
Android Studio Flamingo
Essentials

Java Edition
Title

Android Studio Flamingo Essentials – Java Edition

ISBN-13: 978-1-951442-70-5

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0
Copyright

i

Contents
Table of Contents
1. Introduction.. 1

1.1 Downloading the Code Samples.. 1
1.2 Feedback.. 1
1.3 Errata... 2

2. Setting up an Android Studio Development Environment.. 3
2.1 System requirements.. 3
2.2 Downloading the Android Studio package.. 3
2.3 Installing Android Studio.. 4

2.3.1 Installation on Windows.. 4
2.3.2 Installation on macOS.. 4
2.3.3 Installation on Linux... 5

2.4 The Android Studio setup wizard.. 5
2.5 Installing additional Android SDK packages... 6
2.6 Installing the Android SDK Command-line Tools.. 9

2.6.1 Windows 8.1.. 10
2.6.2 Windows 10... 10
2.6.3 Windows 11... 11
2.6.4 Linux... 11
2.6.5 macOS... 11

2.7 Android Studio memory management... 11
2.8 Updating Android Studio and the SDK.. 12
2.9 Summary... 12

3. Creating an Example Android App in Android Studio.. 13
3.1 About the Project... 13
3.2 Creating a New Android Project.. 13
3.3 Creating an Activity... 14
3.4 Defining the Project and SDK Settings... 14
3.5 Modifying the Example Application.. 15
3.6 Modifying the User Interface ... 16
3.7 Reviewing the Layout and Resource Files... 21
3.8 Adding Interaction... 24
3.9 Summary... 25

4. Creating an Android Virtual Device (AVD) in Android Studio.. 27
4.1 About Android Virtual Devices... 27
4.2 Starting the Emulator... 29
4.3 Running the Application in the AVD.. 30
4.4 Running on Multiple Devices... 31
4.5 Stopping a Running Application.. 32
4.6 Supporting Dark Theme.. 32
4.7 Running the Emulator in a Separate Window.. 33
4.8 Enabling the Device Frame... 35

Contents

ii

Table of Contents

4.9 Summary... 36
5. Using and Configuring the Android Studio AVD Emulator ... 37

5.1 The Emulator Environment.. 37
5.2 Emulator Toolbar Options.. 37
5.3 Working in Zoom Mode... 39
5.4 Resizing the Emulator Window... 39
5.5 Extended Control Options.. 39

5.5.1 Location.. 40
5.5.2 Displays... 40
5.5.3 Cellular... 40
5.5.4 Battery... 40
5.5.5 Camera.. 40
5.5.6 Phone.. 40
5.5.7 Directional Pad.. 40
5.5.8 Microphone.. 40
5.5.9 Fingerprint... 40
5.5.10 Virtual Sensors.. 41
5.5.11 Snapshots.. 41
5.5.12 Record and Playback.. 41
5.5.13 Google Play.. 41
5.5.14 Settings... 41
5.5.15 Help... 41

5.6 Working with Snapshots.. 41
5.7 Configuring Fingerprint Emulation.. 42
5.8 The Emulator in Tool Window Mode.. 43
5.9 Creating a Resizable Emulator.. 44
5.10 Summary... 45

6. A Tour of the Android Studio User Interface... 47
6.1 The Welcome Screen.. 47
6.2 The Main Window... 48
6.3 The Tool Windows... 49
6.4 Android Studio Keyboard Shortcuts... 52
6.5 Switcher and Recent Files Navigation... 53
6.6 Changing the Android Studio Theme... 54
6.7 Summary... 55

7. Testing Android Studio Apps on a Physical Android Device... 57
7.1 An Overview of the Android Debug Bridge (ADB).. 57
7.2 Enabling USB Debugging ADB on Android Devices.. 57

7.2.1 macOS ADB Configuration... 58
7.2.2 Windows ADB Configuration... 59
7.2.3 Linux adb Configuration.. 60

7.3 Resolving USB Connection Issues... 60
7.4 Enabling Wireless Debugging on Android Devices.. 61
7.5 Testing the adb Connection.. 63
7.6 Device Mirroring.. 63
7.7 Summary... 63

8. The Basics of the Android Studio Code Editor... 65

iii

Table of Contents

8.1 The Android Studio Editor... 65
8.2 Splitting the Editor Window... 67
8.3 Code Completion... 68
8.4 Statement Completion... 69
8.5 Parameter Information.. 70
8.6 Parameter Name Hints.. 70
8.7 Code Generation.. 70
8.8 Code Folding... 71
8.9 Quick Documentation Lookup.. 72
8.10 Code Reformatting.. 73
8.11 Finding Sample Code.. 74
8.12 Live Templates.. 74
8.13 Summary... 75

9. An Overview of the Android Architecture... 77
9.1 The Android Software Stack... 77
9.2 The Linux Kernel.. 78
9.3 Android Runtime – ART... 78
9.4 Android Libraries... 78

9.4.1 C/C++ Libraries.. 79
9.5 Application Framework... 79
9.6 Applications.. 80
9.7 Summary... 80

10. The Anatomy of an Android Application... 81
10.1 Android Activities.. 81
10.2 Android Fragments.. 81
10.3 Android Intents.. 82
10.4 Broadcast Intents.. 82
10.5 Broadcast Receivers... 82
10.6 Android Services.. 82
10.7 Content Providers.. 83
10.8 The Application Manifest.. 83
10.9 Application Resources... 83
10.10 Application Context... 83
10.11 Summary... 83

11. An Overview of Android View Binding.. 85
11.1 Find View by Id.. 85
11.2 View Binding ... 85
11.3 Converting the AndroidSample project.. 86
11.4 Enabling View Binding.. 86
11.5 Using View Binding... 86
11.6 Choosing an Option.. 87
11.7 View Binding in the Book Examples... 87
11.8 Migrating a Project to View Binding... 88
11.9 Summary... 88

12. Understanding Android Application and Activity Lifecycles.. 91
12.1 Android Applications and Resource Management.. 91
12.2 Android Process States.. 91

iv

Table of Contents

12.2.1 Foreground Process.. 92
12.2.2 Visible Process... 92
12.2.3 Service Process.. 92
12.2.4 Background Process.. 92
12.2.5 Empty Process... 93

12.3 Inter-Process Dependencies .. 93
12.4 The Activity Lifecycle... 93
12.5 The Activity Stack... 93
12.6 Activity States... 94
12.7 Configuration Changes... 94
12.8 Handling State Change.. 95
12.9 Summary... 95

13. Handling Android Activity State Changes... 97
13.1 New vs. Old Lifecycle Techniques.. 97
13.2 The Activity and Fragment Classes.. 97
13.3 Dynamic State vs. Persistent State.. 99
13.4 The Android Lifecycle Methods... 100
13.5 Lifetimes.. 101
13.6 Foldable Devices and Multi-Resume... 102
13.7 Disabling Configuration Change Restarts.. 102
13.8 Lifecycle Method Limitations... 102
13.9 Summary... 103

14. Android Activity State Changes by Example.. 105
14.1 Creating the State Change Example Project... 105
14.2 Designing the User Interface.. 106
14.3 Overriding the Activity Lifecycle Methods.. 107
14.4 Filtering the Logcat Panel... 109
14.5 Running the Application... 110
14.6 Experimenting with the Activity.. 111
14.7 Summary... 112

15. Saving and Restoring the State of an Android Activity.. 113
15.1 Saving Dynamic State.. 113
15.2 Default Saving of User Interface State... 113
15.3 The Bundle Class.. 114
15.4 Saving the State... 115
15.5 Restoring the State... 116
15.6 Testing the Application.. 116
15.7 Summary... 116

16. Understanding Android Views, View Groups and Layouts... 119
16.1 Designing for Different Android Devices... 119
16.2 Views and View Groups.. 119
16.3 Android Layout Managers.. 119
16.4 The View Hierarchy... 121
16.5 Creating User Interfaces.. 122
16.6 Summary... 122

17. A Guide to the Android Studio Layout Editor Tool... 123

v

Table of Contents

17.1 Basic vs. Empty Views Activity Templates.. 123
17.2 The Android Studio Layout Editor.. 127
17.3 Design Mode... 127
17.4 The Palette... 128
17.5 Design Mode and Layout Views.. 129
17.6 Night Mode... 130
17.7 Code Mode.. 130
17.8 Split Mode... 131
17.9 Setting Attributes... 131
17.10 Transforms.. 133
17.11 Tools Visibility Toggles.. 134
17.12 Converting Views... 135
17.13 Displaying Sample Data.. 136
17.14 Creating a Custom Device Definition.. 137
17.15 Changing the Current Device.. 137
17.16 Layout Validation... 138
17.17 Summary... 139

18. A Guide to the Android ConstraintLayout... 141
18.1 How ConstraintLayout Works.. 141

18.1.1 Constraints... 141
18.1.2 Margins... 142
18.1.3 Opposing Constraints.. 142
18.1.4 Constraint Bias.. 143
18.1.5 Chains... 144
18.1.6 Chain Styles.. 144

18.2 Baseline Alignment.. 145
18.3 Configuring Widget Dimensions... 145
18.4 Guideline Helper.. 146
18.5 Group Helper.. 146
18.6 Barrier Helper... 146
18.7 Flow Helper... 148
18.8 Ratios... 149
18.9 ConstraintLayout Advantages.. 149
18.10 ConstraintLayout Availability.. 150
18.11 Summary... 150

19. A Guide to Using ConstraintLayout in Android Studio.. 151
19.1 Design and Layout Views.. 151
19.2 Autoconnect Mode.. 152
19.3 Inference Mode... 153
19.4 Manipulating Constraints Manually.. 153
19.5 Adding Constraints in the Inspector... 154
19.6 Viewing Constraints in the Attributes Window... 155
19.7 Deleting Constraints.. 156
19.8 Adjusting Constraint Bias... 156
19.9 Understanding ConstraintLayout Margins... 157
19.10 The Importance of Opposing Constraints and Bias.. 158
19.11 Configuring Widget Dimensions... 160
19.12 Design Time Tools Positioning.. 161

vi

Table of Contents

19.13 Adding Guidelines... 162
19.14 Adding Barriers.. 164
19.15 Adding a Group.. 165
19.16 Working with the Flow Helper... 166
19.17 Widget Group Alignment and Distribution... 167
19.18 Converting other Layouts to ConstraintLayout... 168
19.19 Summary .. 168

20. Working with ConstraintLayout Chains and Ratios in Android Studio... 169
20.1 Creating a Chain.. 169
20.2 Changing the Chain Style... 171
20.3 Spread Inside Chain Style... 171
20.4 Packed Chain Style... 172
20.5 Packed Chain Style with Bias.. 172
20.6 Weighted Chain.. 172
20.7 Working with Ratios.. 173
20.8 Summary... 175

21. An Android Studio Layout Editor ConstraintLayout Tutorial.. 177
21.1 An Android Studio Layout Editor Tool Example.. 177
21.2 Preparing the Layout Editor Environment... 177
21.3 Adding the Widgets to the User Interface.. 178
21.4 Adding the Constraints... 181
21.5 Testing the Layout.. 182
21.6 Using the Layout Inspector... 183
21.7 Summary... 184

22. Manual XML Layout Design in Android Studio.. 185
22.1 Manually Creating an XML Layout... 185
22.2 Manual XML vs. Visual Layout Design... 188
22.3 Summary... 188

23. Managing Constraints using Constraint Sets... 189
23.1 Java Code vs. XML Layout Files... 189
23.2 Creating Views.. 189
23.3 View Attributes... 190
23.4 Constraint Sets.. 190

23.4.1 Establishing Connections.. 190
23.4.2 Applying Constraints to a Layout... 190
23.4.3 Parent Constraint Connections... 190
23.4.4 Sizing Constraints... 191
23.4.5 Constraint Bias.. 191
23.4.6 Alignment Constraints... 191
23.4.7 Copying and Applying Constraint Sets.. 191
23.4.8 ConstraintLayout Chains... 191
23.4.9 Guidelines.. 192
23.4.10 Removing Constraints.. 192
23.4.11 Scaling.. 192
23.4.12 Rotation.. 193

23.5 Summary... 193
24. An Android ConstraintSet Tutorial.. 195

vii

Table of Contents

24.1 Creating the Example Project in Android Studio.. 195
24.2 Adding Views to an Activity... 195
24.3 Setting View Attributes.. 196
24.4 Creating View IDs.. 197
24.5 Configuring the Constraint Set.. 198
24.6 Adding the EditText View... 199
24.7 Converting Density Independent Pixels (dp) to Pixels (px)... 200
24.8 Summary... 201

25. A Guide to using Apply Changes in Android Studio... 203
25.1 Introducing Apply Changes.. 203
25.2 Understanding Apply Changes Options... 203
25.3 Using Apply Changes... 204
25.4 Configuring Apply Changes Fallback Settings... 205
25.5 An Apply Changes Tutorial.. 205
25.6 Using Apply Code Changes.. 205
25.7 Using Apply Changes and Restart Activity... 206
25.8 Using Run App... 206
25.9 Summary... 206

26. An Overview and Example of Android Event Handling.. 207
26.1 Understanding Android Events... 207
26.2 Using the android:onClick Resource... 207
26.3 Event Listeners and Callback Methods... 208
26.4 An Event Handling Example.. 208
26.5 Designing the User Interface.. 209
26.6 The Event Listener and Callback Method... 209
26.7 Consuming Events... 211
26.8 Summary... 212

27. Android Touch and Multi-touch Event Handling.. 213
27.1 Intercepting Touch Events.. 213
27.2 The MotionEvent Object... 213
27.3 Understanding Touch Actions.. 214
27.4 Handling Multiple Touches.. 214
27.5 An Example Multi-Touch Application.. 214
27.6 Designing the Activity User Interface... 215
27.7 Implementing the Touch Event Listener... 215
27.8 Running the Example Application... 218
27.9 Summary... 219

28. Detecting Common Gestures Using the Android Gesture Detector Class.. 221
28.1 Implementing Common Gesture Detection... 221
28.2 Creating an Example Gesture Detection Project... 222
28.3 Implementing the Listener Class.. 222
28.4 Creating the GestureDetectorCompat Instance... 224
28.5 Implementing the onTouchEvent() Method... 225
28.6 Testing the Application.. 225
28.7 Summary... 226

29. Implementing Custom Gesture and Pinch Recognition on Android.. 227

viii

Table of Contents

29.1 The Android Gesture Builder Application.. 227
29.2 The GestureOverlayView Class.. 227
29.3 Detecting Gestures... 227
29.4 Identifying Specific Gestures.. 227
29.5 Installing and Running the Gesture Builder Application... 228
29.6 Creating a Gestures File.. 228
29.7 Creating the Example Project... 228
29.8 Extracting the Gestures File from the SD Card... 229
29.9 Adding the Gestures File to the Project.. 229
29.10 Designing the User Interface.. 229
29.11 Loading the Gestures File... 230
29.12 Registering the Event Listener.. 231
29.13 Implementing the onGesturePerformed Method.. 231
29.14 Testing the Application... 232
29.15 Configuring the GestureOverlayView... 233
29.16 Intercepting Gestures.. 233
29.17 Detecting Pinch Gestures.. 233
29.18 A Pinch Gesture Example Project.. 234
29.19 Summary... 236

30. An Introduction to Android Fragments... 237
30.1 What is a Fragment?.. 237
30.2 Creating a Fragment.. 237
30.3 Adding a Fragment to an Activity using the Layout XML File.. 238
30.4 Adding and Managing Fragments in Code.. 240
30.5 Handling Fragment Events... 241
30.6 Implementing Fragment Communication... 242
30.7 Summary .. 243

31. Using Fragments in Android Studio - An Example.. 245
31.1 About the Example Fragment Application... 245
31.2 Creating the Example Project... 245
31.3 Creating the First Fragment Layout... 245
31.4 Migrating a Fragment to View Binding.. 247
31.5 Adding the Second Fragment... 248
31.6 Adding the Fragments to the Activity... 249
31.7 Making the Toolbar Fragment Talk to the Activity... 250
31.8 Making the Activity Talk to the Text Fragment... 253
31.9 Testing the Application.. 254
31.10 Summary... 255

32. Modern Android App Architecture with Jetpack... 257
32.1 What is Android Jetpack?... 257
32.2 The “Old” Architecture.. 257
32.3 Modern Android Architecture... 257
32.4 The ViewModel Component.. 258
32.5 The LiveData Component... 258
32.6 ViewModel Saved State... 259
32.7 LiveData and Data Binding... 260
32.8 Android Lifecycles... 260
32.9 Repository Modules... 260

ix

Table of Contents

32.10 Summary... 261
33. An Android ViewModel Tutorial.. 263

33.1 About the Project... 263
33.2 Creating the ViewModel Example Project.. 263
33.3 Removing Unwanted Project Elements... 263
33.4 Designing the Fragment Layout... 264
33.5 Implementing the View Model... 265
33.6 Associating the Fragment with the View Model.. 266
33.7 Modifying the Fragment... 267
33.8 Accessing the ViewModel Data.. 268
33.9 Testing the Project.. 268
33.10 Summary... 269

34. An Android Jetpack LiveData Tutorial... 271
34.1 LiveData - A Recap.. 271
34.2 Adding LiveData to the ViewModel.. 271
34.3 Implementing the Observer.. 273
34.4 Summary... 275

35. An Overview of Android Jetpack Data Binding... 277
35.1 An Overview of Data Binding.. 277
35.2 The Key Components of Data Binding... 277

35.2.1 The Project Build Configuration... 277
35.2.2 The Data Binding Layout File.. 278
35.2.3 The Layout File Data Element... 279
35.2.4 The Binding Classes.. 280
35.2.5 Data Binding Variable Configuration... 280
35.2.6 Binding Expressions (One-Way)... 281
35.2.7 Binding Expressions (Two-Way)... 282
35.2.8 Event and Listener Bindings.. 282

35.3 Summary... 283
36. An Android Jetpack Data Binding Tutorial.. 285

36.1 Removing the Redundant Code... 285
36.2 Enabling Data Binding.. 286
36.3 Adding the Layout Element.. 287
36.4 Adding the Data Element to Layout File... 288
36.5 Working with the Binding Class.. 289
36.6 Assigning the ViewModel Instance to the Data Binding Variable.. 290
36.7 Adding Binding Expressions.. 290
36.8 Adding the Conversion Method.. 291
36.9 Adding a Listener Binding.. 291
36.10 Testing the App... 292
36.11 Summary... 292

37. An Android ViewModel Saved State Tutorial... 293
37.1 Understanding ViewModel State Saving... 293
37.2 Implementing ViewModel State Saving.. 293
37.3 Saving and Restoring State.. 295
37.4 Adding Saved State Support to the ViewModelDemo Project... 295

x

Table of Contents

37.5 Summary... 297
38. Working with Android Lifecycle-Aware Components... 299

38.1 Lifecycle Awareness... 299
38.2 Lifecycle Owners.. 299
38.3 Lifecycle Observers.. 300
38.4 Lifecycle States and Events.. 301
38.5 Summary... 302

39. An Android Jetpack Lifecycle Awareness Tutorial... 303
39.1 Creating the Example Lifecycle Project... 303
39.2 Creating a Lifecycle Observer... 303
39.3 Adding the Observer... 305
39.4 Testing the Observer.. 305
39.5 Creating a Lifecycle Owner... 305
39.6 Testing the Custom Lifecycle Owner... 307
39.7 Summary... 308

40. An Overview of the Navigation Architecture Component... 309
40.1 Understanding Navigation.. 309
40.2 Declaring a Navigation Host... 310
40.3 The Navigation Graph... 312
40.4 Accessing the Navigation Controller... 313
40.5 Triggering a Navigation Action.. 313
40.6 Passing Arguments... 314
40.7 Summary... 314

41. An Android Jetpack Navigation Component Tutorial... 315
41.1 Creating the NavigationDemo Project.. 315
41.2 Adding Navigation to the Build Configuration... 315
41.3 Creating the Navigation Graph Resource File.. 316
41.4 Declaring a Navigation Host... 317
41.5 Adding Navigation Destinations.. 318
41.6 Designing the Destination Fragment Layouts.. 320
41.7 Adding an Action to the Navigation Graph... 321
41.8 Implement the OnFragmentInteractionListener... 323
41.9 Adding View Binding Support to the Destination Fragments... 324
41.10 Triggering the Action.. 324
41.11 Passing Data Using Safeargs... 325
41.12 Summary... 328

42. An Introduction to MotionLayout.. 329
42.1 An Overview of MotionLayout.. 329
42.2 MotionLayout... 329
42.3 MotionScene... 329
42.4 Configuring ConstraintSets.. 330
42.5 Custom Attributes.. 331
42.6 Triggering an Animation... 332
42.7 Arc Motion.. 334
42.8 Keyframes.. 334

42.8.1 Attribute Keyframes.. 334

xi

Table of Contents

42.8.2 Position Keyframes... 335
42.9 Time Linearity.. 338
42.10 KeyTrigger... 338
42.11 Cycle and Time Cycle Keyframes.. 339
42.12 Starting an Animation from Code... 339
42.13 Summary... 340

43. An Android MotionLayout Editor Tutorial.. 341
43.1 Creating the MotionLayoutDemo Project.. 341
43.2 ConstraintLayout to MotionLayout Conversion... 341
43.3 Configuring Start and End Constraints.. 343
43.4 Previewing the MotionLayout Animation.. 345
43.5 Adding an OnClick Gesture... 346
43.6 Adding an Attribute Keyframe to the Transition... 347
43.7 Adding a CustomAttribute to a Transition... 350
43.8 Adding Position Keyframes.. 351
43.9 Summary... 354

44. A MotionLayout KeyCycle Tutorial.. 355
44.1 An Overview of Cycle Keyframes.. 355
44.2 Using the Cycle Editor... 359
44.3 Creating the KeyCycleDemo Project... 360
44.4 Configuring the Start and End Constraints.. 360
44.5 Creating the Cycles.. 362
44.6 Previewing the Animation.. 364
44.7 Adding the KeyFrameSet to the MotionScene... 364
44.8 Summary... 366

45. Working with the Floating Action Button and Snackbar... 367
45.1 The Material Design... 367
45.2 The Design Library.. 367
45.3 The Floating Action Button (FAB) .. 367
45.4 The Snackbar... 368
45.5 Creating the Example Project... 369
45.6 Reviewing the Project.. 369
45.7 Removing Navigation Features.. 370
45.8 Changing the Floating Action Button... 371
45.9 Adding an Action to the Snackbar... 372
45.10 Summary... 372

46. Creating a Tabbed Interface using the TabLayout Component... 375
46.1 An Introduction to the ViewPager2.. 375
46.2 An Overview of the TabLayout Component.. 375
46.3 Creating the TabLayoutDemo Project... 376
46.4 Creating the First Fragment.. 377
46.5 Duplicating the Fragments... 378
46.6 Adding the TabLayout and ViewPager2.. 379
46.7 Performing the Initialization Tasks.. 381
46.8 Testing the Application.. 383
46.9 Customizing the TabLayout.. 383
46.10 Summary... 385

xii

Table of Contents

47. Working with the RecyclerView and CardView Widgets... 387
47.1 An Overview of the RecyclerView... 387
47.2 An Overview of the CardView... 389
47.3 Summary... 390

48. An Android RecyclerView and CardView Tutorial.. 391
48.1 Creating the CardDemo Project.. 391
48.2 Modifying the Basic Views Activity Project... 391
48.3 Designing the CardView Layout.. 392
48.4 Adding the RecyclerView.. 393
48.5 Adding the Image Files.. 393
48.6 Creating the RecyclerView Adapter... 394
48.7 Initializing the RecyclerView Component.. 396
48.8 Testing the Application.. 397
48.9 Responding to Card Selections.. 397
48.10 Summary... 399

49. A Layout Editor Sample Data Tutorial... 401
49.1 Adding Sample Data to a Project... 401
49.2 Using Custom Sample Data.. 405
49.3 Summary... 408

50. Working with the AppBar and Collapsing Toolbar Layouts.. 409
50.1 The Anatomy of an AppBar.. 409
50.2 The Example Project.. 410
50.3 Coordinating the RecyclerView and Toolbar... 410
50.4 Introducing the Collapsing Toolbar Layout... 412
50.5 Changing the Title and Scrim Color... 415
50.6 Summary... 416

51. An Android Studio Primary/Detail Flow Tutorial... 417
51.1 The Primary/Detail Flow... 417
51.2 Creating a Primary/Detail Flow Activity.. 418
51.3 Adding the Primary/Detail Flow Activity... 418
51.4 Modifying the Primary/Detail Flow Template... 419
51.5 Changing the Content Model... 419
51.6 Changing the Detail Pane... 421
51.7 Modifying the ItemDetailFragment Class.. 422
51.8 Modifying the ItemListFragment Class... 423
51.9 Adding Manifest Permissions... 424
51.10 Running the Application... 424
51.11 Summary... 425

52. An Overview of Android Services... 427
52.1 Intent Service.. 427
52.2 Bound Service... 427
52.3 The Anatomy of a Service... 428
52.4 Controlling Destroyed Service Restart Options.. 428
52.5 Declaring a Service in the Manifest File.. 428
52.6 Starting a Service Running on System Startup... 430
52.7 Summary... 430

xiii

Table of Contents

53. An Overview of Android Intents.. 431
53.1 An Overview of Intents... 431
53.2 Explicit Intents.. 431
53.3 Returning Data from an Activity... 432
53.4 Implicit Intents... 433
53.5 Using Intent Filters... 434
53.6 Automatic Link Verification... 435
53.7 Manually Enabling Links.. 437
53.8 Checking Intent Availability... 438
53.9 Summary... 439

54. Android Explicit Intents – A Worked Example.. 441
54.1 Creating the Explicit Intent Example Application... 441
54.2 Designing the User Interface Layout for MainActivity... 441
54.3 Creating the Second Activity Class.. 442
54.4 Designing the User Interface Layout for SecondActivity... 443
54.5 Reviewing the Application Manifest File.. 443
54.6 Creating the Intent... 444
54.7 Extracting Intent Data... 445
54.8 Launching SecondActivity as a Sub-Activity.. 446
54.9 Returning Data from a Sub-Activity... 447
54.10 Testing the Application... 447
54.11 Summary... 447

55. Android Implicit Intents – A Worked Example... 449
55.1 Creating the Android Studio Implicit Intent Example Project.. 449
55.2 Designing the User Interface.. 449
55.3 Creating the Implicit Intent.. 450
55.4 Adding a Second Matching Activity.. 451
55.5 Adding the Web View to the UI... 451
55.6 Obtaining the Intent URL... 452
55.7 Modifying the MyWebView Project Manifest File.. 453
55.8 Installing the MyWebView Package on a Device... 454
55.9 Testing the Application.. 455
55.10 Manually Enabling the Link... 455
55.11 Automatic Link Verification... 457
55.12 Summary... 459

56. Android Broadcast Intents and Broadcast Receivers... 461
56.1 An Overview of Broadcast Intents... 461
56.2 An Overview of Broadcast Receivers.. 462
56.3 Obtaining Results from a Broadcast.. 463
56.4 Sticky Broadcast Intents.. 463
56.5 The Broadcast Intent Example.. 464
56.6 Creating the Example Application... 464
56.7 Creating and Sending the Broadcast Intent.. 464
56.8 Creating the Broadcast Receiver.. 465
56.9 Registering the Broadcast Receiver.. 466
56.10 Testing the Broadcast Example.. 467
56.11 Listening for System Broadcasts... 467

xiv

Table of Contents

56.12 Summary... 468
57. Android Local Bound Services – A Worked Example.. 469

57.1 Understanding Bound Services.. 469
57.2 Bound Service Interaction Options... 469
57.3 A Local Bound Service Example.. 469
57.4 Adding a Bound Service to the Project... 470
57.5 Implementing the Binder.. 470
57.6 Binding the Client to the Service... 473
57.7 Completing the Example... 474
57.8 Testing the Application.. 475
57.9 Summary... 475

58. Android Remote Bound Services – A Worked Example.. 477
58.1 Client to Remote Service Communication... 477
58.2 Creating the Example Application... 477
58.3 Designing the User Interface.. 477
58.4 Implementing the Remote Bound Service.. 478
58.5 Configuring a Remote Service in the Manifest File... 479
58.6 Launching and Binding to the Remote Service.. 480
58.7 Sending a Message to the Remote Service.. 481
58.8 Summary... 482

59. A Basic Overview of Java Threads, Handlers and Executors.. 483
59.1 The Application Main Thread... 483
59.2 Thread Handlers... 483
59.3 A Threading Example.. 483
59.4 Building the App.. 484
59.5 Creating a New Thread.. 485
59.6 Implementing a Thread Handler.. 486
59.7 Passing a Message to the Handler.. 488
59.8 Java Executor Concurrency.. 488
59.9 Working with Runnable Tasks.. 489
59.10 Shutting down an Executor Service... 490
59.11 Working with Callable Tasks and Futures.. 490
59.12 Handling a Future Result.. 492
59.13 Scheduling Tasks.. 493
59.14 Summary... 494

60. Making Runtime Permission Requests in Android.. 495
60.1 Understanding Normal and Dangerous Permissions.. 495
60.2 Creating the Permissions Example Project... 497
60.3 Checking for a Permission.. 497
60.4 Requesting Permission at Runtime.. 499
60.5 Providing a Rationale for the Permission Request.. 500
60.6 Testing the Permissions App... 502
60.7 Summary... 502

