Jetpack Compose 1.2
Essentials

Jetpack Compose 1.2 Essentials
ISBN-13: 978-1-951442-49-1
© 2022 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

L SEATE HETE...couvenieieieniiiienienicieninicntesisiestes s ssesses s essessesssessessesssessessnessessassssssessasssessessasssessessssssessassssssens 1
1.1 FOr KOtlin PrOGIamimerscc.vcueeveuevrerceremnecirerseetsersesetsessesessessesessessesessessesessessesessessesesnesscsesnesscsesns 1
1.2 FOr new Kotlin PrOGramImIErscocvcueeveureurecereurenctrerneetsesseetsesseseasessesessessesessessesessessesesnessesesesscsesns 1
1.3 Downloading the code SAMPLES........c.ccocureureciriureneiriirieireeneereiseetret et sses e sesseseens 1
1.4 Feedback

1.5 Errata

2. Setting up an Android Studio Development Environment

2.1 SyStem TeQUITEIMENLS.c.vuiuiiiriiciiierct it s s e se e
2.2 Downloading the Android Studio packagecccveecueecrnieencrniceencreee e 3
2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene 4
2.3.1 Installation 0n WINAOWSccueureerirrieriirieeireeneeseeenetsese e sseesesesssasesessssessesssssssesssasesens 4
2.3.2 Installation 0n MACOSc.cveiireceiericeiree et ese s ese s sse s sse s ansns 4
2.3.3 Installation 0N LINUX.......cccvuureemerrecriirierieeneiseeneesesesssssesessesesessessesesssssesesssssssessssssessessssens 5
2.4 The Android Studio SEtUP WIZArdccceuveeurireucurinicirieieireeicireciereetet ettt seesesseneaes 5
2.5 Installing additional Android SDK packagesccceeueueecriermnerrieenemneeeeeneeesenseeenersesessessenenne 6
2.6 Making the Android SDK tools command-line accessible...........cocceuverreeurerrecmrernecererneennernennne 9
2.6.1 WINAOWS 8.1 ..ot sseasesessessese s ese s ese s ese s esesssasssssssassscsnssssssnsassens 9

2.6.2 Windows 10
2.6.3 Windows 11
2.6.4 LiNUX ..o
2.6.5 macOS
2.7 Android Studio memory management
2.8 Updating Android Studio and the SDK
2.9 SUINIMATY ottt st b s

3. A Compose Project OVEIVIEWcueeiiirienieiiienenieniienienieniiesienisesiesesisssiesesssessessasssessessasssessessasssessessasssens

3.1 ADOUL the PIrOJECT....ciuiuiieiricireeeicireteectreieee ettt bttt bbbt
3.2 Creating the PrOJECt ...ttt bttt bttt eae
3.3 Creating an aCtIVILY ...
3.4 Defining the project and SDK SEtHNGScocureveureurecirerrereereineetrerneetsessesessessesessessesessessescssesscsenns
3.5 Previewing the eXample PIOJECtc.cvcureueereureerereiriunecireireeireiseetsessee s tsessesessessesessessesessesscsesns
3.6 Reviewing the Main ACtIVILY......ccocureurercurirrereurirrieireiseetreiseetses sttt ssesessebsese e bsesessessesesesscsesns
3.7 PLEVIEW UPAALES c..vuvrveuireveinctreeeieiretseetret ettt b sttt bt sttt eae
3.8 Upgrading to Jetpack Compose 1.2.....
3.9 SUMMATY ..o

4. An Example Compose Project

4.1 Getting started.........coceverreeererreennee
4.2 Removing the template Code...........
4.3 The Composable hierarchy ... nsessesennes
4.4 Adding the DemoText cOMPOSADIEc.cueverireeeirerceircccreceeeeeeeeeeeee e nsesennes
4.5 Previewing the DemoText composable
4.6 Adding the DemoSlider composable..........c.oveieeiiinieeiniinceeeeeeetreeee e nensesennes

Table of Contents

5. Creating an Android Virtual Device (AVD) in Android Studio

6. Using and Configuring the Android Studio AVD Emulator

4.7 Adding the DemoScreen cOmpOSabIeccuveueeerreuereiriicierreeeeereeeeeeeeeensese s nsessesensensenes
4.8 Previewing the DemoScreen composable
4.9 Testing in interactive mode........coceverreuevrerreuennes
4.10 Completing the project........ccocoveeererreeererrerennes
411 SUMMATY woniiiiiiii bbb bbb bbb bbbt

5.1 About Android Virtual DeVICESc.ccuuirumiurimiiriiiireiiise s senas
5.2 Starting the eMUIALOTr ...t
5.3 Running the application in the AVD ...
5.4 Running on multiple deviCesocucuuuiiorimriuniniiniiirciesee e
5.5 Stopping a running apPPliCAtiONc.ccucucucirieriuriinieriireirese e sae s
5.6 Supporting dark theme...........ocoicce s
5.7 Running the emulator in a separate WindoW...........cccecuviuiireiniincincincineieieiececsesesse s
5.8 Enabling the device frame..........c.ccvcuiiicininiiicrse e
5.9 SUITIMATY ..ottt

6.1 The emulator environmentcccveeeeeeurerrenecn.
6.2 The emulator toolbar optionscccceecerereucenes
6.3 Working in zoom mode.........cccoveuveeernerrecrrerrennne
6.4 Resizing the emulator window
6.5 Extended CONtIOl OPHIONScocueveucireriuciricieineeietreei ettt stese sttt st saesenes
6.5.1 LOCALION ...cumiiiiiiiicc bbb
6.5.2 DHSPLAYS....uvrierrieecrnieeecitieeientie ettt e s
6.5.3 CIIULAT ...ttt s s s e
6.5.4 BaAtTEIY ..ot
6.5.5 CAIMETA....cuiuiiiiiiiiiicc bbb bbb
6.5.6 PHONIC ...ecmteieecteece ettt s s s s s e e
6.5.7 DIrectional Pad.....c.cecvcueurecueinieirirecieiecntcecisecie ettt sttt ettt sttt
6.5.8 MICTOPRONE. ...ttt ettt sttt sttt ettt sttt bt seaees
6.5.9 FINGEIPIINt ...oviiiiiiiii s
6.5.10 Virtual sensors..
6.5.11 SNAPShOLS....cceeveeeeiecirircecinecirecereeeeeene
6.5.12 Record and playback.......cccoocceuvervecrncrncncen.
6.5.13 Google Play........ccoceeereeenernecenerrecnennenenne
6.5.14 Settingsccceevviviviniiiiiiias
6.5.15 HEIPovvvoeeeeeeeeeeeese oo
6.6 Working with snapshots........ccc.cceeeververcrnernenncn.
6.7 Configuring fingerprint emulationc..eecureeecuneurerernirrenennereeeee e ssesesseseens
6.8 The emulator in to0l WINAOW MOdE.......cocueeciiirecrreiricireiiceiree e senens
0.9 SUITIMATY ..ottt bbb bbb bbb bbbt

7. A Tour of the Android Studio USer INTEITACEceeeeeerreeeeeeiiieeieeiisreeteessseeeeessssseeessssssseessssseseesssssasessssnnes

ii

7.1 The WElCOME SCIEEMc.ucuiiiiciciciccie st
7.2 The Main WINAOWcuiiiiiiiiiiicie et st
7.3 The TOOL WIIAOWScoumiiiiiicicici i
7.4 Android Studio Keyboard SROTTCULSc..c.eccurierecircirecireinecireireereireeessee et seseene
7.5 Switcher and Recent Files Navigation
7.6 Changing the Android Studio Theme
7.7 SUITIIIIATY ..ovininieiececieneieieteses ettt b bbbt

Table of Contents

8. Testing Android Studio Apps on a Physical Android Device.........ccccevurvueiernurnucnrerseencssinsecscssensecsesenns 63

8.1 An overview of the Android Debug Bridge (ADB)cccooverirenerrimrernemrerenerenerenseesssssessesseene 63
8.2 Enabling USB debugging ADB on Android devicescoeueweeeueeereercereunenne
8.2.1 macOS ADB CONfIGUIALIONcuvuururerireeerreriiereneressensensensensesassessessssens
8.2.2 Windows ADB cONfIGUIAtIONcuvureueueeremirremerenensersensensenseeaesessesseaens
8.2.3 Linux adb cOnfigurationccceeeeeveereuneerernimrerernerenerenserensesssssessessesens
8.3 Resolving USB cONNECHION ISSUES........cciveeuimiciriricirericieneeese e ssesensens 66
8.4 Enabling wireless debugging on Android deviCesccceewureurenemnierernerserererenerenseeesseessesneene 67
8.5 Testing the adb CONNECHIONcuvuiuiiiirercirereie et e sse s sssassaesaessene 69
8.6 SUIMIMATY ..ot bbb 69

9. The Basics of the Android Studio Code EditOr.........uuueeiicrreeeiiiiieeeiiisreessessnneeesssssseesssssseessssssseesssssssassses 71

9.1 The Android Studio editor ..ot
9.2 €O MOME......uiiiiiicc e
9.3 Splitting the editor WINAOWc.ccocureurercirierieireiricreirecreireetreisee e tses et sseseseseesens
9.4 Code completioncccveveecerercnnne

9.5 Statement completionc.cvcueueen.

9.6 Parameter information....................

9.7 Parameter name hints..........ccccc.....

9.8 Code generationcecveeeecererrenenne

9.9 Code folding

9.10 Quick documentation lookup
9.11 Code TefOrMALLINZ.ccvrevercererectrerreetreieeetrerseetrebsesetsessesessessese st seessesseseseseessssessessanescaens
9.12 FInding SAMPLE COAE ... cuvrriuieireiricireieecireieeereisee ettt s ssese e ssese s ssesanessesens
9.13 LiVE LEIMPIALEScuvrveerreeirctreeeeetreteeetseeeesetsesseaetsessese bt s sttt bt eese s sse s sesecsnns
9.14 SUMMIATY ..ottt bbb bbb

10. An Overview of the ANAroid AYCRITECTULEuveevereeeeerirreeeeiirereeeenrseeeesssseeesssssssesssssssesessssssesssssasassses 83

10.1 The Android SOftWATe STACKcceviveieieeceetceere ettt bbb aebenes 83
10.2 The LINUX KEIMIEL....cvoveviiieieieicieierereee ettt s s e bbb bbb s s s s s aeaesenen 84
10.3 Android runtime — ART ..ottt es st be b bbb sas s s s s s sesenen 84
10.4 Android librariesccceevevvierenenes

10.4.1 C/C++ libraries........ccecevererennnnne
10.5 Application framework
10.6 Applicationscoeeereeceeercnceeerencnnes
10.7 SUIIMATY c.uviinniinciiinesiiescse st sssss s sese s s bbb s bbb ssa s ns

11. An INtroduction t0 KOTIMuuuueeieeeieeieiiiiiiirinnineeeeeeeeeeccesssnssssseeeeeesessssssssssssssessseessssssssssssssssasssessssssnns 87

11.1 What 8 KOHN? w...cueveeicirieeietreeeieireteicteeeietseveesetseseees st sesessessesessessesessessesessessesessessesessessesesncs 87
11.2 KOIN QN0 JAVA ..ttt ettt sttt ae st se st ese s s bensstensssesesenensesensnan
11.3 Converting from Java to KONc.cocueueircireeeincineieeireeetreeeteeeeetseseeetseseeessesessessesesessesennes
11.4 Kotlin and Android StUAIOccceueereereeeincireeeieineeceireeeeireeeeetseseeetsesesessesessessesessessesesesseseeses
11.5 Experimenting With KOtccocreueiireencinieicineeccnecenceeieireeeeetseeeeessesessessesessessesessessesenses
11.6 Semi-colons in KON «..c.ceucueeeineireeeicieieieirereietneeeiet e tseee et seseese s ssessesessessesessessesesssssesesncs
11,7 SUIMATY ¢ttt

12. Kotlin Data Types, Variables and Nullability

12.1 Kotlin data types.......cccecreeeuverrerennes
12.1.1 Integer data types.......ccccoceeeee.
12.1.2 Floating point data types
12.1.3 Boolean data tyPe.......ccuvevcurieecerieecireieeereneeeereseee e

iii

Table of Contents

12.1.4 Character data tyPe.......cocreeercrreueercererrereirerneesrereeessessesessessesessesseseasessesesessesessessesesessesesesens

12.1.5 String data tYPe.....ccceeueecerierecireieeirereeetrerseeesessese s ssessese s s s s ssese s ssese e seesesseseas

12.1.6 Escape sequences..
12.2 Mutable variables
12.3 Immutable variables..........cocccnurrevcrnirerccrnirennces
12.4 Declaring mutable and immutable variables
12.5 Data types are 0bjectsceeeeuerrecmevreecrevennens
12.6 Type annotations and type iNference..........ocereceniereernirrecnieeeeneeseeseseesessseesesesessenseenes
12.7 NUILEDLE TYP@...errurierriiecietreeeieireeeieieeereiseee st sseasese s sese s see s ese s sasese st e ese s ssesasaseaennsanes
12.8 The safe Call OPEIAtOrc.cueveucurireucirieeeireeieirece ettt esese sttt eaes
12.9 NOt-NUIL ASSEITION «.ecvuvvreerniiecencirieeeseereeeeeeseee et sese e eee s ese s sese s esesssasesesasasssennsanes
12.10 Nullable types and the let fUnCON......c..c.vveueureceierecerircrreeeee e eeenseneees
12.11 Late initialization (IAteINIt)cceeevereriereeeeerieeeeeeee ettt rere s s seseereseesssesneseneesenes
12.12 The EIVIS OPETALOTcueueicuiricaciricieisteieisecie st tseseas st asesebetaeaetstaesebeesesessancbesaeaces
12.13 Type casting and type checking.........ccuvereeniircenireceeeeiseeeseesensseeseesesseseanes
12.14 SUIMIMATY .ottt bbb bbb as

13. Kotlin Operators and EXPIeSsionsccuevuieinrirncninsuenessinsuesessissscsississscsissesssesesssssssssssssesssssessses 101

13.1 Expression syntax in KOtHIccvereciinieeniinicineineceiseesiseieeeseseseesesesessesessessssessessssessses

13.2 The Basic assighment operator............c.ccec......

13.3 Kotlin arithmetic Operators...........cocveeeerevreveenee

13.4 Augmented assignment operators

13.5 Increment and decrement operators

13.6 EQUALILY OPEIALOTS ...ucvueeeeueieincereeeeneeseeeenetsesesseesesessessese st sese s sese e sese s ssseae s sesesssasssesasssssesassnes

13.7 Boolean 10gical OPErators...........c.cucuuiiuiuiuiiriiiiseisise e s sse s sase s saes

13.8 RANGE OPEIALOTvuvieiniritctctetetetete ittt bbb b bbb

13.9 BitWiSE OPEIAtOLSccvviiiiriiiiiiitcccit bbb
13.9.1 BitWiSe INVETSION w.e.vvvviiiiictctctct ittt
13.9.2 Bitwise AND ...
13.9.3 Bitwise ORu.....ouciiiiiiiiiic e
13.9.4 Bitwise XOR ..ottt
13.9.5 Bitwise left Shiftc.ocuiuiiciicci s
13.9.6 Bitwise right SRift ..o

13,10 SUINIMATY c.cviiiiiiccccieeiet ettt bbb s st

14. KOtLN CONEIOL FLOWevveiieeereeeiiiieeeieeneeeeiessseessssssseesssssssessssssssesssasassss 109

15. An Overview of Kotlin Functions and Lambdas

iv

14.1 LOOPINgG CONIOL FIOW.....cucvmiiieciiieciiteciecieee et seesaseneeas
14.1.1 The Kotlin for-in Statement
14.1.2 The While 100P ...coveeueeveeerinccinieciriccneenes
14.1.3 The do ... WHIIE LOOD c.cuvrieeeireiieiricieirecieire ettt ettt seaenes
14.1.4 Breaking from LOOPSc.vveueureeeererreeeeenneneeetreeeeetsesemessesessessesessessesessessessssessessssessesesessenes
14.1.5 The continue StAteIMENLc.cc.vceeeerreeereureeemerrerererseeeresseseesesseseesessesessessesessessesesessesesessenes
14.1.6 Break and continue 1aDels ..ot eessesensesenes

14.2 Conditional cONtrOl flOWc.ceecuiuercrniiercriieereeeeeee e ssesesseseesesseseens
14.2.1 Using the if XPIeSSIONScoeueveeerrerememrereretrereeessesenesseseesessesessessesessessessssessesesessesessessenes
14.2.2 Using if ... €lse ... @XPIESSIONS ...evurreuemcrirerretrieenetreeensessesensesseseesessesessessesensessesessessesesessenes
14.2.3 Using if ... else if ... EXPIESSIONSccvuveriueererrieeeetrinenetreneesessesensensesessessesensessesessessesensessenes
14.2.4 Using the when StAteIMENtc.eveueeeercrreeeererreeenenrenenesseseesessesessessesessessesensessesessessesesessenes

14.3 SUIMIMNATY ..ot bbb bbb s as

Table of Contents

15.1 What 18 @ fUNCHONTvuvreeieieecietreeceteeeeeneee e ese s ese s ese e s sssassaesssssssesnssssaces 117
15.2 How to declare a Kotlin function
15.3 Calling a Kotlin function................
15.4 Single expression functions............
15.5 Local functionsceeeeveeeererreeennes
15.6 Handling return values...................
15.7 Declaring default function parameters
15.8 Variable number of function parameters
15.9 Lambda eXPreSSiOns.....c.coeueueurieuerrercieireueieiescistsesetseeaetsesesesseaees s etesessasesessessassseaesessenessseacses
15.10 Higher-order fUnCHONSoccceureeeiureeeieeeeeereeereeeesseeseeeneseesessesessesssssssesssssesesssssssesssssssens
1511 SUIMIMATY wouiiiiiiiiiiirsit bbb bbb bbb bbbt

16. The Basics of Object-Oriented Programming in Kotlin..........cceccvcevnncnvnenncnsinnenncncnncncssennecsscnnees 123

16.1 WHat 18 Q1 ODJECLY ...ucvevuiieineirieeieireeceeireicteiseee et sese sttt bbbt ssaeen 123
16.2 What 8 @ ClASS?uceieieiiiecicicicci et s 123
16.3 Declaring a KOthin Class ..o sssssssessssssssens
16.4 Adding properties t0 @ Class.......couircuiucrnciciceciciecieiiseese e saees
16.5 Defining Methods........c.cviuiiiiiniiirciiciccie et ees
16.6 Declaring and initializing a class instance
16.7 Primary and secondary constructors
16.8 Initializer bIOCKSccccuvueirinininiriircccicnae
16.9 Calling methods and accessing properties
16.10 Custom aCCESSOLSvrmuimrreirircreiinnnieseneiineanss

16.11 Nested and INNET ClASSES........c.ovuiuiuriuiicieicieieieiiecieieeieise e sse s saees
16.12 COMPANION ODJECES c.cuvrreiuiieieirieciscireieteiseie ettt eae bbbt ssaen
16.13 SUIMNIMATY ..cuniiiiiiiicctee ettt e s bbbt

17. An Introduction to Kotlin Inheritance and Subclassing

17.1 Inheritance, classes, and SUDCIASSES ..o s
17.2 SUDCIASSING SYIAK.....ceovurrreernerieemerreeenstareeessessesesssssesesseasesesssasesesssssssesssasssesssasssesssasesesssssssesnssesaens
17.3 A Kotlin inheritance eXample........ocerecurirecirinceeinineieinieieiseeisiseaesetesetseseseseese e sessesesessesesees
17.4 Extending the functionality of a subclass
17.5 Overriding inherited methodscccccoveuvecunnee.
17.6 Adding a custom secondary constructor
17.7 Using the SavingsAccount class
17.8 SUmMmMary ...

