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Chapter 1

1. Start Here
This book aims to teach you how to build Android applications using Jetpack Compose 1.3, Android Studio 
Flamingo (2022.2.1), Material Design 3, and the Kotlin programming language.

The book begins with the basics by explaining how to set up an Android Studio development environment.

The book also includes in-depth chapters introducing the Kotlin programming language, including data types, 
operators, control flow, functions, lambdas, coroutines, and object-oriented programming.

An introduction to the key concepts of Jetpack Compose and Android project architecture is followed by a 
guided tour of Android Studio in Compose development mode. The book also covers the creation of custom 
Composables and explains how functions are combined to create user interface layouts, including row, column, 
box, and list components.

Other topics covered include data handling using state properties, key user interface design concepts such 
as modifiers, navigation bars, and user interface navigation. Additional chapters explore building your own 
reusable custom layout components.

The book covers graphics drawing, user interface animation, transitions, Kotlin Flows, and gesture handling.

Chapters also cover view models, SQLite databases, Room database access, the Database Inspector, live data, 
and custom theme creation. Using in-app billing, you will also learn to generate extra revenue from your app.

Finally, the book explains how to package up a completed app and upload it to the Google Play Store for 
publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code 
for which is also available for download.

Assuming you already have some rudimentary programming experience, are ready to download Android Studio 
and the Android SDK, and have access to a Windows, Mac, or Linux system, you are ready to start.

1.1 For Kotlin programmers
This book addresses the needs of existing Kotlin programmers and those new to Kotlin and Jetpack Compose 
app development. If you are familiar with the Kotlin programming language, you can probably skip the Kotlin-
specific chapters. 

1.2 For new Kotlin programmers
If you are new to Kotlin programming, the entire book is appropriate for you. Just start at the beginning and 
keep going.

1.3 Downloading the code samples
The source code and Android Studio project files for the examples contained in this book are available for 
download at:

https://www.ebookfrenzy.com/retail/compose13/index.php

The steps to load a project from the code samples into Android Studio are as follows:

https://www.ebookfrenzy.com/retail/compose13/index.php
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1. Click on the Open button option from the Welcome to Android Studio dialog.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and 
click on OK.

1.4 Feedback
We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have 
any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

1.5 Errata
While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a 
subject area of this size and complexity may include some errors and oversights. Any known issues with the 
book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/compose13.html

If you find an error not listed in the errata, email our technical support team at feedback@ebookfrenzy.com. 

https://www.ebookfrenzy.com/errata/compose13.html
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Chapter 2

2. Setting up an Android Studio 
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer 
system to act as the development platform. This involves several steps consisting of installing the Android Studio 
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK), 
the Kotlin plug-in and OpenJDK Java development environment. 

This chapter will cover the steps necessary to install the requisite components for Android application 
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

• Windows 8/10/11 64-bit

• macOS 10.14 or later running on Intel or Apple silicon

• Chrome OS device with Intel i5 or higher

• Linux systems with version 2.31 or later of the GNU C Library (glibc)

• Minimum of 8GB of RAM

• Approximately 8GB of available disk space

• 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio 
environment. The content and examples in this book were created based on Android Studio Flamingo 2022.2.1 
using the Android API 33 SDK (Tiramisu) which, at the time of writing, are the latest versions. 

Android Studio is, however, subject to frequent updates so a newer version may have been released since this 
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found 
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that 
there may be some minor differences between this book and the software. A web search for “Android Studio 
Flamingo” should provide the option to download the older version if these differences become a problem. 
Alternatively, visit the following web page to find Android Studio Flamingo 2022.2.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive
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2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which 
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes 
button in the User Account Control dialog if it appears. 

Once the Android Studio setup wizard appears, work through the various screens to configure the installation 
to meet your requirements in terms of the file system location into which Android Studio should be installed 
and whether or not it should be made available to other users of the system. When prompted to select the 
components to install, make sure that the Android Studio and Android Virtual Device options are all selected. 

Although there are no strict rules on where Android Studio should be installed on the system, the remainder 
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and 
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once 
the options have been configured, click on the Install button to begin the installation process. 

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry 
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by 
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to 
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as 
shown in Figure 2-1:

Figure 2-1
To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android 
Studio package will then be installed into the Applications folder of the system, a process that will typically take 
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the 
dock.
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2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the 
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming, 
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory 
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before 
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora-based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio setup wizard
If you have previously installed an earlier version of Android Studio, the first time this new version is launched, 
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have 
settings from a previous version and would like to import them into the latest installation, select the appropriate 
option and location. Alternatively, indicate that you do not need to import any previous settings and click on 
the OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts 
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select 
the Standard installation option before clicking Next. 
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Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After 
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the 
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click on the 
Finish button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio 
screen using your chosen UI theme:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK 
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install 
any missing or updated packages. 
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This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the 
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences 
dialog will appear as shown in Figure 2-5:

Figure 2-5
Immediately after installing Android Studio for the first time it is likely that only the latest released version of 
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes 
corresponding to the versions and click on the Apply button. The rest of this book assumes that the Android 
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This 
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the 
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click 
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before 
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information 
about the packages that are ready to be updated, enable the Show Package Details option located in the lower 
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of 
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To 
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view the currently installed packages and check for updates, remain within the SDK settings screen and select 
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status 
column:

• Android SDK Build-tools

• Android Emulator

• Android SDK Platform-tools

• Google Play Services

• Intel x86 Emulator Accelerator (HAXM installer)*

• Google USB Driver (Windows only)

• Layout Inspector image server for API 31 and T
*Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes 
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator 
settings dialog appears, select the recommended memory allocation:

Figure 2-8
Once the installation is complete, review the package list and make sure that the selected packages are now listed 
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the 
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Apply button again.

2.6 Installing the Android SDK Command-line Tools
Android Studio includes a set of tools that allow some tasks to be performed from your operating system 
command line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab and 
enable the Show Package Details option in the bottom left-hand corner of the window. Next, scroll down the 
list of packages and, when the Android SDK Command-line Tools (latest) package comes into view, enable it as 
shown in Figure 2-9:

 
Figure 2-9

After you have selected the command-line tools package, click on Apply followed by OK to complete the 
installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add 
them to the system’s PATH environment variable. 

Regardless of your operating system, you will need to configure the PATH environment variable to include the 
following paths (where <path_to_android_sdk_installation> represents the file system location into which you 
installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the 
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:
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Figure 2-10
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system 
dependent:

2.6.1 Windows 8.1
1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from 

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the 
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons 
select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click 
on the Edit… button. Using the New button in the edit dialog, add three new entries to the path. For 
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the 
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run 
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that 
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed. 

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry 
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an 
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment 
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables... 
button. Follow the steps outlined for Windows 8.1 starting from step 3.
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2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the 
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen, 
select Advanced system settings from the Related links section. When the System Properties window appears, 
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home 
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the 
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file 
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable 
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the 
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH. 
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured 
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file. 
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management
Android Studio is a large and complex software application that consists of many background processes. Although 
Android Studio has been criticized in the past for providing less than optimal performance, Google has made 
significant performance improvements in recent releases and continues to do so with each new version. These 
improvements include allowing the user to configure the amount of memory used by both the Android Studio 
IDE and the background processes used to build and run apps. This allows the software to take advantage of 
systems with larger amounts of RAM. 

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature 
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance 
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also 
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-11
To view and modify the current memory configuration, select the File -> Settings... (Android Studio -> 
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Preferences... on macOS) menu option and, in the resulting dialog, select Appearance & Behavior followed by the  
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure 
2-12 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your 
system can spare without slowing down other processes. 

Figure 2-12
The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the currently 
loaded project. On the other hand, when a project is built and run from within Android Studio, a number of 
background processes (referred to as daemons) perform the task of compiling and running the app. 
When compiling and running large and complex projects, build time could be improved by adjusting the 
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and 
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an 
open project, select the Tools -> SDK Manager... menu option. 

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK 
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready 
to be installed. 

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the 
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development 
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK 
development environment). In this chapter, we have covered the steps necessary to install these packages on 
Windows, macOS, and Linux.
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3. A Compose Project Overview
Now that we have installed Android Studio, the next step is to create an Android app using Jetpack Compose. 
Although this project will make use of several Compose features, it is an intentionally simple example intended 
to provide an early demonstration of Compose in action and an initial success on which to build as you work 
through the remainder of the book. The project will also serve to verify that your Android Studio environment 
is correctly installed and configured. 

This chapter will create a new project using the Android Studio Compose project template and explore both the 
basic structure of a Compose-based Android Studio project and some of the key areas of Android Studio. In the 
next chapter, we will use this project to create a simple Android app.

Both chapters will briefly explain key features of Compose as they are introduced within the project. If anything 
is unclear when you have completed the project, rest assured that all of the areas covered in the tutorial will be 
explored in greater detail in later chapters of the book. 

3.1 About the project
The completed project will consist of two text components and a slider. When the slider is moved, the current 
value will be displayed on one of the text components, while the font size of the second text instance will adjust 
to match the current slider position. Once completed, the user interface for the app will appear as shown in 
Figure 3-1:

Figure 3-1
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3.2 Creating the project
The first step in building an app is to create a new project within Android Studio. Begin, therefore, by launching 
Android Studio so that the “Welcome to Android Studio” screen appears as illustrated in Figure 3-2:

Figure 3-2
Once this window appears, Android Studio is ready for a new project to be created. To create the new project, 
click on the New Project button to display the first screen of the New Project wizard.

3.3 Creating an activity
The next step is to define the type of initial activity that is to be created for the application. The left-hand panel 
provides a list of platform categories from which the Phone and Tablet option must be selected. Although a range 
of different activity types is available when developing Android applications, only the Empty Activity template 
provides a pre-configured project ready to work with Compose. Select this option before clicking on the Next 
button:

Figure 3-3
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3.4 Defining the project and SDK settings
In the project configuration window (Figure 3-4), set the Name field to ComposeDemo. The application name is 
the name by which the application will be referenced and identified within Android Studio and is also the name 
that would be used if the completed application were to go on sale in the Google Play store:

Figure 3-4
The Package name is used to uniquely identify the application within the Google Play app store application 
ecosystem. Although this can be set to any string that uniquely identifies your app, it is traditionally based on 
the reversed URL of your domain name followed by the name of the application. For example, if your domain 
is www.mycompany.com, and the application has been named ComposeDemo, then the package name might be 
specified as follows:
com.mycompany.composedemo

If you do not have a domain name you can enter any other string into the Company Domain field, or you may 
use example.com for testing, though this will need to be changed before an application can be published:
com.example.composedemo

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your 
home directory and may be changed by clicking on the folder icon to the right of the text field containing the 
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in 
most of the projects created in this book unless a necessary feature is only available in a more recent version. The 
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices 
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK 
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the 
Help me choose link to see a full breakdown of the various Android versions still in use:
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Figure 3-5
Click on the Finish button to create the project. 

3.5 Previewing the example project
At this point, Android Studio should have created a minimal example application project and opened the main 
window.

Figure 3-6
The newly created project and references to associated files are listed in the Project tool window located on the 
left-hand side of the main project window. The Project tool window has several modes in which information 
can be displayed. By default, this panel should be in Android mode. This setting is controlled by the menu at 
the top of the panel as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to 
switch mode:
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Figure 3-7
The code for the main activity of the project (an activity corresponds to a single user interface screen or module 
within an Android app) is contained within the MainActivity.kt file located under app -> java -> com.example.
composedemo within the Project tool window as indicated in Figure 3-8:

Figure 3-8
Double-click on this file to load it into the main code editor panel. The editor can be used in different modes 
when writing code, the most useful of which when working with Compose is Split mode. The current mode 
can be changed using the buttons marked A in Figure 3-9. Split mode displays the code editor (B) alongside the 
Preview panel (C) in which the current user interface design will appear:
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Figure 3-9
To get us started, Android Studio has already added some code to the MainActivity.kt file to display a Text 
component configured to display a message which reads “Hello Android”. 

If the project has not yet been built, the Preview panel will display the message shown in Figure 3-10:

Figure 3-10
If you see this notification, click on the Build & Refresh link to rebuild the project. After the build is complete, 
the Preview panel should update to display the user interface defined by the code in the MainActivity.kt file:

Figure 3-11

3.6 Reviewing the main activity
Android applications are created by bringing together one or more elements known as Activities. An activity 
is a single, standalone module of application functionality that either correlates directly to a single user 
interface screen and its corresponding functionality, or acts as a container for a collection of related screens. An 
appointments application might, for example, contain an activity screen that displays appointments set up for 
the current day. The application might also utilize a second activity consisting of multiple screens where new 
appointments may be entered by the user and existing appointments edited.

When we created the ComposeDemo project, Android Studio created a single initial activity for our app, named 
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it MainActivity, and generated some code for it in the MainActivity.kt file. This activity contains the first screen 
that will be displayed when the app is run on a device. Before we modify the code for our requirements in the 
next chapter, it is worth taking some time to review the code currently contained within the MainActivity.kt file.

The file begins with the following line (keep in mind that this may be different if you used your own domain 
name instead of com.example):
package com.example.composedemo

This tells the build system that the classes and functions declared in this file belong to the com.example.
composedemo package which we configured when we created the project. 

Next are a series of import directives. The Android SDK is comprised of a vast collection of libraries that provide 
the foundation for building Android apps. If all of these libraries were included within an app the resulting app 
bundle would be too large to run efficiently on a mobile device. To avoid this problem an app only imports the 
libraries that it needs to be able to run:
import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.material3.MaterialTheme

import androidx.compose.material3.Surface

import androidx.compose.material3.Text

.

.

Initially, the list of import directives will most likely be “folded” to save space. To unfold the list, click on the 
small “+” button indicated by the arrow in Figure 3-12 below:

Figure 3-12
The MainActivity class is then declared as a subclass of the Android ComponentActivity class:
class MainActivity : ComponentActivity() {

.

.

}

The MainActivity class implements a single method in the form of onCreate(). This is the first method that is 
called when an activity is launched by the Android runtime system and is an artifact of the way apps used to be 
developed before the introduction of Compose. The onCreate() method is used here to provide a bridge between 
the containing activity and the Compose-based user interfaces that are to appear within it:
override fun onCreate(savedInstanceState: Bundle?) {

    super.onCreate(savedInstanceState)

    setContent {

        ComposeDemoTheme {

.
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.

        }

    }

}

The method declares that the content of the activity’s user interface will be provided by a composable function 
named ComposeDemoTheme. This composable function is declared in the Theme.kt file located under the app 
-> <package name> -> ui.theme folder in the Project tool window. This, along with the other files in the ui.theme 
folder defines the colors, fonts, and shapes to be used by the activity and provides a central location from which 
to customize the overall theme of the app’s user interface.

The call to the ComposeDemoTheme composable function is configured to contain a Surface composable. 
Surface is a built-in Compose component designed to provide a background for other composables:
ComposeDemoTheme {

    // A surface container using the 'background' color from the theme

    Surface(

        modifier = Modifier.fillMaxSize(),

        color = MaterialTheme.colorScheme.background

.

.

}

In this case, the Surface component is configured to fill the entire screen and with the background set to the 
standard background color defined by the Android Material Design theme. Material Design is a set of design 
guidelines developed by Google to provide a consistent look and feel across all Android apps. It includes a theme 
(including fonts and colors), a set of user interface components (such as button, text, and a range of text fields), 
icons, and generally defines how an Android app should look, behave and respond to user interactions. 

Finally, the Surface is configured to contain a composable function named Greeting which is passed a string 
value that reads “Android”:
ComposeDemoTheme {

    // A surface container using the 'background' color from the theme

    Surface(

        modifier = Modifier.fillMaxSize(),

        color = MaterialTheme.colorScheme.background

    ) {

        Greeting("Android")

    }

}

Outside of the scope of the MainActivity class, we encounter our first composable function declaration within 
the activity. The function is named Greeting and is, unsurprisingly, marked as being composable by the @
Composable annotation:
@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {

    Text(

        text = "Hello $name!",

        modifier = modifier

    )
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}

The function accepts a String parameter (labeled name) and calls the built-in Text composable, passing through 
a string value containing the word “Hello” concatenated with the name parameter. The function also accepts an 
optional modifier parameter (a topic covered in the chapter titled “Using Modifiers in Compose”). As will soon 
become evident as you work through the book, composable functions are the fundamental building blocks for 
developing Android apps using Compose. 

