIfAvailable() method 756

Architecture Components 257

ART 76

assetlinks.json , 664, 429

Attribute Keyframes 334

Audio

supported formats 607

Audio Playback 607

Audio Recording 607

Autoconnect Mode 150

Automatic Link Verification 429, 451

autoVerify 429, 672

AVD

command-line creation 27, 35

configuration files 37

creation 27

device frame 34

launch in tool window 34

overview 27

renaming 37

running an application 29

standalone 33

starting 28

Startup size and orientation 29

B
Background Process 90

Barriers 144

adding 162

constrained views 144

Base APK file 720

Baseline Alignment 143

beginTransaction() method 240

BillingClient 704

acknowledgePurchase() method 703

consumeAsync() method 703

getPurchaseState() method 703

initialization 700, 710

launchBillingFlow() method 702

queryProductDetailsAsync() method 702

queryPurchasesAsync() method 704

startConnection() method 701

BillingResult 717

getDebugMessage() 717

Binding Expressions 281

770

Index

one-way 281

two-way 282

bindService() method 463, 468

Biometric Authentication 677

callbacks 681

overview 677

tutorial 677

Biometric Prompt 682

BitmapFactory 565

black activity 14

Blank template 121

Blueprint view 149

BODY_SENSORS permission 600

Bound Service 463

adding to a project 464

Implementing the Binder 464

Interaction options 463

BoundService class 465

Broadcast Intent 455

example 458

overview 80, 455

sending 458

Sticky 457

Broadcast Receiver 455

adding to manifest file 460

creation 459

overview 80, 456

BroadcastReceiver class 456

BroadcastReceiver superclass 459

BufferedReader object 576

Build tool window 51

Build Variants 51, 760

tool window 51

Bundle class 112

Bundled Notifications 500

C
Calendar permissions 600

CALL_PHONE permission 600

CAMERA permission 600

Camera permissions 600

CameraUpdateFactory class

methods 628

CancellationSignal 682

Canvas class 658

CardView

example 391

layout file 389

responding to selection of 397

CardView class 389

CATEGORY_OPENABLE 564

C/C++ Libraries 77

Chain bias 170

chain head 142

chains 142

Chains

creation of 167

Chain style

changing 169

chain styles 142

CharSequence 113

CheckBox 117

checkSelfPermission() method 604

Circle class 617

Code completion 68

Code Editor

basics 65

Code completion 68

Code Generation 70

Code Reformatting 73

Document Tabs 65

Editing area 66

Gutter Area 66

Live Templates 74

Splitting 67

Statement Completion 69

Status Bar 67

Code Generation 70

code samples

download 1

CollapsingToolbarLayout

example 413

introduction 412

parallax mode 412

771

Index
pin mode 412

setting scrim color 415

setting title 415

with image 412

Color class 659

COLOR_MODE_COLOR 634, 654

COLOR_MODE_MONOCHROME 634, 654

com.android.application 723

com.android.dynamic-feature 723

Common Gestures 221

detection 221

Component tree 17

Configuration APK file 720

Constraint Bias 141

adjusting 154

ConstraintLayout

advantages of 147

Availability 148

Barriers 144

Baseline Alignment 143

chain bias 170

chain head 142

chains 142

chain styles 142

Constraint Bias 141

Constraints 139

conversion to 166

convert to MotionLayout 341

deleting constraints 154

guidelines 160

Guidelines 144

manual constraint manipulation 151

Margins 140, 155

Opposing Constraints 140, 156

overview of 139

Packed chain 143, 170

ratios 147, 171

Spread chain 142

Spread inside 169

Spread inside chain 142

tutorial 175

using in Android Studio 149

Weighted chain 142, 170

Widget Dimensions 143, 158

Widget Group Alignment 165

ConstraintLayout chains

creation of 167

in layout editor 167

ConstraintLayout Chain style

changing 169

Constraints

deleting 154

ConstraintSet

addToHorizontalChain() method 192

addToVerticalChain() method 192

alignment constraints 191

apply to layout 190

applyTo() method 190

centerHorizontally() method 191

centerVertically() method 191

chains 191

clear() method 192

clone() method 191

connect() method 190

connect to parent 190

constraint bias 191

copying constraints 191

create 190

create connection 190

createHorizontalChain() method 191

createVerticalChain() method 191

guidelines 192

removeFromHorizontalChain() method 192

removeFromVerticalChain() method 192

removing constraints 192

rotation 193

scaling 192

setGuidelineBegin() method 192

setGuidelineEnd() method 192

setGuidelinePercent() method 192

setHorizonalBias() method 191

setRotationX() method 193

setRotationY() method 193

setScaleX() method 192

772

Index

setScaleY() method 192

setTransformPivot() method 193

setTransformPivotX() method 193

setTransformPivotY() method 193

setVerticalBias() method 191

sizing constraints 191

tutorial 195

view IDs 197

ConstraintSet class 189, 190

ConstraintSet.PARENT_ID 190

Constraint Sets 190

ConstraintSets

configuring 330

consumeAsync() method 703

ConsumeParams 715

ConsumeResponseListener 703

Contacts permissions 600

container view 117

Content Provider 78

overview 81

Context class 81

CoordinatorLayout 118, 409, 411

createPrintDocumentAdapter() method 649

Custom Attribute 331

Custom Document Printing 637, 649

Custom Gesture

recognition 227

Custom Print Adapter

implementation 651

Custom Print Adapters 649

Custom Theme

building 748

Cycle Editor 359

Cycle Keyframe 339

Cycle Keyframes

overview 355

D
dangerous permissions 599

list of 600

Dark Theme 32

enable on device 32

Data Access Object (DAO) 530

Data Access Objects (DAO) 534

Database Inspector 537, 561

live updates 561

SQL query 561

Database Rows 524

Database Schema 523

Database Tables 523

Data binding

binding expressions 281

Data Binding 260

binding classes 280

enabling 286

event and listener binding 282

key components 277

overview 277

tutorial 285

with LiveData 260

DDMS 31

Debugging

enabling on device 57

debug.keystore file 429, 451

DefaultLifecycleObserver 300, 303

deltaRelative 335

Density-independent pixels 185

Density Independent Pixels

converting to pixels 200

Developer Signature 618

Device Definition

custom 135

Device File Explorer 51

device frame 34

Device Manager 51

device pairing 61

Digital Asset Links file 429, 664, 429

Direct Reply Input 511

Direct Reply Notification 505

document provider 563

dp 185

Dynamic Colors

applyToActivitiesIfAvailable() method 756

enabling 756

773

Index
enabling in Android 756

Dynamic Delivery 722

Dynamic Feature APK 720

Dynamic Feature Module

architecture 719

overview 719

removal 743

tutorial 729

Dynamic Feature Modules

deferred installation 725

handling of large 727

Dynamic Feature Support

adding to project 729

Dynamic State 97

saving 111

E
Empty Process 91

Empty template 121

Emulator 51

battery 42

cellular configuration 42

configuring fingerprints 44

directional pad 42

extended control options 41

Extended controls 41

fingerprint 42

location configuration 42

phone settings 42

resize 41

rotate 40

Screen Record 43

Snapshots 43

starting 28

take screenshot 40

toolbar 39

toolbar options 39

tool window mode 45

Virtual Sensors 43

zoom 40

enablePendingPurchases() method 703

enabling ADB support 57

ettings.gradle file 760

Event Handling 207

example 208

Event Listener 210

Event Listeners 208

Event Log 51

Events

consuming 211

explicit

intent 80

