
Jetpack Compose 1.3
Essentials

Title

Jetpack Compose 1.3 Essentials

ISBN-13: 978-1-951442-63-7

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0
Copyright

i

Contents
Table of Contents
1. Start Here .. 1

1.1 For Kotlin programmers .. 1
1.2 For new Kotlin programmers .. 1
1.3 Downloading the code samples ... 1
1.4 Feedback ... 2
1.5 Errata... 2

2. Setting up an Android Studio Development Environment ... 3
2.1 System requirements ... 3
2.2 Downloading the Android Studio package ... 3
2.3 Installing Android Studio ... 4

2.3.1 Installation on Windows ... 4
2.3.2 Installation on macOS ... 4
2.3.3 Installation on Linux .. 5

2.4 The Android Studio setup wizard ... 5
2.5 Installing additional Android SDK packages .. 6
2.6 Installing the Android SDK Command-line Tools ... 9

2.6.1 Windows 8.1 ... 10
2.6.2 Windows 10 .. 10
2.6.3 Windows 11 .. 11
2.6.4 Linux .. 11
2.6.5 macOS .. 11

2.7 Android Studio memory management .. 11
2.8 Updating Android Studio and the SDK ... 12
2.9 Summary .. 12

3. A Compose Project Overview .. 13
3.1 About the project ... 13
3.2 Creating the project .. 14
3.3 Creating an activity ... 14
3.4 Defining the project and SDK settings ... 15
3.5 Previewing the example project .. 16
3.6 Reviewing the main activity ... 18
3.7 Preview updates ... 22
3.8 Bill of Materials and the Compose version .. 22
3.9 Summary .. 24

4. An Example Compose Project ... 25
4.1 Getting started ... 25
4.2 Removing the template Code .. 25
4.3 The Composable hierarchy .. 26
4.4 Adding the DemoText composable .. 26
4.5 Previewing the DemoText composable .. 28
4.6 Adding the DemoSlider composable .. 28

Contents

ii

Table of Contents

4.7 Adding the DemoScreen composable .. 29
4.8 Previewing the DemoScreen composable .. 31
4.9 Adjusting preview settings ... 31
4.10 Testing in interactive mode .. 32
4.11 Completing the project ... 33
4.12 Summary .. 34

5. Creating an Android Virtual Device (AVD) in Android Studio ... 35
5.1 About Android Virtual Devices .. 35
5.2 Starting the emulator .. 36
5.3 Running the application in the AVD .. 37
5.4 Real-time updates with Live Edit .. 39
5.5 Running on multiple devices ... 40
5.6 Stopping a running application ... 40
5.7 Supporting dark theme ... 41
5.8 Running the emulator in a separate window ... 41
5.9 Enabling the device frame .. 43
5.10 Summary .. 43

6. Using and Configuring the Android Studio AVD Emulator .. 45
6.1 The Emulator Environment ... 45
6.2 Emulator Toolbar Options ... 45
6.3 Working in Zoom Mode .. 47
6.4 Resizing the Emulator Window... 47
6.5 Extended Control Options ... 47

6.5.1 Location ... 48
6.5.2 Displays .. 48
6.5.3 Cellular .. 48
6.5.4 Battery .. 48
6.5.5 Camera ... 48
6.5.6 Phone ... 48
6.5.7 Directional Pad ... 48
6.5.8 Microphone ... 48
6.5.9 Fingerprint .. 48
6.5.10 Virtual Sensors ... 49
6.5.11 Snapshots ... 49
6.5.12 Record and Playback ... 49
6.5.13 Google Play ... 49
6.5.14 Settings .. 49
6.5.15 Help .. 49

6.6 Working with Snapshots ... 49
6.7 Configuring Fingerprint Emulation ... 50
6.8 The Emulator in Tool Window Mode ... 51
6.9 Creating a Resizable Emulator ... 52
6.10 Summary .. 53

7. A Tour of the Android Studio User Interface .. 55
7.1 The Welcome Screen ... 55
7.2 The Main Window .. 56
7.3 The Tool Windows .. 57
7.4 Android Studio Keyboard Shortcuts .. 60

iii

Table of Contents

7.5 Switcher and Recent Files Navigation .. 61
7.6 Changing the Android Studio Theme .. 62
7.7 Summary .. 63

8. Testing Android Studio Apps on a Physical Android Device .. 65
8.1 An overview of the Android Debug Bridge (ADB) .. 65
8.2 Enabling USB debugging ADB on Android devices .. 65

8.2.1 macOS ADB configuration ... 66
8.2.2 Windows ADB configuration ... 67
8.2.3 Linux adb configuration .. 68

8.3 Resolving USB connection issues .. 68
8.4 Enabling wireless debugging on Android devices .. 69
8.5 Testing the adb connection .. 71
8.6 Summary .. 71

9. The Basics of the Android Studio Code Editor .. 73
9.1 The Android Studio editor ... 73
9.2 Code mode ... 75
9.3 Splitting the editor window .. 76
9.4 Code completion ... 76
9.5 Statement completion ... 78
9.6 Parameter information ... 78
9.7 Parameter name hints ... 78
9.8 Code generation .. 78
9.9 Code folding... 79
9.10 Quick documentation lookup ... 81
9.11 Code reformatting ... 81
9.12 Finding sample code ... 82
9.13 Live templates .. 82
9.14 Summary .. 83

10. An Overview of the Android Architecture .. 85
10.1 The Android software stack ... 85
10.2 The Linux kernel.. 86
10.3 Android runtime – ART .. 86
10.4 Android libraries ... 86

10.4.1 C/C++ libraries ... 86
10.5 Application framework ... 87
10.6 Applications ... 87
10.7 Summary .. 87

11. An Introduction to Kotlin .. 89
11.1 What is Kotlin? .. 89
11.2 Kotlin and Java ... 89
11.3 Converting from Java to Kotlin ... 89
11.4 Kotlin and Android Studio .. 90
11.5 Experimenting with Kotlin .. 90
11.6 Semi-colons in Kotlin ... 91
11.7 Summary .. 91

12. Kotlin Data Types, Variables and Nullability .. 93

iv

Table of Contents

12.1 Kotlin data types .. 93
12.1.1 Integer data types ... 94
12.1.2 Floating point data types .. 94
12.1.3 Boolean data type ... 94
12.1.4 Character data type .. 94
12.1.5 String data type ... 94
12.1.6 Escape sequences .. 95

12.2 Mutable variables .. 96
12.3 Immutable variables .. 96
12.4 Declaring mutable and immutable variables ... 96
12.5 Data types are objects ... 96
12.6 Type annotations and type inference .. 97
12.7 Nullable type .. 98
12.8 The safe call operator .. 98
12.9 Not-null assertion ... 99
12.10 Nullable types and the let function ... 99
12.11 Late initialization (lateinit) .. 100
12.12 The Elvis operator ... 101
12.13 Type casting and type checking... 101
12.14 Summary .. 102

13. Kotlin Operators and Expressions ... 103
13.1 Expression syntax in Kotlin ... 103
13.2 The Basic assignment operator .. 103
13.3 Kotlin arithmetic operators.. 103
13.4 Augmented assignment operators .. 104
13.5 Increment and decrement operators .. 104
13.6 Equality operators ... 105
13.7 Boolean logical operators ... 105
13.8 Range operator .. 106
13.9 Bitwise operators ... 106

13.9.1 Bitwise inversion .. 106
13.9.2 Bitwise AND ... 107
13.9.3 Bitwise OR ... 107
13.9.4 Bitwise XOR .. 107
13.9.5 Bitwise left shift .. 108
13.9.6 Bitwise right shift ... 108

13.10 Summary .. 109
14. Kotlin Control Flow ... 111

14.1 Looping control flow... 111
14.1.1 The Kotlin for-in Statement ... 111
14.1.2 The while loop .. 112
14.1.3 The do ... while loop .. 113
14.1.4 Breaking from Loops ... 113
14.1.5 The continue statement ... 114
14.1.6 Break and continue labels ... 114

14.2 Conditional control flow .. 115
14.2.1 Using the if expressions .. 115
14.2.2 Using if ... else … expressions ... 116

v

Table of Contents

14.2.3 Using if ... else if ... Expressions ... 116
14.2.4 Using the when statement ... 116

14.3 Summary .. 117
15. An Overview of Kotlin Functions and Lambdas ... 119

15.1 What is a function? ... 119
15.2 How to declare a Kotlin function .. 119
15.3 Calling a Kotlin function .. 120
15.4 Single expression functions.. 120
15.5 Local functions .. 120
15.6 Handling return values ... 121
15.7 Declaring default function parameters .. 121
15.8 Variable number of function parameters .. 121
15.9 Lambda expressions .. 122
15.10 Higher-order functions .. 123
15.11 Summary .. 124

16. The Basics of Object-Oriented Programming in Kotlin .. 125
16.1 What is an object? ... 125
16.2 What is a class? .. 125
16.3 Declaring a Kotlin class .. 125
16.4 Adding properties to a class ... 126
16.5 Defining methods .. 126
16.6 Declaring and initializing a class instance ... 126
16.7 Primary and secondary constructors ... 126
16.8 Initializer blocks .. 129
16.9 Calling methods and accessing properties ... 129
16.10 Custom accessors .. 129
16.11 Nested and inner classes... 130
16.12 Companion objects ... 131
16.13 Summary .. 133

17. An Introduction to Kotlin Inheritance and Subclassing ... 135
17.1 Inheritance, classes, and subclasses .. 135
17.2 Subclassing syntax ... 135
17.3 A Kotlin inheritance example .. 136
17.4 Extending the functionality of a subclass ... 137
17.5 Overriding inherited methods .. 138
17.6 Adding a custom secondary constructor ... 139
17.7 Using the SavingsAccount class ... 139
17.8 Summary .. 139

18. An Overview of Compose .. 141
18.1 Development before Compose .. 141
18.2 Compose declarative syntax ... 141
18.3 Compose is data-driven ... 142
18.4 Summary .. 142

19. Composable Functions Overview .. 143
19.1 What is a composable function? ... 143
19.2 Stateful vs. stateless composables .. 143

vi

Table of Contents

19.3 Composable function syntax ... 144
19.4 Foundation and Material composables .. 146
19.5 Summary .. 147

20. An Overview of Compose State and Recomposition ... 149
20.1 The basics of state .. 149
20.2 Introducing recomposition .. 149
20.3 Creating the StateExample project .. 150
20.4 Declaring state in a composable .. 150
20.5 Unidirectional data flow ... 153
20.6 State hoisting .. 155
20.7 Saving state through configuration changes .. 157
20.8 Summary .. 158

21. An Introduction to Composition Local ... 161
21.1 Understanding CompositionLocal ... 161
21.2 Using CompositionLocal ... 162
21.3 Creating the CompLocalDemo project .. 163
21.4 Designing the layout ... 163
21.5 Adding the CompositionLocal state ... 164
21.6 Accessing the CompositionLocal state ... 165
21.7 Testing the design .. 165
21.8 Summary .. 168

22. An Overview of Compose Slot APIs .. 169
22.1 Understanding slot APIs .. 169
22.2 Declaring a slot API .. 170
22.3 Calling slot API composables .. 170
22.4 Summary .. 172

23. A Compose Slot API Tutorial ... 173
23.1 About the project ... 173
23.2 Creating the SlotApiDemo project ... 173
23.3 Preparing the MainActivity class file .. 173
23.4 Creating the MainScreen composable .. 174
23.5 Adding the ScreenContent composable .. 175
23.6 Creating the Checkbox composable ... 176
23.7 Implementing the ScreenContent slot API .. 177
23.8 Adding an Image drawable resource .. 178
23.9 Writing the TitleImage composable ... 179
23.10 Completing the MainScreen composable .. 180
23.11 Previewing the project .. 182
23.12 Summary .. 183

24. Using Modifiers in Compose .. 185
24.1 An overview of modifiers ... 185
24.2 Creating the ModifierDemo project ... 185
24.3 Creating a modifier ... 186
24.4 Modifier ordering .. 188
24.5 Adding modifier support to a composable .. 188
24.6 Common built-in modifiers .. 192

vii

Table of Contents

24.7 Combining modifiers.. 192
24.8 Summary .. 193

25. Annotated Strings and Brush Styles... 195
25.1 What are annotated strings? .. 195
25.2 Using annotated strings .. 195
25.3 Brush Text Styling ... 196
25.4 Creating the example project ... 197
25.5 An example SpanStyle annotated string ... 197
25.6 An example ParagraphStyle annotated string ... 198
25.7 A Brush style example .. 201
25.8 Summary .. 202

26. Composing Layouts with Row and Column .. 203
26.1 Creating the RowColDemo project .. 203
26.2 Row composable .. 204
26.3 Column composable ... 204
26.4 Combining Row and Column composables .. 205
26.5 Layout alignment .. 206
26.6 Layout arrangement positioning ... 208
26.7 Layout arrangement spacing .. 210
26.8 Row and Column scope modifiers .. 211
26.9 Scope modifier weights .. 215
26.10 Summary .. 216

27. Box Layouts in Compose .. 217
27.1 An introduction to the Box composable .. 217
27.2 Creating the BoxLayout project .. 217
27.3 Adding the TextCell composable .. 217
27.4 Adding a Box layout .. 218
27.5 Box alignment .. 219
27.6 BoxScope modifiers .. 221
27.7 Using the clip() modifier .. 221
27.8 Summary .. 223

28. Custom Layout Modifiers ... 225
28.1 Compose layout basics ... 225
28.2 Custom layouts .. 225
28.3 Creating the LayoutModifier project .. 225
28.4 Adding the ColorBox composable .. 226
28.5 Creating a custom layout modifier ... 227
28.6 Understanding default position... 227
28.7 Completing the layout modifier .. 227
28.8 Using a custom modifier .. 228
28.9 Working with alignment lines ... 229
28.10 Working with baselines .. 231
28.11 Summary .. 231

29. Building Custom Layouts ... 233
29.1 An overview of custom layouts ... 233
29.2 Custom layout syntax ... 233

viii

Table of Contents

29.3 Using a custom layout ... 234
29.4 Creating the CustomLayout project ... 235
29.5 Creating the CascadeLayout composable .. 235
29.6 Using the CascadeLayout composable ... 237
29.7 Summary .. 238

30. A Guide to ConstraintLayout in Compose .. 239
30.1 An introduction to ConstraintLayout .. 239
30.2 How ConstraintLayout works.. 239

30.2.1 Constraints .. 239
30.2.2 Margins .. 240
30.2.3 Opposing constraints ... 240
30.2.4 Constraint bias .. 241
30.2.5 Chains .. 242
30.2.6 Chain styles ... 242

30.3 Configuring dimensions ... 243
30.4 Guideline helper .. 243
30.5 Barrier helper ... 244
30.6 Summary .. 245

31. Working with ConstraintLayout in Compose ... 247
31.1 Calling ConstraintLayout ... 247
31.2 Generating references ... 247
31.3 Assigning a reference to a composable ... 247
31.4 Adding constraints .. 248
31.5 Creating the ConstraintLayout project .. 248
31.6 Adding the ConstraintLayout library ... 249
31.7 Adding a custom button composable ... 249
31.8 Basic constraints .. 250
31.9 Opposing constraints .. 251
31.10 Constraint bias... 252
31.11 Constraint margins ... 253
31.12 The importance of opposing constraints and bias .. 254
31.13 Creating chains .. 257
31.14 Working with guidelines .. 258
31.15 Working with barriers .. 259
31.16 Decoupling constraints with constraint sets.. 262
31.17 Summary .. 264

32. Working with IntrinsicSize in Compose .. 265
32.1 Intrinsic measurements .. 265
32.2 Max. vs Min. Intrinsic Size measurements .. 265
32.3 About the example project ... 266
32.4 Creating the IntrinsicSizeDemo project ... 267
32.5 Creating the custom text field .. 267
32.6 Adding the Text and Box components ... 268
32.7 Adding the top-level Column .. 268
32.8 Testing the project ... 269
32.9 Applying IntrinsicSize.Max measurements ... 269
32.10 Applying IntrinsicSize.Min measurements ... 270
32.11 Summary .. 270

ix

Table of Contents

33. Coroutines and LaunchedEffects in Jetpack Compose .. 271
33.1 What are coroutines? .. 271
33.2 Threads vs. coroutines .. 271
33.3 Coroutine Scope .. 272
33.4 Suspend functions ... 272
33.5 Coroutine dispatchers ... 272
33.6 Coroutine builders .. 273
33.7 Jobs .. 273
33.8 Coroutines – suspending and resuming .. 274
33.9 Coroutine channel communication .. 275
33.10 Understanding side effects ... 276
33.11 Summary .. 277

34. An Overview of Lists and Grids in Compose .. 279
34.1 Standard vs. lazy lists .. 279
34.2 Working with Column and Row lists ... 279
34.3 Creating lazy lists .. 280
34.4 Enabling scrolling with ScrollState ... 281
34.5 Programmatic scrolling .. 281
34.6 Sticky headers .. 282
34.7 Responding to scroll position .. 284
34.8 Creating a lazy grid ... 284
34.9 Summary .. 287

35. A Compose Row and Column List Tutorial .. 289
35.1 Creating the ListDemo project .. 289
35.2 Creating a Column-based list .. 289
35.3 Enabling list scrolling ... 291
35.4 Manual scrolling .. 291
35.5 A Row list example .. 294
35.6 Summary .. 294

36. A Compose Lazy List Tutorial ... 295
36.1 Creating the LazyListDemo project .. 295
36.2 Adding list data to the project ... 295
36.3 Reading the XML data .. 297
36.4 Handling image loading ... 298
36.5 Designing the list item composable .. 300
36.6 Building the lazy list .. 301
36.7 Testing the project ... 302
36.8 Making list items clickable ... 302
36.9 Summary .. 304

37. Lazy List Sticky Headers and Scroll Detection ... 305
37.1 Grouping the list item data .. 305
37.2 Displaying the headers and items ... 305
37.3 Adding sticky headers ... 306
37.4 Reacting to scroll position ... 307
37.5 Adding the scroll button .. 309
37.6 Testing the finished app .. 310
37.7 Summary .. 311

x

Table of Contents

38. A Compose Lazy Staggered Grid Tutorial .. 313
38.1 Lazy Staggered Grids .. 313
38.2 Creating the StaggeredGridDemo project ... 314
38.3 Adding the Box composable .. 315
38.4 Generating random height and color values ... 315
38.5 Creating the Staggered List .. 316
38.6 Testing the project ... 317
38.7 Switching to a horizontal staggered grid .. 318
38.8 Summary .. 319

39. Compose Visibility Animation .. 321
39.1 Creating the AnimateVisibility project .. 321
39.2 Animating visibility .. 321
39.3 Defining enter and exit animations .. 324
39.4 Animation specs and animation easing ... 325
39.5 Repeating an animation ... 327
39.6 Different animations for different children ... 327
39.7 Auto-starting an animation ... 328
39.8 Implementing crossfading ... 329
39.9 Summary .. 331

40. Compose State-Driven Animation ... 333
40.1 Understanding state-driven animation .. 333
40.2 Introducing animate as state functions .. 333
40.3 Creating the AnimateState project .. 334
40.4 Animating rotation with animateFloatAsState .. 334
40.5 Animating color changes with animateColorAsState... 337
40.6 Animating motion with animateDpAsState .. 339
40.7 Adding spring effects .. 342
40.8 Working with keyframes .. 343
40.9 Combining multiple animations ... 344
40.10 Using the Animation Inspector ... 347
40.11 Summary .. 348

41. Canvas Graphics Drawing in Compose ... 349
41.1 Introducing the Canvas component ... 349
41.2 Creating the CanvasDemo project .. 349
41.3 Drawing a line and getting the canvas size .. 349
41.4 Drawing dashed lines.. 351
41.5 Drawing a rectangle .. 351
41.6 Applying rotation .. 355
41.7 Drawing circles and ovals ... 356
41.8 Drawing gradients ... 357
41.9 Drawing arcs .. 360
41.10 Drawing paths ... 361
41.11 Drawing points .. 362
41.12 Drawing an image ... 363
41.13 Drawing text .. 365
41.14 Summary .. 367

42. Working with ViewModels in Compose .. 369

xi

Table of Contents

42.1 What is Android Jetpack? .. 369
42.2 The “old” architecture ... 369
42.3 Modern Android architecture ... 369
42.4 The ViewModel component... 369
42.5 ViewModel implementation using state ... 370
42.6 Connecting a ViewModel state to an activity .. 371
42.7 ViewModel implementation using LiveData ... 372
42.8 Observing ViewModel LiveData within an activity ... 373
42.9 Summary .. 373

43. A Compose ViewModel Tutorial .. 375
43.1 About the project ... 375
43.2 Creating the ViewModelDemo project .. 376
43.3 Adding the ViewModel .. 376
43.4 Accessing DemoViewModel from MainActivity ... 377
43.5 Designing the temperature input composable .. 378
43.6 Designing the temperature input composable .. 380
43.7 Completing the user interface design ... 382
43.8 Testing the app ... 384
43.9 Summary .. 384

44. An Overview of Android SQLite Databases .. 385
44.1 Understanding database tables .. 385
44.2 Introducing database schema ... 385
44.3 Columns and data types .. 385
44.4 Database rows ... 386
44.5 Introducing primary keys ... 386
44.6 What is SQLite? ... 386
44.7 Structured Query Language (SQL) ... 386
44.8 Trying SQLite on an Android Virtual Device (AVD) .. 387
44.9 The Android Room persistence library .. 389
44.10 Summary .. 389

45. Room Databases and Compose ... 391
45.1 Revisiting modern app architecture ... 391
45.2 Key elements of Room database persistence ... 391

45.2.1 Repository ... 391
45.2.2 Room database ... 392
45.2.3 Data Access Object (DAO) ... 392
45.2.4 Entities ... 392
45.2.5 SQLite database .. 392

45.3 Understanding entities ... 393
45.4 Data Access Objects .. 395
45.5 The Room database ... 396
45.6 The Repository ... 397
45.7 In-Memory databases ... 398
45.8 Database Inspector .. 399
45.9 Summary .. 399

46. A Compose Room Database and Repository Tutorial .. 401
46.1 About the RoomDemo project .. 401

xii

Table of Contents

46.2 Creating the RoomDemo project .. 402
46.3 Modifying the build configuration ... 402
46.4 Building the entity ... 403
46.5 Creating the Data Access Object ... 404
46.6 Adding the Room database .. 405
46.7 Adding the repository ... 406
46.8 Adding the ViewModel .. 408
46.9 Designing the user interface .. 410
46.10 Writing a ViewModelProvider Factory class ... 412
46.11 Completing the MainScreen function .. 414
46.12 Testing the RoomDemo app .. 417
46.13 Using the Database Inspector .. 417
46.14 Summary .. 418

47. An Overview of Navigation in Compose ... 419
47.1 Understanding navigation .. 419
47.2 Declaring a navigation controller.. 421
47.3 Declaring a navigation host ... 421
47.4 Adding destinations to the navigation graph .. 421
47.5 Navigating to destinations.. 422
47.6 Passing arguments to a destination ... 424
47.7 Working with bottom navigation bars ... 425
47.8 Summary .. 427

48. A Compose Navigation Tutorial .. 429
48.1 Creating the NavigationDemo project ... 429
48.2 About the NavigationDemo project ... 429
48.3 Declaring the navigation routes .. 429
48.4 Adding the home screen .. 430
48.5 Adding the welcome screen ... 431
48.6 Adding the profile screen ... 432
48.7 Creating the navigation controller and host .. 433
48.8 Implementing the screen navigation .. 433
48.9 Passing the user name argument ... 434
48.10 Testing the project ... 435
48.11 Summary .. 437

49. A Compose Navigation Bar Tutorial .. 439
49.1 Creating the BottomBarDemo project ... 439
49.2 Declaring the navigation routes .. 439
49.3 Designing bar items .. 440
49.4 Creating the bar item list .. 440
49.5 Adding the destination screens ... 441
49.6 Creating the navigation controller and host .. 443
49.7 Designing the navigation bar ... 443
49.8 Working with the Scaffold component ... 445
49.9 Testing the project ... 446
49.10 Summary .. 446

50. Detecting Gestures in Compose ... 447
50.1 Compose gesture detection .. 447

xiii

Table of Contents

50.2 Creating the GestureDemo project ... 447
50.3 Detecting click gestures .. 447
50.4 Detecting taps using PointerInputScope .. 449
50.5 Detecting drag gestures .. 450
50.6 Detecting drag gestures using PointerInputScope .. 452
50.7 Scrolling using the scrollable modifier ... 453
50.8 Scrolling using the scroll modifiers .. 454
50.9 Detecting pinch gestures .. 456
50.10 Detecting rotation gestures .. 457
50.11 Detecting translation gestures ... 458
50.12 Summary .. 459