The second composable function declared in the MainActivity.kt file reads as follows:
@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

    ComposeDemoTheme {

        Greeting("Android")

    }

}

Earlier in the chapter, we looked at how the Preview panel allows us to see how the user interface will appear 
without having to compile and run the app. At first glance, it would be easy to assume that the preview rendering 
is generated by the code in the onCreate() method. In fact, that method only gets called when the app runs 
on a device or emulator. Previews are generated by preview composable functions. The @Preview annotation 
associated with the function tells Android Studio that this is a preview function and that the content emitted by 
the function is to be displayed in the Preview panel. As we will see later in the book, a single activity can contain 
multiple preview composable functions configured to preview specific sections of a user interface using different 
data values.

In addition, each preview may be configured by passing parameters to the @Preview annotation. For example, 
to view the preview with the rest of the standard Android screen decorations, modify the preview annotation so 
that it reads as follows:
@Preview(showSystemUi = true)

Once the preview has been updated, it should now be rendered as shown in Figure 3-13:

Figure 3-13
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3.7 Preview updates
One final point worth noting is that the Preview panel is live and will automatically reflect minor changes made 
to the composable functions that make up a preview. To see this in action, edit the call to the Greeting function 
in the GreetingPreview() preview composable function to change the name from “Android” to “Compose”. Note 
that as you make the change in the code editor, it is reflected in the preview. 

More significant changes will require a build and refresh before being reflected in the preview. When this is 
required, Android Studio will display the following “Out of date” notice at the top of the Preview panel and a 
Build & Refresh button (indicated by the arrow in Figure 3-14):

Figure 3-14
Simply click on the button to update the preview for the latest changes. Occasionally, Android Studio will fail to 
update the preview after code changes. If you believe that the preview no longer matches your code, hover the 
mouse pointer over the Up-to-date status text and select Build & Refresh from the resulting menu, as illustrated 
in Figure 3-15:

 
Figure 3-15

The Preview panel also includes an interactive mode that allows you to trigger events on the user interface 
components (for example clicking buttons, moving sliders, scrolling through lists, etc.). Since ComposeDemo 
contains only an inanimate Text component at this stage, it makes more sense to introduce interactive mode in 
the next chapter.

3.8 Bill of Materials and the Compose version
Although Jetpack Compose and Android Studio appear to be tightly integrated, they are two separate products 
developed by different teams at Google. As a result, there is no guarantee that the most recent Android Studio 
version will default to using the latest version of Jetpack Compose. It can, therefore, be helpful to know which 
version of Jetpack Compose is being used by Android Studio. This is declared in a Bill of Materials (BOM) 
setting within the build configuration files of your Android Studio projects.

To identify the BOM for a project, locate the Gradle Scripts -> build.gradle (Module: app) file (highlighted in the 
figure below) and double-click on it to load it into the editor:
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Figure 3-16
With the file loaded into the editor, locate the compose-bom entry in the dependencies section:
dependencies {

.

.

    implementation platform('androidx.compose:compose-bom:2022.10.00')
.

.

In the above example, we can see that the project is using BOM 2022.10.00. With this information, we can use 
the BOM to library version mapping web page at the following URL to identify the library versions being used 
to build our app:

https://developer.android.com/jetpack/compose/bom/bom-mapping

Once the web page has loaded, select the BOM version from the menu highlighted in Figure 3-17 below. For 
example, the figure shows that BOM 2022.10.00 uses version 1.3.2 of the Compose libraries:

Figure 3-17
The BOM does not currently define the versions of all the dependencies listed in the build file. Therefore, you 
will see some library dependencies in the build.gradle file that include a specific version number, as is the case 
with the core-ktx and lifecycle-runtime-ktx libraries:

https://developer.android.com/jetpack/compose/bom/bom-mapping
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dependencies {

 

    implementation 'androidx.core:core-ktx:1.8.0'
    implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.3.1'
.

.

You can add specific version numbers to any libraries you add to the dependencies, though it is recommended 
to rely on the BOM settings whenever possible to ensure library compatibility. However, a version number 
declaration will be required when adding libraries not listed in the BOM. You can also override the BOM version 
of a library by appending a version number to the declaration. The following declaration, for example, overrides 
the version number in the BOM for the compose.ui library:
implementation 'androidx.compose.ui:ui:1.3.3'

3.9 Summary
In this chapter, we have created a new project using Android Studio’s Empty Activity template and explored some 
of the code automatically generated for the project. We have also introduced several features of Android Studio 
designed to make app development with Compose easier. The most useful features, and the places where you 
will spend most of your time while developing Android apps, are the code editor and Preview panel.

While the default code in the MainActivity.kt file provides an interesting example of a basic user interface, it 
bears no resemblance to the app we want to create. In the next chapter, we will modify and extend the app by 
removing some of the template code and writing our own composable functions.
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5. Creating an Android Virtual 
Device (AVD) in Android Studio
Although the Android Studio Preview panel allows us to see the layout we are designing and test basic 
functionality using interactive mode, it be will necessary to compile and run an entire app to fully test that it 
works. An Android application may be tested by installing and running it either on a physical device or in an 
Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and 
configured to match the specifications of a particular device model. In this chapter, we will work through the 
creation of such a virtual device using the Pixel 4a phone as a reference example.

5.1 About Android Virtual Devices
AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the 
application on a physical Android-based device. An AVD may be configured to emulate a variety of hardware 
features including options such as screen size, memory capacity, and the presence or otherwise of features such 
as a camera, GPS navigation support, or an accelerometer. As part of the standard Android Studio installation, 
several emulator templates are installed allowing AVDs to be configured for a range of different devices. Custom 
configurations may be created to match any physical Android device by specifying properties such as processor 
type, memory capacity, and the size and pixel density of the screen. 

An AVD session can appear either as a separate window or embedded within the Android Studio window. 

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in 
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step 
is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting 
the Tools -> Device Manager menu option from within the main window. 

Once launched, the manager will appear as a tool window as shown in Figure 5-1:

Figure 5-1
To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device 
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button to open the Virtual Device Configuration dialog:

Figure 5-2
Within the dialog, perform the following steps to create a Pixel 4a compatible emulator:

1. From the Category panel, select the Phone option to display the list of available Android phone AVD 
templates.

2. Select the Pixel 4a device option and click Next.

3. On the System Image screen, select the latest version of Android. Note that if the system image has not yet 
been installed a Download link will be provided next to the Release Name. Click this link to download and 
install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or 
ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

4. Click Next to proceed and enter a descriptive name (for example Pixel 4a API 33) into the name field or 
simply accept the default name.

5. Click Finish to create the AVD.

6. With the AVD created, the Device Manager may now be closed. If future modifications to the AVD are 
necessary, simply re-open the Device Manager, select the AVD from the list, and click on the pencil icon in 
the Actions column to edit the settings.

5.2 Starting the emulator
To perform a test run of the newly created AVD emulator, simply select the emulator from the Device Manager 
and click on the launch button (the triangle in the Actions column). The emulator will appear embedded into 
the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to 
start will depend on the configuration of both the AVD and the system on which it is running:
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Figure 5-3
To hide and show the emulator tool window, click on the Emulator tool window button (marked A above). Click 
on the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can accommodate 
multiple emulator sessions, with each session represented by a tab. Figure 5-4, for example, shows a tool window 
with two emulator sessions:

Figure 5-4
To switch between sessions, simply click on the corresponding tab. 

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options 
can be changed. Within the Device Manager, select the new Pixel 4a entry and click on the pencil icon in the 
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change 
the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the 
emulator are covered in the next chapter“Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

5.3 Running the application in the AVD
With an AVD emulator configured, the example ComposeDemo application created in the earlier chapter now 
can be compiled and run. With the ComposeDemo project loaded into Android Studio, make sure that the 
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newly created Pixel 4a AVD is displayed in the device menu (marked A in Figure 5-5 below), then either click 
on the run button represented by a green triangle (B), select the Run -> Run ‘app’ menu option or use the Ctrl-R 
keyboard shortcut:

Figure 5-5
The device menu (A) may be used to select a different AVD instance or physical device as the run target, and 
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device 
connection configuration and troubleshooting options:

Figure 5-6
The app can also be run on the currently selected target by clicking on the icon in the editor gutter next to the 
preview composable declaration as indicated by the arrow in Figure 5-7:

Figure 5-7
Once the application is installed and running, the user interface layout defined by the MainScreen function will 
appear within the emulator:
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Figure 5-8
If the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the 
emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run tool window 
will become available. The Run tool window will display diagnostic information as the application package is 
installed and launched. Figure 5-9 shows the Run tool window output from a successful application launch:

Figure 5-9
If problems are encountered during the launch process, the Run tool window will provide information that will 
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the 
Android development environment is correctly installed and configured.

5.4 Real-time updates with Live Edit
With the app running, now is an excellent time to introduce the Live Edit feature. Like interactive mode in the 
Preview panel, Live Edit updates the appearance and behavior of the app running on the device or emulator as 
changes are made to the code. This feature allows code changes to be tested in real time without having to build 
and re-run the project. Try out Live Edit by changing the text displayed by the DemoText composable as follows:
DemoText(message = "This is Compose 1.3", fontSize = sliderPosition)

With each keystroke, the text in the running app will update to reflect the change. Live Edit is currently limited 
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to changes made within the body of existing functions. It will not, for example, handle the addition, removal, or 
renaming of functions.

5.5 Running on multiple devices
The run menu shown in Figure 5-6 above includes an option to run the app on multiple emulators and devices 
in parallel. When selected, this option displays the dialog shown in Figure 5-10 providing a list of both the AVDs 
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or 
devices to be targeted before clicking on the Run button:

Figure 5-10
After the Run button is clicked, Android Studio will launch the app on the selected emulators and devices.

5.6 Stopping a running application
To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure 
5-11:

Figure 5-11
An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the 
window bar button that becomes available when the app is running as illustrated in Figure 5-12:

Figure 5-12
Once the Run tool window appears, click the stop button highlighted in Figure 5-13 below:

Figure 5-13
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5.7 Supporting dark theme
Android 10 introduced the much-awaited dark theme, support for which is enabled by default in Android 
Studio Compose-based app projects. To test dark theme in the AVD emulator, open the Settings app within the 
running Android instance in the emulator. Within the Settings app, choose the Display category and enable the 
Dark theme option as shown in Figure 5-14 so that the screen background turns black:

Figure 5-14
With dark theme enabled, run the ComposeDemo app and note that it appears using a dark theme including a 
black background and a purple background color on the button as shown in Figure 5-15:

Figure 5-15
Return to the Settings app and turn off Dark theme mode before continuing.

5.8 Running the emulator in a separate window
So far in this chapter, we have only used the emulator as a tool window embedded within the main Android 
Studio window. To run the emulator in a separate window, select the File -> Settings... menu option (Android 
Studio -> Preferences... on macOS), navigate to Tools -> Emulator in the left-hand navigation panel of the 
preferences dialog, and disable the Launch in a tool window option:
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Figure 5-16
With the option disabled, click the Apply button followed by OK to commit the change, then exit the current 
emulator session by clicking on the close button on the tab marked B in Figure 5-3 above.

Run the sample app once again, at which point the emulator will appear as a separate window as shown below:

Figure 5-17
The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator 
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before 
committing to standalone mode, however, keep in mind that the emulator tool window may also be detached 
from the main Android Studio window by clicking on the settings button (represented by the gear icon) in the 
tool emulator toolbar and selecting the View Mode -> Float menu option:
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Figure 5-18

5.9 Enabling the device frame
The emulator can be configured to appear with (Figure 5-15) or without the device frame (Figure 5-17). To 
change the setting, open the Device Manager, select the AVD from the list, and click on the pencil icon in the 
Actions column to edit the settings. In the settings screen, locate and change the Enable Device Frame option:

Figure 5-19

5.10 Summary
A typical application development process follows a cycle of coding, compiling, and running in a test 
environment. Android applications may be tested on either a physical Android device or using an Android 
Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool. 
When creating an AVD to simulate a specific Android device model, the virtual device should be configured 
with a hardware specification matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android 
Studio user interface.
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7. A Tour of the Android Studio User 
Interface
While it is tempting to plunge into running the example application created in the previous chapter, doing so 
involves using aspects of the Android Studio user interface which are best described in advance. 

Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to use. 
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio 
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this 
chapter will provide an initial overview of the various areas and components that make up the Android Studio 
environment.

7.1 The Welcome Screen
The welcome screen (Figure 7-1) is displayed any time that Android Studio is running with no projects currently 
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android 
Studio was previously exited while a project was still open, the tool will bypass the welcome screen next time it 
is launched, automatically opening the previously active project.

Figure 7-1
In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening 
and creating projects along with access to projects currently under version control. In addition, the Customize 
screen provides options to change the theme and font settings used by both the IDE and the editor. Android 
Studio plugins may be viewed, installed, and managed using the Plugins option.
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Additional options are available by clicking on the menu button as shown in Figure 7-2:

Figure 7-2

7.2 The Main Window
When a new project is created, or an existing one opened, the Android Studio main window will appear. When 
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration 
of the window will vary depending on which tools and panels were displayed the last time the project was open, 
but will typically resemble that of Figure 7-3.

Figure 7-3
The various elements of the main window can be summarized as follows:

A – Menu Bar – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick access 
to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting 
the Customize Menus and Toolbars… menu option. If the toolbar is not visible, it can be displayed using the View 
-> Appearance -> Toolbar menu option.

C – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that 
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders 
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods 
contained within that class. Select a method from the list to be taken to the corresponding location within the 
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.
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D – Editor Window – The editor window displays the content of the file on which the developer is currently 
working. When multiple files are open, each file is represented by a tab located along the top edge of the editor 
as shown in Figure 7-4:

Figure 7-4
E – Status Bar – The status bar displays informational messages about the project and the activities of Android 
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar 
will display a description of that field. Many fields are interactive, allowing the user to click to perform tasks or 
obtain more detailed status information.

F – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure 
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in 
several different ways. The default setting is the Android view which is the mode primarily used in the remainder 
of this book.

The project tool window is just one of many tool windows available within the Android Studio environment. 

7.3 The Tool Windows
In addition to the project view tool window, Android Studio also includes many other windows which, when 
enabled, are displayed along the bottom and sides of the main window. The tool window quick access menu can 
be displayed by hovering the mouse pointer over the button located in the far left-hand corner of the status bar 
(Figure 7-5) without clicking the mouse button.

Figure 7-5
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Selecting an item from the quick access menu will cause the corresponding tool window to appear within the 
main window. 

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status 
bar. These bars appear along the left, right, and bottom edges of the main window (as indicated by the arrows in 
Figure 7-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars 
are displayed, a second click on the button in the status bar will hide them.

Figure 7-6
Clicking on a button will display the corresponding tool window while a second click will hide the window. 
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed 
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding 
number.

The location of a button in a tool window bar indicates the side of the window against which the window 
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different 
locations in other window toolbars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool 
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various 
aspects of the window to be changed. Figure 7-7 shows the settings menu for the Project tool window. Options 
are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android 
Studio main window, and to move and resize the tool panel. 
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Figure 7-7
All of the windows also include a far-right button on the toolbar providing an additional way to hide the tool 
window from view. A search of the items within a tool window can be performed simply by giving that window 
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window). 
A search box will appear in the window’s toolbar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

• App Inspector - Provides access to the Database and Background Task inspectors. The Database Inspector 
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task 
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

• Build - The build tool window displays information about the build process while a project is being compiled 
and packaged and displays details of any errors encountered.

• Build Variants – The build variants tool window provides a quick way to configure different build targets 
for the current application project (for example different builds for debugging and release versions of the 
application, or multiple builds to target different device categories).