explicit intent 425

Explicit Intent 425

Extended Control

options 41

F
Favorites

tool window 51

Files

switching between 66

findPointerIndex() method 214

findViewById() 83

Fingerprint

emulation 44

Fingerprint authentication

device configuration 678

permission 678

steps to implement 677

Fingerprint Authentication

overview 677

tutorial 677

FLAG_INCLUDE_STOPPED_PACKAGES 455

flexible space area 409

floating action button 14, 122, 367

changing appearance of 371

margins 368

overview of 367

removing 123

sizes 368

Foldable Devices 100

multi-resume 100

Foldable Emulator 516

774

Index

Foldables 515

Foreground Process 90

Forward-geocoding 621

Fragment

creation 237

event handling 241

XML file 237, 238

FragmentActivity class 96

Fragment Communication 242

FragmentPagerAdapter class 381

Fragments 237

adding in code 240

duplicating 378

example 245

overview 237

FrameLayout 118

G
Geocoder class 620

Geocoder object 621

Geocoding 620

Gesture Builder Application 227

building and running 228

Gesture Detector class 221

GestureDetectorCompat 224

instance creation 224

GestureDetectorCompat class 221

GestureDetector.OnDoubleTapListener 221, 222

GestureDetector.OnGestureListener 222

GestureLibrary 227

GestureLibrary class 227

GestureOverlayView 227

configuring color 233

configuring multiple strokes 233

GestureOverlayView class 227

GesturePerformedListener 227

Gestures

interception of 233

Gestures File

creation 228

extract from SD card 228

loading into application 230

GET_ACCOUNTS permission 600

getAction() method 461

getDebugMessage() 717

getFromLocation() method 621

getId() method 190

getIntent() method 426

getPointerCount() method 214

getPointerId() method 214

getPurchaseState() method 703

getService() method 468

GNU/Linux 76

Google Cloud Print 632

Google Drive 564

printing to 632

GoogleMap 617

map types 625

GoogleMap.MAP_TYPE_HYBRID 625

GoogleMap.MAP_TYPE_NONE 625

GoogleMap.MAP_TYPE_NORMAL 625

GoogleMap.MAP_TYPE_SATELLITE 625

GoogleMap.MAP_TYPE_TERRAIN 625

Google Maps 617

Google Maps Android API 617

Controlling the Map Camera 628

developer signature 618

displaying controls 625

gesture handling 626

Map Markers 627

overview 617

Google Play Billing Library 699

Google Play Console 708

Creating an in-app product 708

License Testers 709

Google Play Developer Console 686

Gradle

APK signing settings 764

Build Variants 760

command line tasks 765

dependencies 759

Manifest Entries 760

overview 759

sensible defaults 759

775

Index
tool window 51

Gradle Build File

top level 761

Gradle Build Files

module level 762

gradle.properties file 760

GridLayout 118

GridLayoutManager 387

H
Handler class 474

HP Print Services Plugin 631

HTML printing 635

HTML Printing

example 639

I
IBinder 465

IBinder object 463, 473, 475

Image Printing 634

implicit

intent 80

implicit intent 425

Implicit Intent 427

Implicit Intents

example 443

in 185

INAPP 704

In-App Products 699

In-App Purchasing 707

acknowledgePurchase() method 703

BillingClient 700

BillingResult 717

consumeAsync() method 703

ConsumeParams 715

ConsumeResponseListener 703

Consuming purchases 714

enablePendingPurchases() method 703

getPurchaseState() method 703

Google Play Billing Library 699

launchBillingFlow() method 702

Libraries 707

newBuilder() method 700

onBillingServiceDisconnected() callback 712

onBillingServiceDisconnected() method 701

onBillingSetupFinished() listener 711

onProductDetailsResponse() callback 712

Overview 699

ProductDetail 702

ProductDetails 713

products 699

ProductType 704

ProductType.INAPP 704

ProductType.SUBS 704

Purchase Flow 713

PurchaseResponseListener 704

PurchasesUpdatedListener 703

PurchaseUpdatedListener 713

purchase updates 713

queryProductDetailsAsync() 712

queryProductDetailsAsync() method 702

queryPurchasesAsync() 715

queryPurchasesAsync() method 704

runOnUiThread() 713

startConnection() method 701

subscriptions 699

tutorial 707

In-Memory Database 537

Instant Dynamic Feature Module 720

Intent 80

explicit 80

implicit 80

Intent Availability

checking for 433

Intent.CATEGORY_OPENABLE 572

intent filters 425

Intent Filters 428

App Link 663

intent resolution 428

Intents 425

ActivityResultLauncher 427

overview 425

registerForActivityResult() 440

Intent URL 446

776

Index

J
Java Native Interface 77

Jetpack 257

overview 257

K
KeyAttribute 334

Keyboard Shortcuts 52

KeyCycle 339, 355

Cycle Editor 359

tutorial 355

Keyframe 347

Keyframes 334

KeyFrameSet 364

KeyPosition 335

deltaRelative 335

parentRelative 335

pathRelative 336

Keystore File

creation 688

KeyTimeCycle 339, 355

keytool 429

KeyTrigger 338

Killed state 92

L
launchBillingFlow() method 702

launcher activity 176

layout_collapseMode

parallax 414

pin 414

layout_constraintDimentionRatio 172

layout_constraintHorizontal_bias 170

layout_constraintVertical_bias 170

layout editor

ConstraintLayout chains 167

Layout Editor 16, 175

Autoconnect Mode 150

code mode 128

Component Tree 126

design mode 125

device screen 126

example project 175

Inference Mode 151

palette 125

properties panel 126

Sample Data 134

Setting Properties 129

toolbar 126

user interface design 177

view conversion 134

Layout Editor Tool

changing orientation 16

overview 125

Layout Inspector 52

Layout Managers 117

LayoutResultCallback object 655

Layouts 117

layout_scrollFlags

enterAlwaysCollapsed mode 411

enterAlways mode 411

exitUntilCollapsed mode 411

scroll mode 411

Layout Validation 136

libc 77

License Testers 709

Lifecycle

awareness 299

components 260

owners 299

states and events 301

tutorial 303

Lifecycle-Aware Components 299

Lifecycle Methods 98

Lifecycle Observer 303

creating a 303

Lifecycle Owner

creating a 305

Lifecycles

modern 260

LinearLayout 118

LinearLayoutManager 387

LinearLayoutManager layout 396

Linux Kernel 76

777

Index
list devices 57

LiveData 258, 271

adding to ViewModel 271

observer 273

tutorial 271

Live Templates 74

Local Bound Service 463

example 463

Location Manager 78

Location permission 600

Logcat

tool window 52

LogCat

enabling 106

M
MANAGE_EXTERNAL_STORAGE 601

adb enabling 601

testing 601

Manifest File

permissions 447

Maps 617

MapView 617

adding to a layout 622

Marker class 617

Master/Detail Flow

creation 418

two pane mode 417

match_parent properties 185

Material design 367

Material Design 2 745

Material Design 2 Theming 745

Material Design 3 745

Material Design 3 Theming 747

Material Theme Builder 748

Material You 748

MediaController

adding to VideoView instance 583

MediaController class 580

methods 580

MediaPlayer class 607

methods 607

MediaRecorder class 607

methods 608

recording audio 608

Messenger object 475

Microphone

checking for availability 610

Microphone permissions 600

mm 185

MotionEvent 213, 214, 235

getActionMasked() 214

MotionLayout 329

arc motion 334

Attribute Keyframes 334

ConstraintSets 330

Custom Attribute 350

Custom Attributes 331

Cycle Editor 359

Cycle Keyframes 339

Editor 341

KeyAttribute 334

KeyCycle 355

Keyframes 334

KeyFrameSet 364

KeyPosition 335

KeyTimeCycle 355

KeyTrigger 338

OnClick 333, 346

OnSwipe 333

overview 329

Position Keyframes 335

previewing animation 345