51. An Introduction to Kotlin Flow ... 461
51.1 Understanding Flows .. 461
51.2 Creating the sample project ... 461
51.3 Adding a view model to the project .. 462
51.4 Declaring the flow ... 463
51.5 Emitting flow data ... 463
51.6 Collecting flow data as state ... 464
51.7 Transforming data with intermediaries ... 465
51.8 Collecting flow data .. 467
51.9 Adding a flow buffer ... 468
51.10 More terminal flow operators .. 469
51.11 Flow flattening ... 470
51.12 Combining multiple flows ... 472
51.13 Hot and cold flows .. 473
51.14 StateFlow .. 473
51.15 SharedFlow ... 474
51.16 Converting a flow from cold to hot .. 476
51.17 Summary .. 476

52. A Jetpack Compose SharedFlow Tutorial .. 477
52.1 About the project ... 477
52.2 Creating the SharedFlowDemo project .. 477
52.3 Adding a view model to the project .. 478
52.4 Declaring the SharedFlow .. 478
52.5 Collecting the flow values .. 479
52.6 Testing the SharedFlowDemo app .. 481
52.7 Handling flows in the background.. 481
52.8 Summary .. 483

53. Creating, Testing, and Uploading an Android App Bundle .. 485
53.1 The release preparation process .. 485
53.2 Android app bundles .. 485
53.3 Register for a Google Play Developer Console account ... 486
53.4 Configuring the app in the console... 487
53.5 Enabling Google Play app signing .. 488
53.6 Creating a keystore file ... 488
53.7 Creating the Android app bundle ... 490
53.8 Generating test APK files ... 491
53.9 Uploading the app bundle to the Google Play Developer Console .. 492

xiv

Table of Contents

53.10 Exploring the app bundle ... 493
53.11 Managing testers ... 494
53.12 Rolling the app out for testing ... 494
53.13 Uploading new app bundle revisions ... 495
53.14 Analyzing the app bundle file .. 496
53.15 Summary .. 496

54. An Overview of Android In-App Billing ... 499
54.1 Preparing a project for In-App purchasing .. 499
54.2 Creating In-App products and subscriptions .. 499
54.3 Billing client initialization .. 500
54.4 Connecting to the Google Play Billing library .. 501
54.5 Querying available products .. 501
54.6 Starting the purchase process .. 502
54.7 Completing the purchase ... 502
54.8 Querying previous purchases .. 503
54.9 Summary .. 504

55. An Android In-App Purchasing Tutorial .. 505
55.1 About the In-App purchasing example project ... 505
55.2 Creating the InAppPurchase project .. 505
55.3 Adding libraries to the project ... 505
55.4 Adding the App to the Google Play Store .. 506
55.5 Creating an In-App product .. 506
55.6 Enabling license testers ... 507
55.7 Creating a purchase helper class ... 508
55.8 Adding the StateFlow streams ... 509
55.9 Initializing the billing client ... 509
55.10 Querying the product ... 510
55.11 Handling purchase updates ... 511
55.12 Launching the purchase flow ... 511
55.13 Consuming the product ... 512
55.14 Restoring a previous purchase ... 512
55.15 Completing the MainActivity .. 513
55.16 Testing the app ... 515
55.17 Troubleshooting .. 517
55.18 Summary .. 518

56. Working with Compose Theming .. 519
56.1 Material Design 2 vs. Material Design 3 .. 519
56.2 Material Design 3 theming .. 519
56.3 Building a custom theme ... 523
56.4 Summary .. 524

57. A Material Design 3 Theming Tutorial .. 525
57.1 Creating the ThemeDemo project .. 525
57.2 Designing the user interface .. 525
57.3 Building a new theme ... 527
57.4 Adding the theme to the project ... 528
57.5 Enabling dynamic colors .. 529
57.6 Summary .. 530

xv

Table of Contents

58. An Overview of Gradle in Android Studio .. 531
58.1 An overview of Gradle .. 531
58.2 Gradle and Android Studio ... 531

58.2.1 Sensible defaults ... 531
58.2.2 Dependencies.. 531
58.2.3 Build variants .. 532
58.2.4 Manifest entries .. 532
58.2.5 APK signing .. 532
58.2.6 ProGuard support .. 532

58.3 The Properties and Settings Gradle build files .. 532
58.4 The top-level gradle build file .. 533
58.5 Module level Gradle build files .. 534
58.6 Configuring signing settings in the build file .. 537
58.7 Running Gradle tasks from the command-line .. 538
58.8 Summary .. 538

Index ... 539

1

Chapter 1

1. Start Here
This book aims to teach you how to build Android applications using Jetpack Compose 1.3, Android Studio
Flamingo (2022.2.1), Material Design 3, and the Kotlin programming language.

The book begins with the basics by explaining how to set up an Android Studio development environment.

The book also includes in-depth chapters introducing the Kotlin programming language, including data types,
operators, control flow, functions, lambdas, coroutines, and object-oriented programming.

An introduction to the key concepts of Jetpack Compose and Android project architecture is followed by a
guided tour of Android Studio in Compose development mode. The book also covers the creation of custom
Composables and explains how functions are combined to create user interface layouts, including row, column,
box, and list components.

Other topics covered include data handling using state properties, key user interface design concepts such
as modifiers, navigation bars, and user interface navigation. Additional chapters explore building your own
reusable custom layout components.

The book covers graphics drawing, user interface animation, transitions, Kotlin Flows, and gesture handling.

Chapters also cover view models, SQLite databases, Room database access, the Database Inspector, live data,
and custom theme creation. Using in-app billing, you will also learn to generate extra revenue from your app.

Finally, the book explains how to package up a completed app and upload it to the Google Play Store for
publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code
for which is also available for download.

Assuming you already have some rudimentary programming experience, are ready to download Android Studio
and the Android SDK, and have access to a Windows, Mac, or Linux system, you are ready to start.

1.1 For Kotlin programmers
This book addresses the needs of existing Kotlin programmers and those new to Kotlin and Jetpack Compose
app development. If you are familiar with the Kotlin programming language, you can probably skip the Kotlin-
specific chapters.

1.2 For new Kotlin programmers
If you are new to Kotlin programming, the entire book is appropriate for you. Just start at the beginning and
keep going.

1.3 Downloading the code samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/compose13/index.php

The steps to load a project from the code samples into Android Studio are as follows:

https://www.ebookfrenzy.com/retail/compose13/index.php

2

Start Here

1. Click on the Open button option from the Welcome to Android Studio dialog.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.4 Feedback
We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have
any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

1.5 Errata
While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a
subject area of this size and complexity may include some errors and oversights. Any known issues with the
book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/compose13.html

If you find an error not listed in the errata, email our technical support team at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/errata/compose13.html

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK),
the Kotlin plug-in and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

• Windows 8/10/11 64-bit

• macOS 10.14 or later running on Intel or Apple silicon

• Chrome OS device with Intel i5 or higher

• Linux systems with version 2.31 or later of the GNU C Library (glibc)

• Minimum of 8GB of RAM

• Approximately 8GB of available disk space

• 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Flamingo 2022.2.1
using the Android API 33 SDK (Tiramisu) which, at the time of writing, are the latest versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for “Android Studio
Flamingo” should provide the option to download the older version if these differences become a problem.
Alternatively, visit the following web page to find Android Studio Flamingo 2022.2.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

4

Setting up an Android Studio Development Environment

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1
To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

5

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora-based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio setup wizard
If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click on
the OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

6

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click on the
Finish button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen UI theme:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

7

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

Figure 2-5
Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To

8

Setting up an Android Studio Development Environment

view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

• Android SDK Build-tools

• Android Emulator

• Android SDK Platform-tools

• Google Play Services

• Intel x86 Emulator Accelerator (HAXM installer)*

• Google USB Driver (Windows only)

• Layout Inspector image server for API 31 and T
*Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8
Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the

9

Setting up an Android Studio Development Environment

Apply button again.

2.6 Installing the Android SDK Command-line Tools
Android Studio includes a set of tools that allow some tasks to be performed from your operating system
command line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab and
enable the Show Package Details option in the bottom left-hand corner of the window. Next, scroll down the
list of packages and, when the Android SDK Command-line Tools (latest) package comes into view, enable it as
shown in Figure 2-9:

Figure 2-9

After you have selected the command-line tools package, click on Apply followed by OK to complete the
installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

10

Setting up an Android Studio Development Environment

Figure 2-10
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit… button. Using the New button in the edit dialog, add three new entries to the path. For
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

11

Setting up an Android Studio Development Environment

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management
Android Studio is a large and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-11
To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->

12

Setting up an Android Studio Development Environment

Preferences... on macOS) menu option and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

Figure 2-12
The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the currently
loaded project. On the other hand, when a project is built and run from within Android Studio, a number of
background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option.

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

13

Chapter 3

3. A Compose Project Overview
Now that we have installed Android Studio, the next step is to create an Android app using Jetpack Compose.
Although this project will make use of several Compose features, it is an intentionally simple example intended
to provide an early demonstration of Compose in action and an initial success on which to build as you work
through the remainder of the book. The project will also serve to verify that your Android Studio environment
is correctly installed and configured.

This chapter will create a new project using the Android Studio Compose project template and explore both the
basic structure of a Compose-based Android Studio project and some of the key areas of Android Studio. In the
next chapter, we will use this project to create a simple Android app.

Both chapters will briefly explain key features of Compose as they are introduced within the project. If anything
is unclear when you have completed the project, rest assured that all of the areas covered in the tutorial will be
explored in greater detail in later chapters of the book.

3.1 About the project
The completed project will consist of two text components and a slider. When the slider is moved, the current
value will be displayed on one of the text components, while the font size of the second text instance will adjust
to match the current slider position. Once completed, the user interface for the app will appear as shown in
Figure 3-1:

Figure 3-1

14

A Compose Project Overview

3.2 Creating the project
The first step in building an app is to create a new project within Android Studio. Begin, therefore, by launching
Android Studio so that the “Welcome to Android Studio” screen appears as illustrated in Figure 3-2:

Figure 3-2
Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project button to display the first screen of the New Project wizard.

3.3 Creating an activity
The next step is to define the type of initial activity that is to be created for the application. The left-hand panel
provides a list of platform categories from which the Phone and Tablet option must be selected. Although a range
of different activity types is available when developing Android applications, only the Empty Activity template
provides a pre-configured project ready to work with Compose. Select this option before clicking on the Next
button:

Figure 3-3

15

A Compose Project Overview

3.4 Defining the project and SDK settings
In the project configuration window (Figure 3-4), set the Name field to ComposeDemo. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store:

Figure 3-4
The Package name is used to uniquely identify the application within the Google Play app store application
ecosystem. Although this can be set to any string that uniquely identifies your app, it is traditionally based on
the reversed URL of your domain name followed by the name of the application. For example, if your domain
is www.mycompany.com, and the application has been named ComposeDemo, then the package name might be
specified as follows:
com.mycompany.composedemo

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.composedemo

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in
most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose link to see a full breakdown of the various Android versions still in use:

16

A Compose Project Overview

Figure 3-5
Click on the Finish button to create the project.

3.5 Previewing the example project
At this point, Android Studio should have created a minimal example application project and opened the main
window.

Figure 3-6
The newly created project and references to associated files are listed in the Project tool window located on the
left-hand side of the main project window. The Project tool window has several modes in which information
can be displayed. By default, this panel should be in Android mode. This setting is controlled by the menu at
the top of the panel as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to
switch mode:

17

A Compose Project Overview

Figure 3-7
The code for the main activity of the project (an activity corresponds to a single user interface screen or module
within an Android app) is contained within the MainActivity.kt file located under app -> java -> com.example.
composedemo within the Project tool window as indicated in Figure 3-8:

Figure 3-8
Double-click on this file to load it into the main code editor panel. The editor can be used in different modes
when writing code, the most useful of which when working with Compose is Split mode. The current mode
can be changed using the buttons marked A in Figure 3-9. Split mode displays the code editor (B) alongside the
Preview panel (C) in which the current user interface design will appear:

18

A Compose Project Overview

Figure 3-9
To get us started, Android Studio has already added some code to the MainActivity.kt file to display a Text
component configured to display a message which reads “Hello Android”.

If the project has not yet been built, the Preview panel will display the message shown in Figure 3-10:

Figure 3-10
If you see this notification, click on the Build & Refresh link to rebuild the project. After the build is complete,
the Preview panel should update to display the user interface defined by the code in the MainActivity.kt file:

Figure 3-11

3.6 Reviewing the main activity
Android applications are created by bringing together one or more elements known as Activities. An activity
is a single, standalone module of application functionality that either correlates directly to a single user
interface screen and its corresponding functionality, or acts as a container for a collection of related screens. An
appointments application might, for example, contain an activity screen that displays appointments set up for
the current day. The application might also utilize a second activity consisting of multiple screens where new
appointments may be entered by the user and existing appointments edited.

When we created the ComposeDemo project, Android Studio created a single initial activity for our app, named

19

A Compose Project Overview

it MainActivity, and generated some code for it in the MainActivity.kt file. This activity contains the first screen
that will be displayed when the app is run on a device. Before we modify the code for our requirements in the
next chapter, it is worth taking some time to review the code currently contained within the MainActivity.kt file.

The file begins with the following line (keep in mind that this may be different if you used your own domain
name instead of com.example):
package com.example.composedemo

This tells the build system that the classes and functions declared in this file belong to the com.example.
composedemo package which we configured when we created the project.

Next are a series of import directives. The Android SDK is comprised of a vast collection of libraries that provide
the foundation for building Android apps. If all of these libraries were included within an app the resulting app
bundle would be too large to run efficiently on a mobile device. To avoid this problem an app only imports the
libraries that it needs to be able to run:
import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.material3.MaterialTheme

import androidx.compose.material3.Surface

import androidx.compose.material3.Text

.

.

Initially, the list of import directives will most likely be “folded” to save space. To unfold the list, click on the
small “+” button indicated by the arrow in Figure 3-12 below:

Figure 3-12
The MainActivity class is then declared as a subclass of the Android ComponentActivity class:
class MainActivity : ComponentActivity() {

.

.

}

The MainActivity class implements a single method in the form of onCreate(). This is the first method that is
called when an activity is launched by the Android runtime system and is an artifact of the way apps used to be
developed before the introduction of Compose. The onCreate() method is used here to provide a bridge between
the containing activity and the Compose-based user interfaces that are to appear within it:
override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ComposeDemoTheme {

.

20

A Compose Project Overview

.

 }

 }

}

The method declares that the content of the activity’s user interface will be provided by a composable function
named ComposeDemoTheme. This composable function is declared in the Theme.kt file located under the app
-> <package name> -> ui.theme folder in the Project tool window. This, along with the other files in the ui.theme
folder defines the colors, fonts, and shapes to be used by the activity and provides a central location from which
to customize the overall theme of the app’s user interface.

The call to the ComposeDemoTheme composable function is configured to contain a Surface composable.
Surface is a built-in Compose component designed to provide a background for other composables:
ComposeDemoTheme {

 // A surface container using the 'background' color from the theme

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

.

.

}

In this case, the Surface component is configured to fill the entire screen and with the background set to the
standard background color defined by the Android Material Design theme. Material Design is a set of design
guidelines developed by Google to provide a consistent look and feel across all Android apps. It includes a theme
(including fonts and colors), a set of user interface components (such as button, text, and a range of text fields),
icons, and generally defines how an Android app should look, behave and respond to user interactions.

Finally, the Surface is configured to contain a composable function named Greeting which is passed a string
value that reads “Android”:
ComposeDemoTheme {

 // A surface container using the 'background' color from the theme

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 Greeting("Android")

 }

}

Outside of the scope of the MainActivity class, we encounter our first composable function declaration within
the activity. The function is named Greeting and is, unsurprisingly, marked as being composable by the @
Composable annotation:
@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {

 Text(

 text = "Hello $name!",

 modifier = modifier

)

21

A Compose Project Overview

}

The function accepts a String parameter (labeled name) and calls the built-in Text composable, passing through
a string value containing the word “Hello” concatenated with the name parameter. The function also accepts an
optional modifier parameter (a topic covered in the chapter titled “Using Modifiers in Compose”). As will soon
become evident as you work through the book, composable functions are the fundamental building blocks for
developing Android apps using Compose.

The second composable function declared in the MainActivity.kt file reads as follows:
@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

 ComposeDemoTheme {

 Greeting("Android")

 }

}

Earlier in the chapter, we looked at how the Preview panel allows us to see how the user interface will appear
without having to compile and run the app. At first glance, it would be easy to assume that the preview rendering
is generated by the code in the onCreate() method. In fact, that method only gets called when the app runs
on a device or emulator. Previews are generated by preview composable functions. The @Preview annotation
associated with the function tells Android Studio that this is a preview function and that the content emitted by
the function is to be displayed in the Preview panel. As we will see later in the book, a single activity can contain
multiple preview composable functions configured to preview specific sections of a user interface using different
data values.

In addition, each preview may be configured by passing parameters to the @Preview annotation. For example,
to view the preview with the rest of the standard Android screen decorations, modify the preview annotation so
that it reads as follows:
@Preview(showSystemUi = true)

Once the preview has been updated, it should now be rendered as shown in Figure 3-13:

Figure 3-13

22

A Compose Project Overview

3.7 Preview updates
One final point worth noting is that the Preview panel is live and will automatically reflect minor changes made
to the composable functions that make up a preview. To see this in action, edit the call to the Greeting function
in the GreetingPreview() preview composable function to change the name from “Android” to “Compose”. Note
that as you make the change in the code editor, it is reflected in the preview.

More significant changes will require a build and refresh before being reflected in the preview. When this is
required, Android Studio will display the following “Out of date” notice at the top of the Preview panel and a
Build & Refresh button (indicated by the arrow in Figure 3-14):

Figure 3-14
Simply click on the button to update the preview for the latest changes. Occasionally, Android Studio will fail to
update the preview after code changes. If you believe that the preview no longer matches your code, hover the
mouse pointer over the Up-to-date status text and select Build & Refresh from the resulting menu, as illustrated
in Figure 3-15:

Figure 3-15

The Preview panel also includes an interactive mode that allows you to trigger events on the user interface
components (for example clicking buttons, moving sliders, scrolling through lists, etc.). Since ComposeDemo
contains only an inanimate Text component at this stage, it makes more sense to introduce interactive mode in
the next chapter.

3.8 Bill of Materials and the Compose version
Although Jetpack Compose and Android Studio appear to be tightly integrated, they are two separate products
developed by different teams at Google. As a result, there is no guarantee that the most recent Android Studio
version will default to using the latest version of Jetpack Compose. It can, therefore, be helpful to know which
version of Jetpack Compose is being used by Android Studio. This is declared in a Bill of Materials (BOM)
setting within the build configuration files of your Android Studio projects.

To identify the BOM for a project, locate the Gradle Scripts -> build.gradle (Module: app) file (highlighted in the
figure below) and double-click on it to load it into the editor:

23

A Compose Project Overview

Figure 3-16
With the file loaded into the editor, locate the compose-bom entry in the dependencies section:
dependencies {

.

.

 implementation platform('androidx.compose:compose-bom:2022.10.00')
.

.

In the above example, we can see that the project is using BOM 2022.10.00. With this information, we can use
the BOM to library version mapping web page at the following URL to identify the library versions being used
to build our app:

https://developer.android.com/jetpack/compose/bom/bom-mapping

Once the web page has loaded, select the BOM version from the menu highlighted in Figure 3-17 below. For
example, the figure shows that BOM 2022.10.00 uses version 1.3.2 of the Compose libraries:

Figure 3-17
The BOM does not currently define the versions of all the dependencies listed in the build file. Therefore, you
will see some library dependencies in the build.gradle file that include a specific version number, as is the case
with the core-ktx and lifecycle-runtime-ktx libraries:

https://developer.android.com/jetpack/compose/bom/bom-mapping

24

A Compose Project Overview

dependencies {

 implementation 'androidx.core:core-ktx:1.8.0'
 implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.3.1'
.

.

You can add specific version numbers to any libraries you add to the dependencies, though it is recommended
to rely on the BOM settings whenever possible to ensure library compatibility. However, a version number
declaration will be required when adding libraries not listed in the BOM. You can also override the BOM version
of a library by appending a version number to the declaration. The following declaration, for example, overrides
the version number in the BOM for the compose.ui library:
implementation 'androidx.compose.ui:ui:1.3.3'

3.9 Summary
In this chapter, we have created a new project using Android Studio’s Empty Activity template and explored some
of the code automatically generated for the project. We have also introduced several features of Android Studio
designed to make app development with Compose easier. The most useful features, and the places where you
will spend most of your time while developing Android apps, are the code editor and Preview panel.

While the default code in the MainActivity.kt file provides an interesting example of a basic user interface, it
bears no resemblance to the app we want to create. In the next chapter, we will modify and extend the app by
removing some of the template code and writing our own composable functions.

35

Chapter 5

5. Creating an Android Virtual
Device (AVD) in Android Studio
Although the Android Studio Preview panel allows us to see the layout we are designing and test basic
functionality using interactive mode, it be will necessary to compile and run an entire app to fully test that it
works. An Android application may be tested by installing and running it either on a physical device or in an
Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and
configured to match the specifications of a particular device model. In this chapter, we will work through the
creation of such a virtual device using the Pixel 4a phone as a reference example.

5.1 About Android Virtual Devices
AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android-based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity, and the presence or otherwise of features such
as a camera, GPS navigation support, or an accelerometer. As part of the standard Android Studio installation,
several emulator templates are installed allowing AVDs to be configured for a range of different devices. Custom
configurations may be created to match any physical Android device by specifying properties such as processor
type, memory capacity, and the size and pixel density of the screen.

An AVD session can appear either as a separate window or embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step
is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting
the Tools -> Device Manager menu option from within the main window.

Once launched, the manager will appear as a tool window as shown in Figure 5-1:

Figure 5-1
To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device

36

Creating an Android Virtual Device (AVD) in Android Studio

button to open the Virtual Device Configuration dialog:

Figure 5-2
Within the dialog, perform the following steps to create a Pixel 4a compatible emulator:

1. From the Category panel, select the Phone option to display the list of available Android phone AVD
templates.

2. Select the Pixel 4a device option and click Next.

3. On the System Image screen, select the latest version of Android. Note that if the system image has not yet
been installed a Download link will be provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or
ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

4. Click Next to proceed and enter a descriptive name (for example Pixel 4a API 33) into the name field or
simply accept the default name.

5. Click Finish to create the AVD.

6. With the AVD created, the Device Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the Device Manager, select the AVD from the list, and click on the pencil icon in
the Actions column to edit the settings.

5.2 Starting the emulator
To perform a test run of the newly created AVD emulator, simply select the emulator from the Device Manager
and click on the launch button (the triangle in the Actions column). The emulator will appear embedded into
the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to
start will depend on the configuration of both the AVD and the system on which it is running:

37

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-3
To hide and show the emulator tool window, click on the Emulator tool window button (marked A above). Click
on the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can accommodate
multiple emulator sessions, with each session represented by a tab. Figure 5-4, for example, shows a tool window
with two emulator sessions:

Figure 5-4
To switch between sessions, simply click on the corresponding tab.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the Device Manager, select the new Pixel 4a entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change
the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the
emulator are covered in the next chapter“Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

5.3 Running the application in the AVD
With an AVD emulator configured, the example ComposeDemo application created in the earlier chapter now
can be compiled and run. With the ComposeDemo project loaded into Android Studio, make sure that the

38

Creating an Android Virtual Device (AVD) in Android Studio

newly created Pixel 4a AVD is displayed in the device menu (marked A in Figure 5-5 below), then either click
on the run button represented by a green triangle (B), select the Run -> Run ‘app’ menu option or use the Ctrl-R
keyboard shortcut:

Figure 5-5
The device menu (A) may be used to select a different AVD instance or physical device as the run target, and
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 5-6
The app can also be run on the currently selected target by clicking on the icon in the editor gutter next to the
preview composable declaration as indicated by the arrow in Figure 5-7:

Figure 5-7
Once the application is installed and running, the user interface layout defined by the MainScreen function will
appear within the emulator:

39

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-8
If the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the
emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run tool window
will become available. The Run tool window will display diagnostic information as the application package is
installed and launched. Figure 5-9 shows the Run tool window output from a successful application launch:

Figure 5-9
If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured.

5.4 Real-time updates with Live Edit
With the app running, now is an excellent time to introduce the Live Edit feature. Like interactive mode in the
Preview panel, Live Edit updates the appearance and behavior of the app running on the device or emulator as
changes are made to the code. This feature allows code changes to be tested in real time without having to build
and re-run the project. Try out Live Edit by changing the text displayed by the DemoText composable as follows:
DemoText(message = "This is Compose 1.3", fontSize = sliderPosition)

With each keystroke, the text in the running app will update to reflect the change. Live Edit is currently limited

40

Creating an Android Virtual Device (AVD) in Android Studio

to changes made within the body of existing functions. It will not, for example, handle the addition, removal, or
renaming of functions.