18. An Overview of COMPOSEcocererruerrenrersecsncnsessecsseseeaes

18.1 Development Defore COMPOSE.......c.curueueuiuriueeierieeriireaettisesessseseseseesesessasesesssssssesssssssessssssess
18.2 Compose declarative SYNLAXc.eeeueureeeeeurieerneirieetseereseseesesessesesesessesessssssessssesessssssesssssaens
18.3 COmMPOSE IS dAtA-AIIVEIL ..ceuvuerieirieieciirieeieirieciet sttt ese bbb saen
18.4 SUIMMATY ..ottt bbb

19. Composable FUNCLIONS OVEIVIEWcc.civuriuiiririnneisinietetitesscstsesssestessesssssssssssssessssssenssssesassssssssssssses 143

19.1 What is a composable fUNCIONTc.occuruveeirineeeiriceincerecietree sttt sseae s 143
19.2 Stateful vs. stateless COMPOSADIES.........c.curureueurireueiriniieiriciercieree ettt ies
19.3 Composable fUNCtiON SYNTAXcvveuirreererreeeriirieriereereesesenessesensessssesssssesesssssesesssessessessssens
19.4 Foundation and Material composables..................
19.5 SUMMATY ..

20. An Overview of Compose State and Recomposition

Table of Contents

20.1 The basics Of SLALE........cciuiireiiiiiiii s aes
20.2 Introducing reCOMPOSILIONvuveeurrreeernirieererrieeneereeereeseeesseeeeaenseesesessasesessasesesssasesesssasssesnssnes
20.3 Creating the StateExample project.......c.c.c......
20.4 Declaring state in a composable.........ccccruueee.
20.5 Unidirectional data flow

20.6 State hoisting........cccveeuereeeen.

20.7 Saving state through configuration changes...
20.8 SUMMIATY ..uiiiiiiiic bbb bbbt

21. An Introduction to Composition Local...........cevivinneininiinnicninsenncninninnncsiniinscsinieseiseseeees
21.1 Understanding CompositionLOCal ..o sees 159
21.2 Using CompoSitioNLOCalc.cucuiciiicieiiicrceseee e sees 160
21.3 Creating the CompLOCalDEMO PrOJECtcuiuiuiuiuririereicisencieneieeeseieeeasesesesesssesessssesseesaes 161
21.4 Designing the Jayout ... sees 161
21.5 Adding the CompositionLoCal SLALe........c..ccuiuiuiuiireiiireicicie e saes 162
21.6 Accessing the CompositionLocal State...........ccuiuiuriuiercicincincieicieeeieeeeeecesese e sees 163
21.7 Testing the desiG........cc.ocuiciiicicicccciccce e aes
21.8 SUIMMATY ..ttt ettt s s

22. An Overview of Compose Slot APIs
22.1 Understanding slot APIs.......c.ccocceverreeererrenennes
22.2 Declaring a slot APT......cccocceveneenerrecererrenennes
22.3 Calling slot APT cOMPOSADIES......c..c.veuiurieerirrieriirecntireeerteeeeeneeeesessasesessasesesssessesssssssesssees
22,4 SUIMIMATY worniiiiiiiii s b bbb bbb bbb

23. A Compose SIot APT TUtOTal......ccoevueeirerninrinneininineinnininnicsisesuesesissssesessissseesesssessessessssssessesssesne
23.1 ADOUL the PrOJECt.....uevueuiiirieeiiiriieieireieetirteeteis ettt sssees
23.2 Creating the SIOtAPIDEMO PIOJECEcueuiuimiuiiiireiieseicie e saes
23.3 Preparing the MainActivity class file ..o s
23.4 Creating the MainScreen composable..............coiiniiiciniincinicicieeiecseeeesessesesese e sees
23.5 Adding the ScreenContent cOmMpoSabIe ..o s
23.6 Creating the Checkbox composable................

23.7 Implementing the ScreenContent slot API

23.8 Adding an Image drawable resource................

23.9 Writing the Titlelmage composable.................

23.10 Completing the MainScreen composable

23.11 Previewing the PrOJECt..... .. sees
23,12 SUINIMATY c.viiiiiii ettt e bbbt e n s st

24. Using Modifiers in COMPOSE.......ccvuirirrerisrisristiseisisessissisessisisssssissssessissssssssssessesssssssssssssessssssssssssesses
24.1 An overview of MOIfIErs.......ccociiiiiiiiii s 183
24.2 Creating the ModifierDemo PrOJECtoucuureeriureceniereerierieneeseeesiaseseseseesesessesesesssseseses 183
24.3 Creating @ MOGIFIETcceueeeiireecietrecireeer ettt ese st ese s s sasaes 184
24.4 MOAIfIer OFAETING.....cveevuereeceiriecietreeeeti ettt ese st ese s ese s naesasees 186
24.5 Adding modifier support to @ cOmpOSabIec.cuveuiureceiircrcee s 186
24.6 Common built-in MOIfIErSc.ccuiiiiiii s 190
24.7 Combining MOGIIETS.......c.vueuiureeeierrieiiirieitree ettt sssa s sasssensaees 190
24.8 SUMMATY w.oouiiiiiiiii bbb bbb bbb bbb bbb 191

25. Composing Layouts with ROW and Colummc.cueeerninennicninsinncninninncnenienscseneessesnisesesessens
25.1 Creating the ROWCOIDEMO PIOJECEcuuurrurimiuiuiireiieseieieie e sseeseisesssesesesesssssesssse e saes 193

vi

Table of Contents

25.2 ROW COMPOSADIE.......eueeiirieiicieiseeieireieietee ettt sese sttt sttt bttt esesebeen
25.3 COlUMN COMPOSADLEueueiineirircieirecteteeet ettt sttt et bees
25.4 Combining Row and Column composables
25.5 Layout alignmentccceeuveeceneurecrneerecnneeenernennes
25.6 Layout arrangement positioning...........c.ceeevvevuee.
25.7 Layout arrangement Spacing.........c.coeeeeueveueieinnnene
25.8 Row and Column scope modifiers..........cccccruneuene
25.9 Scope MOAIfler WEIGNLSc.vuvmiiieeiciriecireccrecc et sese st sese e sesenaes
25.10 SUIMMATY ..ottt bbb bbb

26. BoxX Layouts N COMPOSE.......covuieruiiruiirniiiinsiinsuinssiisseissiississeossessseessessssssssesssessssssssesssssssssssssssssssesssses

26.1 An introduction to the Box cOmpPOSable.........cvueuiureurieireeineireeicineeiereieieseseeeiseseeeeseneenes 207
26.2 Creating the BoXLayout PrOJECtcccuiuiurcucicmieieiaiisieeeiiasese et ssess s sssssesassssssssns 207
26.3 Adding the TextCell cOMPOSADILEc.cuiucieiciciciiniecc e 207
26.4 Adding @ BOX LayOUL.......cuuiuiiiiiiiiiicccc et 208
26.5 BOX @lIgNIMENL ...t 209
26.6 BOXSCOPE MOGIIETS ..ecvrveeieeinctreicicireeeteisete ettt sese et sese bbbt s st ses st sesesncs 211
26.7 Using the clip() MOAIfler.........couiuiiiiiiicicicciccici et sse s 211
26.8 SUIMIMATY ...ttt et 213

27. Custom Layout MOIfIErs......ucvuivivnininuiseiniinsinnieniiinissinieieiesssssinseiesissssssiesssssssssssessses

27.1 ComPOSe JaYOUL DASICS ...cvuevreeenciieeicirercieirecetrecct ettt sese s sese st sesensessesennes 215
27.2 CUSLOIM JAYOULS ...ttt sese st sese s sese sttt sesensessesennc 215
27.3 Creating the LayoutMOdifler PIrOJECtc.cceueveureeeecrreeeeerreeeneireeenetreneesenseneesessesensessesensessesenses 215
27.4 Adding the ColorBox composable........cccueuirriueecirieeeerrieeneirerenetseseeesseseesessesensessesensessesenses 216
27.5 Creating a custom layout MOIfIErcccucueviinieencireeereeereectreeeereieeessesensesseseesessesenses 217
27.6 Understanding default POSItION.........c.oceveurieemerreeceerrieenneencireee et esesseseesessesensessesenses 217
27.7 Completing the layout MOAIIErc.vueveuriueeeireeeireeereecrereetreene et seseesessesenaes 217
27.8 Using a cUStOM MOGIFIETeuvuerieeicireeeicirieeeenreeeeetseeeee e nsetsesensessesessessesensessesensessesensessesenses
27.9 Working with alignment lINeSccvceeeureeeenerneeenerreeeeneeeresenetseaeesessesessessesensessesensessesenses
27.10 Working With DaSEliNescccuveueverreeeeneirieeeeireccireeieneeeetseseeetseseesessesessessesensessesensessesenses
27.11 SUIMIMATY c.oviiiiiisii bbb bbb bbb bbb bbb

28. Building Custom Layouts....................

28.1 An overview of custom layouts
28.2 Custom layout syntaxcc.c.eue..

28.3 USING @ CUSTOM LAYOUL.....ccuuiuieiiriiiiciitseiccic it
28.4 Creating the CustomLayout PrOJECtccvcucucucueicieirieeiiriiiisesese et ssessssse s 225
28.5 Creating the CascadeLayout composable ... 225
28.6 Using the CascadeLayout cOmMPOSAbIeccccuuuiciuiuniiniiiiiincseiseese e 227
28.7 SUIMIMATY ...ttt ettt 228

29. A Guide to ConstraintLayout in COMPOSE........ccvuiverrerrerissistisisessesississisessesissssssssssessssssssssssssssessesses

29.1 An introduction to ConstraintLaYOULcccveureueeerreeeeerreremerrerenetseseesessesenessesensessesessessesenses 229

29.2 How ConstraintLayOut WOTKS.........cccveeeverreeemnerreeeeerreeemensenensessesensessesensessesensessesessessesensessesense 229
29.2.1 CONSLIAINES ..ottt
29.2.2 MATZINS ..ottt bbb
29.2.3 Opposing constraints
29.2.4 Constraint bias.........c.ecceurereeeen.
29.2.5 Chains.....ccccveeeeereeemcrreenerenenne
29.2.6 Chain styles........cccveurecurerrennne

vii

Table of Contents

29.3 Configuring diMenSIONS.......ccueeuerreeemirrierirriereesesereeseeeseesesessessesessasesessasssesssssssesssssssessses 233
29.4 Guideline helper
29.5 Barrier helper...........

29.6 SUMMATY ...

30. Working with ConstraintLayout in Compose

30.1 Calling ConstraintLayOoUL.........c.ccocuvcucueucirimiiiiieiestsesse e sse s ssesss s sese s sssaes
30.2 Generating refereNICES..........ciuiuuiicuciciieciieiieiiaee st
30.3 Assigning a reference to a COMPOSADIE...........ccriuiuiuiiiriiniincieicic e
30.4 Adding CONSIIAINES........cuuiuiiiiciciciccies it
30.5 Creating the ConstraintLayout PIOJECTccuewuiuiuiiurirniesereiceseieseeseseiseeasesesssesssesesssesessenes
30.6 Adding the ConstraintLayout HDIary ...
30.7 Adding a custom button compoSable............ccouiuiiiiriiniinciicie e
30.8 BaSiC CONSIIAINTS ...uvcvevvriiiiiiccicie et bbb
30.9 Opposing CONSLIAINLS......ccuviiuiiiiriii s sas
30.10 CONSIAINE DIAS.......cumiuiirieiiiieiciee et
30.11 Constraint MArginscccoieuriireiiiiieiiice s sss s ssaas
30.12 The importance of opposing constraints and bias...........ccceceecuveereueirineniusenesieseseesenseenes 244
30.13 Creating chains.........cocveuveviincrncincincicieiecececcese s

30.14 Working with guidelines..........ccccccocoveriuriunnen.
30.15 Working with barrierscccccecevciceeininennnn.
30.16 Decoupling constraints with constraint sets
30.17 SUMIMATY ..ottt bbb

31. Working with IntrinsicSize in COMPOSE........ocvevriririrnsinistisisninisissiiiisesessesssssssesessssssssssssesses

31.1 Intrinsic MEASUIEMENLESvvuivvirereriretereete ettt se s
31.2 Max. vs Min. Intrinsic Size Measurements ..o
31.3 About the eXample PrOJECT......cciueueeerreeeeerrereeetreeeeetsereeesreeeeesseseesessesessessesessessesessessesersessenes
31.4 Creating the IntrinsicSizeDemOo PrOJECt.........ceureueererreeemrerrereeerrereienrerensesseseesesseseesessesensessenes
31.5 Creating the custom text fleld.........oveerreuecrneencirecireceeeeeee e esenenes
31.6 Adding the Text and BOX COMPONENLScrvueverreeeeerriremerreeemerseseesensesensesseseesessesessessesessessenes
31.7 Adding the top-level COIUMN.......c.oceverrieeicireccirecerecereeee e sese et sesensenenes
31.8 Testing the Project.......ccevcererrererrereercerereenenne
31.9 Applying IntrinsicSize.Max measurements....
31.10 Applying IntrinsicSize.Min measurements ..
3111 SUMMATY ..ot

32. Coroutines and LaunchedEffects in Jetpack Compose

32.1 WAt QT€ COTOULINMEST w..ouvrruirireviaeireieisetsesetsetsesetsetsesetsetsesesses bt tsesessessesessessesessstsesessetsesesssseses 261
32.2 THreads VS. COTOULINES «....euvuevrevimeeriueiaetreseesetseseesetsesetseesesessetsebessetsesesaessesessessesesasssesesssssesessesneses 261
32.3 COTOULINE SCOPE......omiiiiiiiiccieiir et 262
32.4 SUSPENA fUNCHIONS c..veveveieeireireeeieireieiet sttt ses et sebe st sebe et seb et s et seb et be bbbt sesesaetnenes 262
32.5 COroutine diSPALCRETS.cueuueveueeeireieieireeeietresetetresetet st sebetse bbbt sese st sesesaetsesessetsenes 262
32.6 COroUtine DUILAETScuureuicireeciciriieicireeeictneeetct ettt ettt ses et sese st seb et sesesaetnenes 263
32.7 JODS coueieeteetete etttk b ettt a bttt et a et b ettt ren 263
32.8 Coroutines — suspending and reSUMINGccewriuiuriunierereeserneeesensesseeseesessesssesesesesssesessseses 264
32.9 Coroutine channel COMMUNICAtIONc.euvueureveieireeeieerereeeereteeetseseteesesesetsesesetsesesetsesesesseses 265
32.10 Understanding side effects...........cocuuiiriininiiniiircsciecse e 266
32,11 SUMMATY oottt bbbt bbb 267
33. An Overview of Lists and Grids in COMPOSEcccceveeeirirrernenninseincnsinsinsceessesscssessssesesssssssesessseses 269

viii

Table of Contents

33.1 Standard VS. JaZy LiSESccocueuercrrieeecireeeirccereeeiet ettt eaenaes 269
33.2 Working with Column and ROW LiStSc..ccveureueereireeenerneeneineeneineeeenreeeeessesensesseseesensenennes 269
33.3 Creating lazy LIStS ..c.cccveeereieecirecireecerceeetreecee et seae s sese st se s seaenae 270
33.4 Enabling scrolling with SCrollStatec.oceereencrreeenerreeeireeneireeeesseneeensesenesseseesensesennes 271
33.5 Programmatic SCTOLNGc.ceveuriuemerrereeeireieeeireieeetreeeee e nsetsesensetsese s sesessessesensessesensessesennes 271
33.6 SHCKY DEAARTSuceereecirecccteec ettt se s sesenaes 272
33.7 Responding t0 SCIOIl POSItION........c.cveveveeeereeeecireeeeeireeeeenseee et nsetsese s ssesensessesensessesenses 274
33.8 Creating a lazy Gridoccveeecineecrecercccece ettt 274
33.9 SUMMATY ..o 276
34. A Compose Row and Column List TUtorialcccccevevvevrinvinrerninsinncncnnnnininennncsenessscsesseseseee 277
34.1 Creating the ListDemo PrOJECtccviuuiurcucuemeimeieiieiieiesiiesssisesssese s ssessssesasssessssssssssns 277
34.2 Creating a Column-based liSt...........cccuruiuniinincincieicieiiecse e 277
34.3 Enabling list SCrOIINGcccuuimiiiiiiiirciciscicicieieie et sae s 279
34.4 ManUal SCrOIING........cocuiiiriiiicc et 279
34.5 A ROW LISt €XAMIPLE....cuviviierieeicirieeieireeeteisetetet sttt ses et sese st se bbbt ses st sesesaetsesenacs 282
34.6 SUIMMATY ..ottt 282
35. A Compose Lazy List TULOFIALccvevriruireirennininuiniiniiinsisninisineiissisisseiesissssseiesmsssssesessses 283
35.1 Creating the LazyListDeIMO PrOJECt.......couueuevimreueeerreeeeerrerensenserensessesemsessesessessesensessesensessesense 283
35.2 Adding list data to the project
35.3 Reading the XML data....................
35.4 Handling image 10adingcccocuveeeneureemcinieeeineecineeenreee et eessesessessesessessesessessesensessesenses
35.5 Designing the list item cOmMPOSabIe........c.cvvuevirrieeercrrieeieireeereeeeireee e eeeseseesesseseesessenennes 288
35.6 BUlding the Jazy LiSt.......c.ceeureemcinieeeneireceieeeeeeeieieenseee s nsessese s ssesensessesensessesenses 289
35.7 TeStiNG the PrOJECT....ocvieeicereeeecireeeetreec et reae et sese s se st sesessessesennes 289
35.8 Making list items ClICKaDbIe.........coveveiieiiiriccirccreccreeeeeereee e seseesensenennes 290
35.9 SUMMATY ..ot 292
36. Lazy List Sticky Headers and Scroll Detectioncooccecvvienecnininnecncnsennucnessensecsessessscsessessesesnes 293
36.1 Grouping the list item dataccceiiiriiiiincincicece e
36.2 Displaying the headers and items
36.3 Adding sticky headers.....................
36.4 Reacting to scroll position
36.5 Adding the scroll button
36.6 Testing the finished app..................
36.7 SUIMIMATY ...ttt
37. Compose Visibility ANIMAtioncccoevuireirinrininineisininininiiiiiinsessseemsssssmemsas 301
37.1 Creating the AnimateVisibility PrOJECtccveuveeeecrreueererreeenerreeneireeeeerreeeeessenensesseseesensesennes 301
37.2 ANIMating VISIDILLYc.eeeveueueiiiniiecireeccirecereceet e nsese et sese s sese s s ssessesensessesennes 301
37.3 Defining enter and eXit aNimMationscocveevrerreeeererreeeererreremenrerenessesensessesensessesenessesensessesenses 304
37.4 Animation specs and animation @aSINGcccveeererreeeererreremrerreremerrerenersereresseseesessesesessesenses 305
37.5 Repeating an animation ... s 306
37.6 Different animations for different childrenc.coceveneecneencincneneenereerereeerereeennes 307
37.7 Auto-starting an animation ... 308
37.8 Implementing croSSTAdingc.ocecureeeerreeeenernieeeeireeeierreee e esetseseesessesessessesensessesensessesenses 309
37.9 SUMMATY ..ottt 310
38. Compose State-Driven ANImMAation........cuiiiiiiinniiiniiiniiniiiiiiinimininimmsmmsmsmssees 311
38.1 Understanding state-driven animationc.ccccuceecueeeiuriuriunieneiniesesseisesesessessessessesssssesesssns 311

ix

Table of Contents

38.2 Introducing animate as state fUNCHONScvvueverreeeererrieererrereereeeerrere e nseseesessesensenenes
38.3 Creating the ANimateState PrOJECt......cveerrireererrereererreremerrereeerseseeessesensessesensessesessesseseressenes
38.4 Animating rotation with animateFloatAsState...........cccccon....