starting animation 332

Trigger Keyframe 338

Tutorial 341

MotionScene

ConstraintSets 330

Custom Attributes 331

file 330

overview 329

transition 330

moveCamera() method 628

multiple devices

778

Index

testing app on 31

Multiple Touches

handling 214

multi-resume 100

Multi-Touch

example 214

Multi-touch Event Handling 213

Multi-Window

attributes 519

Multi-Window Mode

detecting 520

entering 517

launching activity into 521

Multi-Window Notifications 520

multi-window support 100

Multi-Window Support

enabling 518

My Location Layer 618

N
Navigation 309

adding destinations 318

overview 309

pass data with safeargs 325

passing arguments 314

safeargs 314

stack 309

tutorial 315

Navigation Action

triggering 313

Navigation Architecture Component 309

Navigation Component

tutorial 315

Navigation Controller

accessing 313

Navigation Graph 312, 316

adding actions 321

creating a 316

Navigation Host 310

declaring 317

newBuilder() method 700

normal permissions 599

Notification

adding actions 500

direct reply 505

Direct Reply Input 511

issuing a basic 496

launch activity from a 498

PendingIntent 507

Reply Action 508

updating direct reply 512

Notifications 491

bundled 500

overview 491

Notifications Manager 78

O
Observer

implementing a LiveData 273

onAttach() method 242

onBillingServiceDisconnected() callback 712

onBillingServiceDisconnected() method 701

onBillingSetupFinished() listener 711

onBind() method 463, 473

onBindViewHolder() method 395

OnClick 333

onClickListener 208, 210, 212

onClick() method 207

onCreateContextMenuListener 208

onCreate() method 90, 98

onCreateView() method 98

on-demand modules 719

onDestroy() method 98

onDoubleTap() method 221

onDown() method 221

onFling() method 221

onFocusChangeListener 208

OnFragmentInteractionListener

implementation 322

onGesturePerformed() method 227

onKeyListener 208

onLayoutFailed() method 655

onLayoutFinished() method 655

onLongClickListener 208, 211

779

Index
onLongClick() method 212

onLongPress() method 221

onMapReady() method 623

onPageFinished() callback 640

onPause() method 98

onProductDetailsResponse() callback 712

onReceive() method 90, 456, 457, 459

onRequestPermissionsResult() method 603, 604, 614

onRestart() method 98

onRestoreInstanceState() method 99

onResume() method 90, 98

onSaveInstanceState() method 99

onScaleBegin() method 233

onScaleEnd() method 233

onScale() method 233

onScroll() method 221

OnSeekBarChangeListener 252

onServiceConnected() method 463, 467, 476

onServiceDisconnected() method 463, 467, 476

onShowPress() method 221

onSingleTapUp() method 221

onStart() method 98

onStop() method 98

onTouchEvent() method 221, 233

onTouchListener 208, 213

onTouch() method 213

onViewCreated() method 98

onViewStatusRestored() method 98

openFileDescriptor() method 564

OpenJDK 3

P
Package Explorer 15

Package Manager 78

PackageManager class 610

PackageManager.FEATURE_MICROPHONE 610

PackageManager.PERMISSION_DENIED 601

PackageManager.PERMISSION_GRANTED 601

Package Name 14

Packed chain 143, 170

PageRange 656, 657

Paint class 659

parentRelative 335

parent view 119

pathRelative 336

Paused state 92

PdfDocument 637

PdfDocument.Page 649, 656

PendingIntent class 507

Permission

checking for 601

permissions

dangerous 599

normal 599

Persistent State 97

Phone permissions 600

picker 563

Pinch Gesture

detection 233

example 234

Pinch Gesture Recognition 227

Play Core Library 725, 729

Polygon class 617

Polyline class 617

Position Keyframes 335

PrintAttributes 654

PrintDocumentAdapter 637, 649

PrintDocumentInfo 654

Printing

color 634

monochrome 634

Printing framework

architecture 631

Printing Framework 631

Print Job

starting 660

Print Manager 631

PrintManager service 641

Problems

tool window 52

PROCESS_OUTGOING_CALLS permission 600

Process States 89

ProductDetail 702

ProductDetails 713

780

Index

ProductType 704

Profiler

tool window 52

ProgressBar 117

proguard-rules.pro file 764

ProGuard Support 760

Project

tool window 52

Project Name 14

Project tool window 15, 52

pt 185

PurchaseResponseListener 704

PurchasesUpdatedListener 703

PurchaseUpdatedListener 713

putExtra() method 425, 455

px 186

Q
queryProductDetailsAsync() 712

queryProductDetailsAsync() method 702

queryPurchaseHistoryAsync() method 704

queryPurchasesAsync() 715

queryPurchasesAsync() method 704

Quick Documentation 72

R
RadioButton 117

ratios 171

READ_CALENDAR permission 600

READ_CALL_LOG permission 600

READ_CONTACTS permission 600

READ_EXTERNAL_STORAGE permission 601

READ_PHONE_STATE permission 600

READ_SMS permission 600

RECEIVE_MMS permission 600

RECEIVE_SMS permission 600

RECEIVE_WAP_PUSH permission 600

Recent Files Navigation 53

RECORD_AUDIO permission 600

Recording Audio

permission 609

RecyclerView 387

adding to layout file 388

example 391

GridLayoutManager 387

initializing 396

LinearLayoutManager 387

StaggeredGridLayoutManager 387

RecyclerView Adapter

creation of 394

RecyclerView.Adapter 388, 394

getItemCount() method 388

onBindViewHolder() method 388

onCreateViewHolder() method 388

RecyclerView.ViewHolder

getAdapterPosition() method 398

registerForActivityResult() method 427, 440

registerReceiver() method 457

RelativeLayout 118

release mode 685

releasePersistableUriPermission() method 567

Release Preparation 685

Remote Bound Service 473

client communication 473

implementation 474

manifest file declaration 475

RemoteInput.Builder() method 507

RemoteInput Object 507

Remote Service

launching and binding 476

sending a message 477

Repository

tutorial 547

Repository Modules 260

requestPermissions() method 603

Resource

string creation 19

Resource File 21

Resource Management 89

Resource Manager 52, 78

result receiver 457

Reverse-geocoding 621

Reverse Geocoding 620

Room

781

Index
Data Access Object (DAO) 530

entities 530, 531

In-Memory Database 537

Repository 530

Room Database 530

tutorial 547

Room Database Persistence 529

Room Persistence Library 527, 529

root element 117

root view 119

Run

tool window 52

runOnUiThread() 713

Runtime Permission Requests 599

S
safeargs 314, 325

Sample Data 134, 401

tutorial 401

Saved State 259, 293

library dependencies 295

SavedStateHandle 294, 295

contains() method 295

keys() method 295

remove() method 295

Saved State module 293

SavedStateViewModelFactory 294

ScaleGestureDetector class 233

Scale-independent 186

SDK Packages 6

Secure Sockets Layer (SSL) 77

SeekBar 245

sendBroadcast() method 455, 457

sendOrderedBroadcast() method 455, 457

SEND_SMS permission 600

sendStickyBroadcast() method 455

Sensor permissions 600

Service

overview 80

ServiceConnection class 476

Service Process 90

setAudioEncoder() method 608

setAudioSource() method 608

setBackgroundColor() 190

setCompassEnabled() method 626

setContentView() method 189, 195

setId() method 190

setMyLocationButtonEnabled() method 626

setOnClickListener() method 207, 210

setOnDoubleTapListener() method 221, 224

setOutputFile() method 608

setOutputFormat() method 608

setResult() method 427

setRotateGesturesEnabled() method 627

setScrollGesturesEnabled() method 626

setText() method 114

setTiltGesturesEnabled() method 627