5.5 Running on multiple devices
The run menu shown in Figure 5-6 above includes an option to run the app on multiple emulators and devices
in parallel. When selected, this option displays the dialog shown in Figure 5-10 providing a list of both the AVDs
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or
devices to be targeted before clicking on the Run button:

Figure 5-10
After the Run button is clicked, Android Studio will launch the app on the selected emulators and devices.

5.6 Stopping a running application
To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
5-11:

Figure 5-11
An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running as illustrated in Figure 5-12:

Figure 5-12
Once the Run tool window appears, click the stop button highlighted in Figure 5-13 below:

Figure 5-13

41

Creating an Android Virtual Device (AVD) in Android Studio

5.7 Supporting dark theme
Android 10 introduced the much-awaited dark theme, support for which is enabled by default in Android
Studio Compose-based app projects. To test dark theme in the AVD emulator, open the Settings app within the
running Android instance in the emulator. Within the Settings app, choose the Display category and enable the
Dark theme option as shown in Figure 5-14 so that the screen background turns black:

Figure 5-14
With dark theme enabled, run the ComposeDemo app and note that it appears using a dark theme including a
black background and a purple background color on the button as shown in Figure 5-15:

Figure 5-15
Return to the Settings app and turn off Dark theme mode before continuing.

5.8 Running the emulator in a separate window
So far in this chapter, we have only used the emulator as a tool window embedded within the main Android
Studio window. To run the emulator in a separate window, select the File -> Settings... menu option (Android
Studio -> Preferences... on macOS), navigate to Tools -> Emulator in the left-hand navigation panel of the
preferences dialog, and disable the Launch in a tool window option:

42

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-16
With the option disabled, click the Apply button followed by OK to commit the change, then exit the current
emulator session by clicking on the close button on the tab marked B in Figure 5-3 above.

Run the sample app once again, at which point the emulator will appear as a separate window as shown below:

Figure 5-17
The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before
committing to standalone mode, however, keep in mind that the emulator tool window may also be detached
from the main Android Studio window by clicking on the settings button (represented by the gear icon) in the
tool emulator toolbar and selecting the View Mode -> Float menu option:

43

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-18

5.9 Enabling the device frame
The emulator can be configured to appear with (Figure 5-15) or without the device frame (Figure 5-17). To
change the setting, open the Device Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings. In the settings screen, locate and change the Enable Device Frame option:

Figure 5-19

5.10 Summary
A typical application development process follows a cycle of coding, compiling, and running in a test
environment. Android applications may be tested on either a physical Android device or using an Android
Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool.
When creating an AVD to simulate a specific Android device model, the virtual device should be configured
with a hardware specification matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android
Studio user interface.

55

Chapter 7

7. A Tour of the Android Studio User
Interface
While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

7.1 The Welcome Screen
The welcome screen (Figure 7-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will bypass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 7-1
In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening
and creating projects along with access to projects currently under version control. In addition, the Customize
screen provides options to change the theme and font settings used by both the IDE and the editor. Android
Studio plugins may be viewed, installed, and managed using the Plugins option.

56

A Tour of the Android Studio User Interface

Additional options are available by clicking on the menu button as shown in Figure 7-2:

Figure 7-2

7.2 The Main Window
When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 7-3.

Figure 7-3
The various elements of the main window can be summarized as follows:

A – Menu Bar – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick access
to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting
the Customize Menus and Toolbars… menu option. If the toolbar is not visible, it can be displayed using the View
-> Appearance -> Toolbar menu option.

C – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class. Select a method from the list to be taken to the corresponding location within the
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.

57

A Tour of the Android Studio User Interface

D – Editor Window – The editor window displays the content of the file on which the developer is currently
working. When multiple files are open, each file is represented by a tab located along the top edge of the editor
as shown in Figure 7-4:

Figure 7-4
E – Status Bar – The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will display a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in
several different ways. The default setting is the Android view which is the mode primarily used in the remainder
of this book.

The project tool window is just one of many tool windows available within the Android Studio environment.

7.3 The Tool Windows
In addition to the project view tool window, Android Studio also includes many other windows which, when
enabled, are displayed along the bottom and sides of the main window. The tool window quick access menu can
be displayed by hovering the mouse pointer over the button located in the far left-hand corner of the status bar
(Figure 7-5) without clicking the mouse button.

Figure 7-5

58

A Tour of the Android Studio User Interface

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right, and bottom edges of the main window (as indicated by the arrows in
Figure 7-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 7-6
Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window toolbars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 7-7 shows the settings menu for the Project tool window. Options
are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android
Studio main window, and to move and resize the tool panel.

59

A Tour of the Android Studio User Interface

Figure 7-7
All of the windows also include a far-right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s toolbar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

• App Inspector - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

• Build - The build tool window displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

• Build Variants – The build variants tool window provides a quick way to configure different build targets
for the current application project (for example different builds for debugging and release versions of the
application, or multiple builds to target different device categories).

• Device File Explorer – Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator allowing the
filesystem to be browsed and files copied to the local filesystem.

• Device Manager - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

• Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

• Event Log – The event log window displays messages relating to events and activities performed within
Android Studio. The successful build of a project, for example, or the fact that an application is now running
will be reported within this tool window.

• Favorites – A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list
can be accessed through this Favorites tool window.

• Find - Search for code and text within your project files.

• Gradle – The Gradle tool window provides a view of the Gradle tasks that make up the project build

60

A Tour of the Android Studio User Interface

configuration. The window lists the tasks that are involved in compiling the various elements of the project
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater
detail later in this book.

• Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

• Logcat – The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

• Problems - A central location in which to view all of the current errors or warnings within the project.
Double-clicking on an item in the problem list will take you to the problem file and location.

• Profiler – The Android Profiler tool window provides real-time monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

• Project – The project view provides an overview of the file structure that makes up the project allowing for
quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be
loaded into the appropriate editing tool.

• Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout
files contained with the project.

• Run – The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing
to install and run on a device or emulator, this window will typically provide diagnostic information relating
to the problem.

• Structure – The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the source file in the editor window.

• Running Devices - Displays any AVD instances running within the current Android Studio session.

• Terminal – Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

• TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting
the File -> Settings… menu option (Android Studio -> Preferences… on macOS) and navigating to the TODO
page listed under Editor.

• Version Control - This tool window is used when the project files are under source code version control,
allowing access to Git repositories and code change history.

7.4 Android Studio Keyboard Shortcuts
Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keyboard Shortcuts menu option. You may also list and modify the
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS)

61

A Tour of the Android Studio User Interface

and clicking on the Keymap entry as shown in Figure 7-8 below:

Figure 7-8

7.5 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 7-9).

Figure 7-9
Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure
7-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the

62

A Tour of the Android Studio User Interface

mouse pointer can be used to select an option or the keyboard arrow keys used to scroll through the file name
and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 7-10

7.6 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Customize option or via the File -> Settings… menu option (Android Studio -> Preferences… on macOS) of
the main window.

Once the settings dialog is displayed, select the Appearance & Behavior option followed by Appearance in the
left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes
available will depend on the platform but usually include options such as Light, IntelliJ, Windows, High Contrast,
and Darcula. Figure 7-11 shows an example of the main window with the Darcula theme selected:

Figure 7-11
To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

63

A Tour of the Android Studio User Interface

Figure 7-12

7.7 Summary
The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar or via the
optional tool window bars.

There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of
default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

111

Chapter 14

14. Kotlin Control Flow
Regardless of the programming language used, application development is largely an exercise in applying
logic, and much of the art of programming involves writing code that makes decisions based on one or more
criteria. Such decisions define which code gets executed, how many times it is executed, and, conversely, which
code gets bypassed when the program is running. This is often referred to as control flow since it controls the
flow of program execution. Control flow typically falls into the categories of looping control (how often code is
executed) and conditional control flow (whether or not code is executed). This chapter is intended to provide an
introductory overview of both types of control flow in Kotlin.

14.1 Looping control flow
This chapter will begin by looking at control flow in the form of loops. Loops are essentially sequences of Kotlin
statements that are to be executed repeatedly until a specified condition is met. The first looping statement we
will explore is the for loop.

14.1.1 The Kotlin for-in Statement
The for-in loop is used to iterate over a sequence of items contained in a collection or number range.

The syntax of the for-in loop is as follows:
for variable name in collection or range {

 // code to be executed

}

In this syntax, variable name is the name to be used for a variable that will contain the current item from the
collection or range through which the loop is iterating. The code in the body of the loop will typically use this
name as a reference to the current item in the loop cycle. The collection or range references the item through
which the loop is iterating. This could, for example, be an array of string values, a range operator, or even a string
of characters.

Consider, for example, the following for-in loop construct:
for (index in 1..5) {

 println("Value of index is $index")

}

The loop begins by stating that the current item is to be assigned to a constant named index. The statement then
declares a closed range operator to indicate that the for loop is to iterate through a range of numbers, starting at
1 and ending at 5. The body of the loop simply prints out a message to the console indicating the current value
assigned to the index constant, resulting in the following output:
Value of index is 1

Value of index is 2

Value of index is 3

Value of index is 4

Value of index is 5

The for-in loop is of particular benefit when working with collections such as arrays. In fact, the for-in loop can
be used to iterate through any object that contains more than one item. The following loop, for example, outputs

112

Kotlin Control Flow

each of the characters in the specified string:
for (index in "Hello") {

 println("Value of index is $index")

}

The operation of a for-in loop may be configured using the downTo and until functions. The downTo function
causes the for loop to work backward through the specified collection until the specified number is reached. The
following for loop counts backward from 100 until the number 90 is reached:
for (index in 100 downTo 90) {

 print("$index.. ")

}

When executed, the above loop will generate the following output:
100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..

The until function operates in much the same way with the exception that counting starts from the bottom of
the collection range and works up until (but not including) the specified endpoint (a concept referred to as a
half-closed range):
for (index in 1 until 10) {

 print("$index.. ")

}

The output from the above code will range from the start value of 1 through to 9:
1.. 2.. 3.. 4.. 5.. 6.. 7.. 8.. 9..

The increment used on each iteration through the loop may also be defined using the step function as follows:
for (index in 0 until 100 step 10) {

 print("$index.. ")

}

The above code will result in the following console output:
0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..

14.1.2 The while loop
The Kotlin for loop described previously works well when it is known in advance how many times a particular
task needs to be repeated in a program. There will, however, be instances where code needs to be repeated until
a certain condition is met, with no way of knowing in advance how many repetitions are going to be needed to
meet that criterion. To address this need, Kotlin includes the while loop.

Essentially, the while loop repeats a set of tasks while a specified condition is met. The while loop syntax is
defined as follows:
while condition {

 // Kotlin statements go here

}

In the above syntax, condition is an expression that will return either true or false and the // Kotlin statements go
here comment represents the code to be executed while the condition expression is true. For example:
var myCount = 0

while (myCount < 100) {

113

Kotlin Control Flow

 myCount++

 println(myCount)

}

In the above example, the while expression will evaluate whether the myCount variable is less than 100. If it is
already greater than 100, the code in the braces is skipped and the loop exits without performing any tasks.

If, on the other hand, myCount is not greater than 100 the code in the braces is executed and the loop returns to
the while statement and repeats the evaluation of myCount. This process repeats until the value of myCount is
greater than 100, at which point the loop exits.

14.1.3 The do ... while loop
It is often helpful to think of the do ... while loop as an inverted while loop. The while loop evaluates an expression
before executing the code contained in the body of the loop. If the expression evaluates to false on the first check
then the code is not executed. The do ... while loop, on the other hand, is provided for situations where you know
that the code contained in the body of the loop will always need to be executed at least once. For example, you
may want to keep stepping through the items in an array until a specific item is found. You know that you have
to at least check the first item in the array to have any hope of finding the entry you need. The syntax for the do
... while loop is as follows:
do {

 // Kotlin statements here

} while conditional expression

In the do ... while example below the loop will continue until the value of a variable named i equals 0:
var i = 10

do {

 i--

 println(i)

} while (i > 0)

14.1.4 Breaking from Loops
Having created a loop, it is possible that under certain conditions you might want to break out of the loop before
the completion criteria have been met (particularly if you have created an infinite loop). One such example
might involve continually checking for activity on a network socket. Once activity has been detected it will most
likely be necessary to break out of the monitoring loop and perform some other task.

To break out of a loop, Kotlin provides the break statement which breaks out of the current loop and resumes
execution at the code directly after the loop. For example:
var j = 10

for (i in 0..100)

{

 j += j

 if (j > 100) {

 break

 }

114

Kotlin Control Flow

 println("j = $j")

}

In the above example, the loop will continue to execute until the value of j exceeds 100 at which point the loop
will exit and execution will continue with the next line of code after the loop.

14.1.5 The continue statement
The continue statement causes all remaining code statements in a loop to be skipped, and execution to be
returned to the top of the loop. In the following example, the println function is only called when the value of
variable i is an even number:
var i = 1

while (i < 20)

{

 i += 1

 if (i % 2 != 0) {

 continue

 }

 println("i = $i")

}

The continue statement in the above example will cause the println call to be skipped unless the value of i can be
divided by 2 with no remainder. If the continue statement is triggered, execution will skip to the top of the while
loop and the statements in the body of the loop will be repeated (until the value of i exceeds 19).

14.1.6 Break and continue labels
Kotlin expressions may be assigned a label by preceding the expression with a label name followed by the @ sign.
This label may then be referenced when using break and continue statements to designate where execution is
to resume. This is particularly useful when breaking out of nested loops. The following code contains a for loop
nested within another for loop. The inner loop contains a break statement which is executed when the value of
j reaches 10:
for (i in 1..100) {

 println("Outer loop i = $i")

 for (j in 1..100) {

 println("Inner loop j = $j")

 if (j == 10) break

 }

}

As currently implemented, the break statement will exit the inner for loop but execution will resume at the top
of the outer for loop. Suppose, however, that the break statement is required to also exit the outer loop. This can
be achieved by assigning a label to the outer loop and referencing that label with the break statement as follows:
outerloop@ for (i in 1..100) {

115

Kotlin Control Flow

 println("Outer loop i = $i")

 for (j in 1..100) {

 println("Inner loop j = $j")

 if (j == 10) break@outerloop
 }

}

Now when the value assigned to variable j reaches 10 the break statement will break out of both loops and
resume execution at the line of code immediately following the outer loop.

14.2 Conditional control flow
In the previous chapter, we looked at how to use logical expressions in Kotlin to determine whether something
is true or false. Since programming is largely an exercise in applying logic, much of the art of programming
involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets
executed and, conversely, which code gets bypassed when the program is executing.

14.2.1 Using the if expressions
The if expression is perhaps the most basic of control flow options available to the Kotlin programmer.
Programmers who are familiar with C, Swift, C++, or Java will immediately be comfortable using Kotlin if
statements, although there are some subtle differences.

The basic syntax of the Kotlin if expression is as follows:
if (boolean expression) {

 // Kotlin code to be performed when expression evaluates to true

}

Unlike some other programming languages, it is important to note that the braces are optional in Kotlin if only
one line of code is associated with the if expression. In fact, in this scenario, the statement is often placed on the
same line as the if expression.

Essentially if the Boolean expression evaluates to true then the code in the body of the statement is executed. If,
on the other hand, the expression evaluates to false the code in the body of the statement is skipped.

For example, if a decision needs to be made depending on whether one value is greater than another, we would
write code similar to the following:
val x = 10

if (x > 9) println("x is greater than 9!")

Clearly, x is indeed greater than 9 causing the message to appear in the console panel.

At this point, it is important to notice that we have been referring to the if expression instead of the if statement.
The reason for this is that unlike the if statement in other programming languages, the Kotlin if returns a result.
This allows if constructs to be used within expressions. As an example, a typical if expression to identify the
largest of two numbers and assign the result to a variable might read as follows:
if (x > y)

 largest = x

else

116

Kotlin Control Flow

 largest = y

The same result can be achieved using the if statement within an expression using the following syntax:
variable = if (condition) return_val_1 else return_val_2

The original example can, therefore be re-written as follows:
val largest = if (x > y) x else y

The technique is not limited to returning the values contained within the condition. The following example is
also a valid use of if in an expression, in this case assigning a string value to the variable:
val largest = if (x > y) "x is greatest" else "y is greatest"

println(largest)

For those familiar with programming languages such as Java, this feature allows code constructs similar to
ternary statements to be implemented in Kotlin.

14.2.2 Using if ... else … expressions
The next variation of the if expression allows us to also specify some code to perform if the expression in the if
expression evaluates to false. The syntax for this construct is as follows:
if (boolean expression) {

 // Code to be executed if expression is true

} else {

 // Code to be executed if expression is false

}

The braces are, once again, optional if only one line of code is to be executed.

Using the above syntax, we can now extend our previous example to display a different message if the comparison
expression evaluates to be false:
val x = 10

if (x > 9) println("x is greater than 9!")

 else println("x is less than 9!")

In this case, the second println statement will execute if the value of x was less than 9.

14.2.3 Using if ... else if ... Expressions
So far we have looked at if statements that make decisions based on the result of a single logical expression.
Sometimes it becomes necessary to make decisions based on several different criteria. For this purpose, we can
use the if ... else if ... construct, an example of which is as follows:
var x = 9

if (x == 10) println("x is 10")

 else if (x == 9) println("x is 9")

 else if (x == 8) println("x is 8")

 else println("x is less than 8")

}

14.2.4 Using the when statement
The Kotlin when statement provides a cleaner alternative to the if ... else if ... construct and uses the following
syntax:

117

Kotlin Control Flow

when (value) {

 match1 -> // code to be executed on match

 match2 -> // code to be executed on match

 .

 .

 else -> // default code to executed if no match

}

Using this syntax, the previous if ... else if ... construct can be rewritten to use the when statement:
when (x) {

 10 -> println ("x is 10")

 9 -> println("x is 9")

 8 -> println("x is 8")

 else -> println("x is less than 8")

}

The when statement is similar to the switch statement found in many other programming languages.

14.3 Summary
The term control flow is used to describe the logic that dictates the execution path that is taken through the
source code of an application as it runs. This chapter has looked at the two types of control flow provided by
Kotlin (looping and conditional) and explored the various Kotlin constructs that are available to implement
both forms of control flow logic.

119

Chapter 15

15. An Overview of Kotlin Functions
and Lambdas
Kotlin functions and lambdas are a vital part of writing well-structured and efficient code and provide a way to
organize programs while avoiding code repetition. In this chapter, we will look at how functions and lambdas
are declared and used within Kotlin.

15.1 What is a function?
A function is a named block of code that can be called upon to perform a specific task. It can be provided data
on which to perform the task and is capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Kotlin program, the code to perform the arithmetic
can be placed in a function. The function can be programmed to accept the values on which the arithmetic
is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the
program code where the calculation is required, the function is simply called, parameter values passed through
as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however,
a subtle difference. The values that a function can accept when it is called are referred to as parameters. At the
point that the function is called and passed those values, however, they are referred to as arguments.

15.2 How to declare a Kotlin function
A Kotlin function is declared using the following syntax:
fun <function name> (<para name>: <para type>, <para name>: <para type>, ...):
<return type> {

 // Function code

}

This combination of function name, parameters, and return type is referred to as the function signature or type.
Explanations of the various fields of the function declaration are as follows:

• fun – The prefix keyword used to notify the Kotlin compiler that this is a function.

• <function name> - The name assigned to the function. This is the name by which the function will be
referenced when it is called from within the application code.

• <para name> - The name by which the parameter is to be referenced in the function code.

• <para type> - The type of the corresponding parameter.

• <return type> - The data type of the result returned by the function. If the function does not return a result
then no return type is specified.

• Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result, and simply displays a message:
fun sayHello() {

120

An Overview of Kotlin Functions and Lambdas

 println("Hello")

}

The following sample function, on the other hand, takes an integer and a string as parameters and returns a
string result:
fun buildMessageFor(name: String, count: Int): String {

 return("$name, you are customer number $count")

}

15.3 Calling a Kotlin function
Once declared, functions are called using the following syntax:
<function name> (<arg1>, <arg2>, ...)

Each argument passed through to a function must match the parameters the function is configured to accept.
For example, to call a function named sayHello that takes no parameters and returns no value, we would write
the following code:
sayHello()

In the case of a message that accepts parameters, the function could be called as follows:
buildMessageFor("John", 10)

15.4 Single expression functions
When a function contains a single expression, it is not necessary to include the braces around the expression.
All that is required is an equals sign (=) after the function declaration followed by the expression. The following
function contains a single expression declared in the usual way:
fun multiply(x: Int, y: Int): Int {

 return x * y

}

Below is the same function expressed as a single line expression:
fun multiply(x: Int, y: Int): Int = x * y

When using single-line expressions, the return type may be omitted in situations where the compiler can infer
the type returned by the expression making for even more compact code:
fun multiply(x: Int, y: Int) = x * y

15.5 Local functions
A local function is a function that is embedded within another function. In addition, a local function has access
to all of the variables contained within the enclosing function:
fun main(args: Array<String>) {

 val name = "John"

 val count = 5

 fun displayString() {
 for (index in 0..count) {
 println(name)
 }
 }

121

An Overview of Kotlin Functions and Lambdas

 displayString()

}

15.6 Handling return values
To call a function named buildMessage that takes two parameters and returns a result, on the other hand, we
might write the following code:
val message = buildMessageFor("John", 10)

To improve code readability, the parameter names may also be specified when making the function call:
val message = buildMessageFor(name = "John", count = 10)

In the above examples, we have created a new variable called message and then used the assignment operator (=)
to store the result returned by the function.

15.7 Declaring default function parameters
Kotlin provides the ability to designate a default parameter value to be used if the value is not provided as an
argument when the function is called. This simply involves assigning the default value to the parameter when
the function is declared.

To see default parameters in action the buildMessageFor function will be modified so that the string “Customer”
is used as a default if a customer name is not passed through as an argument. Similarly, the count parameter is
declared with a default value of 0:
fun buildMessageFor(name: String = "Customer", count: Int = 0): String {
 return("$name, you are customer number $count")

}

When parameter names are used when making the function call, any parameters for which defaults have been
specified may be omitted. The following function call, for example, omits the customer name argument but still
compiles because the parameter name has been specified for the second argument:
val message = buildMessageFor(count = 10)

If parameter names are not used within the function call, however, only the trailing arguments may be omitted:
val message = buildMessageFor("John") // Valid

val message = buildMessageFor(10) // Invalid

15.8 Variable number of function parameters
It is not always possible to know in advance the number of parameters a function will need to accept when it
is called within the application code. Kotlin handles this possibility through the use of the vararg keyword to
indicate that the function accepts an arbitrary number of parameters of a specified data type. Within the body
of the function, the parameters are made available in the form of an array object. The following function, for
example, takes as parameters a variable number of String values and then outputs them to the console panel:
fun displayStrings(vararg strings: String)

{

 for (string in strings) {

 println(string)

 }

}

displayStrings("one", "two", "three", "four")

122

An Overview of Kotlin Functions and Lambdas

Kotlin does not permit multiple vararg parameters within a function and any single parameters supported by
the function must be declared before the vararg declaration:
fun displayStrings(name: String, vararg strings: String)

{

 for (string in strings) {

 println(string)

 }

}

15.9 Lambda expressions
Having covered the basics of functions in Kotlin it is now time to look at the concept of lambda expressions.
Essentially, lambdas are self-contained blocks of code. The following code, for example, declares a lambda,
assigns it to a variable named sayHello, and then calls the function via the lambda reference:
val sayHello = { println("Hello") }

sayHello()

Lambda expressions may also be configured to accept parameters and return results. The syntax for this is as
follows:
{<para name>: <para type>, <para name> <para type>, ... ->

 // Lambda expression here

}

The following lambda expression, for example, accepts two integer parameters and returns an integer result:
val multiply = { val1: Int, val2: Int -> val1 * val2 }

val result = multiply(10, 20)

Note that the above lambda examples have assigned the lambda code block to a variable. This is also possible
when working with functions. Of course, the following syntax will execute the function and assign the result of
that execution to a variable, instead of assigning the function itself to the variable:
val myvar = myfunction()

To assign a function reference to a variable, simply remove the parentheses and prefix the function name with
double colons (::) as follows. The function may then be called simply by referencing the variable name:
val myvar = ::myfunction

myvar()

A lambda block may be executed directly by placing parentheses at the end of the expression including any
arguments. The following lambda directly executes the multiplication lambda expression multiplying 10 by 20.
val result = { val1: Int, val2: Int -> val1 * val2 }(10, 20)

The last expression within a lambda serves as the expression’s return value (hence the value of 200 being assigned
to the result variable in the above multiplication examples). In fact, unlike functions, lambdas do not support
the return statement. In the absence of an expression that returns a result (such as an arithmetic or comparison
expression), simply declaring the value as the last item in the lambda will cause that value to be returned. The
following lambda returns the Boolean true value after printing a message:
val result = { println("Hello"); true }()

Similarly, the following lambda simply returns a string literal:
val nextmessage = { println("Hello"); "Goodbye" }()

123

An Overview of Kotlin Functions and Lambdas

A particularly useful feature of lambdas and the ability to create function references is that they can be both
passed to functions as arguments and returned as results. This concept, however, requires an understanding of
function types and higher-order functions.