38.5 Animating color changes with animateColorAsState
38.6 Animating motion with animateDpAsState
38.7 Adding spring effects.........ccocneurevernerrcncrrernennne
38.8 Working with keyframes.......c.ccocoevervevcrnernencen.
38.9 Combining multiple animationscccveeeeerreuemrerreeeererrieenenereeersereeessesenesseseesessesessessesessessenes
38.10 Using the Animation INSPECLOr.......cccueueverreueeerreeeeeireeeeeereeeeetseseeessese s esessesessessesensessenes
38,11 SUMMATY ..ttt

39. Canvas Graphics Drawing in COMPOSEcc.covueeuiirirruesinsinscninsinsecssinisscsisesssessessesssssesssssssssssssesses

39.1 Introducing the Canvas COMPONENLc.ccuiiuiuriuiiireiniireeiseee e sssesesseaes
39.2 Creating the CanvasDemO PrOJECt........ccccuuiimiuriuiiureriesereiesse e ssessessesssssesasesssesesssssesseses
39.3 Drawing a line and getting the canvas SiZecocveriniircuneincincincineicinieeecessessesesseseseenes
39.4 Drawing dashed LINes............ccocuiuciiiiiciciiiiccce e
39.5 DIawing @ reCtangleocuiucuiucieicieieieiaiieeeeseisi s sass s
39.6 APPLYING FOTALION «....overiririitciic i
39.7 Drawing circles and ovals........c.cccceceeriuriuniunn.
39.8 Drawing gradients...
39.9 Drawing arcs............
39.10 Drawing paths
39.11 Drawing points..........
39.12 DIawing amn iMAZEceeureiimirereieietetieieesse ettt bbbt a e
39.13 SUMMATY ...oeeiiiiii ettt ettt

40. Working with ViewModels in COMPOSEccucvurrirvinirriseisnsinsisissisensessisississisesesesssssssssesessssssssssesses

40.1 What is ANdroid JEtPACK?cccureveueirireiririeieireetriree ettt aesesseseae s sseaeseses 345
40.2 The “0ld” arChItECTULEccvueeueeeecieireecetereeietr ettt eae s ese s nsesasaes
40.3 Modern Android archit@Ctureocceeureeeeereemierieeeireeneeeeeneeeesessesesesseeesessssssse s ssesssenes
40.4 The VieWMOdel COMPONENL......curiiuiuriiurirenereirietsineeciseeeetsesciesseeeeaseaebetsesessasesessessaesseaesessenesesnes
40.5 ViewModel implementation USING StALe..........eceurureererreerrirreenieriseriesesereesesenseesesesesssseseses
40.6 Connecting a ViewModel state to an activity
40.7 ViewModel implementation using LiveData........ccccoceeeuennee.
40.8 Observing ViewModel LiveData within an activity
40.9 SUMMATY ..o

41. A Compose ViewWModel TUtorial........cccvvuevuiivinreinininneinininniininiinneneneinscseniesseeesseseissssesssssns
41.1 ADOUL the PrOJECt....cuveuiiireeeieiriieieireeeitireeetet sttt ettt sssees 351
41.2 Creating the ViewModelDemo ProjJeCtcuiuiuriuiercuienercicnciseeeimesasseesssesssesesssesessseseseees 352
41.3 Adding the VIEWMOUELc.ccucuiiiiiciieriiiiciseese e sees 352
41.4 Accessing DemoViewModel from MainACtVItYccocueucucicicininieirieeeneseisessse s 354
41.5 Designing the temperature input composable ... 355
41.6 Designing the temperature input composable ... 356
41.7 Completing the user interface design........ccooieiuiuiiiniiiiinciniincisciccieceeeeeeesee s 358
41.8 TeStING the APP....cieiiiircic e 360
41.9 SUIMMATY ..ttt bbbt b s s 360

42. An Overview of Android SQLite Databasesccccceeeereererrererreeerseeecseeesseeeesseesessesssssesessssssssessssssssnes
42.1 Understanding database tables..........ccueirieniiniciniineceeeeeeseeneeeeeeseeeeseseseeseseees 361

422 Introducing database schema

Table of Contents

42.3 Columns and data tYPEScveceeureerirreeriiriereereeneeseereeseeessesesesssasssesssessesssessesssessessasssens 361
42.4 DAtabase FOWSc.cuuiuimimiiiiinici s ss s 362
42.5 Introducing primary KEYScccvereeriureeriureeniereeressesesssseeesseesesessessssessssssessssessesessssens 362
42.6 What 18 SQLITE?evereereeereireeenetreeeettreee et sessese s esesssss s sssasesesssasesesssasssessssssscsssssscsnsasssens 362
42.7 Structured Query Language (SQL)c.ovcurureerirneeriereeeiireenreneeeneesesenesessesssessessessssessessesens 362
42.8 Trying SQLite on an Android Virtual Device (AVD)cccovvrvniniinciciiciniiinsencins 363
42.9 The Android Room persistence IDraryccereccierecrninecrnineeeeeeeeeeseseneeneseesens 365
42,10 SUINIMATY w.ocuiiiiiiiiiiiiis st b bbb bbb bbb b bbb 365
43. Room Databases and COMPOSEcouereeeuirirruessinrinsucsinsiiscssessiessississsesesstsssessesssessessessssssesssssssssesssens 367
43.1 Revisiting modern app architeCture ... eseceessesasesesaens 367
43.2 Key elements of Room database PersiStenCecovuruueurureeiniureeeeneireueeseineseeseesesessessesessessesens 367
43.2.1 REPOSITOTY ..ttt 367
43.2.2 ROOM dAtADASEcevcerieriiiiiiiisciici et 368
43.2.3 Data Access ObJect (DAQ) ...ucuureeireirereireireeereiseeesesseeesesseeesessesessessese s ssessessssesscsesns 368
43.2.4 ENHEIES oo 368
43.2.5 SQLILE AAtADASE .ttt ettt sttt sae s e st enenerens 368
43.3 Understanding entities ..o e sse s ssesssese s 369
43.4 Data Access Objects......c.ceuveureuennee
43.5 The Room database.........ccccoeuununee.
43.6 The RepOSItOry....ccocuevecereveecrreneanee
43.7 In-Memory databases
43.8 Database Inspector........c..ceveureveence
43.9 SUIMMATY 1.ttt
44. A Compose Room Database and Repository Tutorialcccevveverrisuisisninisrininnnenenisisisesensens 377
44.1 About the ROOMDEIMO PrOJECL......vucvmiviecrmirieeriirieereireeesteseeereeseeesssesesesssasesessssssessssessessasssens 377
44.2 Creating the ROOMDEIMO PrOJECt.....c.uvuvuemmiurieerirrieeriireerteseeeneeseeesseeseaesseasesessssssessesessesessesens 378
44.3 Modifying the build cONfIGUIAtIONcccuiueeeriericiirricirect et seaeesens 378
44.4 BUilding the @NtitY......cccveeiireeniirecircetree et sssae s sse s sse s sasnsens 379
44.5 Creating the Data AcCess ODJECt......c.urueurreerirreeriirrenieseeseseeseesesesessssessssessessesessessessssens 380
44.6 Adding the ROOM database..........c.ovceiuriciiiricrniincircieeeeeieese e ssessaensens 381
44.7 AAdIng the TEPOSILOTYcecvuiueeeeeireecrierieietreee ettt eee e sae s ssse s s s sasssassscns 382
44.8 Adding the VIEWMOMELc.vuieriiciiicitrectieeeieentieee e ssssese s s sscsssaesns 384
44.9 Designing the User INterface ... 386
44.10 Writing a ViewModelProvider Factory class..........coovviiniininnnciciciciccnes 387
44.11 Completing the MainScreen function...........ccnn s 389
44.12 Testing the ROOMDEINO QPPoucvreeermierieernirrieerieneeeneeseeeseesesessasesessasssesessssesssessesessssessssssens 392
44.13 Using the Database INSPECLOTccvuuecuiireeerirrieniereertereeeseeseeesssesesesesessessssssessssessesessesens 393
44,14 SUINIMATY w.ocuiiiiiniriiiiiiis s b bbb bbb bbb bbb a bbb 394
45. An Overview of Navigation in COMPOSEc.ceverrerruininrersissensiessissiissesisiesscsesssessesesssessessessssssesssens 395
45.1 Understanding Navigation.............c.ecucecucicucicemeicimciiiseiecssesesssese s s ssssessessssssssens 395
45.2 Declaring a navigation CONLIOILET..........c.ccucuiuuciciciirieeicese e sasessaens 397
45.3 Declaring a navigation hOSt ..o ssesasessaees 397
45.4 Adding destinations to the navigation graphccceenininincnencinence s 397
45.5 Navigating to destinations..........c.ccuiueucicicicicicieicciisrcicee e sse s sse s sse s saens
45.6 Passing arguments t0 @ destination..........c.ccucucucicicirierininineise e asesesaens

45.7 Working with bottom navigation bars
45.8 SUIMIMATY ..ottt s bbbt

xi

Table of Contents

46. A Compose Navigation Tutorial

47. A Compose Bottom Navigation Bar Tutorial

48. Detecting Gestures in Compose

49. Detecting Swipe Gestures in Compose

xii

46.1 Creating the NavigationDemo project

46.2 About the NavigationDemo project

46.3 Declaring the navigation routesccec......

46.4 Adding the home screenccccoeeeevureenennnne

46.5 Adding the welcome screen..........c.cceevceveunccn.

46.6 Adding the Profile SCIEEIMc.cuevmrcreeeiceeeirieneireseire e saeassassssessssse s ssesaens
46.7 Creating the navigation controller and host............ccvvicuniriccniriccnircnrcreeeeees 409
46.8 Implementing the screen NaVIgationcccoceiureceniiriceniirieniee e snees 409
46.9 Passing the USer NamMe arGUIMENL........cccouuieuiuieeierieeiereeeees e esessasesessasesesssssesesssasesesssses 410
46.10 TeSting the PrOJECt.......covuieuiurieieiietir ettt ese s ssaes 411
46.11 SUIMIMATY cooouvnviincriieiiiresii st es et s 413

47.1 Creating the BottomBarDemO ProOJECtcouuueureureecuniereeeriureeneeseeeneusesesssssesesseseesessesessesesees
47.2 Declaring the navigation routesccocveuenc.
47.3 Designing bar itemsc.cveeeveereeeererrereererreneenes
47 .4 Creating the bar item list......ccccovevverreeercrreenncs
47.5 Adding the destination screens.........c.ccecveueence
47.6 Creating the navigation controller and host...
47.7 Designing the navigation bar.......c.cc.cccceeveueence
47.8 Working with the Scaffold component............
47.9 TESHING the PrOJECt....cveueviireeeiierieeieiseeeittreeetet ettt ea ettt s ese s eae b ese s esesasses
47.10 SUININATY w.oviiiiiiiic bbbt b b

48.1 Compose eStUTE AEtECHION.........c.cvuvrieeeriiieciii et nsaes
48.2 Creating the GestureDemo PIrOJECt........coveuiuieeiuriceiiriceieeeeei e esesses e esessaees
48.3 Detecting CLICK GESTUIEScuucuieeieieceiiieeee et ese s ssaes
48.4 Detecting taps using PointerInputScope.........cccoviiiiciriiiiiniciiicicccene
48.5 Detecting drag GEStUIESccueeeeeieeeiirieeie e esesssas s ssesssas s sssasssess s s esesssses
48.6 Detecting drag gestures using PointerInputScope
48.7 Scrolling using the scrollable modifier
48.8 Scrolling using the scroll modifiers
48.9 Detecting pinch gestures............ccceeereeeeveererennce
48.10 Detecting rotation gestures...........c.cooeeueuennes
48.11 Detecting translation gestures..........cccceeeeene.
48.12 SUIMIMATY coouvuviieiriiieiiise sttt es e s s

49.1 Swipe gestures and ANCHOLScccveureeeiiriciniiricirecee et sses et sa s sasesessaes 437
49.2 Detecting SWIPe ZESTUIESc.cuiuiiiiiiiciiiiccc bbb 437
49.3 Declaring the anchors MAapc..cccceeeeiireciniireeneiecei et ssssssessesesse s sssesessssees 438
49.4 Declaring threSholds........coeerceirectiricieieeiecieseeeeei et ssssssessssese s sssesesssses 438
49.5 Moving a component in reSponse t0 @ SWIPE ..ot 438
49.6 About the SWIPEDemO PrOJECTccvveueeriureeeriirieeeieriecteireeeeteseaestasesestasesessssessessssesesssssssesneses
49.7 Creating the SWIPeDemO PrOJECTcccvvurueurureeerirreeerniireeeetiseaeneaeeeessaeesessssessessssessessesssseseses
49.8 Setting up the swipeable state and anchors
49.9 Designing the parent BoX......c.covceveereeeercerereencs

49.10 TeStING the PrOJECt....vucvivreeeeeiriecieireeeitireeettis ettt sesesesta e eae s s ta s s sssesessasssesnsses

..

...

Table of Contents

49.11 SUIMIMATY .ottt bbb bbb bbb bbb bbbt 443
50. An Introduction t0 Kothin FLOW ...ttt sssessse e eseness s s ssesesesessssanensses 445
50.1 Understanding FIOWS..........cocucucuiiciiciiciiiiiiseiscicise e sse s sssssessssssssssnns 445
50.2 Creating the SAmMPle PrOJECtocuiucuiicicieicieiiseirecise et sse s s 445
50.3 Adding a view model to the PrOJECt.......c.cccciiiiuniiriiniiniiiireise e 446
50.4 Declaring the flow ...t 447
50.5 EMitting flOwW data.........cociurciiincincicicccciecceicsie s 447
50.6 Collecting flow data as STALe........c.cccueucuiririiireiicise et ss s 448
50.7 Transforming data with intermediariescccoeriininircninencnecce e 449
50.8 Collecting fIoW datac.ccucuciciciciicicicicicceiesie e
50.9 Adding a flow DUTEr ..o
50.10 More terminal flOW OPEIAtOrS......ccveueeirerrecirerrereirerreetreireetseb ettt bbb sesseseens
50.11 FIOW flattening.......cccuiuiuiicicicicicieicii it sse s sas s
50.12 Combining multiple fLOWSc.ccucuiieiiiiiriiiiccsecc e
50.13 Hot and cold fLOWS ..ot sae s s
50.14 SAtEFLOW ..ottt s
50.15 SHAT@AFLIOW........cuuieiiiiiiiciicicte et

50.16 Converting a flow from cold to hot ...
50.17 SUMMATY ...t

51. A Jetpack Compose SharedFlow Tutorial........................

51.1 ADOUL the PIOJECT.....cuerivicirereecireieectreieeetrereee et ssese e seeasnns
51.2 Creating the SharedFIOWD@MO PrOJECt.......cccuiuecierrecrriireeirerrecrrersesenessesensesseseaessesensessesenne
51.3 Adding a view model t0 the ProJect.......oicurerciriirercirerecrereereeee e reaenne
51.4 Declaring the SharedFLOWc..ceocuueenciniirencineinecreeeeeeeresee e sesessessesnns
51.5 Collecting the fIOW VALUEScc.eueeerrirrecrreiricirerecirereeeee e ae s ssesesessessesenns
51.6 Testing the SharedFIOWDEIMO @PPcevererecrrerecireinieereineeiesseesserseseseseeseaesseseaessesessesseseens
51.7 Handling flows in the background..........c..cccocuvvveininncinnncnencnerceeeeeeeeeseseneseesenne
51.8 SUMIMATY ..ottt bbb bbb

52. Creating, Testing, and Uploading an Android App Bundle

52.1 The release preparation process
52.2 Android app bUundlesc..eeeeeeneireeincineicrecreeeeeete et

52.3 Register for a Google Play Developer Console account...........ccccceuuevureucunee.

52.4 Configuring the app in the console............ccoveviuniiineincincincinciceceiecreeeens

52.5 Enabling Google Play app SIGNINGccccririiuriuniiniiriininiiseieise e ssessessessssessessesssssessscnns
52.6 Creating @ Keystore flle ... sssasenes
52.7 Creating the Android app bundle ...
52.8 Generating test APK fIlesc.cuiiiiiiiciciciiecccicces e
52.9 Uploading the app bundle to the Google Play Developer Console...........ccccccoeururiuriniuncnnes 478
52.10 Exploring the app bundle..........c.ccociiiiiiiiiriiccse e 479
52.11 Managing teSLETSccvuvvririiirrictcieteteeceie bbb 480
52.12 Rolling the app out fOr teSHNG.......ccceueiiririeiieiricire e saesasenes 480
52.13 Uploading new app bundle reViSionsccccceeeuriuiunirniireinieneiseiserscieneisesessessessesssssesesens 481
52.14 Analyzing the app bundle file..........cccciiiiiiiii e 482
52.15 SUMMATY c..ouiiiiiiiiiiii ettt 482

53. An Overview of Android In-App Billingcoccvuvvurrrveninisuisinnininineinininsnieieensnsseemes 485

53.1 Preparing a project for In-App purchasing..........cccoceeeeereurerernerrercrnernenernernesennenseeesessesenserseenne
53.2 Creating In-App products and subscriptions

xiii

Table of Contents

54. An Android In-App Purchasing Tutorial

53.3 Billing client initialiZationc.coeureueererreeeeerrereeeireeeeeirerenereeeeesseseesessesensessesessessesessessesessessenes
53.4 Connecting to the Google Play Billing library
53.5 Querying available products........cocccvvrvecrniunnce
53.6 Starting the purchase process..........c.ccoceveueueen.
53.7 Completing the purchasecccocveuvercrrerrenncn.
53.8 Querying previous purchases...........ccecveureeeen.
53.9 SUMMATY ..ottt bbb bbb

54.1 About the In-App purchasing example project
54.2 Creating the INAPPPUIChaSe PIOJECtcuuvuiuiuiuiiiireiiircie e
54.3 Adding libraries to the ProJECt........ccccuiiiniuniiniiiiirinireescie e
54.4 Adding the App to the Google Play StOre.........coooiiuriiniincineincineicieieceieeeenesisessesessseseneenes
54.5 Creating an IN-APP PrOAUCTc.ccucuuiciiiiiiirisisese e ssesa s
54.6 ENabling lICENSE tESLETS..........cuiuuiicicicicieiiiiiiiiciseistse e ssss s
54.7 Creating a purchase helper Class ...
54.8 Adding the StateFLOW SLIEAIMSc.cuucuuiuicieiiiiiieirisere e
54.9 Initializing the billing CHENt..........ccocuiiiiciciriiircc s
54.10 Querying the product.........cccccoeevuureurerruriunenn.
54.11 Handling purchase updatesccccccovvureunce.
54.12 Launching the purchase flow..........cccccceeuuce.
54.13 Consuming the product........c..ccccoeeviviuninnnen.
54.14 Restoring a previous purchase...........ccccoecuuc..
54.15 Completing the MainACHVILYc.ccccucueirimriiririeriresese et sseaes
54.16 TeStING the PPcvuiuiiiiiiiircicice et
54.17 TrOUDIESNOOINGoucuviviiiiicicicc et
54.18 SUMMATY ...oueieiiiiiiii ettt bbb

55. Working with Compose THemINgGcocevuernrinisinirisnisisiniiiisisiniieeenisssememssmee 505

56. A Material Design 3 Theming Tutorial

55.1 Material Design 2 vs Material Design 3ccoeureueererreeemnerneeeenenneneeennerenenseseeenseseesessesenessenes 505
55.2 Material Design 2 themingccocveecrreeeecrreeeeireeeieeeeneeeeeseeesensese s esessesessessesessessenes
55.3 Material Design 3 themingccocveerreeeeeinieeeiricieieeenreeeeenseseeessese s esessesessessesensessenes
55.4 Building a custom themec.cccevevvevcrrerrenecn.