• Device File Explorer – Available via the View -> Tool Windows -> Device File Explorer menu, this tool window 
provides direct access to the filesystem of the currently connected Android device or emulator allowing the 
filesystem to be browsed and files copied to the local filesystem.

• Device Manager - Provides access to the Device Manager tool window where physical Android device 
connections and emulators may be added, removed, and managed. 

• Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window 
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

• Event Log – The event log window displays messages relating to events and activities performed within 
Android Studio. The successful build of a project, for example, or the fact that an application is now running 
will be reported within this tool window.

• Favorites – A variety of project items can be added to the favorites list. Right-clicking on a file in the project 
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can 
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list 
can be accessed through this Favorites tool window.

• Find - Search for code and text within your project files.

• Gradle – The Gradle tool window provides a view of the Gradle tasks that make up the project build 
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configuration. The window lists the tasks that are involved in compiling the various elements of the project 
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu 
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater 
detail later in this book.

• Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user 
interface layout.

• Logcat – The Logcat tool window provides access to the monitoring log output from a running application in 
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

• Problems - A central location in which to view all of the current errors or warnings within the project. 
Double-clicking on an item in the problem list will take you to the problem file and location.

• Profiler – The Android Profiler tool window provides real-time monitoring and analysis tools for identifying 
performance issues within running apps, including CPU, memory and network usage. This option becomes 
available when an app is currently running.

• Project – The project view provides an overview of the file structure that makes up the project allowing for 
quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be 
loaded into the appropriate editing tool.

• Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout 
files contained with the project.

• Run – The run tool window becomes available when an application is currently running and provides a view 
of the results of the run together with options to stop or restart a running process. If an application is failing 
to install and run on a device or emulator, this window will typically provide diagnostic information relating 
to the problem.

• Structure – The structure tool provides a high-level view of the structure of the source file currently displayed 
in the editor. This information includes a list of items such as classes, methods, and variables in the file. 
Selecting an item from the structure list will take you to that location in the source file in the editor window.

• Running Devices - Displays any AVD instances running within the current Android Studio session.

• Terminal – Provides access to a terminal window on the system on which Android Studio is running. On 
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the 
form of a Terminal prompt.

• TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on 
the project. Android Studio compiles this list by scanning the source files that make up the project to look 
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting 
the File -> Settings… menu option (Android Studio -> Preferences… on macOS) and navigating to the TODO 
page listed under Editor.

• Version Control - This tool window is used when the project files are under source code version control, 
allowing access to Git repositories and code change history.

7.4 Android Studio Keyboard Shortcuts
Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common 
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio 
project window by selecting the Help -> Keyboard Shortcuts menu option. You may also list and modify the 
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS) 
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and clicking on the Keymap entry as shown in Figure 7-8 below:

Figure 7-8

7.5 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main window involves the use of the 
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool 
windows and currently open files (Figure 7-9). 

Figure 7-9
Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping 
the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the 
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure 
7-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the 
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mouse pointer can be used to select an option or the keyboard arrow keys used to scroll through the file name 
and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 7-10

7.6 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed either from the welcome screen using 
the Customize option or via the File -> Settings… menu option (Android Studio -> Preferences… on macOS) of 
the main window. 

Once the settings dialog is displayed, select the Appearance & Behavior option followed by Appearance in the 
left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes 
available will depend on the platform but usually include options such as Light, IntelliJ, Windows, High Contrast, 
and Darcula. Figure 7-11 shows an example of the main window with the Darcula theme selected:

Figure 7-11
To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the 
Sync with OS option and use the drop-down menu to control which theme to use for each mode:
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Figure 7-12

7.7 Summary
The primary elements of the Android Studio environment consist of the welcome screen and main window. 
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and 
design area, status bar, and a collection of tool windows. Tool windows appear on the sides and bottom edges 
of the main window and can be accessed either using the quick access menu located in the status bar or via the 
optional tool window bars.

There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of 
default keyboard shortcuts can be accessed at any time from within the Android Studio main window.
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Chapter 14

14. Kotlin Control Flow
Regardless of the programming language used, application development is largely an exercise in applying 
logic, and much of the art of programming involves writing code that makes decisions based on one or more 
criteria. Such decisions define which code gets executed, how many times it is executed, and, conversely, which 
code gets bypassed when the program is running. This is often referred to as control flow since it controls the 
flow of program execution. Control flow typically falls into the categories of looping control (how often code is 
executed) and conditional control flow (whether or not code is executed). This chapter is intended to provide an 
introductory overview of both types of control flow in Kotlin.

14.1 Looping control flow
This chapter will begin by looking at control flow in the form of loops. Loops are essentially sequences of Kotlin 
statements that are to be executed repeatedly until a specified condition is met. The first looping statement we 
will explore is the for loop.

14.1.1 The Kotlin for-in Statement
The for-in loop is used to iterate over a sequence of items contained in a collection or number range. 

The syntax of the for-in loop is as follows:
for variable name in collection or range {

         // code to be executed

}

In this syntax, variable name is the name to be used for a variable that will contain the current item from the 
collection or range through which the loop is iterating. The code in the body of the loop will typically use this 
name as a reference to the current item in the loop cycle. The collection or range references the item through 
which the loop is iterating. This could, for example, be an array of string values, a range operator, or even a string 
of characters.

Consider, for example, the following for-in loop construct:
for (index in 1..5) {

  println("Value of index is $index")

}

The loop begins by stating that the current item is to be assigned to a constant named index. The statement then 
declares a closed range operator to indicate that the for loop is to iterate through a range of numbers, starting at 
1 and ending at 5. The body of the loop simply prints out a message to the console indicating the current value 
assigned to the index constant, resulting in the following output:
Value of index is 1

Value of index is 2

Value of index is 3

Value of index is 4

Value of index is 5

The for-in loop is of particular benefit when working with collections such as arrays. In fact, the for-in loop can 
be used to iterate through any object that contains more than one item. The following loop, for example, outputs 
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each of the characters in the specified string:
for (index in "Hello") {

  println("Value of index is $index")

}

The operation of a for-in loop may be configured using the downTo and until functions. The downTo function 
causes the for loop to work backward through the specified collection until the specified number is reached. The 
following for loop counts backward from 100 until the number 90 is reached:
for (index in 100 downTo 90) {

  print("$index.. ")

}

When executed, the above loop will generate the following output:
100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..

The until function operates in much the same way with the exception that counting starts from the bottom of 
the collection range and works up until (but not including) the specified endpoint (a concept referred to as a 
half-closed range):
for (index in 1 until 10) {

  print("$index.. ")

}

The output from the above code will range from the start value of 1 through to 9:
1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9..

The increment used on each iteration through the loop may also be defined using the step function as follows:
for (index in 0 until 100 step 10) {

  print("$index.. ")

}

The above code will result in the following console output:
0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..

14.1.2 The while loop 
The Kotlin for loop described previously works well when it is known in advance how many times a particular 
task needs to be repeated in a program. There will, however, be instances where code needs to be repeated until 
a certain condition is met, with no way of knowing in advance how many repetitions are going to be needed to 
meet that criterion. To address this need, Kotlin includes the while loop. 

Essentially, the while loop repeats a set of tasks while a specified condition is met. The while loop syntax is 
defined as follows: 
while condition {

      // Kotlin statements go here

}

In the above syntax, condition is an expression that will return either true or false and the // Kotlin statements go 
here comment represents the code to be executed while the condition expression is true. For example: 
var myCount = 0

 

while  (myCount < 100) {
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    myCount++

    println(myCount)

}

In the above example, the while expression will evaluate whether the myCount variable is less than 100. If it is 
already greater than 100, the code in the braces is skipped and the loop exits without performing any tasks. 

If, on the other hand, myCount is not greater than 100 the code in the braces is executed and the loop returns to 
the while statement and repeats the evaluation of myCount. This process repeats until the value of myCount is 
greater than 100, at which point the loop exits. 

14.1.3 The do ... while loop 
It is often helpful to think of the do ... while loop as an inverted while loop. The while loop evaluates an expression 
before executing the code contained in the body of the loop. If the expression evaluates to false on the first check 
then the code is not executed. The do ... while loop, on the other hand, is provided for situations where you know 
that the code contained in the body of the loop will always need to be executed at least once. For example, you 
may want to keep stepping through the items in an array until a specific item is found. You know that you have 
to at least check the first item in the array to have any hope of finding the entry you need. The syntax for the do 
... while loop is as follows: 
do {

       // Kotlin statements here

} while conditional expression

In the do ... while example below the loop will continue until the value of a variable named i equals 0: 
var i = 10

 

do {

   i--

   println(i)

} while (i > 0)

14.1.4 Breaking from Loops
Having created a loop, it is possible that under certain conditions you might want to break out of the loop before 
the completion criteria have been met (particularly if you have created an infinite loop). One such example 
might involve continually checking for activity on a network socket. Once activity has been detected it will most 
likely be necessary to break out of the monitoring loop and perform some other task.

To break out of a loop, Kotlin provides the break statement which breaks out of the current loop and resumes 
execution at the code directly after the loop. For example:
var j = 10

 

for (i in 0..100)

{

    j += j

 

    if (j > 100) {

        break

    }
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    println("j = $j")

}

In the above example, the loop will continue to execute until the value of j exceeds 100 at which point the loop 
will exit and execution will continue with the next line of code after the loop.

14.1.5 The continue statement 
The continue statement causes all remaining code statements in a loop to be skipped, and execution to be 
returned to the top of the loop. In the following example, the println function is only called when the value of 
variable i is an even number: 
var i = 1

 

while (i < 20)

{

        i += 1

 

        if (i % 2 != 0) {

            continue

        }

 

        println("i = $i")

}

The continue statement in the above example will cause the println call to be skipped unless the value of i can be 
divided by 2 with no remainder. If the continue statement is triggered, execution will skip to the top of the while 
loop and the statements in the body of the loop will be repeated (until the value of i exceeds 19).

14.1.6 Break and continue labels
Kotlin expressions may be assigned a label by preceding the expression with a label name followed by the @ sign. 
This label may then be referenced when using break and continue statements to designate where execution is 
to resume. This is particularly useful when breaking out of nested loops. The following code contains a for loop 
nested within another for loop. The inner loop contains a break statement which is executed when the value of 
j reaches 10:
for (i in 1..100) {

    

    println("Outer loop i = $i")

    

    for (j in 1..100) {        

        println("Inner loop j = $j")       

        if (j == 10) break

    }

}

As currently implemented, the break statement will exit the inner for loop but execution will resume at the top 
of the outer for loop. Suppose, however, that the break statement is required to also exit the outer loop. This can 
be achieved by assigning a label to the outer loop and referencing that label with the break statement as follows:
outerloop@ for (i in 1..100) {
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    println("Outer loop i = $i")

    

    for (j in 1..100) {

        

        println("Inner loop j = $j")

        

        if (j == 10) break@outerloop
    }

}

Now when the value assigned to variable j reaches 10 the break statement will break out of both loops and 
resume execution at the line of code immediately following the outer loop.

14.2 Conditional control flow
In the previous chapter, we looked at how to use logical expressions in Kotlin to determine whether something 
is true or false. Since programming is largely an exercise in applying logic, much of the art of programming 
involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets 
executed and, conversely, which code gets bypassed when the program is executing.

14.2.1 Using the if expressions 
The if expression is perhaps the most basic of control flow options available to the Kotlin programmer. 
Programmers who are familiar with C, Swift, C++, or Java will immediately be comfortable using Kotlin if 
statements, although there are some subtle differences. 

The basic syntax of the Kotlin if expression is as follows: 
if (boolean expression) { 

    // Kotlin code to be performed when expression evaluates to true 

} 

Unlike some other programming languages, it is important to note that the braces are optional in Kotlin if only 
one line of code is associated with the if expression. In fact, in this scenario, the statement is often placed on the 
same line as the if expression.

Essentially if the Boolean expression evaluates to true then the code in the body of the statement is executed. If, 
on the other hand, the expression evaluates to false the code in the body of the statement is skipped. 

For example, if a decision needs to be made depending on whether one value is greater than another, we would 
write code similar to the following: 
val x = 10    

 

if (x > 9) println("x is greater than 9!")

Clearly, x is indeed greater than 9 causing the message to appear in the console panel.

At this point, it is important to notice that we have been referring to the if expression instead of the if statement. 
The reason for this is that unlike the if statement in other programming languages, the Kotlin if returns a result. 
This allows if constructs to be used within expressions. As an example, a typical if expression to identify the 
largest of two numbers and assign the result to a variable might read as follows:
if (x > y)

    largest = x

else
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    largest = y

The same result can be achieved using the if statement within an expression using the following syntax:
variable = if (condition) return_val_1 else return_val_2

The original example can, therefore be re-written as follows:
val largest = if (x > y) x else y

The technique is not limited to returning the values contained within the condition. The following example is 
also a valid use of if in an expression, in this case assigning a string value to the variable:
val largest = if (x > y) "x is greatest" else "y is greatest"

println(largest)

For those familiar with programming languages such as Java, this feature allows code constructs similar to 
ternary statements to be implemented in Kotlin.

14.2.2 Using if ... else … expressions 
The next variation of the if expression allows us to also specify some code to perform if the expression in the if 
expression evaluates to false. The syntax for this construct is as follows: 
if (boolean expression) { 

    // Code to be executed if expression is true 

} else { 

    // Code to be executed if expression is false 

}

The braces are, once again, optional if only one line of code is to be executed.

Using the above syntax, we can now extend our previous example to display a different message if the comparison 
expression evaluates to be false: 
val x = 10    

    

if (x > 9) println("x is greater than 9!") 

    else println("x is less than 9!")

In this case, the second println statement will execute if the value of x was less than 9. 

14.2.3 Using if ... else if ... Expressions 
So far we have looked at if statements that make decisions based on the result of a single logical expression. 
Sometimes it becomes necessary to make decisions based on several different criteria. For this purpose, we can 
use the if ... else if ... construct, an example of which is as follows: 
var x = 9

 

if (x == 10) println("x is 10")

        else if (x == 9) println("x is 9")

            else if (x == 8) println("x is 8")

                 else println("x is less than 8")

}

14.2.4 Using the when statement
The Kotlin when statement provides a cleaner alternative to the if ... else if ... construct and uses the following 
syntax:
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when (value) {

       match1 -> // code to be executed on match

       match2 -> // code to be executed on match

       .

       .

       else -> // default code to executed if no match

}

Using this syntax, the previous if ... else if ... construct can be rewritten to use the when statement:
when (x) {

    10 -> println ("x is 10")

    9 -> println("x is 9")

    8 -> println("x is 8")

    else ->  println("x is less than 8") 

}

The when statement is similar to the switch statement found in many other programming languages.

14.3 Summary
The term control flow is used to describe the logic that dictates the execution path that is taken through the 
source code of an application as it runs. This chapter has looked at the two types of control flow provided by 
Kotlin (looping and conditional) and explored the various Kotlin constructs that are available to implement 
both forms of control flow logic. 
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15. An Overview of Kotlin Functions 
and Lambdas
Kotlin functions and lambdas are a vital part of writing well-structured and efficient code and provide a way to 
organize programs while avoiding code repetition. In this chapter, we will look at how functions and lambdas 
are declared and used within Kotlin.

15.1 What is a function?
A function is a named block of code that can be called upon to perform a specific task. It can be provided data 
on which to perform the task and is capable of returning results to the code that called it. For example, if a 
particular arithmetic calculation needs to be performed in a Kotlin program, the code to perform the arithmetic 
can be placed in a function. The function can be programmed to accept the values on which the arithmetic 
is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the 
program code where the calculation is required, the function is simply called, parameter values passed through 
as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however, 
a subtle difference. The values that a function can accept when it is called are referred to as parameters. At the 
point that the function is called and passed those values, however, they are referred to as arguments.

15.2 How to declare a Kotlin function
A Kotlin function is declared using the following syntax:
fun <function name> (<para name>: <para type>, <para name>: <para type>, ... ): 
<return type> {

         // Function code

}

This combination of function name, parameters, and return type is referred to as the function signature or type. 
Explanations of the various fields of the function declaration are as follows:

• fun – The prefix keyword used to notify the Kotlin compiler that this is a function.