15.10 Higher-order functions
On the surface, lambdas and function references do not seem to be particularly compelling features. The
possibilities that these features offer become more apparent, however, when we consider that lambdas and
function references have the same capabilities as many other data types. In particular, these may be passed
through as arguments to another function, or even returned as a result from a function.

A function that is capable of receiving a function or lambda as an argument, or returning one as a result is
referred to as a higher-order function.

Before we look at what is, essentially, the ability to plug one function into another, it is first necessary to explore
the concept of function types. The type of a function is dictated by a combination of the parameters it accepts
and the type of result it returns. A function that accepts an Int and a Double as parameters and returns a String
result for example is considered to have the following function type:
(Int, Double) -> String

To accept a function as a parameter, the receiving function simply declares the type of function it can accept.

As an example, we will begin by declaring two unit conversion functions:
fun inchesToFeet (inches: Double): Double {

 return inches * 0.0833333

}

fun inchesToYards (inches: Double): Double {

 return inches * 0.0277778

}

The example now needs an additional function, the purpose of which is to perform a unit conversion and print
the result in the console panel. This function needs to be as general-purpose as possible, capable of performing
a variety of different measurement unit conversions. To demonstrate functions as parameters, this new function
will take as a parameter a function type that matches both the inchesToFeet and inchesToYards functions
together with a value to be converted. Since the type of these functions is equivalent to (Double) -> Double, our
general-purpose function can be written as follows:
fun outputConversion(converterFunc: (Double) -> Double, value: Double) {

 val result = converterFunc(value)

 println("Result of conversion is $result")

}

When the outputConversion function is called, it will need to be passed a function matching the declared type.
That function will be called to perform the conversion and the result displayed in the console panel. This means
that the same function can be called to convert inches to both feet and yards, simply by “plugging in” the
appropriate converter function as a parameter, keeping in mind that it is the function reference that is being
passed as an argument:
outputConversion(::inchesToFeet, 22.45)

outputConversion(::inchesToYards, 22.45)

Functions can also be returned as a data type simply by declaring the type of the function as the return type.
The following function is configured to return either our inchesToFeet or inchesToYards function type (in other

124

An Overview of Kotlin Functions and Lambdas

words a function that accepts and returns a Double value) based on the value of a Boolean parameter:
fun decideFunction(feet: Boolean): (Double) -> Double

{

 if (feet) {

 return ::inchesToFeet

 } else {

 return ::inchesToYards

 }

}

When called, the function will return a function reference which can then be used to perform the conversion:
val converter = decideFunction(true)

val result = converter(22.4)

println(result)

15.11 Summary
Functions and lambda expressions are self-contained blocks of code that can be called upon to perform a
specific task and provide a mechanism for structuring code and promoting reuse. This chapter has introduced
the basic concepts of function and lambda declaration and implementation in addition to the use of higher-
order functions that allow lambdas and functions to be passed as arguments and returned as results.

149

Chapter 20

20. An Overview of Compose State
and Recomposition
State is the cornerstone of how the Compose system is implemented. As such, a clear understanding of state is an
essential step in becoming a proficient Compose developer. In this chapter, we will explore and demonstrate the
basic concepts of state and explain the meaning of related terms such as recomposition, unidirectional data flow,
and state hoisting. The chapter will also cover saving and restoring state through configuration changes.

20.1 The basics of state
In declarative languages such as Compose, state is generally referred to as “a value that can change over time”.
At first glance, this sounds much like any other data in an app. A standard Kotlin variable, for example, is by
definition designed to store a value that can change at any time during execution. State, however, differs from a
standard variable in two significant ways.

First, the value assigned to a state variable in a composable function needs to be remembered. In other words,
each time a composable function containing state (a stateful function) is called, it must remember any state
values from the last time it was invoked. This is different from a standard variable which would be re-initialized
each time a call is made to the function in which it is declared.

The second key difference is that a change to any state variable has far reaching implications for the entire
hierarchy tree of composable functions that make up a user interface. To understand why this is the case, we
now need to talk about recomposition.

20.2 Introducing recomposition
When developing with Compose, we build apps by creating hierarchies of composable functions. As previously
discussed, a composable function can be thought of as taking data and using that data to generate sections of a
user interface layout. These elements are then rendered on the screen by the Compose runtime system. In most
cases, the data passed from one composable function to another will have been declared as a state variable in a
parent function. This means that any change of state value in a parent composable will need to be reflected in
any child composables to which the state has been passed. Compose addresses this by performing an operation
referred to as recomposition.

Recomposition occurs whenever a state value changes within a hierarchy of composable functions. As soon as
Compose detects a state change, it works through all of the composable functions in the activity and recomposes
any functions affected by the state value change. Recomposing simply means that the function gets called again
and passed the new state value.

Recomposing the entire composable tree for a user interface each time a state value changes would be a highly
inefficient approach to rendering and updating a user interface. Compose avoids this overhead using a technique
called intelligent recomposition that involves only recomposing those functions directly affected by the state
change. In other words, only functions that read the state value will be recomposed when the value changes.

150

An Overview of Compose State and Recomposition

20.3 Creating the StateExample project
Launch Android Studio and select the New Project option from the welcome screen. Within the resulting new
project dialog, choose the Empty Activity template before clicking on the Next button.

Enter StateExample into the Name field and specify com.example.stateexample as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo). On
completion of the project creation process, the StateExample project should be listed in the Project tool window
located along the left-hand edge of the Android Studio main window.

20.4 Declaring state in a composable
The first step in declaring a state value is to wrap it in a MutableState object. MutableState is a Compose class
which is referred to as an observable type. Any function that reads a state value is said to have subscribed to
that observable state. As a result, any changes to the state value will trigger the recomposition of all subscribed
functions.

Within Android Studio, open the MainActivity.kt file, delete the Greeting composable and modify the class so
that it reads as follows:
package com.example.stateexample

.

.

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 StateExampleTheme {

 Surface(color = MaterialTheme.colorScheme.background) {

 DemoScreen()
 }

 }

 }

 }

}

@Composable
fun DemoScreen() {
 MyTextField()
}

@Composable
fun MyTextField() {

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

 StateExampleTheme {

151

An Overview of Compose State and Recomposition

 DemoScreen()
 }

}

The objective here is to implement MyTextField as a stateful composable function containing a state variable and
an event handler that changes the state based on the user’s keyboard input. The result is a text field in which the
characters appear as they are typed.

MutableState instances are created by making a call to the mutableStateOf() runtime function, passing through
the initial state value. The following, for example, creates a MutableState instance initialized with an empty
String value:
var textState = { mutableStateOf("") }

This provides an observable state which will trigger a recomposition of all subscribed functions when the
contained value is changed. The above declaration is, however, missing a key element. As previously discussed,
state must be remembered through recompositions. As currently implemented, the state will be reinitialized to
an empty string each time the function in which it is declared is recomposed. To retain the current state value,
we need to use the remember keyword:
var myState = remember { mutableStateOf("") }

Remaining within the MainActivity.kt file, add some imports and modify the MyTextField composable as follows:
.

.

import androidx.compose.material3.*
import androidx.compose.runtime.mutableStateOf
import androidx.compose.runtime.remember
import androidx.compose.foundation.layout.Column
.

.

@Composable

fun MyTextField() {

 var textState = remember { mutableStateOf("") }

 val onTextChange = { text : String ->
 textState.value = text
 }

 TextField(
 value = textState.value,
 onValueChange = onTextChange
)
}

If the code editor reports that the Material 3 TextField is experimental, modify the MyTextField composable as
follows:
@OptIn(ExperimentalMaterial3Api::class)
@Composable

fun MyTextField() {

152

An Overview of Compose State and Recomposition

 var textState by remember { mutableStateOf("") }

.

.

Test the code using the Preview panel in interactive mode and confirm that keyboard input appears in the
TextField as it is typed.

When looking at Compose code examples, you may see MutableState objects declared in different ways. When
using the above format, it is necessary to read and set the value property of the MutableState instance. For
example, the event handler to update the state reads as follows:
val onTextChange = { text: String ->

 textState.value = text
}

Similarly, the current state value is assigned to the TextField as follows:
TextField(

 value = textState.value,
 onValueChange = onTextChange

)

A more common and concise approach to declaring state is to use Kotlin property delegates via the by keyword
as follows (note that two additional libraries need to be imported when using property delegates):
.

.

import androidx.compose.runtime.getValue
import androidx.compose.runtime.setValue
.

.

@Composable

fun MyTextField() {

 var textState by remember { mutableStateOf("") }
.

.

We can now access the state value without needing to directly reference the MutableState value property within
the event handler:
val onTextChange = { text: String ->

 textState = text
}

This also makes reading the current value more concise:
TextField(

 value = textState,
 onValueChange = onTextChange

)

A third technique separates the access to a MutableState object into a value and a setter function as follows:
var (textValue, setText) = remember { mutableStateOf("") }

153

An Overview of Compose State and Recomposition

When changing the value assigned to the state we now do so by calling the setText setter, passing through the
new value:
val onTextChange = { text: String ->

 setText(text)
}

The state value is now accessed by referencing textValue:
TextField(

 value = textValue,
 onValueChange = onTextChange

)

In most cases, the use of the by keyword and property delegates is the most commonly used technique because
it results in cleaner code. Before continuing with the chapter, revert the example to use the by keyword.

20.5 Unidirectional data flow
Unidirectional data flow is an approach to app development whereby state stored in a composable should not
be directly changed by any child composable functions. Consider, for example, a composable function named
FunctionA containing a state value in the form of a Boolean value. This composable calls another composable
function named FunctionB that contains a Switch component. The objective is for the switch to update the state
value each time the switch position is changed by the user. In this situation, adherence to unidirectional data
flow prohibits FunctionB from directly changing the state value.

Instead, FunctionA would declare an event handler (typically in the form of a lambda) and pass it as a parameter
to the child composable along with the state value. The Switch within FunctionB would then be configured to
call the event handler each time the switch position changes, passing it the current setting value. The event
handler in FunctionA will then update the state with the new value.

Make the following changes to the MainActivity.kt file to implement FunctionA and FunctionB together with a
corresponding modification to the preview composable:
@Composable
fun FunctionA() {

 var switchState by remember { mutableStateOf(true) }

 val onSwitchChange = { value : Boolean ->
 switchState = value
 }

 FunctionB(
 switchState = switchState,
 onSwitchChange = onSwitchChange
)
}

@Composable
fun FunctionB(switchState: Boolean, onSwitchChange : (Boolean) -> Unit) {
 Switch(

154

An Overview of Compose State and Recomposition

 checked = switchState,
 onCheckedChange = onSwitchChange
)
}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

 StateExampleTheme {

 Column {
 DemoScreen()
 FunctionA()
 }
 }

}

Preview the app using interactive mode and verify that clicking the switch changes the slider position between
on and off states.

We can now use this example to break down the state process into the following individual steps which occur
when FunctionA is called:

1. The switchState state variable is initialized with a true value.

2. The onSwitchChange event handler is declared to accept a Boolean parameter which it assigns to switchState
when called.

3. FunctionB is called and passed both switchState and a reference to the onSwitchChange event handler.

4. FunctionB calls the built-in Switch component and configures it to display the state assigned to switchState.
The Switch component is also configured to call the onSwitchChange event handler when the user changes the
switch setting.

5. Compose renders the Switch component on the screen.

The above sequence explains how the Switch component gets rendered on the screen when the app first launches.
We can now explore the sequence of events that occur when the user slides the switch to the “off ” position:

1. The switch is moved to the “off ” position.

2. The Switch component calls the onSwitchChange event handler passing through the current switch position
value (in this case false).

3. The onSwitchChange lambda declared in FunctionA assigns the new value to switchState.

4. Compose detects that the switchState state value has changed and initiates a recomposition.

5. Compose identifies that FunctionB contains code that reads the value of switchState and therefore needs to
be recomposed.

6. Compose calls FunctionB with the latest state value and the reference to the event handler.

7. FunctionB calls the Switch composable and configures it with the state and event handler.

155

An Overview of Compose State and Recomposition

8. Compose renders the Switch on the screen, this time with the switch in the “off ” position.

The key point to note about this process is that the value assigned to switchState is only changed from within
FunctionA and never directly updated by FunctionB. The Switch setting is not moved from the “on” position to
the “off ” position directly by FunctionB. Instead, the state is changed by calling upwards to the event handler
located in FunctionA, and allowing recomposition to regenerate the Switch with the new position setting.

As a general rule, data is passed down through a composable hierarchy tree while events are called upwards to
handlers in ancestor components as illustrated in Figure 20-1:

Figure 20-1

20.6 State hoisting
If you look up the word “hoist” in a dictionary it will likely be defined as the act of raising or lifting something.
The term state hoisting has a similar meaning in that it involves moving state from a child composable up to the
calling (parent) composable or a higher ancestor. When the child composable is called by the parent, it is passed
the state along with an event handler. When an event occurs in the child composable that requires an update to
the state, a call is made to the event handler passing through the new value as outlined earlier in the chapter. This
has the advantage of making the child composable stateless and, therefore, easier to reuse. It also allows the state
to be passed down to other child composables later in the app development process.

Consider our MyTextField example from earlier in the chapter:
@Composable

fun DemoScreen() {

 MyTextField()

}

@Composable

fun MyTextField() {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->

 textState = text

 }

156

An Overview of Compose State and Recomposition

 TextField(

 value = textState,

 onValueChange = onTextChange

)

}

The self-contained nature of the MyTextField composable means that it is not a particularly useful component.
One issue is that the text entered by the user is not accessible to the calling function and, therefore, cannot be
passed to any sibling functions. It is also not possible to pass a different state and event handler through to the
function, thereby limiting its re-usability.

To make the function more useful we need to hoist the state into the parent DemoScreen function as follows:
@Composable

fun DemoScreen() {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->
 textState = text
 }

 MyTextField(text = textState, onTextChange = onTextChange)
}

@Composable

fun MyTextField(text: String, onTextChange : (String) -> Unit) {

 var textState by remember { mutableStateOf("") }

 val onTextChange = { text : String ->

 textState = text

 }

 TextField(

 value = text,
 onValueChange = onTextChange

)

}

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

 StateExampleTheme {

 DemoScreen()
 }

}

157

An Overview of Compose State and Recomposition

With the state hoisted to the parent function, MyTextField is now a stateless, reusable composable which can be
called and passed any state and event handler. Also, the text entered by the user is now accessible by the parent
function and may be passed down to other composables if necessary.

State hoisting is not limited to moving to the immediate parent of a composable. State can be raised any number
of levels upward within the composable hierarchy and subsequently passed down through as many layers of
children as needed (within reason). This will often be necessary when multiple children need access to the same
state. In such a situation, the state will need to be hoisted up to an ancestor that is common to both children.

In Figure 20-2 below, for example, both NameField and NameText need access to textState. The only way to
make the state available to both composables is to hoist it up to the MainScreen function since this is the only
ancestor both composables have in common:

Figure 20-2
The solid arrows indicate the path of textState as it is passed down through the hierarchy to the NameField and
NameText functions (in the case of the NameField, a reference to the event handler is also passed down), while
the dotted line represents the calls from NameField function to an event handler declared in MainScreen as the
text changes.

Note that if you find yourself passing state down through an excessive number of child layers, it may be worth
looking at CompositionLocalProvider, a topic covered in the chapter entitled “An Introduction to Composition
Local”.

When adding state to a function, take some time to decide whether hoisting state to the caller (or higher) might
make for a more re-usable and flexible composable. While situations will arise where state is only needed to be
used locally in a composable, in most cases it probably makes sense to hoist the state up to an ancestor.

20.7 Saving state through configuration changes
We now know that the remember keyword can be used to save state values through recompositions. This
technique does not, however, retain state between configuration changes. A configuration change generally
occurs when some aspect of the device changes in a way that alters the appearance of an activity (such as rotating
the orientation of the device between portrait and landscape or changing a system-wide font setting).

158

An Overview of Compose State and Recomposition

Changes such as these will cause the entire activity to be destroyed and recreated. The reasoning behind this is
that these changes affect resources such as the layout of the user interface and simply destroying and recreating
impacted activities is the quickest way for an activity to respond to the configuration change. The result is a
newly initialized activity with no memory of any previous state values.

To experience the effect of a configuration change, run the StateExample app on an emulator or device and,
once running, enter some text so that it appears in the TextField before changing the orientation from portrait
to landscape. When using the emulator, device rotation may be simulated using the rotation button located in
the emulator toolbar. To complete the rotation on Android 11 or older, it may also be necessary to tap on the
rotation button. This appears in the toolbar of the device or emulator screen as shown in Figure 20-3:

Figure 20-3
Before performing the rotation on Android 12 or later, you may need to enter the Settings app, select the Display
category and enable the Auto-rotate screen option.

Note that after rotation, the TextField is now blank and the text entered has been lost. In situations where state
needs to be retained through configuration changes, Compose provides the rememberSaveable keyword. When
rememberSaveable is used, the state will be retained not only through recompositions, but also configuration
changes. Modify the textState declaration to use rememberSaveable as follows:
.

.

import androidx.compose.runtime.saveable.rememberSaveable
.

.

@Composable

fun DemoScreen() {

 var textState by rememberSaveable { mutableStateOf("") }
.

.

Build and run the app once again, enter some text and perform another rotation. Note that the text is now
preserved following the configuration change.

20.8 Summary
When developing apps with Compose it is vital to have a clear understanding of how state and recomposition
work together to make sure that the user interface is always up to date. In this chapter, we have explored state and
described how state values are declared, updated, and passed between composable functions. You should also
have a better understanding of recomposition and how it is triggered in response to state changes.

We also introduced the concept of unidirectional data flow and explained how data flows down through the

159

An Overview of Compose State and Recomposition

compose hierarchy while data changes are made by making calls upward to event handlers declared within
ancestor stateful functions.

An important goal when writing composable functions is to maximize re-usability. This can be achieved, in part,
by hoisting state out of a composable up to the calling parent or a higher function in the compose hierarchy.

Finally, the chapter described configuration changes and explained how such changes result in the destruction
and recreation of entire activities. Ordinarily, state is not retained through configuration changes unless
specifically configured to do so using the rememberSaveable keyword.

279

Chapter 34

34. An Overview of Lists and Grids in
Compose
It is a common requirement when designing user interface layouts to present information in either scrollable
list or grid configurations. For basic list requirements, the Row and Column components can be re-purposed
to provide vertical and horizontal lists of child composables. Extremely large lists, however, are likely to cause
degraded performance if rendered using the standard Row and Column composables. For lists containing large
numbers of items, Compose provides the LazyColumn and LazyRow composables. Similarly, grid-based layouts
can be presented using the LazyVerticalGrid composable.

This chapter will introduce the basics of list and grid creation and management in Compose in preparation for
the tutorials in subsequent chapters.

34.1 Standard vs. lazy lists
Part of the popularity of lists is that they provide an effective way to present large amounts of items in a scrollable
format. Each item in a list is represented by a composable which may, itself, contain descendant composables.
When a list is created using the Row or Column component, all of the items it contains are also created at
initialization, regardless of how many are visible at any given time. While this does not necessarily pose a
problem for smaller lists, it can be an issue for lists containing many items.

Consider, for example, a list that is required to display 1000 photo images. It can be assumed with a reasonable
degree of certainty that only a small percentage of items will be visible to the user at any one time. If the
application was permitted to create each of the 1000 items in advance, however, the device would very quickly
run into memory and performance limitations.

When working with longer lists, the recommended course of action is to use LazyColumn, LazyRow, and
LazyVerticalGrid. These components only create those items that are visible to the user. As the user scrolls,
items that move out of the viewable area are destroyed to free up resources while those entering view are created
just in time to be displayed. This allows lists of potentially infinite length to be displayed with no performance
degradation.

Since there are differences in approach and features when working with Row and Column compared to the lazy
equivalents, this chapter will provide an overview of both types.

34.2 Working with Column and Row lists
Although lacking some of the features and performance advantages of the LazyColumn and LazyRow, the Row
and Column composables provide a good option for displaying shorter, basic lists of items. Lists are declared
in much the same way as regular rows and columns with the exception that each list item is usually generated
programmatically. The following declaration, for example, uses the Column component to create a vertical list
containing 100 instances of a composable named MyListItem:
Column {

 repeat(100) {

 MyListItem()

 }

280

An Overview of Lists and Grids in Compose

}

Similarly, the following example creates a horizontal list containing the same items:
Row {

 repeat(100) {

 MyListItem()

 }

}

The MyListItem composable can be anything from a single Text composable to a complex layout containing
multiple composables.

34.3 Creating lazy lists
Lazy lists are created using the LazyColumn and LazyRow composables. These layouts place children within
a LazyListScope block which provides additional features for managing and customizing the list items. For
example, individual items may be added to a lazy list via calls to the item() function of the LazyListScope:
LazyColumn {

 item {

 MyListItem()

 }

}

Alternatively, multiple items may be added in a single statement by calling the items() function:
LazyColumn {

 items(1000) { index ->

 Text("This is item $index");

 }

}

LazyListScope also provides the itemsIndexed() function which associates the item content with an index value,
for example:
val colorNamesList = listOf("Red", "Green", "Blue", "Indigo")

LazyColumn {

 itemsIndexed(colorNamesList) { index, item ->

 Text("$index = $item")

 }

}

When rendered, the above lazy column will appear as shown in Figure 34-1 below:

Figure 34-1

281

An Overview of Lists and Grids in Compose

Lazy lists also support the addition of headers to groups of items in a list using the stickyHeader() function. This
topic will be covered in more detail later in the chapter.

34.4 Enabling scrolling with ScrollState
While the above Column and Row list examples will display a list of items, only those that fit into the viewable
screen area will be accessible to the user. This is because lists are not scrollable by default. To make Row and
Column-based lists scrollable, some additional steps are needed. LazyList and LazyRow, on the other hand,
support scrolling by default.

The first step in enabling list scrolling when working with Row and Column-based lists is to create a ScrollState
instance. This is a special state object designed to allow Row and Column parents to remember the current scroll
position through recompositions. A ScrollState instance is generated via a call to the rememberScrollState()
function, for example:
val scrollState = rememberScrollState()

Once created, the scroll state is passed as a parameter to the Column or Row composable using the verticalScroll()
and horizontalScroll() modifiers. In the following example, vertical scrolling is being enabled in a Column list:
Column(Modifier.verticalScroll(scrollState)) {
 repeat(100) {

 MyListItem()

 }

}

Similarly, the following code enables horizontal scrolling on a LazyRow list:
Row(Modifier.horizontalScroll(scrollState)) {
 repeat(1000) {

 MyListItem()

 }

}

34.5 Programmatic scrolling
We generally think of scrolling as being something a user performs through dragging or swiping gestures on the
device screen. It is also important to know how to change the current scroll position from within code. An app
screen might, for example, contain buttons which can be tapped to scroll to the start and end of a list. The steps
to implement this behavior differ between Row and Columns lists and the lazy list equivalents.

When working with Row and Column lists, programmatic scrolling can be performed by calling the following
functions on the ScrollState instance:

• animateScrollTo(value: Int) - Scrolls smoothly to the specified pixel position in the list using animation.

• scrollTo(value: Int) - Scrolls instantly to the specified pixel position.

Note that the value parameters in the above function represent the list position in pixels instead of referencing a
specific item number. It is safe to assume that the start of the list is represented by pixel position 0, but the pixel
position representing the end of the list may be less obvious. Fortunately, the maximum scroll position can be
identified by accessing the maxValue property of the scroll state instance:
val maxScrollPosition = scrollState.maxValue

To programmatically scroll LazyColumn and LazyRow lists, functions need to be called on a LazyListState
instance which can be obtained via a call to the rememberLazyListState() function as follows:

282

An Overview of Lists and Grids in Compose

val listState = rememberLazyListState()

Once the list state has been obtained, it must be applied to the LazyRow or LazyColumn declaration as follows:
.

.

LazyColumn(

 state = listState,

{

.

.

Scrolling can then be performed via calls to the following functions on the list state instance:

• animateScrollToItem(index: Int) - Scrolls smoothly to the specified list item (where 0 is the first item).

• scrollToItem(index: Int) - Scrolls instantly to the specified list item (where 0 is the first item).

