Jetpack Compose 1.3
Essentials

Jetpack Compose 1.3 Essentials
ISBN-13: 978-1-951442-63-7
© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

L SEATE HETE...couvenieieieniiiienienicieninicntesisiestes s ssesses s essessesssessessesssessessnessessassssssessasssessessasssessessssssessassssssens 1
1.1 FOr KOtlin PrOGIamimerscc.vcueeveuevrerceremnecirerseetsersesetsessesessessesessessesessessesessessesessessesesnesscsesnesscsesns 1
1.2 FOr new Kotlin PrOGramImIErscocvcueeveureurecereurenctrerneetsesseetsesseseasessesessessesessessesessessesesnessesesesscsesns 1
1.3 Downloading the code SAMPLES........c.ccocureureciriureneiriirieireeneereiseetret et sses e sesseseens 1
1.4 Feedback

1.5 Errata

2. Setting up an Android Studio Development Environment

2.1 SyStem TeQUITEIMENLS.c.vuiuiiiriiciiierct it s s e se e
2.2 Downloading the Android Studio packagecccveecueecrnieencrniceencreee e 3
2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene 4
2.3.1 Installation 0n WINAOWSccueureerirrieriirieeireeneeseeenetsese e sseesesesssasesessssessesssssssesssasesens 4
2.3.2 Installation 0n MACOSc.cveiireceiericeiree et ese s ese s sse s sse s ansns 4
2.3.3 Installation 0N LINUX.......cccvuureemerrecriirierieeneiseeneesesesssssesessesesessessesesssssesesssssssessssssessessssens 5
2.4 The Android Studio SEtUP WIZArdccceuveeurireucurinicirieieireeicireciereetet ettt seesesseneaes 5
2.5 Installing additional Android SDK packagesccceeueueecriermnerrieenemneeeeeneeesenseeenersesessessenenne 6
2.6 Installing the Android SDK Command-line TOOLS........c.cceeuiuemreriueencrnieenerneenrerneceeneeenersenenne 9
2.6.1 WINAOWS 8.1 .ttt sttt et seses ettt sese ettt s seaesesens 10

2.6.2 Windows 10
2.6.3 Windows 11
2.6.4 LiNUX ..o
2.6.5 macOS
2.7 Android Studio memory management
2.8 Updating Android Studio and the SDK
2.9 SUINIMATY ottt st b s

3. A Compose Project OVEIVIEWcueeiiirienieiiienenieniienienieniiesienisesiesesisssiesesssessessasssessessasssessessasssessessasssens

3.1 ADOUL the PIrOJECT....ciuiuiieiricireeeicireteectreieee ettt bttt bbbt
3.2 Creating the PrOJECt ...ttt bttt bttt eae
3.3 Creating an aCtIVILY ...
3.4 Defining the project and SDK SEtHNGScocureveureurecirerrereereineetrerneetsessesessessesessessesessessescssesscsenns
3.5 Previewing the eXample PIOJECtc.cvcureueereureerereiriunecireireeireiseetsessee s tsessesessessesessessesessesscsesns
3.6 Reviewing the Main ACtIVILY......ccocureurercurirrereurirrieireiseetreiseetses sttt ssesessebsese e bsesessessesesesscsesns
3.7 PLEVIEW UPAALES c..vuvrveuireveinctreeeieiretseetret ettt b sttt bt sttt eae
3.8 Bill of Materials and the Compose version
3.9 SUMMATY ..o

4. An Example Compose Project

4.1 Getting started.........coceverreeererreennee
4.2 Removing the template Code...........
4.3 The Composable hierarchy ... nsessesennes
4.4 Adding the DemoText cOMPOSADIEc.cueverireeeirerceircccreceeeeeeeeeeeee e nsesennes
4.5 Previewing the DemoText COMPOSADIEcovveueeemerreeeeeireceerrereeerereeensenene s nsessesennes
4.6 Adding the DemoSlider composable..........c.oveieeiiinieeiniinceeeeeeetreeee e nensesennes

Table of Contents

4.7 Adding the DemoScreen cOmpOSabIeccuveueeerreuereiriicierreeeeereeeeeeeeeensese s nsessesensensenes
4.8 Previewing the DemoScreen composable
4.9 Adjusting preview Settingsceveereeevrerrerennes
4.10 Testing in interactive mode........ccceeereeevrerrenenncs
4.11 Completing the project
4.12 SUMMATY .o

5. Creating an Android Virtual Device (AVD) in Android Studio

5.1 About Android Virtual DeVICESc.ccuuucirimiuriuiiriiiireiiisee e senas
5.2 Starting the eMUIALOTr ...t
5.3 Running the application in the AVD ...
5.4 Real-time updates With Live Edil.......ccocvercirinincincinineineinecneiseeneiseenesseessessesessessesessessesesseseens
5.5 Running on multiple deviCesocucuuuririmriniiniiniiiireiisee e
5.6 Stopping a running apPliCAtiONc.ccucuuciciuciuriiniiriireiree et
5.7 Supporting dark theme...........occcciccce e
5.8 Running the emulator in a separate WindoW...........cccecveuiirerniincincincineieieiececeeseese s
5.9 Enabling the device frame..........c.ccvcuvuciriciriciiiicse e
5.10 SUIMIMATY ..ottt