55.5 SUMMATY ..o

56.1 Creating the ThemeDemo project

56.2 Adding the Material Design 3 LIDIary........cccccoeiiininincinincisccie e 513
56.3 Designing the user INterface ... 513
56.4 Building @ New themie ... 516
56.5 Adding the theme to the ProJect ... 517
56.6 Enabling dynamic COLOTS..........cuiuuiiiiiiiiieieisiseise e saes s 517
56.7 SUIMIMATY ..ottt s sttt 519
57. An Overview of Gradle in Android StUAi0.......ccceuevuerunrenrininiininnnniniiiessssssseeses 521

57.1 An OVerview Of Gradle.......ccccirieincineeicineecreeieteeeeeneeeee e ssese s ssessesessessesessessenes 521
57.2 Gradle and Android StUAIOccccueeeerreeeierreecirecreeeeeeeeee e sesessessesensenenes 521

57.2.1 Sensible defaultsc.ccoeeurerreccrnirrecrninennce

57.2.2 Dependencies....

57.2.3 Build variants........

Xiv

57.2.4 Manifest entries....

Table of Contents

57.2.5 APK SIZNINE ...viiiiiiiiiiciiii s 522

57.2.6 PrOGUATA SUPPOIL ..ececveuieiinceeieeeetsenctetseeieeseae et tseseseeesetstesebstaese s st sesstsssesseaesessenesssens 522
57.3 The Properties and Settings Gradle build filesc.cocueuveecrnerrcnciniinccnencneeecreecereeenne 522
57.4 The top-level gradle BUild filecccveueeveueerincineincrercreree e nne 523
57.5 Module level Gradle build files........c..coveunureneiniirercinenicrereerereeeeeeereee e nseseesenne 524
57.6 Configuring signing settings in the build file........c.coeeurirvcinerncnincrrcrcreceeenne 527
57.7 Running Gradle tasks from the command-linecccoceeeenerrencrnennenernncnenecneneenrereeenne 528
57.8 SUIMIMATY ..ottt Rt bbb 528

INAEX vttt s b e sb s s bbb et et s b s bbb e bRt s R et s R e R e b e et e R e b e R bR aee

XV

Chapter 1

1. Start Here

This book aims to teach you how to build Android applications using Jetpack Compose 1.2, Android Studio, and
the Kotlin programming language.

The book begins with the basics by explaining how to set up an Android Studio development environment.

The book also includes in-depth chapters introducing the Kotlin programming language, including data types,
operators, control flow, functions, lambdas, coroutines, and object-oriented programming.

An introduction to the key concepts of Jetpack Compose and Android project architecture is followed by a
guided tour of Android Studio in Compose development mode. The book also covers the creation of custom
Composables and explains how functions are combined to create user interface layouts, including row, column,
box, and list components.

Other topics covered include data handling using state properties, key user interface design concepts such
as modifiers, navigation bars, and user interface navigation. Additional chapters explore building your own
reusable custom layout components.

The book covers graphics drawing, user interface animation, transitions, Kotlin Flows, and gesture handling.

Chapters also cover view models, SQLite databases, Room database access, the Database Inspector, live data,
and custom theme creation. Using in-app billing, you will also learn to generate extra revenue from your app.

Finally, the book explains how to package up a completed app and upload it to the Google Play Store for
publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code
for which is also available for download.

Assuming you already have some rudimentary programming experience, are ready to download Android Studio
and the Android SDK, and have access to a Windows, Mac, or Linux system, you are ready to start.

1.1 For Kotlin programmers

This book addresses the needs of existing Kotlin programmers and those new to Kotlin and Jetpack Compose
app development. If you are familiar with the Kotlin programming language, you can probably skip the Kotlin-
specific chapters.

1.2 For new Kotlin programmers

If you are new to Kotlin programming, the entire book is appropriate for you. Just start at the beginning and
keep going.

1.3 Downloading the code samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/composel2/index.php

The steps to load a project from the code samples into Android Studio are as follows:

https://www.ebookfrenzy.com/retail/compose12/index.php

Start Here
1. Click on the Open button option from the Welcome to Android Studio dialog.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.4 Feedback

We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have
any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

1.5 Errata

While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a
subject area of this size and complexity may include some errors and oversights. Any known issues with the
book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/composel2.html

If you find an error not listed in the errata, email our technical support team at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/errata/compose12.html

Chapter 4

4. An Example Compose Project

In the previous chapter, we created a new Compose-based Android Studio project named ComposeDemo and
took some time to explore both Android Studio and some of the project code that it generated to get us started.
With those basic steps covered, this chapter will use the ComposeDemo project as the basis for a new app. This
will involve the creation of new composable functions, introduce the concept of state, and make use of the
Preview panel in interactive mode. As with the preceding chapter, key concepts explained in basic terms here
will be covered in significantly greater detail in later chapters.

4.1 Getting started

Start Android Studio if it is not already running and open the ComposeDemo project created in the previous
chapter. Once the project has loaded, double-click on the MainActivity.kt file (located in Project tool window
under app -> java -> <package name>) to open it in the code editor. If necessary, switch the editor into Split
mode so that both the editor and Preview panel are visible.

4.2 Removing the template Code
Within the MainActivity.kt file, delete some of the template code so that the file reads as follows:

package com.example.composedemo

class MainActivity : ComponentActivity() {
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContent ({
ComposeDemoTheme {
Surface (
modifier = Modifier.fillMaxSize (),

color = MaterialTheme.colors.background

. Aot

25

An Example Compose Project

4.3 The Composable hierarchy

Before we write the composable functions that will make up our user interface, it helps to visualize the
relationships between these components. The ability of one composable to call other composables essentially
allows us to build a hierarchy tree of components. The ability of one composable to call other composables
essentially allows us to build a hierarchy tree of components. Once completed, the composable hierarchy for our
ComposeDemo main activity can be represented as shown in Figure 4-1:

Figure 4-1
All of the elements in the above diagram, except for ComponentActivity, are composable functions. Of those
functions, the Surface, Column, Spacer, Text, and Slider functions are built-in composables provided by
Compose. The DemoScreen, DemoText, and DemoSlider composables, on the other hand, are functions that we
will create to provide both structure to the design and the custom functionality we require for our app. You can
find the ComposeDemoTheme composable declaration in the ui.theme -> Theme.kt file.

4.4 Adding the DemoText composable

We are now going to add a new composable function to the activity to represent the DemoText item in the
hierarchy tree. The purpose of this composable is to display a text string using a font size value that adjusts in
real-time as the slider moves. Place the cursor beneath the final closing brace (}) of the MainActivity declaration
and add the following function declaration:

@Composable

fun DemoText () {

}

26

An Example Compose Project

The @Composable annotation notifies the build system that this is a composable function. When the function is
called, the plan is for it to be passed both a text string and the font size at which that text is to be displayed. This
means that we need to add some parameters to the function:

@Composable

fun DemoText (message: String, fontSize: Float) {

}

The next step is to make sure the text is displayed. To achieve this, we will make a call to the built-in Text
composable, passing through as parameters the message string, font size and, to make the text more prominent,
a bold font weight setting:
@Composable
fun DemoText (message: String, fontSize: Float) {
Text (
text = message,
fontSize = fontSize.sp,
fontWeight = FontWeight.Bold

}

Note that after making these changes, the code editor indicates that “sp” and “FontWeight” are undefined.
This happens because these are defined and implemented in libraries that have not yet been imported into
the MainActivity.kt file. One way to resolve this is to click on an undefined declaration so that it highlights as
shown below, and then press Alt+Enter (Opt+Enter on macOS) on the keyboard to import the missing library
automatically:

Figure 4-2

Alternatively, you may add the missing import statements manually to the list at the top of the file:

import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.unit.sp

In the remainder of this book, all code examples will include any required library import statements.

We have now finished writing our first composable function. Notice that, except for the font weight, all the other
properties are passed to the function when it is called (a function that calls another function is generally referred
to as the caller). This increases the flexibility, and therefore re-usability, of the DemoText composable and is a key

27

An Example Compose Project

goal to keep in mind when writing composable functions.

4.5 Previewing the DemoText composable

At this point, the Preview panel will most likely be displaying a message which reads “No preview found”. The
reason for this is that our MainActivity.kt file does not contain any composable functions prefixed with the @
Preview annotation. Add a preview composable function for DemoText to the MainActivity.kt file as follows:
@Preview
@Composable
fun DemoTextPreview () {

DemoText (message = "Welcome to Android", fontSize = 12f)

}

After adding the preview composable, the Preview panel should have detected the change and displayed the link
to build and refresh the preview rendering. Click the link and wait for the rebuild to complete, at which point
the DemoText composable should appear as shown in Figure 4-3:

Figure 4-3
Minor changes made to the code in the MainActivity.kt file such as changing values will be instantly reflected in
the preview without the need to build and refresh. For example, change the “Welcome to Android” text literal

to “Welcome to Compose” and note that the text in the Preview panel changes as you type. Similarly, increasing
the font size literal will instantly change the size of the text in the preview. This feature is referred to as Live Edit.

4.6 Adding the DemoSlider composable

The DemoSlider composable is a little more complicated than DemoText. It will need to be passed a variable
containing the current slider position and an event handler function or lambda to call when the slider is
moved by the user so that the new position can be stored and passed to the two Text composables. With these
requirements in mind, add the function as follows:

import androidx.compose.foundation.layout.*
import androidx.compose.material.Slider

import androidx.compose.ui.unit.dp

@Composable
fun DemoSlider (sliderPosition: Float, onPositionChange: (Float) -> Unit) ({
Slider (
modifier = Modifier.padding(10.dp),
valueRange = 20f..40f,
value = sliderPosition,

onValueChange = { onPositionChange(it) }
28

An Example Compose Project

}

The DemoSlider declaration contains a single Slider composable which is, in turn, passed four parameters. The
first is a Modifier instance configured to add padding space around the slider. Modifier is a Kotlin class built into
Compose which allows a wide range of properties to be set on a composable within a single object. Modifiers can
also be created and customized in one composable before being passed to other composables where they can be
further modified before being applied.

The second value passed to the Slider is a range allowed for the slider value (in this case the slider is limited to
values between 20 and 40).

The next parameter sets the value of the slider to the position passed through by the caller. This ensures that each
time DemoSlider is recomposed it retains the last position value.

Finally, we set the onValueChange parameter of the Slider to call the function or lambda we will be passing to the
DemoSlider composable when we call it later. Each time the slider position changes, the call will be made and
passed the current value which we can access via the Kotlin it keyword. We can further simplify this by assigning
just the event handler parameter name (onPositionChange) and leaving the compiler to handle the passing of
the current value for us:

onValueChange = onPositionChange

4.7 Adding the DemoScreen composable

The next step in our project is to add the DemoScreen composable. This will contain a variable named
sliderPosition in which to store the current slider position and the implementation of the handlePositionChange
event handler to be passed to the DemoSlider. This lambda will be responsible for storing the current position
in the sliderPosition variable each time it is called with an updated value. Finally, DemoScreen will contain a
Column composable configured to display the DemoText, Spacer, DemoSlider and the second, as yet to be
added, Text composable in a vertical arrangement.

Start by adding the DemoScreen function as follows:

import androidx.compose.runtime.*

@Composable
fun DemoScreen() {

var sliderPosition by remember { mutableStateOf (20f) }

val handlePositionChange = { position : Float ->
sliderPosition = position

}

The sliderPosition variable declaration requires some explanation. As we will learn later, the Compose system
repeatedly and rapidly recomposes user interface layouts in response to data changes. The change of slider
position will, therefore, cause DemoScreen to be recomposed along with all of the composables it calls. Consider
if we had declared and initialized our sliderPosition variable as follows:

29

An Example Compose Project
var sliderPosition = 20f

Suppose the user slides the slider to position 21. The handlePositionChange event handler is called and stores the
new value in the sliderPosition variable as follows:
val handlePositionChange = { position : Float ->

sliderPosition = position

}

The Compose runtime system detects this data change and recomposes the user interface, including a call to the
DemoScreen function. This will, in turn, reinitialize the sliderposition variable to 20 causing the previous value
of 21 to be lost. Declaring the sliderPosition variable in this way informs Compose that the current value needs
to be remembered during recompositions:

var sliderPosition by remember { mutableStateOf (20f) }

The only remaining work within the DemoScreen implementation is to add a Column containing the required
composable functions:

import androidx.compose.ui.Alignment

@Composable

fun DemoScreen () {
var sliderPosition by remember { mutableStateOf (20f) }
val handlePositionChange = { position : Float ->

sliderPosition = position

Column (

horizontalAlignment Alignment.CenterHorizontally,
verticalArrangement = Arrangement.Center,
modifier = Modifier.fillMaxSize ()

) |
DemoText (message = "Welcome to Compose", fontSize = sliderPosition)
Spacer (modifier = Modifier.height (150.dp))
DemoSlider (

sliderPosition = sliderPosition,

onPositionChange = handlePositionChange

Text (
style = MaterialTheme. typography.h2,

30

An Example Compose Project

text = sliderPosition.toInt().toString() + "sp"

}

Points to note regarding these changes may be summarized as follows:

o When DemoSlider is called, it is passed a reference to our handlePositionChange event handler as the
onPositionChange parameter.

o The Column composable accepts parameters that customize layout behavior. In this case, we have configured
the column to center its children both horizontally and vertically.

o A Modifier has been passed to the Spacer to place a 150dp vertical space between the DemoText and
DemoSlider components.

o The second Text composable is configured to use the h2 (Heading 2) style of the Material theme. In addition,
the sliderPosition value is converted from a Float to an integer so that only whole numbers are displayed and
then converted to a string value before being displayed to the user.

4.8 Previewing the DemoScreen composable

To confirm that the DemoScreen layout meets our expectations, we need to modify the DemoTextPreview
composable:

@Preview (showSystemUi = true)

@Composable

fun Preview() {
ComposeDemoTheme {

DemoScreen ()

}
Note that we have enabled the showSystemUi property of the preview so that we will experience how the app will

look when running on an Android device.

After performing a preview rebuild and refresh, the user interface should appear as originally shown in Figure
3-1.

4.9 Testing in interactive mode

At this stage, we know that the user interface layout for our activity looks how we want it to, but we don't know
if it will behave as intended. One option is to run the app on an emulator or physical device (topics which are
covered in later chapters). A quicker option, however, is to switch the preview panel into interactive mode. This
is achieved by clicking on the button indicated in Figure 4-4 below:

31

An Example Compose Project

Figure 4-4

When clicked, there will be a short delay when interactive mode starts, after which it should be possible to move
the slider and watch the two Text components update:

Figure 4-5

Click the stop button (marked A in Figure 4-6 below) to exit interactive mode. If it appears that the preview
needs to be refreshed, click on the Build Refresh button (B):

Figure 4-6
4.10 Completing the project

The final step is to make sure that the DemoScreen composable is called from within the Surface function
located in the onCreate() method of the MainActivity class. Locate this method and modity it as follows:

class MainActivity : ComponentActivity() {
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContent {
ComposeDemoTheme {

Surface (

32

An Example Compose Project

modifier = Modifier.fillMaxSize (),

color = MaterialTheme.colors.background

DemoScreen ()

}

This will ensure that, in addition to appearing in the preview panel, our user interface will also be displayed
when the app runs on a device or emulator (a topic that will be covered in later chapters).

4.11 Summary

In this chapter, we have extended our ComposeDemo project to include some additional user interface elements
in the form of two Text composables, a Spacer, and a Slider. These components were arranged vertically using
a Column composable. We also introduced the concept of mutable state variables and explained how they are
used to ensure that the app remembers state when the Compose runtime performs recompositions. The example
also demonstrated how to use event handlers to respond to user interaction (in this case, the user moving a
slider). Finally, we made use of the Preview panel in interactive mode to test the app without the need to compile
and run it on an emulator or physical device.

33

9. The Basics of the Android Studio
Code Editor

Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing, and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting, and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files, and the editor’s ability
to detect and highlight programming syntax errors in real-time as the code is being written. As will become
evident in this chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

9.1 The Android Studio editor

The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML, or other text-
based file is selected for editing. Figure 9-1, for example, shows a typical editor session with a Kotlin source code
file loaded:

Figure 9-1
71

The Basics of the Android Studio Code Editor
The elements that comprise the editor window can be summarized as follows:

A - Document Tabs - Android Studio is capable of holding multiple files open for editing at any one time. As
each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top
edge of the editor window. A small drop-down menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-
Right keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism
(accessible via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B - The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers, and line numbers. Line numbers are switched
on by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu
option.

C - Code Structure Location - This bar at the bottom of the editor displays the current position of the cursor
as it relates to the overall structure of the code. In the following figure, for example, the bar indicates that the
onCreate() method is currently being edited and that this method is contained within the MainActivity class.

Figure 9-2
Double-clicking an element within the bar will move the cursor to the corresponding location within the code
file. For example, double-clicking on the onCreate() entry will move the cursor to the top of that method within

the source code. Similarly clicking on the MainActivity.kt entry will drop down a list of available code navigation
points for selection:

Figure 9-3

D - The Editor Area - This is the main area where the code is displayed, entered, and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E - The Validation and Marker Sidebar - Android Studio incorporates a feature referred to as “on-the-fly code
analysis”. What this essentially means is that as you are typing code, the editor is analyzing the code to check for
warnings and syntax errors. The indicators at the top of the validation sidebar will update in real-time to indicate
the number of errors and warnings found as code is added. Clicking on this indicator will display a popup

72

The Basics of the Android Studio Code Editor

containing a summary of the issues found with the code in the editor as illustrated in Figure 9-4:

Figure 9-4

The up and down arrows may be used to move between the error locations within the code. A green checkmark
indicates that no warnings or errors have been detected.