setTransition() 339

setVideoSource() method 608

setZoomControlsEnabled() method 626

SHA-256 certificate fingerprint 429

shouldOverrideUrlLoading() method 640

shouldShowRequestPermissionRationale() method 605

SimpleOnScaleGestureListener 233

SimpleOnScaleGestureListener class 235

SMS permissions 600

Snackbar 367, 368, 369

overview of 368

Snapshots

emulator 43

sp 186

Space class 118

split APK files 720

SplitCompatApplication 724

SplitInstallManager 725

Spread chain 142

Spread inside 169

Spread inside chain 142

SQL 524

SQLite 523

AVD command-line use 525

Columns and Data Types 523

overview 524

Primary keys 524

782

Index

StaggeredGridLayoutManager 387

startActivity() method 425

startConnection() method 701

startForeground() method 90

State

restoring 114

State Change

handling 93

Statement Completion 69

status bar 409

Sticky Broadcast Intents 457

Stopped state 92

Storage Access Framework 563

ACTION_CREATE_DOCUMENT 564

ACTION_OPEN_DOCUMENT 564

deleting a file 567

example 569

file creation 571

file filtering 564

file reading 565

file writing 566

intents 564

MIME Types 565

Persistent Access 567

picker 563

Storage permissions 601

StringBuilder object 576

strings.xml file 23

Structure

tool window 52

Structured Query Language 524

Structure tool window 52

SUBS 704

subscriptions 699

SupportMapFragment class 617

Switcher 53

System Broadcasts 461

system requirements 3

T
tab bar 409

TabLayout 375

adding to layout 379

app

tabGravity property 384

tabMode property 384

example 376

fixed mode 383

getCount() method 375

getItem() method 375

overview 375

scrollable mode 384

TableLayout 118, 539

TableRow 539

Telephony Manager 78

Templates

blank vs. empty 121

Terminal

tool window 52

Theme

building a custom 748

Theming 745

Material Theme Builder 748

tutorial 751

Time Cycle Keyframes 339

TODO

tool window 52

toolbar 409

ToolbarListener 242

tools

layout 239

Tool window bars 50

Tool windows 49

Touch Actions 214

Touch Event Listener

implementation 215

Touch Events

intercepting 213

Touch handling 213

U
UiSettings class 617

unregisterReceiver() method 457

URL Mapping 669

783

Index
USB connection issues

resolving 60

USE_BIOMETRIC 678

user interface state 97

USE_SIP permission 600

V
Video Playback 579

VideoView class 579

methods 579

supported formats 579

view bindings 83

enabling 84

using 84

View class

setting properties 196

view conversion 134

ViewGroup 117

View Groups 117

View Hierarchy 119

ViewHolder class 388

sample implementation 395

ViewModel

adding LiveData 271

data access 269

fragment association 267

overview 258

saved state 293

Saved State 259, 293

tutorial 263

ViewModelProvider 267

ViewModel Saved State 293

ViewPager 375, 380

adapter 380

adding to layout 379

example 376

Views 117

Java creation 189

View System 78

Virtual Device Configuration dialog 28

Virtual Sensors 43

Visible Process 90

W
WebViewClient 635, 640

WebView view 445

Weighted chain 142, 170

Welcome screen 47

Widget Dimensions 143

Widget Group Alignment 165

Widgets palette 178

WiFi debugging 61

Wireless debugging 61

Wireless pairing 61

wrap_content properties 187

WRITE_CALENDAR permission 600

WRITE_CALL_LOG permission 600

WRITE_CONTACTS permission 600

WRITE_EXTERNAL_STORAGE permission 601

X
XML Layout File

manual creation 185

vs. Java Code 189

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Making the Android SDK tools command-line accessible
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Enabling the Device Frame
	4.9 AVD Command-line Creation
	4.10 Android Virtual Device Configuration Files
	4.11 Moving and Renaming an Android Virtual Device
	4.12 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Overview of Android View Binding
	11.1 Find View by Id
	11.2 View Binding
	11.3 Converting the AndroidSample project
	11.4 Enabling View Binding
	11.5 Using View Binding
	11.6 Choosing an Option
	11.7 View Binding in the Book Examples
	11.8 Migrating a Project to View Binding
	11.9 Summary

	12. Understanding Android Application and Activity Lifecycles
	12.1 Android Applications and Resource Management
	12.2 Android Process States
	12.2.1 Foreground Process
	12.2.2 Visible Process
	12.2.3 Service Process
	12.2.4 Background Process
	12.2.5 Empty Process

	12.3 Inter-Process Dependencies
	12.4 The Activity Lifecycle
	12.5 The Activity Stack
	12.6 Activity States
	12.7 Configuration Changes
	12.8 Handling State Change
	12.9 Summary

	13. Handling Android Activity State Changes
	13.1 New vs. Old Lifecycle Techniques
	13.2 The Activity and Fragment Classes
	13.3 Dynamic State vs. Persistent State
	13.4 The Android Lifecycle Methods
	13.5 Lifetimes
	13.6 Foldable Devices and Multi-Resume
	13.7 Disabling Configuration Change Restarts
	13.8 Lifecycle Method Limitations
	13.9 Summary

	14. Android Activity State Changes by Example
	14.1 Creating the State Change Example Project
	14.2 Designing the User Interface
	14.3 Overriding the Activity Lifecycle Methods
	14.4 Filtering the Logcat Panel
	14.5 Running the Application
	14.6 Experimenting with the Activity
	14.7 Summary

	15. Saving and Restoring the State of an Android Activity
	15.1 Saving Dynamic State
	15.2 Default Saving of User Interface State
	15.3 The Bundle Class
	15.4 Saving the State
	15.5 Restoring the State
	15.6 Testing the Application
	15.7 Summary

	16. Understanding Android Views, View Groups and Layouts
	16.1 Designing for Different Android Devices
	16.2 Views and View Groups
	16.3 Android Layout Managers
	16.4 The View Hierarchy
	16.5 Creating User Interfaces
	16.6 Summary

	17. A Guide to the Android Studio Layout Editor Tool
	17.1 Basic vs. Empty Activity Templates
	17.2 The Android Studio Layout Editor
	17.3 Design Mode
	17.4 The Palette
	17.5 Design Mode and Layout Views
	17.6 Night Mode
	17.7 Code Mode
	17.8 Split Mode
	17.9 Setting Attributes
	17.10 Transforms
	17.11 Tools Visibility Toggles
	17.12 Converting Views
	17.13 Displaying Sample Data
	17.14 Creating a Custom Device Definition
	17.15 Changing the Current Device
	17.16 Layout Validation (Multi Preview)
	17.17 Summary

	18. A Guide to the Android ConstraintLayout
	18.1 How ConstraintLayout Works
	18.1.1 Constraints
	18.1.2 Margins
	18.1.3 Opposing Constraints
	18.1.4 Constraint Bias
	18.1.5 Chains
	18.1.6 Chain Styles

	18.2 Baseline Alignment
	18.3 Configuring Widget Dimensions
	18.4 Guideline Helper
	18.5 Group Helper
	18.6 Barrier Helper
	18.7 Flow Helper
	18.8 Ratios
	18.9 ConstraintLayout Advantages
	18.10 ConstraintLayout Availability
	18.11 Summary

	19. A Guide to Using ConstraintLayout in Android Studio
	19.1 Design and Layout Views
	19.2 Autoconnect Mode
	19.3 Inference Mode
	19.4 Manipulating Constraints Manually
	19.5 Adding Constraints in the Inspector
	19.6 Viewing Constraints in the Attributes Window
	19.7 Deleting Constraints
	19.8 Adjusting Constraint Bias
	19.9 Understanding ConstraintLayout Margins
	19.10 The Importance of Opposing Constraints and Bias
	19.11 Configuring Widget Dimensions
	19.12 Design Time Tools Positioning
	19.13 Adding Guidelines
	19.14 Adding Barriers
	19.15 Adding a Group
	19.16 Working with the Flow Helper
	19.17 Widget Group Alignment and Distribution
	19.18 Converting other Layouts to ConstraintLayout
	19.19 Summary