61. An Android Notifications Tutorial... 503
61.1 An Overview of Notifications... 503
61.2 Creating the NotifyDemo Project.. 505

xv

Table of Contents

61.3 Designing the User Interface.. 505
61.4 Creating the Second Activity.. 505
61.5 Creating a Notification Channel.. 506
61.6 Requesting Notification Permission.. 507
61.7 Creating and Issuing a Notification... 510
61.8 Launching an Activity from a Notification... 512
61.9 Adding Actions to a Notification... 514
61.10 Bundled Notifications.. 515
61.11 Summary... 517

62. An Android Direct Reply Notification Tutorial... 519
62.1 Creating the DirectReply Project... 519
62.2 Designing the User Interface.. 519
62.3 Requesting Notification Permission.. 520
62.4 Creating the Notification Channel... 521
62.5 Building the RemoteInput Object.. 522
62.6 Creating the PendingIntent... 523
62.7 Creating the Reply Action... 524
62.8 Receiving Direct Reply Input.. 526
62.9 Updating the Notification... 527
62.10 Summary... 529

63. Foldable Devices and Multi-Window Support.. 531
63.1 Foldables and Multi-Window Support.. 531
63.2 Using a Foldable Emulator.. 532
63.3 Entering Multi-Window Mode.. 533
63.4 Enabling and using Freeform Support.. 534
63.5 Checking for Freeform Support... 534
63.6 Enabling Multi-Window Support in an App.. 534
63.7 Specifying Multi-Window Attributes.. 535
63.8 Detecting Multi-Window Mode in an Activity.. 536
63.9 Receiving Multi-Window Notifications.. 536
63.10 Launching an Activity in Multi-Window Mode.. 537
63.11 Configuring Freeform Activity Size and Position.. 537
63.12 Summary... 538

64. An Overview of Android SQLite Databases... 539
64.1 Understanding Database Tables... 539
64.2 Introducing Database Schema ... 539
64.3 Columns and Data Types ... 539
64.4 Database Rows ... 540
64.5 Introducing Primary Keys ... 540
64.6 What is SQLite?.. 540
64.7 Structured Query Language (SQL).. 540
64.8 Trying SQLite on an Android Virtual Device (AVD)... 541
64.9 The Android Room Persistence Library.. 543
64.10 Summary... 543

65. The Android Room Persistence Library... 545
65.1 Revisiting Modern App Architecture.. 545
65.2 Key Elements of Room Database Persistence... 545

xvi

Table of Contents

65.2.1 Repository.. 546
65.2.2 Room Database... 546
65.2.3 Data Access Object (DAO).. 546
65.2.4 Entities.. 546
65.2.5 SQLite Database.. 546

65.3 Understanding Entities.. 547
65.4 Data Access Objects... 550
65.5 The Room Database... 551
65.6 The Repository.. 552
65.7 In-Memory Databases... 553
65.8 Database Inspector... 553
65.9 Summary... 553

66. An Android TableLayout and TableRow Tutorial.. 555
66.1 The TableLayout and TableRow Layout Views... 555
66.2 Creating the Room Database Project.. 556
66.3 Converting to a LinearLayout.. 556
66.4 Adding the TableLayout to the User Interface... 557
66.5 Configuring the TableRows.. 558
66.6 Adding the Button Bar to the Layout.. 559
66.7 Adding the RecyclerView.. 560
66.8 Adjusting the Layout Margins.. 561
66.9 Summary... 561

67. An Android Room Database and Repository Tutorial... 563
67.1 About the RoomDemo Project... 563
67.2 Modifying the Build Configuration... 563
67.3 Building the Entity... 563
67.4 Creating the Data Access Object.. 565
67.5 Adding the Room Database.. 566
67.6 Adding the Repository.. 567
67.7 Adding the ViewModel... 570
67.8 Creating the Product Item Layout... 571
67.9 Adding the RecyclerView Adapter... 571
67.10 Preparing the Main Activity... 573
67.11 Adding the Button Listeners... 574
67.12 Adding LiveData Observers... 575
67.13 Initializing the RecyclerView.. 575
67.14 Testing the RoomDemo App.. 576
67.15 Using the Database Inspector... 576
67.16 Summary... 577

68. Accessing Cloud Storage using the Android Storage Access Framework.. 579
68.1 The Storage Access Framework.. 579
68.2 Working with the Storage Access Framework... 580
68.3 Filtering Picker File Listings... 580
68.4 Handling Intent Results... 581
68.5 Reading the Content of a File... 581
68.6 Writing Content to a File.. 582
68.7 Deleting a File... 583
68.8 Gaining Persistent Access to a File.. 583

xvii

Table of Contents

68.9 Summary... 583
69. An Android Storage Access Framework Example.. 585

69.1 About the Storage Access Framework Example... 585
69.2 Creating the Storage Access Framework Example... 585
69.3 Designing the User Interface.. 585
69.4 Adding the Activity Launchers... 586
69.5 Creating a New Storage File.. 588
69.6 Saving to a Storage File.. 588
69.7 Opening and Reading a Storage File... 590
69.8 Testing the Storage Access Application... 591
69.9 Summary... 592

70. Video Playback on Android using the VideoView and MediaController Classes............................... 593
70.1 Introducing the Android VideoView Class.. 593
70.2 Introducing the Android MediaController Class.. 594
70.3 Creating the Video Playback Example.. 594
70.4 Designing the VideoPlayer Layout.. 594
70.5 Downloading the Video File... 595
70.6 Configuring the VideoView.. 595
70.7 Adding the MediaController to the Video View.. 597
70.8 Setting up the onPreparedListener.. 597
70.9 Summary... 598

71. Android Picture-in-Picture Mode... 599
71.1 Picture-in-Picture Features... 599
71.2 Enabling Picture-in-Picture Mode... 600
71.3 Configuring Picture-in-Picture Parameters... 600
71.4 Entering Picture-in-Picture Mode... 601
71.5 Detecting Picture-in-Picture Mode Changes... 601
71.6 Adding Picture-in-Picture Actions.. 602
71.7 Summary... 602

72. An Android Picture-in-Picture Tutorial... 605
72.1 Adding Picture-in-Picture Support to the Manifest.. 605
72.2 Adding a Picture-in-Picture Button.. 605
72.3 Entering Picture-in-Picture Mode... 606
72.4 Detecting Picture-in-Picture Mode Changes... 607
72.5 Adding a Broadcast Receiver.. 608
72.6 Adding the PiP Action... 609
72.7 Testing the Picture-in-Picture Action... 612
72.8 Summary... 612

73. Android Audio Recording and Playback using MediaPlayer and MediaRecorder............................. 613
73.1 Playing Audio... 613
73.2 Recording Audio and Video using the MediaRecorder Class.. 614
73.3 About the Example Project... 615
73.4 Creating the AudioApp Project.. 615
73.5 Designing the User Interface.. 615
73.6 Checking for Microphone Availability.. 616
73.7 Initializing the Activity.. 617

xviii

Table of Contents

73.8 Implementing the recordAudio() Method.. 618
73.9 Implementing the stopAudio() Method.. 618
73.10 Implementing the playAudio() method.. 619
73.11 Configuring and Requesting Permissions.. 619
73.12 Testing the Application... 621
73.13 Summary... 622

74. Working with the Google Maps Android API in Android Studio... 623
74.1 The Elements of the Google Maps Android API... 623
74.2 Creating the Google Maps Project... 624
74.3 Creating a Google Cloud Billing Account.. 624
74.4 Creating a New Google Cloud Project.. 625
74.5 Enabling the Google Maps SDK... 626
74.6 Generating a Google Maps API Key.. 627
74.7 Adding the API Key to the Android Studio Project.. 628
74.8 Testing the Application.. 629
74.9 Understanding Geocoding and Reverse Geocoding... 629
74.10 Adding a Map to an Application.. 631
74.11 Requesting Current Location Permission... 631
74.12 Displaying the User’s Current Location.. 632
74.13 Changing the Map Type.. 634
74.14 Displaying Map Controls to the User.. 635
74.15 Handling Map Gesture Interaction.. 635

74.15.1 Map Zooming Gestures.. 636
74.15.2 Map Scrolling/Panning Gestures.. 636
74.15.3 Map Tilt Gestures.. 636
74.15.4 Map Rotation Gestures... 636

74.16 Creating Map Markers... 637
74.17 Controlling the Map Camera... 637
74.18 Summary... 639

75. Printing with the Android Printing Framework.. 641
75.1 The Android Printing Architecture... 641
75.2 The Print Service Plugins.. 641
75.3 Google Cloud Print.. 642
75.4 Printing to Google Drive... 642
75.5 Save as PDF... 643
75.6 Printing from Android Devices... 643
75.7 Options for Building Print Support into Android Apps... 644

75.7.1 Image Printing... 644
75.7.2 Creating and Printing HTML Content.. 645
75.7.3 Printing a Web Page.. 646
75.7.4 Printing a Custom Document... 647

75.8 Summary... 647
76. An Android HTML and Web Content Printing Example.. 649

76.1 Creating the HTML Printing Example Application.. 649
76.2 Printing Dynamic HTML Content.. 649
76.3 Creating the Web Page Printing Example... 652
76.4 Removing the Floating Action Button.. 652
76.5 Removing Navigation Features.. 652

xix

Table of Contents

76.6 Designing the User Interface Layout... 654
76.7 Accessing the WebView from the Main Activity... 654
76.8 Loading the Web Page into the WebView... 655
76.9 Adding the Print Menu Option.. 656
76.10 Summary... 657

77. A Guide to Android Custom Document Printing.. 659
77.1 An Overview of Android Custom Document Printing.. 659

77.1.1 Custom Print Adapters... 659
77.2 Preparing the Custom Document Printing Project... 660
77.3 Creating the Custom Print Adapter... 661
77.4 Implementing the onLayout() Callback Method... 662
77.5 Implementing the onWrite() Callback Method... 665
77.6 Checking a Page is in Range... 667
77.7 Drawing the Content on the Page Canvas.. 668
77.8 Starting the Print Job... 670
77.9 Testing the Application.. 671
77.10 Summary... 671

78. An Introduction to Android App Links.. 673
78.1 An Overview of Android App Links... 673
78.2 App Link Intent Filters.. 673
78.3 Handling App Link Intents... 674
78.4 Associating the App with a Website.. 674
78.5 Summary... 675

79. An Android Studio App Links Tutorial.. 677
79.1 About the Example App.. 677
79.2 The Database Schema.. 677
79.3 Loading and Running the Project.. 678
79.4 Adding the URL Mapping... 679
79.5 Adding the Intent Filter... 682
79.6 Adding Intent Handling Code.. 682
79.7 Testing the App... 685
79.8 Creating the Digital Asset Links File... 685
79.9 Testing the App Link.. 686
79.10 Summary... 686

80. An Android Biometric Authentication Tutorial.. 687
80.1 An Overview of Biometric Authentication... 687
80.2 Creating the Biometric Authentication Project... 687
80.3 Configuring Device Fingerprint Authentication... 688
80.4 Adding the Biometric Permission to the Manifest File... 688
80.5 Designing the User Interface.. 689
80.6 Adding a Toast Convenience Method... 689
80.7 Checking the Security Settings... 690
80.8 Configuring the Authentication Callbacks... 691
80.9 Adding the CancellationSignal... 692
80.10 Starting the Biometric Prompt... 692
80.11 Testing the Project.. 693
80.12 Summary... 694

xx

Table of Contents

81. Creating, Testing and Uploading an Android App Bundle.. 695
81.1 The Release Preparation Process.. 695
81.2 Android App Bundles.. 695
81.3 Register for a Google Play Developer Console Account... 696
81.4 Configuring the App in the Console... 697
81.5 Enabling Google Play App Signing.. 698
81.6 Creating a Keystore File.. 698
81.7 Creating the Android App Bundle... 700
81.8 Generating Test APK Files.. 701
81.9 Uploading the App Bundle to the Google Play Developer Console.. 702
81.10 Exploring the App Bundle.. 703
81.11 Managing Testers... 704
81.12 Rolling the App Out for Testing... 704
81.13 Uploading New App Bundle Revisions... 705
81.14 Analyzing the App Bundle File.. 706
81.15 Summary... 706

82. An Overview of Android In-App Billing.. 709
82.1 Preparing a Project for In-App Purchasing.. 709
82.2 Creating In-App Products and Subscriptions.. 709
82.3 Billing Client Initialization... 710
82.4 Connecting to the Google Play Billing Library.. 711
82.5 Querying Available Products.. 712
82.6 Starting the Purchase Process... 712
82.7 Completing the Purchase.. 713
82.8 Querying Previous Purchases... 714
82.9 Summary... 715

83. An Android In-App Purchasing Tutorial... 717
83.1 About the In-App Purchasing Example Project... 717
83.2 Creating the InAppPurchase Project... 717
83.3 Adding Libraries to the Project.. 717
83.4 Designing the User Interface.. 718
83.5 Adding the App to the Google Play Store... 718
83.6 Creating an In-App Product... 719
83.7 Enabling License Testers... 719
83.8 Initializing the Billing Client.. 720
83.9 Querying the Product.. 722
83.10 Launching the Purchase Flow.. 723
83.11 Handling Purchase Updates... 723
83.12 Consuming the Product.. 724
83.13 Restoring a Previous Purchase... 725
83.14 Testing the App... 726
83.15 Troubleshooting... 727
83.16 Summary... 728

84. An Overview of Android Dynamic Feature Modules... 729
84.1 An Overview of Dynamic Feature Modules... 729
84.2 Dynamic Feature Module Architecture.. 729
84.3 Creating a Dynamic Feature Module.. 730

xxi

Table of Contents

84.4 Converting an Existing Module for Dynamic Delivery.. 732
84.5 Working with Dynamic Feature Modules... 735
84.6 Handling Large Dynamic Feature Modules... 737
84.7 Summary... 738

85. An Android Studio Dynamic Feature Tutorial... 739
85.1 Creating the DynamicFeature Project... 739
85.2 Adding Dynamic Feature Support to the Project.. 739
85.3 Designing the Base Activity User Interface.. 740
85.4 Adding the Dynamic Feature Module... 741
85.5 Reviewing the Dynamic Feature Module... 742
85.6 Adding the Dynamic Feature Activity... 743
85.7 Implementing the launchIntent() Method... 746
85.8 Uploading the App Bundle for Testing.. 747
85.9 Implementing the installFeature() Method.. 748
85.10 Adding the Update Listener.. 750
85.11 Using Deferred Installation.. 753
85.12 Removing a Dynamic Module... 753
85.13 Summary... 754

86. Working with Material Design 3 Theming... 755
86.1 Material Design 2 vs Material Design 3.. 755
86.2 Understanding Material Design Theming.. 755
86.3 Material Design 3 Theming.. 755
86.4 Building a Custom Theme.. 757
86.5 Summary... 758

87. A Material Design 3 Theming and Dynamic Color Tutorial.. 759
87.1 Creating the ThemeDemo Project... 759
87.2 Designing the User Interface.. 759
87.3 Building a New Theme.. 761
87.4 Adding the Theme to the Project... 762
87.5 Enabling Dynamic Color Support... 763
87.6 Previewing Dynamic Colors... 764
87.7 Summary... 765

88. An Overview of Gradle in Android Studio... 767
88.1 An Overview of Gradle... 767
88.2 Gradle and Android Studio.. 767

88.2.1 Sensible Defaults... 767
88.2.2 Dependencies.. 767
88.2.3 Build Variants.. 768
88.2.4 Manifest Entries.. 768
88.2.5 APK Signing... 768
88.2.6 ProGuard Support... 768

88.3 The Property and Settings Gradle Build File.. 768
88.4 The Top-level Gradle Build File.. 769
88.5 Module Level Gradle Build Files.. 770
88.6 Configuring Signing Settings in the Build File... 772
88.7 Running Gradle Tasks from the Command-line... 773
88.8 Summary... 774

xxii

Table of Contents

Index.. 775

1

Chapter 1

1. Introduction
Fully updated for Android Studio Flamingo, this book aims to teach you how to develop Android-based
applications using the Java programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an overview of areas such as tool windows, the code editor, and the Layout Editor tool. An
introduction to the architecture of Android is followed by an in-depth look at the design of Android applications
and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components, including view models, lifecycle
management, Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Dynamic Delivery, Gradle build
configuration, in-app billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some Java programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/flamingojava/index.php

The steps to load a project from the code samples into Android Studio are as follows:

1.  From the Welcome to Android Studio dialog, click on the Open button option.

2.  In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/flamingojava/index.php
mailto:feedback%40ebookfrenzy.com?subject=

2

Introduction

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/flamingojava.html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com. They are there to help you and will work to resolve any problems you may encounter.

https://www.ebookfrenzy.com/errata/flamingojava.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK)
and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

•	 Windows 8/10/11 64-bit

•	 macOS 10.14 or later running on Intel or Apple silicon

•	 Chrome OS device with Intel i5 or higher

•	 Linux systems with version 2.31 or later of the GNU C Library (glibc)

•	 Minimum of 8GB of RAM

•	 Approximately 8GB of available disk space

•	 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Flamingo 2022.2.1
using the Android API 33 SDK (Tiramisu) which, at the time of writing, are the latest versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for “Android Studio
Flamingo” should provide the option to download the older version if these differences become a problem.
Alternatively, visit the following web page to find Android Studio Flamingo 2022.2.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

4

Setting up an Android Studio Development Environment

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1
To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

5

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora-based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio setup wizard
If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click on
the OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

6

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click on the
Finish button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen UI theme:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

7

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

Figure 2-5
Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To

8

Setting up an Android Studio Development Environment

view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

•	 Android SDK Build-tools

•	 Android Emulator

•	 Android SDK Platform-tools

•	 Google Play Services

•	 Intel x86 Emulator Accelerator (HAXM installer)*

•	 Google USB Driver (Windows only)

•	 Layout Inspector image server for API 31 and T
*Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8
Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the

9

Setting up an Android Studio Development Environment

Apply button again.

2.6 Installing the Android SDK Command-line Tools
Android Studio includes a set of tools that allow some tasks to be performed from your operating system
command line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab and
enable the Show Package Details option in the bottom left-hand corner of the window. Next, scroll down the
list of packages and, when the Android SDK Command-line Tools (latest) package comes into view, enable it as
shown in Figure 2-9:

Figure 2-9

After you have selected the command-line tools package, click on Apply followed by OK to complete the
installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

10

Setting up an Android Studio Development Environment

Figure 2-10
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1.  On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2.  Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3.  In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit… button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4.  Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

11

Setting up an Android Studio Development Environment

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management
Android Studio is a large and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-11
To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->

12

Setting up an Android Studio Development Environment

Preferences... on macOS) menu option and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12
When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the currently
loaded project. On the other hand, when a project is built and run from within Android Studio, a number of
background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option.

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

13

Chapter 3

3. Creating an Example Android App
in Android Studio
The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of an Android application project using Android Studio. Once the project
has been created, a later chapter will explore the use of the Android emulator environment to perform a test run
of the application.

3.1 About the Project
The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also make use of one of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project
The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
Once this window appears, Android Studio is ready for a new project to be created. To create the new project,

14

Creating an Example Android App in Android Studio

simply click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity
The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the Phone and Tablet option from the
Templates panel followed by the option to create an Empty Views Activity. The Empty Views Activity option
creates a template user interface consisting of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (), set the Name field to AndroidSample. The application name is the name
by which the application will be referenced and identified within Android Studio and is also the name that
would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:
com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for the purposes of testing, though this will need to be changed before an application can be
published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in

15

Creating an Example Android App in Android Studio

most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose button (highlighted in Figure 3-3) to see a full breakdown of the various Android versions still
in use:

Figure 3-3
Finally, change the Language menu to Java and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application
At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4
The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

16

Creating an Example Android App in Android Studio

Figure 3-5

3.6 Modifying the User Interface
The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. Once located in the Project tool window, double-click on
the file to load it into the user interface Layout Editor tool which will appear in the center panel of the Android
Studio main window:

Figure 3-6
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon. Use the night mode button (

) to turn Night mode on and off.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category

17

Creating an Example Android App in Android Studio

consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7
As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, also check that the Layout Editor’s Autoconnect mode is enabled. This means that as
components are added to the layout, the Layout Editor will automatically add constraints to make sure the
components are correctly positioned for different screen sizes and device orientations (a topic that will be
covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar
and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure
3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

Figure 3-9
Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

18

Creating an Example Android App in Android Studio

Figure 3-10
The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-11:

Figure 3-11
The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12

19

Creating an Example Android App in Android Studio

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-13. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-13
When clicked, the Problems tool window (Figure 3-14) will appear, describing the nature of the problems:

Figure 3-14
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected
within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:
Hardcoded string "Convert", should use @string resource

The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-15:

20

Creating an Example Android App in Android Studio

Figure 3-15
After this option has been selected, the Extract Resource panel (Figure 3-16) will appear. Within this panel,
change the resource name field to convert_string and leave the resource value set to Convert before clicking on
the OK button.

Figure 3-16
The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-17:

Figure 3-17
Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

21

Creating an Example Android App in Android Studio

Figure 3-18
Repeat the steps to set the id of the TextView widget to textView.

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-19:

Figure 3-19

3.7 Reviewing the Layout and Resource Files
Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly to make user interface changes and, in some instances, this may actually be quicker
than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are three buttons as
highlighted in Figure 3-20 below:

22

Creating an Example Android App in Android Studio

Figure 3-20
By default, the editor will be in Design mode whereby just the visual representation of the layout is displayed.
The left-most button will switch to Code mode to display the XML for the layout, while the middle button enters
Split mode where both the layout and XML are displayed, as shown in Figure 3-21:

Figure 3-21
As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although varying in complexity and content, all
user interface layouts are structured in this hierarchical, XML based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:background="#ff2438" >
.

.

</androidx.constraintlayout.widget.ConstraintLayout>

23

Creating an Example Android App in Android Studio

Note that the color of the layout changes in real-time to match the new setting in the XML file. Note also that a
small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Clicking
on the red square will display a color chooser allowing a different color to be selected:

Figure 3-22
Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:
<resources>

 <string name="app_name">AndroidSample</string>

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights and then press
Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and
take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource
back to the original “Convert” text and to add the following additional entry for a string resource that will be
referenced later in the app code:
<resources>

.

.

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

 <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:

24

Creating an Example Android App in Android Studio

Figure 3-23
This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.8 Adding Interaction
The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

Figure 3-24
Next, double-click on the MainActivity.java file in the Project tool window (app -> java -> <package name> ->
MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file so
that it reads as follows, noting that it is also necessary to import some additional Android packages:
package com.ebookfrenzy.androidsample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;
import android.widget.EditText;
import android.widget.TextView;
.

.

25

Creating an Example Android App in Android Studio

import java.util.Locale;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_main);

 }

 public void convertCurrency(View view) {

 EditText dollarText = findViewById(R.id.dollarText);
 TextView textView = findViewById(R.id.textView);

 if (!dollarText.getText().toString().equals("")) {

 float dollarValue = Float.parseFloat(dollarText.getText().toString());
 float euroValue = dollarValue * 0.85F;
 textView.setText(String.format(Locale.ENGLISH,"%.2f", euroValue));
 } else {
 textView.setText(R.string.no_value_string);
 }
 }
}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewById, passing through the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating point
value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewId and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.9 Summary
While not excessively complex, a number of steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to make sure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly in the case of string values, and briefly touched on the topic of layouts.
Next we looked at the underlying XML that is used to store the user interface designs of Android applications.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in

26

Creating an Example Android App in Android Studio

detail in the next chapter.

27

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio
Although the Android Studio Preview panel allows us to see the layout we are designing and test basic
functionality using interactive mode, it be will necessary to compile and run an entire app to fully test that it
works. An Android application may be tested by installing and running it either on a physical device or in an
Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and
configured to match the specifications of a particular device model. In this chapter, we will work through the
creation of such a virtual device using the Pixel 4 phone as a reference example.

4.1 About Android Virtual Devices
AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android-based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity, and the presence or otherwise of features such
as a camera, GPS navigation support, or an accelerometer. As part of the standard Android Studio installation,
several emulator templates are installed allowing AVDs to be configured for a range of different devices. Custom
configurations may be created to match any physical Android device by specifying properties such as processor
type, memory capacity, and the size and pixel density of the screen.

An AVD session can appear either as a separate window or embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step
is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting
the Tools -> Device Manager menu option from within the main window.

Once launched, the manager will appear as a tool window as shown in Figure 4-1:

Figure 4-1
If you installed Android Studio for the first time on a computer (as opposed to upgrading an existing Android

28

Creating an Android Virtual Device (AVD) in Android Studio

Studio installation), the installer might have created an initial AVD instance ready for use, as shown in Figure
4-2:

Figure 4-2
If this AVD is present on your system, you can use it to test apps. If no AVD was created, or you would like to
create AVDs for different device types, follow the steps in the rest of this chapter.

To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device
button to open the Virtual Device Configuration dialog:

Figure 4-3
Within the dialog, perform the following steps to create a Pixel 4 compatible emulator:

1.  From the Category panel, select the Phone option to display the list of available Android phone AVD
templates.

2.  Select the Pixel 4 device option and click Next.

3.  On the System Image screen, select the latest version of Android. Note that if the system image has not yet
been installed a Download link will be provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or
ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

29

Creating an Android Virtual Device (AVD) in Android Studio

4.  Click Next to proceed and enter a descriptive name (for example Pixel 4 API 33) into the name field or
simply accept the default name.

5.  Click Finish to create the AVD.

6.  With the AVD created, the Device Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the Device Manager, select the AVD from the list, and click on the pencil icon in
the Actions column to edit the settings.

4.2 Starting the Emulator
To perform a test run of the newly created AVD emulator, simply select the emulator from the Device Manager
and click on the launch button (the triangle in the Actions column). The emulator will appear embedded into
the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to
start will depend on the configuration of both the AVD and the system on which it is running:

Figure 4-4
To hide and show the emulator tool window, click on the Running Devices tool window button (marked A
above). Click on the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can
accommodate multiple emulator sessions, with each session represented by a tab. Figure 4-5, for example, shows
a tool window with two emulator sessions:

Figure 4-5
To switch between sessions, simply click on the corresponding tab.

30

Creating an Android Virtual Device (AVD) in Android Studio

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the Device Manager, select the new Pixel 4 entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change
the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the
emulator are covered in the next chapter “Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.3 Running the Application in the AVD
With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, make sure that the
newly created Pixel 4 AVD is displayed in the device menu (marked A in Figure 4-6 below), then either click on
the run button represented by a green triangle (B), select the Run -> Run ‘app’ menu option or use the Ctrl-R
keyboard shortcut:

Figure 4-6
The device menu (A) may be used to select a different AVD instance or physical device as the run target, and
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 4-7
Once the application is installed and running, the user interface for the first fragment will appear within the
emulator (a fragment is a reusable section of an Android project typically consisting of a user interface layout and
some code, a topic which will be covered later in the chapter entitled “An Introduction to Android Fragments”):

31

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-8
If the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the
emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run tool window
will become available. The Run tool window will display diagnostic information as the application package is
installed and launched. Figure 4-9 shows the Run tool window output from a typical successful application
launch:

Figure 4-9
If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured. With the app now running, try
performing a currency conversion to verify that the app works as intended.

4.4 Running on Multiple Devices
The run menu shown in Figure 4-7 above includes an option to run the app on multiple emulators and devices
in parallel. When selected, this option displays the dialog shown in Figure 4-10 providing a list of both the AVDs
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or
devices to be targeted before clicking on the Run button:

32

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-10
After the Run button is clicked, Android Studio will launch the app on the selected emulators and devices.

4.5 Stopping a Running Application
To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
4-11:

Figure 4-11
An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running. Once the Run tool window appears, click
the stop button highlighted in Figure 4-12 below:

Figure 4-12

4.6 Supporting Dark Theme
Android 10 introduced the much-awaited dark theme, support for which is enabled by default in Android
Studio app projects. To test dark theme in the AVD emulator, open the Settings app within the running Android
instance in the emulator. Within the Settings app, choose the Display category and enable the Dark theme option
as shown in Figure 4-13 so that the screen background turns black:

33

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-13
With dark theme enabled, run the AndroidSample app and note that it appears using a dark theme including a
black background and a purple background color on the button as shown in Figure 4-14:

Figure 4-14
Return to the Settings app and turn off Dark theme mode before continuing.

4.7 Running the Emulator in a Separate Window
So far in this chapter, we have only used the emulator as a tool window embedded within the main Android
Studio window. To run the emulator in a separate window, select the File -> Settings... menu option (Android
Studio -> Preferences... on macOS), navigate to Tools -> Emulator in the left-hand navigation panel of the
preferences dialog, and disable the Launch in a tool window option:

34

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-15
With the option disabled, click the Apply button followed by OK to commit the change, then exit the current
emulator session by clicking on the close button on the tab marked B in Figure 4-4 above.

Run the sample app once again, at which point the emulator will appear as a separate window as shown below:

Figure 4-16
The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before
committing to standalone mode, however, keep in mind that the emulator tool window may also be detached
from the main Android Studio window by clicking on the settings button (represented by the gear icon) in the
tool emulator toolbar and selecting the View Mode -> Float menu option:

35

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-17

4.8 Enabling the Device Frame
The emulator can be configured to appear with (Figure 4-18) or without the device frame (Figure 4-16).