The sidebar also displays markers at the locations where issues have been detected using the same color-coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup
containing a description of the issue:

Figure 9-5

Hovering the mouse pointer over a marker for a line of code that is currently scrolled out of the viewing area of
the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 9-6)
allowing it to be viewed without needing to scroll to that location in the editor:

Figure 9-6

It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over
any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

F - The Status Bar - Though the status bar is part of the main window, as opposed to the editor, it does contain
some information about the currently active editing session. This information includes the current position of
the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCI], etc.). Clicking on
these values in the status bar allows the corresponding setting to be changed. Clicking on the line number, for
example, displays the Go to Line dialog.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

9.2 Code mode

The code editor has three modes in which it can be placed using the buttons located in the top right-hand corner
of the editor panel. In Figure 9-7 below, for example, Code mode has been selected:

73

The Basics of the Android Studio Code Editor

Figure 9-7
When in code mode, only the code editor panel is displayed and the Preview panel is hidden from view. In Split

mode, the editor shows the Code and Preview panels side-by-side. In Design mode, only the Preview panel is
displayed.

9.3 Splitting the editor window

By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into
multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 9-8, for example, shows the splitter in action with the editor
split into three panels:

Figure 9-8

The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

9.4 Code completion

The Android Studio editor has a considerable amount of built-in knowledge of Kotlin and Compose programming
syntax and the classes and methods that make up the Android SDK, as well as knowledge of your codebase. As
code is typed, the editor scans what is being typed and, where appropriate, makes suggestions about what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 9-9, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

74

The Basics of the Android Studio Code Editor

Figure 9-9

If none of the auto-completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the topmost suggestion, simply press the Enter or Tab key on the
keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto-completion feature, the Android Studio editor also offers a system referred to
as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-
Ctrl-Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto-completion settings. These can be viewed and
modified by selecting the File -> Settings... menu option (or Android Studio -> Preferences... on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 9-10:

Figure 9-10
75

The Basics of the Android Studio Code Editor

9.5 Statement completion

Another form of auto-completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:

fun myMethod ()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:

fun myMethod () {

}
9.6 Parameter information

It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 9-11
9.7 Parameter name hints

The code editor may be configured to display parameter name hints within method calls. Figure 9-12, for
example, highlights the parameter name hints within the calls to the make() and setAction() methods of the
Snackbar class:

Figure 9-12

The settings for this mode may be configured by selecting the File - > Settings menu (Android Studio -> Preferences
on macOS) option followed by Editor -> Inlay Hints -> Kotlin in the left-hand panel. On the resulting screen,
select the Parameter Hints item from the list and enable or disable the Show parameter hints option. To adjust
the hint settings, click on the Exclude list... link and make any necessary adjustments.

9.8 Code generation

In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 9-13 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

76

The Basics of the Android Studio Code Editor

Figure 9-13
For example, consider a situation where we want to be notified when an Activity in our project is about to be
destroyed by the operating system. This can be achieved by overriding the onStop() lifecycle method of the
Activity superclass. To have Android Studio generate a stub method for this, simply select the Override Methods. ..
option from the code generation list and select the onStop() method from the resulting list of available methods:

Figure 9-14

Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Kotlin source file as follows:
override fun onStop () {

super.onStop ()

)
9.9 Code folding

Once a source code file reaches a certain size, even the most carefully formatted and well-organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 9-15, for example, highlights

77

The Basics of the Android Studio Code Editor

the start and end markers for code that is not currently folded:

Figure 9-15

Clicking on either of these markers will fold the statement such that only the signature line is visible as shown
in Figure 9-16:

Figure 9-16

To unfold a collapsed section of code, click on the ‘+’ marker in the editor gutter. To see the hidden code without
unfolding it, hover the mouse pointer over the “{...}” indicator as shown in Figure 9-17. The editor will then
display the lens overlay containing the folded code block:

Figure 9-17
All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings... (Android Studio -> Preferences... on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 9-18):

78

The Basics of the Android Studio Code Editor

Figure 9-18
9.10 Quick documentation lookup

Context-sensitive Kotlin and Android documentation can be accessed by hovering the cursor over the declaration
for which documentation is required. This will display a popup containing the relevant reference documentation
for the item. Figure 9-19, for example, shows the documentation for the Android Bundle class.

Figure 9-19

Once displayed, the documentation popup can be moved around the screen as needed.

9.11 Code reformatting

In general, the Android Studio editor will automatically format code in terms of indenting, spacing, and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a website), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display
the Reformat File dialog (Figure 9-20) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire source file currently active in the

79

The Basics of the Android Studio Code Editor

editor, or only code that has changed as the result of a source code control update.

Figure 9-20

The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences... on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog, for
example, unfold the Code Style section, select Kotlin and, from the Kotlin settings, select the Arrangement tab.

9.12 Finding sample code

The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample
Code menu option. The Find Sample Code panel (Figure 9-21) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

Figure 9-21
9.13 Live templates

As you write Android code you will find that there are common constructs that are used frequently. For example,
a common requirement is to display a popup message to the user using the Android Toast class. Live templates
are a collection of common code constructs that can be entered into the editor by typing the initial characters
followed by a special key (set to the Tab key by default) to insert template code. To experience this in action, type
toast in the code editor followed by the Tab key, and Android Studio will insert the following code at the cursor
position ready for editing:

Toast.makeText (, "", Toast.LENGTH SHORT) .show ()

To list and edit existing templates, change the special key, or add your own templates, open the Preferences
dialog and select Live Templates from the Editor section of the left-hand navigation panel:

80

The Basics of the Android Studio Code Editor

Figure 9-22
Add, remove, duplicate or reset templates using the buttons marked A in Figure 9-22 above. To modify a
template, select it from the list (B) and change the settings in the panel marked C.
9.14 Summary

The Android Studio editor goes to great length to reduce the amount of typing needed to write code and to make
that code easier to read and navigate. In this chapter, we have covered many of the key editor features including
code completion, code generation, editor window splitting, code folding, reformatting, documentation lookup,
and live templates.

81

Chapter 12

12. Kotlin Data Types, Variables and
Nullability

Both this and the following few chapters are intended to introduce the basics of the Kotlin programming
language. This chapter will focus on the various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, type casting and Kotlin’s handling of null values.

As outlined in the previous chapter, entitled “An Introduction to Kotlin” a useful way to experiment with the
language is to use the Kotlin online playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://play.kotlinlang.org and use the playground to try out the code in both this
and the other Kotlin introductory chapters that follow.

12.1 Kotlin data types

When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on
disk drives and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each
1 or 0 is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte.
When people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can
be handled simultaneously by the CPU bus. A 64-bit CPU, for example, is able to handle data in 64-bit blocks,
resulting in faster performance than a 32-bit based system.

Humans, of course, don’t think in binary. We work with decimal numbers, letters and words. For a human
to easily (‘easily’ being a relative term in this context) program a computer, some middle ground between
human and computer thinking is needed. This is where programming languages such as Kotlin come into
play. Programming languages allow humans to express instructions to a computer in terms and structures we
understand, and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Kotlin define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Kotlin program we could do so with syntax similar to the following:

val mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:

1010

Similarly, we can express a letter, the visual representation of a digit (‘0" through to ‘9’) or punctuation mark
(referred to in computer terminology as characters) using the following syntax:

val myletter = 'c'

Once again, this is understandable by a human programmer, but gets compiled down to a binary sequence

for the CPU to understand. In this case, the letter €’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to human readable characters). When

91

https://play.kotlinlang.org/

Kotlin Data Types, Variables and Nullability

converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Kotlin.

12.1.1 Integer data types

Kotlin integer data types are used to store whole numbers (in other words a number with no decimal places). All
integers in Kotlin are signed (in other words capable of storing positive, negative and zero values).

Kotlin provides support for 8, 16, 32 and 64 bit integers (represented by the Byte, Short, Int and Long types
respectively).

12.1.2 Floating point data types

The Kotlin floating-point data types are able to store values containing decimal places. For example, 4353.1223
would be stored in a floating-point data type. Kotlin provides two floating-point data types in the form of Float
and Double. Which type to use depends on the size of value to be stored and the level of precision required. The
Double type can be used to store up to 64-bit floating-point numbers. The Float data type, on the other hand, is
limited to 32-bit floating-point numbers.

12.1.3 Boolean data type

Kotlin, like other languages, includes a data type for the purpose of handling true or false (1 or 0) conditions.
Two Boolean constant values (true and false) are provided by Kotlin specifically for working with Boolean data

types.
12.1.4 Character data type

The Kotlin Char data type is used to store a single character of rendered text such as a letter, numerical digit,
punctuation mark or symbol. Internally characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points that are combined to represent a single
visible character.

The following lines assign a variety of different characters to Character type variables:
val myCharl = 'f'
val myChar2 = ':'
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The following example assigns the X’ character
to a variable using Unicode:

val myChar4 = '\u0058"'

Note the use of single quotes when assigning a character to a variable. This indicates to Kotlin that this is a Char
data type as opposed to double quotes which indicate a String data type.

12.1.5 String data type

The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated and modified. Double quotes are used to surround single line strings
during assignment, for example:

val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes

92

Kotlin Data Types, Variables and Nullability

val message = """You have 10 new messages,
5 old messages
and 6 spam messages."""
The leading spaces on each line of a multi-line string can be removed by making a call to the trimMargin()
function of the String data type:
val message = """You have 10 new messages,

5 old messages

and 6 spam messages.""".trimMargin ()

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before outputting it to the console:

val username = "John"
val inboxCount = 25
val maxcount = 100

val message = "S$Susername has $inboxCount messages. Message capacity remaining is
${maxcount - inboxCount} messages"

println (message)

When executed, the code will output the following message:

John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape sequences

In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape characters) available for specifying items such as a new line, tab or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:

var backslash = "\\!

The complete list of special characters supported by Kotlin is as follows:

o \n - New line

o \r - Carriage return

o \t - Horizontal tab

« \\ - Backslash

« \” - Double quote (used when placing a double quote into a string declaration)

« \"- Single quote (used when placing a single quote into a string declaration)

\$ - Used when a character sequence containing a $ is misinterpreted as a variable in a string template.

« \unnnn - Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the

93

Kotlin Data Types, Variables and Nullability

Unicode character.

12.2 Mutable variables

Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable
may then be used in the Kotlin code to access the value assigned to that variable. This access can involve either
reading the value of the variable or, in the case of mutable variables, changing the value.

12.3 Immutable variables

Often referred to as a constant, an immutable variable is similar to a mutable variable in that it provides a named
location in memory to store a data value. Immutable variables differ in one significant way in that once a value
has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value which is used repeatedly throughout the application
code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be clear to someone reading your Kotlin
code why you used the value 5 in an expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable values also have the advantage that if the
programmer needs to change a widely used value, it only needs to be changed once in the constant declaration
and not each time it is referenced.

12.4 Declaring mutable and immutable variables

Mutable variables are declared using the var keyword and may be initialized with a value at creation time. For
example:

var userCount = 10
If the variable is declared without an initial value, the type of the variable must also be declared (a topic which will

be covered in more detail in the next section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:

var userCount: Int

userCount = 42

Immutable variables are declared using the val keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring the variable without initializing it:
val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in preference to mutable variables
whenever possible.

12.5 Data types are objects

All of the above data types are objects, each of which provides a range of functions and properties that may
be used to perform a variety of different type specific tasks. These functions and properties are accessed using
so-called dot notation. Dot notation involves accessing a function or property of an object by specifying the
variable name followed by a dot followed in turn by the name of the property to be accessed or function to be
called.

A string variable, for example, can be converted to uppercase via a call to the toUpperCase() function of the
String class:

94

Kotlin Data Types, Variables and Nullability

val myString = "The quick brown fox"

val uppercase = myString.toUpperCase ()

Similarly, the length of a string is available by accessing the length property:
val length = myString.length

Functions are also available within the String class to perform tasks such as comparisons and checking for the
presence of a specific word. The following code, for example, will return a true Boolean value since the word
“fox” appears within the string assigned to the myString variable:

val result = myString.contains ("fox")

All of the number data types include functions for performing tasks such as converting from one data type to
another such as converting an Int to a Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the Kotlin data type classes is beyond the
scope of this book (there are hundreds). An exhaustive list for all data types can, however, be found within the
Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

12.6 Type annotations and type inference

Kotlin is categorized as a statically typed programming language. This essentially means that once the data
type of a variable has been identified, that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed programming languages where a variable,
once declared, can subsequently be used to store other data types.

There are two ways in which the type of a variable will be identified. One approach is to use a type annotation at
the point the variable is declared in the code. This is achieved by placing a colon after the variable name followed
by the type declaration. The following line of code, for example, declares a variable named userCount as being
of type Int:

val userCount: Int = 10
In the absence of a type annotation in a declaration, the Kotlin compiler uses a technique referred to as type
inference to identify the type of the variable. When relying on type inference, the compiler looks to see what type

of value is being assigned to the variable at the point that it is initialized and uses that as the type. Consider, for
example, the following variable declarations:

var signalStrength = 2.231

val companyName = "My Company"

During compilation of the above lines of code, Kotlin will infer that the signalStrength variable is of type Double
(type inference in Kotlin defaults to Double for all floating-point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:

val iosBookType = false

val bookTitle: String

95

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

Kotlin Data Types, Variables and Nullability

if (iosBookType) {

bookTitle = "i0S App Development Essentials"
} else {

bookTitle = "Android Studio Development Essentials"
}
12.7 Nullable type

Kotlin nullable types are a concept that does not exist in most other programming languages (with the exception
of the optional type in Swift). The purpose of nullable types is to provide a safe and consistent approach to
handling situations where a variable may have a null value assigned to it. In other words, the objective is to avoid
the common problem of code crashing with the null pointer exception errors that occur when code encounters
a null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it. Consider, for example, the following code:

val username: String = null

An attempt to compile the above code will result in a compilation error similar to the following:

Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be specifically declared as a nullable type by
placing a question mark (?) after the type declaration:

val username: String? = null

The username variable can now have a null value assigned to it without triggering a compiler error. Once a
variable has been declared as nullable, a range of restrictions are then imposed on that variable by the compiler

to prevent it being used in situations where it might cause a null pointer exception to occur. A nullable variable,
cannot, for example, be assigned to a variable of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the compiler:

Error: Type mismatch: inferred type is String? but String was expected

The only way that the assignment will be permitted is if some code is added to check that the value assigned to
the nullable variable is non-null:

val username: String? = null

if (username != null) {
val firstname: String = username

}

In the above case, the assignment will only take place if the username variable references a non-null value.

12.8 The safe call operator

A nullable variable also cannot be used to call a function or to access a property in the usual way. Earlier in this
chapter, the toUpperCase() function was called on a String object. Given the possibility that this could cause a
function to be called on a null reference, the following code will be disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase ()

96

Kotlin Data Types, Variables and Nullability

The exact error message generated by the compiler in this situation reads as follows:

Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable
receiver of type String?

In this instance, the compiler is essentially refusing to allow the function call to be made because no attempt
has been made to verify that the variable is non-null. One way around this is to add some code to verify that
something other than null value has been assigned to the variable before making the function call:
if (username != null) {

val uppercase = username.toUpperCase ()
}
A much more efficient way to achieve this same verification, however, is to call the function using the safe call
operator (represented by ?.) as follows:

val uppercase = username?.toUpperCase ()

In the above example, if the username variable is null, the toUpperCase() function will not be called and execution
will proceed at the next line of code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be used when accessing properties:

val uppercase = username?.length

12.9 Not-null assertion

The not-null assertion removes all of the compiler restrictions from a nullable type, allowing it to be used in
the same ways as a non-null type, even if it has been assigned a null value. This assertion is implemented using
double exclamation marks after the variable name, for example:

val username: String? = null

val length = username!!.length

The above code will now compile, but will crash with the following exception at runtime since an attempt is
being made to call a function on a non existent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid. Use of the not-null assertion is
generally discouraged and should only be used in situations where you are certain that the value will not be null.

12.10 Nullable types and the let function

Earlier in this chapter, we looked at how the safe call operator can be used when making a call to a function
belonging to a nullable type. This technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem occurs when passing a nullable type as an
argument to a function which is expecting a non-null parameter. As an example, consider the times() function
of the Int data type. When called on an Int object and passed another integer value as an argument, the function
multiplies the two values and returns the result. When the following code is executed, for example, the value of
200 will be displayed within the console:

val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times (secondNumber)

print (result)

The above example works because the secondNumber variable is a non-null type. A problem, however, occurs if
97

Kotlin Data Types, Variables and Nullability

the secondNumber variable is declared as being of nullable type:

val firstNumber = 10

val secondNumber: Int? = 20

val result = firstNumber.times (secondNumber)

print (result)

Now the compilation will fail with the following error message because a nullable type is being passed to a
function that is expecting a non-null parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to simply write an if statement to verify that the value assigned to the
variable is non-null before making the call to the function:
val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber !'= null) {
val result = firstNumber.times (secondNumber)
print (result)

}

A more convenient approach to addressing the issue, however, involves use of the let function. When called on a
nullable type object, the let function converts the nullable type to a non-null variable named it which may then
be referenced within a lambda statement.
secondNumber?.let {

val result = firstNumber.times (it)

print (result)

}

Note the use of the safe call operator when calling the lef function on secondVariable in the above example. This
ensures that the function is only called when the variable is assigned a non-null value.

12.11 Late initialization (lateinit)

As previously outlined, non-null types need to be initialized when they are declared. This can be inconvenient
if the value to be assigned to the non-null variable will not be known until later in the code execution. One way
around this is to declare the variable using the lateinit modifier. This modifier designates that a value will be
initialized with a value later. This has the advantage that a non-null type can be declared before it is initialized,
with the disadvantage that the programmer is responsible for ensuring that the initialization has been performed
before attempting to access the variable. Consider the following variable declaration:

var myName: String
Clearly, this is invalid since the variable is a non-null type but has not been assigned a value. Suppose, however,

that the value to be assigned to the variable will not be known until later in the program execution. In this case,
the lateinit modifier can be used as follows:

lateinit var myName: String

With the variable declared in this way, the value can be assigned later, for example:
myName = "John Smith"

print ("My Name is " + myName)

98

Kotlin Data Types, Variables and Nullability

Of course, if the variable is accessed before it is initialized, the code will fail with an exception:

lateinit var myName: String
print ("My Name is " + myName)

Exception in thread "main" kotlin.UninitializedPropertyAccessException: lateinit
property myName has not been initialized

To verify whether a lateinit variable has been initialized, check the isInitialized property on the variable. To do
this, we need to access the properties of the variable by prefixing the name with the “:” operator:
if (::myName.isInitialized) {

print ("My Name is " + myName)

)
12.12 The Elvis operator

The Kotlin Elvis operator can be used in conjunction with nullable types to define a default value that is to be
returned if a value or expression result is null. The Elvis operator (?:) is used to separate two expressions. If the
expression on the left does not resolve to a null value that value is returned, otherwise the result of the rightmost
expression is returned. This can be thought of as a quick alternative to writing an if-else statement to check for
a null value. Consider the following code:
if (myString != null) {

return myString
} else {

return "String is null"

}

The same result can be achieved with less coding using the Elvis operator as follows:

return myString ?: "String is null"

12.13 Type casting and type checking

When compiling Kotlin code, the compiler can typically infer the type of an object. Situations will occur,
however, where the compiler is unable to identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this situation it may be necessary to let
the compiler know the type of object that your code is expecting or to write code that checks whether the object
is of a particular type.