	20. Working with ConstraintLayout Chains and Ratios in Android Studio
	20.1 Creating a Chain
	20.2 Changing the Chain Style
	20.3 Spread Inside Chain Style
	20.4 Packed Chain Style
	20.5 Packed Chain Style with Bias
	20.6 Weighted Chain
	20.7 Working with Ratios
	20.8 Summary

	21. An Android Studio Layout Editor ConstraintLayout Tutorial
	21.1 An Android Studio Layout Editor Tool Example
	21.2 Creating a New Activity
	21.3 Preparing the Layout Editor Environment
	21.4 Adding the Widgets to the User Interface
	21.5 Adding the Constraints
	21.6 Testing the Layout
	21.7 Using the Layout Inspector
	21.8 Summary

	22. Manual XML Layout Design in Android Studio
	22.1 Manually Creating an XML Layout
	22.2 Manual XML vs. Visual Layout Design
	22.3 Summary

	23. Managing Constraints using Constraint Sets
	23.1 Java Code vs. XML Layout Files
	23.2 Creating Views
	23.3 View Attributes
	23.4 Constraint Sets
	23.4.1 Establishing Connections
	23.4.2 Applying Constraints to a Layout
	23.4.3 Parent Constraint Connections
	23.4.4 Sizing Constraints
	23.4.5 Constraint Bias
	23.4.6 Alignment Constraints
	23.4.7 Copying and Applying Constraint Sets
	23.4.8 ConstraintLayout Chains
	23.4.9 Guidelines
	23.4.10 Removing Constraints
	23.4.11 Scaling
	23.4.12 Rotation

	23.5 Summary

	24. An Android ConstraintSet Tutorial
	24.1 Creating the Example Project in Android Studio
	24.2 Adding Views to an Activity
	24.3 Setting View Attributes
	24.4 Creating View IDs
	24.5 Configuring the Constraint Set
	24.6 Adding the EditText View
	24.7 Converting Density Independent Pixels (dp) to Pixels (px)
	24.8 Summary

	25. A Guide to using Apply Changes in Android Studio
	25.1 Introducing Apply Changes
	25.2 Understanding Apply Changes Options
	25.3 Using Apply Changes
	25.4 Configuring Apply Changes Fallback Settings
	25.5 An Apply Changes Tutorial
	25.6 Using Apply Code Changes
	25.7 Using Apply Changes and Restart Activity
	25.8 Using Run App
	25.9 Summary

	26. An Overview and Example of Android Event Handling
	26.1 Understanding Android Events
	26.2 Using the android:onClick Resource
	26.3 Event Listeners and Callback Methods
	26.4 An Event Handling Example
	26.5 Designing the User Interface
	26.6 The Event Listener and Callback Method
	26.7 Consuming Events
	26.8 Summary

	27. Android Touch and Multi-touch Event Handling
	27.1 Intercepting Touch Events
	27.2 The MotionEvent Object
	27.3 Understanding Touch Actions
	27.4 Handling Multiple Touches
	27.5 An Example Multi-Touch Application
	27.6 Designing the Activity User Interface
	27.7 Implementing the Touch Event Listener
	27.8 Running the Example Application
	27.9 Summary

	28. Detecting Common Gestures Using the Android Gesture Detector Class
	28.1 Implementing Common Gesture Detection
	28.2 Creating an Example Gesture Detection Project
	28.3 Implementing the Listener Class
	28.4 Creating the GestureDetectorCompat Instance
	28.5 Implementing the onTouchEvent() Method
	28.6 Testing the Application
	28.7 Summary

	29. Implementing Custom Gesture and Pinch Recognition on Android
	29.1 The Android Gesture Builder Application
	29.2 The GestureOverlayView Class
	29.3 Detecting Gestures
	29.4 Identifying Specific Gestures
	29.5 Installing and Running the Gesture Builder Application
	29.6 Creating a Gestures File
	29.7 Creating the Example Project
	29.8 Extracting the Gestures File from the SD Card
	29.9 Adding the Gestures File to the Project
	29.10 Designing the User Interface
	29.11 Loading the Gestures File
	29.12 Registering the Event Listener
	29.13 Implementing the onGesturePerformed Method
	29.14 Testing the Application
	29.15 Configuring the GestureOverlayView
	29.16 Intercepting Gestures
	29.17 Detecting Pinch Gestures
	29.18 A Pinch Gesture Example Project
	29.19 Summary

	30. An Introduction to Android Fragments
	30.1 What is a Fragment?
	30.2 Creating a Fragment
	30.3 Adding a Fragment to an Activity using the Layout XML File
	30.4 Adding and Managing Fragments in Code
	30.5 Handling Fragment Events
	30.6 Implementing Fragment Communication
	30.7 Summary

	31. Using Fragments in Android Studio - An Example
	31.1 About the Example Fragment Application
	31.2 Creating the Example Project
	31.3 Creating the First Fragment Layout
	31.4 Migrating a Fragment to View Binding
	31.5 Adding the Second Fragment
	31.6 Adding the Fragments to the Activity
	31.7 Making the Toolbar Fragment Talk to the Activity
	31.8 Making the Activity Talk to the Text Fragment
	31.9 Testing the Application
	31.10 Summary

	32. Modern Android App Architecture with Jetpack
	32.1 What is Android Jetpack?
	32.2 The “Old” Architecture
	32.3 Modern Android Architecture
	32.4 The ViewModel Component
	32.5 The LiveData Component
	32.6 ViewModel Saved State
	32.7 LiveData and Data Binding
	32.8 Android Lifecycles
	32.9 Repository Modules
	32.10 Summary

	33. An Android Jetpack ViewModel Tutorial
	33.1 About the Project
	33.2 Creating the ViewModel Example Project
	33.3 Reviewing the Project
	33.3.1 The Main Activity
	33.3.2 The Content Fragment
	33.3.3 The ViewModel

	33.4 Designing the Fragment Layout
	33.5 Implementing the View Model
	33.6 Associating the Fragment with the View Model
	33.7 Modifying the Fragment
	33.8 Accessing the ViewModel Data
	33.9 Testing the Project
	33.10 Summary

	34. An Android Jetpack LiveData Tutorial
	34.1 LiveData - A Recap
	34.2 Adding LiveData to the ViewModel
	34.3 Implementing the Observer
	34.4 Summary

	35. An Overview of Android Jetpack Data Binding
	35.1 An Overview of Data Binding
	35.2 The Key Components of Data Binding
	35.2.1 The Project Build Configuration
	35.2.2 The Data Binding Layout File
	35.2.3 The Layout File Data Element
	35.2.4 The Binding Classes
	35.2.5 Data Binding Variable Configuration
	35.2.6 Binding Expressions (One-Way)
	35.2.7 Binding Expressions (Two-Way)
	35.2.8 Event and Listener Bindings

	35.3 Summary

	36. An Android Jetpack Data Binding Tutorial
	36.1 Removing the Redundant Code
	36.2 Enabling Data Binding
	36.3 Adding the Layout Element
	36.4 Adding the Data Element to Layout File
	36.5 Working with the Binding Class
	36.6 Assigning the ViewModel Instance to the Data Binding Variable
	36.7 Adding Binding Expressions
	36.8 Adding the Conversion Method
	36.9 Adding a Listener Binding
	36.10 Testing the App
	36.11 Summary