• <function name> - The name assigned to the function. This is the name by which the function will be 
referenced when it is called from within the application code. 

• <para name> - The name by which the parameter is to be referenced in the function code.

• <para type> - The type of the corresponding parameter.

• <return type> - The data type of the result returned by the function. If the function does not return a result 
then no return type is specified.

• Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result, and simply displays a message:
fun sayHello() {
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    println("Hello")

}

The following sample function, on the other hand, takes an integer and a string as parameters and returns a 
string result:
fun buildMessageFor(name: String, count: Int): String {

       return("$name, you are customer number $count")

}

15.3 Calling a Kotlin function
Once declared, functions are called using the following syntax:
<function name> (<arg1>, <arg2>, ... )

Each argument passed through to a function must match the parameters the function is configured to accept. 
For example, to call a function named sayHello that takes no parameters and returns no value, we would write 
the following code:
sayHello()

In the case of a message that accepts parameters, the function could be called as follows:
buildMessageFor("John", 10)

15.4 Single expression functions
When a function contains a single expression, it is not necessary to include the braces around the expression. 
All that is required is an equals sign (=) after the function declaration followed by the expression. The following 
function contains a single expression declared in the usual way:
fun multiply(x: Int, y: Int): Int {

    return x * y

}

Below is the same function expressed as a single line expression:
fun multiply(x: Int, y: Int): Int = x * y

When using single-line expressions, the return type may be omitted in situations where the compiler can infer 
the type returned by the expression making for even more compact code:
fun multiply(x: Int, y: Int) = x * y

15.5 Local functions
A local function is a function that is embedded within another function. In addition, a local function has access 
to all of the variables contained within the enclosing function:
fun main(args: Array<String>) {

 

    val name = "John"

    val count = 5

 

    fun displayString() {
        for (index in 0..count) {
            println(name)
        }
    } 
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    displayString() 

}

15.6 Handling return values
To call a function named buildMessage that takes two parameters and returns a result, on the other hand, we 
might write the following code:
val message = buildMessageFor("John", 10)

To improve code readability, the parameter names may also be specified when making the function call:
val message = buildMessageFor(name = "John", count = 10)

In the above examples, we have created a new variable called message and then used the assignment operator (=) 
to store the result returned by the function. 

15.7 Declaring default function parameters
Kotlin provides the ability to designate a default parameter value to be used if the value is not provided as an 
argument when the function is called. This simply involves assigning the default value to the parameter when 
the function is declared. 

To see default parameters in action the buildMessageFor function will be modified so that the string “Customer” 
is used as a default if a customer name is not passed through as an argument. Similarly, the count parameter is 
declared with a default value of 0:
fun buildMessageFor(name: String = "Customer", count: Int = 0): String {
       return("$name, you are customer number $count")

}

When parameter names are used when making the function call, any parameters for which defaults have been 
specified may be omitted. The following function call, for example, omits the customer name argument but still 
compiles because the parameter name has been specified for the second argument:
val message = buildMessageFor(count = 10)

If parameter names are not used within the function call, however, only the trailing arguments may be omitted:
val message = buildMessageFor("John") // Valid

val message = buildMessageFor(10) // Invalid

15.8 Variable number of function parameters 
It is not always possible to know in advance the number of parameters a function will need to accept when it 
is called within the application code. Kotlin handles this possibility through the use of the vararg keyword to 
indicate that the function accepts an arbitrary number of parameters of a specified data type. Within the body 
of the function, the parameters are made available in the form of an array object. The following function, for 
example, takes as parameters a variable number of String values and then outputs them to the console panel:
fun displayStrings(vararg strings: String)

{

    for (string in strings) {

        println(string)

    }

}

 

displayStrings("one", "two", "three", "four")
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Kotlin does not permit multiple vararg parameters within a function and any single parameters supported by 
the function must be declared before the vararg declaration:
fun displayStrings(name: String, vararg strings: String)

{

    for (string in strings) {

        println(string)

    }

}

15.9 Lambda expressions
Having covered the basics of functions in Kotlin it is now time to look at the concept of lambda expressions. 
Essentially, lambdas are self-contained blocks of code. The following code, for example, declares a lambda, 
assigns it to a variable named sayHello, and then calls the function via the lambda reference:
val sayHello = { println("Hello") }

sayHello()

Lambda expressions may also be configured to accept parameters and return results. The syntax for this is as 
follows:
{<para name>: <para type>, <para name> <para type>, ... ->

         // Lambda expression here

}

The following lambda expression, for example, accepts two integer parameters and returns an integer result:
val multiply = { val1: Int, val2: Int -> val1 * val2 }

val result = multiply(10, 20)

Note that the above lambda examples have assigned the lambda code block to a variable. This is also possible 
when working with functions. Of course, the following syntax will execute the function and assign the result of 
that execution to a variable, instead of assigning the function itself to the variable:
val myvar = myfunction()

To assign a function reference to a variable, simply remove the parentheses and prefix the function name with 
double colons (::) as follows. The function may then be called simply by referencing the variable name:
val myvar = ::myfunction

myvar()

A lambda block may be executed directly by placing parentheses at the end of the expression including any 
arguments. The following lambda directly executes the multiplication lambda expression multiplying 10 by 20.
val result = { val1: Int, val2: Int -> val1 * val2 }(10, 20)

The last expression within a lambda serves as the expression’s return value (hence the value of 200 being assigned 
to the result variable in the above multiplication examples). In fact, unlike functions, lambdas do not support 
the return statement. In the absence of an expression that returns a result (such as an arithmetic or comparison 
expression), simply declaring the value as the last item in the lambda will cause that value to be returned. The 
following lambda returns the Boolean true value after printing a message:
val result = { println("Hello"); true }()

Similarly, the following lambda simply returns a string literal:
val nextmessage = { println("Hello"); "Goodbye" }()
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A particularly useful feature of lambdas and the ability to create function references is that they can be both 
passed to functions as arguments and returned as results. This concept, however, requires an understanding of 
function types and higher-order functions.

15.10 Higher-order functions
On the surface, lambdas and function references do not seem to be particularly compelling features. The 
possibilities that these features offer become more apparent, however, when we consider that lambdas and 
function references have the same capabilities as many other data types. In particular, these may be passed 
through as arguments to another function, or even returned as a result from a function.

A function that is capable of receiving a function or lambda as an argument, or returning one as a result is 
referred to as a higher-order function.

Before we look at what is, essentially, the ability to plug one function into another, it is first necessary to explore 
the concept of function types. The type of a function is dictated by a combination of the parameters it accepts 
and the type of result it returns. A function that accepts an Int and a Double as parameters and returns a String 
result for example is considered to have the following function type:
(Int, Double) -> String

To accept a function as a parameter, the receiving function simply declares the type of function it can accept.

As an example, we will begin by declaring two unit conversion functions:
fun inchesToFeet (inches: Double): Double {

    return inches * 0.0833333

}

 

fun inchesToYards (inches: Double): Double {

    return inches * 0.0277778

}

The example now needs an additional function, the purpose of which is to perform a unit conversion and print 
the result in the console panel. This function needs to be as general-purpose as possible, capable of performing 
a variety of different measurement unit conversions. To demonstrate functions as parameters, this new function 
will take as a parameter a function type that matches both the inchesToFeet and inchesToYards functions 
together with a value to be converted. Since the type of these functions is equivalent to (Double) -> Double, our 
general-purpose function can be written as follows:
fun outputConversion(converterFunc: (Double) -> Double, value: Double) {

    val result = converterFunc(value)

    println("Result of conversion is $result")

}

When the outputConversion function is called, it will need to be passed a function matching the declared type. 
That function will be called to perform the conversion and the result displayed in the console panel. This means 
that the same function can be called to convert inches to both feet and yards, simply by “plugging in” the 
appropriate converter function as a parameter, keeping in mind that it is the function reference that is being 
passed as an argument:
outputConversion(::inchesToFeet, 22.45)

outputConversion(::inchesToYards, 22.45)

Functions can also be returned as a data type simply by declaring the type of the function as the return type. 
The following function is configured to return either our inchesToFeet or inchesToYards function type (in other 
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words a function that accepts and returns a Double value) based on the value of a Boolean parameter:
fun decideFunction(feet: Boolean): (Double) -> Double

{

    if (feet) {

        return ::inchesToFeet

    } else {

        return ::inchesToYards

    }

}

When called, the function will return a function reference which can then be used to perform the conversion:
val converter = decideFunction(true)

val result = converter(22.4)

println(result)

15.11 Summary
Functions and lambda expressions are self-contained blocks of code that can be called upon to perform a 
specific task and provide a mechanism for structuring code and promoting reuse. This chapter has introduced 
the basic concepts of function and lambda declaration and implementation in addition to the use of higher-
order functions that allow lambdas and functions to be passed as arguments and returned as results. 
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Chapter 20

20. An Overview of Compose State 
and Recomposition
State is the cornerstone of how the Compose system is implemented. As such, a clear understanding of state is an 
essential step in becoming a proficient Compose developer. In this chapter, we will explore and demonstrate the 
basic concepts of state and explain the meaning of related terms such as recomposition, unidirectional data flow, 
and state hoisting. The chapter will also cover saving and restoring state through configuration changes.

20.1 The basics of state
In declarative languages such as Compose, state is generally referred to as “a value that can change over time”. 
At first glance, this sounds much like any other data in an app. A standard Kotlin variable, for example, is by 
definition designed to store a value that can change at any time during execution. State, however, differs from a 
standard variable in two significant ways.

First, the value assigned to a state variable in a composable function needs to be remembered. In other words, 
each time a composable function containing state (a stateful function) is called, it must remember any state 
values from the last time it was invoked. This is different from a standard variable which would be re-initialized 
each time a call is made to the function in which it is declared.

The second key difference is that a change to any state variable has far reaching implications for the entire 
hierarchy tree of composable functions that make up a user interface. To understand why this is the case, we 
now need to talk about recomposition.

20.2 Introducing recomposition
When developing with Compose, we build apps by creating hierarchies of composable functions. As previously 
discussed, a composable function can be thought of as taking data and using that data to generate sections of a 
user interface layout. These elements are then rendered on the screen by the Compose runtime system. In most 
cases, the data passed from one composable function to another will have been declared as a state variable in a 
parent function. This means that any change of state value in a parent composable will need to be reflected in 
any child composables to which the state has been passed. Compose addresses this by performing an operation 
referred to as recomposition.

Recomposition occurs whenever a state value changes within a hierarchy of composable functions. As soon as 
Compose detects a state change, it works through all of the composable functions in the activity and recomposes 
any functions affected by the state value change. Recomposing simply means that the function gets called again 
and passed the new state value. 

Recomposing the entire composable tree for a user interface each time a state value changes would be a highly 
inefficient approach to rendering and updating a user interface. Compose avoids this overhead using a technique 
called intelligent recomposition that involves only recomposing those functions directly affected by the state 
change. In other words, only functions that read the state value will be recomposed when the value changes.
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20.3 Creating the StateExample project
Launch Android Studio and select the New Project option from the welcome screen. Within the resulting new 
project dialog, choose the Empty Activity template before clicking on the Next button.

Enter StateExample into the Name field and specify com.example.stateexample as the package name. Before 
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo). On 
completion of the project creation process, the StateExample project should be listed in the Project tool window 
located along the left-hand edge of the Android Studio main window. 

20.4 Declaring state in a composable
The first step in declaring a state value is to wrap it in a MutableState object. MutableState is a Compose class 
which is referred to as an observable type. Any function that reads a state value is said to have subscribed to 
that observable state. As a result, any changes to the state value will trigger the recomposition of all subscribed 
functions.

Within Android Studio, open the MainActivity.kt file, delete the Greeting composable and modify the class so 
that it reads as follows:
package com.example.stateexample

.

.

class MainActivity : ComponentActivity() {

    override fun onCreate(savedInstanceState: Bundle?) {

        super.onCreate(savedInstanceState)

        setContent {

            StateExampleTheme {

                Surface(color = MaterialTheme.colorScheme.background) {

                    DemoScreen()
                }

            }

        }

    }

}

 

@Composable
fun DemoScreen() {
    MyTextField()
}
 

@Composable
fun MyTextField() {
 
}
 

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

    StateExampleTheme {
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        DemoScreen()
    }

}

The objective here is to implement MyTextField as a stateful composable function containing a state variable and 
an event handler that changes the state based on the user’s keyboard input. The result is a text field in which the 
characters appear as they are typed. 

MutableState instances are created by making a call to the mutableStateOf() runtime function, passing through 
the initial state value. The following, for example, creates a MutableState instance initialized with an empty 
String value:
var textState = { mutableStateOf("") }

This provides an observable state which will trigger a recomposition of all subscribed functions when the 
contained value is changed. The above declaration is, however, missing a key element. As previously discussed, 
state must be remembered through recompositions. As currently implemented, the state will be reinitialized to 
an empty string each time the function in which it is declared is recomposed. To retain the current state value, 
we need to use the remember keyword:
var myState = remember { mutableStateOf("") }

Remaining within the MainActivity.kt file, add some imports and modify the MyTextField composable as follows:
.

.

import androidx.compose.material3.*
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.remember
import androidx.compose.foundation.layout.Column
.

.

@Composable

fun MyTextField() {

 

    var textState = remember { mutableStateOf("") }
 
    val onTextChange = { text : String ->
        textState.value = text
    }
 
    TextField(
        value = textState.value,
        onValueChange = onTextChange
    )
}

If the code editor reports that the Material 3 TextField is experimental, modify the MyTextField composable as 
follows:
@OptIn(ExperimentalMaterial3Api::class)
@Composable

fun MyTextField() {
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    var textState by remember { mutableStateOf("") }

.

.

Test the code using the Preview panel in interactive mode and confirm that keyboard input appears in the 
TextField as it is typed.

When looking at Compose code examples, you may see MutableState objects declared in different ways. When 
using the above format, it is necessary to read and set the value property of the MutableState instance. For 
example, the event handler to update the state reads as follows:
val onTextChange = { text: String ->

     textState.value = text
}

Similarly, the current state value is assigned to the TextField as follows:
TextField(

    value = textState.value,
    onValueChange = onTextChange

)

A more common and concise approach to declaring state is to use Kotlin property delegates via the by keyword 
as follows (note that two additional libraries need to be imported when using property delegates):
.

.

import androidx.compose.runtime.getValue
import androidx.compose.runtime.setValue
.

.

@Composable

fun MyTextField() {

 

    var textState by remember { mutableStateOf("") }
.

.

We can now access the state value without needing to directly reference the MutableState value property within 
the event handler:
val onTextChange = { text: String ->

     textState = text
}

This also makes reading the current value more concise:
TextField(

    value = textState,
    onValueChange = onTextChange

 )

A third technique separates the access to a MutableState object into a value and a setter function as follows:
var (textValue, setText) = remember { mutableStateOf("") }
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When changing the value assigned to the state we now do so by calling the setText setter, passing through the 
new value:
val onTextChange = { text: String ->

     setText(text)
}

The state value is now accessed by referencing textValue:
TextField(

    value = textValue,
    onValueChange = onTextChange

)

In most cases, the use of the by keyword and property delegates is the most commonly used technique because 
it results in cleaner code. Before continuing with the chapter, revert the example to use the by keyword.

20.5 Unidirectional data flow
Unidirectional data flow is an approach to app development whereby state stored in a composable should not 
be directly changed by any child composable functions. Consider, for example, a composable function named 
FunctionA containing a state value in the form of a Boolean value. This composable calls another composable 
function named FunctionB that contains a Switch component. The objective is for the switch to update the state 
value each time the switch position is changed by the user. In this situation, adherence to unidirectional data 
flow prohibits FunctionB from directly changing the state value. 

Instead, FunctionA would declare an event handler (typically in the form of a lambda) and pass it as a parameter 
to the child composable along with the state value. The Switch within FunctionB would then be configured to 
call the event handler each time the switch position changes, passing it the current setting value. The event 
handler in FunctionA will then update the state with the new value. 