Figure 4-18
To change the setting, open the Device Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings. In the settings screen, locate and change the Enable Device Frame option:

36

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-19

4.9 Summary
A typical application development process follows a cycle of coding, compiling, and running in a test
environment. Android applications may be tested on either a physical Android device or using an Android
Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool
which may be used either as a command-line tool or via a graphical user interface. When creating an AVD to
simulate a specific Android device model, the virtual device should be configured with a hardware specification
matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android
Studio user interface.

37

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator
Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
available to customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment
When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears containing a representation of the chosen device type (in the
case of Figure 5-1 this is a Pixel 4 device):

Figure 5-1
Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.

5.2 Emulator Toolbar Options
The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

38

Using and Configuring the Android Studio AVD Emulator

Figure 5-2
Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

•	 Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the emulator session when selected while the
‘-’ option minimizes the entire window.

•	 Power – The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power off ” request sequence.

•	 Volume Up / Down – Two buttons that control the audio volume of playback within the simulator environment.

•	 Rotate Left/Right – Rotates the emulated device between portrait and landscape orientations.

•	 Take Screenshot – Takes a screenshot of the content currently displayed on the device screen. The captured
image is stored at the location specified in the Settings screen of the extended controls panel as outlined later
in this chapter.

•	 Zoom Mode – This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

•	 Back – Performs the standard Android “Back” navigation to return to a previous screen.

•	 Home – Displays the device home screen.

•	 Overview – Simulates selection of the standard Android “Overview” navigation which displays the currently
running apps on the device.

39

Using and Configuring the Android Studio AVD Emulator

•	 Fold Device – Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

•	 Extended Controls – Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode
The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

5.4 Resizing the Emulator Window
The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options
The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3

40

Using and Configuring the Android Studio AVD Emulator

5.5.1 Location
The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format. Alternatively, the integrated Google Maps panel may be used to
visually select single points or travel routes.

5.5.2 Displays
In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

5.5.3 Cellular
The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

5.5.4 Battery
A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

5.5.5 Camera
The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.6 Phone
The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing how an app handles high-level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad
A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

41

Using and Configuring the Android Studio AVD Emulator

5.5.10 Virtual Sensors
The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement, and tilting through yaw, pitch and roll settings.

5.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in later in this chapter.

5.5.12 Record and Playback
Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

5.5.13 Google Play
If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version and provides the option to update the emulator to the latest version.

5.5.14 Settings
The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

5.5.15 Help
The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots
When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

42

Using and Configuring the Android Studio AVD Emulator

Figure 5-4
To force an emulator session to perform a cold boot instead of using a previous quick-boot snapshot, enable the
checkbox marked F in the above figure.

You can also choose whether to start an emulator using either a cold boot, the most recent quick-boot snapshot,
or a previous snapshot by making a selection from the run target menu in the main toolbar, as illustrated in
Figure 5-5:

Figure 5-5

5.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app, and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a

43

Using and Configuring the Android Studio AVD Emulator

backup screen unlocking method (such as a PIN) must be configured. Click on the Fingerprint + PIN button
and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN and
complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-6
Click on the Touch Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will report
the successful addition of the fingerprint:

Figure 5-7
To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch Sensor button once again.

5.8 The Emulator in Tool Window Mode
As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator as an embedded tool window so that it does not appear in a

44

Using and Configuring the Android Studio AVD Emulator

separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar as shown in Figure 5-8:

Figure 5-8
From left to right, these buttons perform the following tasks (details of which match those for standalone mode):

•	 Power

•	 Volume Up

•	 Volume Down

•	 Rotate Left

•	 Rotate Right

•	 Back

•	 Home

•	 Overview

•	 Screenshot

•	 Snapshots

•	 Extended Controls

5.9 Creating a Resizable Emulator
In addition to emulators configured to match specific Android device models, Android Studio also provides a
resizable AVD that allows you to switch between phone, tablet and foldable device sizes. To create a resizable
emulator, open the Device Manager and click the Create device button. Next, select the Resizable device definition
illustrated in Figure 5-9, and follow the usual steps to create a new AVD:

Figure 5-9
When you run an app on the new emulator within a tool window, the Display mode option will appear in the
toolbar, allowing you to switch between emulator configurations as shown in Figure 5-10:

45

Using and Configuring the Android Studio AVD Emulator

Figure 5-10
If the emulator is running in standalone mode, the Display mode option can be found in the side toolbar as
shown below:

Figure 5-11

5.10 Summary
Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without the need to run on a physical Android device. This chapter has provided a brief tour of the
emulator and highlighted key features that are available to configure and customize the environment to simulate
different testing conditions.

47

Chapter 6

6. A Tour of the Android Studio User
Interface
While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen
The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will bypass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1
In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening
and creating projects along with access to projects currently under version control. In addition, the Customize
screen provides options to change the theme and font settings used by both the IDE and the editor. Android
Studio plugins may be viewed, installed, and managed using the Plugins option.

48

A Tour of the Android Studio User Interface

Additional options are available by clicking on the menu button as shown in Figure 6-2:

Figure 6-2

6.2 The Main Window
When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-3.

Figure 6-3
The various elements of the main window can be summarized as follows:

A – Menu Bar – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick access
to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting
the Customize Menus and Toolbars… menu option. If the toolbar is not visible, it can be displayed using the View
-> Appearance -> Toolbar menu option.

C – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class. Select a method from the list to be taken to the corresponding location within the
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.

D – Editor Window – The editor window displays the content of the file on which the developer is currently

49

A Tour of the Android Studio User Interface

working. When multiple files are open, each file is represented by a tab located along the top edge of the editor
as shown in Figure 6-4:

Figure 6-4
E – Status Bar – The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will display a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in
several different ways. The default setting is the Android view which is the mode primarily used in the remainder
of this book.

The project tool window is just one of many tool windows available within the Android Studio environment.

6.3 The Tool Windows
In addition to the project view tool window, Android Studio also includes many other windows which, when
enabled, are displayed along the bottom and sides of the main window. The tool window quick access menu can
be displayed by hovering the mouse pointer over the button located in the far left-hand corner of the status bar
(Figure 6-5) without clicking the mouse button.

Figure 6-5
Selecting an item from the quick access menu will cause the corresponding tool window to appear within the

50

A Tour of the Android Studio User Interface

main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right, and bottom edges of the main window (as indicated by the arrows in
Figure 6-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 6-6
Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window toolbars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-7 shows the settings menu for the Project tool window. Options
are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android
Studio main window, and to move and resize the tool panel.

51

A Tour of the Android Studio User Interface

Figure 6-7
All of the windows also include a far-right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s toolbar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

•	 App Inspection - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

•	 Build - The build tool window displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

•	 Build Variants – The build variants tool window provides a quick way to configure different build targets
for the current application project (for example different builds for debugging and release versions of the
application, or multiple builds to target different device categories).

•	 Device File Explorer – Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator allowing the
filesystem to be browsed and files copied to the local filesystem.

•	 Device Manager - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

•	 Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

•	 Bookmarks – The Bookmarks tool window provides quick access to bookmarked files and code lines. For
example, right-clicking on a file in the project view allows access to an Add to Bookmarks menu option.
Similarly, you can bookmark a line of code in a source file by moving the cursor to that line and pressing the
F11 key (F3 on macOS). All bookmarked items can be accessed through this tool window.

•	 Gradle – The Gradle tool window provides a view of the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater
detail later in this book.

52

A Tour of the Android Studio User Interface

•	 Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

•	 Logcat – The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

•	 Problems - A central location in which to view all of the current errors or warnings within the project.
Double-clicking on an item in the problem list will take you to the problem file and location.

•	 Profiler – The Android Profiler tool window provides real-time monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

•	 Project – The project view provides an overview of the file structure that makes up the project allowing for
quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be
loaded into the appropriate editing tool.

•	 Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout
files contained with the project.

•	 Run – The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing
to install and run on a device or emulator, this window will typically provide diagnostic information relating
to the problem.

•	 Structure – The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the source file in the editor window.

•	 Terminal – Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

•	 TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting
the File -> Settings… menu option (Android Studio -> Preferences… on macOS) and navigating to the TODO
page listed under Editor.

•	 Version Control - This tool window is used when the project files are under source code version control,
allowing access to Git repositories and code change history.

6.4 Android Studio Keyboard Shortcuts
Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option. You may also list and modify the
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS)
and clicking on the Keymap entry as shown in Figure 6-8 below:

53

A Tour of the Android Studio User Interface

Figure 6-8

6.5 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-9).

Figure 6-9
Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure
6-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the
mouse pointer can be used to select an option or the keyboard arrow keys used to scroll through the file name

54

A Tour of the Android Studio User Interface

and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 6-10

6.6 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option or via the File -> Settings… menu option (Android Studio -> Preferences… on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance & Behavior option followed by Appearance in the
left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes
available will depend on the platform but usually include options such as Light, IntelliJ, Windows, High Contrast,
and Darcula. Figure 6-11 shows an example of the main window with the Darcula theme selected:

Figure 6-11
To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

55

A Tour of the Android Studio User Interface

Figure 6-12

6.7 Summary
The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar or via the
optional tool window bars.

There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of
default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

207

Chapter 26

26. An Overview and Example of
Android Event Handling
Much has been covered in the previous chapters relating to the design of user interfaces for Android applications.
An area that has yet to be covered, however, involves the way in which a user’s interaction with the user interface
triggers the underlying activity to perform a task. In other words, we know from the previous chapters how to
create a user interface containing a button view, but not how to make something happen within the application
when it is touched by the user.

The primary objective of this chapter, therefore, is to provide an overview of event handling in Android
applications together with an Android Studio based example project.

26.1 Understanding Android Events
Events in Android can take a variety of different forms, but are usually generated in response to an external
action. The most common form of events, particularly for devices such as tablets and smartphones, involve some
form of interaction with the touch screen. Such events fall into the category of input events.

The Android framework maintains an event queue into which events are placed as they occur. Events are then
removed from the queue on a first-in, first-out (FIFO) basis. In the case of an input event such as a touch on the
screen, the event is passed to the view positioned at the location on the screen where the touch took place. In
addition to the event notification, the view is also passed a range of information (depending on the event type)
about the nature of the event such as the coordinates of the point of contact between the user’s fingertip and the
screen.

To be able to handle the event that it has been passed, the view must have in place an event listener. The Android
View class, from which all user interface components are derived, contains a range of event listener interfaces,
each of which contains an abstract declaration for a callback method. To be able to respond to an event of a
particular type, a view must register the appropriate event listener and implement the corresponding callback.
For example, if a button is to respond to a click event (the equivalent to the user touching and releasing the
button view as though clicking on a physical button) it must both register the View.onClickListener event listener
(via a call to the target view’s setOnClickListener() method) and implement the corresponding onClick() callback
method. If a “click” event is detected on the screen at the location of the button view, the Android framework will
call the onClick() method of that view when that event is removed from the event queue. It is, of course, within
the implementation of the onClick() callback method that any tasks should be performed or other methods
called in response to the button click.

26.2 Using the android:onClick Resource
Before exploring event listeners in more detail it is worth noting that a shortcut is available when all that is
required is for a callback method to be called when a user “clicks” on a button view in the user interface. Consider
a user interface layout containing a button view named button1 with the requirement that when the user touches
the button, a method called buttonClick() declared in the activity class is called. All that is required to implement
this behavior is to write the buttonClick() method (which takes as an argument a reference to the view that
triggered the click event) and add a single line to the declaration of the button view in the XML file. For example:
<Button

208

An Overview and Example of Android Event Handling

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="buttonClick"
 android:text="Click me" />

This provides a simple way to capture click events. It does not, however, provide the range of options offered by
event handlers, which are the topic of the rest of this chapter. As will be outlined in later chapters, the onClick
property also has limitations in layouts involving fragments. When working within Android Studio Layout
Editor, the onClick property can be found and configured in the Attributes panel when a suitable view type is
selected in the device screen layout.

26.3 Event Listeners and Callback Methods
In the example activity outlined later in this chapter the steps involved in registering an event listener and
implementing the callback method will be covered in detail. Before doing so, however, it is worth taking some
time to outline the event listeners that are available in the Android framework and the callback methods
associated with each one.

•	 onClickListener – Used to detect click style events whereby the user touches and then releases an area of the
device display occupied by a view. Corresponds to the onClick() callback method which is passed a reference
to the view that received the event as an argument.

•	 onLongClickListener – Used to detect when the user maintains the touch over a view for an extended period.
Corresponds to the onLongClick() callback method which is passed as an argument the view that received the
event.

•	 onTouchListener – Used to detect any form of contact with the touch screen including individual or multiple
touches and gesture motions. Corresponding with the onTouch() callback, this topic will be covered in greater
detail in the chapter entitled “Android Touch and Multi-touch Event Handling”. The callback method is passed
as arguments the view that received the event and a MotionEvent object.

•	 onCreateContextMenuListener – Listens for the creation of a context menu as the result of a long click.
Corresponds to the onCreateContextMenu() callback method. The callback is passed the menu, the view that
received the event and a menu context object.

•	 onFocusChangeListener – Detects when focus moves away from the current view as the result of interaction
with a track-ball or navigation key. Corresponds to the onFocusChange() callback method which is passed the
view that received the event and a Boolean value to indicate whether focus was gained or lost.

•	 onKeyListener – Used to detect when a key on a device is pressed while a view has focus. Corresponds to
the onKey() callback method. Passed as arguments are the view that received the event, the KeyCode of the
physical key that was pressed and a KeyEvent object.

26.4 An Event Handling Example
In the remainder of this chapter, we will work through the creation of an Android Studio project designed to
demonstrate the implementation of an event listener and corresponding callback method to detect when the
user has clicked on a button. The code within the callback method will update a text view to indicate that the
event has been processed.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter EventExample into the Name field and specify com.ebookfrenzy.eventexample as the package name. Before

209

An Overview and Example of Android Event Handling

clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Java. Using the steps outlined in section 11.8 Migrating a Project to View Binding, convert the
project to use view binding.

26.5 Designing the User Interface
The user interface layout for the MainActivity class in this example is to consist of a ConstraintLayout, a Button
and a TextView as illustrated in Figure 26-1.

Figure 26-1
Locate and select the activity_main.xml file created by Android Studio (located in the Project tool window under
app -> res -> layouts) and double-click on it to load it into the Layout Editor tool.

Make sure that Autoconnect is enabled, then drag a Button widget from the palette and move it so that it is
positioned in the horizontal center of the layout and beneath the existing TextView widget. When correctly
positioned, drop the widget into place so that appropriate constraints are added by the autoconnect system.

Select the “Hello World!” TextView widget and use the Attributes panel to set the ID to statusText. Repeat this
step to change the ID of the Button widget to myButton.

Add any missing constraints by clicking on the Infer Constraints button in the layout editor toolbar.

With the Button widget selected, use the Attributes panel to set the text property to Press Me. Extract the text
string on the button to a resource named press_me.

With the user interface layout now completed, the next step is to register the event listener and callback method.

26.6 The Event Listener and Callback Method
For the purposes of this example, an onClickListener needs to be registered for the myButton view. This is achieved
by making a call to the setOnClickListener() method of the button view, passing through a new onClickListener
object as an argument and implementing the onClick() callback method. Since this is a task that only needs to
be performed when the activity is created, a good location is the onCreate() method of the MainActivity class.

210

An Overview and Example of Android Event Handling

If the MainActivity.java file is already open within an editor session, select it by clicking on the tab in the editor
panel. Alternatively locate it within the Project tool window by navigating to (app -> java -> com.ebookfrenzy.
eventexample -> MainActivity) and double-click on it to load it into the code editor. Once loaded, locate the
template onCreate() method and modify it to obtain a reference to the button view, register the event listener
and implement the onClick() callback method:
package com.ebookfrenzy.eventexample;

import androidx.appcompat.app.AppCompatActivity;

import android.os.Bundle;

import android.view.View;

import android.widget.Button;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

 binding.myButton.setOnClickListener(
 new Button.OnClickListener() {
 public void onClick(View v) {

 }
 }
);
 }

.

.

}

The above code has now registered the event listener on the button and implemented the onClick() method.
If the application were to be run at this point, however, there would be no indication that the event listener
installed on the button was working since there is, as yet, no code implemented within the body of the onClick()
callback method. The goal for the example is to have a message appear on the TextView when the button is
clicked, so some further code changes need to be made:
@Override

protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 binding = ActivityMainBinding.inflate(getLayoutInflater());

 View view = binding.getRoot();

 setContentView(view);

211

An Overview and Example of Android Event Handling

 binding.myButton.setOnClickListener(

 new Button.OnClickListener() {

 public void onClick(View v) {

 binding.statusText.setText("Button clicked");
 }

 }

);

}

Complete this phase of the tutorial by compiling and running the application on either an AVD emulator or
physical Android device. On touching and releasing the button view (otherwise known as “clicking”) the text
view should change to display the “Button clicked” text.

26.7 Consuming Events
The detection of standard clicks (as opposed to long clicks) on views is a very simple case of event handling. The
example will now be extended to include the detection of long click events which occur when the user clicks and
holds a view on the screen and, in doing so, cover the topic of event consumption.

Consider the code for the onClick() method in the above section of this chapter. The callback is declared as void
and, as such, does not return a value to the Android framework after it has finished executing.

The code assigned to the onLongClickListener, on the other hand, is required to return a Boolean value to the
Android framework. The purpose of this return value is to indicate to the Android runtime whether or not the
callback has consumed the event. If the callback returns a true value, the event is discarded by the framework.
If, on the other hand, the callback returns a false value the Android framework will consider the event still to be
active and will consequently pass it along to the next matching event listener that is registered on the same view.

As with many programming concepts this is, perhaps, best demonstrated with an example. The first step is to
add an event listener and callback method for long clicks to the button view in the example activity:
@Override

protected void onCreate(Bundle savedInstanceState) {

.

.

 binding.myButton.setOnLongClickListener(
 new Button.OnLongClickListener() {
 public boolean onLongClick(View v) {
 binding.statusText.setText("Long button click");
 return true;
 }
 }
);
 }

}

Clearly, when a long click is detected, the onLongClick() callback method will display “Long button click” on the
text view. Note, however, that the callback method also returns a value of true to indicate that it has consumed
the event. Run the application and press and hold the Button view until the “Long button click” text appears in
the text view. On releasing the button, the text view continues to display the “Long button click” text indicating
that the onClick listener code was not called.

212

An Overview and Example of Android Event Handling

Next, modify the code so that the onLongClick listener now returns a false value:
button.setOnLongClickListener(

 new Button.OnLongClickListener() {

 public boolean onLongClick(View v) {

 TextView myTextView = findViewById(R.id.myTextView);

 myTextView.setText("Long button click");

 return false;
 }

 }

);

Once again, compile and run the application and perform a long click on the button until the long click message
appears. Upon releasing the button this time, however, note that the onClick listener is also triggered and the text
changes to “Button clicked”. This is because the false value returned by the onLongClick listener code indicated to
the Android framework that the event was not consumed by the method and was eligible to be passed on to the
next registered listener on the view. In this case, the runtime ascertained that the onClickListener on the button
was also interested in events of this type and subsequently called the onClick listener code.

26.8 Summary
A user interface is of little practical use if the views it contains do not do anything in response to user interaction.
Android bridges the gap between the user interface and the back end code of the application through the
concepts of event listeners and callback methods. The Android View class defines a set of event listeners, which
can be registered on view objects. Each event listener also has associated with it a callback method.

When an event takes place on a view in a user interface, that event is placed into an event queue and handled
on a first in, first out basis by the Android runtime. If the view on which the event took place has registered a
listener that matches the type of event, the corresponding callback method is called. This code then performs
any tasks required by the activity before returning. Some callback methods are required to return a Boolean
value to indicate whether the event needs to be passed on to any other event listeners registered on the view or
discarded by the system.

Having covered the basics of event handling, the next chapter will explore in some depth the topic of touch
events with a particular emphasis on handling multiple touches.

237

Chapter 30

30. An Introduction to Android
Fragments
As you progress through the chapters of this book it will become increasingly evident that many of the design
concepts behind the Android system were conceived with the goal of promoting reuse of, and interaction
between, the different elements that make up an application. One such area that will be explored in this chapter
involves the use of Fragments.

This chapter will provide an overview of the basics of fragments in terms of what they are and how they can be
created and used within applications. The next chapter will work through a tutorial designed to show fragments
in action when developing applications in Android Studio, including the implementation of communication
between fragments.

30.1 What is a Fragment?
A fragment is a self-contained, modular section of an application’s user interface and corresponding behavior
that can be embedded within an activity. Fragments can be assembled to create an activity during the application
design phase, and added to or removed from an activity during application runtime to create a dynamically
changing user interface.

Fragments may only be used as part of an activity and cannot be instantiated as standalone application elements.
That being said, however, a fragment can be thought of as a functional “sub-activity” with its own lifecycle
similar to that of a full activity.

Fragments are stored in the form of XML layout files and may be added to an activity either by placing
appropriate <fragment> elements in the activity’s layout file, or directly through code within the activity’s class
implementation.

30.2 Creating a Fragment
The two components that make up a fragment are an XML layout file and a corresponding Java class. The XML
layout file for a fragment takes the same format as a layout for any other activity layout and can contain any
combination and complexity of layout managers and views. The following XML layout, for example, is for a
fragment consisting of a ConstraintLayout with a red background containing a single TextView with a white
foreground:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/constraintLayout"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:background="@android:color/holo_red_dark"

 tools:context=".FragmentOne">

238

An Introduction to Android Fragments

 <TextView

 android:id="@+id/textView1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="My First Fragment"

 android:textAppearance="@style/TextAppearance.AppCompat.Large"

 android:textColor="@color/white"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

</androidx.constraintlayout.widget.ConstraintLayout>

The corresponding class to go with the layout must be a subclass of the Android Fragment class. This class
should, at a minimum, override the onCreateView() method which is responsible for loading the fragment
layout. For example:
package com.example.myfragmentdemo;

import android.os.Bundle;

import android.view.LayoutInflater;

import android.view.View;

import android.view.ViewGroup;

import androidx.fragment.app.Fragment;

public class FragmentOne extends Fragment {

 @Override

 public View onCreateView(LayoutInflater inflater,

 ViewGroup container,

 Bundle savedInstanceState) {

 // Inflate the layout for this fragment

 binding = FragmentTextBinding.inflate(inflater, container, false);

 return binding.getRoot();

 }

}

In addition to the onCreateView() method, the class may also override the standard lifecycle methods.

Once the fragment layout and class have been created, the fragment is ready to be used within application
activities.

30.3 Adding a Fragment to an Activity using the Layout XML File
Fragments may be incorporated into an activity either by writing Java code or by embedding the fragment
into the activity’s XML layout file. Regardless of the approach used, a key point to be aware of is that when the
support library is being used for compatibility with older Android releases, any activities using fragments must
be implemented as a subclass of FragmentActivity instead of the AppCompatActivity class:
package com.example.myfragmentdemo;

239

An Introduction to Android Fragments

import android.os.Bundle;

import androidx.fragment.app.FragmentActivity;
import android.view.Menu;

public class MainActivity extends FragmentActivity {
.

.

Fragments are embedded into activity layout files using the FragmentContainerView class. The following
example layout embeds the fragment created in the previous section of this chapter into an activity layout:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity">

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/fragment2"
 android:name="com.ebookfrenzy.myfragmentdemo.FragmentOne"
 android:layout_width="0dp"
 android:layout_height="wrap_content"
 android:layout_marginStart="32dp"
 android:layout_marginEnd="32dp"
 app:layout_constraintBottom_toBottomOf="parent"
 app:layout_constraintEnd_toEndOf="parent"
 app:layout_constraintStart_toStartOf="parent"
 app:layout_constraintTop_toTopOf="parent"
 tools:layout="@layout/fragment_one" />
</androidx.constraintlayout.widget.ConstraintLayout>

The key properties within the <fragment> element are android:name, which must reference the class associated
with the fragment, and tools:layout, which must reference the XML resource file containing the layout of the
fragment.

Once added to the layout of an activity, fragments may be viewed and manipulated within the Android Studio
Layout Editor tool. Figure 30-1, for example, shows the above layout with the embedded fragment within the
Android Studio Layout Editor:

240

An Introduction to Android Fragments

Figure 30-1

30.4 Adding and Managing Fragments in Code
The ease of adding a fragment to an activity via the activity’s XML layout file comes at the cost of the activity not
being able to remove the fragment at runtime. To achieve full dynamic control of fragments during runtime,
those activities must be added via code. This has the advantage that the fragments can be added, removed and
even made to replace one another dynamically while the application is running.

When using code to manage fragments, the fragment itself will still consist of an XML layout file and a
corresponding class. The difference comes when working with the fragment within the hosting activity. There is
a standard sequence of steps when adding a fragment to an activity using code:

1.  Create an instance of the fragment’s class.

2.  Pass any additional intent arguments through to the class instance.

3.  Obtain a reference to the fragment manager instance.

4.  Call the beginTransaction() method on the fragment manager instance. This returns a fragment transaction
instance.

5.  Call the add() method of the fragment transaction instance, passing through as arguments the resource ID
of the view that is to contain the fragment and the fragment class instance.

6.  Call the commit() method of the fragment transaction.

The following code, for example, adds a fragment defined by the FragmentOne class so that it appears in the
container view with an ID of LinearLayout1:
FragmentOne firstFragment = new FragmentOne();

firstFragment.setArguments(getIntent().getExtras());

FragmentManager fragManager = getSupportFragmentManager();

FragmentTransaction transaction = fragManager.beginTransaction();

241

An Introduction to Android Fragments

transaction.add(R.id.LinearLayout1, firstFragment);

transaction.commit();

The above code breaks down each step into a separate statement for the purposes of clarity. The last four lines
can, however, be abbreviated into a single line of code as follows:
getSupportFragmentManager().beginTransaction()

 .add(R.id.LinearLayout1, firstFragment).commit();

Once added to a container, a fragment may subsequently be removed via a call to the remove() method of the
fragment transaction instance, passing through a reference to the fragment instance that is to be removed:
transaction.remove(firstFragment);

Similarly, one fragment may be replaced with another by a call to the replace() method of the fragment
transaction instance. This takes as arguments the ID of the view containing the fragment and an instance of the
new fragment. The replaced fragment may also be placed on what is referred to as the back stack so that it can
be quickly restored if the user navigates back to it. This is achieved by making a call to the addToBackStack()
method of the fragment transaction object before making the commit() method call:
FragmentTwo secondFragment = new FragmentTwo();

transaction.replace(R.id.LinearLayout1, secondFragment);

transaction.addToBackStack(null);

transaction.commit();

30.5 Handling Fragment Events
As previously discussed, a fragment is very much like a sub-activity with its own layout, class and lifecycle. The
view components (such as buttons and text views) within a fragment are able to generate events just like those
in a regular activity. This raises the question as to which class receives an event from a view in a fragment; the
fragment itself, or the activity in which the fragment is embedded. The answer to this question depends on how
the event handler is declared.

In the chapter entitled “An Overview and Example of Android Event Handling”, two approaches to event handling
were discussed. The first method involved configuring an event listener and callback method within the code of
the activity. For example:
binding.button.setOnClickListener(

 new Button.OnClickListener() {

 public void onClick(View v) {

 // Code to be performed when
 // the button is clicked

 }

 }

);

In the case of intercepting click events, the second approach involved setting the android:onClick property
within the XML layout file:
<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="onClick"

 android:text="Click me" />

242

An Introduction to Android Fragments

The general rule for events generated by a view in a fragment is that if the event listener was declared in the
fragment class using the event listener and callback method approach, then the event will be handled first by
the fragment. If the android:onClick resource is used, however, the event will be passed directly to the activity
containing the fragment.

30.6 Implementing Fragment Communication
Once one or more fragments are embedded within an activity, the chances are good that some form of
communication will need to take place both between the fragments and the activity, and between one fragment
and another. In fact, good practice dictates that fragments do not communicate directly with one another. All
communication should take place via the encapsulating activity.

In order for an activity to communicate with a fragment, the activity must identify the fragment object via the
ID assigned to it. Once this reference has been obtained, the activity can simply call the public methods of the
fragment object.

Communicating in the other direction (from fragment to activity) is a little more complicated. In the first instance,
the fragment must define a listener interface, which is then implemented within the activity class. For example,
the following code declares an interface named ToolbarListener on a fragment class named ToolbarFragment.
The code also declares a variable in which a reference to the activity will later be stored:
public class ToolbarFragment extends Fragment {

 ToolbarListener activityCallback;

 public interface ToolbarListener {
 public void onButtonClick(int position, String text);
 }
.

.

}

The above code dictates that any class that implements the ToolbarListener interface must also implement a
callback method named onButtonClick which, in turn, accepts an integer and a String as arguments.

Next, the onAttach() method of the fragment class needs to be overridden and implemented. This method is
called automatically by the Android system when the fragment has been initialized and associated with an
activity. The method is passed a reference to the activity in which the fragment is contained. The method must
store a local reference to this activity and verify that it implements the ToolbarListener interface:
@Override

public void onAttach(Context context) {

 super.onAttach(context);

 try {

 activityCallback = (ToolbarListener) activity;

 } catch (ClassCastException e) {

 throw new ClassCastException(activity.toString()

 + " must implement ToolbarListener");

 }

}

243

An Introduction to Android Fragments

Upon execution of this example, a reference to the activity will be stored in the local activityCallback variable,
and an exception will be thrown if that activity does not implement the ToolbarListener interface.