In this case, the scrolling position is referenced by the index of the item instead of pixel position.

One complication is that all four of the above scroll functions are coroutine functions. As outlined in the chapter
titled “Coroutines and LaunchedEffects in Jetpack Compose”, coroutines are a feature of Kotlin that allows blocks
of code to execute asynchronously without blocking the thread from which they are launched (in this case the
main thread which is responsible for making sure the app remains responsive to the user). Coroutines can be
implemented without having to worry about building complex implementations or directly managing multiple
threads. Because of the way they are implemented, coroutines are much more efficient and less resource-intensive
than using traditional multi-threading options. One of the key requirements of coroutine functions is that they
must be launched from within a coroutine scope.

As with ScrollState and LazyListState, we need access to a CoroutineScope instance that will be remembered
through recompositions. This requires a call to the rememberCoroutineScope() function as follows:
val coroutineScope = rememberCoroutineScope()

Once we have a coroutine scope, we can use it to launch the scroll functions. The following code, for example,
declares a Button component configured to launch the animateScrollTo() function within the coroutine scope.
In this case, the button will cause the list to scroll to the end position when clicked:
.

.

Button(onClick = {

 coroutineScope.launch {
 scrollState.animateScrollTo(scrollState.maxValue)
 }
.

.

}

34.6 Sticky headers
Sticky headers is a feature only available within lazy lists that allows list items to be grouped under a corresponding
header. Sticky headers are created using the LazyListScope stickyHeader() function.

The headers are referred to as being sticky because they remain visible on the screen while the current group is
scrolling. Once a group scrolls from view, the header for the next group takes its place. Figure 34-2, for example,

283

An Overview of Lists and Grids in Compose

shows a list with sticky headers. Note that although the Apple group is scrolled partially out of view, the header
remains in position at the top of the screen:

Figure 34-2
When working with sticky headers, the list content must be stored in an Array or List which has been mapped
using the Kotlin groupBy() function. The groupBy() function accepts a lambda which is used to define the
selector which defines how data is to be grouped. This selector then serves as the key to access the elements of
each group. Consider, for example, the following list which contains mobile phone models:
val phones = listOf("Apple iPhone 12", "Google Pixel 4", "Google Pixel 6",

 "Samsung Galaxy 6s", "Apple iPhone 7", "OnePlus 7", "OnePlus 9 Pro",

 "Apple iPhone 13", "Samsung Galaxy Z Flip", "Google Pixel 4a",

 "Apple iPhone 8")

Now suppose that we want to group the phone models by manufacturer. To do this we would use the first word
of each string (in other words, the text before the first space character) as the selector when calling groupBy() to
map the list:
val groupedPhones = phones.groupBy { it.substringBefore(' ') }

Once the phones have been grouped by manufacturer, we can use the forEach statement to create a sticky header
for each manufacture name, and display the phones in the corresponding group as list items:
groupedPhones.forEach { (manufacturer, models) ->

 stickyHeader {

 Text(

 text = manufacturer,

 color = Color.White,

 modifier = Modifier

 .background(Color.Gray)

284

An Overview of Lists and Grids in Compose

 .padding(5.dp)

 .fillMaxWidth()

)

 }

 items(models) { model ->

 MyListItem(model)

 }

}

In the above forEach lambda, manufacturer represents the selector key (for example “Apple”) and models an
array containing the items in the corresponding manufacturer group (“Apple iPhone 12”, “Apple iPhone 7”, and
so on for the Apple selector):
groupedPhones.forEach { (manufacturer, models) ->

The selector key is then used as the text for the sticky header, and the models list is passed to the items() function
to display all the group elements, in this case using a custom composable named MyListItem for each item:
items(models) { model ->

 MyListItem(model)

}

When rendered, the above code will display the list shown in Figure 34-2 above.

34.7 Responding to scroll position
Both LazyRow and LazyColumn allow actions to be performed when a list scrolls to a specified item position.
This can be particularly useful for displaying a “scroll to top” button that appears only when the user scrolls
towards the end of the list.

The behavior is implemented by accessing the firstVisibleItemIndex property of the LazyListState instance which
contains the index of the item that is currently the first visible item in the list. For example, if the user scrolls a
LazyColumn list such that the third item in the list is currently the topmost visible item, firstVisibleItemIndex
will contain a value of 2 (since indexes start counting at 0). The following code, for example, could be used to
display a “scroll to top” button when the first visible item index exceeds 8:
val firstVisible = listState.firstVisibleItemIndex

if (firstVisible > 8) {

 // Display scroll to top button

}

34.8 Creating a lazy grid
Grid layouts may be created using the LazyVerticalGrid composable. The appearance of the grid is controlled by
the cells parameter that can be set to either adaptive or fixed mode. In adaptive mode, the grid will calculate the
number of rows and columns that will fit into the available space, with even spacing between items and subject
to a minimum specified cell size. Fixed mode, on the other hand, is passed the number of rows to be displayed
and sizes each column width equally to fill the width of the available space.

The following code, for example, declares a grid containing 30 cells, each with a minimum width of 60dp:
LazyVerticalGrid(GridCells.Adaptive(minSize = 60.dp),

 state = rememberLazyGridState(),

285

An Overview of Lists and Grids in Compose

 contentPadding = PaddingValues(10.dp)

) {

 items(30) { index ->

 Card(

 colors = CardDefaults.cardColors(

 containerColor = MaterialTheme.colorScheme.primary

),

 modifier = Modifier.padding(5.dp).fillMaxSize()) {

 Text(

 "$index",

 textAlign = TextAlign.Center,

 fontSize = 30.sp,

 color = Color.White,

 modifier = Modifier.width(120.dp)

)

 }

 }

}

When called, the LazyVerticalGrid composable will fit as many items as possible into each row without making
the column width smaller than 60dp as illustrated in the figure below:

Figure 34-3
The following code organizes items in a grid containing three columns:
LazyVerticalGrid(

 GridCells.Fixed(3),

 state = rememberLazyGridState(),

 contentPadding = PaddingValues(10.dp)

) {

 items(15) { index ->

 Card(colors = CardDefaults.cardColors(

 containerColor = MaterialTheme.colorScheme.primary

),

 modifier = Modifier.padding(5.dp).fillMaxSize()) {

 Text(

286

An Overview of Lists and Grids in Compose

 "$index",

 fontSize = 35.sp,

 color = Color.White,

 textAlign = TextAlign.Center,

 modifier = Modifier.width(120.dp))

 }

 }

}

The layout from the above code will appear as illustrated in Figure 34-4 below:

Figure 34-4
Both the above grid examples used a Card composable containing a Text component for each cell item. The Card
component provides a surface into which to group content and actions relating to a single content topic and is
often used as the basis for list items. Although we provided a Text composable as the child, the content in a card
can be any composable, including containers such as Row, Column, and Box layouts. A key feature of Card is the
ability to create a shadow effect by specifying an elevation:
Card(

 modifier = Modifier

 .fillMaxWidth()

 .padding(15.dp),

 elevation = CardDefaults.cardElevation(

 defaultElevation = 10.dp

)

) {

 Column(horizontalAlignment = Alignment.CenterHorizontally,

 modifier = Modifier.padding(15.dp).fillMaxWidth()

) {

 Text("Jetpack Compose", fontSize = 30.sp,)

 Text("Card Example", fontSize = 20.sp)

 }

}

When rendered, the above Card component will appear as shown in Figure 34-5:

287

An Overview of Lists and Grids in Compose

Figure 34-5

34.9 Summary
Lists in Compose may be created using either standard or lazy list components. The lazy components have
the advantage that they can present large amounts of content without impacting the performance of the app
or the device on which it is running. This is achieved by creating list items only when they become visible and
destroying them as they scroll out of view. Lists can be presented in row, column, and grid formats and can be
static or scrollable. It is also possible to programmatically scroll lists to specific positions and to trigger events
based on the current scroll position.

369

Chapter 42

42. Working with ViewModels in
Compose
Until a few years ago, Google did not recommend a specific approach to building Android apps other than to
provide tools and development kits while letting developers decide what worked best for a particular project
or individual programming style. That changed in 2017 with the introduction of the Android Architecture
Components which became part of Android Jetpack when it was released in 2018. Jetpack has of course, since
been expanded with the addition of Compose.

This chapter will provide an overview of the concepts of Jetpack, Android app architecture recommendations,
and the ViewModel component.

42.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture Components, Android Support Library,
and the Compose framework together with a set of guidelines that recommend how an Android App should be
structured. The Android Architecture Components were designed to make it quicker and easier both to perform
common tasks when developing Android apps while also conforming to the key principle of the architectural
guidelines. While many of these components have been superseded by features built into Compose, the
ViewModel architecture component remains relevant today. Before exploring the ViewModel component, it
first helps to understand both the old and new approaches to Android app architecture.

42.2 The “old” architecture
In the chapter entitled “An Example Compose Project”, an Android project was created consisting of a single
activity that contained all of the code for presenting and managing the user interface together with the back-end
logic of the app. Up until the introduction of Jetpack, the most common architecture followed this paradigm
with apps consisting of multiple activities (one for each screen within the app) with each activity class to some
degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

42.3 Modern Android architecture
At the most basic level, Google now advocates single activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept called “separation of concerns”). One of the keys to this approach is the
ViewModel component.

42.4 The ViewModel component
The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.

370

Working with ViewModels in Compose

When designed in this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data needed by those controllers.

A ViewModel is implemented as a separate class and contains state values containing the model data and
functions that can be called to manage that data. The activity containing the user interface observes the model
state values such that any value changes trigger a recomposition. User interface events relating to the model data
such as a button click are configured to call the appropriate function within the ViewModel. This is, in fact, a
direct implementation of the unidirectional data flow concept described in the chapter entitled “An Overview of
Compose State and Recomposition”. The diagram in Figure 42-1 illustrates this concept as it relates to activities
and ViewModels:

Figure 42-1
This separation of responsibility addresses the issues relating to the lifecycle of activities. Regardless of how
many times an activity is recreated during the lifecycle of an app, the ViewModel instances remain in memory
thereby maintaining data consistency. A ViewModel used by an activity, for example, will remain in memory
until the activity finishes which, in the single activity app, is not until the app exits.

In addition to using ViewModels, the code responsible for gathering data from data sources such as web services
or databases should be built into a separate repository module instead of being bundled with the view model.
This topic will be covered in detail beginning with the chapter entitled “Room Databases and Compose”.

42.5 ViewModel implementation using state
The main purpose of a ViewModel is to store data that can be observed by the user interface of an activity. This
allows the user interface to react when changes occur to the ViewModel data. There are two ways to declare the
data within a ViewModel so that it is observable. One option is to use the Compose state mechanism which has
been used extensively throughout this book. An alternative approach is to use the Jetpack LiveData component,
a topic that will be covered later in this chapter.

Much like the state declared within composables, ViewModel state is declared using the mutableStateOf group
of functions. The following ViewModel declaration, for example, declares a state containing an integer count
value with an initial value of 0:
class MyViewModel : ViewModel() {

 var customerCount by mutableStateOf(0)

}

With some data encapsulated in the model, the next step is to add a function that can be called from within the
UI to change the counter value:

371

Working with ViewModels in Compose

class MyViewModel : ViewModel() {

 var customerCount by mutableStateOf(0)

 fun increaseCount() {

 customerCount++

 }

}

Even complex models are nothing more than a continuation of these two basic state and function building
blocks.

42.6 Connecting a ViewModel state to an activity
A ViewModel is of little use unless it can be used within the composables that make up the app user interface.
All this requires is to pass an instance of the ViewModel as a parameter to a composable from which the state
values and functions can be accessed. Programming convention recommends that these steps be performed in a
composable dedicated solely for this task and located at the top of the screen’s composable hierarchy. The model
state and event handler functions can then be passed to child composables as necessary. The following code
shows an example of how a ViewModel might be accessed from within an activity:
class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ViewModelWorkTheme {

 Surface(color = MaterialTheme.colorScheme.background) {

 TopLevel()

 }

 }

 }

 }

}

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 MainScreen(model.customerCount) { model.increaseCount() }

}

@Composable

fun MainScreen(count: Int, addCount: () -> Unit = {}) {

 Column(horizontalAlignment = Alignment.CenterHorizontally,

 modifier = Modifier.fillMaxWidth()) {

 Text("Total customers = $count",

 Modifier.padding(10.dp))

 Button(

 onClick = addCount,

) {

 Text(text = "Add a Customer")

372

Working with ViewModels in Compose

 }

 }

}

In the above example, the first function call is made by the onCreate() method to the TopLevel composable
which is declared with a default ViewModel parameter initialized via a call to the viewModel() function:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {
.

.

The viewModel() function is provided by the Compose view model lifecycle library which needs to be added to
the project’s build dependencies when working with view models as follows:
dependencies {

.

.

 implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.4.1'
.

.

If an instance of the view model has already been created within the current scope, the viewModel() function will
return a reference to that instance. Otherwise, a new view model instance will be created and returned.

With access to the ViewModel instance, the TopLevel function is then able to obtain references to the view model
customerCount state variable and increaseCount() function which it passes to the MainScreen composable:
MainScreen(model.customerCount) { model.increaseCount() }

As implemented, Button clicks will result in calls to the view model increaseCount() function which, in turn,
increments the customerCount state. This change in state triggers a recomposition of the user interface, resulting
in the new customer count value appearing in the Text composable.

The use of state and view models will be demonstrated in the chapter entitled “A Compose ViewModel Tutorial”.

42.7 ViewModel implementation using LiveData
The Jetpack LiveData component predates the introduction of Compose and can be used as a wrapper around
data values within a view model. Once contained in a LiveData instance, those variables become observable to
composables within an activity. LiveData instances can be declared as being mutable using the MutableLiveData
class, allowing the ViewModel functions to make changes to the underlying data value. An example view model
designed to store a customer name could, for example, be implemented as follows using MutableLiveData
instead of state:
class MyViewModel : ViewModel() {

 var customerName: MutableLiveData<String> = MutableLiveData("")

 fun setName(name: String) {

 customerName.value = name

 }

}

Note that new values must be assigned to the live data variable via the value property.

373

Working with ViewModels in Compose

42.8 Observing ViewModel LiveData within an activity
As with state, the first step when working with LiveData is to obtain an instance of the view model within an
initialization composable:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

}

Once we have access to a view model instance, the next step is to make the live data observable. This is achieved
by calling the observeAsState() method on the live data object:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 var customerName: String by model.customerName.observeAsState("")
}

In the above code, the observeAsState() call converts the live data value into a state instance and assigns it to
the customerName variable. Once converted, the state will behave in the same way as any other state object,
including triggering recompositions whenever the underlying value changes.

The use of LiveData and view models will be demonstrated in the chapter entitled “A Compose Room Database
and Repository Tutorial”.

42.9 Summary
Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That changed with the introduction of Android Jetpack which consists of a set of tools, components, libraries,
and architecture guidelines. These architectural guidelines recommend that an app project be divided into
separate modules, each being responsible for a particular area of functionality, otherwise known as “separation
of concerns”. In particular, the guidelines recommend separating the view data model of an app from the code
responsible for handling the user interface. This is achieved using the ViewModel component. In this chapter,
we have covered ViewModel-based architecture and demonstrated how this is implemented when developing
with Compose. We have also explored how to observe and access view model data from within an activity using
both state and LiveData.

461

Chapter 51

51. An Introduction to Kotlin Flow
The earlier chapter, “Coroutines and LaunchedEffects in Jetpack Compose” taught us about Kotlin Coroutines.
It explained how we can use them to perform multiple tasks concurrently without blocking the main thread.
However, a shortcoming of suspend functions is that they are typically only useful for performing tasks that
either do not return a result or only return a single value. In this chapter, we will introduce Kotlin Flows and
explore how these can be used to return sequential streams of results from coroutine-based tasks.

By the end of the chapter, you should understand the Flow, StateFlow, and SharedFlow Kotlin types and
appreciate the difference between hot and cold flow streams. In the next chapter (“A Jetpack Compose SharedFlow
Tutorial”), we will look more closely at using SharedFlow within the context of an example Android app project.

51.1 Understanding Flows
Flows are a part of the Kotlin programming language and are designed to allow multiple values to be returned
sequentially from coroutine-based asynchronous tasks. A stream of data arriving over time via a network
connection would, for example, be an ideal situation for using a Kotlin flow.

Flows are comprised of producers, intermediaries, and consumers. Producers are responsible for providing
the data that makes up the flow. The code that retrieves the stream of data from our hypothetical network
connection, for example, would be considered a producer. As each data value becomes available, the producer
emits that value to the flow. The consumer sits at the opposite end of the flow stream and collects the values as
the producer emits them.

Intermediaries may be placed between the producer and consumer to perform additional operations on the
data, such as filtering the stream, performing further processing, or transforming the data in other ways before
it reaches the consumer. Figure 51-1 illustrates the typical structure of a Kotlin flow:

Figure 51-1
The flow shown in the above diagram consists of a single producer and consumer. However, in practice, multiple
consumers can collect emissions from a single producer, and for a single consumer to collect data from multiple
producers.

The remainder of this chapter will demonstrate many key features of Kotlin flows within the context of Jetpack
Compose-based development.

51.2 Creating the sample project
Launch Android Studio and create a new Empty Activity project named FlowDemo, specifying com.example.
flowdemo as the package name and selecting a minimum API level of API 26: Android 8.0 (Oreo).

Within the MainActivity.kt file, delete the Greeting function and add a new empty composable named

462

An Introduction to Kotlin Flow

ScreenSetup which, in turn, calls a function named MainScreen:
@Composable

fun ScreenSetup() {

 MainScreen()

}

@Composable

fun MainScreen() {

}

Edit the onCreate() method function to call ScreenSetup instead of Greeting (we will modify the GreetingPreview
composable later).

Next, modify the build.gradle (Module: app) file to add the Compose view model and Kotlin runtime extensions
libraries to the dependencies section:
dependencies {

.

.

 implementation 'androidx.lifecycle:lifecycle-viewmodel-compose:2.5.1'
 implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.5.1'
.

.

}

When prompted, click on the Sync Now button at the top of the editor panel to commit the change.

51.3 Adding a view model to the project
For this project, the flow will reside in a view model class. Add this model to the project by locating and right-
clicking on the app -> java -> com.example.flowdemo entry in the project tool window and selecting the New
-> Kotlin Class/File menu option. In the resulting dialog, name the class DemoViewModel before tapping the
keyboard Enter key. Once created, modify the file so that it reads as follows:
package com.example.flowdemo

import androidx.lifecycle.ViewModel

class DemoViewModel : ViewModel() {
}

Return to the MainActivity.kt file and make changes to access an instance of the view model:
.

.

import androidx.lifecycle.viewmodel.compose.viewModel
.

.

@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {
 MainScreen()

463

An Introduction to Kotlin Flow

}

51.4 Declaring the flow
The Kotlin Flow type represents the most basic form of flow. Each flow can only emit data of a single type which
must be specified when the flow is declared. The following declaration, for example, declares a Flow instance
designed to stream String-based data:
Flow<String>

When declaring a flow, we need to assign the code to generate the data stream. This code is referred to as the
producer block. This can be achieved using the flow() builder, which takes as a parameter a coroutine suspend
block containing the producer block code. For example, add the following code to the DemoViewModel.kt file to
declare a flow named myFlow designed to emit a stream of integer values:
package com.example.flowdemo

import androidx.lifecycle.ViewModel

import kotlinx.coroutines.*
import kotlinx.coroutines.flow.*

class DemoViewModel : ViewModel() {

 val myFlow: Flow<Int> = flow {
 // Producer block
 }
}

As an alternative to the flow builder, the flowOf() builder can be used to convert a fixed set of values into a flow:
val myFlow2 = flowOf(2, 4, 6, 8)

Also, many Kotlin collection types now include an asFlow() extension function that can be called to convert the
contained data to a flow. The following code, for example, converts an array of string values to a flow:
val myArrayFlow = arrayOf<String>("Red", "Green", "Blue").asFlow()

51.5 Emitting flow data
Once a flow has been built, the next step is to ensure the data is emitted so that it reaches any consumers
observing it. Of the three flow builders we looked at in the previous section, only the flowOf() and asFlow()
builders create flows that automatically emit the data as soon as a consumer starts collecting. In the case of the
flow builder, however, we need to write code to manually emit each value as it becomes available. We achieve this
by making calls to the emit() function and passing through as an argument the current value to be streamed. The
following changes to our myFlow declaration implement a loop that emits the value of an incrementing counter.
In addition, a 2-second delay is performed on each loop iteration to demonstrate the asynchronous nature of
flow streams:
val myFlow: Flow<Int> = flow {

 for (i in 0..9) {
 emit(i)
 delay(2000)
 }
}

464

An Introduction to Kotlin Flow

51.6 Collecting flow data as state
As we will see later in the chapter, one way to collect data from a flow within a consumer is to call the collect()
method on the flow instance. When working with Compose, however, a less flexible, but more convenient option
is to convert the flow to state by calling the collectAsState() function on the flow instance. This allows us to treat
the data just as we would any other state within our code. To see this in action, edit the MainActivity.kt file and
make the following changes:
.

.

import androidx.compose.runtime.*
import kotlinx.coroutines.flow.*
.

.

@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

 MainScreen(viewModel.myFlow)
}

@Composable

fun MainScreen(flow: Flow<Int>) {
 val count by flow.collectAsState(initial = 0)
}

.

.

@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

 FlowDemoTheme {

 ScreenSetup(viewModel())
 }

}

The changes pass a myFlow reference to the MainScreen composable where it is converted to a State with an
initial value of 0. Next, we need to design a simple user interface to display the count values as they are emitted
to the flow:
.

.

import androidx.compose.foundation.layout.*
import androidx.compose.ui.Alignment
import androidx.compose.ui.text.TextStyle
import androidx.compose.ui.unit.sp
.

.

@Composable

fun MainScreen(myFlow: Flow<Int>) {

 val count by myFlow.collectAsState(initial = 0)

465

An Introduction to Kotlin Flow

 Column(
 modifier = Modifier.fillMaxSize(),
 verticalArrangement = Arrangement.Center,
 horizontalAlignment = Alignment.CenterHorizontally
) {
 Text(text = "$count", style = TextStyle(fontSize = 40.sp))
 }
}

Try out the app either using the preview panel in interactive mode, or by running it on a device or emulator.
Once the app starts, the count value displayed on the Text component should increment as the flow emits each
new value.

51.7 Transforming data with intermediaries
In the previous example, we passed the data values to the consumer without any modifications. However, we
can change the data between the producer and consumer by applying one or more intermediate flow operators.
In this section, we will look at some of these operators.

We can use the map() operator to convert the value to another value. For example, we can use map() to convert
our integer value to a string and add some additional text. Edit the DemoViewModel.kt file and create a modified
version of our flow as follows:
.

.

class DemoViewModel : ViewModel() {

 val myFlow: Flow<Int> = flow {

 for (i in 0..9) {

 emit(i)

 delay(2000)

 }

 }

 val newFlow = myFlow.map {
 "Current value = $it"
 }
}

Before we can test this operator, some changes are needed within the MainActivity.kt file to use this new flow:
Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

 MainScreen(viewModel.newFlow)
}

@Composable

fun MainScreen(flow: Flow<String>) {
 val count by flow.collectAsState(initial = "Current value =")
.

.

466

An Introduction to Kotlin Flow

When the code is executed, the text will display the text string updated with the count:
Current value = 1

Current value = 2

.

.

The map() operator will perform the conversion on every collected value. We can use the filter() operator to
control which values get collected. The filter code block must contain an expression that returns a Boolean value.
Only if the expression evaluates to true does the value pass through to the collection. For example, the following
code filters odd numbers out of the data flow (note that we’ve left the map() operator in place to demonstrate
the chaining of operators):
val newFlow = myFlow

 .filter {
 it % 2 == 0
 }
 .map {

 "Current value = $it"

 }

The above changes will display count updates only for even numbers.

The transform() operator serves a similar purpose to map() but provides more flexibility. The transform()
operator also needs to manually emit the modified result. A particular advantage of transform() is that it can
emit multiple values, for example:
val newFlow = myFlow

 .transform {
 emit("Value = $it")
 delay(1000)
 val doubled = it * 2
 emit("Value doubled = $doubled")
 }

// Output

Value = 0

Value doubled = 0

Value = 1

Value doubled = 2

Value = 2

Value doubled = 4

Value = 3

.

.

Before moving to the next step, revert the newFlow declaration to its original form:
val newFlow = myFlow.map {

 "Current value = $it"

}

467

An Introduction to Kotlin Flow

51.8 Collecting flow data
So far in this chapter, we have used the collectAsState() function to convert a flow to a State instance. Behind the
scenes, this method uses the collect() function to initiate the data collection. Although collectAsState() works
well most of the time, there will be situations where you may need to call collect(). In fact, collect() is just one of
several so-called terminal flow operators that can be called directly to achieve results that aren’t possible using
collectAsState().