Make the following changes to the MainActivity.kt file to implement FunctionA and FunctionB together with a 
corresponding modification to the preview composable:
@Composable
fun FunctionA() {
 
    var switchState by remember { mutableStateOf(true) }
 
    val onSwitchChange = { value : Boolean ->
        switchState = value
    }
    
    FunctionB(
        switchState = switchState,
        onSwitchChange = onSwitchChange
    )
}
 
@Composable
fun FunctionB(switchState: Boolean, onSwitchChange : (Boolean) -> Unit ) {
    Switch(
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        checked = switchState,
        onCheckedChange = onSwitchChange
    )
}
 

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

    StateExampleTheme {

        Column {
            DemoScreen()
            FunctionA()
        }
    }

}

Preview the app using interactive mode and verify that clicking the switch changes the slider position between 
on and off states.

We can now use this example to break down the state process into the following individual steps which occur 
when FunctionA is called:

1. The switchState state variable is initialized with a true value.

2. The onSwitchChange event handler is declared to accept a Boolean parameter which it assigns to switchState 
when called.

3. FunctionB is called and passed both switchState and a reference to the onSwitchChange event handler.

4. FunctionB calls the built-in Switch component and configures it to display the state assigned to switchState. 
The Switch component is also configured to call the onSwitchChange event handler when the user changes the 
switch setting.

5. Compose renders the Switch component on the screen.

The above sequence explains how the Switch component gets rendered on the screen when the app first launches. 
We can now explore the sequence of events that occur when the user slides the switch to the “off ” position:

1. The switch is moved to the “off ” position.

2. The Switch component calls the onSwitchChange event handler passing through the current switch position 
value (in this case false). 

3. The onSwitchChange lambda declared in FunctionA assigns the new value to switchState.

4. Compose detects that the switchState state value has changed and initiates a recomposition.

5. Compose identifies that FunctionB contains code that reads the value of switchState and therefore needs to 
be recomposed.

6. Compose calls FunctionB with the latest state value and the reference to the event handler.

7. FunctionB calls the Switch composable and configures it with the state and event handler.
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8. Compose renders the Switch on the screen, this time with the switch in the “off ” position.

The key point to note about this process is that the value assigned to switchState is only changed from within 
FunctionA and never directly updated by FunctionB. The Switch setting is not moved from the “on” position to 
the “off ” position directly by FunctionB. Instead, the state is changed by calling upwards to the event handler 
located in FunctionA, and allowing recomposition to regenerate the Switch with the new position setting. 

As a general rule, data is passed down through a composable hierarchy tree while events are called upwards to 
handlers in ancestor components as illustrated in Figure 20-1:

Figure 20-1

20.6 State hoisting
If you look up the word “hoist” in a dictionary it will likely be defined as the act of raising or lifting something. 
The term state hoisting has a similar meaning in that it involves moving state from a child composable up to the 
calling (parent) composable or a higher ancestor. When the child composable is called by the parent, it is passed 
the state along with an event handler. When an event occurs in the child composable that requires an update to 
the state, a call is made to the event handler passing through the new value as outlined earlier in the chapter. This 
has the advantage of making the child composable stateless and, therefore, easier to reuse. It also allows the state 
to be passed down to other child composables later in the app development process.

Consider our MyTextField example from earlier in the chapter:
@Composable

fun DemoScreen() {

    MyTextField()

}

 

@Composable

fun MyTextField() {

 

    var textState by remember { mutableStateOf("") }

 

    val onTextChange = { text : String ->

        textState = text

    }
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    TextField(

        value = textState,

        onValueChange = onTextChange

    )

}

The self-contained nature of the MyTextField composable means that it is not a particularly useful component. 
One issue is that the text entered by the user is not accessible to the calling function and, therefore, cannot be 
passed to any sibling functions. It is also not possible to pass a different state and event handler through to the 
function, thereby limiting its re-usability. 

To make the function more useful we need to hoist the state into the parent DemoScreen function as follows:
@Composable

fun DemoScreen() {

 

    var textState by remember { mutableStateOf("") }
 
    val onTextChange = { text : String ->
        textState = text
    }
 

    MyTextField(text = textState, onTextChange = onTextChange)
}

 

@Composable

fun MyTextField(text: String, onTextChange : (String) -> Unit) {
 

    var textState by remember { mutableStateOf("") }

 

    val onTextChange = { text : String ->

        textState = text

    }

 

    TextField(

        value = text,
        onValueChange = onTextChange

    )

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

    StateExampleTheme {

        DemoScreen()
    }

}
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With the state hoisted to the parent function, MyTextField is now a stateless, reusable composable which can be 
called and passed any state and event handler. Also, the text entered by the user is now accessible by the parent 
function and may be passed down to other composables if necessary.

State hoisting is not limited to moving to the immediate parent of a composable. State can be raised any number 
of levels upward within the composable hierarchy and subsequently passed down through as many layers of 
children as needed (within reason). This will often be necessary when multiple children need access to the same 
state. In such a situation, the state will need to be hoisted up to an ancestor that is common to both children. 

In Figure 20-2 below, for example, both NameField and NameText need access to textState. The only way to 
make the state available to both composables is to hoist it up to the MainScreen function since this is the only 
ancestor both composables have in common:

Figure 20-2
The solid arrows indicate the path of textState as it is passed down through the hierarchy to the NameField and 
NameText functions (in the case of the NameField, a reference to the event handler is also passed down), while 
the dotted line represents the calls from NameField function to an event handler declared in MainScreen as the 
text changes.

Note that if you find yourself passing state down through an excessive number of child layers, it may be worth 
looking at CompositionLocalProvider, a topic covered in the chapter entitled “An Introduction to Composition 
Local”. 

When adding state to a function, take some time to decide whether hoisting state to the caller (or higher) might 
make for a more re-usable and flexible composable. While situations will arise where state is only needed to be 
used locally in a composable, in most cases it probably makes sense to hoist the state up to an ancestor.

20.7 Saving state through configuration changes
We now know that the remember keyword can be used to save state values through recompositions. This 
technique does not, however, retain state between configuration changes. A configuration change generally 
occurs when some aspect of the device changes in a way that alters the appearance of an activity (such as rotating 
the orientation of the device between portrait and landscape or changing a system-wide font setting). 
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Changes such as these will cause the entire activity to be destroyed and recreated. The reasoning behind this is 
that these changes affect resources such as the layout of the user interface and simply destroying and recreating 
impacted activities is the quickest way for an activity to respond to the configuration change. The result is a 
newly initialized activity with no memory of any previous state values.

To experience the effect of a configuration change, run the StateExample app on an emulator or device and, 
once running, enter some text so that it appears in the TextField before changing the orientation from portrait 
to landscape. When using the emulator, device rotation may be simulated using the rotation button located in 
the emulator toolbar. To complete the rotation on Android 11 or older, it may also be necessary to tap on the 
rotation button. This appears in the toolbar of the device or emulator screen as shown in Figure 20-3: 

Figure 20-3
Before performing the rotation on Android 12 or later, you may need to enter the Settings app, select the Display 
category and enable the Auto-rotate screen option. 

Note that after rotation, the TextField is now blank and the text entered has been lost. In situations where state 
needs to be retained through configuration changes, Compose provides the rememberSaveable keyword. When 
rememberSaveable is used, the state will be retained not only through recompositions, but also configuration 
changes. Modify the textState declaration to use rememberSaveable as follows:
.

.

import androidx.compose.runtime.saveable.rememberSaveable
.

.

@Composable

fun DemoScreen() {

 

    var textState by rememberSaveable { mutableStateOf("") }
.

.

Build and run the app once again, enter some text and perform another rotation. Note that the text is now 
preserved following the configuration change.

20.8 Summary
When developing apps with Compose it is vital to have a clear understanding of how state and recomposition 
work together to make sure that the user interface is always up to date. In this chapter, we have explored state and 
described how state values are declared, updated, and passed between composable functions. You should also 
have a better understanding of recomposition and how it is triggered in response to state changes. 

We also introduced the concept of unidirectional data flow and explained how data flows down through the 
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compose hierarchy while data changes are made by making calls upward to event handlers declared within 
ancestor stateful functions. 

An important goal when writing composable functions is to maximize re-usability. This can be achieved, in part, 
by hoisting state out of a composable up to the calling parent or a higher function in the compose hierarchy.

Finally, the chapter described configuration changes and explained how such changes result in the destruction 
and recreation of entire activities. Ordinarily, state is not retained through configuration changes unless 
specifically configured to do so using the rememberSaveable keyword.
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34. An Overview of Lists and Grids in 
Compose
It is a common requirement when designing user interface layouts to present information in either scrollable 
list or grid configurations. For basic list requirements, the Row and Column components can be re-purposed 
to provide vertical and horizontal lists of child composables. Extremely large lists, however, are likely to cause 
degraded performance if rendered using the standard Row and Column composables. For lists containing large 
numbers of items, Compose provides the LazyColumn and LazyRow composables. Similarly, grid-based layouts 
can be presented using the LazyVerticalGrid composable.

This chapter will introduce the basics of list and grid creation and management in Compose in preparation for 
the tutorials in subsequent chapters.

34.1 Standard vs. lazy lists
Part of the popularity of lists is that they provide an effective way to present large amounts of items in a scrollable 
format. Each item in a list is represented by a composable which may, itself, contain descendant composables. 
When a list is created using the Row or Column component, all of the items it contains are also created at 
initialization, regardless of how many are visible at any given time. While this does not necessarily pose a 
problem for smaller lists, it can be an issue for lists containing many items.

Consider, for example, a list that is required to display 1000 photo images. It can be assumed with a reasonable 
degree of certainty that only a small percentage of items will be visible to the user at any one time. If the 
application was permitted to create each of the 1000 items in advance, however, the device would very quickly 
run into memory and performance limitations. 

When working with longer lists, the recommended course of action is to use LazyColumn, LazyRow, and 
LazyVerticalGrid. These components only create those items that are visible to the user. As the user scrolls, 
items that move out of the viewable area are destroyed to free up resources while those entering view are created 
just in time to be displayed. This allows lists of potentially infinite length to be displayed with no performance 
degradation.

Since there are differences in approach and features when working with Row and Column compared to the lazy 
equivalents, this chapter will provide an overview of both types.

34.2 Working with Column and Row lists
Although lacking some of the features and performance advantages of the LazyColumn and LazyRow, the Row 
and Column composables provide a good option for displaying shorter, basic lists of items. Lists are declared 
in much the same way as regular rows and columns with the exception that each list item is usually generated 
programmatically. The following declaration, for example, uses the Column component to create a vertical list 
containing 100 instances of a composable named MyListItem:
Column {

    repeat(100) {

        MyListItem()

    }
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}

Similarly, the following example creates a horizontal list containing the same items:
Row {

    repeat(100) {

        MyListItem()

    }

}

The MyListItem composable can be anything from a single Text composable to a complex layout containing 
multiple composables. 

34.3 Creating lazy lists
Lazy lists are created using the LazyColumn and LazyRow composables. These layouts place children within 
a LazyListScope block which provides additional features for managing and customizing the list items. For 
example, individual items may be added to a lazy list via calls to the item() function of the LazyListScope:
LazyColumn {

    item {

        MyListItem()

    }

}

Alternatively, multiple items may be added in a single statement by calling the items() function:
LazyColumn {

    items(1000) { index ->

        Text("This is item $index");

    }

}

LazyListScope also provides the itemsIndexed() function which associates the item content with an index value, 
for example:
val colorNamesList = listOf("Red", "Green", "Blue", "Indigo")

 

LazyColumn {

    itemsIndexed(colorNamesList) { index, item ->

        Text("$index = $item")

    }

}

When rendered, the above lazy column will appear as shown in Figure 34-1 below:

Figure 34-1
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Lazy lists also support the addition of headers to groups of items in a list using the stickyHeader() function. This 
topic will be covered in more detail later in the chapter.

34.4 Enabling scrolling with ScrollState
While the above Column and Row list examples will display a list of items, only those that fit into the viewable 
screen area will be accessible to the user. This is because lists are not scrollable by default. To make Row and 
Column-based lists scrollable, some additional steps are needed. LazyList and LazyRow, on the other hand, 
support scrolling by default.

The first step in enabling list scrolling when working with Row and Column-based lists is to create a ScrollState 
instance. This is a special state object designed to allow Row and Column parents to remember the current scroll 
position through recompositions. A ScrollState instance is generated via a call to the rememberScrollState() 
function, for example:
val scrollState = rememberScrollState()

Once created, the scroll state is passed as a parameter to the Column or Row composable using the verticalScroll() 
and horizontalScroll() modifiers. In the following example, vertical scrolling is being enabled in a Column list:
Column(Modifier.verticalScroll(scrollState)) {
    repeat(100) {

        MyListItem()

    }

}

Similarly, the following code enables horizontal scrolling on a LazyRow list:
Row(Modifier.horizontalScroll(scrollState))  {
    repeat(1000) {

        MyListItem()

    }

}

34.5 Programmatic scrolling
We generally think of scrolling as being something a user performs through dragging or swiping gestures on the 
device screen. It is also important to know how to change the current scroll position from within code. An app 
screen might, for example, contain buttons which can be tapped to scroll to the start and end of a list. The steps 
to implement this behavior differ between Row and Columns lists and the lazy list equivalents.

When working with Row and Column lists, programmatic scrolling can be performed by calling the following 
functions on the ScrollState instance:

• animateScrollTo(value: Int) - Scrolls smoothly to the specified pixel position in the list using animation.

• scrollTo(value: Int) -  Scrolls instantly to the specified pixel position.

Note that the value parameters in the above function represent the list position in pixels instead of referencing a 
specific item number. It is safe to assume that the start of the list is represented by pixel position 0, but the pixel 
position representing the end of the list may be less obvious. Fortunately, the maximum scroll position can be 
identified by accessing the maxValue property of the scroll state instance:
val maxScrollPosition = scrollState.maxValue

To programmatically scroll LazyColumn and LazyRow lists, functions need to be called on a LazyListState 
instance which can be obtained via a call to the rememberLazyListState() function as follows:
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val listState = rememberLazyListState()

Once the list state has been obtained, it must be applied to the LazyRow or LazyColumn declaration as follows:
.

.

LazyColumn(

    state = listState,

{

.

.

Scrolling can then be performed via calls to the following functions on the list state instance:

• animateScrollToItem(index: Int) - Scrolls smoothly to the specified list item (where 0 is the first item).

• scrollToItem(index: Int) - Scrolls instantly to the specified list item (where 0 is the first item).

In this case, the scrolling position is referenced by the index of the item instead of pixel position.

One complication is that all four of the above scroll functions are coroutine functions. As outlined in the chapter 
titled “Coroutines and LaunchedEffects in Jetpack Compose”, coroutines are a feature of Kotlin that allows blocks 
of code to execute asynchronously without blocking the thread from which they are launched (in this case the 
main thread which is responsible for making sure the app remains responsive to the user). Coroutines can be 
implemented without having to worry about building complex implementations or directly managing multiple 
threads. Because of the way they are implemented, coroutines are much more efficient and less resource-intensive 
than using traditional multi-threading options. One of the key requirements of coroutine functions is that they 
must be launched from within a coroutine scope.

As with ScrollState and LazyListState, we need access to a CoroutineScope instance that will be remembered 
through recompositions. This requires a call to the rememberCoroutineScope() function as follows:
val coroutineScope = rememberCoroutineScope()

Once we have a coroutine scope, we can use it to launch the scroll functions. The following code, for example, 
declares a Button component configured to launch the animateScrollTo() function within the coroutine scope. 
In this case, the button will cause the list to scroll to the end position when clicked:
.

.

Button(onClick = {

    coroutineScope.launch {
        scrollState.animateScrollTo(scrollState.maxValue) 
    }
.

.

}

34.6 Sticky headers
Sticky headers is a feature only available within lazy lists that allows list items to be grouped under a corresponding 
header. Sticky headers are created using the LazyListScope stickyHeader() function. 