The next step is to call the callback method of the activity from within the fragment. When and how this happens
is entirely dependent on the circumstances under which the activity needs to be contacted by the fragment. The
following code, for example, calls the callback method on the activity when a button is clicked:
public void buttonClicked (View view) {

 activityCallback.onButtonClick(arg1, arg2);

}

All that remains is to modify the activity class so that it implements the ToolbarListener interface. For example:
public class MainActivity extends FragmentActivity

 implements ToolbarFragment.ToolbarListener {

 public void onButtonClick(String arg1, int arg2) {
 // Implement code for callback method
 }
.
.
}

As we can see from the above code, the activity declares that it implements the ToolbarListener interface of the
ToolbarFragment class and then proceeds to implement the onButtonClick() method as required by the interface.

30.7 Summary
Fragments provide a powerful mechanism for creating re-usable modules of user interface layout and application
behavior, which, once created, can be embedded in activities. A fragment consists of a user interface layout file
and a class. Fragments may be utilized in an activity either by adding the fragment to the activity’s layout file, or
by writing code to manage the fragments at runtime. Fragments added to an activity in code can be removed and
replaced dynamically at runtime. All communication between fragments should be performed via the activity
within which the fragments are embedded.

Having covered the basics of fragments in this chapter, the next chapter will work through a tutorial designed to
reinforce the techniques outlined in this chapter.

293

Chapter 37

37. An Android ViewModel Saved
State Tutorial
The preservation and restoration of app state is all about presenting the user with continuity in terms of
appearance and behavior after an app is placed into the background. Users have come to expect to be able to
switch from one app to another and, on returning to the original app, to find it in the exact state it was in before
the switch took place.

As outlined in the chapter entitled “Understanding Android Application and Activity Lifecycles”, when the user
places an app into the background that app becomes eligible for termination by the operating system if resources
become constrained. When the user attempts to return the terminated app to the foreground, Android simply
relaunches the app in a new process. Since this is all invisible to the user, it is the responsibility of the app
to restore itself to the same state it was in when the app was originally placed in the background instead of
presenting itself in its “initial launch” state. In the case of ViewModel-based apps, much of this behavior can be
achieved using the ViewModel Saved State module.

37.1 Understanding ViewModel State Saving
As outlined in the previous chapters, the ViewModel brings many benefits to app development, including UI
state restoration in the event of configuration changes such as a device rotation. To see this in action, run the
ViewModelDemo app (or if you have not yet created the project, load into Android Studio the ViewModelDemo_
LiveData project from the sample code download that accompanies the book).

Once running, enter a dollar value and convert it to euros. With both the dollar and euro values displayed, rotate
the device or emulator and note that, once the app has responded to the orientation change, both values are still
visible.

Unfortunately, this behavior does not extend to the termination of a background app process. With the app still
running, tap the device home button to place the ViewModelDemo app into the background, then terminate
it by opening a terminal or command-prompt window and running the following command (where <package
name> is the name you used when the project was created, for example, com.ebookfrenzy.viewmodeldemo):
adb shell am kill <package name>

If the adb command is not found, refer to the chapter titled “Setting up an Android Studio Development
Environment” for steps on setting up your Android Studio environment.

Once the app has been terminated, return to the device or emulator and select the app from the launcher (do not
simply re-run the app from within Android Studio). Once the app appears, it will do so as if it was just launched,
with the previous dollar and euro values lost. From the perspective of the user, however, the app was simply
restored from the background and should still have contained the original data. In this case, the app has failed
to provide the continuity that users have come to expect from Android apps.

37.2 Implementing ViewModel State Saving
Basic ViewModel state saving is made possible through the introduction of the ViewModel Saved State library.
This library essentially extends the ViewModel class to include support for maintaining state through the
termination and subsequent relaunch of a background process.

294

An Android ViewModel Saved State Tutorial

The key to saving state is the SavedStateHandle class which is used to save and restore the state of a view model
instance. A SavedStateHandle object contains a key-value map that allows data values to be saved and restored
by referencing corresponding keys.

To support saved state, a different kind of ViewModel subclass needs to be declared, in this case one containing
a constructor which can receive a SavedStateHandle instance. Once declared, ViewModel instances of this type
can be created by including a SavedStateViewModelFactory object at creation time. Consider the following code
excerpt from a standard ViewModel declaration:
package com.ebookfrenzy.viewmodeldemo.ui.main;

import androidx.lifecycle.ViewModel;

import androidx.lifecycle.MutableLiveData;

public class MainViewModel extends ViewModel {

.

.

}

The code to create an instance of this class would likely resemble the following:
private MainViewModel mViewModel;

mViewModel = new ViewModelProvider(this).get(MainViewModel.class);

A ViewModel subclass designed to support saved state, on the other hand, would need to be declared as follows:
package com.ebookfrenzy.viewmodeldemo.ui.main;

import android.util.Log;

import androidx.lifecycle.ViewModel;

import androidx.lifecycle.MutableLiveData;

import androidx.lifecycle.SavedStateHandle;

public class MainViewModel extends ViewModel {

 private SavedStateHandle savedStateHandle;

 public MainViewModel(SavedStateHandle savedStateHandle) {
 this.savedStateHandle = savedStateHandle;
 }
.

.

}

When instances of the above ViewModel are created, the ViewModelProvider class initializer must be passed a
SavedStateViewModelFactory instance as follows:
SavedStateViewModelFactory factory =
 new SavedStateViewModelFactory(getActivity().getApplication(),this);

295

An Android ViewModel Saved State Tutorial

mViewModel = new ViewModelProvider(this).get(MainViewModel.class);

37.3 Saving and Restoring State
An object or value can be saved from within the ViewModel by passing it through to the set() method of the
SavedStateHandle instance, providing the key string by which it is to be referenced when performing a retrieval:
private static final String NAME_KEY = "Customer Name";

savedStateHandle.set(NAME_KEY, customerName);

When used with LiveData objects, a previously saved value may be restored using the getLiveData() method of
the SavedStateHandle instance, once again referencing the corresponding key as follows:
MutableLiveData<String> restoredName = savedStateHandle.getLiveData(NAME_KEY);

To restore a normal (non-LiveData) object, simply use the SavedStateHandle get() method:
String restoredName = savedStateHandle.get(NAME_KEY);

Other useful SavedStateHandle methods include the following:

•	 contains(String key) - Returns a boolean value indicating whether the saved state contains a value for the
specified key.

•	 remove(String key) - Removes the value and key from the saved state. Returns the value that was removed.

•	 keys() - Returns a String set of all the keys contained within the saved state.

37.4 Adding Saved State Support to the ViewModelDemo Project
With the basics of ViewModel Saved State covered, the ViewModelDemo app can be extended to include this
support. Begin by loading the ViewModelDemo_LiveData project created in “An Android Jetpack LiveData
Tutorial” into Android Studio (a copy of the project is also available in the sample code download), opening
the build.gradle (Module :app) file and adding the Saved State library dependencies (checking, as always, if more
recent library versions are available):
.

.

dependencies {

.

.

 implementation 'androidx.savedstate:savedstate:1.2.1'
 implementation 'androidx.lifecycle:lifecycle-viewmodel-savedstate:2.6.1'
.

.

}

Next, modify the MainViewModel.java file so that the constructor accepts and stores a SavedStateHandle
instance. Also import androidx.lifecycle.SavedStateHandle, declare a key string constant and modify the result
LiveData variable so that the value is now obtained from the saved state in the constructor:
package com.ebookfrenzy.viewmodeldemo.ui.main;

import androidx.lifecycle.ViewModel;

import androidx.lifecycle.MutableLiveData;

import androidx.lifecycle.SavedStateHandle;

296

An Android ViewModel Saved State Tutorial

public class MainViewModel extends ViewModel {

 private static final String RESULT_KEY = "Euro Value";
 private static final Float rate = 0.74F;

 private String dollarText = "";

 final private SavedStateHandle savedStateHandle;
 final private MutableLiveData<Float> result = new MutableLiveData<>();

 public MainViewModel(SavedStateHandle savedStateHandle) {
 this.savedStateHandle = savedStateHandle;
 result = savedStateHandle.getLiveData(RESULT_KEY);
 }
.

.

}

Remaining within the MainViewModel.java file, modify the setAmount() method to include code to save the
result value each time a new euro amount is calculated:
public void setAmount(String value) {

 this.dollarText = value;

 result.setValue(Float.valueOf(dollarText)* rate);

 Float convertedValue = Float.parseFloat(dollarText)* rate;
 result.setValue(convertedValue);
 savedStateHandle.set(RESULT_KEY, convertedValue);
}

With the changes to the ViewModel complete, open the FirstFragment.java file and make the following alterations
to include a Saved State factory instance during the ViewModel creation process:
.

.

import androidx.lifecycle.SavedStateViewModelFactory;
.

.

@Override

public void onCreate(@Nullable Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 SavedStateViewModelFactory factory =
 new SavedStateViewModelFactory(
 getActivity().getApplication(),this);

 mViewModel = new ViewModelProvider(this, factory).get(MainViewModel.class);
 // TODO: Use the ViewModel

}

Note that the change to the ViewModelProvider call in the above code may cause Android Studio to generate

297

An Android ViewModel Saved State Tutorial

the following syntax error:
Cannot resolve constructor 'ViewModelProvider(FirstFragment,
SavedStateViewModelFactory)'

This syntax error is incorrect and can be ignored. The app will still compile and run successfully.

After completing the changes, build and run the app and perform a currency conversion. Note that the build
may fail with the following error:
Duplicate class kotlin.collections.jdk8.CollectionsJDK8Kt found in modules
jetified-kotlin-stdlib-1.8.0

To correct this error, edit the build.gradle (Module: app) file, add the following dependency, and sync and rebuilt
the project:
dependencies {

.

.

 implementation(platform('org.jetbrains.kotlin:kotlin-bom:1.8.0'))
.

.

With the screen UI populated with both the dollar and euro values, place the app into the background, terminate
it using the adb tool and then relaunch it from the device or emulator screen. After restarting, the previous
currency amounts should still be visible in the TextView and EditText components confirming that the state was
successfully saved and restored.

37.5 Summary
A well designed app should always present the user with the same state when brought forward from the
background, regardless of whether the process containing the app was terminated by the operating system in
the interim. When working with ViewModels this can be achieved by taking advantage of the ViewModel Saved
State module. This involves modifying the ViewModel constructor to accept a SavedStateHandle instance which,
in turn, can be used to save and restore data values via a range of method calls. When the ViewModel instance
is created, it must be passed a SavedStateViewModelFactory instance. Once these steps have been implemented,
the app will automatically save and restore state during a background termination.

309

Chapter 40

40. An Overview of the Navigation
Architecture Component
Very few Android apps today consist of just a single screen. In reality, most apps comprise multiple screens through
which the user navigates using screen gestures, button clicks and menu selections. Before the introduction of
Android Jetpack, the implementation of navigation within an app was largely a manual coding process with no
easy way to view and organize potentially complex navigation paths. This situation has improved considerably,
however, with the introduction of the Android Navigation Architecture Component combined with support for
navigation graphs in Android Studio.

40.1 Understanding Navigation
Every app has a home screen that appears after the app has launched and after any splash screen has appeared
(a splash screen being the app branding screen that appears temporarily while the app loads). From this home
screen, the user will typically perform tasks that will result in other screens appearing. These screens will usually
take the form of other activities and fragments within the app. A messaging app, for example, might have a home
screen listing current messages from which the user can navigate to either another screen to access a contact
list or to a settings screen. The contacts list screen, in turn, might allow the user to navigate to other screens
where new users can be added or existing contacts updated. Graphically, the app’s navigation graph might be
represented as shown in Figure 40-1:

Figure 40-1
Each screen that makes up an app, including the home screen, is referred to as a destination and is usually a
fragment or activity. The Android navigation architecture uses a navigation stack to track the user’s path through
the destinations within the app. When the app first launches, the home screen is the first destination placed
onto the stack and becomes the current destination. When the user navigates to another destination, that screen

310

An Overview of the Navigation Architecture Component

becomes the current destination and is pushed onto the stack above the home destination. As the user navigates
to other screens, they are also pushed onto the stack. Figure 40-2, for example, shows the current state of the
navigation stack for the hypothetical messaging app after the user has launched the app and is navigating to the
“Add Contact” screen:

Figure 40-2
As the user navigates back through the screens using the system back button, each destination is popped off the
stack until the home screen is once again the only destination on the stack. In Figure 40-3, the user has navigated
back from the Add Contact screen, popping it off the stack and making the Contacts List screen the current
destination:

Figure 40-3
All of the work involved in navigating between destinations and managing the navigation stack is handled by a
navigation controller which is represented by the NavController class.

Adding navigation to an Android project using the Navigation Architecture Component is a straightforward
process involving a navigation host, navigation graph, navigation actions and a minimal amount of code writing
to obtain a reference to, and interact with, the navigation controller instance.

40.2 Declaring a Navigation Host
A navigation host is simply a special fragment (NavHostFragment) that is embedded into the user interface
layout of an activity and serves as a placeholder for the destinations through which the user will navigate. Figure
40-4, for example, shows a typical activity screen and highlights the area represented by the navigation host

311

An Overview of the Navigation Architecture Component

fragment:

Figure 40-4
A NavHostFragment can be placed into an activity layout within the Android Studio layout editor either by
dragging and dropping an instance from the Containers section of the palette, or by manually editing the XML
as follows:
<?xml version="1.0" encoding="utf-8"?>

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/container"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity" >

 <androidx.fragment.app.FragmentContainerView
 android:id="@+id/demo_nav_host_fragment"
 android:name="androidx.navigation.fragment.NavHostFragment"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 app:defaultNavHost="true"
 app:navGraph="@navigation/navigation_graph" />
</FrameLayout>

The points of note in the above navigation host fragment element are the reference to the NavHostFragment in
the name property, the setting of defaultNavHost to true and the assignment of the file containing the navigation
graph to the navGraph property.

When the activity launches, this navigation host fragment is replaced by the home destination designated in
the navigation graph. As the user navigates through the app screens, the host fragment will be replaced by the
appropriate fragment for the destination.

312

An Overview of the Navigation Architecture Component

40.3 The Navigation Graph
A navigation graph is an XML file which contains the destinations that will be included in the app navigation.
In addition to these destinations, the file also contains navigation actions that define navigation between
destinations, and optional arguments for passing data from one destination to another. Android Studio includes
a navigation graph editor that can be used to design graphs and implement actions either visually or by manually
editing the XML.

Figure 40-5, shows the Android Studio navigation graph editor in Design mode:

Figure 40-5
The destinations list (A) provides a list of all of the destinations currently contained within the graph. Selecting
a destination from the list will locate and select the corresponding destination in the graph (particularly useful
for locating specific destinations in a large graph). The navigation graph panel (B) contains a dialog for each
destination showing a representation of the user interface layout. In this example, this graph contains two
destinations named mainFragment and secondFragment. Arrows between destinations (C) represent navigation
action connections. Actions are added by hovering the mouse pointer over the edge of the origin until a circle
appears, then clicking and dragging from the circle to the destination. The Attributes panel (D) allows the
properties of the currently selected destination or action connection to be viewed and modified. In the above
figure, the attributes for the action are displayed. New destinations are added by clicking on the button marked E
and selecting options from a menu. Options are available to add existing fragments or activities as destinations,
or to create new blank fragment destinations. The Component Tree panel (F) provides a hierarchical overview
of the navigation graph.

The underlying XML for the navigation graph can be viewed and modified by switching the editor into Code
mode. The following XML listing represents the navigation graph for the destinations and action connection
shown in Figure 40-5 above:
<?xml version="1.0" encoding="utf-8"?>

<navigation xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/navigation_graph"

 app:startDestination="@id/mainFragment">

 <fragment

 android:id="@+id/mainFragment"

 android:name="com.ebookfrenzy.navigationdemo.ui.main.MainFragment"

313

An Overview of the Navigation Architecture Component

 android:label="fragment_main"

 tools:layout="@layout/fragment_main" >

 <action

 android:id="@+id/mainToSecond"

 app:destination="@id/secondFragment" />

 </fragment>

 <fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 </fragment>

</navigation>

If necessary, navigation graphs can also be split over multiple files to improve organization and promote reuse.
When structured in this way, nested graphs are embedded into root graphs. To create a nested graph, simply shift-
click on the destinations to be nested, right-click over the first destination and select the Move to Nested Graph
-> New Graph menu option. The nested graph will then appear as a new node in the graph. To access the nested
graph, simply double-click on the nested graph node to load the graph file into the editor.

40.4 Accessing the Navigation Controller
Navigating from one destination to another will usually take place in response to an event of some kind within
an app such as a button click or menu selection. Before a navigation action can be triggered, the code must first
obtain a reference to the navigation controller instance. This requires a call to the findNavController() method
of the Navigation or NavHostFragment classes. The following code, for example, can be used to access the
navigation controller of an activity. Note that for the code to work, the activity must contain a navigation host
fragment:
NavController controller =

 Navigation.findNavController(activity, R.id.demo_nav_host_fragment);

In this case, the method call is passed a reference to the activity and the id of the NavHostFragment embedded
in the activity’s layout.

Alternatively, the navigation controller associated with any view may be identified simply by passing that view
to the method:
NavController controller = Navigation.findNavController(binding.button);

The final option finds the navigation controller for a fragment by calling the findNavController() method of the
NavHostFragment class, passing through a reference to the fragment:
NavController controller = NavHostFragment.findNavController(fragment);

40.5 Triggering a Navigation Action
Once the navigation controller has been found, a navigation action is triggered by calling the controller’s
navigate() method and passing through the resource id of the action to be performed. For example:
controller.navigate(R.id.goToContactsList);

The id of the action is defined within the Attributes panel of the navigation graph editor when an action
connection is selected.

314

An Overview of the Navigation Architecture Component

40.6 Passing Arguments
Data may be passed from one destination to another during a navigation action by making use of arguments
which are declared within the navigation graph file. An argument consists of a name, type and an optional
default value and may be added manually within the XML or using the Attributes panel when an action arrow or
destination is selected within the graph. In Figure 40-6, for example, an integer argument named contactsCount
has been declared with a default value of 0:

Figure 40-6
Once added, arguments are placed within the XML element of the receiving destination, for example:
<fragment

 android:id="@+id/secondFragment"

 android:name="com.ebookfrenzy.navigationdemo.SecondFragment"

 android:label="fragment_second"

 tools:layout="@layout/fragment_second" >

 <argument

 android:name="contactsCount"

 android:defaultValue=0

 app:type="integer" />

</fragment>

The Navigation Architecture Component provides two techniques for passing data between destinations. One
approach involves placing the data into a Bundle object that is passed to the destination during an action where
it is then unbundled and the arguments extracted.

The main drawback to this particular approach is that it is not “type safe”. In other words, if the receiving
destination treats an argument as being a different type than it was declared (for example treating a string as an
integer) this error will not be caught by the compiler and will likely cause problems at runtime.

A better option, and the one used in this book is to make use of safeargs. Safeargs is a plugin for the Android
Studio Gradle build system which automatically generates special classes that allow arguments to be passed
in a type safe way. The safeargs approach to argument passing will be described and demonstrated in the next
chapter (“An Android Jetpack Navigation Component Tutorial”).

40.7 Summary
The term Navigation within the context of an Android app user interface refers to the ability of a user to move
back and forth between different screens. Once time consuming to implement and difficult to organize, Android
Studio and the Navigation Architecture Component now make it easier to implement and manage navigation
within Android app projects.

The different screens within an app are referred to as destinations and are usually represented by fragments or
activities. All apps have a home destination which includes the screen displayed when the app first loads. The
content area of this layout is replaced by a navigation host fragment which is swapped out for other destination
fragments as the user navigates the app. The navigation path is defined by the navigation graph file consisting of
destinations and the actions that connect them together with any arguments to be passed between destinations.
Navigation is handled by navigation controllers which, in addition to managing the navigation stack, provide
methods to initiate navigation actions from within app code.

495

Chapter 60

60. Making Runtime Permission
Requests in Android
In a number of the example projects created in preceding chapters, changes have been made to the
AndroidManifest.xml file to request permission for the app to perform a specific task. In a couple of instances,
for example, internet access permission has been requested to allow the app to download and display web pages.
In each case up until this point, the addition of the request to the manifest was all that was required for the app
to obtain permission from the user to perform the designated task.

There are, however, a number of permissions for which additional steps are required in order for the app to
function when running on Android 6.0 or later. The first of these so-called “dangerous” permissions will be
encountered in the next chapter. Before reaching that point, however, this chapter will outline the steps involved
in requesting such permissions when running on the latest generations of Android.

60.1 Understanding Normal and Dangerous Permissions
Android enforces security by requiring the user to grant permission for an app to perform certain tasks. Before
the introduction of Android 6, permission was always sought at the point that the app was installed on the
device. Figure 60-1, for example, shows a typical screen seeking a variety of permissions during the installation
of an app via Google Play.

Figure 60-1
For many types of permissions this scenario still applies for apps on Android 6.0 or later. These permissions are
referred to as normal permissions and are still required to be accepted by the user at the point of installation. A
second type of permission, referred to as dangerous permissions must also be declared within the manifest file
in the same way as a normal permission, but must also be requested from the user when the application is first
launched. When such a request is made, it appears in the form of a dialog box as illustrated in Figure 60-2:

496

Making Runtime Permission Requests in Android

Figure 60-2
The full list of permissions that fall into the dangerous category is contained in Table 60-1:

Permission Group Permission
Calendar READ_CALENDAR

WRITE_CALENDAR
Camera CAMERA
Contacts READ_CONTACTS

WRITE_CONTACTS

GET_ACCOUNTS
Location ACCESS_FINE_LOCATION

ACCESS_COARSE_LOCATION
Microphone RECORD_AUDIO
Notifications POST_NOTIFICATIONS
Phone READ_PHONE_STATE

CALL_PHONE

READ_CALL_LOG

WRITE_CALL_LOG

ADD_VOICEMAIL

USE_SIP

PROCESS_OUTGOING_CALLS
Sensors BODY_SENSORS
SMS SEND_SMS

RECEIVE_SMS

READ_SMS

RECEIVE_WAP_PUSH

RECEIVE_MMS

497

Making Runtime Permission Requests in Android

Storage MANAGE_EXTERNAL_STORAGE

READ_EXTERNAL_STORAGE

WRITE_EXTERNAL_STORAGE

Table 60-1
The MANAGE_EXTERNAL_STORAGE permission gives the app access to all files located on the external
storage of the device, including those belonging to other apps. Consequently, permission will only be enabled for
your app once Google has verified during the review process that this level of access is needed. To test your app
in advance of submitting it to the Google Play store, the following adb command can be executed to temporarily
enable access for the app on the testing device:
adb shell appops set --uid <package name> MANAGE_EXTERNAL_STORAGE allow

This mode can be disabled as follows:
adb shell appops set --uid <package name> MANAGE_EXTERNAL_STORAGE default

60.2 Creating the Permissions Example Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter PermissionDemo into the Name field and specify com.ebookfrenzy.permissiondemo as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Java.

60.3 Checking for a Permission
The Android Support Library contains a number of methods that can be used to seek and manage dangerous
permissions within the code of an Android app. These API calls can be made safely regardless of the version of
Android on which the app is running, but will only perform meaningful tasks when executed on Android 6.0
or later.

Before an app attempts to make use of a feature that requires approval of a dangerous permission, and regardless
of whether or not permission was previously granted, the code must check that the permission has been granted.
This can be achieved via a call to the checkSelfPermission() method of the ContextCompat class, passing through
as arguments a reference to the current activity and the permission being requested. The method will check
whether the permission has been previously granted and return an integer value matching PackageManager.
PERMISSION_GRANTED or PackageManager.PERMISSION_DENIED.

Within the MainActivity.java file of the example project, modify the code to check whether permission has been
granted for the app to record audio:
package com.ebookfrenzy.permissiondemoactivity;

import androidx.appcompat.app.AppCompatActivity;

import androidx.core.content.ContextCompat;
import androidx.annotation.NonNull;

import android.os.Bundle;

import android.Manifest;
import android.content.pm.PackageManager;
import android.util.Log;

498

Making Runtime Permission Requests in Android

public class MainActivity extends AppCompatActivity {

 private static final String TAG = "PermissionDemo";

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_permission_demo);

 setupPermissions();
 }

 private void setupPermissions() {
 int permission = ContextCompat.checkSelfPermission(this,
 Manifest.permission.RECORD_AUDIO);

 if (permission != PackageManager.PERMISSION_GRANTED) {
 Log.i(TAG, "Permission to record denied");
 }
 }

}Edit the AndroidManifest.xml file (located in the Project tool window under app -> manifests) and add a line
to request recording permission as follows:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.permissiondemoactivity" >

 <uses-permission android:name="android.permission.RECORD_AUDIO" />

 <application

 android:allowBackup="true"

 android:icon="@mipmap/ic_launcher"

 android:label="@sxtring/app_name"

 android:supportsRtl="true"

 android:theme="@style/AppTheme" >

 <activity android:name=".MainActivity" >

 <intent-filter>

 <action android:name="android.intent.action.MAIN" />

 <category

 android:name="android.intent.category.LAUNCHER" />

 </intent-filter>

 </activity>

 </application>

</manifest>

499

Making Runtime Permission Requests in Android

Run the app on a device or emulator and open the Logcat tool window. Note that even though the permission
has been added to the manifest file, the permission denied message appears. This is because Android requires
that in addition to adding the request to the manifest file, the app must also request dangerous permissions at
runtime.

60.4 Requesting Permission at Runtime
A permission request is made via a call to the requestPermissions() method of the ActivityCompat class.
When this method is called, the permission request is handled asynchronously and a method named
onRequestPermissionsResult() is called when the task is completed.

The requestPermissions() method takes as arguments a reference to the current activity, together with the
identifier of the permission being requested and a request code. The request code can be any integer value and
will be used to identify which request has triggered the call to the onRequestPermissionsResult() method. Modify
the MainActivity.java file to declare a request code and request recording permission if the permission check
failed:
.

.

import androidx.core.app.ActivityCompat;
.

.

public class MainActivity extends AppCompatActivity {

 private static final String TAG = "PermissionDemo";

 private static final int RECORD_REQUEST_CODE = 101;
.

.

 @Override

 private void setupPermissions() {

 int permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO);

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied");

 makeRequest();
 }

 }

 protected void makeRequest() {
 ActivityCompat.requestPermissions(this,
 new String[]{Manifest.permission.RECORD_AUDIO},
 RECORD_REQUEST_CODE);
 }
}

Next, implement the onRequestPermissionsResult() method so that it reads as follows:
@Override

500

Making Runtime Permission Requests in Android

public void onRequestPermissionsResult(int requestCode,

 @NonNull String[] permissions, @NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == RECORD_REQUEST_CODE) {

 if (grantResults.length == 0

 || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission has been denied by user");

 } else {

 Log.i(TAG, "Permission has been granted by user");

 }

 }

}

Compile and run the app on an emulator or device and note that a dialog seeking permission to record audio
appears as shown in Figure 60-3:

Figure 60-3
Tap the While using the app button and check that the “Permission has been granted by user” message appears
in the Logcat panel.

Once the user has granted the requested permission, the checkSelfPermission() method call will return a
PERMISSION_GRANTED result on future app invocations until the user uninstalls and re-installs the app or
changes the permissions for the app in Settings.

60.5 Providing a Rationale for the Permission Request
As is evident from Figure 60-3, the user has the option to deny the requested permission. In this case, the app
will continue to request the permission each time that it is launched by the user unless the user selected the
“Never ask again” option before clicking on the Deny button. Repeated denials by the user may indicate that the
user doesn’t understand why the permission is required by the app. The user might, therefore, be more likely to
grant permission if the reason for the requirements is explained when the request is made. Unfortunately, it is
not possible to change the content of the request dialog to include such an explanation.

501

Making Runtime Permission Requests in Android

An explanation is best included in a separate dialog which can be displayed before the request dialog is presented
to the user. This raises the question as to when to display this explanation dialog. The Android documentation
recommends that an explanation dialog only be shown if the user has previously denied the permission and
provides a method to identify when this is the case.

A call to the shouldShowRequestPermissionRationale() method of the ActivityCompat class will return a true
result if the user has previously denied a request for the specified permission, and a false result if the request has
not previously been made. In the case of a true result, the app should display a dialog containing a rationale for
needing the permission and, once the dialog has been read and dismissed by the user, the permission request
should be repeated.

To add this functionality to the example app, modify the onCreate() method so that it reads as follows:
.

.

import android.app.AlertDialog;
.

.

private void setupPermissions() {

 int permission = ContextCompat.checkSelfPermission(this,

 Manifest.permission.RECORD_AUDIO);

 if (permission != PackageManager.PERMISSION_GRANTED) {

 Log.i(TAG, "Permission to record denied");

 if (ActivityCompat.shouldShowRequestPermissionRationale(this,
 Manifest.permission.RECORD_AUDIO)) {
 AlertDialog.Builder builder =
 new AlertDialog.Builder(this);
 builder.setMessage("Permission to access the microphone is required
for this app to record audio.")
 .setTitle("Permission required");

 builder.setPositiveButton("OK",
 (dialog, id) -> makeRequest());

 AlertDialog dialog = builder.create();
 dialog.show();
 } else {
 makeRequest();
 }
 }

}

The method still checks whether or not the permission has been granted, but now also identifies whether a
rationale needs to be displayed. If the user has previously denied the request, a dialog is displayed containing
an explanation and an OK button on which a listener is configured to call the makeRequest() method when the
button is tapped. If the permission request has not previously been made, the code moves directly to seeking

502

Making Runtime Permission Requests in Android

permission.