Letting the compiler know the type of object that is expected is known as type casting and is achieved within
Kotlin code using the as cast operator. The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a KeyguardManager object:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as KeyguardManager
The Kotlin language includes both safe and unsafe cast operators. The above cast is an unsafe cast and will

cause the app to throw an exception if the cast cannot be performed. A safe cast, on the other hand, uses the as?
operator and returns null if the cast cannot be performed:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as? KeyguardManager

A type check can be performed to verify that an object conforms to a specific type using the is operator, for
example:

if (keyMgr is KeyguardManager) {

99

Kotlin Data Types, Variables and Nullability

// It is a KeyguardManager object
}

12.14 Summary

This chapter has begun the introduction to Kotlin by exploring data types together with an overview of how to
declare variables. The chapter has also introduced concepts such as nullable types, type casting and type checking
and the Elvis operator, each of which is an integral part of Kotlin programming and designed specifically to
make code writing less prone to error.

100

Chapter 18

18. An Overview of Compose

Now that Android Studio has been installed and the basics of the Kotlin programing language covered, it is time
to start introducing Jetpack Compose.

Jetpack Compose is an entirely new approach to developing apps for all of Google’s operating system platforms.
The basic goals of Compose are to make app development easier, faster, and less prone to the types of bugs that
typically appear when developing software projects. These elements have been combined with Compose-specific
additions to Android Studio that allow Compose projects to be tested in near real-time using an interactive
preview of the app during the development process.

Many of the advantages of Compose originate from the fact that it is both declarative and data-driven, topics
which will be explained in this chapter.

The discussion in this chapter is intended as a high-level overview of Compose and does not cover the practical
aspects of implementation within a project. Implementation and practical examples will be covered in detail in
the remainder of the book.

18.1 Development before Compose

To understand the meaning and advantages of the Compose declarative syntax, it helps to understand how user
interface layouts were designed before the introduction of Compose. Previously, Android apps were still built
entirely using Android Studio together with a collection of associated frameworks that make up the Android
Development Kit.

To aid in the design of the user interface layouts that make up the screens of an app, Android Studio includes
a tool called the Layout Editor. The Layout Editor is a powerful tool that allows XML files to be created which
contain the individual components that make up a screen of an app.

The user interface layout of a screen is designed within the Layout Editor by dragging components (such as
buttons, text, text fields, and sliders) from a widget palette to the desired location on the layout canvas. Selecting
a component in a scene provides access to a range of property panels where the attributes of the components
can be changed.

The layout behavior of the screen (in other words how it reacts to different device screen sizes and changes
to device orientation between portrait and landscape) is defined by configuring a range of constraints that
dictate how each component is positioned and sized in relation to both the containing window and the other
components in the layout.

Finally, any components that need to respond to user events (such as a button tap or slider motion) are connected
to methods in the app source code where the event is handled.

At various points during this development process, it is necessary to compile and run the app on a simulator or
device to test that everything is working as expected.

18.2 Compose declarative syntax

Compose introduces a declarative syntax that provides an entirely different way of implementing user interface
layouts and behavior from the Layout Editor approach. Instead of manually designing the intricate details of the
layout and appearance of components that make up a scene, Compose allows the scenes to be described using

139

An Overview of Compose

a simple and intuitive syntax. In other words, Compose allows layouts to be created by declaring how the user
interface should appear without having to worry about the complexity of how the layout is built.

This essentially involves declaring the components to be included in the layout, stating the kind of layout
manager in which they are to be contained (column, row, box, list, etc.), and using modifiers to set attributes
such as the text on a button, the foreground color of a label, or the handler to be called in the event of a tap
gesture. Having made these declarations, all the intricate and complicated details of how to position, constrain
and render the layout are handled automatically by Compose.

Compose declarations are structured hierarchically, which also makes it easy to create complex views by
composing together small, re-usable custom sub-views.

While a layout is being declared and tested, Android Studio provides a preview canvas that changes in real-
time to reflect the appearance of the layout. Android Studio also includes an interactive preview mode which
allows the app to be launched within the preview canvas and fully tested without the need to build and run on
a simulator or device.

Coverage of the Compose declaration syntax begins with the chapter entitled “Composable Functions Overview”.

18.3 Compose is data-driven

When we say that Compose is data-driven, this is not to say that it is no longer necessary to handle events
generated by the user (in other words the interaction between the user and the app user interface). It is still
necessary, for example, to know when the user taps a button or moves a slider and to react in some app-specific
way. Being data-driven relates more to the relationship between the underlying app data and the user interface
and logic of the app.

Before the introduction of Compose, an Android app would contain code responsible for checking the current
values of data within the app. If data was likely to change over time, code had to be written to ensure that the user
interface always reflected the latest state of the data (perhaps by writing code to frequently check for changes
to the data, or by providing a refresh option for the user to request a data update). Similar challenges arise
when keeping the user interface state consistent and making sure issues like toggle button settings are stored
appropriately. Requirements such as these can become increasingly complex when multiple areas of an app
depend on the same data sources.

Compose addresses this complexity by providing a system that is based on state. Data that is stored as state
ensures that any changes to that data are automatically reflected in the user interface without the need to write
any additional code to detect the change. Any user interface component that accesses a state is essentially
subscribed to that state. When the state is changed anywhere in the app code, any subscriber components to that
data will be destroyed and recreated to reflect the data change in a process called recomposition. This ensures
that when any state on which the user interfaces is dependent changes, all components that rely on that data will
automatically update to reflect the latest state.

State and recomposition will be covered in the chapter entitled “An Overview of Compose State and Recomposition™.

18.4 Summary

Jetpack introduces a different approach to app development than that offered by the Android Studio Layout
Editor. Rather than directly implement the way in which a user interface is to be rendered, Compose allows the
user interface to be declared in descriptive terms and then does all the work of deciding the best way to perform
the rendering when the app runs.

Compose is also data-driven in that data changes drive the behavior and appearance of the app. This is achieved
through states and recomposition.

140

An Overview of Compose

This chapter has provided a very high-level view of Jetpack Compose. The remainder of this book will explore
Compose in greater depth.

141

Chapter 25

25. Composing Layouts with Row and
Column

User interface design is largely a matter of selecting the appropriate interface components, deciding how those
views will be positioned on the screen, and then implementing navigation between the different screens of the

app.

As is to be expected, Compose includes a wide range of user interface components for use when developing an
app. Compose also provides a set of layout composables to define both how the user interface is organized and
how the layout responds to factors such as changes in screen orientation and size.

This chapter will introduce the Row and Column composables included with Compose and explain how these
can be used to create user interface designs with relative ease.

25.1 Creating the RowColDemo project

Launch Android Studio and select the New Project option from the welcome screen. Within the resulting new
project dialog, choose the Empty Compose Activity template before clicking on the Next button.

Enter RowColDemo into the Name field and specify com.example.rowcoldemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo). Edit the
Gradle Scripts -> build.gradle (Project: RowColDemo) file, increase the compose_ui_version number from 1.1.1
to 1.2.1 (or the latest Compose 1.2 revision), and click on the Sync Now link.

Within the MainActivity.kt file, delete the Greeting function and add a new empty composable named
MainScreen:
@Composable

fun MainScreen () {

}

Next, edit the onCreateActivity() method and DefaultPreview function to call MainScreen instead of Greeting.
As we work through the examples in this chapter, row and column-based layouts will be built using instances of
a custom component named TextCell which displays text within a black border with a small amount of padding
to provide space between adjoining components. Before proceeding, add this function to the MainActivity.kt
file as follows:

import androidx.compose.foundation.border

import androidx.compose.foundation.layout.padding
import androidx.compose.foundation.layout.*
import androidx.compose.ui.graphics.Color

import androidx.compose.ui.text.font.FontWeight

import androidx.compose.ui.text.style.TextAlign

193

Composing Layouts with Row and Column

import androidx.compose.ui.unit.dp

import androidx.compose.ui.unit.sp

@Composable
fun TextCell (text: String, modifier: Modifier = Modifier) ({

val cellModifier = Modifier
.padding (4.dp)
.size (100.dp, 100.dp)
.border (width = 4.dp, color = Color.Black)

Text (text = text, cellModifier.then (modifier),
fontSize = 70.sp,
fontWeight = FontWeight.Bold,
textAlign = TextAlign.Center)
}

25.2 Row composable

The Row composable, as the name suggests, lays out its children horizontally on the screen. For example, add a
simple Row composable to the MainScreen function as follows:

@Composable
fun MainScreen() {
Row {
TextCell ("1")
TextCell ("2")
TextCell ("3")

}

When rendered, the Row declared above will appear as illustrated in Figure 25-1 below:

Figure 25-1
25.3 Column composable

The Column composable performs the same purpose as the Row with the exception that its children are arranged
vertically. The following example places the same three composables within a Column:

@Composable

fun MainScreen() {

194

Column {
TextCell ("1")
TextCell ("2")
TextCell ("3")

}

Composing Layouts with Row and Column

The rendered output from the code will appear as shown in Figure 25-2:

25.4 Combining Row and Column composables

Row and Column composables can, of course, be embedded within each other to create table style layouts. Try,
for example, the following composition containing a mixture of embedded Row and Column layouts:

@Composable
fun MainScreen () {
Column {
Row {
Column {
TextCell ("1")
TextCell ("2")
TextCell ("3")
}
Column {
TextCell ("4")
TextCell ("5")
TextCell ("6")
}
Column {
TextCell ("7")
TextCell ("8")
}
}
Row {

195

Composing Layouts with Row and Column

TextCell ("9")
TextCell ("10")
TextCell ("11")

}
Figure 25-3 illustrates the layout generated by the above code:

Figure 25-3

Using this technique, Row and Column layouts may be embedded within each other to achieve just about any
level of layout complexity.

25.5 Layout alignment

Both the Row and Column composables will occupy an area of space within the user interface layout depending
on child elements, other composables, and any size-related modifiers that may have been applied. By default,
the group of child elements within a Row or Column will be aligned with the top left-hand corner of the content
area (assuming the app is running on a device configured with a left-to-right reading locale). We can see this
effect if we increase the size of our original example Row composable:
@Composable
fun MainScreen () {
Row (modifier = Modifier.size (width = 400.dp, height = 200.dp)) {

TextCell ("1")

TextCell ("2")

TextCell ("3")

}

Before making this change, the Row was wrapping its children (in other words sizing itself to match the content).
Now that the Row is larger than the content we can see that the default alignment has placed the children in the
top left-hand corner of the Row component:

196

Composing Layouts with Row and Column

Figure 25-4

This default alignment in the vertical axis may be changed by passing through a new value using the
verticalAlignment parameter of the Row composable. For example, to position the children in the vertical center
of the available space, the Alignment.CenterVertically value would be passed to the Row as follows:

import androidx.compose.ui.Alignment

@Composable
fun MainScreen () {
Row (verticalAlignment = Alignment.CenterVertically,
modifier = Modifier.size (width = 400.dp, height = 200.dp)) {
TextCell ("1")
TextCell ("2")
TextCell ("3")

}

This will cause the content to be positioned in the vertical center of the Row’s area as illustrated below:

Figure 25-5

The following is a list of alignment values accepted by the Row vertical alignment parameter:

« Alignment.Top - Aligns the content at the top of the Row content area.

« Alignment.CenterVertically - Positions the content in the vertical center of the Row content area.
« Alignment.Bottom - Aligns the content at the bottom of the Row content area.

When working with the Column composable, the horizontalAlignment parameter is used to configure alignment
along the horizontal axis. Acceptable values are as follows:

197

Composing Layouts with Row and Column

« Alignment.Start - Aligns the content at the horizontal start of the Column content area.

o Alignment.CenterHorizontally - Positions the content in the horizontal center of the Column content area
« Alignment.End - Aligns the content at the horizontal end of the Column content area.

In the following example, the Column’s children have been aligned with the end of the Column content area:

@Composable
fun MainScreen () {
Column (horizontalAlignment = Alignment.End,
modifier = Modifier.width (250.dp)) {
TextCell ("1")
TextCell ("2")
TextCell ("3")

}

When rendered, the resulting column will appear as shown in Figure 25-6:

Figure 25-6

When working with alignment it is worth remembering that it works on the opposite axis to the flow of the
containing composable. For example, while the Row organizes children horizontally, alignment operates on
the vertical axis. Conversely, alignment operates on the horizontal axis for the Column composable while
children are arranged vertically. The reason for emphasizing this point will become evident when we introduce
arrangements.

25.6 Layout arrangement positioning

Unlike the alignment settings, arrangement controls child positioning along the same axis as the container (i.e.
horizontally for Rows and vertically for Columns). Arrangement values are set on Row and Column instances
using the horizontalArrangement and vertical Arrangement parameters respectively. Arrangement properties can
be categorized as influencing either position or child spacing.

The following positional settings are available for the Row component via the horizontal Arrangement parameter:
« Arrangement.Start - Aligns the content at the horizontal start of the Row content area.

+ Arrangement.Center - Positions the content in the horizontal center of the Row content area.

198

Composing Layouts with Row and Column

o Arrangement.End - Aligns the content at the horizontal end of the Row content area.

The above settings can be visualized as shown in Figure 25-7:

Figure 25-7

The Column composable, on the other hand, accepts the following values for the vertical Arrangement parameter:
 Arrangement.Top - Aligns the content at the top of the Column content area.

o Arrangement.Center - Positions the content in the vertical center of the Column content area.

« Arrangement.Bottom - Aligns the content at the bottom of the Column content area.

Figure 25-8 illustrates these vertical Arrangement settings:

Figure 25-8

Using our example once again, the following change moves the child elements to the end of the Row content
area:

Row (horizontalArrangement = Arrangement.End,
modifier = Modifier.size(width = 400.dp, height = 200.dp)) {
TextCell ("1"M)
TextCell ("2")
TextCell ("3")
}

The above code will generate the following user interface layout:

Figure 25-9
Similarly, the following positions child elements at the bottom of the containing Column:

199

Composing Layouts with Row and Column

Column (verticalArrangement = Arrangement.Bottom,
modifier = Modifier.height (400.dp)) {
TextCell ("1")
TextCell ("2")
TextCell ("3")
}

The above composable will render within the Preview panel as illustrated in Figure 25-10 below:

Figure 25-10
25.7 Layout arrangement spacing

Arrangement spacing controls how the child components in a Row or Column are spaced across the content
area. These settings are still defined using the horizontalArrangement and vertical Arrangement parameters, but
require one of the following values:

o Arrangement.SpaceEvenly - Children are spaced equally, including space before the first and after the last
child.

« Arrangement.SpaceBetween - Children are spaced equally, with no space allocation before the first and after
the last child.

o Arrangement.SpaceAround - Children are spaced equally, including half spacing before the first and after
the last child.

In the following declaration, the children of a Row are positioned using the SpaceEvenly setting:
Row (horizontalArrangement = Arrangement.SpaceEvenly,
modifier = Modifier.width(1000.dp)) {
TextCell ("1")
TextCell ("2")
TextCell ("3")
}

The above code gives us the following layout with equal gaps at the beginning and end of the row and between
each child:

200

Composing Layouts with Row and Column

Figure 25-11

Figure 25-12, on the other hand, shows the same row configured with the SpaceBetween setting. Note that the
row has no leading or trailing spacing:

Figure 25-12

Finally, Figure 25-13 shows the effect of applying the SpaceAround setting which adds full spacing between
children and half the spacing on the leading and trailing ends:

Figure 25-13
25.8 Row and Column scope modifiers

The children of a Row or Column are said to be within the scope of the parent. These two scopes (RowScope and
ColumnScope) provide a set of additional modifier functions that can be applied to change the behavior and
appearance of individual children within a Row or Column. The Android Studio code editor provides a visual
indicator when children are within a scope. In Figure 25-14, for example, the editor indicates that the RowScope
modifier functions are available to the three child composables:

Figure 25-14

When working with the Column composable, a similar ColumnScope indicator will appear.
ColumnScope includes the following modifiers for controlling the position of child components:

o Modifier.align() - Allows the child to be aligned horizontally using Alignment.CenterHorizontally, Alignment.
Start, and Alignment.End values.

« Modifier.alignBy() - Aligns a child horizontally with other siblings on which the alignBy() modifier has also
been applied.

o Modifier.weight() - Sets the height of the child relative to the weight values assigned to its siblings.

201

Composing Layouts with Row and Column
RowScope provides the following additional modifier functions to Row children:

« Modifier.align() - Allows the child to be aligned vertically using Alignment.CenterVertically, Alignment. Top,
and Alignment.Bottom values.

» Modifier.alignBy() - Aligns a child with other siblings on which the alignBy() modifier has also been applied.
Alignment may be performed by baseline or using custom alignment line configurations.

« Modifier.alignByBaseline() - Aligns the baseline of a child with any siblings that have also been configured
by either the alignBy() or alignByBaseline() modifier.

» Modifier.paddingFrom() - Allows padding to be added to the alignment line of a child.
« Modifier.weight() - Sets the width of the child relative to the weight values assigned to its siblings.