	37. An Android ViewModel Saved State Tutorial
	37.1 Understanding ViewModel State Saving
	37.2 Implementing ViewModel State Saving
	37.3 Saving and Restoring State
	37.4 Adding Saved State Support to the ViewModelDemo Project
	37.5 Summary

	38. Working with Android Lifecycle-Aware Components
	38.1 Lifecycle Awareness
	38.2 Lifecycle Owners
	38.3 Lifecycle Observers
	38.4 Lifecycle States and Events
	38.5 Summary

	39. An Android Jetpack Lifecycle Awareness Tutorial
	39.1 Creating the Example Lifecycle Project
	39.2 Creating a Lifecycle Observer
	39.3 Adding the Observer
	39.4 Testing the Observer
	39.5 Creating a Lifecycle Owner
	39.6 Testing the Custom Lifecycle Owner
	39.7 Summary

	40. An Overview of the Navigation Architecture Component
	40.1 Understanding Navigation
	40.2 Declaring a Navigation Host
	40.3 The Navigation Graph
	40.4 Accessing the Navigation Controller
	40.5 Triggering a Navigation Action
	40.6 Passing Arguments
	40.7 Summary

	41. An Android Jetpack Navigation Component Tutorial
	41.1 Creating the NavigationDemo Project
	41.2 Adding Navigation to the Build Configuration
	41.3 Creating the Navigation Graph Resource File
	41.4 Declaring a Navigation Host
	41.5 Adding Navigation Destinations
	41.6 Designing the Destination Fragment Layouts
	41.7 Adding an Action to the Navigation Graph
	41.8 Implement the OnFragmentInteractionListener
	41.9 Adding View Binding Support to the Destination Fragments
	41.10 Triggering the Action
	41.11 Passing Data Using Safeargs
	41.12 Summary

	42. An Introduction to MotionLayout
	42.1 An Overview of MotionLayout
	42.2 MotionLayout
	42.3 MotionScene
	42.4 Configuring ConstraintSets
	42.5 Custom Attributes
	42.6 Triggering an Animation
	42.7 Arc Motion
	42.8 Keyframes
	42.8.1 Attribute Keyframes
	42.8.2 Position Keyframes

	42.9 Time Linearity
	42.10 KeyTrigger
	42.11 Cycle and Time Cycle Keyframes
	42.12 Starting an Animation from Code
	42.13 Summary

	43. An Android MotionLayout Editor Tutorial
	43.1 Creating the MotionLayoutDemo Project
	43.2 ConstraintLayout to MotionLayout Conversion
	43.3 Configuring Start and End Constraints
	43.4 Previewing the MotionLayout Animation
	43.5 Adding an OnClick Gesture
	43.6 Adding an Attribute Keyframe to the Transition
	43.7 Adding a CustomAttribute to a Transition
	43.8 Adding Position Keyframes
	43.9 Summary

	44. A MotionLayout KeyCycle Tutorial
	44.1 An Overview of Cycle Keyframes
	44.2 Using the Cycle Editor
	44.3 Creating the KeyCycleDemo Project
	44.4 Configuring the Start and End Constraints
	44.5 Creating the Cycles
	44.6 Previewing the Animation
	44.7 Adding the KeyFrameSet to the MotionScene
	44.8 Summary

	45. Working with the Floating Action Button and Snackbar
	45.1 The Material Design
	45.2 The Design Library
	45.3 The Floating Action Button (FAB)
	45.4 The Snackbar
	45.5 Creating the Example Project
	45.6 Reviewing the Project
	45.7 Removing Navigation Features
	45.8 Changing the Floating Action Button
	45.9 Adding an Action to the Snackbar
	45.10 Summary

	46. Creating a Tabbed Interface using the TabLayout Component
	46.1 An Introduction to the ViewPager2
	46.2 An Overview of the TabLayout Component
	46.3 Creating the TabLayoutDemo Project
	46.4 Creating the First Fragment
	46.5 Duplicating the Fragments
	46.6 Adding the TabLayout and ViewPager2
	46.7 Creating the Pager Adapter
	46.8 Performing the Initialization Tasks
	46.9 Testing the Application
	46.10 Customizing the TabLayout
	46.11 Summary

	47. Working with the RecyclerView and CardView Widgets
	47.1 An Overview of the RecyclerView
	47.2 An Overview of the CardView
	47.3 Summary

	48. An Android RecyclerView and CardView Tutorial
	48.1 Creating the CardDemo Project
	48.2 Modifying the Basic Activity Project
	48.3 Designing the CardView Layout
	48.4 Adding the RecyclerView
	48.5 Adding the Image Files
	48.6 Creating the RecyclerView Adapter
	48.7 Initializing the RecyclerView Component
	48.8 Testing the Application
	48.9 Responding to Card Selections
	48.10 Summary

	49. A Layout Editor Sample Data Tutorial
	49.1 Adding Sample Data to a Project
	49.2 Using Custom Sample Data
	49.3 Summary

	50. Working with the AppBar and Collapsing Toolbar Layouts
	50.1 The Anatomy of an AppBar
	50.2 The Example Project
	50.3 Coordinating the RecyclerView and Toolbar
	50.4 Introducing the Collapsing Toolbar Layout
	50.5 Changing the Title and Scrim Color
	50.6 Summary

	51. An Android Studio Primary/Detail Flow Tutorial
	51.1 The Primary/Detail Flow
	51.2 Creating a Primary/Detail Flow Activity
	51.3 Modifying the Primary/Detail Flow Template
	51.4 Changing the Content Model
	51.5 Changing the Detail Pane
	51.6 Modifying the ItemDetailFragment Class
	51.7 Modifying the ItemListFragment Class
	51.8 Adding Manifest Permissions
	51.9 Running the Application
	51.10 Summary

	52. An Overview of Android Intents
	52.1 An Overview of Intents
	52.2 Explicit Intents
	52.3 Returning Data from an Activity
	52.4 Implicit Intents
	52.5 Using Intent Filters
	52.6 Automatic Link Verification
	52.7 Manually Enabling Links
	52.8 Checking Intent Availability
	52.9 Summary

	53. Android Explicit Intents – A Worked Example
	53.1 Creating the Explicit Intent Example Application
	53.2 Designing the User Interface Layout for MainActivity
	53.3 Creating the Second Activity Class
	53.4 Designing the User Interface Layout for SecondActivity
	53.5 Reviewing the Application Manifest File
	53.6 Creating the Intent
	53.7 Extracting Intent Data
	53.8 Launching SecondActivity as a Sub-Activity
	53.9 Returning Data from a Sub-Activity
	53.10 Testing the Application
	53.11 Summary

	54. Android Implicit Intents – A Worked Example
	54.1 Creating the Android Studio Implicit Intent Example Project
	54.2 Designing the User Interface
	54.3 Creating the Implicit Intent
	54.4 Adding a Second Matching Activity
	54.5 Adding the Web View to the UI
	54.6 Obtaining the Intent URL
	54.7 Modifying the MyWebView Project Manifest File
	54.8 Installing the MyWebView Package on a Device
	54.9 Testing the Application
	54.10 Manually Enabling the Link
	54.11 Automatic Link Verification
	54.12 Summary

	55. Android Broadcast Intents and Broadcast Receivers
	55.1 An Overview of Broadcast Intents
	55.2 An Overview of Broadcast Receivers
	55.3 Obtaining Results from a Broadcast
	55.4 Sticky Broadcast Intents
	55.5 The Broadcast Intent Example
	55.6 Creating the Example Application
	55.7 Creating and Sending the Broadcast Intent
	55.8 Creating the Broadcast Receiver
	55.9 Registering the Broadcast Receiver
	55.10 Testing the Broadcast Example
	55.11 Listening for System Broadcasts
	55.12 Summary