The headers are referred to as being sticky because they remain visible on the screen while the current group is 
scrolling. Once a group scrolls from view, the header for the next group takes its place. Figure 34-2, for example, 
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shows a list with sticky headers. Note that although the Apple group is scrolled partially out of view, the header 
remains in position at the top of the screen:

Figure 34-2
When working with sticky headers, the list content must be stored in an Array or List which has been mapped 
using the Kotlin groupBy() function. The groupBy() function accepts a lambda which is used to define the 
selector which defines how data is to be grouped. This selector then serves as the key to access the elements of 
each group. Consider, for example, the following list which contains mobile phone models:
val phones = listOf("Apple iPhone 12", "Google Pixel 4", "Google Pixel 6",   

    "Samsung Galaxy 6s", "Apple iPhone 7", "OnePlus 7", "OnePlus 9 Pro", 

         "Apple iPhone 13", "Samsung Galaxy Z Flip", "Google Pixel 4a",

            "Apple iPhone 8")

Now suppose that we want to group the phone models by manufacturer. To do this we would use the first word 
of each string (in other words, the text before the first space character) as the selector when calling groupBy() to 
map the list:
val groupedPhones = phones.groupBy { it.substringBefore(' ') }

Once the phones have been grouped by manufacturer, we can use the forEach statement to create a sticky header 
for each manufacture name, and display the phones in the corresponding group as list items:
groupedPhones.forEach { (manufacturer, models) ->

    stickyHeader {

        Text(

            text = manufacturer,

            color = Color.White,

            modifier = Modifier

                .background(Color.Gray)
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                .padding(5.dp)

                .fillMaxWidth()

        )

    }

 

    items(models) { model ->

        MyListItem(model)

    }

}

In the above forEach lambda, manufacturer represents the selector key (for example “Apple”) and models an 
array containing the items in the corresponding manufacturer group (“Apple iPhone 12”, “Apple iPhone 7”, and 
so on for the Apple selector):
groupedPhones.forEach { (manufacturer, models) ->

The selector key is then used as the text for the sticky header, and the models list is passed to the items() function 
to display all the group elements, in this case using a custom composable named MyListItem for each item:
items(models) { model ->

    MyListItem(model)

}

When rendered, the above code will display the list shown in Figure 34-2 above.

34.7 Responding to scroll position
Both LazyRow and LazyColumn allow actions to be performed when a list scrolls to a specified item position. 
This can be particularly useful for displaying a “scroll to top” button that appears only when the user scrolls 
towards the end of the list.

The behavior is implemented by accessing the firstVisibleItemIndex property of the LazyListState instance which 
contains the index of the item that is currently the first visible item in the list. For example, if the user scrolls a 
LazyColumn list such that the third item in the list is currently the topmost visible item, firstVisibleItemIndex 
will contain a value of 2 (since indexes start counting at 0). The following code, for example, could be used to 
display a “scroll to top” button when the first visible item index exceeds 8:
val firstVisible = listState.firstVisibleItemIndex

 

if (firstVisible > 8) {

    // Display scroll to top button

}

34.8 Creating a lazy grid
Grid layouts may be created using the LazyVerticalGrid composable. The appearance of the grid is controlled by 
the cells parameter that can be set to either adaptive or fixed mode. In adaptive mode, the grid will calculate the 
number of rows and columns that will fit into the available space, with even spacing between items and subject 
to a minimum specified cell size. Fixed mode, on the other hand, is passed the number of rows to be displayed 
and sizes each column width equally to fill the width of the available space. 

The following code, for example, declares a grid containing 30 cells, each with a minimum width of 60dp:
LazyVerticalGrid(GridCells.Adaptive(minSize = 60.dp),

    state = rememberLazyGridState(),
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    contentPadding = PaddingValues(10.dp)

) {

    items(30) { index ->

        Card(

            colors = CardDefaults.cardColors(

                containerColor =  MaterialTheme.colorScheme.primary

            ),

            modifier = Modifier.padding(5.dp).fillMaxSize()) {

 

            Text(

                "$index",

                textAlign = TextAlign.Center,

                fontSize = 30.sp,

                color = Color.White,

                modifier = Modifier.width(120.dp)

            )

        }

    }

}

When called, the LazyVerticalGrid composable will fit as many items as possible into each row without making 
the column width smaller than 60dp as illustrated in the figure below: 

Figure 34-3
The following code organizes items in a grid containing three columns:
LazyVerticalGrid(

    GridCells.Fixed(3),

    state = rememberLazyGridState(),

    contentPadding = PaddingValues(10.dp)

) {

 

    items(15) { index ->

        Card(colors = CardDefaults.cardColors(

            containerColor =  MaterialTheme.colorScheme.primary

        ),

            modifier = Modifier.padding(5.dp).fillMaxSize()) {

            Text(
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                "$index",

                fontSize = 35.sp,

                color = Color.White,

                textAlign = TextAlign.Center,

                modifier = Modifier.width(120.dp))

        }

    }

}

The layout from the above code will appear as illustrated in Figure 34-4 below:

Figure 34-4
Both the above grid examples used a Card composable containing a Text component for each cell item. The Card 
component provides a surface into which to group content and actions relating to a single content topic and is 
often used as the basis for list items. Although we provided a Text composable as the child, the content in a card 
can be any composable, including containers such as Row, Column, and Box layouts. A key feature of Card is the 
ability to create a shadow effect by specifying an elevation:
Card(

    modifier = Modifier

        .fillMaxWidth()

        .padding(15.dp),

    elevation = CardDefaults.cardElevation(

        defaultElevation = 10.dp

    )

) {

    Column(horizontalAlignment = Alignment.CenterHorizontally,

        modifier = Modifier.padding(15.dp).fillMaxWidth()

    ) {

        Text("Jetpack Compose", fontSize = 30.sp, )

        Text("Card Example", fontSize = 20.sp)

    }

}

When rendered, the above Card component will appear as shown in Figure 34-5:
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Figure 34-5

34.9 Summary
Lists in Compose may be created using either standard or lazy list components. The lazy components have 
the advantage that they can present large amounts of content without impacting the performance of the app 
or the device on which it is running. This is achieved by creating list items only when they become visible and 
destroying them as they scroll out of view. Lists can be presented in row, column, and grid formats and can be 
static or scrollable. It is also possible to programmatically scroll lists to specific positions and to trigger events 
based on the current scroll position.
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Chapter 42

42. Working with ViewModels in 
Compose
Until a few years ago, Google did not recommend a specific approach to building Android apps other than to 
provide tools and development kits while letting developers decide what worked best for a particular project 
or individual programming style. That changed in 2017 with the introduction of the Android Architecture 
Components which became part of Android Jetpack when it was released in 2018. Jetpack has of course, since 
been expanded with the addition of Compose.

This chapter will provide an overview of the concepts of Jetpack, Android app architecture recommendations, 
and the ViewModel component.

42.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture Components, Android Support Library, 
and the Compose framework together with a set of guidelines that recommend how an Android App should be 
structured. The Android Architecture Components were designed to make it quicker and easier both to perform 
common tasks when developing Android apps while also conforming to the key principle of the architectural 
guidelines. While many of these components have been superseded by features built into Compose, the 
ViewModel architecture component remains relevant today. Before exploring the ViewModel component, it 
first helps to understand both the old and new approaches to Android app architecture.

42.2 The “old” architecture
In the chapter entitled “An Example Compose Project”, an Android project was created consisting of a single 
activity that contained all of the code for presenting and managing the user interface together with the back-end 
logic of the app. Up until the introduction of Jetpack, the most common architecture followed this paradigm 
with apps consisting of multiple activities (one for each screen within the app) with each activity class to some 
degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example an activity is destroyed 
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved 
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new 
activity for each app screen accessed by the user. 

42.3 Modern Android architecture
At the most basic level, Google now advocates single activity apps where different screens are loaded as content 
within the same activity. 

Modern architecture guidelines also recommend separating different areas of responsibility within an app into 
entirely separate modules (a concept called “separation of concerns”). One of the keys to this approach is the 
ViewModel component. 

42.4 The ViewModel component
The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the 
code responsible for displaying and managing the user interface and interacting with the operating system. 
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When designed in this way, an app will consist of one or more UI Controllers, such as an activity, together with 
ViewModel instances responsible for handling the data needed by those controllers.

A ViewModel is implemented as a separate class and contains state values containing the model data and 
functions that can be called to manage that data. The activity containing the user interface observes the model 
state values such that any value changes trigger a recomposition. User interface events relating to the model data 
such as a button click are configured to call the appropriate function within the ViewModel. This is, in fact, a 
direct implementation of the unidirectional data flow concept described in the chapter entitled “An Overview of 
Compose State and Recomposition”. The diagram in Figure 42-1 illustrates this concept as it relates to activities 
and ViewModels:

Figure 42-1
This separation of responsibility addresses the issues relating to the lifecycle of activities. Regardless of how 
many times an activity is recreated during the lifecycle of an app, the ViewModel instances remain in memory 
thereby maintaining data consistency. A ViewModel used by an activity, for example, will remain in memory 
until the activity finishes which, in the single activity app, is not until the app exits.

In addition to using ViewModels, the code responsible for gathering data from data sources such as web services 
or databases should be built into a separate repository module instead of being bundled with the view model. 
This topic will be covered in detail beginning with the chapter entitled “Room Databases and Compose”.

42.5 ViewModel implementation using state
The main purpose of a ViewModel is to store data that can be observed by the user interface of an activity. This 
allows the user interface to react when changes occur to the ViewModel data. There are two ways to declare the 
data within a ViewModel so that it is observable. One option is to use the Compose state mechanism which has 
been used extensively throughout this book. An alternative approach is to use the Jetpack LiveData component, 
a topic that will be covered later in this chapter. 

Much like the state declared within composables, ViewModel state is declared using the mutableStateOf group 
of functions. The following ViewModel declaration, for example, declares a state containing an integer count 
value with an initial value of 0:
class MyViewModel : ViewModel() {

 

    var customerCount by mutableStateOf(0)

}

With some data encapsulated in the model, the next step is to add a function that can be called from within the 
UI to change the counter value:
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class MyViewModel : ViewModel() {

 

    var customerCount by mutableStateOf(0)

 

    fun increaseCount() {

        customerCount++

    }

}

Even complex models are nothing more than a continuation of these two basic state and function building 
blocks.

42.6 Connecting a ViewModel state to an activity
A ViewModel is of little use unless it can be used within the composables that make up the app user interface. 
All this requires is to pass an instance of the ViewModel as a parameter to a composable from which the state 
values and functions can be accessed. Programming convention recommends that these steps be performed in a 
composable dedicated solely for this task and located at the top of the screen’s composable hierarchy. The model 
state and event handler functions can then be passed to child composables as necessary. The following code 
shows an example of how a ViewModel might be accessed from within an activity:
class MainActivity : ComponentActivity() {

    override fun onCreate(savedInstanceState: Bundle?) {

        super.onCreate(savedInstanceState)

        setContent {

            ViewModelWorkTheme {

                Surface(color = MaterialTheme.colorScheme.background) {

                    TopLevel()

                }

            }

        }

    }

}

 

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

    MainScreen(model.customerCount) { model.increaseCount() }

}

 

@Composable

fun MainScreen(count: Int, addCount: () -> Unit = {}) {

    Column(horizontalAlignment = Alignment.CenterHorizontally,

        modifier = Modifier.fillMaxWidth()) {

        Text("Total customers = $count",

        Modifier.padding(10.dp))

        Button(

            onClick = addCount,

        ) {

            Text(text = "Add a Customer")
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        }

    }

}

In the above example, the first function call is made by the onCreate() method to the TopLevel composable 
which is declared with a default ViewModel parameter initialized via a call to the viewModel() function:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {
.

.

The viewModel() function is provided by the Compose view model lifecycle library which needs to be added to 
the project’s build dependencies when working with view models as follows:
dependencies {

.

.

    implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.4.1'
.

.

If an instance of the view model has already been created within the current scope, the viewModel() function will 
return a reference to that instance. Otherwise, a new view model instance will be created and returned. 

With access to the ViewModel instance, the TopLevel function is then able to obtain references to the view model 
customerCount state variable and increaseCount() function which it passes to the MainScreen composable:
MainScreen(model.customerCount) { model.increaseCount() }

As implemented, Button clicks will result in calls to the view model increaseCount() function which, in turn, 
increments the customerCount state. This change in state triggers a recomposition of the user interface, resulting 
in the new customer count value appearing in the Text composable.

The use of state and view models will be demonstrated in the chapter entitled “A Compose ViewModel Tutorial”.

42.7 ViewModel implementation using LiveData
The Jetpack LiveData component predates the introduction of Compose and can be used as a wrapper around 
data values within a view model. Once contained in a LiveData instance, those variables become observable to 
composables within an activity. LiveData instances can be declared as being mutable using the MutableLiveData 
class, allowing the ViewModel functions to make changes to the underlying data value. An example view model 
designed to store a customer name could, for example, be implemented as follows using MutableLiveData 
instead of state:
class MyViewModel : ViewModel() {

 

    var customerName: MutableLiveData<String> = MutableLiveData("")

 

    fun setName(name: String) {

        customerName.value = name

    }

}

Note that new values must be assigned to the live data variable via the value property. 



373

Working with ViewModels in Compose

42.8 Observing ViewModel LiveData within an activity
As with state, the first step when working with LiveData is to obtain an instance of the view model within an 
initialization composable:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 

}

Once we have access to a view model instance, the next step is to make the live data observable. This is achieved 
by calling the observeAsState() method on the live data object:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

    var customerName: String by model.customerName.observeAsState("")
}

In the above code, the observeAsState() call converts the live data value into a state instance and assigns it to 
the customerName variable. Once converted, the state will behave in the same way as any other state object, 
including triggering recompositions whenever the underlying value changes.

The use of LiveData and view models will be demonstrated in the chapter entitled “A Compose Room Database 
and Repository Tutorial”. 

42.9 Summary
Until recently, Google has tended not to recommend any particular approach to structuring an Android app. 
That changed with the introduction of Android Jetpack which consists of a set of tools, components, libraries, 
and architecture guidelines. These architectural guidelines recommend that an app project be divided into 
separate modules, each being responsible for a particular area of functionality, otherwise known as “separation 
of concerns”. In particular, the guidelines recommend separating the view data model of an app from the code 
responsible for handling the user interface. This is achieved using the ViewModel component. In this chapter, 
we have covered ViewModel-based architecture and demonstrated how this is implemented when developing 
with Compose. We have also explored how to observe and access view model data from within an activity using 
both state and LiveData. 
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51. An Introduction to Kotlin Flow
The earlier chapter, “Coroutines and LaunchedEffects in Jetpack Compose” taught us about Kotlin Coroutines. 
It explained how we can use them to perform multiple tasks concurrently without blocking the main thread. 
However, a shortcoming of suspend functions is that they are typically only useful for performing tasks that 
either do not return a result or only return a single value. In this chapter, we will introduce Kotlin Flows and 
explore how these can be used to return sequential streams of results from coroutine-based tasks. 

By the end of the chapter, you should understand the Flow, StateFlow, and SharedFlow Kotlin types and 
appreciate the difference between hot and cold flow streams. In the next chapter (“A Jetpack Compose SharedFlow 
Tutorial”), we will look more closely at using SharedFlow within the context of an example Android app project.

51.1 Understanding Flows
Flows are a part of the Kotlin programming language and are designed to allow multiple values to be returned 
sequentially from coroutine-based asynchronous tasks. A stream of data arriving over time via a network 
connection would, for example, be an ideal situation for using a Kotlin flow. 

Flows are comprised of producers, intermediaries, and consumers. Producers are responsible for providing 
the data that makes up the flow. The code that retrieves the stream of data from our hypothetical network 
connection, for example, would be considered a producer. As each data value becomes available, the producer 
emits that value to the flow. The consumer sits at the opposite end of the flow stream and collects the values as 
the producer emits them.

Intermediaries may be placed between the producer and consumer to perform additional operations on the 
data, such as filtering the stream, performing further processing, or transforming the data in other ways before 
it reaches the consumer. Figure 51-1 illustrates the typical structure of a Kotlin flow:

Figure 51-1
The flow shown in the above diagram consists of a single producer and consumer. However, in practice, multiple 
consumers can collect emissions from a single producer, and for a single consumer to collect data from multiple 
producers. 