The following Row declaration, for example, sets different alignments on each of the three TextCell children:
Row (modifier = Modifier.height (300.dp)) {

TextCell ("1", Modifier.align(Alignment.Top))

TextCell ("2", Modifier.align(Alignment.CenterVertically))

TextCell ("3", Modifier.align(Alignment.Bottom))
}

When previewed, this will generate a layout resembling Figure 25-15:

Figure 25-15
The baseline alignment options are especially useful for aligning text content with differing font sizes. Consider,
for example, the following Row configuration:
Row {
Text (
text = "Large Text",
fontSize = 40.sp,
fontWeight = FontWeight.Bold
)
Text (
text = "Small Text",
fontSize = 32.sp,
fontWeight = FontWeight.Bold

202

Composing Layouts with Row and Column

This code consists of a Row containing two Text composables, each using a different font size resulting in the
following layout:

Figure 25-16

The Row has aligned the two Text composables along their top edges causing the text content to be out of
alignment relative to the text baselines. To resolve this problem we can apply the alignByBaseline() modifier to
both children as follows:
Row {
Text (
text = "Large Text",
Modifier.alignByBaseline (),
fontSize = 40.sp,
fontWeight = FontWeight.Bold
)
Text (
text = "Small Text",
Modifier.alignByBaseline(),
fontSize = 32.sp,
fontWeight = FontWeight.Bold,

}

Now when the layout is rendered, the baselines of the two Text composables will be aligned as illustrated in
Figure 25-17:

Figure 25-17

As an alternative, the alignByBaseline() modifier may be replaced by a call to the alignBy() function, passing
through FirstBaseline as the alignment parameter:

Modifier.alignBy (FirstBaseline)

When working with multi-line text, passing LastBaseline through to the alignBy() modifier function will cause
appropriately configured sibling components to align with the baseline of the last line of text:

import androidx.compose.ui.layout.LastBaseline

@Composable
fun MainScreen () {
Row {

203

Composing Layouts with Row and Column

Text (
text = "Large Text\nMore Text",
Modifier.alignBy (LastBaseline),
fontSize = 40.sp,
fontWeight = FontWeight.Bold

)

Text (
text = "Small Text",
Modifier.alignByBaseline(),
fontSize = 32.sp,
fontWeight = FontWeight.Bold,

}

Now when the layout appears the baseline of the text content of the second child will align with the baseline of
the last line of text in the first child:

Figure 25-18

Using the FirstBaseline in the above example would, of course, align the baseline of the small text composable
with the baseline of the first line of text in the multi-line component:

Figure 25-19

In the examples we have looked at so far we have specified the baseline as the alignment line for both children.
If we need the alignment to be offset for a child, we can do so using the paddingFrom() modifier. The following
example adds an additional 80dp vertical offset to the first baseline alignment position of the small text
composable:

import androidx.compose.ui.layout.FirstBaseline

@Composable
fun MainScreen() {
Row {

204

Composing Layouts with Row and Column

Text (
text = "Large Text\nMore Text",
Modifier.alignBy (FirstBaseline),
fontSize = 40.sp,
fontWeight = FontWeight.Bold

)

Text (
text = "Small Text",
modifier = Modifier.paddingFrom (

alignmentLine = FirstBaseline, before = 80.dp, after = 0.dp),

fontSize = 32.sp,
fontWeight = FontWeight.Bold

}

When rendered, the above layout will appear as shown in Figure 25-20:

Figure 25-20
25.9 Scope modifier weights

The RowScope weight modifier allows the width of each child to be specified relative to its siblings. This works
by assigning each child a weight percentage (between 0.0 and 1.0). Two children assigned a weight of 0.5, for
example, would each occupy half of the available space. Modify the MainScreen function one last time as follows
to demonstrate the use of the weight modifier:

@Composable
fun MainScreen () {
Row {
TextCell ("1", Modifier.weight(weight = 0.2f, fill = true))
TextCell ("2", Modifier.weight(weight = 0.4f, fill = true))
TextCell ("3", Modifier.weight(weight = 0.3f, fill = true))

}

Rebuild and refresh the preview panel, at which point the layout should resemble that shown in Figure 25-21
below:

Figure 25-21
205

Composing Layouts with Row and Column

Siblings that do not have a weight modifier applied will appear at their preferred size leaving the weighted
children to share the remaining space.

ColumnScope also provides align(), alignBy(), and weight() modifiers, though these all operate on the horizontal
axis. Unlike RowScope, there is no concept of baselines when working with ColumnScope.

25.10 Summary

The Compose Row and Column components provide an easy way to layout child composables in horizontal
and vertical arrangements. When embedded within each other, the Row and Column allow table style layouts of
any level of complexity to be created. Both layout components include options for customizing the alignment,
spacing, and positioning of children. Scope modifiers allow the positioning, and sizing behavior of individual
children to be defined, including aligning and sizing children relative to each other.

206

Chapter 33

33. An Overview of Lists and Grids in
Compose

It is a common requirement when designing user interface layouts to present information in either scrollable
list or grid configurations. For basic list requirements, the Row and Column components can be re-purposed
to provide vertical and horizontal lists of child composables. Extremely large lists, however, are likely to cause
degraded performance if rendered using the standard Row and Column composables. For lists containing large
numbers of items, Compose provides the LazyColumn and LazyRow composables. Similarly, grid-based layouts
can be presented using the LazyVerticalGrid composable.

This chapter will introduce the basics of list and grid creation and management in Compose in preparation for
the tutorials in subsequent chapters.

33.1 Standard vs. lazy lists

Part of the popularity of lists is that they provide an effective way to present large amounts of items in a scrollable
format. Each item in a list is represented by a composable which may; itself, contain descendant composables.
When a list is created using the Row or Column component, all of the items it contains are also created at
initialization, regardless of how many are visible at any given time. While this does not necessarily pose a
problem for smaller lists, it can be an issue for lists containing many items.

Consider, for example, a list that is required to display 1000 photo images. It can be assumed with a reasonable
degree of certainty that only a small percentage of items will be visible to the user at any one time. If the
application was permitted to create each of the 1000 items in advance, however, the device would very quickly
run into memory and performance limitations.

When working with longer lists, the recommended course of action is to use LazyColumn, LazyRow, and
LazyVerticalGrid. These components only create those items that are visible to the user. As the user scrolls,
items that move out of the viewable area are destroyed to free up resources while those entering view are created
just in time to be displayed. This allows lists of potentially infinite length to be displayed with no performance
degradation.

Since there are differences in approach and features when working with Row and Column compared to the lazy
equivalents, this chapter will provide an overview of both types.

33.2 Working with Column and Row lists

Although lacking some of the features and performance advantages of the LazyColumn and LazyRow, the Row
and Column composables provide a good option for displaying shorter, basic lists of items. Lists are declared
in much the same way as regular rows and columns with the exception that each list item is usually generated
programmatically. The following declaration, for example, uses the Column component to create a vertical list
containing 100 instances of a composable named MyListItem:

Column {
repeat (100) {
MyListItem/()

269

An Overview of Lists and Grids in Compose
}

Similarly, the following example creates a horizontal list containing the same items:
Row {
repeat (100) |
MyListItem()

}

The MyListltem composable can be anything from a single Text composable to a complex layout containing
multiple composables.

33.3 Creating lazy lists

Lazy lists are created using the LazyColumn and LazyRow composables. These layouts place children within
a LazyListScope block which provides additional features for managing and customizing the list items. For
example, individual items may be added to a lazy list via calls to the item() function of the LazyListScope:

LazyColumn {
item {
MyListItem()

}

Alternatively, multiple items may be added in a single statement by calling the items() function:
LazyColumn {
items (1000) { index ->

Text ("This is item S$index");

}

LazyListScope also provides the itemsIndexed() function which associates the item content with an index value,
for example:

val colorNamesList = 1istOf ("Red", "Green", "Blue", "Indigo")

LazyColumn {
itemsIndexed (colorNamesList) { index, item ->

Text ("$index = S$Sitem")

}

When rendered, the above lazy column will appear as shown in Figure 33-1 below:

Figure 33-1

270

An Overview of Lists and Grids in Compose

Lazy lists also support the addition of headers to groups of items in a list using the stickyHeader() function. This
topic will be covered in more detail later in the chapter.

33.4 Enabling scrolling with ScrollState

While the above Column and Row list examples will display a list of items, only those that fit into the viewable
screen area will be accessible to the user. This is because lists are not scrollable by default. To make Row and
Column-based lists scrollable, some additional steps are needed. LazyList and LazyRow, on the other hand,
support scrolling by default.

The first step in enabling list scrolling when working with Row and Column-based lists is to create a ScrollState
instance. This is a special state object designed to allow Row and Column parents to remember the current scroll
position through recompositions. A ScrollState instance is generated via a call to the rememberScrollState()
function, for example:

val scrollState = rememberScrollState ()

Once created, the scroll state is passed as a parameter to the Column or Row composable using the verticalScroll()
and horizontalScroll() modifiers. In the following example, vertical scrolling is being enabled in a Column list:
Column (Modifier.verticalScroll (scrollState)) {

repeat (100) {
MyListItem()

}

Similarly, the following code enables horizontal scrolling on a LazyRow list:

Row (Modifier.horizontalScroll (scrollState)) {
repeat (1000) {
MyListItem()

}
33.5 Programmatic scrolling

We generally think of scrolling as being something a user performs through dragging or swiping gestures on the
device screen. It is also important to know how to change the current scroll position from within code. An app
screen might, for example, contain buttons which can be tapped to scroll to the start and end of a list. The steps
to implement this behavior differ between Row and Columns lists and the lazy list equivalents.

When working with Row and Column lists, programmatic scrolling can be performed by calling the following
functions on the ScrollState instance:

« animateScrollTo(value: Int) - Scrolls smoothly to the specified pixel position in the list using animation.
o scrollTo(value: Int) - Scrolls instantly to the specified pixel position.

Note that the value parameters in the above function represent the list position in pixels instead of referencing a
specific item number. It is safe to assume that the start of the list is represented by pixel position 0, but the pixel
position representing the end of the list may be less obvious. Fortunately, the maximum scroll position can be
identified by accessing the maxValue property of the scroll state instance:

val maxScrollPosition = scrollState.maxValue

To programmatically scroll LazyColumn and LazyRow lists, functions need to be called on a LazyListState
instance which can be obtained via a call to the rememberLazyListState() function as follows:

271

An Overview of Lists and Grids in Compose
val listState = rememberLazyListState()

Once the list state has been obtained, it must be applied to the LazyRow or LazyColumn declaration as follows:

LazyColumn (
state = listState,

Scrolling can then be performed via calls to the following functions on the list state instance:

« animateScrollToItem(index: Int) - Scrolls smoothly to the specified list item (where 0 is the first item).
o scrollToltem(index: Int) - Scrolls instantly to the specified list item (where 0 is the first item).

In this case, the scrolling position is referenced by the index of the item instead of pixel position.

One complication is that all four of the above scroll functions are coroutine functions. As outlined in the chapter
titled “Coroutines and LaunchedEffects in Jetpack Compose”, coroutines are a feature of Kotlin that allows blocks
of code to execute asynchronously without blocking the thread from which they are launched (in this case the
main thread which is responsible for making sure the app remains responsive to the user). Coroutines can be
implemented without having to worry about building complex implementations or directly managing multiple
threads. Because of the way they are implemented, coroutines are much more efficient and less resource-intensive
than using traditional multi-threading options. One of the key requirements of coroutine functions is that they
must be launched from within a coroutine scope.

As with ScrollState and LazyListState, we need access to a CoroutineScope instance that will be remembered
through recompositions. This requires a call to the rememberCoroutineScope() function as follows:

val coroutineScope = rememberCoroutineScope ()

Once we have a coroutine scope, we can use it to launch the scroll functions. The following code, for example,
declares a Button component configured to launch the animateScrollTo() function within the coroutine scope.
In this case, the button will cause the list to scroll to the end position when clicked:

Button (onClick = {
coroutineScope.launch {

scrollState.animateScrollTo (scrollState.maxValue)

}
33.6 Sticky headers

Sticky headers is a feature only available within lazy lists that allows list items to be grouped under a corresponding
header. Sticky headers are created using the LazyListScope stickyHeader() function.

The headers are referred to as being sticky because they remain visible on the screen while the current group is
scrolling. Once a group scrolls from view, the header for the next group takes its place. Figure 33-2, for example,

272

An Overview of Lists and Grids in Compose

shows a list with sticky headers. Note that although the Apple group is scrolled partially out of view, the header
remains in position at the top of the screen:

Figure 33-2

When working with sticky headers, the list content must be stored in an Array or List which has been mapped
using the Kotlin groupBy() function. The groupBy() function accepts a lambda which is used to define the
selector which defines how data is to be grouped. This selector then serves as the key to access the elements of
each group. Consider, for example, the following list which contains mobile phone models:

val phones = 1listOf ("Apple iPhone 12", "Google Pixel 4", "Google Pixel 6",

"Samsung Galaxy 6s", "Apple iPhone 7", "OnePlus 7", "OnePlus 9 Pro",
"Apple iPhone 13", "Samsung Galaxy Z Flip", "Google Pixel 4a",
"Apple iPhone 8")

Now suppose that we want to group the phone models by manufacturer. To do this we would use the first word
of each string (in other words, the text before the first space character) as the selector when calling groupBy() to
map the list:

val groupedPhones = phones.groupBy { it.substringBefore(' ') }

Once the phones have been grouped by manufacturer, we can use the forEach statement to create a sticky header
for each manufacture name, and display the phones in the corresponding group as list items:
groupedPhones.forEach { (manufacturer, models) ->
stickyHeader {
Text (
text = manufacturer,
color = Color.White,
modifier = Modifier
.background (Color.Gray)
.padding (5.dp)
.fil1MaxWidth ()

273

An Overview of Lists and Grids in Compose

)

items (models) { model ->
MyListItem (model)

}

In the above forEach lambda, manufacturer represents the selector key (for example “Apple”) and models an

» «

array containing the items in the corresponding manufacturer group (“Apple iPhone 127, “Apple iPhone 77, and
so on for the Apple selector):

groupedPhones.forEach { (manufacturer, models) ->

The selector key is then used as the text for the sticky header, and the models list is passed to the items() function
to display all the group elements, in this case using a custom composable named MyListItem for each item:
items (models) { model ->

MyListItem (model)
}

When rendered, the above code will display the list shown in Figure 33-2 above.

33.7 Responding to scroll position
Both LazyRow and LazyColumn allow actions to be performed when a list scrolls to a specified item position.

This can be particularly useful for displaying a “scroll to top” button that appears only when the user scrolls
towards the end of the list.

The behavior is implemented by accessing the firstVisibleItemIndex property of the LazyListState instance which
contains the index of the item that is currently the first visible item in the list. For example, if the user scrolls a
LazyColumn list such that the third item in the list is currently the topmost visible item, firstVisibleItemIndex
will contain a value of 2 (since indexes start counting at 0). The following code, for example, could be used to
display a “scroll to top” button when the first visible item index exceeds 8:

val firstVisible = listState.firstVisibleItemIndex

if (firstVisible > 8) {
// Display scroll to top button
}

33.8 Creating a lazy grid

Grid layouts may be created using the LazyVerticalGrid composable. The appearance of the grid is controlled by
the cells parameter that can be set to either adaptive or fixed mode. In adaptive mode, the grid will calculate the
number of rows and columns that will fit into the available space, with even spacing between items and subject
to a minimum specified cell size. Fixed mode, on the other hand, is passed the number of rows to be displayed
and sizes each column width equally to fill the width of the available space.

The following code, for example, declares a grid containing 30 cells, each with a minimum width of 60dp:

LazyVerticalGrid(
cells = GridCells.Adaptive (minSize = 60.dp),
state = rememberLazyListState(),

contentPadding = PaddingValues (10.dp)

274

An Overview of Lists and Grids in Compose

items (30) { index ->
Card (backgroundColor = Color.Blue,
modifier = Modifier.padding (5.dp) .fillMaxSize ()) {
Text (
"Sindex",
fontSize = 35.sp,
color = Color.White,

textAlign = TextAlign.Center)

}

When called, the LazyVerticalGrid composable will fit as many items as possible into each row without making
the column width greater than 60dp as illustrated in the figure below:

Figure 33-3
The following code organizes items in a grid containing three columns:
LazyVerticalGrid(
cells = GridCells.Fixed(3),
state = rememberLazylListState(),
contentPadding = PaddingValues (10.dp)

items (15) { index ->
Card (backgroundColor = Color.Blue,
modifier = Modifier.padding (5.dp) .fillMaxSize()) {
Text (
"Sindex",
fontSize = 35.sp,
color = Color.White,

textAlign = TextAlign.Center)

}

The layout from the above code will appear as illustrated in Figure 33-4 below:

275

An Overview of Lists and Grids in Compose

Figure 33-4
Both the above grid examples used a Card composable containing a Text component for each cell item. The Card
component provides a surface into which to group content and actions relating to a single content topic and is
often used as the basis for list items. Although we provided a Text composable as the child, the content in a card
can be any composable, including containers such as Row, Column, and Box layouts. A key feature of Card is the
ability to create a shadow effect by specifying an elevation:
Card (
modifier = Modifier
.fillMaxWidth ()
.padding (15.dp),
elevation = 10.dp

Column (horizontalAlignment = Alignment.CenterHorizontally,

modifier = Modifier.padding(15.dp)

Text ("Jetpack Compose", fontSize = 30.sp)
Text ("Card Example", fontSize = 20.sp)

}

When rendered, the above Card component will appear as shown in Figure 33-5:

Figure 33-5
33.9 Summary

Lists in Compose may be created using either standard or lazy list components. The lazy components have
the advantage that they can present large amounts of content without impacting the performance of the app
or the device on which it is running. This is achieved by creating list items only when they become visible and
destroying them as they scroll out of view. Lists can be presented in row, column, and grid formats and can be
static or scrollable. It is also possible to programmatically scroll lists to specific positions and to trigger events
based on the current scroll position.