These operators are suspend functions so can only be called from within a coroutine scope. In the chapter
entitled “Coroutines and LaunchedEffects in Jetpack Compose”, we looked at coroutines and explained how to
use LaunchedEffect to execute asynchronous code safely from within a composable function. Once we have
implemented the LaunchedEffect call, we still need the streamed values to be stored as state, so we also need a
mutable state into which to store the latest value. Bringing these requirements together, modify the MainScreen
function so that it reads as follows:
@Composable

fun MainScreen(flow: Flow<String>) {

 var count by remember { mutableStateOf<String>("Current value =")}

 LaunchedEffect(Unit) {
 flow.collect {
 count = it
 }
 }

 Column(

 modifier = Modifier.fillMaxSize(),

.

.

Test the app and verify that the text component updates as expected. Now that we are using the collect() function
we can begin to explore some options that were not available to us when we were using collectAsState().

For example, to add code to be executed when the stream ends, the collection can be performed in a try/finally
construct, for example:
LaunchedEffect(Unit) {

 try {
 flow.collect {
 count = it
 }
 } finally {
 count = "Flow stream ended."
 }
}

The collect() operator will collect every value emitted by the producer, even if new values are emitted while
the last value is still being processed in the consumer. For example, our producer is configured to emit a new
value every two seconds. Suppose, however, that we simulate our consumer taking 2.5 seconds to process each
collected value. When executed, we will still see all of the values listed in the output because collect() does

468

An Introduction to Kotlin Flow

not discard any uncollected values regardless of whether more recent values have been emitted since the last
collection. This type of behavior is essential to avoid data loss within the flow. In some situations, however, the
consumer may be uninterested in any intermediate values emitted between the most recently processed value
and the latest emitted value. In this case, the collectLatest() operator can be called on the flow instance. This
operator works by canceling the current collection if a new value arrives before processing completes on the
previous value and restarts the process on the latest value.

The conflate() operator is similar to the collectLatest() operator except that instead of canceling the current
collection operation when a new value arrives, conflate() allows the current operation to complete, but discards
intermediate values that arrive during this process. When the current operation completes, the most recent
value is then collected.

Another collection operator is the single() operator. This operator collects a single value from the flow and
throws an exception if it finds another value in the stream. This operator is useful where the appearance of a
second stream value indicates that something else has gone wrong somewhere in the app or data source.

51.9 Adding a flow buffer
When a consumer takes time to process the values emitted by a producer, there is the potential for execution time
inefficiencies to occur. Suppose, for example, that in addition to the two-second delay between each emission
from our newFlow producer, the collection process in our consumer takes an additional second to complete. We
can simulate this behavior as follows:
.

.

import kotlin.system.measureTimeMillis
import kotlinx.coroutines.delay
.

.

LaunchedEffect(Unit) {

 val elapsedTime = measureTimeMillis {
 flow.collect {

 count = it

 delay(1000)
 }

 }

 count = "Duration = $elapsedTime"
}

To allow us to measure the total time to fully process the flow, the consumer code has been placed in the closure
of a call to the Kotlin measureTimeMillis() function. Run the app and, after execution completes, a duration
similar to the following will be reported:
Duration = 30044

This accounts for approximately 20 seconds to process the 10 values within newFlow and an additional 10 seconds
for those values to be collected. There is an inefficiency here because the producer is waiting for the consumer
to process each value before starting on the next value. This would be much more efficient if the producer did
not have to wait for the consumer. We could, of course, use the collectLatest() or conflate() operators, but only if
the loss of intermediate values is not a concern. To speed up the processing while also collecting every emitted
value we can make use of the buffer() operator. This operator buffers values as they are emitted and passes them

469

An Introduction to Kotlin Flow

to the consumer when it is ready to receive them. This allows the producer to continue emitting values while the
consumer processes preceding values while ensuring that every emitted value is collected. The buffer() operator
may be applied to a flow as follows:
LaunchedEffect("Unit") {

 val elapsedTime = measureTimeMillis {

 flow

 .buffer()
 .collect {

 count = it

 delay(1000)

 }

 }

 count = "Duration = $elapsedTime"

}

Execution of the above code indicates that we have now reclaimed the 10 seconds previously lost in the collection
code:
Duration = 20052

51.10 More terminal flow operators
The reduce() operator is one of several other terminal flow operators that can be used in place of a collection
operator to make changes to the flow data. The reduce() operator takes two parameters in the form of an
accumulator and a value. The first flow value is placed in the accumulator and a specified operation is performed
between the accumulator and the current value (with the result stored in the accumulator). To try this out we
need to revert to using myFlow instead of newFlow in addition to adding the reduce() operator call:
@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

 MainScreen(viewModel.myFlow)
}

@Composable

fun MainScreen(flow: Flow<Int>) {

 var count by remember { mutableStateOf<Int>(0) }

 LaunchedEffect(Unit) {

 flow

 .reduce { accumulator, value ->
 count = accumulator
 accumulator + value
 }
 }

 }

.

470

An Introduction to Kotlin Flow

.

The fold() operator works similarly to the reduce() operator, with the exception that it is passed an initial
accumulator value:
.

.

LaunchedEffect(Unit) {

 flow

 .fold(10) { accumulator, value ->
 count = accumulator

 accumulator + value

 }

 }

.

.

51.11 Flow flattening
As we have seen in earlier examples, we can use operators to perform tasks on values collected from a flow. An
interesting situation occurs, however, when that task itself creates one or more flows resulting in a “flow of flows”.
In situations where this occurs, these streams can be flattened into a single stream.

Consider the following example code which declares two flows:
val myFlow: Flow<Int> = flow {

 for (i in 1..5) {

 delay(1000)

 emit(i)

 }

}

fun doubleIt(value: Int) = flow {

 emit(value)

 delay(1000)

 emit(value + value)

}

If we were to call doubleIt() for each value in the myFlow stream we would end up with a separate flow for
each value. This problem can be solved by concatenating the doubleIt() streams into a single flow using the
flatMapConcat() operator as follows:
@Composable

fun ScreenSetup(viewModel: DemoViewModel = viewModel()) {

 MainScreen(viewModel)
}

@Composable

fun MainScreen(viewModel: DemoViewModel) {

471

An Introduction to Kotlin Flow

 var count by remember { mutableStateOf<Int>(0)}

 LaunchedEffect(Unit) {

 viewModel.myFlow
 .flatMapConcat { viewModel.doubleIt(it) }
 .collect { count = it }
 }

.

.

When this modified code executes we will see the following output from the collect() operator:
1

2

2

4

3

6

4

8

5

10

As we can see from the output, the doubleIt() flow has emitted the value provided by myFlow followed by the
doubled value. When using the flatMapConcat() operator, the doubleIt() calls are being performed synchronously,
causing execution to wait until doubleIt() has emitted both values before processing the next flow value. The
emitted values can instead be collected asynchronously using the flatMapMerge() operator as follows:
viewModel.myFlow

 .flatMapMerge { viewModel.doubleIt(it) }
 .collect {

 count = it

 println("Count = $it")
 }

}

Because the collection is being performed asynchronously the displayed value change too quickly to see all of the
count values. Display the Logcat tool window to see the full list of collected values generated by the println() call:
I/System.out: Count = 1

I/System.out: Count = 2

I/System.out: Count = 2

I/System.out: Count = 4

I/System.out: Count = 3

I/System.out: Count = 6

I/System.out: Count = 4

I/System.out: Count = 8

I/System.out: Count = 5

I/System.out: Count = 10

472

An Introduction to Kotlin Flow

51.12 Combining multiple flows
Multiple flows can be combined into a single flow using the zip() and combine() operators. The following code
demonstrates the zip() operator being used to convert two flows into a single flow:
var count by remember { mutableStateOf<String>("")}

LaunchedEffect(Unit) {

 val flow1 = (1..5).asFlow()
 .onEach { delay(1000) }
 val flow2 = flowOf("one", "two", "three", "four")
 .onEach { delay(1500) }
 flow1.zip(flow2) { value, string -> "$value, $string" }
 .collect { count = it }
}

// Output

1, one

2, two

3, three

4, four

Note that we have applied the onEach() operator to both flows in the above code. This is a useful operator for
performing a task on receipt of each stream value.

The zip() operator will wait until both flows have emitted a new value before performing the collection. The
combine() operator works slightly differently in that it proceeds as soon as either flow emits a new value, using
the last value emitted by the other flow in the absence of a new value:
.

.

 val flow1 = (1..5).asFlow()

 .onEach { delay(1000) }

 val flow2 = flowOf("one", "two", "three", "four")

 .onEach { delay(1500) }

 flow1.combine(flow2) { value, string -> "$value, $string" }
 .collect { count = it }

.

.

// Output

1, one

2, one

3, one

3, two

4, two

4, three

5, three

5, four

As we can see from the output, multiple instances have occurred where the last value has been reused on a flow

473

An Introduction to Kotlin Flow

because a new value was emitted on the other.

51.13 Hot and cold flows
So far in this chapter, we have looked exclusively at the Kotlin Flow type. Kotlin also provides additional types
in the form of StateFlow and SharedFlow. Before exploring these, however, it is important to understand the
concept of hot and cold flows.

A stream declared using the Flow type is referred to as a cold flow because the code within the producer does
not begin executing until a consumer begins collecting values. StateFlow and SharedFlow, on the other hand, are
referred to as hot flows because they begin emitting values immediately, regardless of whether any consumers
are collecting the values.

Once a consumer begins collecting from a hot flow, it will receive the latest value emitted by the producer
followed by any subsequent values. Unless steps are taken to implement caching, any previous values emitted
before the collection starts will be lost.

Another important difference between Flow, StateFlow, and SharedFlow is that a Flow-based stream cannot
have multiple collectors. Each Flow collector launches a new flow with its own independent data stream. With
StateFlow and SharedFlow, on the other hand, multiple collectors share access to the same flow.

51.14 StateFlow
StateFlow, as the name suggests, is primarily used as a way to observe a change in state within an app such as
the current setting of a counter, toggle button, or slider. Each StateFlow instance is used to store a single value
that is likely to change over time and to notify all consumers when those changes occur. This enables you to
write code that reacts to changes in state instead of code that has to continually check whether or not a state
value has changed. StateFlow behaves the same way as LiveData with the exception that LiveData has lifecycle
awareness and does not require an initial value (LiveData was covered previously in the chapter titled “Working
with ViewModels in Compose”).

To create a StateFlow stream, begin by creating an instance of MutableStateFlow, passing through a mandatory
initial value. This is the variable that will be used to change the current state value from within the app code:
private val _stateFlow = MutableStateFlow(0)

Next, call asStateFlow() on the MutableStateFlow instance to convert it into a StateFlow from which changes in
state can be collected:
val stateFlow = _stateFlow.asStateFlow()

Once created, any changes to the state are made via the value property of the mutable state instance. The following
code, for example, increments the state value:
_stateFlow.value += 1

Once the flow is active, the state can be consumed using collectAsState() or directly using a collection function,
though it is generally recommended to collect from StateFlow using the collectLatest() operator. To try out an
example, begin by making the following modifications to the DemoViewModel.kt file:
.

.

class DemoViewModel : ViewModel() {

 private val _stateFlow = MutableStateFlow(0)
 val stateFlow = _stateFlow.asStateFlow()

474

An Introduction to Kotlin Flow

 fun increaseValue() {
 _stateFlow.value += 1
 }
.

.

Next, edit the MainActivity.kt file and change MainScreen so that it collects from the new state flow and to add
a button configured to call the view model increaseValue() function:
.

.

import androidx.compose.material3.Button
.

.

@Composable

fun MainScreen(viewModel: DemoViewModel) {

 val count by viewModel.stateFlow.collectAsState()

 Column(

 modifier = Modifier.fillMaxSize(),

 verticalArrangement = Arrangement.Center,

 horizontalAlignment = Alignment.CenterHorizontally

) {

 Text(text = "$count", style = TextStyle(fontSize = 40.sp))

 Button(onClick = { viewModel.increaseValue() }) {
 Text("Click Me")
 }
 }

}

Run the app and verify that the button updates the count Text component with the incremented count value
each time it is clicked.

51.15 SharedFlow
SharedFlow provides a more general-purpose streaming option than that offered by StateFlow. Some of the key
differences between StateFlow and SharedFlow are as follows:

• Consumers are generally referred to as subscribers.

• An initial value is not provided when creating a SharedFlow instance.

• SharedFlow allows values that were emitted prior to collection starting to be “replayed” to the collector.

• SharedFlow emits values instead of using a value property.

SharedFlow instances are created using MutableSharedFlow as the backing property on which we call the
asSharedFlow() function to obtain a SharedFlow reference. For example, make the following changes to the
DemoViewModel class to declare a shared flow:
.

.

475

An Introduction to Kotlin Flow

import androidx.lifecycle.viewModelScope
import kotlinx.coroutines.channels.BufferOverflow
.

.

class DemoViewModel : ViewModel() {

 private val _sharedFlow = MutableSharedFlow<Int>(
 replay = 10,
 onBufferOverflow = BufferOverflow.DROP_OLDEST
)

 val sharedFlow = _sharedFlow.asSharedFlow()
.
.

As configured above, new flow subscribers will receive the last 10 values before receiving any new values. The
above flow is also configured to discard the oldest value when more than 10 values are buffered. The full set of
options for handling buffer overflows are as follows:

• DROP_LATEST - The latest value is dropped when the buffer is full leaving the buffer unchanged as new
values are processed.

• DROP_OLDEST - Treats the buffer as a “first-in, first-out” stack where the oldest value is dropped to make
room for a new value when the buffer is full.

• SUSPEND - The flow is suspended when the buffer is full.

Values are emitted on a SharedFlow stream by calling the emit() method of the MutableSharedFlow instance
from within a coroutine. Remaining in the DemoViewModel.kt file, add a new method that can be called from
the main activity to start the shared flow:
fun startSharedFlow() {

 viewModelScope.launch {

 for (i in 1..5) {

 _sharedFlow.emit(i)

 delay(2000)

 }

 }

}

Finally, make the following changes to the MainScreen composable:
@Composable

fun MainScreen(viewModel: DemoViewModel) {

 val count by viewModel.sharedFlow.collectAsState(initial = 0)

 Column(

 modifier = Modifier.fillMaxSize(),

 verticalArrangement = Arrangement.Center,

476

An Introduction to Kotlin Flow

 horizontalAlignment = Alignment.CenterHorizontally

) {

 Text(text = "$count", style = TextStyle(fontSize = 40.sp))

 Button(onClick = { viewModel.startSharedFlow() }) {
 Text("Click Me")

 }

 }

}

Run the app on a device or emulator (shared flow code does not always work in the interactive preview) and
verify that clicking the button causes the count to begin updating. Note that since new values are being emitted
from within a coroutine you can click on the button repeatedly and collect values from multiple flows.

One final point to note about shared flows is that the current number of subscribers to a SharedFlow stream can
be obtained via the subscriptionCount property of the mutable instance:
val subCount = _sharedFlow.subscriptionCount

51.16 Converting a flow from cold to hot
A cold flow can be made hot by calling the shareIn() function on the flow. This call requires a coroutine scope
in which to execute the flow, a replay value, and a start policy setting indicating the conditions under which the
flow is to start and stop. The available start policy options are as follows:

• SharingStarted.WhileSubscribed() - The flow is kept alive as long as it has active subscribers.

• SharingStarted.Eagerly() - The flow begins immediately and remains active even in the absence of active
subscribers.

• SharingStarted.Lazily() - The flow begins only after the first consumer subscribes and remains active even in
the absence of active subscribers.

We could, for example, make one of our earlier cold flows hot using the following code:
val hotFlow = myFlow.shareIn(

 viewModelScope,

 replay = 1,

 started = SharingStarted.WhileSubscribed()

)

51.17 Summary
Kotlin flows allow sequential data or state changes to be returned over time from asynchronous tasks. A flow
consists of a producer that emits a sequence of values and consumers that collect and process those values. The
flow stream can be manipulated between the producer and consumer by applying one or more intermediary
operators including transformations and filtering. Flows are created based on the Flow, StateFlow, and
SharedFlow types. A Flow-based stream can only have a single collector while StateFlow and SharedFlow can
have multiple collectors.

Flows are categorized as being hot or cold. A cold flow does not begin emitting values until a consumer begins
collection. Hot flows, on the other hand, begin emitting values as soon as they are created, regardless of whether
or not the values are being collected. In the case of SharedFlow, a predefined number of values may be buffered
and subsequently replayed to new subscribers when they begin collecting values. A cold flow can be made hot
via a call to the flow’s shareIn() function.

499

Chapter 54

54. An Overview of Android In-App
Billing
In the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. However,
Google soon introduced another revenue opportunity by embedding advertising within applications. Perhaps
the most common and lucrative option is now to charge the user for purchasing items from within the application
after it has been installed. This typically takes the form of access to a higher level in a game, acquiring virtual
goods or currency, or subscribing to premium content in the digital edition of a magazine or newspaper.

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next chapter will walk you through creating
an example app that includes in-app purchasing features.

54.1 Preparing a project for In-App purchasing
Building in-app purchasing into an app will require a Google Play Developer Console account, which was
covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. In addition, you
must also register a Google merchant account and configure your payment settings. You can find these settings
by navigating to Setup -> Payments profile in the Play Console. Note that merchant registration is not available
in all countries. For details, refer to the following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app will then need to be uploaded to the console and enabled for in-app purchasing. The console will not
activate in-app purchasing support for an app, however, unless the Google Play Billing Library has been added
to the module-level build.gradle file. When working with Kotlin, the Google Play Kotlin Extensions Library is
also recommended:
dependencies {

.

.

 implementation 'com.android.billingclient:billing:<latest version>'
 implementation 'com.android.billingclient:billing-ktx:<latest version>'
.

.

}

Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

54.2 Creating In-App products and subscriptions
Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel as highlighted in Figure 54-1 below:

https://support.google.com/googleplay/android-developer/answer/9306917

500

An Overview of Android In-App Billing

Figure 54-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into
the categories of consumable (the item must be purchased each time it is required by the user such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed on a regular schedule such as access to news
content or the premium features of an app. When creating a subscription, a base plan is defined specifying the
price, renewal period (monthly, annually, etc.), and whether the subscription auto-renews. Users can also be
provided with discount offers and given the option of pre-purchasing a subscription.

54.3 Billing client initialization
A BillingClient instance handles communication between your app and the Google Play Billing Library.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =

 PurchasesUpdatedListener { billingResult, purchases ->

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

 && purchases != null

) {

 for (purchase in purchases) {

 // Process the purchases

 }

 } else if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.USER_CANCELED

) {

 // Purchase cancelled by user

 } else {

501

An Overview of Android In-App Billing

 // Handle errors here

 }

 }

billingClient = BillingClient.newBuilder(this)

 .setListener(purchasesUpdatedListener)

 .enablePendingPurchases()

 .build()

54.4 Connecting to the Google Play Billing library
After successfully creating the Billing Client, the next step is initializing a connection to the Google Play Billing
Library. To establish this connection, a call needs to be made to the startConnection() method of the billing client
instance. Since the connection is performed asynchronously, a BillingClientStateListener handler needs to be
implemented to receive a callback indicating whether the connection was successful. Code should also be added
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method which can be used to check that the client is ready:
billingClient.startConnection(object : BillingClientStateListener {

 override fun onBillingSetupFinished(

 billingResult: BillingResult

) {

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

) {

 // Connection successful

 } else {

 // Connection failed

 }

 }

 override fun onBillingServiceDisconnected() {

 // Connection to billing service lost

 }

})

54.5 Querying available products
Once the billing environment is initialized and ready to go, the next step is to request the details of the products
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):
val queryProductDetailsParams = QueryProductDetailsParams.newBuilder()

 .setProductList(

 ImmutableList.of(

 QueryProductDetailsParams.Product.newBuilder()

502

An Overview of Android In-App Billing

 .setProductId(productId)

 .setProductType(

 BillingClient.ProductType.INAPP

)

 .build()

)

)

 .build()

billingClient.queryProductDetailsAsync(

 queryProductDetailsParams

) { billingResult, productDetailsList ->

 if (!productDetailsList.isEmpty()) {

 // Process list of matching products

 } else {

 // No product matches found

 }

}

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler (in this case in
the form of a lambda code block) which, in turn, is called and passed a list of ProductDetail objects containing
information about the matching products. For example, we can call methods on these objects to get information
such as the product name, title, description, price, and offer details.

54.6 Starting the purchase process
Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the item being purchased.
val billingFlowParams = BillingFlowParams.newBuilder()

 .setProductDetailsParamsList(

 ImmutableList.of(

 BillingFlowParams.ProductDetailsParams.newBuilder()

 .setProductDetails(productDetails)

 .build()

)

)

 .build()

billingClient.launchBillingFlow(this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.

54.7 Completing the purchase
When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:

503

An Overview of Android In-App Billing

if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED) {

 // Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {

 // Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it will need to be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance together with an AcknowledgePurchaseResponseListener handler. Managed product purchases and
subscriptions are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase(acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener);

val acknowledgePurchaseParams = AcknowledgePurchaseParams.newBuilder()

 .setPurchaseToken(purchase.purchaseToken)

 .build()

val acknowledgePurchaseResponseListener = AcknowledgePurchaseResponseListener {

 // Check acknowledgement result

}

billingClient.acknowledgePurchase(

 acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener

)

For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token and a call to the billing client’s consumePurchase() method:
val consumeParams = ConsumeParams.newBuilder()

 .setPurchaseToken(purchase.purchaseToken)

 .build()

coroutineScope.launch {

 val result = billingClient.consumePurchase(consumeParams)

 if (result.billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK) {

 // Purchase successfully consumed

 }

}

54.8 Querying previous purchases
When working with in-app billing it is a common requirement to check whether a user has already purchased a
product or subscription. A list of all the user’s previous purchases of a specific type can be generated by calling

504

An Overview of Android In-App Billing

the queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:
val queryPurchasesParams = QueryPurchasesParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build()

billingClient.queryPurchasesAsync(

 queryPurchasesParams,

 purchasesListener

)

.

.

private val purchasesListener =

 PurchasesResponseListener { billingResult, purchases ->

 if (!purchases.isEmpty()) {

 // Access existing active purchases

 } else {

 // No

 }

 }

To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:
val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build()

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams) {
billingResult, historyList ->

 // Process purchase history list

}

54.9 Summary
In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. In this chapter, we have explored managed products and subscriptions and explained
the difference between consumable and non-consumable products. In-app purchasing support is added to
an app using the Google Play In-app Billing Library and involves creating and initializing a billing client on
which methods are called to perform tasks such as making purchases, listing available products, and consuming
existing purchases. The next chapter contains a tutorial demonstrating the addition of in-app purchases to an
Android Studio project.