60.6 Testing the Permissions App
On the device or emulator session on which testing is being performed, launch the Settings app, select the Apps
option and scroll to and select the PermissionDemo app. On the app settings screen, tap the uninstall button to
remove the app from the device.

Run the app once again and, when the permission request dialog appears, click on the Don’t allow button. Stop
and restart the app and verify that the rationale dialog appears. Tap the OK button and, when the permission
request dialog appears, tap the While using the app button.

Return to the Settings app, select the Apps option and select the PermissionDemo app once again from the list.
Once the settings for the app are listed, verify that the Permissions section lists the Microphone permission:

Figure 60-4

60.7 Summary
Before the introduction of Android 6.0 the only step necessary for an app to request permission to access certain
functionality was to add an appropriate line to the application’s manifest file. The user would then be prompted
to approve the permission at the point that the app was installed. This is still the case for most permissions, with
the exception of a set of permissions that are considered dangerous. Permissions that are considered dangerous
usually have the potential to allow an app to violate the user’s privacy such as allowing access to the microphone,
contacts list or external storage.

As outlined in this chapter, apps based on Android 6 or later must now request dangerous permission approval
from the user when the app launches in addition to including the permission request in the manifest file.

545

Chapter 65

65. The Android Room Persistence
Library
Included with the Android Architecture Components, the Room persistence library is designed specifically to
make it easier to add database storage support to Android apps in a way that is consistent with the Android
architecture guidelines. With the basics of SQLite databases covered in the previous chapter, this chapter will
explore the basic concepts behind Room-based database management, the key elements that work together to
implement Room support within an Android app and how these are implemented in terms of architecture and
coding. Having covered these topics, the next two chapters will put this theory into practice in the form of an
example Room database project.

65.1 Revisiting Modern App Architecture
The chapter entitled “Modern Android App Architecture with Jetpack” introduced the concept of modern app
architecture and stressed the importance of separating different areas of responsibility within an app. The
diagram illustrated in Figure 65-1 outlines the recommended architecture for a typical Android app:

Figure 65-1
With the top three levels of this architecture covered in some detail in earlier chapters of this book, it is now time
to begin exploration of the repository and database architecture levels in the context of the Room persistence
library.

65.2 Key Elements of Room Database Persistence
Before going into greater detail later in the chapter, it is first worth summarizing the key elements involved in
working with SQLite databases using the Room persistence library:

546

The Android Room Persistence Library

65.2.1 Repository
As previously discussed, the repository module contains all of the code necessary for directly handling all data
sources used by the app. This avoids the need for the UI controller and ViewModel to contain code that directly
accesses sources such as databases or web services.

65.2.2 Room Database
The room database object provides the interface to the underlying SQLite database. It also provides the repository
with access to the Data Access Object (DAO). An app should only have one room database instance which may
then be used to access multiple database tables.

65.2.3 Data Access Object (DAO)
The DAO contains the SQL statements required by the repository to insert, retrieve and delete data within
the SQLite database. These SQL statements are mapped to methods which are then called from within the
repository to execute the corresponding query.

65.2.4 Entities
An entity is a class that defines the schema for a table within the database and defines the table name, column
names and data types, and identifies which column is to be the primary key. In addition to declaring the table
schema, entity classes also contain getter and setter methods that provide access to these data fields. The data
returned to the repository by the DAO in response to the SQL query method calls will take the form of instances
of these entity classes. The getter methods will then be called to extract the data from the entity object. Similarly,
when the repository needs to write new records to the database, it will create an entity instance, configure values
on the object via setter calls, then call insert methods declared in the DAO, passing through entity instances to
be saved.

65.2.5 SQLite Database
The actual SQLite database responsible for storing and providing access to the data. The app code, including the
repository, should never make direct access to this underlying database. All database operations are performed
using a combination of the room database, DAOs and entities.

The architecture diagram in Figure 65-2 illustrates the way in which these different elements interact to provide
Room-based database storage within an Android app:

Figure 65-2

547

The Android Room Persistence Library

The numbered connections in the above architecture diagram can be summarized as follows:

1.  The repository interacts with the Room Database to get a database instance which, in turn, is used to obtain
references to DAO instances.

2.  The repository creates entity instances and configures them with data before passing them to the DAO for
use in search and insertion operations.

3.  The repository calls methods on the DAO passing through entities to be inserted into the database and
receives entity instances back in response to search queries.

4.  When a DAO has results to return to the repository it packages those results into entity objects.

5.  The DAO interacts with the Room Database to initiate database operations and handle results.

6.  The Room Database handles all of the low level interactions with the underlying SQLite database, submitting
queries and receiving results.

With a basic outline of the key elements of database access using the Room persistent library covered, it is now
time to explore entities, DAOs, room databases and repositories in more detail.

65.3 Understanding Entities
Each database table will have associated with it an entity class. This class defines the schema for the table and
takes the form of a standard Java class interspersed with some special Room annotations. An example Java class
declaring the data to be stored within a database table might read as follows:
public class Customer {

 private int id;

 private String name;

 private string address;

 public Customer(String name, String address) {

 this.id = id;

 this.name = name;

 this.address = address;

 }

 public int getId() {

 return this.id;

 }

 public String getName() {

 return this.name;

 }

 public int getAddress() {

 return this.address;

 }

 public void setId(int id) {

548

The Android Room Persistence Library

 this.id = id;

 }

 public void setName(String name) {

 this.name = name;

 }

 public void setAddress(int quantity) {

 this.address = address;

 }

}

As currently implemented, the above code declares a basic Java class containing a number of variables representing
database table fields and a collection of getter and setter methods. This class, however, is not yet an entity. To
make this class into an entity and to make it accessible within SQL statements, some Room annotations need to
be added as follows:
@Entity(tableName = "customers")
public class Customer {

 @PrimaryKey(autoGenerate = true)
 @NonNull
 @ColumnInfo(name = "customerId")
 private int id;

 @ColumnInfo(name = "customerName")
 private String name;

 private String address;

 public Customer(String name, String address) {

 this.id = id;

 this.name = name;

 this.address = address;

 }

 public int getId() {

 return this.id;

 }

 public String getName() {

 return this.name;

 }

 public String getAddress() {

 return this.address;

 }

549

The Android Room Persistence Library

 public void setId(@NonNull int id) {
 this.id = id;

 }

 public void setName(String name) {

 this.name = name;

 }

 public void setAddress(int quantity) {

 this.address = address;

 }

}

The above annotations begin by declaring that the class represents an entity and assigns a table name of
“customers”. This is the name by which the table will be referenced in the DAO SQL statements:
@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case, the customer id is declared as the
primary key. Annotations have also been added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id value is configured to be auto-generated.
This means that the id assigned to new records will be automatically generated by the system to avoid duplicate
keys.
@PrimaryKey(autoGenerate = true)

@NonNull

@ColumnInfo(name = "customerId")

private int id;

A column name is also assigned to the customer name field. Note, however, that no column name was assigned
to the address field. This means that the address data will still be stored within the database, but that it is not
required to be referenced in SQL statements. If a field within an entity is not required to be stored within a
database, simply use the @Ignore annotation:
@Ignore

private String myString;

Finally, the setter method for the id variable is modified to prevent attempts to assign a null value:
public void setId(@NonNull int id) {
 this.id = id;

}

Annotations may also be included within an entity class to establish relationships with other entities using a
relational database concept referred to as foreign keys. Foreign keys allow a table to reference the primary key
in another table. For example, a relationship could be established between an entity named Purchase and our
existing Customer entity as follows:
@Entity(foreignKeys = {@ForeignKey(entity = Customer.class,

 parentColumns = "customerId",

 childColumns = "buyerId",

 onDelete = ForeignKey.CASCADE,

 onUpdate = ForeignKey.RESTRICT})

550

The Android Room Persistence Library

public class Purchase {

 @PrimaryKey(autoGenerate = true)

 @ColumnInfo(name = "purchaseId")

 private int purchaseId;

 @ColumnInfo(name = "buyerId")

 private int buyerId;

}

Note that the foreign key declaration also specifies the action to be taken when a parent record is deleted or
updated. Available options are CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT and SET_NULL.

65.4 Data Access Objects
A Data Access Object provides a way to access the data stored within a SQLite database. A DAO is declared as
a standard Java interface with some additional annotations that map specific SQL statements to methods that
may then be called by the repository.

The first step is to create the interface and declare it as a DAO using the @Dao annotation:
@Dao

public interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding method names. The following
declaration, for example, allows all of the rows in the customers table to be retrieved via a call to a method
named getAllCustomers():
@Dao

public interface CustomerDao {

 @Query("SELECT * FROM customers")
 LiveData<List<Customer>> getAllCustomers();
}

Note that the getAllCustomers() method returns a List object containing a Customer entity object for each record
retrieved from the database table. The DAO is also making use of LiveData so that the repository is able to
observe changes to the database.

Arguments may also be passed into the methods and referenced within the corresponding SQL statements.
Consider the following DAO declaration which searches for database records matching a customer’s name (note
that the column name referenced in the WHERE condition is the name assigned to the column in the entity
class):
@Query("SELECT * FROM customers WHERE name = :customerName")

List<Customer> findCustomer(String customerName);

In this example, the method is passed a string value which is, in turn, included within an SQL statement by
prefixing the variable name with a colon (:).

A basic insertion operation can be declared as follows using the @Insert convenience annotation:
@Insert

void addCustomer(Customer customer);

551

The Android Room Persistence Library

This is referred to as a convenience annotation because the Room persistence library can infer that the Customer
entity passed to the addCustomer() method is to be inserted into the database without the need for the SQL
insert statement to be provided. Multiple database records may also be inserted in a single transaction as follows:
@Insert

public void insertCustomers(Customer... customers);

The following DAO declaration deletes all records matching the provided customer name:
@Query("DELETE FROM customers WHERE name = :name")

void deleteCustomer(String name);

As an alternative to using the @Query annotation to perform deletions, the @Delete convenience annotation
may also be used. In the following example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:
@Delete

public void deleteCustomers(Customer... customers);

The @Update convenience annotation provides similar behavior when updating records:
@Update

public void updateCustomers(Customer... customers);

The DAO methods for these types of database operations may also be declared to return an int value indicating
the number of rows affected by the transaction, for example:
@Delete

public int deleteCustomers(Customer... customers);

65.5 The Room Database
The Room database class is created by extending the RoomDatabase class and acts as a layer on top of the
actual SQLite database embedded into the Android operating system. The class is responsible for creating and
returning a new room database instance and for providing access to the DAO instances associated with the
database.

The Room persistence library provides a database builder for creating database instances. Each Android app
should only have one room database instance, so it is best to implement defensive code within the class to
prevent more than one instance being created.

An example Room Database implementation for use with the example customer table is outlined in the following
code listing:
import android.content.Context;

import android.arch.persistence.room.Database;

import android.arch.persistence.room.Room;

import android.arch.persistence.room.RoomDatabase;

@Database(entities = {Customer.class}, version = 1)

public class CustomerRoomDatabase extends RoomDatabase {

 public abstract CustomerDao customerDao();

 private static CustomerRoomDatabase INSTANCE;

552

The Android Room Persistence Library

 static CustomerRoomDatabase getDatabase(final Context context) {

 if (INSTANCE == null) {

 synchronized (CustomerRoomDatabase.class) {

 if (INSTANCE == null) {

 INSTANCE = Room.databaseBuilder(

 context.getApplicationContext(),

 CustomerRoomDatabase.class, "customer_database")

 .build();

 }

 }

 }

 return INSTANCE;

 }

}

Important areas to note in the above example are the annotation above the class declaration declaring the entities
with which the database is to work, the code to check that an instance of the class has not already been created
and assignment of the name “customer_database” to the instance.

65.6 The Repository
The repository is responsible for getting a Room Database instance, using that instance to access associated
DAOs and then making calls to DAO methods to perform database operations. A typical constructor for a
repository designed to work with a Room Database might read as follows:
public class CustomerRepository {

 private CustomerDao customerDao;

 private CustomerRoomDatabase db;

 public CustomerRepository(Application application) {

 db = CustomerRoomDatabase.getDatabase(application);

 customerDao = db.customerDao();

 }

.

.

}

Once the repository has access to the DAO, it can make calls to the data access methods. The following code, for
example, calls the getAllCustomers() DAO method:
private LiveData<List<Customer>> allCustomers;

allCustomers = customerDao.getAllCustomers();

When calling DAO methods, it is important to note that unless the method returns a LiveData instance (which
automatically runs queries on a separate thread), the operation cannot be performed on the app’s main thread.
In fact, attempting to do so will cause the app to crash with the following diagnostic output:
Cannot access database on the main thread since it may potentially lock the UI
for a long period of time

Since some database transactions may take a longer time to complete, running the operations on a separate
thread avoids the app appearing to lock up. As will be demonstrated in the chapter entitled “An Android Room

553

The Android Room Persistence Library

Database and Repository Tutorial”, this problem can be easily resolved by making use of Java threads (for more
information or a reminder of how to use threads, refer back to the chapter entitled “A Basic Overview of Java
Threads, Handlers and Executors”).

65.7 In-Memory Databases
The examples outlined in this chapter involved the use of a SQLite database that exists as a database file on
the persistent storage of an Android device. This ensures that the data persists even after the app process is
terminated.

The Room database persistence library also supports in-memory databases. These databases reside entirely
in memory and are lost when the app terminates. The only change necessary to work with an in-memory
database is to call the Room.inMemoryDatabaseBuilder() method of the Room Database class instead of Room.
databaseBuilder(). The following code shows the difference between the method calls (note that the in-memory
database does not require a database name):
// Create a file storage based database

INSTANCE = Room.databaseBuilder(context.getApplicationContext(),

 CustomerRoomDatabase.class, "customer_database")

 .build();

// Create an in-memory database

INSTANCE = Room.inMemoryDatabaseBuilder(context.getApplicationContext(),

 CustomerRoomDatabase.class)

 .build();

65.8 Database Inspector
Android Studio includes a Database Inspector tool window which allows the Room databases associated with
running apps to be viewed, searched and modified as shown in Figure 65-3:

Figure 65-3
Use of the Database Inspector will be covered in the chapter entitled “An Android Room Database and Repository
Tutorial”.

65.9 Summary
The Android Room persistence library is bundled with the Android Architecture Components and acts as an
abstract layer above the lower level SQLite database. The library is designed to make it easier to work with
databases while conforming to the Android architecture guidelines. This chapter has introduced the different
elements that interact to build Room-based database storage into Android app projects including entities,
repositories, data access objects, annotations and Room Database instances.

With the basics of SQLite and the Room architecture component covered, the next step is to create an example
app that puts this theory into practice. Since the user interface for the example application will require a forms

554

The Android Room Persistence Library

based layout, the next chapter, entitled “An Android TableLayout and TableRow Tutorial”, will detour slightly
from the core topic by introducing the basics of the TableLayout and TableRow views.

623

Chapter 74

74. Working with the Google Maps
Android API in Android Studio
When Google decided to introduce a map service many years ago, it is hard to say whether or not they ever
anticipated having a version available for integration into mobile applications. When the first web based version
of what would eventually be called Google Maps was introduced in 2005, the iPhone had yet to ignite the
smartphone revolution and the company that was developing the Android operating system would not be
acquired by Google for another six months. Whatever aspirations Google had for the future of Google Maps,
it is remarkable to consider that all of the power of Google Maps can now be accessed directly via Android
applications using the Google Maps Android API.

This chapter is intended to provide an overview of the Google Maps system and Google Maps Android API. The
chapter will provide an overview of the different elements that make up the API, detail the steps necessary to
configure a development environment to work with Google Maps and then work through some code examples
demonstrating some of the basics of Google Maps Android integration.

74.1 The Elements of the Google Maps Android API
The Google Maps Android API consists of a core set of classes that combine to provide mapping capabilities in
Android applications. The key elements of a map are as follows:

•	 GoogleMap – The main class of the Google Maps Android API. This class is responsible for downloading and
displaying map tiles and for displaying and responding to map controls. The GoogleMap object is not created
directly by the application but is instead created when MapView or MapFragment instances are created. A
reference to the GoogleMap object can be obtained within application code via a call to the getMap() method
of a MapView, MapFragment or SupportMapFragment instance.

•	 MapView - A subclass of the View class, this class provides the view canvas onto which the map is drawn by
the GoogleMap object, allowing a map to be placed in the user interface layout of an activity.

•	 SupportMapFragment – A subclass of the Fragment class, this class allows a map to be placed within a
Fragment in an Android layout.

•	 Marker – The purpose of the Marker class is to allow locations to be marked on a map. Markers are added to
a map by obtaining a reference to the GoogleMap object associated with a map and then making a call to the
addMarker() method of that object instance. The position of a marker is defined via Longitude and Latitude.
Markers can be configured in a number of ways, including specifying a title, text and an icon. Markers may
also be made to be “draggable”, allowing the user to move the marker to different positions on a map.

•	 Shapes – The drawing of lines and shapes on a map is achieved through the use of the Polyline, Polygon and
Circle classes.

•	 UiSettings – The UiSettings class provides a level of control from within an application of which user interface
controls appear on a map. Using this class, for example, the application can control whether or not the zoom,
current location and compass controls appear on a map. This class can also be used to configure which touch
screen gestures are recognized by the map.

624

Working with the Google Maps Android API in Android Studio

•	 My Location Layer – When enabled, the My Location Layer displays a button on the map which, when
selected by the user, centers the map on the user’s current geographical location. If the user is stationary, this
location is represented on the map by a blue marker. If the user is in motion the location is represented by a
chevron indicating the user’s direction of travel.

The best way to gain familiarity with the Google Maps Android API is to work through an example. The
remainder of this chapter will create a Google Maps based application while highlighting the key areas of the
API.

74.2 Creating the Google Maps Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
No Activity template before clicking on the Next button.

Enter MapDemo into the Name field and specify com.ebookfrenzy.mapdemo as the package name. Before clicking
on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the Language
menu to Java.

Next, right-click on the app -> java -> com.ebookfrenzy.mapdemo entry in the Project tool window and select
the New -> Google -> Google Maps Views Activity menu option. Finally, enable the Launcher Activity checkbox
in the New Android Activity dialog before clicking the Finish button:

Figure 74-1

74.3 Creating a Google Cloud Billing Account
Before you can use the Google Map APIs you must first create Google Cloud billing account (unless you already
have one, in which case you can skip to the next section). To do this, open a browser and use the following link
to navigate to the Google Cloud Console:

https://console.cloud.google.com/

Next, click on the menu button in the top left-hand corner of the console page and select the Billing entry as
illustrated in Figure 74-2 below:

https://console.cloud.google.com/

625

Working with the Google Maps Android API in Android Studio

Figure 74-2
On the Billing page, select the option to add a new billing account and then follow the steps to start a free trial.
You will need to provide a credit card to open the account, but Google won’t charge you when the free trial ends
without your consent.

74.4 Creating a New Google Cloud Project
The next step is to create a Google Cloud project to be associated with the MapDemo app. To do this, return to
the Google Cloud Console dashboard by using the following URL:

https://console.cloud.google.com/home/dashboard

Within the dashboard, click the Select a project button located in the top toolbar:

Figure 74-3
When the project selection dialog appears, click on the New Project button (highlighted in Figure 74-4):

626

Working with the Google Maps Android API in Android Studio

Figure 74-4
When the new project screen appears, provide a name for the project. The console will display a default id for the
project beneath the project name field. If you don’t like the default id, click the Edit button to change it:

Figure 74-5
Click the Create button, and after a brief pause, you will be returned to the dashboard where your new project
will be listed.

74.5 Enabling the Google Maps SDK
Now that we have created a new Google Cloud project, the next step is to allow the project to use the Google
Maps SDK. To enable Google Maps support, select your project in the Google Cloud Console, click the menu
button in the top left-hand corner and select the Google Maps Platform entry. Then, from the resulting menu,
select the APIs option as shown in Figure 74-6:

627

Working with the Google Maps Android API in Android Studio

Figure 74-6
On the APIs screen, click on the Maps SDK for Android option and, on the resulting screen, click the Enable
button:

Figure 74-7
Repeat the above steps to enable the Geocoding API credential, which will be needed later in the chapter to
allow our app to display the user’s current location.

Once you have enabled the credentials for your project, click the back arrow to return to the product details page
in preparation for the next step.

74.6 Generating a Google Maps API Key
Before an application can use the Google Maps Android SDK, it must first be configured with an API key that
will associate it with a Maps-enabled Google Cloud project. To generate an API key, select the Credentials menu

628

Working with the Google Maps Android API in Android Studio

option (marked A in Figure 74-8) followed by Create Credentials button (B):

Figure 74-8
After the credential has been created, a dialog will appear displaying the API key. Copy the key before closing
the API dialog:

Figure 74-9

74.7 Adding the API Key to the Android Studio Project
Now that we have generated an API key that will allow our app to use the Google Maps SDK, we need to add it
to our project. Return to Android Studio, edit the manifests -> AndroidManifest.xml file, and locate the API key
entry, which will read as follows:
<meta-data

 android:name="com.google.android.geo.API_KEY"

 android:value="YOUR_API_KEY" />

Delete the text that reads “YOUR_API_KEY” and replace it with the API key created in the Google Play Console.

Next, edit the Gradle Scripts -> local.properties file and add a new line that reads as follows (where the API key
for your project replaces YOUR_API_KEY):
MAPS_API_KEY=YOUR_API_KEY

629

Working with the Google Maps Android API in Android Studio

74.8 Testing the Application
Perform a test run of the application to verify that the API key is correctly configured. Assuming the configuration
is correct, the application will run and display a map on the screen.

If a map is not displayed, check the following areas:

•	 If the application is running on an emulator, make sure that the emulator is running a version of Android
that includes the Google APIs. The current operating system can be changed for an AVD configuration by
selecting the Tools -> Android -> AVD Manager menu option, clicking on the pencil icon in the Actions
column of the AVD followed by the Change… button next to the current Android version. Within the system
image dialog, select a target that includes the Google APIs.

•	 Check the Logcat output for any areas relating to authentication problems with regard to the Google Maps API.
This usually means the API key was entered incorrectly. Ensure that the API key in both the AndroidManifest.
xml and local.properties files matches the key generated in the Google Cloud console.

•	 Verify within the Google API Console that Maps SDK for Android has been enabled in the Credentials panel.

74.9 Understanding Geocoding and Reverse Geocoding
It is impossible to talk about maps and geographical locations without first covering the subject of Geocoding.
Geocoding can best be described as the process of converting a textual-based geographical location (such as a
street address) into geographical coordinates expressed in terms of longitude and latitude.

Geocoding can be achieved using the Android Geocoder class. An instance of the Geocoder class can, for
example, be passed a string representing a location such as a city name, street address or airport code. The
Geocoder will attempt to find a match for the location and return a list of Address objects that potentially match
the location string, ranked in order with the closest match at position 0 in the list. A variety of information can
then be extracted from the Address objects, including the longitude and latitude of the potential matches.

The following code, for example, requests the location of the National Air and Space Museum in Washington,
D.C.:
import java.io.IOException;

import java.util.List;

import android.location.Address;

import android.location.Geocoder;

.

.

double latitude;

double longitude;

List<Address> geocodeMatches = null;

try {

 geocodeMatches =

 new Geocoder(this).getFromLocationName(

 "600 Independence Ave SW, Washington, DC 20560", 1);

 } catch (IOException e) {

 // TODO Auto-generated catch block

630

Working with the Google Maps Android API in Android Studio

 e.printStackTrace();

}

if (!geocodeMatches.isEmpty())

{

 latitude = geocodeMatches.get(0).getLatitude();

 longitude = geocodeMatches.get(0).getLongitude();

}

Note that the value of 1 is passed through as the second argument to the getFromLocationName() method. This
simply tells the Geocoder to return only one result in the array. Given the specific nature of the address provided,
there should only be one potential match. For more vague location names, however, it may be necessary to
request more potential matches and allow the user to choose the correct one.

The above code is an example of forward-geocoding in that coordinates are calculated based on a text location
description. Reverse-geocoding, as the name suggests, involves the translation of geographical coordinates into a
human readable address string. Consider, for example, the following code:
import java.io.IOException;

import java.util.List;

import android.location.Address;

import android.location.Geocoder;

.

.

List<Address> geocodeMatches = null;

String Address1;

String Address2;

String State;

String Zipcode;

String Country;

try {

 geocodeMatches =

 new Geocoder(this).getFromLocation(38.8874245, -77.0200729, 1);

} catch (IOException e) {

 // TODO Auto-generated catch block

 e.printStackTrace();

}

if (!geocodeMatches.isEmpty())

{

 Address1 = geocodeMatches.get(0).getAddressLine(0);

 Address2 = geocodeMatches.get(0).getAddressLine(1);

 State = geocodeMatches.get(0).getAdminArea();

 Zipcode = geocodeMatches.get(0).getPostalCode();

 Country = geocodeMatches.get(0).getCountryName();

}

631

Working with the Google Maps Android API in Android Studio

In this case the Geocoder object is initialized with latitude and longitude values via the getFromLocation()
method. Once again, only a single matching result is requested. The text based address information is then
extracted from the resulting Address object.

It should be noted that the geocoding is not actually performed on the Android device, but rather on a server
to which the device connects when a translation is required and the results subsequently returned when the
translation is complete. As such, geocoding can only take place when the device has an active internet connection.

74.10 Adding a Map to an Application
The simplest way to add a map to an application is to specify it in the user interface layout XML file for an
activity. The following example layout file shows the SupportMapFragment instance added to the activity_maps.
xml file created by Android Studio:
<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 android:id="@+id/map"

 tools:context=".MapsActivity"

 android:name="com.google.android.gms.maps.SupportMapFragment"/>

74.11 Requesting Current Location Permission
As outlined in the chapter entitled “Making Runtime Permission Requests in Android”, certain permissions are
considered dangerous and require special handling for Android 6.0 or later. One set of permissions allows
applications to identify the user’s current location. Edit the AndroidManifest.xml file located under app ->
manifests in the Project tool window and add the following permission lines:
<uses-permission

 android:name="android.permission.ACCESS_FINE_LOCATION" />

<uses-permission

 android:name="android.permission.ACCESS_COARSE_LOCATION" />

These settings will ensure that the app can provide permission for the app to obtain location information when
installed on older versions of Android. To support Android 6.0 or later, however, we need to add some code to
the MapsActivity.java file to request this permission at runtime.

Begin by adding some import directives and a constant to act as the permission request code:
package com.ebookfrenzy.mapdemo;

.

.

import androidx.annotation.NonNull;
import androidx.core.content.ContextCompat;
import androidx.core.app.ActivityCompat;
import android.Manifest;
import android.widget.Toast;
import android.content.pm.PackageManager;
.

.

public class MapsActivity extends FragmentActivity implements OnMapReadyCallback

632

Working with the Google Maps Android API in Android Studio

{

 private static final int LOCATION_REQUEST_CODE = 101;
 private GoogleMap mMap;

.

.

}

Next, a method needs to be added to the class to request a specified permission from the user. Remaining within
the MapsActivity.java class file, implement this method as follows:
protected void requestPermission(String permissionType,

 int requestCode) {

 ActivityCompat.requestPermissions(this,

 new String[]{permissionType}, requestCode

);

}

When the user has responded to the permission request, the onRequestPermissionsResult() method will be called
on the activity. Remaining in the MapsActivity.java file, implement this method now so that it reads as follows:
@Override

public void onRequestPermissionsResult(int requestCode,

 @NonNull String[] permissions, @NonNull int[] grantResults) {

 super.onRequestPermissionsResult(requestCode, permissions, grantResults);

 if (requestCode == LOCATION_REQUEST_CODE) {

 if (grantResults.length == 0

 || grantResults[0] !=

 PackageManager.PERMISSION_GRANTED) {

 Toast.makeText(this,

 "Unable to show location - permission required",

 Toast.LENGTH_LONG).show();

 } else {

 SupportMapFragment mapFragment =

 (SupportMapFragment) getSupportFragmentManager()

 .findFragmentById(R.id.map);

 mapFragment.getMapAsync(this);

 }

 }

}

If permission has not been granted by the user, the app displays a message indicating that the current location
cannot be displayed. If, on the other hand, permission was granted, the map is refreshed to provide an opportunity
for the location marker to be displayed.

74.12 Displaying the User’s Current Location
Once the appropriate permission has been granted, the user’s current location may be displayed on the
map by obtaining a reference to the GoogleMap object associated with the displayed map and calling the

633

Working with the Google Maps Android API in Android Studio

setMyLocationEnabled() method of that instance, passing through a value of true.