	56. Android Local Bound Services – A Worked Example
	56.1 Understanding Bound Services
	56.2 Bound Service Interaction Options
	56.3 A Local Bound Service Example
	56.4 Adding a Bound Service to the Project
	56.5 Implementing the Binder
	56.6 Binding the Client to the Service
	56.7 Completing the Example
	56.8 Testing the Application
	56.9 Summary

	57. Android Remote Bound Services – A Worked Example
	57.1 Client to Remote Service Communication
	57.2 Creating the Example Application
	57.3 Designing the User Interface
	57.4 Implementing the Remote Bound Service
	57.5 Configuring a Remote Service in the Manifest File
	57.6 Launching and Binding to the Remote Service
	57.7 Sending a Message to the Remote Service
	57.8 Summary

	58. A Basic Overview of Java Threads, Handlers and Executors
	58.1 The Application Main Thread
	58.2 Thread Handlers
	58.3 A Threading Example
	58.4 Building the App
	58.5 Creating a New Thread
	58.6 Implementing a Thread Handler
	58.7 Passing a Message to the Handler
	58.8 Java Executor Concurrency
	58.9 Working with Runnable Tasks
	58.10 Shutting down an Executor Service
	58.11 Working with Callable Tasks and Futures
	58.12 Handling a Future Result
	58.13 Scheduling Tasks
	58.14 Summary

	59. An Android Notifications Tutorial
	59.1 An Overview of Notifications
	59.2 Creating the NotifyDemo Project
	59.3 Designing the User Interface
	59.4 Creating the Second Activity
	59.5 Creating a Notification Channel
	59.6 Creating and Issuing a Notification
	59.7 Launching an Activity from a Notification
	59.8 Adding Actions to a Notification
	59.9 Bundled Notifications
	59.10 Summary

	60. An Android Direct Reply Notification Tutorial
	60.1 Creating the DirectReply Project
	60.2 Designing the User Interface
	60.3 Creating the Notification Channel
	60.4 Building the RemoteInput Object
	60.5 Creating the PendingIntent
	60.6 Creating the Reply Action
	60.7 Receiving Direct Reply Input
	60.8 Updating the Notification
	60.9 Summary

	61. Foldable Devices and Multi-Window Support
	61.1 Foldables and Multi-Window Support
	61.2 Using a Foldable Emulator
	61.3 Entering Multi-Window Mode
	61.4 Enabling and using Freeform Support
	61.5 Checking for Freeform Support
	61.6 Enabling Multi-Window Support in an App
	61.7 Specifying Multi-Window Attributes
	61.8 Detecting Multi-Window Mode in an Activity
	61.9 Receiving Multi-Window Notifications
	61.10 Launching an Activity in Multi-Window Mode
	61.11 Configuring Freeform Activity Size and Position
	61.12 Summary

	62. An Overview of Android SQLite Databases
	62.1 Understanding Database Tables
	62.2 Introducing Database Schema
	62.3 Columns and Data Types
	62.4 Database Rows
	62.5 Introducing Primary Keys
	62.6 What is SQLite?
	62.7 Structured Query Language (SQL)
	62.8 Trying SQLite on an Android Virtual Device (AVD)
	62.9 The Android Room Persistence Library
	62.10 Summary

	63. The Android Room Persistence Library
	63.1 Revisiting Modern App Architecture
	63.2 Key Elements of Room Database Persistence
	63.2.1 Repository
	63.2.2 Room Database
	63.2.3 Data Access Object (DAO)
	63.2.4 Entities
	63.2.5 SQLite Database

	63.3 Understanding Entities
	63.4 Data Access Objects
	63.5 The Room Database
	63.6 The Repository
	63.7 In-Memory Databases
	63.8 Database Inspector
	63.9 Summary

	64. An Android TableLayout and TableRow Tutorial
	64.1 The TableLayout and TableRow Layout Views
	64.2 Creating the Room Database Project
	64.3 Converting to a LinearLayout
	64.4 Adding the TableLayout to the User Interface
	64.5 Configuring the TableRows
	64.6 Adding the Button Bar to the Layout
	64.7 Adding the RecyclerView
	64.8 Adjusting the Layout Margins
	64.9 Summary

	65. An Android Room Database and Repository Tutorial
	65.1 About the RoomDemo Project
	65.2 Modifying the Build Configuration
	65.3 Building the Entity
	65.4 Creating the Data Access Object
	65.5 Adding the Room Database
	65.6 Adding the Repository
	65.7 Modifying the ViewModel
	65.8 Creating the Product Item Layout
	65.9 Adding the RecyclerView Adapter
	65.10 Preparing the Main Fragment
	65.11 Adding the Button Listeners
	65.12 Adding LiveData Observers
	65.13 Initializing the RecyclerView
	65.14 Testing the RoomDemo App
	65.15 Using the Database Inspector
	65.16 Summary

	66. Accessing Cloud Storage using the Android Storage Access Framework
	66.1 The Storage Access Framework
	66.2 Working with the Storage Access Framework
	66.3 Filtering Picker File Listings
	66.4 Handling Intent Results
	66.5 Reading the Content of a File
	66.6 Writing Content to a File
	66.7 Deleting a File
	66.8 Gaining Persistent Access to a File
	66.9 Summary

	67. An Android Storage Access Framework Example
	67.1 About the Storage Access Framework Example
	67.2 Creating the Storage Access Framework Example
	67.3 Designing the User Interface
	67.4 Adding the Activity Launchers
	67.5 Creating a New Storage File
	67.6 Saving to a Storage File
	67.7 Opening and Reading a Storage File
	67.8 Testing the Storage Access Application
	67.9 Summary

	68. Video Playback on Android using the VideoView and MediaController Classes
	68.1 Introducing the Android VideoView Class
	68.2 Introducing the Android MediaController Class
	68.3 Creating the Video Playback Example
	68.4 Designing the VideoPlayer Layout
	68.5 Downloading the Video File
	68.6 Configuring the VideoView
	68.7 Adding the MediaController to the Video View
	68.8 Setting up the onPreparedListener
	68.9 Summary

	69. Android Picture-in-Picture Mode
	69.1 Picture-in-Picture Features
	69.2 Enabling Picture-in-Picture Mode
	69.3 Configuring Picture-in-Picture Parameters
	69.4 Entering Picture-in-Picture Mode
	69.5 Detecting Picture-in-Picture Mode Changes
	69.6 Adding Picture-in-Picture Actions
	69.7 Summary

	70. An Android Picture-in-Picture Tutorial
	70.1 Adding Picture-in-Picture Support to the Manifest
	70.2 Adding a Picture-in-Picture Button
	70.3 Entering Picture-in-Picture Mode
	70.4 Detecting Picture-in-Picture Mode Changes
	70.5 Adding a Broadcast Receiver
	70.6 Adding the PiP Action
	70.7 Testing the Picture-in-Picture Action
	70.8 Summary

	71. Making Runtime Permission Requests in Android
	71.1 Understanding Normal and Dangerous Permissions
	71.2 Creating the Permissions Example Project
	71.3 Checking for a Permission
	71.4 Requesting Permission at Runtime
	71.5 Providing a Rationale for the Permission Request
	71.6 Testing the Permissions App
	71.7 Summary

	72. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	72.1 Playing Audio
	72.2 Recording Audio and Video using the MediaRecorder Class
	72.3 About the Example Project
	72.4 Creating the AudioApp Project
	72.5 Designing the User Interface
	72.6 Checking for Microphone Availability
	72.7 Initializing the Activity
	72.8 Implementing the recordAudio() Method
	72.9 Implementing the stopAudio() Method
	72.10 Implementing the playAudio() method
	72.11 Configuring and Requesting Permissions
	72.12 Testing the Application
	72.13 Summary