539

Index

Index

Symbols
?. 99

2D graphics 349

@Composable 20, 143

@ExperimentalFoundationApi 306

:: operator 101

@Preview 21

showSystemUi 21

A
acknowledgePurchase() method 503

Activity Manager 87

adb

command-line tool 65

connection testing 71

device pairing 69

enabling on Android devices 65

Linux configuration 68

list devices 65

macOS configuration 66

overview 65

restart server 66

testing connection 71

WiFi debugging 69

Windows configuration 67

Wireless debugging 69

Wireless pairing 69

AlertDialog 147

align() 221

alignByBaseline() 213

Alignment.Bottom 207, 211

Alignment.BottomCenter 219

Alignment.BottomEnd 219

Alignment.BottomStart 219

Alignment.Center 219

Alignment.CenterEnd 219

Alignment.CenterHorizontally 207

Alignment.CenterStart 219

Alignment.CenterVertically 207, 211

Alignment.End 207

alignment lines 229

Alignment.Start 207

Alignment.Top 207, 211

Alignment.TopCenter 219

Alignment.TopEnd 219

Alignment.TopStart 219

Android

architecture 85

runtime 86

SDK Packages 6

Android Architecture Components 369

Android Debug Bridge. See ADB

Android Development

System Requirements 3

Android Jetpack 369

Android Libraries 86

Android Monitor tool window 40

Android Native Development Kit 87

Android SDK Location

identifying 9

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10

Android Software Stack 85

Android Studio

Animation Inspector 347

Asset Studio 178

changing theme 62

540

Index

Database Inspector 417

downloading 3

Editor Window 57

installation 4

Layout Editor 141

Linux installation 5

macOS installation 4

Main Window 56

Menu Bar 56

Navigation Bar 56

Project tool window 57

setup wizard 5

Status Bar 57

Toolbar 56

Tool window bars 58

tool windows 57

updating 12

Welcome Screen 55

Windows installation 4

Android Support Library, 369

Android Virtual Device. See AVD

overview 35

Android Virtual Device Manager 35

AndroidX libraries 532

animate as state functions 333

animateColorAsState() function 333, 337, 338

animateDpAsState() function 339, 343

AnimatedVisibility 321

animation specs 325

enter and exit animations 324

expandHorizontally() 324

expandIn() 324

expandVertically() 324

fadeIn() 324

fadeOut() 325

MutableTransitionState 329

scaleIn() 325

scaleOut() 325

shrinkHorizontally() 325

shrinkOut() 325

shrinkVertically() 325

slideIn() 325

slideInHorizontally() 325

slideInVertically() 325

slideOut() 325

slideOutHorizontally() 325

slideOutVertically() 325

animateEnterExit() modifier 328

animateFloatAsState() function 334

animateScrollTo() function 282, 293

animateScrollToItem(index: Int) 282

animateScrollTo(value: Int) 281

Animation

auto-starting 328

combining animations 344

inspector 347

keyframes 343

KeyframesSpec 343

motion 339

spring effects 342

state-based 333

visibility 321

Animation damping

DampingRatioHighBouncy 342

DampingRatioLowBouncy 342

DampingRatioMediumBouncy 342

DampingRatioNoBouncy 342

Animation Inspector 347

AnimationSpec 325

tween() function 326

Animation specs 325

Animation stiffness

StiffnessHigh 343

StiffnessLow 343

StiffnessMedium 343

StiffnessMediumLow 343

StiffnessVeryLow 343

annotated strings 195, 365

append function 195

buildAnnotatedString function 195

ParagraphStyle 196

SpanStyle 195

APK analyzer 496

APK file 490

541

Index
APK File

analyzing 496

APK Signing 532

APK Wizard dialog 488

App Bundles 485

creating 490

overview 485

revisions 495

uploading 492

append function 195

App Inspector 59

Application

stopping 40

Application Framework 87

Arrangement.Bottom 209

Arrangement.Center 208, 209

Arrangement.End 208

Arrangement.SpaceAround 210

Arrangement.SpaceBetween 210

Arrangement.SpaceEvenly 210

Arrangement.Start 208

Arrangement.Top 209

ART 86

as 101

as? 101

asFlow() builder 463

Asset Studio 178

asSharedFlow() 474

asStateFlow() 473

async 273

AVD

cold boot 50

command-line creation 35

creation 35

device frame 43

Display mode 52

launch in tool window 43

overview 35

quickboot 50

Resizable 52

running an application 37

Snapshots 49

standalone 41

starting 36

Startup size and orientation 37

B
background modifier 192

barriers 259

Barriers 244

constrained views 244

baseline

alignment 211

baselines 231

BaseTextField 146

BillingClient 504

acknowledgePurchase() method 503

consumeAsync() method 503

getPurchaseState() method 502

initialization 500, 509

launchBillingFlow() method 502

queryProductDetailsAsync() method 501

queryPurchasesAsync() method 504

startConnection() method 501

BillingResult 517

getDebugMessage() 517

Bill of Materials. See BOM

Bitwise AND 107

Bitwise Inversion 106

Bitwise Left Shift 108

Bitwise OR 107

Bitwise Right Shift 108

Bitwise XOR 107

BOM 22

build.gradle 22

compose-bom 23

library version mapping 23

override library version 24

Boolean 94

BottomNavigation 147, 425

BottomNavigationItem 425

Box 146

align() 221

alignment 219

542

Index

Alignment.BottomCenter 219

Alignment.BottomEnd 219

Alignment.BottomStart 219

Alignment.Center 219

Alignment.CenterEnd 219

Alignment.CenterStart 219

Alignment.TopCenter 219

Alignment.TopEnd 219

Alignment.TopStart 219

BoxScope 221

contentAlignment 219

matchParentSize() 221

overview 217

tutorial 217

BoxScope

align() 221

matchParentSize() 221

modifiers 221

BoxWithConstraints 146

Brush Text Styling 196

buffer() operator 468

buildAnnotatedString function 195

Build tool window 59

Build Variants 59, 532

tool window 59

Button 147

by keyword 152

C
cancelAndJoin() 274

cancelChildren() 274

Canvas 146

DrawScope 349

inset() function 353

overview 349

size 349

Card 147

example 286

C/C++ Libraries 86

centerAround() function 248

chain head 242

chaining modifiers 187

chains 242

chain styles 242

Char 94

Checkbox 147, 176

CircleShape 221

CircularProgressIndicator 147

clickable 192

clip 192

Clip Art 179

clip() modifier 221

CircleShape 221

CutCornerShape 221

RectangleShape 221

RoundedCornerShape 221

close() function 361

Code completion 76

Code editor 17

Split mode 17

Code Editor

basics 73

Code completion 76

Code folding 79

Code Generation 78

Code mode 75

Code Reformatting 81

Document Tabs 74

Editing area 74

Gutter Area 74

Live Templates 82

Parameter information 78

Parameter name hints 78

sample code 82

Splitting 76

Statement Completion 78

Status Bar 75

Code folding 79

Code Generation 78

Code mode 75

Code reformatting 81

code samples

download 1

Coil

543

Index
library 298

rememberImagePainter() function 299

cold boot 50

Cold flow 473

convert to hot 476

collectLatest() operator 468

collect() operator 464

ColorFilter 365

color filtering 365

Column 146

Alignment.CenterHorizontally 207

Alignment.End 207

Alignment.Start 207

Arrangement.Bottom 209

Arrangement.Center 209

Arrangement.SpaceAround 210

Arrangement.SpaceBetween 210

Arrangement.SpaceEvenly 210

Arrangement.Top 209

Layout alignment 206

list 279

list tutorial 289

overview 204

scope 211

scope modifiers 211

spacing 210

tutorial 203

verticalArrangement 208

Column lists 279

ColumnScope 211

Modifier.align() 211

Modifier.alignBy() 211

Modifier.weight() 211

combine() operator 472

combining modifiers 192

Communicating Sequential Processes 271

Companion Objects 131

components 143

Composable

adding a 26

previewing 28

Composable function

syntax 144

composable functions 143

composables

add modifier support 188

Composables

Foundation 146

Material 146

Compose

before 141

components 143

data-driven 142

declarative syntax 141

functions 143

layout overview 225

modifiers 185

overview 141

state 142

compose-bom 23

compose() method 421

CompositionLocal

example 163

overview 161

state 164, 165

syntax 162

compositionLocalOf() function 162

conflate() operator 468

constrainAs() modifier function 247

constrain() function 263

Constraint bias 252

Constraint Bias 241

ConstraintLayout 146

adding constraints 248

barriers 259

Barriers 244

basic constraints 250

centerAround() function 248

chain head 242

chains 242

chain styles 242

constrainAs() function 247

constrain() function 263

Constraint bias 252

544

Index

Constraint Bias 241

Constraint margins 253

Constraints 239

constraint sets 262

createEndBarrier() 259

createHorizontalChain() 257

createRefFor() function 263

createRef() function 247

createRefs() function 247

createStartBarrier() 259

createTopBarrier() 259

createVerticalChain() 257

creating chains 257

generating references 247

guidelines 258

Guidelines 243

how to call 247

layout() modifier 264

library 249

linkTo() function 248

Margins 240

Opposing constraints 251

Opposing Constraints 240, 254

overview of 239

Packed chain 243

reference assignment 247

Spread chain 242

Spread inside chain 242

Weighted chain 242

Widget Dimensions 243

Constraint margins 253

constraints 234

constraint sets 262

consumeAsync() method 503

ConsumeParams 512

contentAlignment 219

Content Provider 87

Coroutine Builders 273

async 273

coroutineScope 273

launch 273

runBlocking 273

supervisorScope 273

withContext 273

Coroutine Dispatchers 272

Coroutines 282, 461

channel communication 275

coroutine scope 282

CoroutineScope 282

GlobalScope 272

LaunchedEffect 276

rememberCoroutineScope() 282

rememberCoroutineScope() function 272

SideEffect 276

Side Effects 276

Suspend Functions 272

suspending 274

ViewModelScope 272

vs Threads 271

vs. Threads 271

coroutineScope 273

CoroutineScope 272, 282

rememberCoroutineScope() 282

createEndBarrier() 259

createHorizontalChain() 257

createRefFor() function 263

createRef() function 247

createRefs() 247

createStartBarrier() 259

createTopBarrier() 259

createVerticalChain() 257

Crossfading 329

currentBackStackEntryAsState() method 426, 444

Custom Accessors 129

Custom layout 233

building 233

constraints 234

Layout() composable 234

measurables 234

overview 233

Placeable 234

syntax 233

custom layout modifiers 225

alignment lines 229

545

Index
baselines 231

creating 227

default position 227

Custom layouts

overview 225

tutorial 225

Custom Theme

building 523

CutCornerShape 221

D
DampingRatioHighBouncy 342

DampingRatioLowBouncy 342

DampingRatioMediumBouncy 342

DampingRatioNoBouncy 342

Dark Theme 41

enable on device 41

dashPathEffect() method 351

Data Access Object (DAO) 392, 404

Data Access Objects 395

Database Inspector 399, 417

live updates 417

SQL query 417

Database Rows 386

Database Schema 385

Database Tables 385

data-driven 142

DDMS 40

Debugging

enabling on device 65

declarative syntax 141

Default Function Parameters 121

default position 227

Device File Explorer 59

device frame 43

Device Manager 59

device pairing 69

Dispatchers.Default 273

Dispatchers.IO 273

Dispatchers.Main 272

drag gestures 450

drawable

folder 178

drawArc() function 360

drawCircle() function 356

drawImage() function 363

Drawing

arcs 360

circle 356

close() 361

dashed lines 351

dashPathEffect() 351

drawArc() 360

drawImage() 363

drawPath() 361

drawPoints() 362

drawRect() 351

drawRoundRect() 354

gradients 357

images 363

line 349

oval 356

points 362

rectangle 351

rotate() 355

rotation 355

Drawing text 365

drawLine() function 350

drawPath() function 361

drawPoints() function 362

drawRect() function 351

drawRoundRect() function 354

DrawScope 349

drawText() function 365, 366

DropdownMenu 147

DROP_LATEST 475

DROP_OLDEST 475

DurationBasedAnimationSpec 325

Dynamic colors

enabling in Android 529

E
Elvis Operator 101

emit 143

546

Index

Empty Compose Activity

template 14

Emulator 59

battery 48

cellular configuration 48

configuring fingerprints 50

directional pad 48

extended control options 47

Extended controls 47

fingerprint 48

location configuration 48

phone settings 48

Resizable 52

resize 47

rotate 46

Screen Record 49

Snapshots 49

starting 36

take screenshot 46

toolbar 45

toolbar options 45

tool window mode 51

Virtual Sensors 49

zoom 46

enablePendingPurchases() method 503

enabling ADB support 65

enter animations 324

EnterTransition.None 328

Errata 2

Escape Sequences 95

Event Log 59

exit animations 324

ExitTransition.None 328

expandHorizontally() 324

expandIn() 324

expandVertically() 324

Extended Control

options 47

F
fadeIn() 324

fadeOut() 325

Favorites

tool window 59

Files

switching between 74

fillMaxHeight 192

fillMaxSize 192

fillMaxWidth 192

filter() operator 466

findStartDestination() method 426

Fingerprint

emulation 50

firstVisibleItemIndex 284

flatMapConcat() operator 471

flatMapMerge() operator 471

Float 94

FloatingActionButton 147

Flow 461

asFlow() builder 463

asSharedFlow() 474

asStateFlow() 473

backgroudn handling 481

buffering 468

buffer() operator 468

builder 463

cold 473

collect() 467

collecting data 467

collectLatest() operator 468

combine() operator 472

conflate() operator 468

emit() 463

emitting data 463

filter() operator 466

flatMapConcat() operator 471

flatMapMerge() operator 471

flattening 470

flowOf() builder 463

flow of flows 470

fold() operator 470

hot 473

MutableSharedFlow 474

MutableStateFlow 473

547

Index
onEach() operator 472

reduce() operator 469, 470

repeatOnLifecycle 482

SharedFlow 474

shareIn() function 476

single() operator 468

StateFlow 473

transform() operator 466

try/finally 467

zip() operator 472

flow builder 463

flowOf() builder 463

flow of flows 470

Flows

combining 472

Introduction to 461

FontWeight 27

forEach loop 236

Foundation components 146

Foundation Composables 146

Function Parameters

variable number of 121

Functions 119

G
Gestures 447

click 447

drag 450

horizontalScroll() 454

overview 447

pinch gestures 456

PointerInputScope 449

rememberScrollableState() function 453

rememberScrollState() 454

rememberTransformableState() 456

rotation gestures 457

scrollable() modifier 453

scroll modifiers 454

taps 449

translation gestures 458

tutorial 447

verticalScroll() 454

getDebugMessage() 517

getPurchaseState() method 502

getStringArray() method 297

GlobalScope 272

GNU/Linux 86

Google Play Billing Library 499

Google Play Console 506

Creating an in-app product 506

License Testers 507

Google Play Developer Console 486

Google Play store 15

Gradient drawing 357

Gradle

APK signing settings 537

Build Variants 532

command line tasks 538

dependencies 531

Manifest Entries 532

overview 531

tool window 59

Gradle Build File

top level 533

Gradle Build Files

module level 534

gradle.properties file 532

Graphics

drawing 349

Grid

overview 279

groupBy() function 283

guidelines 258

H
Higher-order Functions 123

horizontalArrangement 208, 210

horizontalScroll() 454

Hot flows 473

I
Image 146

add drawable resource 178

painterResource method 180

548

Index

Immutable Variables 96

INAPP 504

In-App Products 499

In-App Purchasing 505

acknowledgePurchase() method 503

BillingClient 500

BillingResult 517

consumeAsync() method 503

ConsumeParams 512

Consuming purchases 512

enablePendingPurchases() method 503

getPurchaseState() method 502

Google Play Billing Library 499

launchBillingFlow() method 502

Libraries 505

newBuilder() method 500

onBillingServiceDisconnected() callback 510

onBillingServiceDisconnected() method 501

onBillingSetupFinished() listener 510

onProductDetailsResponse() callback 510

Overview 499

ProductDetail 502

ProductDetails 511

products 499

ProductType 504

Purchase Flow 511

PurchaseResponseListener 504

PurchasesUpdatedListener 502

PurchaseUpdatedListener 511

purchase updates 511

queryProductDetailsAsync() 510

queryProductDetailsAsync() method 501

queryPurchasesAsync() 512

queryPurchasesAsync() method 504

startConnection() method 501

subscriptions 499

tutorial 505

Initializer Blocks 129

In-Memory Database 398

Inner Classes 130

inset() function 353

InstrinsicSize.Max 269

InstrinsicSize.Min 269, 270

intelligent recomposition 149

IntelliJ IDEA 89

Interactive mode 32

Intrinsic measurements 265

IntrinsicSize 265

intrinsic measurements 265

Max 265

Min 265

tutorial 267

is 101

isInitialized property 101

isSystemInDarkTheme() function 164

item() function 280

items() function 280

itemsIndexed() function 280

J
Java

convert to Kotlin 89

Java Native Interface 87

JetBrains 89

Jetpack Compose

see Compose 141

join() 274

K
keyboardOptions 381

Keyboard Shortcuts 60

keyframe 326

keyframes 343

KeyframesSpec 343

keyframes() function 343

KeyframesSpec 343

Keystore File

creation 488

Kotlin

accessing class properties 129

and Java 89

arithmetic operators 103

assignment operator 103

augmented assignment operators 104

549

Index
bitwise operators 106

Boolean 94

break 114

breaking from loops 113

calling class methods 129

Char 94

class declaration 125

class initialization 126

class properties 126

Companion Objects 131

conditional control flow 115

continue labels 114

continue statement 114

control flow 111

convert from Java 89

Custom Accessors 129

data types 93

decrement operator 104

Default Function Parameters 121

defining class methods 126

do ... while loop 113

Elvis Operator 101

equality operators 105

Escape Sequences 95

expression syntax 103

Float 94

Flow 461

for-in statement 111

function calling 120

Functions 119

groupBy() function 283

Higher-order Functions 123

if ... else ... expressions 116

if expressions 115

Immutable Variables 96

increment operator 104

inheritance 135

Initializer Blocks 129

Inner Classes 130

introduction 89

Lambda Expressions 122

let Function 99

Local Functions 120

logical operators 105

looping 111

Mutable Variables 96

Not-Null Assertion 99

Nullable Type 98

Overriding inherited methods 138

playground 90

Primary Constructor 126

properties 129

range operator 106

Safe Call Operator 98

Secondary Constructors 126

Single Expression Functions 120

String 94

subclassing 135

subStringBefore() method 299

Type Annotations 97

Type Casting 101

Type Checking 101

Type Inference 97

variable parameters 121

when statement 116

while loop 112

L
Lambda Expressions 122

lateinit 100

Late Initialization 100

launch 273

launchBillingFlow() method 502

LaunchedEffect 276

launchSingleTop 423

Layout alignment 206

Layout arrangement 208

Layout arrangement spacing 210

Layout components 146

Layout() composable 234

Layout Editor 141

Layout Inspector 60

layout modifier 192

layout() modifier 264

550

Index

LazyColumn 146, 279

creation 280

scroll position detection 284

LazyHorizontalStaggeredGrid 313, 318

syntax 314

LazyList

tutorial 295

Lazy lists 279

Scrolling 281

LazyListScope 280

item() function 280

items() function 280

itemsIndexed() function 280

stickyHeader() function 282

LazyListState 284

firstVisibleItemIndex 284

LazyRow 146, 279

creation 280

scroll position detection 284

LazyVerticalGrid 279

adaptive mode 284

fixed mode 284

LazyVerticalStaggeredGrid 313, 316

syntax 313

let Function 99

libc 86

License Testers 507

Lifecycle.State.CREATED 482

Lifecycle.State.DESTROYED 482

Lifecycle.State.INITIALIZED 482

Lifecycle.State.RESUMED 482

Lifecycle.State.STARTED 482

LinearProgressIndicator 147

lineTo() 361

lineTo() function 361

linkTo() function 248

Linux Kernel 86

list devices 65

Lists

clickable items 302

enabling scrolling 281

overview 279

literals

live editing 28

LiveData 372

observeAsState() 373

Live Edit 39

disabling 28

enabling 28

of literals 28

Live Templates 82

Local Functions 120

Location Manager 87

Logcat

tool window 60

M
MainActivity.kt file 17

template code 25

map method 234

matchParentSize() 221

Material Composables 146

Material Design 2 519

Material Design 2 Theming 519

Material Design 3 519

Material Design components 147

Material Theme Builder 523

Material You 519

maxValue property 293

measurables 234

measure() function 367

measureTimeMillis() function 468

Minimum SDK

setting 15

ModalDrawer 147

Modern Android architecture 369

modifier

adding to composable 188

chaining 187

combining 192

creating a 186

ordering 188

tutorial 185

Modifier.align() 211

551

Index
Modifier.alignBy() 211

modifiers

build-in 192

overview 185

Modifier.weight() 211

multiple devices

testing app on 40

MutableLiveData 372

MutableSharedFlow 474

MutableState 150

MutableStateFlow 473

mutableStateOf function 143

mutableStateOf() function 151

MutableTransitionState 329

Mutable Variables 96

N
NavHost 421, 433, 443

NavHostController 419, 433, 443

navigate() method 423

Navigation 419

BottomNavigation 425

BottomNavigationItem 425

compose() method 421

currentBackStackEntryAsState() method 426

declaring routes 429

findStartDestination() method 426

graph 421

launchSingleTop 423

library 439

NavHost 421, 433

NavHostController 419, 433

navigate() method 423

navigation graph 419

NavType 424

overview 419

passing arguments

popUpTo() method 423

route 421

stack 419, 420

start destination 421

tutorial 429

Navigation Architecture Component 419

NavigationBar 444

NavigationBarItem 444

Navigation bars 425

navigation graph 419, 421

Navigation Host 421

navigation library 439

NavType 424

newBuilder() method 500

Notifications Manager 87

Not-Null Assertion 99

Nullable Type 98

O
observeAsState() 373

Offset() function 350

offset modifier 192

onBillingServiceDisconnected() callback 510

onBillingServiceDisconnected() method 501

onBillingSetupFinished() listener 510

onCreate() method 21

onEach() operator 472

onProductDetailsResponse() callback 510

OpenJDK 3

Opposing constraints 251

OutlinedButton 309

OutlinedTextField 375

P
Package Manager 87

Package name 15

Packed chain 243

padding 192

painterResource method 180

ParagraphStyle 196

Parameter name hints 78

PathEffect 351

pinch gestures 456

Placeable 234

PointerInputScope 449

drag gestures 452

tap gestures 449

552

Index

popUpTo() method 423

Preview panel 22

build and refresh 22

Interactive mode 32

settings 31

Primary Constructor 126

Problems

tool window 60

ProductDetail 502

ProductDetails 511

ProductType 504

Profiler

tool window 60

proguard-rules.pro file 536

ProGuard Support 532

project

create new 14

package name 15

Project

tool window 60

Project tool window 16, 60

Android mode 16

PurchaseResponseListener 504

PurchasesUpdatedListener 502, 511

Q
queryProductDetailsAsync() 510

queryProductDetailsAsync() method 501

queryPurchaseHistoryAsync() method 504

queryPurchasesAsync() 512

queryPurchasesAsync() method 504

quickboot snapshot 50

Quick Documentation 81

R
RadioButton 147

Random.nextInt() method 316

Range Operator 106

Recent Files Navigation 61

recomposition 142

intelligent recomposition 149

overview 149

RectangleShape 221

reduce() operator 469, 470

relativeLineTo() function 361

release mode 485

Release Preparation 485

rememberCoroutineScope() function 272, 282, 291

rememberDraggableState() function 450

rememberImagePainter() function 299

remember keyword 151

rememberSaveable keyword 158

rememberScrollableState() function 453

rememberScrollState() 454

rememberScrollState() function 281, 291

rememberTextMeasurer() function 365

rememberTransformableState() 456

rememberTransformationState() function 456

repeatable() function 327

RepeatableSpec

repeatable() 327

RepeatMode.Reverse 327

repeatOnLifecycle 482

Repository

tutorial 401

Resizable Emulator 52

Resource Manager 60, 87

Room

Data Access Object (DAO) 392

entities 392, 393

In-Memory Database 398

Repository 391

Room Database 392

tutorial 401

Room Database Persistence 391

Room persistence library 402

Room Persistence Library 389

rotate modifier 192

rotation gestures 457

RoundedCornerShape 221

Row 146

Alignment.Bottom 207

Alignment.CenterVertically 207

Alignment.Top 207

553

Index
Arrangement.Center 208

Arrangement.End 208

Arrangement.SpaceAround 210

Arrangement.SpaceBetween 210

Arrangement.SpaceEvenly 210

Arrangement.Start 208

horizontalArrangement 208

Layout alignment 206

Layout arrangement 208

list 279

list example 294

overview 204

scope 211

scope modifiers 211

spacing 210

tutorial 203

Row lists 279

RowScope 211

Modifier.align() 211

Modifier.alignBy() 211

Modifier.alignByBaseline() 211

Modifier.paddingFrom() 212

Modifier.weight() 212

Run

tool window 60

runBlocking 273

S
Safe Call Operator 98

Scaffold 147, 445

bottomBar 445

TopAppBar 446

scaleIn() 325

scale modifier 192

scaleOut() 325

Scope modifiers

weights 215

scrollable modifier 192

scrollable() modifier 453, 454

Scroll detection

example 305

scroll modifiers 454

ScrollState

maxValue property 293

rememberScrollState() function 281

scrollToItem(index: Int) 282

scrollTo(value: Int) 281

SDK Packages 6

SDK settings 15

Secondary Constructors 126

Secure Sockets Layer (SSL) 86

settings.gradle file 532

Shape 147

Shapes

CircleShape 221

CutCornerShape 221

RectangleShape 221

RoundedCornerShape 221

SharedFlow 474, 477

backgroudn handling 481

DROP_LATEST 475

DROP_OLDEST 475

in ViewModel 478

repeatOnLifecycle 482

SUSPEND 475

tutorial 477

shareIn() function 476

SharingStarted.Eagerly() 476

SharingStarted.Lazily() 476

SharingStarted.WhileSubscribed() 476

showSystemUi 21, 290

shrinkHorizontally() 325

shrinkOut() 325

shrinkVertically() 325

SideEffect 276

Side Effects 276

single() operator 468

size modifier 192

slideIn() 325

slideInHorizontally() 325

slideInVertically() 325

slideOut() 325

slideOutHorizontally() 325

slideOutVertically() 325

554

Index

Slider 147

Slider component 29

Slot APIs

calling 170

declaring 170

overview 169

tutorial 173

Snackbar 147

Snapshots

emulator 49

SpanStyle 195

Spread chain 242

Spread inside chain 242

Spring effects 342

spring() function 342

SQL 386

SQLite 385

AVD command-line use 387

Columns and Data Types 385

overview 386

Primary keys 386

Staggered Grids 313

startConnection() method 501

start destination 421

state 142

basics of 149

by keyword 152

configuration changes 157

declaring 150

hoisting 155

MutableState 150

mutableStateOf() function 151

overview 149

remember keyword 151

rememberSaveable 158

Unidirectional data flow 153

StateFlow 473

stateful 149

stateful composables 143

State hoisting 155

stateless composables 143

Statement Completion 78

staticCompositionLocalOf() function 162, 164

stickyHeader 306

stickyHeader() function 282

Sticky headers

adding 306

example 305

stickyHeader() function 282

StiffnessHigh 343

StiffnessLow 343

StiffnessMedium 343

StiffnessMediumLow 343

StiffnessVeryLow 343

String 94

Structure

tool window 60

Structured Query Language 386

Structure tool window 60

SUBS 504

subscriptions 499

subStringBefore() method 299

supervisorScope 273

Surface component 20, 219

SUSPEND 475

Suspend Functions 272

Switch 147

Switcher 61

system requirements 3

T
Telephony Manager 87

Terminal

tool window 60

Text 147

Text component 144

TextField 147

TextMeasurer 365

measure() function 367

TextStyle 382

Theme

building a custom 523

Theming 519

tutorial 525

555

Index
TODO

tool window 60

Tool window bars 58

Tool windows 57

TopAppBar 147, 446

trailingIcon 382

TransformableState 456

transform() operator 466

translation gestures 458

try/finally 467

tween() function 326

Type Annotations 97

Type Casting 101

Type Checking 101

Type Inference 97

Type.kt file 522

U
UI Controllers 370

UI_NIGHT_MODE_YES 165

Unidirectional data flow 153

updateTransition() function 334, 339, 344

USB connection issues

resolving 68

V
Vector Asset

add to project 178

verticalArrangement 208, 210

verticalScroll() 454

verticalScroll() modifier 291

ViewModel

example 376

lifecycle library 372, 376, 462, 477

LiveData 372

observeAsState() 373

overview 369

tutorial 375

using state 370

viewModel() 372, 378, 412

ViewModelProvider Factory 412

ViewModelStoreOwner 412

viewModel() function 372, 378, 412

ViewModelProvider Factory 412

ViewModelScope 272

ViewModelStoreOwner 412

View System 87

Virtual Device Configuration dialog 36

Virtual Sensors 49

Visibility animation 321

W
Weighted chain 242

Welcome screen 55

while Loop 112

Widget Dimensions 243

WiFi debugging 69

Wireless debugging 69

Wireless pairing 69

withContext 273

X
XML resource

reading an 295

Z
zip() operator 472

	1. Start Here
	1.1 For Kotlin programmers
	1.2 For new Kotlin programmers
	1.3 Downloading the code samples
	1.4 Feedback
	1.5 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. A Compose Project Overview
	3.1 About the project
	3.2 Creating the project
	3.3 Creating an activity
	3.4 Defining the project and SDK settings
	3.5 Previewing the example project
	3.6 Reviewing the main activity
	3.7 Preview updates
	3.8 Bill of Materials and the Compose version
	3.9 Summary