When the map is ready to display, the onMapReady() method of the activity is called. This method will also be
called when the map is refreshed within the onRequestPermissionsResult() method above. By default, Android
Studio has implemented this method and added some code to orient the map over Australia with a marker
positioned over the city of Sidney. Locate and edit the onMapReady() method in the MapsActivity.java file to
remove this template code and to add code to check the location permission has been granted before enabling
display of the user’s current location. If permission has not been granted, a request is made to the user via a call
to the previously added requestPermission() method:
@Override

public void onMapReady(GoogleMap googleMap) {

 mMap = googleMap;

 // Add a marker in Sydney and move the camera

 LatLng sydney = new LatLng(-34, 151);

 mMap.addMarker(new MarkerOptions().position(sydney).title("Marker in
Sydney"));

 mMap.moveCamera(CameraUpdateFactory.newLatLng(sydney));

 if (mMap != null) {
 int permission = ContextCompat.checkSelfPermission(this,
 Manifest.permission.ACCESS_FINE_LOCATION);

 if (permission == PackageManager.PERMISSION_GRANTED) {
 mMap.setMyLocationEnabled(true);
 } else {
 requestPermission(
 Manifest.permission.ACCESS_FINE_LOCATION,
 LOCATION_REQUEST_CODE);
 }
 }
}

When the app is now run, the dialog shown in Figure 74-10 will appear requesting location permission. If
permission is granted, a blue dot will appear on the map indicating the current location of the device.

634

Working with the Google Maps Android API in Android Studio

Figure 74-10

74.13 Changing the Map Type
The type of map displayed can be modified dynamically by making a call to the setMapType() method of the
corresponding GoogleMap object, passing through one of the following values:

·	 GoogleMap.MAP_TYPE_NONE – An empty grid with no mapping tiles displayed.

·	 GoogleMap.MAP_TYPE_NORMAL – The standard view consisting of the classic road map.

·	 GoogleMap.MAP_TYPE_SATELLITE – Displays the satellite imagery of the map region.

·	 GoogleMap.MAP_TYPE_HYBRID – Displays satellite imagery with the road map superimposed.

·	 GoogleMap.MAP_TYPE_TERRAIN – Displays topographical information such as contour lines and colors.

The following code change to the onMapReady() method, for example, switches a map to Satellite mode:
.

.

if (mMap != null) {

 int permission = ContextCompat.checkSelfPermission(

 this, Manifest.permission.ACCESS_FINE_LOCATION);

 if (permission == PackageManager.PERMISSION_GRANTED) {

 mMap.setMyLocationEnabled(true);

 } else {

 requestPermission(Manifest.permission.ACCESS_FINE_LOCATION,

 LOCATION_REQUEST_CODE);

 }

635

Working with the Google Maps Android API in Android Studio

 mMap.setMapType(GoogleMap.MAP_TYPE_SATELLITE);
}

.

.

Alternatively, the map type may be specified in the XML layout file in which the map is embedded using the
map:mapType property together with a value of none, normal, hybrid, satellite or terrain. For example:
<?xml version="1.0" encoding="utf-8"?>

<fragment xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:map="http://schemas.android.com/apk/res-auto"

 android:id="@+id/map"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 map:mapType="hybrid"
 android:name="com.google.android.gms.maps.SupportMapFragment"/>

74.14 Displaying Map Controls to the User
The Google Maps Android API provides a number of controls that may be optionally displayed to the user
consisting of zoom in and out buttons, a “my location” button and a compass.

Whether or not the zoom and compass controls are displayed may be controlled either programmatically or
within the map element in XML layout resources. To configure the controls programmatically, a reference to the
UiSettings object associated with the GoogleMap object must be obtained:
import com.google.android.gms.maps.UiSettings;

.

.

UiSettings mapSettings;

mapSettings = mMap.getUiSettings();

The zoom controls are enabled and disabled via the calls to the setZoomControlsEnabled() method of the
UiSettings object. For example:
mapSettings.setZoomControlsEnabled(true);

Alternatively, the map:uiZoomControls property may be set within the map element of the XML resource file:
map:uiZoomControls="false"

The compass may be displayed either via a call to the setCompassEnabled() method of the UiSettings instance, or
through XML resources using the map:uiCompass property. Note the compass icon only appears when the map
camera is tilted or rotated away from the default orientation.

The “My Location” button will only appear when My Location mode is enabled as outlined earlier in this chapter. The
button may be prevented from appearing even when in this mode via a call to the setMyLocationButtonEnabled()
method of the UiSettings instance.

74.15 Handling Map Gesture Interaction
The Google Maps Android API is capable of responding to a number of different user interactions. These
interactions can be used to change the area of the map displayed, the zoom level and even the angle of view
(such that a 3D representation of the map area is displayed for certain cities).

636

Working with the Google Maps Android API in Android Studio

74.15.1 Map Zooming Gestures
Support for gestures relating to zooming in and out of a map may be enabled or disabled using the
setZoomGesturesEnabled() method of the UiSettings object associated with the GoogleMap instance. For
example, the following code disables zoom gestures for our example map:
UiSettings mapSettings;

mapSettings = map.getUiSettings();

mapSettings.setZoomGesturesEnabled(false);

The same result can be achieved within an XML resource file by setting the map:uiZoomGestures property to
true or false.

When enabled, zooming will occur when the user makes pinching gestures on the screen. Similarly, a double
tap will zoom in while a two finger tap will zoom out. One finger zooming gestures, on the other hand, are
performed by tapping twice but not releasing the second tap and then sliding the finger up and down on the
screen to zoom in and out respectively.

74.15.2 Map Scrolling/Panning Gestures
A scrolling, or panning gesture allows the user to move around the map by dragging the map around the screen with
a single finger motion. Scrolling gestures may be enabled within code via a call to the setScrollGesturesEnabled()
method of the UiSettings instance:
UiSettings mapSettings;

mapSettings = mMap.getUiSettings();

mapSettings.setScrollGesturesEnabled(true);

Alternatively, scrolling on a map instance may be enabled in an XML resource layout file using the
map:uiScrollGestures property.

74.15.3 Map Tilt Gestures
Tilt gestures allow the user to tilt the angle of projection of the map by placing two fingers on the screen and
moving them up and down to adjust the tilt angle. Tilt gestures may be enabled or disabled via a call to the
setTiltGesturesEnabled() method of the UiSettings instance, for example:
UiSettings mapSettings;

mapSettings = mMap.getUiSettings();

mapSettings.setTiltGesturesEnabled(true);

Tilt gestures may also be enabled and disabled using the map:uiTiltGestures property in an XML layout resource
file.

74.15.4 Map Rotation Gestures
By placing two fingers on the screen and rotating them in a circular motion, the user may rotate the orientation
of a map when map rotation gestures are enabled. This gesture support is enabled and disabled in code via a call
to the setRotateGesturesEnabled() method of the UiSettings instance, for example:
UiSettings mapSettings;

mapSettings = mMap.getUiSettings();

mapSettings.setRotateGesturesEnabled(true);

Rotation gestures may also be enabled or disabled using the map:uiRotateGestures property in an XML layout
resource file.

637

Working with the Google Maps Android API in Android Studio

74.16 Creating Map Markers
Markers are used to notify the user of locations on a map and take the form of either a standard or custom icon.
Markers may also include a title and optional text (referred to as a snippet) and may be configured such that
they can be dragged to different locations on the map by the user. When tapped by the user an info window will
appear displaying additional information about the marker location.

Markers are represented by instances of the Marker class and are added to a map via a call to the addMarker()
method of the corresponding GoogleMap object. Passed through as an argument to this method is a
MarkerOptions class instance containing the various options required for the marker such as the title and
snippet text. The location of a marker is defined by specifying latitude and longitude values, also included as
part of the MarkerOptions instance. For example, the following code adds a marker including a title, snippet and
a position to a specific location on the map:
import com.google.android.gms.maps.model.Marker;

import com.google.android.gms.maps.model.LatLng;

import com.google.android.gms.maps.model.MarkerOptions;

.

.

.

LatLng position = new LatLng(38.8874245, -77.0200729);

Marker museum = mMap.addMarker(new MarkerOptions()

 .position(position)

 .title("Museum")

 .snippet("National Air and Space Museum"));

When executed, the above code will mark the location specified which, when tapped, will display an info window
containing the title and snippet as shown in Figure 74-11:

Figure 74-11

74.17 Controlling the Map Camera
Because Android device screens are flat and the world is a sphere, the Google Maps Android API uses the
Mercator projection to represent the earth on a flat surface. The default view of the map is presented to the user
as though through a camera suspended above the map and pointing directly down at the map. The Google Maps
Android API allows the target, zoom, bearing and tilt of this camera to be changed in real-time from within the
application:

•	 Target – The location of the center of the map within the device display specified in terms of longitude and

638

Working with the Google Maps Android API in Android Studio

latitude.

•	 Zoom – The zoom level of the camera specified in levels. Increasing the zoom level by 1.0 doubles the width
of the amount of the map displayed.

•	 Tilt – The viewing angle of the camera specified as a position on an arc spanning directly over the center of
the viewable map area measured in degrees from the top of the arc (this being the nadir of the arc where the
camera points directly down to the map).

•	 Bearing – The orientation of the map in degrees measured in a clockwise direction from North.

Camera changes are made by creating an instance of the CameraUpdate class with the appropriate settings.
CameraUpdate instances are created by making method calls to the CameraUpdateFactory class. Once a
CameraUpdate instance has been created, it is applied to the map via a call to the moveCamera() method of the
GoogleMap instance. To obtain a smooth animated effect as the camera changes, the animateCamera() method
may be called instead of moveCamera().

A summary of CameraUpdateFactory methods is as follows:

•	 CameraUpdateFactory.zoomIn() – Provides a CameraUpdate instance zoomed in by one level.

•	 CameraUpdateFactory.zoomOut() - Provides a CameraUpdate instance zoomed out by one level.

•	 CameraUpdateFactory.zoomTo(float) - Generates a CameraUpdate instance that changes the zoom level to
the specified value.

•	 CameraUpdateFactory.zoomBy(float) – Provides a CameraUpdate instance with a zoom level increased or
decreased by the specified amount.

•	 CameraUpdateFactory.zoomBy(float, Point) - Creates a CameraUpdate instance that increases or decreases
the zoom level by the specified value.

•	 CameraUpdateFactory.newLatLng(LatLng) - Creates a CameraUpdate instance that changes the camera’s
target latitude and longitude.

•	 CameraUpdateFactory.newLatLngZoom(LatLng, float) - Generates a CameraUpdate instance that changes
the camera’s latitude, longitude and zoom.

•	 CameraUpdateFactory.newCameraPosition(CameraPosition) - Returns a CameraUpdate instance that
moves the camera to the specified position. A CameraPosition instance can be obtained using CameraPosition.
Builder().

The following code, for example, zooms in the camera by one level using animation:
mMap.animateCamera(CameraUpdateFactory.zoomIn());

The following code, on the other hand, moves the camera to a new location and adjusts the zoom level to 10
without animation:
private static final LatLng position =

 new LatLng(38.8874245, -77.0200729);

mMap.moveCamera(CameraUpdateFactory.newLatLngZoom(position, 10));

Finally, the next code example uses CameraPosition.Builder() to create a CameraPosition object with changes to
the target, zoom, bearing and tilt. This change is then applied to the camera using animation:
import com.google.android.gms.maps.model.CameraPosition;

639

Working with the Google Maps Android API in Android Studio

import com.google.android.gms.maps.CameraUpdateFactory;

.

.

CameraPosition cameraPosition = new CameraPosition.Builder()

 .target(position)

 .zoom(50)

 .bearing(70)

 .tilt(25)

 .build();

mMap.animateCamera(CameraUpdateFactory.newCameraPosition(

 cameraPosition));

74.18 Summary
This chapter has provided an overview of the key classes and methods that make up the Google Maps Android
API and outlined the steps involved in preparing both the development environment and an application project
to make use of the API.

687

Chapter 80

80. An Android Biometric
Authentication Tutorial
Touch sensors are now built into many Android devices to identify the user and provide access to both the
device and application functionality such as in-app payment options using fingerprint recognition. Fingerprint
recognition is, of course, just one of a number of different authentication methods including passwords, PIN
numbers and, more recently, facial recognition.

Although only a few Android devices currently on the market provide facial recognition, it is likely that this will
become more common in the near future. In recognition of this, Google has begun to transition away from what
was a fingerprint-centric approach to adding authentication to apps to a less specific approach that is referred
to as biometric authentication. In the initial release of Android 8, these biometric features only cover fingerprint
authentication but this will change in future releases and updates of the Android operating system and SDK.

This chapter provides both an overview of biometric authentication and a detailed, step by step tutorial that
demonstrates a practical approach to implementing biometric authentication within an Android app project.

80.1 An Overview of Biometric Authentication
The key biometric authentication component is the BiometricPrompt class. This class performs much of the
work that previously had to be performed by writing code in earlier Android versions, including displaying
a standard dialog to guide the user through the authentication process, performing the authentication and
reporting the results to the app. The class also handles excessive failed authentication attempts and enforces a
timeout before the user can try again.

The BiometricPrompt class includes a companion Builder class that can be used to configure and create
BiometricPrompt instances, including defining the text that is to appear within the biometric authentication
dialog and the customization of the cancel button (also referred to as the negative button) that appears in the
dialog.

The BiometricPrompt instance is also assigned a set of authentication callbacks that will be called to provide the
app with the results of an authentication operation. A CancellationSignal instance is also used to allow the app
to cancel the authentication while it is in process.

With these basics covered, the remainder of this chapter will implement fingerprint-based biometric
authentication within an example project.

80.2 Creating the Biometric Authentication Project
Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter BiometricDemo into the Name field and specify com.ebookfrenzy.biometricdemo as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 29: Android (Q) and the
Language menu to Java.

688

An Android Biometric Authentication Tutorial

80.3 Configuring Device Fingerprint Authentication
Fingerprint authentication is only available on devices containing a touch sensor and on which the appropriate
configuration steps have been taken to secure the device and enroll at least one fingerprint. For steps on
configuring an emulator session to test fingerprint authentication, refer to the chapter entitled “Using and
Configuring the Android Studio AVD Emulator”.

To configure fingerprint authentication on a physical device begin by opening the Settings app and selecting the
Security option. Within the Security settings screen, select the Fingerprint option. On the resulting information
screen click on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be
enabled a backup screen unlocking method (such as a PIN number) must be configured. If the lock screen is not
already secured, follow the steps to configure either PIN, pattern or password security.

With the lock screen secured, proceed to the fingerprint detection screen and touch the sensor when prompted
to do so (Figure 80-1), repeating the process to add additional fingerprints if required.

Figure 80-1

80.4 Adding the Biometric Permission to the Manifest File
Biometric authentication requires that the app request the USE_BIOMETRIC permission within the project
manifest file. Within the Android Studio Project tool window locate and edit the app -> manifests ->
AndroidManifest.xml file to add the permission request as follows:
<?xml version="1.0" encoding="utf-8"?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"

 package="com.ebookfrenzy.biometricdemo">

 <uses-permission
 android:name="android.permission.USE_BIOMETRIC" />
.

.

689

An Android Biometric Authentication Tutorial

80.5 Designing the User Interface
In the interests of keeping the example as simple as possible, the only visual element within the user interface
will be a Button view. Locate and select the activity_main.xml layout resource file to load it into the Layout
Editor tool.

Delete the sample TextView object, drag and drop a Button object from the Common category of the palette and
position it in the center of the layout canvas. Using the Attributes tool window, change the text property on the
button to “Authenticate” and extract the string to a resource. Finally, configure the onClick property to call a
method named authenticateUser.

On completion of the above steps the layout should match that shown in Figure 80-2:

Figure 80-2

80.6 Adding a Toast Convenience Method
At various points throughout the code in this example the app will be designed to display information to the
user via Toast messages. Rather than repeat the same Toast code multiple times, a convenience method named
notifyUser() will be added to the main activity. This method will accept a single String value and display it to the
user in the form of a Toast message. Edit the MainActivity.java file now and add this method as follows:
.

.

import android.widget.Toast;
.

.

 private void notifyUser(String message) {
 Toast.makeText(this,
 message,
 Toast.LENGTH_LONG).show();
 }

690

An Android Biometric Authentication Tutorial

.

.

80.7 Checking the Security Settings
Earlier in this chapter steps were taken to configure the lock screen and register fingerprints on the device
or emulator on which the app is going to be tested. It is important, however, to include defensive code in the
app to make sure that these requirements have been met before attempting to seek fingerprint authentication.
These steps will be performed within the onCreate method residing in the MainActivity.java file, making use
of the Keyguard and PackageManager manager services. Note that code has also been added to verify that the
USE_BIOMETRIC permission has been configured for the app:
package com.ebookfrenzy.biometricdemo;

import androidx.appcompat.app.AppCompatActivity;

import androidx.core.app.ActivityCompat;

import android.widget.Toast;

import android.Manifest;
import android.content.pm.PackageManager;

import android.app.KeyguardManager;

public class MainActivity extends AppCompatActivity {

 @Override

 protected void onCreate(Bundle savedInstanceState) {

 super.onCreate(savedInstanceState);

 setContentView(R.layout.activity_biometric_demo);

 checkBiometricSupport();
 }

 private void checkBiometricSupport() {

 KeyguardManager keyguardManager =
 (KeyguardManager) getSystemService(KEYGUARD_SERVICE);

 if (!keyguardManager.isKeyguardSecure()) {
 notifyUser("Lock screen security not enabled in Settings");
 }

 if (ActivityCompat.checkSelfPermission(this,
 Manifest.permission.USE_BIOMETRIC) !=
 PackageManager.PERMISSION_GRANTED) {

 notifyUser("Fingerprint authentication permission not enabled");
 }
 }

691

An Android Biometric Authentication Tutorial

.

.

}

The above code changes begin by using the Keyguard manager to verify that a backup screen unlocking method
has been configured (in other words a PIN or other authentication method can be used as an alternative to
fingerprint authentication to unlock the screen). If the lock screen is not secured the code reports the problem
to the user and returns from the method.

The method then checks that the user has biometric authentication permission enabled for the app before using
the package manager to verify that fingerprint authentication is available on the device.

80.8 Configuring the Authentication Callbacks
When the biometric prompt dialog is configured, it will need to be assigned a set of authentication callback
methods that can be called to notify the app of the success or failure of the authentication process. These
methods need to be wrapped in a BiometricPrompt.AuthenticationCallback class instance. Remaining in the
MainActivity.java file, add a method to create and return an instance of this class with the appropriate methods
implemented:
.

.

import android.hardware.biometrics.BiometricPrompt;
.

.

 private BiometricPrompt.AuthenticationCallback getAuthenticationCallback() {

 return new BiometricPrompt.AuthenticationCallback() {
 @Override
 public void onAuthenticationError(int errorCode,
 CharSequence errString) {
 notifyUser("Authentication error: " + errString);
 super.onAuthenticationError(errorCode, errString);
 }

 @Override
 public void onAuthenticationHelp(int helpCode,
 CharSequence helpString) {
 super.onAuthenticationHelp(helpCode, helpString);
 }

 @Override
 public void onAuthenticationFailed() {
 super.onAuthenticationFailed();
 }

 @Override
 public void onAuthenticationSucceeded(
 BiometricPrompt.AuthenticationResult result) {

692

An Android Biometric Authentication Tutorial

 notifyUser("Authentication Succeeded");
 super.onAuthenticationSucceeded(result);
 }
 };
 }
.

.

}

80.9 Adding the CancellationSignal
Once initiated, the biometric authentication process is performed independently of the app. To provide the
app with a way to cancel the operation, an instance of the CancellationSignal class is created and passed to
the biometric authentication process. This CancellationSignal instance can then be used to cancel the process
if necessary. The cancellation signal instance may be configured with a listener which will be called when the
cancellation is completed. Add a new method to the activity class to configure and return a CancellationSignal
object as follows:
.

.

import android.os.CancellationSignal;
.

.

 private CancellationSignal cancellationSignal;
.

.

 private CancellationSignal getCancellationSignal() {

 cancellationSignal = new CancellationSignal();
 cancellationSignal.setOnCancelListener(() ->
 notifyUser("Cancelled via signal"));
 return cancellationSignal;
 }
.
.

80.10 Starting the Biometric Prompt
All that remains is to add code to the authenticateUser() method to create and configure a BiometricPrompt
instance and initiate the authentication. Add the authenticateUser() method as follows:
.

.

import android.view.View;
.
.
public void authenticateUser(View view) {
 BiometricPrompt biometricPrompt = new BiometricPrompt.Builder(this)
 .setTitle("Biometric Demo")
 .setSubtitle("Authentication is required to continue")

693

An Android Biometric Authentication Tutorial

 .setDescription(
 "This app uses biometric authentication to protect your data.")
 .setNegativeButton("Cancel", this.getMainExecutor(),
 (dialogInterface, i) ->
 notifyUser("Authentication cancelled"))
 .build();

 biometricPrompt.authenticate(getCancellationSignal(), getMainExecutor(),
 getAuthenticationCallback());
}

The BiometricPrompt.Builder class is used to create a new BiometricPrompt instance configured with title,
subtitle and description text to appear in the prompt dialog. The negative button is configured to display
text which reads “Cancel” and a listener configured to display a message when this button is clicked. Finally,
the authenticate() method of the BiometricPrompt instance is called and passed the AuthenticationCallback
and CancellationSignal instances. The Biometric prompt also needs to know which thread to perform the
authentication on. This is defined by passing through an Executor object configured for the required thread. In
this case, the getMainExecutor() method is used to pass a main Executor object to the BiometricPrompt instance
so that the authentication process takes place on the app’s main thread.

80.11 Testing the Project
With the project now complete, run the app on a physical Android device or emulator session and click on the
Authenticate button to display the BiometricPrompt dialog as shown in Figure 80-3:

Figure 80-3
Once running, either touch the fingerprint sensor or use the extended controls panel within the emulator to
simulate a fingerprint touch as outlined in the chapter entitled “Using and Configuring the Android Studio AVD
Emulator”. Assuming a registered fingerprint is detected the prompt dialog will return to the main activity
where the toast message from the successful authentication callback method will appear.

Click the Authenticate button once again, this time using an unregistered fingerprint to attempt the authentication.
This time the biometric prompt dialog will indicate that the fingerprint was not recognized:

694

An Android Biometric Authentication Tutorial

Figure 80-4
Verify that the error handling callback is working by clicking on the activity outside of the biometric prompt
dialog. The prompt dialog will disappear and the toast message will appear with the following message:
Authentication error: Fingerprint operation cancelled by user.

Check that canceling the prompt dialog using the Cancel button triggers the “Authentication Canceled” toast
message. Finally, attempt to authenticate multiple times using an unregistered fingerprint and note that after a
number of attempts the prompt dialog indicates that too many failures have occurred and that future attempts
cannot be made until later.

80.12 Summary
This chapter has outlined how to integrate biometric authentication into an Android app project. This involves
the use of the BiometricPrompt class which, once configured with appropriate message text and callbacks,
automatically handles most of the authentication process.