The remainder of this chapter will demonstrate many key features of Kotlin flows within the context of Jetpack 
Compose-based development. 

51.2 Creating the sample project
Launch Android Studio and create a new Empty Activity project named FlowDemo, specifying com.example.
flowdemo as the package name and selecting a minimum API level of API 26: Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and add a new empty composable named 
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ScreenSetup which, in turn, calls a function named MainScreen:
@Composable

fun ScreenSetup() {

    MainScreen()

}

 

@Composable

fun MainScreen() {

    

}

Edit the onCreate() method function to call ScreenSetup instead of Greeting (we will modify the GreetingPreview 
composable later).

Next, modify the build.gradle (Module: app) file to add the Compose view model and Kotlin runtime extensions 
libraries to the dependencies section:
dependencies {

.

.

    implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.5.1'
    implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.5.1'
.

.

}

When prompted, click on the Sync Now button at the top of the editor panel to commit the change.

51.3 Adding a view model to the project
For this project, the flow will reside in a view model class. Add this model to the project by locating and right-
clicking on the app -> java -> com.example.flowdemo entry in the project tool window and selecting the New 
-> Kotlin Class/File menu option. In the resulting dialog, name the class DemoViewModel before tapping the 
keyboard Enter key. Once created, modify the file so that it reads as follows:
package com.example.flowdemo

 

import androidx.lifecycle.ViewModel
 

class DemoViewModel : ViewModel() {
}

Return to the MainActivity.kt file and make changes to access an instance of the view model:
.

.

import androidx.lifecycle.viewmodel.compose.viewModel
.

.

@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {
    MainScreen()
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}

51.4 Declaring the flow
The Kotlin Flow type represents the most basic form of flow. Each flow can only emit data of a single type which 
must be specified when the flow is declared. The following declaration, for example, declares a Flow instance 
designed to stream String-based data:
Flow<String>

When declaring a flow, we need to assign the code to generate the data stream. This code is referred to as the 
producer block. This can be achieved using the flow() builder, which takes as a parameter a coroutine suspend 
block containing the producer block code. For example, add the following code to the DemoViewModel.kt file to 
declare a flow named myFlow designed to emit a stream of integer values:
package com.example.flowdemo

 

import androidx.lifecycle.ViewModel

import kotlinx.coroutines.*
import kotlinx.coroutines.flow.*
 

class DemoViewModel : ViewModel() {

 

    val myFlow: Flow<Int> = flow {
        // Producer block
    }
}

As an alternative to the flow builder, the flowOf() builder can be used to convert a fixed set of values into a flow:
val myFlow2 = flowOf(2, 4, 6, 8)

Also, many Kotlin collection types now include an asFlow() extension function that can be called to convert the 
contained data to a flow. The following code, for example, converts an array of string values to a flow:
val myArrayFlow = arrayOf<String>("Red", "Green", "Blue").asFlow()

51.5 Emitting flow data
Once a flow has been built, the next step is to ensure the data is emitted so that it reaches any consumers 
observing it. Of the three flow builders we looked at in the previous section, only the flowOf() and asFlow() 
builders create flows that automatically emit the data as soon as a consumer starts collecting. In the case of the 
flow builder, however, we need to write code to manually emit each value as it becomes available. We achieve this 
by making calls to the emit() function and passing through as an argument the current value to be streamed. The 
following changes to our myFlow declaration implement a loop that emits the value of an incrementing counter. 
In addition, a 2-second delay is performed on each loop iteration to demonstrate the asynchronous nature of 
flow streams:
val myFlow: Flow<Int> = flow {

    for (i in 0..9) {
        emit(i)
        delay(2000)
    }
}
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51.6 Collecting flow data as state
As we will see later in the chapter, one way to collect data from a flow within a consumer is to call the collect() 
method on the flow instance. When working with Compose, however, a less flexible, but more convenient option 
is to convert the flow to state by calling the collectAsState() function on the flow instance. This allows us to treat 
the data just as we would any other state within our code. To see this in action, edit the MainActivity.kt file and 
make the following changes:
.

.

import androidx.compose.runtime.*
import kotlinx.coroutines.flow.*
.

.

@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

    MainScreen(viewModel.myFlow)
}

 

@Composable

fun MainScreen(flow: Flow<Int>) {
   val count by flow.collectAsState(initial = 0)
}

.

.

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

    FlowDemoTheme {

        ScreenSetup(viewModel())
    }

}

The changes pass a myFlow reference to the MainScreen composable where it is converted to a State with an 
initial value of 0. Next, we need to design a simple user interface to display the count values as they are emitted 
to the flow:
.

.

import androidx.compose.foundation.layout.*
import androidx.compose.ui.Alignment
import androidx.compose.ui.text.TextStyle
import androidx.compose.ui.unit.sp
.

.

@Composable

fun MainScreen(myFlow: Flow<Int>) {

    val count by myFlow.collectAsState(initial = 0)
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    Column(
        modifier = Modifier.fillMaxSize(),
        verticalArrangement = Arrangement.Center,
        horizontalAlignment = Alignment.CenterHorizontally
    ) {
        Text(text = "$count", style = TextStyle(fontSize = 40.sp))
    }
}

Try out the app either using the preview panel in interactive mode, or by running it on a device or emulator. 
Once the app starts, the count value displayed on the Text component should increment as the flow emits each 
new value.

51.7 Transforming data with intermediaries
In the previous example, we passed the data values to the consumer without any modifications. However, we 
can change the data between the producer and consumer by applying one or more intermediate flow operators. 
In this section, we will look at some of these operators.

We can use the map() operator to convert the value to another value. For example, we can use map() to convert 
our integer value to a string and add some additional text. Edit the DemoViewModel.kt file and create a modified 
version of our flow as follows:
.

.

class DemoViewModel : ViewModel() {

    

    val myFlow: Flow<Int> = flow {

        for (i in 0..9) {

            emit(i)

            delay(2000)

        }

    }

 

    val newFlow = myFlow.map {
        "Current value = $it"
    }
}

Before we can test this operator, some changes are needed within the MainActivity.kt file to use this new flow:
Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

    MainScreen(viewModel.newFlow)
}

 

@Composable

fun MainScreen(flow: Flow<String>) {
    val count by flow.collectAsState(initial = "Current value =")
.

.
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When the code is executed, the text will display the text string updated with the count:
Current value = 1

Current value = 2

.

.

The map() operator will perform the conversion on every collected value. We can use the filter() operator to 
control which values get collected. The filter code block must contain an expression that returns a Boolean value. 
Only if the expression evaluates to true does the value pass through to the collection. For example, the following 
code filters odd numbers out of the data flow (note that we’ve left the map() operator in place to demonstrate 
the chaining of operators):
val newFlow = myFlow

    .filter {
        it % 2 == 0
    }
    .map {

        "Current value = $it"

    }

The above changes will display count updates only for even numbers.

The transform() operator serves a similar purpose to map() but provides more flexibility. The transform() 
operator also needs to manually emit the modified result. A particular advantage of transform() is that it can 
emit multiple values, for example:
val newFlow = myFlow

    .transform {
        emit("Value = $it")
        delay(1000)
        val doubled = it * 2
        emit("Value doubled = $doubled")
    }
 

// Output

Value = 0

Value doubled = 0

Value = 1

Value doubled = 2

Value = 2

Value doubled = 4

Value = 3

.

.

Before moving to the next step, revert the newFlow declaration to its original form:
val newFlow = myFlow.map {

    "Current value = $it"

} 
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51.8 Collecting flow data
So far in this chapter, we have used the collectAsState() function to convert a flow to a State instance. Behind the 
scenes, this method uses the collect() function to initiate the data collection. Although collectAsState() works 
well most of the time, there will be situations where you may need to call collect(). In fact, collect() is just one of 
several so-called terminal flow operators that can be called directly to achieve results that aren’t possible using 
collectAsState().

These operators are suspend functions so can only be called from within a coroutine scope. In the chapter 
entitled “Coroutines and LaunchedEffects in Jetpack Compose”, we looked at coroutines and explained how to 
use LaunchedEffect to execute asynchronous code safely from within a composable function. Once we have 
implemented the LaunchedEffect call, we still need the streamed values to be stored as state, so we also need a 
mutable state into which to store the latest value. Bringing these requirements together, modify the MainScreen 
function so that it reads as follows:
@Composable

fun MainScreen(flow: Flow<String>) {

    

    var count by remember { mutableStateOf<String>("Current value =")}
 
    LaunchedEffect(Unit) {
        flow.collect {
            count = it
        }
    }
 

    Column(

        modifier = Modifier.fillMaxSize(),

.

.

Test the app and verify that the text component updates as expected. Now that we are using the collect() function 
we can begin to explore some options that were not available to us when we were using collectAsState().

For example, to add code to be executed when the stream ends, the collection can be performed in a try/finally 
construct, for example:
LaunchedEffect(Unit) {

    try {
        flow.collect {
            count = it
        }
    } finally {
        count = "Flow stream ended."
    }
}

The collect() operator will collect every value emitted by the producer, even if new values are emitted while 
the last value is still being processed in the consumer. For example, our producer is configured to emit a new 
value every two seconds. Suppose, however, that we simulate our consumer taking 2.5 seconds to process each 
collected value. When executed, we will still see all of the values listed in the output because collect() does 
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not discard any uncollected values regardless of whether more recent values have been emitted since the last 
collection. This type of behavior is essential to avoid data loss within the flow. In some situations, however, the 
consumer may be uninterested in any intermediate values emitted between the most recently processed value 
and the latest emitted value. In this case, the collectLatest() operator can be called on the flow instance. This 
operator works by canceling the current collection if a new value arrives before processing completes on the 
previous value and restarts the process on the latest value.

The conflate() operator is similar to the collectLatest() operator except that instead of canceling the current 
collection operation when a new value arrives, conflate() allows the current operation to complete, but discards 
intermediate values that arrive during this process. When the current operation completes, the most recent 
value is then collected.

Another collection operator is the single() operator. This operator collects a single value from the flow and 
throws an exception if it finds another value in the stream. This operator is useful where the appearance of a 
second stream value indicates that something else has gone wrong somewhere in the app or data source.

51.9 Adding a flow buffer
When a consumer takes time to process the values emitted by a producer, there is the potential for execution time 
inefficiencies to occur. Suppose, for example, that in addition to the two-second delay between each emission 
from our newFlow producer, the collection process in our consumer takes an additional second to complete. We 
can simulate this behavior as follows:
.

.

import kotlin.system.measureTimeMillis
import kotlinx.coroutines.delay
.

.

LaunchedEffect(Unit) {

 

    val elapsedTime = measureTimeMillis {
        flow.collect {

                count = it

                delay(1000)
        }

    }

    count = "Duration = $elapsedTime"
}

To allow us to measure the total time to fully process the flow, the consumer code has been placed in the closure 
of a call to the Kotlin measureTimeMillis() function. Run the app and, after execution completes, a duration 
similar to the following will be reported:
Duration = 30044

This accounts for approximately 20 seconds to process the 10 values within newFlow and an additional 10 seconds 
for those values to be collected. There is an inefficiency here because the producer is waiting for the consumer 
to process each value before starting on the next value. This would be much more efficient if the producer did 
not have to wait for the consumer. We could, of course, use the collectLatest() or conflate() operators, but only if 
the loss of intermediate values is not a concern. To speed up the processing while also collecting every emitted 
value we can make use of the buffer() operator. This operator buffers values as they are emitted and passes them 
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to the consumer when it is ready to receive them. This allows the producer to continue emitting values while the 
consumer processes preceding values while ensuring that every emitted value is collected. The buffer() operator 
may be applied to a flow as follows:
LaunchedEffect("Unit") {

 

    val elapsedTime = measureTimeMillis {

        flow

            .buffer()
            .collect {

                count = it

                delay(1000)

        }

    }

    count = "Duration = $elapsedTime"

}

Execution of the above code indicates that we have now reclaimed the 10 seconds previously lost in the collection 
code:
Duration = 20052

51.10 More terminal flow operators
The reduce() operator is one of several other terminal flow operators that can be used in place of a collection 
operator to make changes to the flow data. The reduce() operator takes two parameters in the form of an 
accumulator and a value. The first flow value is placed in the accumulator and a specified operation is performed 
between the accumulator and the current value (with the result stored in the accumulator). To try this out we 
need to revert to using myFlow instead of newFlow in addition to adding the reduce() operator call:
@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

    MainScreen(viewModel.myFlow)
}

 

@Composable

fun MainScreen(flow: Flow<Int>) {
    

    var count by remember { mutableStateOf<Int>(0) }
 

    LaunchedEffect(Unit) {

    

        flow

            .reduce { accumulator, value ->
                count = accumulator
                accumulator + value
            }
        }

    }

.
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.

The fold() operator works similarly to the reduce() operator, with the exception that it is passed an initial 
accumulator value:
.

.

LaunchedEffect(Unit) {

 

    flow

        .fold(10) { accumulator, value ->
            count = accumulator

            accumulator + value

        }

    }

.

.

51.11 Flow flattening
As we have seen in earlier examples, we can use operators to perform tasks on values collected from a flow. An 
interesting situation occurs, however, when that task itself creates one or more flows resulting in a “flow of flows”. 
In situations where this occurs, these streams can be flattened into a single stream.

Consider the following example code which declares two flows:
val myFlow: Flow<Int> = flow {

    for (i in 1..5) {

        delay(1000)

        emit(i)

    }

}

 

fun doubleIt(value: Int) = flow {

    emit(value)

    delay(1000)

    emit(value + value)

}

If we were to call doubleIt() for each value in the myFlow stream we would end up with a separate flow for 
each value. This problem can be solved by concatenating the doubleIt() streams into a single flow using the 
flatMapConcat() operator as follows:
@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

    MainScreen(viewModel)
}

 

@Composable

fun MainScreen(viewModel: DemoViewModel) {
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    var count by remember { mutableStateOf<Int>(0)}

 

    LaunchedEffect(Unit) {

 

        viewModel.myFlow
            .flatMapConcat { viewModel.doubleIt(it) }
            .collect { count = it }
    }

.

.

When this modified code executes we will see the following output from the collect() operator:
1

2

2

4

3

6

4

8

5

10

As we can see from the output, the doubleIt() flow has emitted the value provided by myFlow followed by the 
doubled value. When using the flatMapConcat() operator, the doubleIt() calls are being performed synchronously, 
causing execution to wait until doubleIt() has emitted both values before processing the next flow value. The 
emitted values can instead be collected asynchronously using the flatMapMerge() operator as follows:
viewModel.myFlow

    .flatMapMerge { viewModel.doubleIt(it) }
    .collect { 

        count = it 

        println("Count = $it")
    }

}

Because the collection is being performed asynchronously the displayed value change too quickly to see all of the 
count values. Display the Logcat tool window to see the full list of collected values generated by the println() call:
I/System.out: Count = 1

I/System.out: Count = 2

I/System.out: Count = 2

I/System.out: Count = 4

I/System.out: Count = 3

I/System.out: Count = 6

I/System.out: Count = 4

I/System.out: Count = 8

I/System.out: Count = 5

I/System.out: Count = 10
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51.12 Combining multiple flows
Multiple flows can be combined into a single flow using the zip() and combine() operators. The following code 
demonstrates the zip() operator being used to convert two flows into a single flow:
var count by remember { mutableStateOf<String>("")}
 

LaunchedEffect(Unit) {

 

    val flow1 = (1..5).asFlow()
        .onEach { delay(1000) }
    val flow2 = flowOf("one", "two", "three", "four")
        .onEach { delay(1500) }
    flow1.zip(flow2) { value, string -> "$value, $string" }
        .collect { count = it }
}

// Output

1, one

2, two

3, three

4, four

Note that we have applied the onEach() operator to both flows in the above code. This is a useful operator for 
performing a task on receipt of each stream value.

The zip() operator will wait until both flows have emitted a new value before performing the collection. The 
combine() operator works slightly differently in that it proceeds as soon as either flow emits a new value, using 
the last value emitted by the other flow in the absence of a new value:
.