	4. An Example Compose Project
	4.1 Getting started
	4.2 Removing the template Code
	4.3 The Composable hierarchy
	4.4 Adding the DemoText composable
	4.5 Previewing the DemoText composable
	4.6 Adding the DemoSlider composable
	4.7 Adding the DemoScreen composable
	4.8 Previewing the DemoScreen composable
	4.9 Adjusting preview settings
	4.10 Testing in interactive mode
	4.11 Completing the project
	4.12 Summary

	5. Creating an Android Virtual Device (AVD) in Android Studio
	5.1 About Android Virtual Devices
	5.2 Starting the emulator
	5.3 Running the application in the AVD
	5.4 Real-time updates with Live Edit
	5.5 Running on multiple devices
	5.6 Stopping a running application
	5.7 Supporting dark theme
	5.8 Running the emulator in a separate window
	5.9 Enabling the device frame
	5.10 Summary

	6. Using and Configuring the Android Studio AVD Emulator
	6.1 The Emulator Environment
	6.2 Emulator Toolbar Options
	6.3 Working in Zoom Mode
	6.4 Resizing the Emulator Window
	6.5 Extended Control Options
	6.5.1 Location
	6.5.2 Displays
	6.5.3 Cellular
	6.5.4 Battery
	6.5.5 Camera
	6.5.6 Phone
	6.5.7 Directional Pad
	6.5.8 Microphone
	6.5.9 Fingerprint
	6.5.10 Virtual Sensors
	6.5.11 Snapshots
	6.5.12 Record and Playback
	6.5.13 Google Play
	6.5.14 Settings
	6.5.15 Help

	6.6 Working with Snapshots
	6.7 Configuring Fingerprint Emulation
	6.8 The Emulator in Tool Window Mode
	6.9 Creating a Resizable Emulator
	6.10 Summary

	7. A Tour of the Android Studio User Interface
	7.1 The Welcome Screen
	7.2 The Main Window
	7.3 The Tool Windows
	7.4 Android Studio Keyboard Shortcuts
	7.5 Switcher and Recent Files Navigation
	7.6 Changing the Android Studio Theme
	7.7 Summary

	8. Testing Android Studio Apps on a Physical Android Device
	8.1 An overview of the Android Debug Bridge (ADB)
	8.2 Enabling USB debugging ADB on Android devices
	8.2.1 macOS ADB configuration
	8.2.2 Windows ADB configuration
	8.2.3 Linux adb configuration

	8.3 Resolving USB connection issues
	8.4 Enabling wireless debugging on Android devices
	8.5 Testing the adb connection
	8.6 Summary

	9. The Basics of the Android Studio Code Editor
	9.1 The Android Studio editor
	9.2 Code mode
	9.3 Splitting the editor window
	9.4 Code completion
	9.5 Statement completion
	9.6 Parameter information
	9.7 Parameter name hints
	9.8 Code generation
	9.9 Code folding
	9.10 Quick documentation lookup
	9.11 Code reformatting
	9.12 Finding sample code
	9.13 Live templates
	9.14 Summary

	10. An Overview of the Android Architecture
	10.1 The Android software stack
	10.2 The Linux kernel
	10.3 Android runtime – ART
	10.4 Android libraries
	10.4.1 C/C++ libraries

	10.5 Application framework
	10.6 Applications
	10.7 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables and Nullability
	12.1 Kotlin data types
	12.1.1 Integer data types
	12.1.2 Floating point data types
	12.1.3 Boolean data type
	12.1.4 Character data type
	12.1.5 String data type
	12.1.6 Escape sequences

	12.2 Mutable variables
	12.3 Immutable variables
	12.4 Declaring mutable and immutable variables
	12.5 Data types are objects
	12.6 Type annotations and type inference
	12.7 Nullable type
	12.8 The safe call operator
	12.9 Not-null assertion
	12.10 Nullable types and the let function
	12.11 Late initialization (lateinit)
	12.12 The Elvis operator
	12.13 Type casting and type checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression syntax in Kotlin
	13.2 The Basic assignment operator
	13.3 Kotlin arithmetic operators
	13.4 Augmented assignment operators
	13.5 Increment and decrement operators
	13.6 Equality operators
	13.7 Boolean logical operators
	13.8 Range operator
	13.9 Bitwise operators
	13.9.1 Bitwise inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise left shift
	13.9.6 Bitwise right shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue statement
	14.1.6 Break and continue labels

	14.2 Conditional control flow
	14.2.1 Using the if expressions
	14.2.2 Using if ... else … expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a function?
	15.2 How to declare a Kotlin function
	15.3 Calling a Kotlin function
	15.4 Single expression functions
	15.5 Local functions
	15.6 Handling return values
	15.7 Declaring default function parameters
	15.8 Variable number of function parameters
	15.9 Lambda expressions
	15.10 Higher-order functions
	15.11 Summary

	16. The Basics of Object-Oriented Programming in Kotlin
	16.1 What is an object?
	16.2 What is a class?
	16.3 Declaring a Kotlin class
	16.4 Adding properties to a class
	16.5 Defining methods
	16.6 Declaring and initializing a class instance
	16.7 Primary and secondary constructors
	16.8 Initializer blocks
	16.9 Calling methods and accessing properties
	16.10 Custom accessors
	16.11 Nested and inner classes
	16.12 Companion objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, classes, and subclasses
	17.2 Subclassing syntax
	17.3 A Kotlin inheritance example
	17.4 Extending the functionality of a subclass
	17.5 Overriding inherited methods
	17.6 Adding a custom secondary constructor
	17.7 Using the SavingsAccount class
	17.8 Summary

	18. An Overview of Compose
	18.1 Development before Compose
	18.2 Compose declarative syntax
	18.3 Compose is data-driven
	18.4 Summary

	19. Composable Functions Overview
	19.1 What is a composable function?
	19.2 Stateful vs. stateless composables
	19.3 Composable function syntax
	19.4 Foundation and Material composables
	19.5 Summary

	20. An Overview of Compose State and Recomposition
	20.1 The basics of state
	20.2 Introducing recomposition
	20.3 Creating the StateExample project
	20.4 Declaring state in a composable
	20.5 Unidirectional data flow
	20.6 State hoisting
	20.7 Saving state through configuration changes
	20.8 Summary

	21. An Introduction to Composition Local
	21.1 Understanding CompositionLocal
	21.2 Using CompositionLocal
	21.3 Creating the CompLocalDemo project
	21.4 Designing the layout
	21.5 Adding the CompositionLocal state
	21.6 Accessing the CompositionLocal state
	21.7 Testing the design
	21.8 Summary

	22. An Overview of Compose Slot APIs
	22.1 Understanding slot APIs
	22.2 Declaring a slot API
	22.3 Calling slot API composables
	22.4 Summary

	23. A Compose Slot API Tutorial
	23.1 About the project
	23.2 Creating the SlotApiDemo project
	23.3 Preparing the MainActivity class file
	23.4 Creating the MainScreen composable
	23.5 Adding the ScreenContent composable
	23.6 Creating the Checkbox composable
	23.7 Implementing the ScreenContent slot API
	23.8 Adding an Image drawable resource
	23.9 Writing the TitleImage composable
	23.10 Completing the MainScreen composable
	23.11 Previewing the project
	23.12 Summary

	24. Using Modifiers in Compose
	24.1 An overview of modifiers
	24.2 Creating the ModifierDemo project
	24.3 Creating a modifier
	24.4 Modifier ordering
	24.5 Adding modifier support to a composable
	24.6 Common built-in modifiers
	24.7 Combining modifiers
	24.8 Summary

	25. Annotated Strings and Brush Styles
	25.1 What are annotated strings?
	25.2 Using annotated strings
	25.3 Brush Text Styling
	25.4 Creating the example project
	25.5 An example SpanStyle annotated string
	25.6 An example ParagraphStyle annotated string
	25.7 A Brush style example
	25.8 Summary

	26. Composing Layouts with Row and Column
	26.1 Creating the RowColDemo project
	26.2 Row composable
	26.3 Column composable
	26.4 Combining Row and Column composables
	26.5 Layout alignment
	26.6 Layout arrangement positioning
	26.7 Layout arrangement spacing
	26.8 Row and Column scope modifiers
	26.9 Scope modifier weights
	26.10 Summary

	27. Box Layouts in Compose
	27.1 An introduction to the Box composable
	27.2 Creating the BoxLayout project
	27.3 Adding the TextCell composable
	27.4 Adding a Box layout
	27.5 Box alignment
	27.6 BoxScope modifiers
	27.7 Using the clip() modifier
	27.8 Summary

	28. Custom Layout Modifiers
	28.1 Compose layout basics
	28.2 Custom layouts
	28.3 Creating the LayoutModifier project
	28.4 Adding the ColorBox composable
	28.5 Creating a custom layout modifier
	28.6 Understanding default position
	28.7 Completing the layout modifier
	28.8 Using a custom modifier
	28.9 Working with alignment lines
	28.10 Working with baselines
	28.11 Summary

	29. Building Custom Layouts
	29.1 An overview of custom layouts
	29.2 Custom layout syntax
	29.3 Using a custom layout
	29.4 Creating the CustomLayout project
	29.5 Creating the CascadeLayout composable
	29.6 Using the CascadeLayout composable
	29.7 Summary

	30. A Guide to ConstraintLayout in Compose
	30.1 An introduction to ConstraintLayout
	30.2 How ConstraintLayout works
	30.2.1 Constraints
	30.2.2 Margins
	30.2.3 Opposing constraints
	30.2.4 Constraint bias
	30.2.5 Chains
	30.2.6 Chain styles

	30.3 Configuring dimensions
	30.4 Guideline helper
	30.5 Barrier helper
	30.6 Summary

	31. Working with ConstraintLayout in Compose
	31.1 Calling ConstraintLayout
	31.2 Generating references
	31.3 Assigning a reference to a composable
	31.4 Adding constraints
	31.5 Creating the ConstraintLayout project
	31.6 Adding the ConstraintLayout library
	31.7 Adding a custom button composable
	31.8 Basic constraints
	31.9 Opposing constraints
	31.10 Constraint bias
	31.11 Constraint margins
	31.12 The importance of opposing constraints and bias
	31.13 Creating chains
	31.14 Working with guidelines
	31.15 Working with barriers
	31.16 Decoupling constraints with constraint sets
	31.17 Summary

	32. Working with IntrinsicSize in Compose
	32.1 Intrinsic measurements
	32.2 Max. vs Min. Intrinsic Size measurements
	32.3 About the example project
	32.4 Creating the IntrinsicSizeDemo project
	32.5 Creating the custom text field
	32.6 Adding the Text and Box components
	32.7 Adding the top-level Column
	32.8 Testing the project
	32.9 Applying IntrinsicSize.Max measurements
	32.10 Applying IntrinsicSize.Min measurements
	32.11 Summary

	33. Coroutines and LaunchedEffects in Jetpack Compose
	33.1 What are coroutines?
	33.2 Threads vs. coroutines
	33.3 Coroutine Scope
	33.4 Suspend functions
	33.5 Coroutine dispatchers
	33.6 Coroutine builders
	33.7 Jobs
	33.8 Coroutines – suspending and resuming
	33.9 Coroutine channel communication
	33.10 Understanding side effects
	33.11 Summary

	34. An Overview of Lists and Grids in Compose
	34.1 Standard vs. lazy lists
	34.2 Working with Column and Row lists
	34.3 Creating lazy lists
	34.4 Enabling scrolling with ScrollState
	34.5 Programmatic scrolling
	34.6 Sticky headers
	34.7 Responding to scroll position
	34.8 Creating a lazy grid
	34.9 Summary

	35. A Compose Row and Column List Tutorial
	35.1 Creating the ListDemo project
	35.2 Creating a Column-based list
	35.3 Enabling list scrolling
	35.4 Manual scrolling
	35.5 A Row list example
	35.6 Summary

	36. A Compose Lazy List Tutorial
	36.1 Creating the LazyListDemo project
	36.2 Adding list data to the project
	36.3 Reading the XML data
	36.4 Handling image loading
	36.5 Designing the list item composable
	36.6 Building the lazy list
	36.7 Testing the project
	36.8 Making list items clickable
	36.9 Summary

	37. Lazy List Sticky Headers and Scroll Detection
	37.1 Grouping the list item data
	37.2 Displaying the headers and items
	37.3 Adding sticky headers
	37.4 Reacting to scroll position
	37.5 Adding the scroll button
	37.6 Testing the finished app
	37.7 Summary

	38. A Compose Lazy Staggered Grid Tutorial
	38.1 Lazy Staggered Grids
	38.2 Creating the StaggeredGridDemo project
	38.3 Adding the Box composable
	38.4 Generating random height and color values
	38.5 Creating the Staggered List
	38.6 Testing the project
	38.7 Switching to a horizontal staggered grid
	38.8 Summary

	39. Compose Visibility Animation
	39.1 Creating the AnimateVisibility project
	39.2 Animating visibility
	39.3 Defining enter and exit animations
	39.4 Animation specs and animation easing
	39.5 Repeating an animation
	39.6 Different animations for different children
	39.7 Auto-starting an animation
	39.8 Implementing crossfading
	39.9 Summary

	40. Compose State-Driven Animation
	40.1 Understanding state-driven animation
	40.2 Introducing animate as state functions
	40.3 Creating the AnimateState project
	40.4 Animating rotation with animateFloatAsState
	40.5 Animating color changes with animateColorAsState
	40.6 Animating motion with animateDpAsState
	40.7 Adding spring effects
	40.8 Working with keyframes
	40.9 Combining multiple animations
	40.10 Using the Animation Inspector
	40.11 Summary

	41. Canvas Graphics Drawing in Compose
	41.1 Introducing the Canvas component
	41.2 Creating the CanvasDemo project
	41.3 Drawing a line and getting the canvas size
	41.4 Drawing dashed lines
	41.5 Drawing a rectangle
	41.6 Applying rotation
	41.7 Drawing circles and ovals
	41.8 Drawing gradients
	41.9 Drawing arcs
	41.10 Drawing paths
	41.11 Drawing points
	41.12 Drawing an image
	41.13 Drawing text
	41.14 Summary

	42. Working with ViewModels in Compose
	42.1 What is Android Jetpack?
	42.2 The “old” architecture
	42.3 Modern Android architecture
	42.4 The ViewModel component
	42.5 ViewModel implementation using state
	42.6 Connecting a ViewModel state to an activity
	42.7 ViewModel implementation using LiveData
	42.8 Observing ViewModel LiveData within an activity
	42.9 Summary

	43. A Compose ViewModel Tutorial
	43.1 About the project
	43.2 Creating the ViewModelDemo project
	43.3 Adding the ViewModel
	43.4 Accessing DemoViewModel from MainActivity
	43.5 Designing the temperature input composable
	43.6 Designing the temperature input composable
	43.7 Completing the user interface design
	43.8 Testing the app
	43.9 Summary

	44. An Overview of Android SQLite Databases
	44.1 Understanding database tables
	44.2 Introducing database schema
	44.3 Columns and data types
	44.4 Database rows
	44.5 Introducing primary keys
	44.6 What is SQLite?
	44.7 Structured Query Language (SQL)
	44.8 Trying SQLite on an Android Virtual Device (AVD)
	44.9 The Android Room persistence library
	44.10 Summary

	45. Room Databases and Compose
	45.1 Revisiting modern app architecture
	45.2 Key elements of Room database persistence
	45.2.1 Repository
	45.2.2 Room database
	45.2.3 Data Access Object (DAO)
	45.2.4 Entities
	45.2.5 SQLite database

	45.3 Understanding entities
	45.4 Data Access Objects
	45.5 The Room database
	45.6 The Repository
	45.7 In-Memory databases
	45.8 Database Inspector
	45.9 Summary

	46. A Compose Room Database and Repository Tutorial
	46.1 About the RoomDemo project
	46.2 Creating the RoomDemo project
	46.3 Modifying the build configuration
	46.4 Building the entity
	46.5 Creating the Data Access Object
	46.6 Adding the Room database
	46.7 Adding the repository
	46.8 Adding the ViewModel
	46.9 Designing the user interface
	46.10 Writing a ViewModelProvider Factory class
	46.11 Completing the MainScreen function
	46.12 Testing the RoomDemo app
	46.13 Using the Database Inspector
	46.14 Summary

	47. An Overview of Navigation in Compose
	47.1 Understanding navigation
	47.2 Declaring a navigation controller
	47.3 Declaring a navigation host
	47.4 Adding destinations to the navigation graph
	47.5 Navigating to destinations
	47.6 Passing arguments to a destination
	47.7 Working with bottom navigation bars
	47.8 Summary

	48. A Compose Navigation Tutorial
	48.1 Creating the NavigationDemo project
	48.2 About the NavigationDemo project
	48.3 Declaring the navigation routes
	48.4 Adding the home screen
	48.5 Adding the welcome screen
	48.6 Adding the profile screen
	48.7 Creating the navigation controller and host
	48.8 Implementing the screen navigation
	48.9 Passing the user name argument
	48.10 Testing the project
	48.11 Summary

	49. A Compose Navigation Bar Tutorial
	49.1 Creating the BottomBarDemo project
	49.2 Declaring the navigation routes
	49.3 Designing bar items
	49.4 Creating the bar item list
	49.5 Adding the destination screens
	49.6 Creating the navigation controller and host
	49.7 Designing the navigation bar
	49.8 Working with the Scaffold component
	49.9 Testing the project
	49.10 Summary

	50. Detecting Gestures in Compose
	50.1 Compose gesture detection
	50.2 Creating the GestureDemo project
	50.3 Detecting click gestures
	50.4 Detecting taps using PointerInputScope
	50.5 Detecting drag gestures
	50.6 Detecting drag gestures using PointerInputScope
	50.7 Scrolling using the scrollable modifier
	50.8 Scrolling using the scroll modifiers
	50.9 Detecting pinch gestures
	50.10 Detecting rotation gestures
	50.11 Detecting translation gestures
	50.12 Summary

	51. An Introduction to Kotlin Flow
	51.1 Understanding Flows
	51.2 Creating the sample project
	51.3 Adding a view model to the project
	51.4 Declaring the flow
	51.5 Emitting flow data
	51.6 Collecting flow data as state
	51.7 Transforming data with intermediaries
	51.8 Collecting flow data
	51.9 Adding a flow buffer
	51.10 More terminal flow operators
	51.11 Flow flattening
	51.12 Combining multiple flows
	51.13 Hot and cold flows
	51.14 StateFlow
	51.15 SharedFlow
	51.16 Converting a flow from cold to hot
	51.17 Summary

	52. A Jetpack Compose SharedFlow Tutorial
	52.1 About the project
	52.2 Creating the SharedFlowDemo project
	52.3 Adding a view model to the project
	52.4 Declaring the SharedFlow
	52.5 Collecting the flow values
	52.6 Testing the SharedFlowDemo app
	52.7 Handling flows in the background
	52.8 Summary

	53. Creating, Testing, and Uploading an Android App Bundle
	53.1 The release preparation process
	53.2 Android app bundles
	53.3 Register for a Google Play Developer Console account
	53.4 Configuring the app in the console
	53.5 Enabling Google Play app signing
	53.6 Creating a keystore file
	53.7 Creating the Android app bundle
	53.8 Generating test APK files
	53.9 Uploading the app bundle to the Google Play Developer Console
	53.10 Exploring the app bundle
	53.11 Managing testers
	53.12 Rolling the app out for testing
	53.13 Uploading new app bundle revisions
	53.14 Analyzing the app bundle file
	53.15 Summary

	54. An Overview of Android In-App Billing
	54.1 Preparing a project for In-App purchasing
	54.2 Creating In-App products and subscriptions
	54.3 Billing client initialization
	54.4 Connecting to the Google Play Billing library
	54.5 Querying available products
	54.6 Starting the purchase process
	54.7 Completing the purchase
	54.8 Querying previous purchases
	54.9 Summary

	55. An Android In-App Purchasing Tutorial
	55.1 About the In-App purchasing example project
	55.2 Creating the InAppPurchase project
	55.3 Adding libraries to the project
	55.4 Adding the App to the Google Play Store
	55.5 Creating an In-App product
	55.6 Enabling license testers
	55.7 Creating a purchase helper class
	55.8 Adding the StateFlow streams
	55.9 Initializing the billing client
	55.10 Querying the product
	55.11 Handling purchase updates
	55.12 Launching the purchase flow
	55.13 Consuming the product
	55.14 Restoring a previous purchase
	55.15 Completing the MainActivity
	55.16 Testing the app
	55.17 Troubleshooting
	55.18 Summary

	56. Working with Compose Theming
	56.1 Material Design 2 vs. Material Design 3
	56.2 Material Design 3 theming
	56.3 Building a custom theme
	56.4 Summary

	57. A Material Design 3 Theming Tutorial
	57.1 Creating the ThemeDemo project
	57.2 Designing the user interface
	57.3 Building a new theme
	57.4 Adding the theme to the project
	57.5 Enabling dynamic colors
	57.6 Summary

	58. An Overview of Gradle in Android Studio
	58.1 An overview of Gradle
	58.2 Gradle and Android Studio
	58.2.1 Sensible defaults
	58.2.2 Dependencies
	58.2.3 Build variants
	58.2.4 Manifest entries
	58.2.5 APK signing
	58.2.6 ProGuard support

	58.3 The Properties and Settings Gradle build files
	58.4 The top-level gradle build file
	58.5 Module level Gradle build files
	58.6 Configuring signing settings in the build file
	58.7 Running Gradle tasks from the command-line
	58.8 Summary

	Index