775

Index

Index

Symbols
<application> 428

<fragment> 239

<fragment> element 239

<receiver> 462

<service> 428, 472, 479

 Code Reformatting 73

.well-known folder 435, 458, 674

A
AbsoluteLayout 120

ACCESS_COARSE_LOCATION permission 496

ACCESS_FINE_LOCATION permission 496

acknowledgePurchase() method 713

ACTION_CREATE_DOCUMENT 588

ACTION_CREATE_INTENT 588

ACTION_DOWN 214

ACTION_MOVE 214

ACTION_OPEN_DOCUMENT intent 580

ACTION_POINTER_DOWN 214

ACTION_POINTER_UP 214

ACTION_UP 214

ACTION_VIEW 453

Active / Running state 94

Activity 81, 97

adding views in Java code 195

class 97

creation 14

Entire Lifetime 101

Foreground Lifetime 101

lifecycle methods 100

lifecycles 91

returning data from 432

state change example 105

state changes 97

states 94

Visible Lifetime 101

ActivityCompat class 501

Activity Lifecycle 93

Activity Manager 80

ActivityResultLauncher 433

Activity Stack 93

Actual screen pixels 186

adb

command-line tool 57

connection testing 63

device pairing 61

enabling on Android devices 57

Linux configuration 60

list devices 57

macOS configuration 58

overview 57

restart server 58

testing connection 63

WiFi debugging 61

Windows configuration 59

Wireless debugging 61

Wireless pairing 61

addCategory() method 461

addMarker() method 637

addView() method 190

ADD_VOICEMAIL permission 496

android

exported 429

gestureColor 233

layout_behavior property 411

onClick 241

process 429, 479

uncertainGestureColor 233

Android

Activity 81

architecture 77

events 207

intents 82

776

Index

onClick Resource 207

runtime 78

SDK Packages 6

android.app 78

Android Architecture Components 257

android.content 78

android.content.Intent 431

android.database 78

Android Debug Bridge. See ADB

Android Design Support Library 367

Android Development

System Requirements 3

Android Devices

designing for different 119

android.graphics 78

android.hardware 78

android.intent.action 467

android.intent.action.BOOT_COMPLETED 430

android.intent.action.MAIN 453

android.intent.category.LAUNCHER 453

Android Libraries 78

android.media 79

Android Monitor tool window 32

Android Native Development Kit 79

android.net 79

android.opengl 79

android.os 79

android.permission.RECORD_AUDIO 615

android.print 79

Android Project

create new 13

android.provider 79

Android SDK Location

identifying 9

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10

Android Software Stack 77

Android Storage Access Framework 580

Android Studio

changing theme 54

downloading 3

Editor Window 48

installation 4

Linux installation 5

macOS installation 4

Main Window 48

Menu Bar 48

Navigation Bar 48

Project tool window 49

setup wizard 5

Status Bar 49

Toolbar 48

Tool window bars 50

tool windows 49

updating 12

Welcome Screen 47

Windows installation 4

android.text 79

android.util 79

android.view 79

android.view.View 122

android.view.ViewGroup 119, 122

Android Virtual Device. See AVD

overview 27

Android Virtual Device Manager 27

android.webkit 79

android.widget 79

AndroidX libraries 768

API Key 627

APK analyzer 706

APK file 700

split 730

APK File

analyzing 706

APK Signing 768

APK Wizard dialog 698

App Architecture

777

Index
modern 257

AppBar

anatomy of 409

appbar_scrolling_view_behavior 411

App Bundles 695

creating 700

overview 695

revisions 705

uploading 702

AppCompatActivity class 98

App Inspector 51

Application

stopping 32

Application Context 83

Application Framework 79

Application Manifest 83

Application Resources 83

App Link

Adding Intent Filter 682

Assistant 677

Digital Asset Links file 674, 435

Intent Filter Handling 682

Intent Filters 673

Intent Handling 674

Testing 686

tutorial 677

URL Mapping 679

App Link Assistant 677

App Links 673

auto verification 435

autoVerify 435

manually enabling 437

overview 673

Apply Changes 203

Apply Changes and Restart Activity 203

Apply Code Changes 203

fallback settings 205

options 203

Run App 203

tutorial 205

applyToActivitiesIfAvailable() method 763

Architecture Components 257

ART 78

assetlinks.json , 674, 435

Attribute Keyframes 334

Audio

supported formats 613

Audio Playback 613

Audio Recording 613

Autoconnect Mode 152

Automatic Link Verification 435, 457

autoVerify 435, 682

AVD

cold boot 42

command-line creation 27

creation 27

device frame 35

Display mode 44

launch in tool window 35

overview 27

quickboot 42

Resizable 44

running an application 30

Snapshots 41

standalone 33

starting 29

Startup size and orientation 30

B
Background Process 92

Barriers 146

adding 164

constrained views 146

Base APK file 730

Baseline Alignment 145

beginTransaction() method 240

BillingClient 714

acknowledgePurchase() method 713

consumeAsync() method 713

getPurchaseState() method 713

initialization 710, 720

launchBillingFlow() method 712

queryProductDetailsAsync() method 712

queryPurchasesAsync() method 714

778

Index

startConnection() method 711

BillingResult 727

getDebugMessage() 727

Binding Expressions 281

one-way 281

two-way 282

BIND_JOB_SERVICE permission 429

bindService() method 427, 469, 474

Biometric Authentication 687

callbacks 691

overview 687

tutorial 687

Biometric Prompt 692

BitmapFactory 581

black activity 14

Blank template 123

Blueprint view 151

BODY_SENSORS permission 496

Bookmarks 51

Bound Service 427, 469

adding to a project 470

Implementing the Binder 470

Interaction options 469

BoundService class 471

Broadcast Intent 461

example 464

overview 82, 461

sending 464

Sticky 463

Broadcast Receiver 461

adding to manifest file 466

creation 465

overview 82, 462

BroadcastReceiver class 462

BroadcastReceiver superclass 465

BufferedReader object 591

Build tool window 51

Build Variants 51, 768

tool window 51

Bundle class 114

Bundled Notifications 515

C
Calendar permissions 496

CALL_PHONE permission 496

CAMERA permission 496

Camera permissions 496

CameraUpdateFactory class

methods 638

CancellationSignal 692

Canvas class 668

CardView

example 391

layout file 389

responding to selection of 397

CardView class 389

CATEGORY_OPENABLE 580

C/C++ Libraries 79

Chain bias 172

chain head 144

chains 144

Chains

creation of 169

Chain style

changing 171

chain styles 144

CharSequence 115

CheckBox 119

checkSelfPermission() method 500

Circle class 623

Code completion 68

Code Editor

basics 65

Code completion 68

Code Generation 70

Code Reformatting 73

Document Tabs 65

Editing area 66

Gutter Area 66

Live Templates 74

Splitting 67

Statement Completion 69

Status Bar 67

Code Generation 70

779

Index
code samples

download 1

cold boot 42

CollapsingToolbarLayout

example 413

introduction 412

parallax mode 412

pin mode 412

setting scrim color 415

setting title 415

with image 412

Color class 669

COLOR_MODE_COLOR 644, 664

COLOR_MODE_MONOCHROME 644, 664

com.android.application 733

com.android.dynamic-feature 733

Common Gestures 221

detection 221

Component tree 17

Configuration APK file 730

Constraint Bias 143

adjusting 156

ConstraintLayout

advantages of 149

Availability 150

Barriers 146

Baseline Alignment 145

chain bias 172

chain head 144

chains 144

chain styles 144

Constraint Bias 143

Constraints 141

conversion to 168

convert to MotionLayout 341

deleting constraints 156

guidelines 162

Guidelines 146

manual constraint manipulation 153

Margins 142, 157

Opposing Constraints 142, 158

overview of 141

Packed chain 145, 172

ratios 149, 173

Spread chain 144

Spread inside 171

Spread inside chain 144

tutorial 177

using in Android Studio 151

Weighted chain 144, 172

Widget Dimensions 145, 160

Widget Group Alignment 167

ConstraintLayout chains

creation of 169

in layout editor 169

ConstraintLayout Chain style

changing 171

Constraints

deleting 156

ConstraintSet

addToHorizontalChain() method 192

addToVerticalChain() method 192

alignment constraints 191

apply to layout 190

applyTo() method 190

centerHorizontally() method 191

centerVertically() method 191

chains 191

clear() method 192

clone() method 191

connect() method 190

connect to parent 190

constraint bias 191

copying constraints 191

create 190

create connection 190

createHorizontalChain() method 191

createVerticalChain() method 191

guidelines 192

removeFromHorizontalChain() method 192

removeFromVerticalChain() method 192

removing constraints 192

rotation 193

scaling 192

780

Index

setGuidelineBegin() method 192

setGuidelineEnd() method 192

setGuidelinePercent() method 192

setHorizonalBias() method 191

setRotationX() method 193

setRotationY() method 193

setScaleX() method 192

setScaleY() method 192

setTransformPivot() method 193

setTransformPivotX() method 193

setTransformPivotY() method 193

setVerticalBias() method 191

sizing constraints 191

tutorial 195

view IDs 197

ConstraintSet class 189, 190

ConstraintSet.PARENT_ID 190

Constraint Sets 190

ConstraintSets

configuring 330

consumeAsync() method 713

ConsumeParams 725

ConsumeResponseListener 713

Contacts permissions 496

container view 119

Content Provider 80

overview 83

Context class 83

CoordinatorLayout 120, 409, 411

createPrintDocumentAdapter() method 659

Custom Attribute 331

Custom Document Printing 647, 659

Custom Gesture

recognition 227

Custom Print Adapter

implementation 661

Custom Print Adapters 659

Custom Theme

building 757

Cycle Editor 359

Cycle Keyframe 339

Cycle Keyframes

overview 355

D
dangerous permissions 495

list of 496

Dark Theme 32

enable on device 32

Data Access Object (DAO) 546

Data Access Objects (DAO) 550

Database Inspector 553, 576

live updates 577

SQL query 577

Database Rows 540

Database Schema 539

Database Tables 539

Data binding

binding expressions 281

Data Binding 260

binding classes 280

enabling 286

event and listener binding 282

key components 277

overview 277

tutorial 285

with LiveData 260

DDMS 32

Debugging

enabling on device 57

debug.keystore file 435, 457

DefaultLifecycleObserver 300, 303

deltaRelative 335

Density-independent pixels 185

Density Independent Pixels

converting to pixels 200

Device Definition

custom 137

Device File Explorer 51

device frame 35

Device Manager 51

Device Mirroring 63

enabling 63

device pairing 61

781

Index
Digital Asset Links file 435, 674, 435

Direct Reply Input 526

Direct Reply Notification 519

document provider 579

dp 185

Dynamic Colors

applyToActivitiesIfAvailable() method 763

enabling 763

enabling in Android 763

Dynamic Delivery 732

Dynamic Feature APK 730

Dynamic Feature Module

architecture 729

overview 729

removal 753

tutorial 739

Dynamic Feature Modules

deferred installation 735

handling of large 737

Dynamic Feature Support

adding to project 739

Dynamic State 99

saving 113

E
Empty Process 93

Empty template 123

Emulator 51

battery 40

cellular configuration 40

configuring fingerprints 42

directional pad 40

extended control options 39

Extended controls 39

fingerprint 40

location configuration 40

phone settings 40

Resizable 44

resize 39

rotate 38

Screen Record 41

Snapshots 41

starting 29

take screenshot 38

toolbar 37

toolbar options 37

tool window mode 43

Virtual Sensors 41

zoom 38

enablePendingPurchases() method 713

enabling ADB support 57

ettings.gradle file 768

Event Handling 207

example 208

Event Listener 209

Event Listeners 208

Event Log 51

Events

consuming 211

explicit

intent 82

explicit intent 431

Explicit Intent 431

Extended Control

options 39

F
Favorites

tool window 51

Files

switching between 66

findPointerIndex() method 214

findViewById() 85

Fingerprint

emulation 42

Fingerprint authentication

device configuration 688

permission 688

steps to implement 687

Fingerprint Authentication

overview 687

tutorial 687

FLAG_INCLUDE_STOPPED_PACKAGES 461

flexible space area 409

782

Index

floating action button 14, 124, 367

changing appearance of 371

margins 368

overview of 367

removing 125

sizes 368

Foldable Devices 102

multi-resume 102

Foldable Emulator 532

Foldables 531

Foreground Process 92

Forward-geocoding 630

Fragment

creation 237

event handling 241

XML file 237, 238

FragmentActivity class 98

Fragment Communication 242

Fragments 237

adding in code 240

duplicating 378

example 245

overview 237

FragmentStateAdapter class 381

FrameLayout 120

G
Geocoder class 629

Geocoder object 631

Geocoding 629

Gesture Builder Application 227

building and running 228

Gesture Detector class 221

GestureDetectorCompat 224

instance creation 224

GestureDetectorCompat class 221

GestureDetector.OnDoubleTapListener 221, 222

GestureDetector.OnGestureListener 222

GestureLibrary 227

GestureLibrary class 227

GestureOverlayView 227

configuring color 233

configuring multiple strokes 233

GestureOverlayView class 227

GesturePerformedListener 227

Gestures

interception of 233

Gestures File

creation 228

extract from SD card 229

loading into application 230

GET_ACCOUNTS permission 496

getAction() method 467

getDebugMessage() 727

getFromLocation() method 631

getId() method 190

getIntent() method 432

getPointerCount() method 214

getPointerId() method 214

getPurchaseState() method 713

getService() method 474

GNU/Linux 78

Google Cloud

billing account 624

Console 624

new project 625

Google Cloud Print 642

Google Drive 580

printing to 642

GoogleMap 623

map types 634

GoogleMap.MAP_TYPE_HYBRID 634

GoogleMap.MAP_TYPE_NONE 634

GoogleMap.MAP_TYPE_NORMAL 634

GoogleMap.MAP_TYPE_SATELLITE 634

GoogleMap.MAP_TYPE_TERRAIN 634

Google Maps Android API 623

Controlling the Map Camera 637

displaying controls 635

gesture handling 635

Map Markers 637

overview 623

Google Maps SDK 623

API Key 627

783

Index
Credentials 627

enabling 626

Maps SDK for Android 627

Google Play Billing Library 709

Google Play Console 718

Creating an in-app product 718

License Testers 719

Google Play Developer Console 696

Go to Line:Column 67

Gradle

APK signing settings 772

Build Variants 768

command line tasks 773

dependencies 767

Manifest Entries 768

overview 767

sensible defaults 767

tool window 51

Gradle Build File

top level 769

Gradle Build Files

module level 770

gradle.properties file 768

GridLayout 120

GridLayoutManager 387

H
Handler class 478

HP Print Services Plugin 641

HTML printing 645

HTML Printing

example 649

I
IBinder 427, 471

IBinder object 469, 477, 479

Image Printing 644

implicit

intent 82

implicit intent 431

Implicit Intent 433

Implicit Intents

example 449

in 185

INAPP 714

In-App Products 709

In-App Purchasing 717

acknowledgePurchase() method 713

BillingClient 710

BillingResult 727

consumeAsync() method 713

ConsumeParams 725

ConsumeResponseListener 713

Consuming purchases 724

enablePendingPurchases() method 713

getPurchaseState() method 713

Google Play Billing Library 709

launchBillingFlow() method 712

Libraries 717

newBuilder() method 710

onBillingServiceDisconnected() callback 722

onBillingServiceDisconnected() method 711

onBillingSetupFinished() listener 721

onProductDetailsResponse() callback 722

Overview 709

ProductDetail 712

ProductDetails 723

products 709

ProductType 714

ProductType.INAPP 714

ProductType.SUBS 714

Purchase Flow 723

PurchaseResponseListener 714

PurchasesUpdatedListener 713

PurchaseUpdatedListener 723

purchase updates 723

queryProductDetailsAsync() 722

queryProductDetailsAsync() method 712

queryPurchasesAsync() 725

queryPurchasesAsync() method 714

runOnUiThread() 723

startConnection() method 711

subscriptions 709

tutorial 717

784

Index

In-Memory Database 553

Instant Dynamic Feature Module 730

Intent 82

explicit 82

implicit 82

Intent Availability

checking for 438

Intent.CATEGORY_OPENABLE 588

intent filters 431

Intent Filters 434

App Link 673

intent resolution 434

Intents 431

ActivityResultLauncher 433

overview 431

registerForActivityResult() 446

Intent Service 427

IntentService class 427, 430

Intent URL 452

J
Java Native Interface 79

Jetpack 257

overview 257

JobIntentService 427

BIND_JOB_SERVICE permission 429

onHandleWork() method 427

K
KeyAttribute 334

Keyboard Shortcuts 52

KeyCycle 339, 355

Cycle Editor 359

tutorial 355

Keyframe 347

Keyframes 334

KeyFrameSet 364

KeyPosition 335

deltaRelative 335

parentRelative 335

pathRelative 336

Keystore File

creation 698

KeyTimeCycle 339, 355

keytool 435

KeyTrigger 338

Killed state 94

L
launchBillingFlow() method 712

layout_collapseMode

parallax 414

pin 414

layout_constraintDimentionRatio 174

layout_constraintHorizontal_bias 172

layout_constraintVertical_bias 172

layout editor

ConstraintLayout chains 169

Layout Editor 16, 177

Autoconnect Mode 152

code mode 130

Component Tree 128

design mode 127

device screen 128

example project 177

Inference Mode 153

palette 128

properties panel 128

Sample Data 136

Setting Properties 131

toolbar 128

user interface design 177

view conversion 135

Layout Editor Tool

changing orientation 16

overview 127

Layout Inspector 52

Layout Managers 119

LayoutResultCallback object 665

Layouts 119

layout_scrollFlags

enterAlwaysCollapsed mode 411

enterAlways mode 411

exitUntilCollapsed mode 411

785

Index
scroll mode 411

Layout Validation 138

libc 79

License Testers 719

Lifecycle

awareness 299

components 260

owners 299

states and events 301

tutorial 303

Lifecycle-Aware Components 299

Lifecycle Methods 100

Lifecycle Observer 303

creating a 303

Lifecycle Owner

creating a 305

Lifecycles

modern 260

LinearLayout 120

LinearLayoutManager 387

LinearLayoutManager layout 396

Linux Kernel 78

list devices 57

LiveData 258, 271

adding to ViewModel 271

observer 273

tutorial 271

Live Templates 74

Local Bound Service 469

example 469

Location Manager 80

Location permission 496

Logcat

tool window 52

LogCat

enabling 109

M
MANAGE_EXTERNAL_STORAGE 497

adb enabling 497

testing 497

Manifest File

permissions 453

Maps 623

MapView 623

adding to a layout 631

Marker class 623

Master/Detail Flow

creation 418

two pane mode 417

match_parent properties 185

Material design 367

Material Design 2 755

Material Design 2 Theming 755

Material Design 3 755

Material Theme Builder 757

Material You 755

MediaController

adding to VideoView instance 597

MediaController class 594

methods 594

MediaPlayer class 613

methods 613

MediaRecorder class 613

methods 614

recording audio 614

Memory Indicator 67

Messenger object 479

Microphone

checking for availability 616

Microphone permissions 496

mm 185

MotionEvent 213, 214, 235

getActionMasked() 214

MotionLayout 329

arc motion 334

Attribute Keyframes 334

ConstraintSets 330

Custom Attribute 350

Custom Attributes 331

Cycle Editor 359

Cycle Keyframes 339

Editor 341

KeyAttribute 334

786

Index

KeyCycle 355

Keyframes 334

KeyFrameSet 364

KeyPosition 335

KeyTimeCycle 355

KeyTrigger 338

OnClick 333, 346

OnSwipe 333

overview 329

Position Keyframes 335

previewing animation 345

starting animation 332

Trigger Keyframe 338

Tutorial 341

MotionScene

ConstraintSets 330

Custom Attributes 331

file 330

overview 329

transition 330

moveCamera() method 638

multiple devices

testing app on 31

Multiple Touches

handling 214

multi-resume 102

Multi-Touch

example 214

Multi-touch Event Handling 213

Multi-Window

attributes 535

Multi-Window Mode

detecting 536

entering 533

launching activity into 537

Multi-Window Notifications 536

multi-window support 102

Multi-Window Support

enabling 534

My Location Layer 624

N

Navigation 309

adding destinations 318

overview 309

pass data with safeargs 325

passing arguments 314

safeargs 314

stack 309

tutorial 315

Navigation Action

triggering 313

Navigation Architecture Component 309

Navigation Component

tutorial 315

Navigation Controller

accessing 313

Navigation Graph 312, 316

adding actions 321

creating a 316

Navigation Host 310

declaring 317

newBuilder() method 710

normal permissions 495

Notification

adding actions 514

direct reply 519

Direct Reply Input 526

issuing a basic 510

launch activity from a 512

PendingIntent 522

Reply Action 524

updating direct reply 527

Notifications 503

bundled 515

overview 503

Notifications Manager 80

O
Observer

implementing a LiveData 273

onAttach() method 242

onBillingServiceDisconnected() callback 722

onBillingServiceDisconnected() method 711

787

Index
onBillingSetupFinished() listener 721

onBind() method 428, 469, 477

onBindViewHolder() method 395

OnClick 333

onClickListener 208, 209, 212

onClick() method 207

onCreateContextMenuListener 208

onCreate() method 92, 100, 428

onCreateView() method 100

on-demand modules 729

onDestroy() method 100, 428

onDoubleTap() method 221

onDown() method 221

onFling() method 221

onFocusChangeListener 208

OnFragmentInteractionListener

implementation 323

onGesturePerformed() method 227

onHandleWork() method 427, 428

onKeyListener 208

onLayoutFailed() method 665

onLayoutFinished() method 665

onLongClickListener 208, 211

onLongClick() method 211

onLongPress() method 221

onMapReady() method 633

onPageFinished() callback 650

onPause() method 100

onProductDetailsResponse() callback 722

onReceive() method 92, 462, 463, 465

onRequestPermissionsResult() method 499, 620, 508, 520

onRestart() method 100

onRestoreInstanceState() method 101

onResume() method 92, 100

onSaveInstanceState() method 101

onScaleBegin() method 233

onScaleEnd() method 233

onScale() method 233

onScroll() method 221

OnSeekBarChangeListener 252

onServiceConnected() method 469, 473, 480

onServiceDisconnected() method 469, 473, 480

onShowPress() method 221

onSingleTapUp() method 221

onStartCommand() method 428

onStart() method 100

onStop() method 100

onTouchEvent() method 221, 233

onTouchListener 208, 213

onTouch() method 213

onViewCreated() method 100

onViewStatusRestored() method 100

openFileDescriptor() method 580

OpenJDK 3

P
Package Explorer 15

Package Manager 80

PackageManager class 616

PackageManager.FEATURE_MICROPHONE 616

PackageManager.PERMISSION_DENIED 497

PackageManager.PERMISSION_GRANTED 497

Package Name 14

Packed chain 145, 172

PageRange 666, 667

Paint class 669

parentRelative 335

parent view 121

pathRelative 336

Paused state 94

PdfDocument 647

PdfDocument.Page 659, 666

PendingIntent class 522

Permission

checking for 497

permissions

dangerous 495

normal 495

Persistent State 99

Phone permissions 496

picker 579

Pinch Gesture

detection 233

example 234

788

Index

Pinch Gesture Recognition 227

Play Core Library 735, 739

Polygon class 623

Polyline class 623

Position Keyframes 335

POST_NOTIFICATIONS permission 496, 520

PrintAttributes 664

PrintDocumentAdapter 647, 659

PrintDocumentInfo 664

Printing

color 644

monochrome 644

Printing framework

architecture 641

Printing Framework 641

Print Job

starting 670

Print Manager 641

PrintManager service 651

Problems

tool window 52

PROCESS_OUTGOING_CALLS permission 496

Process States 91

ProductDetail 712

ProductDetails 723

ProductType 714

Profiler

tool window 52

ProgressBar 119

proguard-rules.pro file 772

ProGuard Support 768

Project

tool window 52

Project Name 14

Project tool window 15, 52

pt 185

PurchaseResponseListener 714

PurchasesUpdatedListener 713

PurchaseUpdatedListener 723

putExtra() method 431, 461

px 186

Q
queryProductDetailsAsync() 722

queryProductDetailsAsync() method 712

queryPurchaseHistoryAsync() method 714

queryPurchasesAsync() 725

queryPurchasesAsync() method 714

quickboot snapshot 42

Quick Documentation 72

R
RadioButton 119

ratios 173

READ_CALENDAR permission 496

READ_CALL_LOG permission 496

READ_CONTACTS permission 496

READ_EXTERNAL_STORAGE permission 497

READ_PHONE_STATE permission 496

READ_SMS permission 496

RECEIVE_MMS permission 496

RECEIVE_SMS permission 496

RECEIVE_WAP_PUSH permission 496

Recent Files Navigation 53

RECORD_AUDIO permission 496

Recording Audio

permission 615

RecyclerView 387

adding to layout file 388

example 391

GridLayoutManager 387

initializing 396

LinearLayoutManager 387

StaggeredGridLayoutManager 387

RecyclerView Adapter

creation of 394

RecyclerView.Adapter 388, 394

getItemCount() method 388

onBindViewHolder() method 388

onCreateViewHolder() method 388

RecyclerView.ViewHolder

getAdapterPosition() method 398

registerForActivityResult() method 433, 446

registerReceiver() method 463

789

Index
RelativeLayout 120

release mode 695

releasePersistableUriPermission() method 583

Release Preparation 695

Remote Bound Service 477

client communication 477

implementation 478

manifest file declaration 479

RemoteInput.Builder() method 522

RemoteInput Object 522

Remote Service

launching and binding 480

sending a message 481

Repository

tutorial 563

Repository Modules 260

requestPermissions() method 499

Resizable Emulator 44

Resource

string creation 19

Resource File 21

Resource Management 91

Resource Manager 52, 80

result receiver 463

Reverse-geocoding 630

Reverse Geocoding 629

Room

Data Access Object (DAO) 546

entities 546, 547

In-Memory Database 553

Repository 546

Room Database 546

tutorial 563

Room Database Persistence 545

Room Persistence Library 543, 545

root element 119

root view 121

Run

tool window 52

Running Devices

tool window 63

runOnUiThread() 723

Runtime Permission Requests 495

S
safeargs 314, 325

Sample Data 136, 401

tutorial 401

Saved State 259, 293

library dependencies 295

SavedStateHandle 294, 295

contains() method 295

keys() method 295

remove() method 295

Saved State module 293

SavedStateViewModelFactory 294

ScaleGestureDetector class 233

Scale-independent 185

SDK Packages 6

Secure Sockets Layer (SSL) 79

SeekBar 245

sendBroadcast() method 461, 463

sendOrderedBroadcast() method 461, 463

SEND_SMS permission 496

sendStickyBroadcast() method 461

Sensor permissions 496

Service

anatomy 428

launch at system start 430

manifest file entry 428

overview 82

run in separate process 429

ServiceConnection class 480

Service Process 92

Service Restart Options 428

setAudioEncoder() method 614

setAudioSource() method 614

setBackgroundColor() 190

setCompassEnabled() method 635

setContentView() method 189, 195

setId() method 190

setMyLocationButtonEnabled() method 635

setOnClickListener() method 207, 209

setOnDoubleTapListener() method 221, 224

790

Index

setOutputFile() method 614

setOutputFormat() method 614

setResult() method 433

setRotateGesturesEnabled() method 636

setScrollGesturesEnabled() method 636

setText() method 116

setTiltGesturesEnabled() method 636

setTransition() 339

setVideoSource() method 614

setZoomControlsEnabled() method 635, 636

SHA-256 certificate fingerprint 435

shouldOverrideUrlLoading() method 650

shouldShowRequestPermissionRationale() method 501

SimpleOnScaleGestureListener 233

SimpleOnScaleGestureListener class 235

SMS permissions 496

Snackbar 367, 368, 369

overview of 368

Snapshots

emulator 41

sp 185

Space class 120

split APK files 730

SplitCompatApplication 734

SplitInstallManager 735

Spread chain 144

Spread inside 171

Spread inside chain 144

SQL 540

SQLite 539

AVD command-line use 541

Columns and Data Types 539

overview 540

Primary keys 540

StaggeredGridLayoutManager 387

startActivity() method 431

startConnection() method 711

startForeground() method 92

START_NOT_STICKY 428

START_REDELIVER_INTENT 428

START_STICKY 428

State

restoring 116

State Change

handling 95

Statement Completion 69

status bar 409

Status Bar Widgets 67

Memory Indicator 67

Sticky Broadcast Intents 463

Stopped state 94

Storage Access Framework 579

ACTION_CREATE_DOCUMENT 580

ACTION_OPEN_DOCUMENT 580

deleting a file 583

example 585

file creation 588

file filtering 580

file reading 581

file writing 582

intents 580

MIME Types 581

Persistent Access 583

picker 579

Storage permissions 497

StringBuilder object 591

strings.xml file 23

Structure

tool window 52

Structured Query Language 540

Structure tool window 52

SUBS 714

subscriptions 709

SupportMapFragment class 623

Switcher 53

System Broadcasts 467

system requirements 3

T
tab bar 409

TabLayout 375

adding to layout 379

app

tabGravity property 384

791

Index
tabMode property 384

example 376

fixed mode 383

getItemCount() method 375

overview 375

scrollable mode 384

TableLayout 120, 555

TableRow 555

Telephony Manager 80

Templates

blank vs. empty 123

Terminal

tool window 52

Theme

building a custom 757

Theming 755

Material Theme Builder 757

tutorial 759

Time Cycle Keyframes 339

TODO

tool window 52

toolbar 409

ToolbarListener 242

tools

layout 239

Tool window bars 50

Tool windows 49

Touch Actions 214

Touch Event Listener

implementation 215

Touch Events

intercepting 213

Touch handling 213

U
UiSettings class 623

unbindService() method 427

unregisterReceiver() method 463

URL Mapping 679

USB connection issues

resolving 60

USE_BIOMETRIC 688

user interface state 99

USE_SIP permission 496

V
Video Playback 593

VideoView class 593

methods 593

supported formats 593

view bindings 85

enabling 86

using 86

View class

setting properties 196

view conversion 135

ViewGroup 119

View Groups 119

View Hierarchy 121

ViewHolder class 388

sample implementation 395

ViewModel

adding LiveData 271

data access 268

fragment association 266

overview 258

saved state 293

Saved State 259, 293

tutorial 263

ViewModelProvider 266

ViewModel Saved State 293

ViewPager 375, 380

adapter 380

adding to layout 379

example 376

Views 119

Java creation 189

View System 80

Virtual Device Configuration dialog 28

Virtual Sensors 41

Visible Process 92

W
WebViewClient 645, 650

792

Index

WebView view 451

Weighted chain 144, 172

Welcome screen 47

Widget Dimensions 145

Widget Group Alignment 167

Widgets palette 178

WiFi debugging 61

Wireless debugging 61

Wireless pairing 61

wrap_content properties 187

WRITE_CALENDAR permission 496

WRITE_CALL_LOG permission 496

WRITE_CONTACTS permission 496

WRITE_EXTERNAL_STORAGE permission 497

X
XML Layout File

manual creation 185

vs. Java Code 189

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Enabling the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Overview of Android View Binding
	11.1 Find View by Id
	11.2 View Binding
	11.3 Converting the AndroidSample project
	11.4 Enabling View Binding
	11.5 Using View Binding
	11.6 Choosing an Option
	11.7 View Binding in the Book Examples
	11.8 Migrating a Project to View Binding
	11.9 Summary

	12. Understanding Android Application and Activity Lifecycles
	12.1 Android Applications and Resource Management
	12.2 Android Process States
	12.2.1 Foreground Process
	12.2.2 Visible Process
	12.2.3 Service Process
	12.2.4 Background Process
	12.2.5 Empty Process

	12.3 Inter-Process Dependencies
	12.4 The Activity Lifecycle
	12.5 The Activity Stack
	12.6 Activity States
	12.7 Configuration Changes
	12.8 Handling State Change
	12.9 Summary

	13. Handling Android Activity State Changes
	13.1 New vs. Old Lifecycle Techniques
	13.2 The Activity and Fragment Classes
	13.3 Dynamic State vs. Persistent State
	13.4 The Android Lifecycle Methods
	13.5 Lifetimes
	13.6 Foldable Devices and Multi-Resume
	13.7 Disabling Configuration Change Restarts
	13.8 Lifecycle Method Limitations
	13.9 Summary

	14. Android Activity State Changes by Example
	14.1 Creating the State Change Example Project
	14.2 Designing the User Interface
	14.3 Overriding the Activity Lifecycle Methods
	14.4 Filtering the Logcat Panel
	14.5 Running the Application
	14.6 Experimenting with the Activity
	14.7 Summary

	15. Saving and Restoring the State of an Android Activity
	15.1 Saving Dynamic State
	15.2 Default Saving of User Interface State
	15.3 The Bundle Class
	15.4 Saving the State
	15.5 Restoring the State
	15.6 Testing the Application
	15.7 Summary

	16. Understanding Android Views, View Groups and Layouts
	16.1 Designing for Different Android Devices
	16.2 Views and View Groups
	16.3 Android Layout Managers
	16.4 The View Hierarchy
	16.5 Creating User Interfaces
	16.6 Summary

	17. A Guide to the Android Studio Layout Editor Tool
	17.1 Basic vs. Empty Views Activity Templates
	17.2 The Android Studio Layout Editor
	17.3 Design Mode
	17.4 The Palette
	17.5 Design Mode and Layout Views
	17.6 Night Mode
	17.7 Code Mode
	17.8 Split Mode
	17.9 Setting Attributes
	17.10 Transforms
	17.11 Tools Visibility Toggles
	17.12 Converting Views
	17.13 Displaying Sample Data
	17.14 Creating a Custom Device Definition
	17.15 Changing the Current Device
	17.16 Layout Validation
	17.17 Summary

	18. A Guide to the Android ConstraintLayout
	18.1 How ConstraintLayout Works
	18.1.1 Constraints
	18.1.2 Margins
	18.1.3 Opposing Constraints
	18.1.4 Constraint Bias
	18.1.5 Chains
	18.1.6 Chain Styles

	18.2 Baseline Alignment
	18.3 Configuring Widget Dimensions
	18.4 Guideline Helper
	18.5 Group Helper
	18.6 Barrier Helper
	18.7 Flow Helper
	18.8 Ratios
	18.9 ConstraintLayout Advantages
	18.10 ConstraintLayout Availability
	18.11 Summary

	19. A Guide to Using ConstraintLayout in Android Studio
	19.1 Design and Layout Views
	19.2 Autoconnect Mode
	19.3 Inference Mode
	19.4 Manipulating Constraints Manually
	19.5 Adding Constraints in the Inspector
	19.6 Viewing Constraints in the Attributes Window
	19.7 Deleting Constraints
	19.8 Adjusting Constraint Bias
	19.9 Understanding ConstraintLayout Margins
	19.10 The Importance of Opposing Constraints and Bias
	19.11 Configuring Widget Dimensions
	19.12 Design Time Tools Positioning
	19.13 Adding Guidelines
	19.14 Adding Barriers
	19.15 Adding a Group
	19.16 Working with the Flow Helper
	19.17 Widget Group Alignment and Distribution
	19.18 Converting other Layouts to ConstraintLayout
	19.19 Summary

	20. Working with ConstraintLayout Chains and Ratios in Android Studio
	20.1 Creating a Chain
	20.2 Changing the Chain Style
	20.3 Spread Inside Chain Style
	20.4 Packed Chain Style
	20.5 Packed Chain Style with Bias
	20.6 Weighted Chain
	20.7 Working with Ratios
	20.8 Summary

	21. An Android Studio Layout Editor ConstraintLayout Tutorial
	21.1 An Android Studio Layout Editor Tool Example
	21.2 Preparing the Layout Editor Environment
	21.3 Adding the Widgets to the User Interface
	21.4 Adding the Constraints
	21.5 Testing the Layout
	21.6 Using the Layout Inspector
	21.7 Summary