.

    val flow1 = (1..5).asFlow()

        .onEach { delay(1000) }

    val flow2 = flowOf("one", "two", "three", "four")

        .onEach { delay(1500) }

    flow1.combine(flow2) { value, string -> "$value, $string" }
        .collect { count = it }

.

.

// Output

1, one

2, one

3, one

3, two

4, two

4, three

5, three

5, four

As we can see from the output, multiple instances have occurred where the last value has been reused on a flow 
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because a new value was emitted on the other.

51.13 Hot and cold flows
So far in this chapter, we have looked exclusively at the Kotlin Flow type. Kotlin also provides additional types 
in the form of StateFlow and SharedFlow. Before exploring these, however, it is important to understand the 
concept of hot and cold flows. 

A stream declared using the Flow type is referred to as a cold flow because the code within the producer does 
not begin executing until a consumer begins collecting values. StateFlow and SharedFlow, on the other hand, are 
referred to as hot flows because they begin emitting values immediately, regardless of whether any consumers 
are collecting the values.

Once a consumer begins collecting from a hot flow, it will receive the latest value emitted by the producer 
followed by any subsequent values. Unless steps are taken to implement caching, any previous values emitted 
before the collection starts will be lost.

Another important difference between Flow, StateFlow, and SharedFlow is that a Flow-based stream cannot 
have multiple collectors. Each Flow collector launches a new flow with its own independent data stream. With 
StateFlow and SharedFlow, on the other hand, multiple collectors share access to the same flow. 

51.14 StateFlow
StateFlow, as the name suggests, is primarily used as a way to observe a change in state within an app such as 
the current setting of a counter, toggle button, or slider. Each StateFlow instance is used to store a single value 
that is likely to change over time and to notify all consumers when those changes occur. This enables you to 
write code that reacts to changes in state instead of code that has to continually check whether or not a state 
value has changed. StateFlow behaves the same way as LiveData with the exception that LiveData has lifecycle 
awareness and does not require an initial value (LiveData was covered previously in the chapter titled “Working 
with ViewModels in Compose”).

To create a StateFlow stream, begin by creating an instance of MutableStateFlow, passing through a mandatory 
initial value. This is the variable that will be used to change the current state value from within the app code:
private val _stateFlow = MutableStateFlow(0)

Next, call asStateFlow() on the MutableStateFlow instance to convert it into a StateFlow from which changes in 
state can be collected:
val stateFlow = _stateFlow.asStateFlow()

Once created, any changes to the state are made via the value property of the mutable state instance. The following 
code, for example, increments the state value:
_stateFlow.value += 1

Once the flow is active, the state can be consumed using collectAsState() or directly using a collection function, 
though it is generally recommended to collect from StateFlow using the collectLatest() operator. To try out an 
example, begin by making the following modifications to the DemoViewModel.kt file:
.

.

class DemoViewModel : ViewModel() {

 

    private val _stateFlow = MutableStateFlow(0)
    val stateFlow = _stateFlow.asStateFlow()
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    fun increaseValue() {
        _stateFlow.value += 1
    }
.

.

Next, edit the MainActivity.kt file and change MainScreen so that it collects from the new state flow and to add 
a button configured to call the view model increaseValue() function:
.

.

import androidx.compose.material3.Button
.

.

@Composable

fun MainScreen(viewModel: DemoViewModel) {

 

    val count by viewModel.stateFlow.collectAsState()
 

    Column(

        modifier = Modifier.fillMaxSize(),

        verticalArrangement = Arrangement.Center,

        horizontalAlignment = Alignment.CenterHorizontally

    ) {

        Text(text = "$count", style = TextStyle(fontSize = 40.sp))

        Button(onClick = { viewModel.increaseValue() }) {
            Text("Click Me")
        }
    }

}

Run the app and verify that the button updates the count Text component with the incremented count value 
each time it is clicked.

51.15 SharedFlow
SharedFlow provides a more general-purpose streaming option than that offered by StateFlow. Some of the key 
differences between StateFlow and SharedFlow are as follows:

• Consumers are generally referred to as subscribers.

• An initial value is not provided when creating a SharedFlow instance.

• SharedFlow allows values that were emitted prior to collection starting to be “replayed” to the collector.

• SharedFlow emits values instead of using a value property.

SharedFlow instances are created using MutableSharedFlow as the backing property on which we call the 
asSharedFlow() function to obtain a SharedFlow reference. For example, make the following changes to the 
DemoViewModel class to declare a shared flow:
.

.
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import androidx.lifecycle.viewModelScope
import kotlinx.coroutines.channels.BufferOverflow
.

.

class DemoViewModel : ViewModel() {

 

    private val _sharedFlow = MutableSharedFlow<Int>(
        replay = 10,
        onBufferOverflow = BufferOverflow.DROP_OLDEST
    )
 
    val sharedFlow = _sharedFlow.asSharedFlow()
.
.

As configured above, new flow subscribers will receive the last 10 values before receiving any new values. The 
above flow is also configured to discard the oldest value when more than 10 values are buffered. The full set of 
options for handling buffer overflows are as follows:

• DROP_LATEST - The latest value is dropped when the buffer is full leaving the buffer unchanged as new 
values are processed.

• DROP_OLDEST - Treats the buffer as a “first-in, first-out” stack where the oldest value is dropped to make 
room for a new value when the buffer is full. 

• SUSPEND - The flow is suspended when the buffer is full.

Values are emitted on a SharedFlow stream by calling the emit() method of the MutableSharedFlow instance 
from within a coroutine. Remaining in the DemoViewModel.kt file, add a new method that can be called from 
the main activity to start the shared flow:
fun startSharedFlow() {

    

    viewModelScope.launch {

        for (i in 1..5) {

            _sharedFlow.emit(i)

            delay(2000)

        }

    }

}

Finally, make the following changes to the MainScreen composable: 
@Composable

fun MainScreen(viewModel: DemoViewModel) {

 

    val count by viewModel.sharedFlow.collectAsState(initial = 0)
 

    Column(

        modifier = Modifier.fillMaxSize(),

        verticalArrangement = Arrangement.Center,
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        horizontalAlignment = Alignment.CenterHorizontally

    ) {

        Text(text = "$count", style = TextStyle(fontSize = 40.sp))

        Button(onClick = { viewModel.startSharedFlow() }) {
            Text("Click Me")

        }

    }

}

Run the app on a device or emulator (shared flow code does not always work in the interactive preview) and 
verify that clicking the button causes the count to begin updating. Note that since new values are being emitted 
from within a coroutine you can click on the button repeatedly and collect values from multiple flows. 

One final point to note about shared flows is that the current number of subscribers to a SharedFlow stream can 
be obtained via the subscriptionCount property of the mutable instance:
val subCount = _sharedFlow.subscriptionCount

51.16 Converting a flow from cold to hot
A cold flow can be made hot by calling the shareIn() function on the flow. This call requires a coroutine scope 
in which to execute the flow, a replay value, and a start policy setting indicating the conditions under which the 
flow is to start and stop. The available start policy options are as follows:

• SharingStarted.WhileSubscribed() - The flow is kept alive as long as it has active subscribers.

• SharingStarted.Eagerly() - The flow begins immediately and remains active even in the absence of active 
subscribers.

• SharingStarted.Lazily() - The flow begins only after the first consumer subscribes and remains active even in 
the absence of active subscribers.

We could, for example, make one of our earlier cold flows hot using the following code:
val hotFlow = myFlow.shareIn(

    viewModelScope, 

    replay = 1, 

    started = SharingStarted.WhileSubscribed()

)

51.17 Summary
Kotlin flows allow sequential data or state changes to be returned over time from asynchronous tasks. A flow 
consists of a producer that emits a sequence of values and consumers that collect and process those values. The 
flow stream can be manipulated between the producer and consumer by applying one or more intermediary 
operators including transformations and filtering. Flows are created based on the Flow, StateFlow, and 
SharedFlow types. A Flow-based stream can only have a single collector while StateFlow and SharedFlow can 
have multiple collectors. 

Flows are categorized as being hot or cold. A cold flow does not begin emitting values until a consumer begins 
collection. Hot flows, on the other hand, begin emitting values as soon as they are created, regardless of whether 
or not the values are being collected. In the case of SharedFlow, a predefined number of values may be buffered 
and subsequently replayed to new subscribers when they begin collecting values. A cold flow can be made hot 
via a call to the flow’s shareIn() function.
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54. An Overview of Android In-App 
Billing
In the early days of mobile applications for operating systems such as Android and iOS, the most common 
method for earning revenue was to charge an upfront fee to download and install the application. However, 
Google soon introduced another revenue opportunity by embedding advertising within applications. Perhaps 
the most common and lucrative option is now to charge the user for purchasing items from within the application 
after it has been installed. This typically takes the form of access to a higher level in a game, acquiring virtual 
goods or currency, or subscribing to premium content in the digital edition of a magazine or newspaper. 

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play 
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into 
your Android projects. Once these topics have been explored, the next chapter will walk you through creating 
an example app that includes in-app purchasing features.

54.1 Preparing a project for In-App purchasing
Building in-app purchasing into an app will require a Google Play Developer Console account, which was 
covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. In addition, you 
must also register a Google merchant account and configure your payment settings. You can find these settings 
by navigating to Setup -> Payments profile in the Play Console. Note that merchant registration is not available 
in all countries. For details, refer to the following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app will then need to be uploaded to the console and enabled for in-app purchasing. The console will not 
activate in-app purchasing support for an app, however, unless the Google Play Billing Library has been added 
to the module-level build.gradle file. When working with Kotlin, the Google Play Kotlin Extensions Library is 
also recommended: 
dependencies {

.

.

    implementation 'com.android.billingclient:billing:<latest version>'
    implementation 'com.android.billingclient:billing-ktx:<latest version>'
.

.

}

Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app 
products or subscriptions for the user to purchase.

54.2 Creating In-App products and subscriptions
Products and subscriptions are created and managed using the options listed beneath the Monetize section of 
the Play Console navigation panel as highlighted in Figure 54-1 below:

https://support.google.com/googleplay/android-developer/answer/9306917
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Figure 54-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into 
the categories of consumable (the item must be purchased each time it is required by the user such as virtual 
currency in a game), non-consumable (only needs to be purchased once by the user such as content access), and 
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed on a regular schedule such as access to news 
content or the premium features of an app. When creating a subscription, a base plan is defined specifying the 
price, renewal period (monthly, annually, etc.), and whether the subscription auto-renews. Users can also be 
provided with discount offers and given the option of pre-purchasing a subscription.

54.3 Billing client initialization
A BillingClient instance handles communication between your app and the Google Play Billing Library. 
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and 
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a 
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app 
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one 
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or 
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =

    PurchasesUpdatedListener { billingResult, purchases ->

        if (billingResult.responseCode ==

            BillingClient.BillingResponseCode.OK

            && purchases != null

        ) {

            for (purchase in purchases) {

                // Process the purchases

            }

        } else if (billingResult.responseCode ==

            BillingClient.BillingResponseCode.USER_CANCELED

        ) {

            // Purchase cancelled by user

        } else {
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            // Handle errors here

        }

    }

 

billingClient = BillingClient.newBuilder(this)

    .setListener(purchasesUpdatedListener)

    .enablePendingPurchases()

    .build()

54.4 Connecting to the Google Play Billing library
After successfully creating the Billing Client, the next step is initializing a connection to the Google Play Billing 
Library. To establish this connection, a call needs to be made to the startConnection() method of the billing client 
instance. Since the connection is performed asynchronously, a BillingClientStateListener handler needs to be 
implemented to receive a callback indicating whether the connection was successful. Code should also be added 
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is 
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the 
onBillingSetupFinished() method which can be used to check that the client is ready: 
billingClient.startConnection(object : BillingClientStateListener {

    override fun onBillingSetupFinished(

        billingResult: BillingResult

    ) {

        if (billingResult.responseCode ==

            BillingClient.BillingResponseCode.OK

        ) {

            // Connection successful

        } else {

            // Connection failed 

        }

    }

 

    override fun onBillingServiceDisconnected() {

        // Connection to billing service lost

    }

})

54.5 Querying available products
Once the billing environment is initialized and ready to go, the next step is to request the details of the products 
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync() 
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams 
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for 
a managed product):
val queryProductDetailsParams = QueryProductDetailsParams.newBuilder()

    .setProductList(

        ImmutableList.of(

            QueryProductDetailsParams.Product.newBuilder()
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                .setProductId(productId)

                .setProductType(

                    BillingClient.ProductType.INAPP

                )

                .build()

        )

    )

    .build()

 

billingClient.queryProductDetailsAsync(

    queryProductDetailsParams

) { billingResult, productDetailsList ->

    if (!productDetailsList.isEmpty()) {

        // Process list of matching products

    } else {

        // No product matches found

    }

}

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler (in this case in 
the form of a lambda code block) which, in turn, is called and passed a list of ProductDetail objects containing 
information about the matching products. For example, we can call methods on these objects to get information 
such as the product name, title, description, price, and offer details.

54.6 Starting the purchase process
Once a product or subscription has been queried and selected for purchase by the user, the purchase process is 
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through 
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object 
for the item being purchased. 
val billingFlowParams = BillingFlowParams.newBuilder()

    .setProductDetailsParamsList(

        ImmutableList.of(

            BillingFlowParams.ProductDetailsParams.newBuilder()

                .setProductDetails(productDetails)

                .build()

        )

    )

    .build()

 

billingClient.launchBillingFlow(this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener 
callback handler outlined earlier in the chapter. 

54.7 Completing the purchase
When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase 
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method 
of the Purchase instance as follows:
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if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED) {

    // Purchase completed. 

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {

    // Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method 
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it will need to be acknowledged to prevent a refund 
from being issued to the user. This requires the purchase token for the item which is obtained via a call to the 
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams 
instance together with an AcknowledgePurchaseResponseListener handler. Managed product purchases and 
subscriptions are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase(acknowledgePurchaseParams, 

                             acknowledgePurchaseResponseListener);

val acknowledgePurchaseParams = AcknowledgePurchaseParams.newBuilder()

    .setPurchaseToken(purchase.purchaseToken)

    .build()

 

val acknowledgePurchaseResponseListener = AcknowledgePurchaseResponseListener {

    // Check acknowledgement result

}

 

billingClient.acknowledgePurchase(

    acknowledgePurchaseParams,

    acknowledgePurchaseResponseListener

)

For consumable purchases, you will need to notify Google Play when the item has been consumed so that it 
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a 
purchase token and a call to the billing client’s consumePurchase() method: 
val consumeParams = ConsumeParams.newBuilder()

    .setPurchaseToken(purchase.purchaseToken)

    .build()

 

coroutineScope.launch {

    val result = billingClient.consumePurchase(consumeParams)

 

    if (result.billingResult.responseCode == 

                     BillingClient.BillingResponseCode.OK) {

        // Purchase successfully consumed

    }

}

54.8 Querying previous purchases
When working with in-app billing it is a common requirement to check whether a user has already purchased a 
product or subscription. A list of all the user’s previous purchases of a specific type can be generated by calling 
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the queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener. 
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:
val queryPurchasesParams = QueryPurchasesParams.newBuilder()

    .setProductType(BillingClient.ProductType.INAPP)

    .build()

 

billingClient.queryPurchasesAsync(

    queryPurchasesParams,

    purchasesListener

)

.

.

private val purchasesListener =

    PurchasesResponseListener { billingResult, purchases ->

 

        if (!purchases.isEmpty()) {

            // Access existing active purchases

        } else {

            // No 

        }

    }

To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient 
queryPurchaseHistoryAsync() method:
val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder()

    .setProductType(BillingClient.ProductType.INAPP)

    .build()

 

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams) { 
billingResult, historyList ->

    // Process purchase history list

}

54.9 Summary
In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and 
subscriptions to users. In this chapter, we have explored managed products and subscriptions and explained 
the difference between consumable and non-consumable products. In-app purchasing support is added to 
an app using the Google Play In-app Billing Library and involves creating and initializing a billing client on 
which methods are called to perform tasks such as making purchases, listing available products, and consuming 
existing purchases. The next chapter contains a tutorial demonstrating the addition of in-app purchases to an 
Android Studio project.
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