276

	1. Start Here
	1.1 For Kotlin programmers
	1.2 For new Kotlin programmers
	1.3 Downloading the code samples
	1.4 Feedback
	1.5 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Making the Android SDK tools command-line accessible
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. A Compose Project Overview
	3.1 About the project
	3.2 Creating the project
	3.3 Creating an activity
	3.4 Defining the project and SDK settings
	3.5 Previewing the example project
	3.6 Reviewing the main activity
	3.7 Preview updates
	3.8 Upgrading to Jetpack Compose 1.2
	3.9 Summary

	4. An Example Compose Project
	4.1 Getting started
	4.2 Removing the template Code
	4.3 The Composable hierarchy
	4.4 Adding the DemoText composable
	4.5 Previewing the DemoText composable
	4.6 Adding the DemoSlider composable
	4.7 Adding the DemoScreen composable
	4.8 Previewing the DemoScreen composable
	4.9 Testing in interactive mode
	4.10 Completing the project
	4.11 Summary

	5. Creating an Android Virtual Device (AVD) in Android Studio
	5.1 About Android Virtual Devices
	5.2 Starting the emulator
	5.3 Running the application in the AVD
	5.4 Running on multiple devices
	5.5 Stopping a running application
	5.6 Supporting dark theme
	5.7 Running the emulator in a separate window
	5.8 Enabling the device frame
	5.9 Summary

	6. Using and Configuring the Android Studio AVD Emulator
	6.1 The emulator environment
	6.2 The emulator toolbar options
	6.3 Working in zoom mode
	6.4 Resizing the emulator window
	6.5 Extended control options
	6.5.1 Location
	6.5.2 Displays
	6.5.3 Cellular
	6.5.4 Battery
	6.5.5 Camera
	6.5.6 Phone
	6.5.7 Directional pad
	6.5.8 Microphone
	6.5.9 Fingerprint
	6.5.10 Virtual sensors
	6.5.11 Snapshots
	6.5.12 Record and playback
	6.5.13 Google Play
	6.5.14 Settings
	6.5.15 Help

	6.6 Working with snapshots
	6.7 Configuring fingerprint emulation
	6.8 The emulator in tool window mode
	6.9 Summary

	7. A Tour of the Android Studio User Interface
	7.1 The Welcome Screen
	7.2 The Main Window
	7.3 The Tool Windows
	7.4 Android Studio Keyboard Shortcuts
	7.5 Switcher and Recent Files Navigation
	7.6 Changing the Android Studio Theme
	7.7 Summary

	8. Testing Android Studio Apps on a Physical Android Device
	8.1 An overview of the Android Debug Bridge (ADB)
	8.2 Enabling USB debugging ADB on Android devices
	8.2.1 macOS ADB configuration
	8.2.2 Windows ADB configuration
	8.2.3 Linux adb configuration

	8.3 Resolving USB connection issues
	8.4 Enabling wireless debugging on Android devices
	8.5 Testing the adb connection
	8.6 Summary

	9. The Basics of the Android Studio Code Editor
	9.1 The Android Studio editor
	9.2 Code mode
	9.3 Splitting the editor window
	9.4 Code completion
	9.5 Statement completion
	9.6 Parameter information
	9.7 Parameter name hints
	9.8 Code generation
	9.9 Code folding
	9.10 Quick documentation lookup
	9.11 Code reformatting
	9.12 Finding sample code
	9.13 Live templates
	9.14 Summary

	10. An Overview of the Android Architecture
	10.1 The Android software stack
	10.2 The Linux kernel
	10.3 Android runtime – ART
	10.4 Android libraries
	10.4.1 C/C++ libraries

	10.5 Application framework
	10.6 Applications
	10.7 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables and Nullability
	12.1 Kotlin data types
	12.1.1 Integer data types
	12.1.2 Floating point data types
	12.1.3 Boolean data type
	12.1.4 Character data type
	12.1.5 String data type
	12.1.6 Escape sequences

	12.2 Mutable variables
	12.3 Immutable variables
	12.4 Declaring mutable and immutable variables
	12.5 Data types are objects
	12.6 Type annotations and type inference
	12.7 Nullable type
	12.8 The safe call operator
	12.9 Not-null assertion
	12.10 Nullable types and the let function
	12.11 Late initialization (lateinit)
	12.12 The Elvis operator
	12.13 Type casting and type checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression syntax in Kotlin
	13.2 The Basic assignment operator
	13.3 Kotlin arithmetic operators
	13.4 Augmented assignment operators
	13.5 Increment and decrement operators
	13.6 Equality operators
	13.7 Boolean logical operators
	13.8 Range operator
	13.9 Bitwise operators
	13.9.1 Bitwise inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise left shift
	13.9.6 Bitwise right shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue statement
	14.1.6 Break and continue labels

	14.2 Conditional control flow
	14.2.1 Using the if expressions
	14.2.2 Using if ... else … expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a function?
	15.2 How to declare a Kotlin function
	15.3 Calling a Kotlin function
	15.4 Single expression functions
	15.5 Local functions
	15.6 Handling return values
	15.7 Declaring default function parameters
	15.8 Variable number of function parameters
	15.9 Lambda expressions
	15.10 Higher-order functions
	15.11 Summary

	16. The Basics of Object-Oriented Programming in Kotlin
	16.1 What is an object?
	16.2 What is a class?
	16.3 Declaring a Kotlin class
	16.4 Adding properties to a class
	16.5 Defining methods
	16.6 Declaring and initializing a class instance
	16.7 Primary and secondary constructors
	16.8 Initializer blocks
	16.9 Calling methods and accessing properties
	16.10 Custom accessors
	16.11 Nested and inner classes
	16.12 Companion objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, classes, and subclasses
	17.2 Subclassing syntax
	17.3 A Kotlin inheritance example
	17.4 Extending the functionality of a subclass
	17.5 Overriding inherited methods
	17.6 Adding a custom secondary constructor
	17.7 Using the SavingsAccount class
	17.8 Summary

	18. An Overview of Compose
	18.1 Development before Compose
	18.2 Compose declarative syntax
	18.3 Compose is data-driven
	18.4 Summary

	19. Composable Functions Overview
	19.1 What is a composable function?
	19.2 Stateful vs. stateless composables
	19.3 Composable function syntax
	19.4 Foundation and Material composables
	19.5 Summary

	20. An Overview of Compose State and Recomposition
	20.1 The basics of state
	20.2 Introducing recomposition
	20.3 Creating the StateExample project
	20.4 Declaring state in a composable
	20.5 Unidirectional data flow
	20.6 State hoisting
	20.7 Saving state through configuration changes
	20.8 Summary

	21. An Introduction to Composition Local
	21.1 Understanding CompositionLocal
	21.2 Using CompositionLocal
	21.3 Creating the CompLocalDemo project
	21.4 Designing the layout
	21.5 Adding the CompositionLocal state
	21.6 Accessing the CompositionLocal state
	21.7 Testing the design
	21.8 Summary

	22. An Overview of Compose Slot APIs
	22.1 Understanding slot APIs
	22.2 Declaring a slot API
	22.3 Calling slot API composables
	22.4 Summary

	23. A Compose Slot API Tutorial
	23.1 About the project
	23.2 Creating the SlotApiDemo project
	23.3 Preparing the MainActivity class file
	23.4 Creating the MainScreen composable
	23.5 Adding the ScreenContent composable
	23.6 Creating the Checkbox composable
	23.7 Implementing the ScreenContent slot API
	23.8 Adding an Image drawable resource
	23.9 Writing the TitleImage composable
	23.10 Completing the MainScreen composable
	23.11 Previewing the project
	23.12 Summary

	24. Using Modifiers in Compose
	24.1 An overview of modifiers
	24.2 Creating the ModifierDemo project
	24.3 Creating a modifier
	24.4 Modifier ordering
	24.5 Adding modifier support to a composable
	24.6 Common built-in modifiers
	24.7 Combining modifiers
	24.8 Summary

	25. Composing Layouts with Row and Column
	25.1 Creating the RowColDemo project
	25.2 Row composable
	25.3 Column composable
	25.4 Combining Row and Column composables
	25.5 Layout alignment
	25.6 Layout arrangement positioning
	25.7 Layout arrangement spacing
	25.8 Row and Column scope modifiers
	25.9 Scope modifier weights
	25.10 Summary

	26. Box Layouts in Compose
	26.1 An introduction to the Box composable
	26.2 Creating the BoxLayout project
	26.3 Adding the TextCell composable
	26.4 Adding a Box layout
	26.5 Box alignment
	26.6 BoxScope modifiers
	26.7 Using the clip() modifier
	26.8 Summary

	27. Custom Layout Modifiers
	27.1 Compose layout basics
	27.2 Custom layouts
	27.3 Creating the LayoutModifier project
	27.4 Adding the ColorBox composable
	27.5 Creating a custom layout modifier
	27.6 Understanding default position
	27.7 Completing the layout modifier
	27.8 Using a custom modifier
	27.9 Working with alignment lines
	27.10 Working with baselines
	27.11 Summary

	28. Building Custom Layouts
	28.1 An overview of custom layouts
	28.2 Custom layout syntax
	28.3 Using a custom layout
	28.4 Creating the CustomLayout project
	28.5 Creating the CascadeLayout composable
	28.6 Using the CascadeLayout composable
	28.7 Summary

	29. A Guide to ConstraintLayout in Compose
	29.1 An introduction to ConstraintLayout
	29.2 How ConstraintLayout works
	29.2.1 Constraints
	29.2.2 Margins
	29.2.3 Opposing constraints
	29.2.4 Constraint bias
	29.2.5 Chains
	29.2.6 Chain styles

	29.3 Configuring dimensions
	29.4 Guideline helper
	29.5 Barrier helper
	29.6 Summary

	30. Working with ConstraintLayout in Compose
	30.1 Calling ConstraintLayout
	30.2 Generating references
	30.3 Assigning a reference to a composable
	30.4 Adding constraints
	30.5 Creating the ConstraintLayout project
	30.6 Adding the ConstraintLayout library
	30.7 Adding a custom button composable
	30.8 Basic constraints
	30.9 Opposing constraints
	30.10 Constraint bias
	30.11 Constraint margins
	30.12 The importance of opposing constraints and bias
	30.13 Creating chains
	30.14 Working with guidelines
	30.15 Working with barriers
	30.16 Decoupling constraints with constraint sets
	30.17 Summary

	31. Working with IntrinsicSize in Compose
	31.1 Intrinsic measurements
	31.2 Max. vs Min. Intrinsic Size measurements
	31.3 About the example project
	31.4 Creating the IntrinsicSizeDemo project
	31.5 Creating the custom text field
	31.6 Adding the Text and Box components
	31.7 Adding the top-level Column
	31.8 Testing the project
	31.9 Applying IntrinsicSize.Max measurements
	31.10 Applying IntrinsicSize.Min measurements
	31.11 Summary

	32. Coroutines and LaunchedEffects in Jetpack Compose
	32.1 What are coroutines?
	32.2 Threads vs. coroutines
	32.3 Coroutine Scope
	32.4 Suspend functions
	32.5 Coroutine dispatchers
	32.6 Coroutine builders
	32.7 Jobs
	32.8 Coroutines – suspending and resuming
	32.9 Coroutine channel communication
	32.10 Understanding side effects
	32.11 Summary

	33. An Overview of Lists and Grids in Compose
	33.1 Standard vs. lazy lists
	33.2 Working with Column and Row lists
	33.3 Creating lazy lists
	33.4 Enabling scrolling with ScrollState
	33.5 Programmatic scrolling
	33.6 Sticky headers
	33.7 Responding to scroll position
	33.8 Creating a lazy grid
	33.9 Summary

	34. A Compose Row and Column List Tutorial
	34.1 Creating the ListDemo project
	34.2 Creating a Column-based list
	34.3 Enabling list scrolling
	34.4 Manual scrolling
	34.5 A Row list example
	34.6 Summary

	35. A Compose Lazy List Tutorial
	35.1 Creating the LazyListDemo project
	35.2 Adding list data to the project
	35.3 Reading the XML data
	35.4 Handling image loading
	35.5 Designing the list item composable
	35.6 Building the lazy list
	35.7 Testing the project
	35.8 Making list items clickable
	35.9 Summary

	36. Lazy List Sticky Headers and Scroll Detection
	36.1 Grouping the list item data
	36.2 Displaying the headers and items
	36.3 Adding sticky headers
	36.4 Reacting to scroll position
	36.5 Adding the scroll button
	36.6 Testing the finished app
	36.7 Summary

	37. Compose Visibility Animation
	37.1 Creating the AnimateVisibility project
	37.2 Animating visibility
	37.3 Defining enter and exit animations
	37.4 Animation specs and animation easing
	37.5 Repeating an animation
	37.6 Different animations for different children
	37.7 Auto-starting an animation
	37.8 Implementing crossfading
	37.9 Summary

	38. Compose State-Driven Animation
	38.1 Understanding state-driven animation
	38.2 Introducing animate as state functions
	38.3 Creating the AnimateState project
	38.4 Animating rotation with animateFloatAsState
	38.5 Animating color changes with animateColorAsState
	38.6 Animating motion with animateDpAsState
	38.7 Adding spring effects
	38.8 Working with keyframes
	38.9 Combining multiple animations
	38.10 Using the Animation Inspector
	38.11 Summary

	39. Canvas Graphics Drawing in Compose
	39.1 Introducing the Canvas component
	39.2 Creating the CanvasDemo project
	39.3 Drawing a line and getting the canvas size
	39.4 Drawing dashed lines
	39.5 Drawing a rectangle
	39.6 Applying rotation
	39.7 Drawing circles and ovals
	39.8 Drawing gradients
	39.9 Drawing arcs
	39.10 Drawing paths
	39.11 Drawing points
	39.12 Drawing an image
	39.13 Summary

	40. Working with ViewModels in Compose
	40.1 What is Android Jetpack?
	40.2 The “old” architecture
	40.3 Modern Android architecture
	40.4 The ViewModel component
	40.5 ViewModel implementation using state
	40.6 Connecting a ViewModel state to an activity
	40.7 ViewModel implementation using LiveData
	40.8 Observing ViewModel LiveData within an activity
	40.9 Summary

	41. A Compose ViewModel Tutorial
	41.1 About the project
	41.2 Creating the ViewModelDemo project
	41.3 Adding the ViewModel
	41.4 Accessing DemoViewModel from MainActivity
	41.5 Designing the temperature input composable
	41.6 Designing the temperature input composable
	41.7 Completing the user interface design
	41.8 Testing the app
	41.9 Summary

	42. An Overview of Android SQLite Databases
	42.1 Understanding database tables
	42.2 Introducing database schema
	42.3 Columns and data types
	42.4 Database rows
	42.5 Introducing primary keys
	42.6 What is SQLite?
	42.7 Structured Query Language (SQL)
	42.8 Trying SQLite on an Android Virtual Device (AVD)
	42.9 The Android Room persistence library
	42.10 Summary

	43. Room Databases and Compose
	43.1 Revisiting modern app architecture
	43.2 Key elements of Room database persistence
	43.2.1 Repository
	43.2.2 Room database
	43.2.3 Data Access Object (DAO)
	43.2.4 Entities
	43.2.5 SQLite database

	43.3 Understanding entities
	43.4 Data Access Objects
	43.5 The Room database
	43.6 The Repository
	43.7 In-Memory databases
	43.8 Database Inspector
	43.9 Summary

	44. A Compose Room Database and Repository Tutorial
	44.1 About the RoomDemo project
	44.2 Creating the RoomDemo project
	44.3 Modifying the build configuration
	44.4 Building the entity
	44.5 Creating the Data Access Object
	44.6 Adding the Room database
	44.7 Adding the repository
	44.8 Adding the ViewModel
	44.9 Designing the user interface
	44.10 Writing a ViewModelProvider Factory class
	44.11 Completing the MainScreen function
	44.12 Testing the RoomDemo app
	44.13 Using the Database Inspector
	44.14 Summary

	45. An Overview of Navigation in Compose
	45.1 Understanding navigation
	45.2 Declaring a navigation controller
	45.3 Declaring a navigation host
	45.4 Adding destinations to the navigation graph
	45.5 Navigating to destinations
	45.6 Passing arguments to a destination
	45.7 Working with bottom navigation bars
	45.8 Summary

	46. A Compose Navigation Tutorial
	46.1 Creating the NavigationDemo project
	46.2 About the NavigationDemo project
	46.3 Declaring the navigation routes
	46.4 Adding the home screen
	46.5 Adding the welcome screen
	46.6 Adding the profile screen
	46.7 Creating the navigation controller and host
	46.8 Implementing the screen navigation
	46.9 Passing the user name argument
	46.10 Testing the project
	46.11 Summary

	47. A Compose Bottom Navigation Bar Tutorial
	47.1 Creating the BottomBarDemo project
	47.2 Declaring the navigation routes
	47.3 Designing bar items
	47.4 Creating the bar item list
	47.5 Adding the destination screens
	47.6 Creating the navigation controller and host
	47.7 Designing the navigation bar
	47.8 Working with the Scaffold component
	47.9 Testing the project
	47.10 Summary

	48. Detecting Gestures in Compose
	48.1 Compose gesture detection
	48.2 Creating the GestureDemo project
	48.3 Detecting click gestures
	48.4 Detecting taps using PointerInputScope
	48.5 Detecting drag gestures
	48.6 Detecting drag gestures using PointerInputScope
	48.7 Scrolling using the scrollable modifier
	48.8 Scrolling using the scroll modifiers
	48.9 Detecting pinch gestures
	48.10 Detecting rotation gestures
	48.11 Detecting translation gestures
	48.12 Summary

	49. Detecting Swipe Gestures in Compose
	49.1 Swipe gestures and anchors
	49.2 Detecting swipe gestures
	49.3 Declaring the anchors map
	49.4 Declaring thresholds
	49.5 Moving a component in response to a swipe
	49.6 About the SwipeDemo project
	49.7 Creating the SwipeDemo project
	49.8 Setting up the swipeable state and anchors
	49.9 Designing the parent Box
	49.10 Testing the project
	49.11 Summary

	50. An Introduction to Kotlin Flow
	50.1 Understanding Flows
	50.2 Creating the sample project
	50.3 Adding a view model to the project
	50.4 Declaring the flow
	50.5 Emitting flow data
	50.6 Collecting flow data as state
	50.7 Transforming data with intermediaries
	50.8 Collecting flow data
	50.9 Adding a flow buffer
	50.10 More terminal flow operators
	50.11 Flow flattening
	50.12 Combining multiple flows
	50.13 Hot and cold flows
	50.14 StateFlow
	50.15 SharedFlow
	50.16 Converting a flow from cold to hot
	50.17 Summary

	51. A Jetpack Compose SharedFlow Tutorial
	51.1 About the project
	51.2 Creating the SharedFlowDemo project
	51.3 Adding a view model to the project
	51.4 Declaring the SharedFlow
	51.5 Collecting the flow values
	51.6 Testing the SharedFlowDemo app
	51.7 Handling flows in the background
	51.8 Summary

	52. Creating, Testing, and Uploading an Android App Bundle
	52.1 The release preparation process
	52.2 Android app bundles
	52.3 Register for a Google Play Developer Console account
	52.4 Configuring the app in the console
	52.5 Enabling Google Play app signing
	52.6 Creating a keystore file
	52.7 Creating the Android app bundle
	52.8 Generating test APK files
	52.9 Uploading the app bundle to the Google Play Developer Console
	52.10 Exploring the app bundle
	52.11 Managing testers
	52.12 Rolling the app out for testing
	52.13 Uploading new app bundle revisions
	52.14 Analyzing the app bundle file
	52.15 Summary

	53. An Overview of Android In-App Billing
	53.1 Preparing a project for In-App purchasing
	53.2 Creating In-App products and subscriptions
	53.3 Billing client initialization
	53.4 Connecting to the Google Play Billing library
	53.5 Querying available products
	53.6 Starting the purchase process
	53.7 Completing the purchase
	53.8 Querying previous purchases
	53.9 Summary

	54. An Android In-App Purchasing Tutorial
	54.1 About the In-App purchasing example project
	54.2 Creating the InAppPurchase project
	54.3 Adding libraries to the project
	54.4 Adding the App to the Google Play Store
	54.5 Creating an In-App product
	54.6 Enabling license testers
	54.7 Creating a purchase helper class
	54.8 Adding the StateFlow streams
	54.9 Initializing the billing client
	54.10 Querying the product
	54.11 Handling purchase updates
	54.12 Launching the purchase flow
	54.13 Consuming the product
	54.14 Restoring a previous purchase
	54.15 Completing the MainActivity
	54.16 Testing the app
	54.17 Troubleshooting
	54.18 Summary

	55. Working with Compose Theming
	55.1 Material Design 2 vs Material Design 3
	55.2 Material Design 2 theming
	55.3 Material Design 3 theming
	55.4 Building a custom theme
	55.5 Summary

	56. A Material Design 3 Theming Tutorial
	56.1 Creating the ThemeDemo project
	56.2 Adding the Material Design 3 library
	56.3 Designing the user interface
	56.4 Building a new theme
	56.5 Adding the theme to the project
	56.6 Enabling dynamic colors
	56.7 Summary

	57. An Overview of Gradle in Android Studio
	57.1 An overview of Gradle
	57.2 Gradle and Android Studio
	57.2.1 Sensible defaults
	57.2.2 Dependencies
	57.2.3 Build variants
	57.2.4 Manifest entries
	57.2.5 APK signing
	57.2.6 ProGuard support

	57.3 The Properties and Settings Gradle build files
	57.4 The top-level gradle build file
	57.5 Module level Gradle build files
	57.6 Configuring signing settings in the build file
	57.7 Running Gradle tasks from the command-line
	57.8 Summary

	Index