	22. Manual XML Layout Design in Android Studio
	22.1 Manually Creating an XML Layout
	22.2 Manual XML vs. Visual Layout Design
	22.3 Summary

	23. Managing Constraints using Constraint Sets
	23.1 Java Code vs. XML Layout Files
	23.2 Creating Views
	23.3 View Attributes
	23.4 Constraint Sets
	23.4.1 Establishing Connections
	23.4.2 Applying Constraints to a Layout
	23.4.3 Parent Constraint Connections
	23.4.4 Sizing Constraints
	23.4.5 Constraint Bias
	23.4.6 Alignment Constraints
	23.4.7 Copying and Applying Constraint Sets
	23.4.8 ConstraintLayout Chains
	23.4.9 Guidelines
	23.4.10 Removing Constraints
	23.4.11 Scaling
	23.4.12 Rotation

	23.5 Summary

	24. An Android ConstraintSet Tutorial
	24.1 Creating the Example Project in Android Studio
	24.2 Adding Views to an Activity
	24.3 Setting View Attributes
	24.4 Creating View IDs
	24.5 Configuring the Constraint Set
	24.6 Adding the EditText View
	24.7 Converting Density Independent Pixels (dp) to Pixels (px)
	24.8 Summary

	25. A Guide to using Apply Changes in Android Studio
	25.1 Introducing Apply Changes
	25.2 Understanding Apply Changes Options
	25.3 Using Apply Changes
	25.4 Configuring Apply Changes Fallback Settings
	25.5 An Apply Changes Tutorial
	25.6 Using Apply Code Changes
	25.7 Using Apply Changes and Restart Activity
	25.8 Using Run App
	25.9 Summary

	26. An Overview and Example of Android Event Handling
	26.1 Understanding Android Events
	26.2 Using the android:onClick Resource
	26.3 Event Listeners and Callback Methods
	26.4 An Event Handling Example
	26.5 Designing the User Interface
	26.6 The Event Listener and Callback Method
	26.7 Consuming Events
	26.8 Summary

	27. Android Touch and Multi-touch Event Handling
	27.1 Intercepting Touch Events
	27.2 The MotionEvent Object
	27.3 Understanding Touch Actions
	27.4 Handling Multiple Touches
	27.5 An Example Multi-Touch Application
	27.6 Designing the Activity User Interface
	27.7 Implementing the Touch Event Listener
	27.8 Running the Example Application
	27.9 Summary

	28. Detecting Common Gestures Using the Android Gesture Detector Class
	28.1 Implementing Common Gesture Detection
	28.2 Creating an Example Gesture Detection Project
	28.3 Implementing the Listener Class
	28.4 Creating the GestureDetectorCompat Instance
	28.5 Implementing the onTouchEvent() Method
	28.6 Testing the Application
	28.7 Summary

	29. Implementing Custom Gesture and Pinch Recognition on Android
	29.1 The Android Gesture Builder Application
	29.2 The GestureOverlayView Class
	29.3 Detecting Gestures
	29.4 Identifying Specific Gestures
	29.5 Installing and Running the Gesture Builder Application
	29.6 Creating a Gestures File
	29.7 Creating the Example Project
	29.8 Extracting the Gestures File from the SD Card
	29.9 Adding the Gestures File to the Project
	29.10 Designing the User Interface
	29.11 Loading the Gestures File
	29.12 Registering the Event Listener
	29.13 Implementing the onGesturePerformed Method
	29.14 Testing the Application
	29.15 Configuring the GestureOverlayView
	29.16 Intercepting Gestures
	29.17 Detecting Pinch Gestures
	29.18 A Pinch Gesture Example Project
	29.19 Summary

	30. An Introduction to Android Fragments
	30.1 What is a Fragment?
	30.2 Creating a Fragment
	30.3 Adding a Fragment to an Activity using the Layout XML File
	30.4 Adding and Managing Fragments in Code
	30.5 Handling Fragment Events
	30.6 Implementing Fragment Communication
	30.7 Summary

	31. Using Fragments in Android Studio - An Example
	31.1 About the Example Fragment Application
	31.2 Creating the Example Project
	31.3 Creating the First Fragment Layout
	31.4 Migrating a Fragment to View Binding
	31.5 Adding the Second Fragment
	31.6 Adding the Fragments to the Activity
	31.7 Making the Toolbar Fragment Talk to the Activity
	31.8 Making the Activity Talk to the Text Fragment
	31.9 Testing the Application
	31.10 Summary

	32. Modern Android App Architecture with Jetpack
	32.1 What is Android Jetpack?
	32.2 The “Old” Architecture
	32.3 Modern Android Architecture
	32.4 The ViewModel Component
	32.5 The LiveData Component
	32.6 ViewModel Saved State
	32.7 LiveData and Data Binding
	32.8 Android Lifecycles
	32.9 Repository Modules
	32.10 Summary

	33. An Android ViewModel Tutorial
	33.1 About the Project
	33.2 Creating the ViewModel Example Project
	33.3 Removing Unwanted Project Elements
	33.4 Designing the Fragment Layout
	33.5 Implementing the View Model
	33.6 Associating the Fragment with the View Model
	33.7 Modifying the Fragment
	33.8 Accessing the ViewModel Data
	33.9 Testing the Project
	33.10 Summary

	34. An Android Jetpack LiveData Tutorial
	34.1 LiveData - A Recap
	34.2 Adding LiveData to the ViewModel
	34.3 Implementing the Observer
	34.4 Summary

	35. An Overview of Android Jetpack Data Binding
	35.1 An Overview of Data Binding
	35.2 The Key Components of Data Binding
	35.2.1 The Project Build Configuration
	35.2.2 The Data Binding Layout File
	35.2.3 The Layout File Data Element
	35.2.4 The Binding Classes
	35.2.5 Data Binding Variable Configuration
	35.2.6 Binding Expressions (One-Way)
	35.2.7 Binding Expressions (Two-Way)
	35.2.8 Event and Listener Bindings

	35.3 Summary

	36. An Android Jetpack Data Binding Tutorial
	36.1 Removing the Redundant Code
	36.2 Enabling Data Binding
	36.3 Adding the Layout Element
	36.4 Adding the Data Element to Layout File
	36.5 Working with the Binding Class
	36.6 Assigning the ViewModel Instance to the Data Binding Variable
	36.7 Adding Binding Expressions
	36.8 Adding the Conversion Method
	36.9 Adding a Listener Binding
	36.10 Testing the App
	36.11 Summary

	37. An Android ViewModel Saved State Tutorial
	37.1 Understanding ViewModel State Saving
	37.2 Implementing ViewModel State Saving
	37.3 Saving and Restoring State
	37.4 Adding Saved State Support to the ViewModelDemo Project
	37.5 Summary

	38. Working with Android Lifecycle-Aware Components
	38.1 Lifecycle Awareness
	38.2 Lifecycle Owners
	38.3 Lifecycle Observers
	38.4 Lifecycle States and Events
	38.5 Summary

	39. An Android Jetpack Lifecycle Awareness Tutorial
	39.1 Creating the Example Lifecycle Project
	39.2 Creating a Lifecycle Observer
	39.3 Adding the Observer
	39.4 Testing the Observer
	39.5 Creating a Lifecycle Owner
	39.6 Testing the Custom Lifecycle Owner
	39.7 Summary

	40. An Overview of the Navigation Architecture Component
	40.1 Understanding Navigation
	40.2 Declaring a Navigation Host
	40.3 The Navigation Graph
	40.4 Accessing the Navigation Controller
	40.5 Triggering a Navigation Action
	40.6 Passing Arguments
	40.7 Summary

	41. An Android Jetpack Navigation Component Tutorial
	41.1 Creating the NavigationDemo Project
	41.2 Adding Navigation to the Build Configuration
	41.3 Creating the Navigation Graph Resource File
	41.4 Declaring a Navigation Host
	41.5 Adding Navigation Destinations
	41.6 Designing the Destination Fragment Layouts
	41.7 Adding an Action to the Navigation Graph
	41.8 Implement the OnFragmentInteractionListener
	41.9 Adding View Binding Support to the Destination Fragments
	41.10 Triggering the Action
	41.11 Passing Data Using Safeargs
	41.12 Summary

	42. An Introduction to MotionLayout
	42.1 An Overview of MotionLayout
	42.2 MotionLayout
	42.3 MotionScene
	42.4 Configuring ConstraintSets
	42.5 Custom Attributes
	42.6 Triggering an Animation
	42.7 Arc Motion
	42.8 Keyframes
	42.8.1 Attribute Keyframes
	42.8.2 Position Keyframes

	42.9 Time Linearity
	42.10 KeyTrigger
	42.11 Cycle and Time Cycle Keyframes
	42.12 Starting an Animation from Code
	42.13 Summary

	43. An Android MotionLayout Editor Tutorial
	43.1 Creating the MotionLayoutDemo Project
	43.2 ConstraintLayout to MotionLayout Conversion
	43.3 Configuring Start and End Constraints
	43.4 Previewing the MotionLayout Animation
	43.5 Adding an OnClick Gesture
	43.6 Adding an Attribute Keyframe to the Transition
	43.7 Adding a CustomAttribute to a Transition
	43.8 Adding Position Keyframes
	43.9 Summary

	44. A MotionLayout KeyCycle Tutorial
	44.1 An Overview of Cycle Keyframes
	44.2 Using the Cycle Editor
	44.3 Creating the KeyCycleDemo Project
	44.4 Configuring the Start and End Constraints
	44.5 Creating the Cycles
	44.6 Previewing the Animation
	44.7 Adding the KeyFrameSet to the MotionScene
	44.8 Summary

	45. Working with the Floating Action Button and Snackbar
	45.1 The Material Design
	45.2 The Design Library
	45.3 The Floating Action Button (FAB)
	45.4 The Snackbar
	45.5 Creating the Example Project
	45.6 Reviewing the Project
	45.7 Removing Navigation Features
	45.8 Changing the Floating Action Button
	45.9 Adding an Action to the Snackbar
	45.10 Summary

	46. Creating a Tabbed Interface using the TabLayout Component
	46.1 An Introduction to the ViewPager2
	46.2 An Overview of the TabLayout Component
	46.3 Creating the TabLayoutDemo Project
	46.4 Creating the First Fragment
	46.5 Duplicating the Fragments
	46.6 Adding the TabLayout and ViewPager2
	46.7 Performing the Initialization Tasks
	46.8 Testing the Application
	46.9 Customizing the TabLayout
	46.10 Summary

	47. Working with the RecyclerView and CardView Widgets
	47.1 An Overview of the RecyclerView
	47.2 An Overview of the CardView
	47.3 Summary

	48. An Android RecyclerView and CardView Tutorial
	48.1 Creating the CardDemo Project
	48.2 Modifying the Basic Views Activity Project
	48.3 Designing the CardView Layout
	48.4 Adding the RecyclerView
	48.5 Adding the Image Files
	48.6 Creating the RecyclerView Adapter
	48.7 Initializing the RecyclerView Component
	48.8 Testing the Application
	48.9 Responding to Card Selections
	48.10 Summary

	49. A Layout Editor Sample Data Tutorial
	49.1 Adding Sample Data to a Project
	49.2 Using Custom Sample Data
	49.3 Summary

	50. Working with the AppBar and Collapsing Toolbar Layouts
	50.1 The Anatomy of an AppBar
	50.2 The Example Project
	50.3 Coordinating the RecyclerView and Toolbar
	50.4 Introducing the Collapsing Toolbar Layout
	50.5 Changing the Title and Scrim Color
	50.6 Summary

	51. An Android Studio Primary/Detail Flow Tutorial
	51.1 The Primary/Detail Flow
	51.2 Creating a Primary/Detail Flow Activity
	51.3 Adding the Primary/Detail Flow Activity
	51.4 Modifying the Primary/Detail Flow Template
	51.5 Changing the Content Model
	51.6 Changing the Detail Pane
	51.7 Modifying the ItemDetailFragment Class
	51.8 Modifying the ItemListFragment Class
	51.9 Adding Manifest Permissions
	51.10 Running the Application
	51.11 Summary

	52. An Overview of Android Services
	52.1 Intent Service
	52.2 Bound Service
	52.3 The Anatomy of a Service
	52.4 Controlling Destroyed Service Restart Options
	52.5 Declaring a Service in the Manifest File
	52.6 Starting a Service Running on System Startup
	52.7 Summary

	53. An Overview of Android Intents
	53.1 An Overview of Intents
	53.2 Explicit Intents
	53.3 Returning Data from an Activity
	53.4 Implicit Intents
	53.5 Using Intent Filters
	53.6 Automatic Link Verification
	53.7 Manually Enabling Links
	53.8 Checking Intent Availability
	53.9 Summary

	54. Android Explicit Intents – A Worked Example
	54.1 Creating the Explicit Intent Example Application
	54.2 Designing the User Interface Layout for MainActivity
	54.3 Creating the Second Activity Class
	54.4 Designing the User Interface Layout for SecondActivity
	54.5 Reviewing the Application Manifest File
	54.6 Creating the Intent
	54.7 Extracting Intent Data
	54.8 Launching SecondActivity as a Sub-Activity
	54.9 Returning Data from a Sub-Activity
	54.10 Testing the Application
	54.11 Summary

	55. Android Implicit Intents – A Worked Example
	55.1 Creating the Android Studio Implicit Intent Example Project
	55.2 Designing the User Interface
	55.3 Creating the Implicit Intent
	55.4 Adding a Second Matching Activity
	55.5 Adding the Web View to the UI
	55.6 Obtaining the Intent URL
	55.7 Modifying the MyWebView Project Manifest File
	55.8 Installing the MyWebView Package on a Device
	55.9 Testing the Application
	55.10 Manually Enabling the Link
	55.11 Automatic Link Verification
	55.12 Summary

	56. Android Broadcast Intents and Broadcast Receivers
	56.1 An Overview of Broadcast Intents
	56.2 An Overview of Broadcast Receivers
	56.3 Obtaining Results from a Broadcast
	56.4 Sticky Broadcast Intents
	56.5 The Broadcast Intent Example
	56.6 Creating the Example Application
	56.7 Creating and Sending the Broadcast Intent
	56.8 Creating the Broadcast Receiver
	56.9 Registering the Broadcast Receiver
	56.10 Testing the Broadcast Example
	56.11 Listening for System Broadcasts
	56.12 Summary

	57. Android Local Bound Services – A Worked Example
	57.1 Understanding Bound Services
	57.2 Bound Service Interaction Options
	57.3 A Local Bound Service Example
	57.4 Adding a Bound Service to the Project
	57.5 Implementing the Binder
	57.6 Binding the Client to the Service
	57.7 Completing the Example
	57.8 Testing the Application
	57.9 Summary

	58. Android Remote Bound Services – A Worked Example
	58.1 Client to Remote Service Communication
	58.2 Creating the Example Application
	58.3 Designing the User Interface
	58.4 Implementing the Remote Bound Service
	58.5 Configuring a Remote Service in the Manifest File
	58.6 Launching and Binding to the Remote Service
	58.7 Sending a Message to the Remote Service
	58.8 Summary

	59. A Basic Overview of Java Threads, Handlers and Executors
	59.1 The Application Main Thread
	59.2 Thread Handlers
	59.3 A Threading Example
	59.4 Building the App
	59.5 Creating a New Thread
	59.6 Implementing a Thread Handler
	59.7 Passing a Message to the Handler
	59.8 Java Executor Concurrency
	59.9 Working with Runnable Tasks
	59.10 Shutting down an Executor Service
	59.11 Working with Callable Tasks and Futures
	59.12 Handling a Future Result
	59.13 Scheduling Tasks
	59.14 Summary

	60. Making Runtime Permission Requests in Android
	60.1 Understanding Normal and Dangerous Permissions
	60.2 Creating the Permissions Example Project
	60.3 Checking for a Permission
	60.4 Requesting Permission at Runtime
	60.5 Providing a Rationale for the Permission Request
	60.6 Testing the Permissions App
	60.7 Summary

	61. An Android Notifications Tutorial
	61.1 An Overview of Notifications
	61.2 Creating the NotifyDemo Project
	61.3 Designing the User Interface
	61.4 Creating the Second Activity
	61.5 Creating a Notification Channel
	61.6 Requesting Notification Permission
	61.7 Creating and Issuing a Notification
	61.8 Launching an Activity from a Notification
	61.9 Adding Actions to a Notification
	61.10 Bundled Notifications
	61.11 Summary

	62. An Android Direct Reply Notification Tutorial
	62.1 Creating the DirectReply Project
	62.2 Designing the User Interface
	62.3 Requesting Notification Permission
	62.4 Creating the Notification Channel
	62.5 Building the RemoteInput Object
	62.6 Creating the PendingIntent
	62.7 Creating the Reply Action
	62.8 Receiving Direct Reply Input
	62.9 Updating the Notification
	62.10 Summary

	63. Foldable Devices and Multi-Window Support
	63.1 Foldables and Multi-Window Support
	63.2 Using a Foldable Emulator
	63.3 Entering Multi-Window Mode
	63.4 Enabling and using Freeform Support
	63.5 Checking for Freeform Support
	63.6 Enabling Multi-Window Support in an App
	63.7 Specifying Multi-Window Attributes
	63.8 Detecting Multi-Window Mode in an Activity
	63.9 Receiving Multi-Window Notifications
	63.10 Launching an Activity in Multi-Window Mode
	63.11 Configuring Freeform Activity Size and Position
	63.12 Summary

	64. An Overview of Android SQLite Databases
	64.1 Understanding Database Tables
	64.2 Introducing Database Schema
	64.3 Columns and Data Types
	64.4 Database Rows
	64.5 Introducing Primary Keys
	64.6 What is SQLite?
	64.7 Structured Query Language (SQL)
	64.8 Trying SQLite on an Android Virtual Device (AVD)
	64.9 The Android Room Persistence Library
	64.10 Summary

	65. The Android Room Persistence Library
	65.1 Revisiting Modern App Architecture
	65.2 Key Elements of Room Database Persistence
	65.2.1 Repository
	65.2.2 Room Database
	65.2.3 Data Access Object (DAO)
	65.2.4 Entities
	65.2.5 SQLite Database

	65.3 Understanding Entities
	65.4 Data Access Objects
	65.5 The Room Database
	65.6 The Repository
	65.7 In-Memory Databases
	65.8 Database Inspector
	65.9 Summary

	66. An Android TableLayout and TableRow Tutorial
	66.1 The TableLayout and TableRow Layout Views
	66.2 Creating the Room Database Project
	66.3 Converting to a LinearLayout
	66.4 Adding the TableLayout to the User Interface
	66.5 Configuring the TableRows
	66.6 Adding the Button Bar to the Layout
	66.7 Adding the RecyclerView
	66.8 Adjusting the Layout Margins
	66.9 Summary

	67. An Android Room Database and Repository Tutorial
	67.1 About the RoomDemo Project
	67.2 Modifying the Build Configuration
	67.3 Building the Entity
	67.4 Creating the Data Access Object
	67.5 Adding the Room Database
	67.6 Adding the Repository
	67.7 Adding the ViewModel
	67.8 Creating the Product Item Layout
	67.9 Adding the RecyclerView Adapter
	67.10 Preparing the Main Activity
	67.11 Adding the Button Listeners
	67.12 Adding LiveData Observers
	67.13 Initializing the RecyclerView
	67.14 Testing the RoomDemo App
	67.15 Using the Database Inspector
	67.16 Summary

	68. Accessing Cloud Storage using the Android Storage Access Framework
	68.1 The Storage Access Framework
	68.2 Working with the Storage Access Framework
	68.3 Filtering Picker File Listings
	68.4 Handling Intent Results
	68.5 Reading the Content of a File
	68.6 Writing Content to a File
	68.7 Deleting a File
	68.8 Gaining Persistent Access to a File
	68.9 Summary

	69. An Android Storage Access Framework Example
	69.1 About the Storage Access Framework Example
	69.2 Creating the Storage Access Framework Example
	69.3 Designing the User Interface
	69.4 Adding the Activity Launchers
	69.5 Creating a New Storage File
	69.6 Saving to a Storage File
	69.7 Opening and Reading a Storage File
	69.8 Testing the Storage Access Application
	69.9 Summary

	70. Video Playback on Android using the VideoView and MediaController Classes
	70.1 Introducing the Android VideoView Class
	70.2 Introducing the Android MediaController Class
	70.3 Creating the Video Playback Example
	70.4 Designing the VideoPlayer Layout
	70.5 Downloading the Video File
	70.6 Configuring the VideoView
	70.7 Adding the MediaController to the Video View
	70.8 Setting up the onPreparedListener
	70.9 Summary

	71. Android Picture-in-Picture Mode
	71.1 Picture-in-Picture Features
	71.2 Enabling Picture-in-Picture Mode
	71.3 Configuring Picture-in-Picture Parameters
	71.4 Entering Picture-in-Picture Mode
	71.5 Detecting Picture-in-Picture Mode Changes
	71.6 Adding Picture-in-Picture Actions
	71.7 Summary

	72. An Android Picture-in-Picture Tutorial
	72.1 Adding Picture-in-Picture Support to the Manifest
	72.2 Adding a Picture-in-Picture Button
	72.3 Entering Picture-in-Picture Mode
	72.4 Detecting Picture-in-Picture Mode Changes
	72.5 Adding a Broadcast Receiver
	72.6 Adding the PiP Action
	72.7 Testing the Picture-in-Picture Action
	72.8 Summary

	73. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	73.1 Playing Audio
	73.2 Recording Audio and Video using the MediaRecorder Class
	73.3 About the Example Project
	73.4 Creating the AudioApp Project
	73.5 Designing the User Interface
	73.6 Checking for Microphone Availability
	73.7 Initializing the Activity
	73.8 Implementing the recordAudio() Method
	73.9 Implementing the stopAudio() Method
	73.10 Implementing the playAudio() method
	73.11 Configuring and Requesting Permissions
	73.12 Testing the Application
	73.13 Summary

	74. Working with the Google Maps Android API in Android Studio
	74.1 The Elements of the Google Maps Android API
	74.2 Creating the Google Maps Project
	74.3 Creating a Google Cloud Billing Account
	74.4 Creating a New Google Cloud Project
	74.5 Enabling the Google Maps SDK
	74.6 Generating a Google Maps API Key
	74.7 Adding the API Key to the Android Studio Project
	74.8 Testing the Application
	74.9 Understanding Geocoding and Reverse Geocoding
	74.10 Adding a Map to an Application
	74.11 Requesting Current Location Permission
	74.12 Displaying the User’s Current Location
	74.13 Changing the Map Type
	74.14 Displaying Map Controls to the User
	74.15 Handling Map Gesture Interaction
	74.15.1 Map Zooming Gestures
	74.15.2 Map Scrolling/Panning Gestures
	74.15.3 Map Tilt Gestures
	74.15.4 Map Rotation Gestures

	74.16 Creating Map Markers
	74.17 Controlling the Map Camera
	74.18 Summary

	75. Printing with the Android Printing Framework
	75.1 The Android Printing Architecture
	75.2 The Print Service Plugins
	75.3 Google Cloud Print
	75.4 Printing to Google Drive
	75.5 Save as PDF
	75.6 Printing from Android Devices
	75.7 Options for Building Print Support into Android Apps
	75.7.1 Image Printing
	75.7.2 Creating and Printing HTML Content
	75.7.3 Printing a Web Page
	75.7.4 Printing a Custom Document

	75.8 Summary

	76. An Android HTML and Web Content Printing Example
	76.1 Creating the HTML Printing Example Application
	76.2 Printing Dynamic HTML Content
	76.3 Creating the Web Page Printing Example
	76.4 Removing the Floating Action Button
	76.5 Removing Navigation Features
	76.6 Designing the User Interface Layout
	76.7 Accessing the WebView from the Main Activity
	76.8 Loading the Web Page into the WebView
	76.9 Adding the Print Menu Option
	76.10 Summary

	77. A Guide to Android Custom Document Printing
	77.1 An Overview of Android Custom Document Printing
	77.1.1 Custom Print Adapters

	77.2 Preparing the Custom Document Printing Project
	77.3 Creating the Custom Print Adapter
	77.4 Implementing the onLayout() Callback Method
	77.5 Implementing the onWrite() Callback Method
	77.6 Checking a Page is in Range
	77.7 Drawing the Content on the Page Canvas
	77.8 Starting the Print Job
	77.9 Testing the Application
	77.10 Summary

	78. An Introduction to Android App Links
	78.1 An Overview of Android App Links
	78.2 App Link Intent Filters
	78.3 Handling App Link Intents
	78.4 Associating the App with a Website
	78.5 Summary

	79. An Android Studio App Links Tutorial
	79.1 About the Example App
	79.2 The Database Schema
	79.3 Loading and Running the Project
	79.4 Adding the URL Mapping
	79.5 Adding the Intent Filter
	79.6 Adding Intent Handling Code
	79.7 Testing the App
	79.8 Creating the Digital Asset Links File
	79.9 Testing the App Link
	79.10 Summary

	80. An Android Biometric Authentication Tutorial
	80.1 An Overview of Biometric Authentication
	80.2 Creating the Biometric Authentication Project
	80.3 Configuring Device Fingerprint Authentication
	80.4 Adding the Biometric Permission to the Manifest File
	80.5 Designing the User Interface
	80.6 Adding a Toast Convenience Method
	80.7 Checking the Security Settings
	80.8 Configuring the Authentication Callbacks
	80.9 Adding the CancellationSignal
	80.10 Starting the Biometric Prompt
	80.11 Testing the Project
	80.12 Summary

	81. Creating, Testing and Uploading an Android App Bundle
	81.1 The Release Preparation Process
	81.2 Android App Bundles
	81.3 Register for a Google Play Developer Console Account
	81.4 Configuring the App in the Console
	81.5 Enabling Google Play App Signing
	81.6 Creating a Keystore File
	81.7 Creating the Android App Bundle
	81.8 Generating Test APK Files
	81.9 Uploading the App Bundle to the Google Play Developer Console
	81.10 Exploring the App Bundle
	81.11 Managing Testers
	81.12 Rolling the App Out for Testing
	81.13 Uploading New App Bundle Revisions
	81.14 Analyzing the App Bundle File
	81.15 Summary

	82. An Overview of Android In-App Billing
	82.1 Preparing a Project for In-App Purchasing
	82.2 Creating In-App Products and Subscriptions
	82.3 Billing Client Initialization
	82.4 Connecting to the Google Play Billing Library
	82.5 Querying Available Products
	82.6 Starting the Purchase Process
	82.7 Completing the Purchase
	82.8 Querying Previous Purchases
	82.9 Summary

	83. An Android In-App Purchasing Tutorial
	83.1 About the In-App Purchasing Example Project
	83.2 Creating the InAppPurchase Project
	83.3 Adding Libraries to the Project
	83.4 Designing the User Interface
	83.5 Adding the App to the Google Play Store
	83.6 Creating an In-App Product
	83.7 Enabling License Testers
	83.8 Initializing the Billing Client
	83.9 Querying the Product
	83.10 Launching the Purchase Flow
	83.11 Handling Purchase Updates
	83.12 Consuming the Product
	83.13 Restoring a Previous Purchase
	83.14 Testing the App
	83.15 Troubleshooting
	83.16 Summary

	84. An Overview of Android Dynamic Feature Modules
	84.1 An Overview of Dynamic Feature Modules
	84.2 Dynamic Feature Module Architecture
	84.3 Creating a Dynamic Feature Module
	84.4 Converting an Existing Module for Dynamic Delivery
	84.5 Working with Dynamic Feature Modules
	84.6 Handling Large Dynamic Feature Modules
	84.7 Summary

	85. An Android Studio Dynamic Feature Tutorial
	85.1 Creating the DynamicFeature Project
	85.2 Adding Dynamic Feature Support to the Project
	85.3 Designing the Base Activity User Interface
	85.4 Adding the Dynamic Feature Module
	85.5 Reviewing the Dynamic Feature Module
	85.6 Adding the Dynamic Feature Activity
	85.7 Implementing the launchIntent() Method
	85.8 Uploading the App Bundle for Testing
	85.9 Implementing the installFeature() Method
	85.10 Adding the Update Listener
	85.11 Using Deferred Installation
	85.12 Removing a Dynamic Module
	85.13 Summary

	86. Working with Material Design 3 Theming
	86.1 Material Design 2 vs Material Design 3
	86.2 Understanding Material Design Theming
	86.3 Material Design 3 Theming
	86.4 Building a Custom Theme
	86.5 Summary

	87. A Material Design 3 Theming and Dynamic Color Tutorial
	87.1 Creating the ThemeDemo Project
	87.2 Designing the User Interface
	87.3 Building a New Theme
	87.4 Adding the Theme to the Project
	87.5 Enabling Dynamic Color Support
	87.6 Previewing Dynamic Colors
	87.7 Summary

	88. An Overview of Gradle in Android Studio
	88.1 An Overview of Gradle
	88.2 Gradle and Android Studio
	88.2.1 Sensible Defaults
	88.2.2 Dependencies
	88.2.3 Build Variants
	88.2.4 Manifest Entries
	88.2.5 APK Signing
	88.2.6 ProGuard Support

	88.3 The Property and Settings Gradle Build File
	88.4 The Top-level Gradle Build File
	88.5 Module Level Gradle Build Files
	88.6 Configuring Signing Settings in the Build File
	88.7 Running Gradle Tasks from the Command-line
	88.8 Summary

	Index