	73. Working with the Google Maps Android API in Android Studio
	73.1 The Elements of the Google Maps Android API
	73.2 Creating the Google Maps Project
	73.3 Obtaining Your Developer Signature
	73.4 Adding the Apache HTTP Legacy Library Requirement
	73.5 Testing the Application
	73.6 Understanding Geocoding and Reverse Geocoding
	73.7 Adding a Map to an Application
	73.8 Requesting Current Location Permission
	73.9 Displaying the User’s Current Location
	73.10 Changing the Map Type
	73.11 Displaying Map Controls to the User
	73.12 Handling Map Gesture Interaction
	73.12.1 Map Zooming Gestures
	73.12.2 Map Scrolling/Panning Gestures
	73.12.3 Map Tilt Gestures
	73.12.4 Map Rotation Gestures

	73.13 Creating Map Markers
	73.14 Controlling the Map Camera
	73.15 Summary

	74. Printing with the Android Printing Framework
	74.1 The Android Printing Architecture
	74.2 The Print Service Plugins
	74.3 Google Cloud Print
	74.4 Printing to Google Drive
	74.5 Save as PDF
	74.6 Printing from Android Devices
	74.7 Options for Building Print Support into Android Apps
	74.7.1 Image Printing
	74.7.2 Creating and Printing HTML Content
	74.7.3 Printing a Web Page
	74.7.4 Printing a Custom Document

	74.8 Summary

	75. An Android HTML and Web Content Printing Example
	75.1 Creating the HTML Printing Example Application
	75.2 Printing Dynamic HTML Content
	75.3 Creating the Web Page Printing Example
	75.4 Removing the Floating Action Button
	75.5 Removing Navigation Features
	75.6 Designing the User Interface Layout
	75.7 Accessing the WebView from the Main Activity
	75.8 Loading the Web Page into the WebView
	75.9 Adding the Print Menu Option
	75.10 Summary

	76. A Guide to Android Custom Document Printing
	76.1 An Overview of Android Custom Document Printing
	76.1.1 Custom Print Adapters

	76.2 Preparing the Custom Document Printing Project
	76.3 Creating the Custom Print Adapter
	76.4 Implementing the onLayout() Callback Method
	76.5 Implementing the onWrite() Callback Method
	76.6 Checking a Page is in Range
	76.7 Drawing the Content on the Page Canvas
	76.8 Starting the Print Job
	76.9 Testing the Application
	76.10 Summary

	77. An Introduction to Android App Links
	77.1 An Overview of Android App Links
	77.2 App Link Intent Filters
	77.3 Handling App Link Intents
	77.4 Associating the App with a Website
	77.5 Summary

	78. An Android Studio App Links Tutorial
	78.1 About the Example App
	78.2 The Database Schema
	78.3 Loading and Running the Project
	78.4 Adding the URL Mapping
	78.5 Adding the Intent Filter
	78.6 Adding Intent Handling Code
	78.7 Testing the App
	78.8 Creating the Digital Asset Links File
	78.9 Testing the App Link
	78.10 Summary

	79. An Android Biometric Authentication Tutorial
	79.1 An Overview of Biometric Authentication
	79.2 Creating the Biometric Authentication Project
	79.3 Configuring Device Fingerprint Authentication
	79.4 Adding the Biometric Permission to the Manifest File
	79.5 Designing the User Interface
	79.6 Adding a Toast Convenience Method
	79.7 Checking the Security Settings
	79.8 Configuring the Authentication Callbacks
	79.9 Adding the CancellationSignal
	79.10 Starting the Biometric Prompt
	79.11 Testing the Project
	79.12 Summary

	80. Creating, Testing and Uploading an Android App Bundle
	80.1 The Release Preparation Process
	80.2 Android App Bundles
	80.3 Register for a Google Play Developer Console Account
	80.4 Configuring the App in the Console
	80.5 Enabling Google Play App Signing
	80.6 Creating a Keystore File
	80.7 Creating the Android App Bundle
	80.8 Generating Test APK Files
	80.9 Uploading the App Bundle to the Google Play Developer Console
	80.10 Exploring the App Bundle
	80.11 Managing Testers
	80.12 Rolling the App Out for Testing
	80.13 Uploading New App Bundle Revisions
	80.14 Analyzing the App Bundle File
	80.15 Summary

	81. An Overview of Android In-App Billing
	81.1 Preparing a Project for In-App Purchasing
	81.2 Creating In-App Products and Subscriptions
	81.3 Billing Client Initialization
	81.4 Connecting to the Google Play Billing Library
	81.5 Querying Available Products
	81.6 Starting the Purchase Process
	81.7 Completing the Purchase
	81.8 Querying Previous Purchases
	81.9 Summary

	82. An Android In-App Purchasing Tutorial
	82.1 About the In-App Purchasing Example Project
	82.2 Creating the InAppPurchase Project
	82.3 Adding Libraries to the Project
	82.4 Designing the User Interface
	82.5 Adding the App to the Google Play Store
	82.6 Creating an In-App Product
	82.7 Enabling License Testers
	82.8 Initializing the Billing Client
	82.9 Querying the Product
	82.10 Launching the Purchase Flow
	82.11 Handling Purchase Updates
	82.12 Consuming the Product
	82.13 Restoring a Previous Purchase
	82.14 Testing the App
	82.15 Troubleshooting
	82.16 Summary

	83. An Overview of Android Dynamic Feature Modules
	83.1 An Overview of Dynamic Feature Modules
	83.2 Dynamic Feature Module Architecture
	83.3 Creating a Dynamic Feature Module
	83.4 Converting an Existing Module for Dynamic Delivery
	83.5 Working with Dynamic Feature Modules
	83.6 Handling Large Dynamic Feature Modules
	83.7 Summary

	84. An Android Studio Dynamic Feature Tutorial
	84.1 Creating the DynamicFeature Project
	84.2 Adding Dynamic Feature Support to the Project
	84.3 Designing the Base Activity User Interface
	84.4 Adding the Dynamic Feature Module
	84.5 Reviewing the Dynamic Feature Module
	84.6 Adding the Dynamic Feature Activity
	84.7 Implementing the launchIntent() Method
	84.8 Uploading the App Bundle for Testing
	84.9 Implementing the installFeature() Method
	84.10 Adding the Update Listener
	84.11 Using Deferred Installation
	84.12 Removing a Dynamic Module
	84.13 Summary

	85. Working with Material Design 3 Theming
	85.1 Material Design 2 vs Material Design 3
	85.2 Understanding Material Design Theming
	85.3 Material Design 2 Theming
	85.4 Material Design 3 Theming
	85.5 Building a Custom Theme
	85.6 Summary

	86. Migrating from Material Design 2 to Material Design 3
	86.1 Creating the ThemeMigration Project
	86.2 Designing the User Interface
	86.3 Migrating to Material Design 3
	86.4 Building a New Theme
	86.5 Adding the Theme to the Project
	86.6 Enabling Dynamic Color Support
	86.7 Summary

	87. An Overview of Gradle in Android Studio
	87.1 An Overview of Gradle
	87.2 Gradle and Android Studio
	87.2.1 Sensible Defaults
	87.2.2 Dependencies
	87.2.3 Build Variants
	87.2.4 Manifest Entries
	87.2.5 APK Signing
	87.2.6 ProGuard Support

	87.3 The Property and Settings Gradle Build File
	87.4 The Top-level Gradle Build File
	87.5 Module Level Gradle Build Files
	87.6 Configuring Signing Settings in the Build File
	87.7 Running Gradle Tasks from the Command-line
	87.8 Summary

	Index