6. Using and Configuring the Android Studio AVD Emulator

6.1 The Emulator Environment
6.2 Emulator Toolbar Options.......c.cceeeeeereucererenennes

6.3 WOrking in Zoom MOGE ... ssesessessessssessessssessesssesens
6.4 Resizing the EMUlator WINAOW.........c.cecueueeciniirencineenieneeeeeieeeeisee e sesesessesesessesessessesesesens
6.5 Extended Control OPtionS......c.ceccueerecurircueinenieeiriceeeneeeetsescistsesetsesesesseesessesesessesessssesesessesessssesesns

6.5.1 LOCALION ...cumiiiiiiiicc bbb

6.5.2 DHSPLAYS....uvrierrieecrnieeecitieeientie ettt e s

6.5.3 CIIULAT ...ttt st s e

6.5.4 BaAtTEIY ..ot

6.5.5 CAIMETA....cuiuiiiiiiiiiicc bbb bbb

6.5.6 PHONIC ...ecmteieecteece ettt s s s s s e e

6.5.7 DIrectional Pad..........cccciurieuiureciniirciieeeieeeeienseseieese et seas

6.5.8 Microphone.........

6.5.9 Fingerprint...............

6.5.10 Virtual Sensors

6.5.11 SNAPShOLS....cceeveeeeiecirircecinecirecereeeeeene

6.5.12 Record and Playbackccoocceuvervecrncrnence.

6.5.13 Google Play

6.5.14 Settings

LT U 5 13 Yoo
6.6 Working with SNapShOLs.......cc.cuecirirircinircrrcrceeeeee e seas
6.7 Configuring Fingerprint EMULationcccvecncerincinernencniineneneneeenseensesseseesesseseesessesessesens
6.8 The Emulator in Tool WINdOW MOode.........ccccuurecureurenemrirniciniineenerneenensesessessesessesseseasessesesessens
6.9 Creating a Resizable EMUIAtOr........c.ocovciniireciniricrirecececrereeeee e seesenenens
6.10 SUMMATY ..ot

7. A Tour of the Android Studio USer INTEITACEceeeeerrreeeeeeirreereeiirreeeeessseeeeessssseeessssssseesssssssessssssssessssnnes 55

7.1 THe WELCOME SCIEEM ...ttt ettt s et et as s s esesesesesssasesesetessasasesens
7.2 The Main Window
7.3 The Tool Windows
7.4 Android Studio Keyboard Shortcuts

ii

Table of Contents

7.5 Switcher and Recent Files Navigationccveecueeemernieemcrieemerneaenenesenensesesessesensessescasessesenns 61
7.6 Changing the Android Studio TREmecccveveuiermcrnieeeeeeee e neseesenne 62
7.7 SUINIMIATY .ottt bbb bbb bbb bbb bbb bbb bbb bbb as 63
8. Testing Android Studio Apps on a Physical Android Device.........coccevurruenirrunscnrinsucscnsinsecscsseesecsenenns 65
8.1 An overview of the Android Debug Bridge (ADB)cccooeuniuiininiinerneineiccicieieeseciesseseseneens 65
8.2 Enabling USB debugging ADB on Android deviCescuuiriuniererneencrncencrneeceeeneeseaneeseneens 65
8.2.1 macOS ADB CONfIGUIALIONcuucuuiviiiiiiciciciciiiceiececesiesee e seees 66
8.2.2 Windows ADB cONfIGUIAtIONcucuuiuiuiiciciciiieiciicicieiesse e ssssssssessens 67
8.2.3 Linux adb cONfIGUIationcceiuiuiiiiriiiiciciciciciciieciiceei e sseseens 68
8.3 Resolving USB CONNECHION ISSUES........c..cueuuiueumceserieeianseiiseeesssasessese s ssess s ssssesassessssssens 68
8.4 Enabling wireless debugging on Android devices ..o 69
8.5 Testing the adb CONNECION ..o 71
8.0 SUIMIMATY ..ottt ettt bbb 71
9. The Basics of the Android Studio Code Editor...........iiiiniieniiiiciciiciscieceseenssensessenseseenes 73
9.1 The Android Studio editor
9.2 Code mode.......ceveeuereecrrerrecnrernennne
9.3 Splitting the editor window..............
9.4 Code completionc.ccceeveucerereuenes
9.5 Statement completion..........ceueueee.
9.6 Parameter informationc........
9.7 Parameter Name NINtS......c.ccocueueercirerrencinieeeeeeee et seseeanns
9.8 COdE GENETALION ..ecvrveecrreeentreeesetereee ettt seeanns
9.9 COdE fOIAING. ... vttt ettt nae
9.10 Quick documentation lookup
9.11 Code TefOrMAttiNg......ccreueeeereueeerrereeerrereeenereeeasessesetesseseaessese e seesaseseseseseesessesescasessssenns
9.12 FInding SAMPLE COAEcuovemimicirericireieecireieeerete et ssese e seese s sescaseseesens
9.13 LIV LEIMPLALEScuvevrieieeiacerireeeteecae sttt ettt sese bbbt st ettt bbb sasesebetneae
9.14 SUMMATY ..ottt
10. An Overview of the Android Architectureuoeevveenieenineinteiiceiceinece e eseeenes 85
10.1 The Android SOftWare SACKc.ccucuiircicicicice s 85
10.2 The LINUX KEINeEL ..ot sse s s ssesasses 86
10.3 Android runtime — ART ..ot sae s 86
10.4 ANAIOid HDIALIESccuvieiieiiiiiicitc e 86
10.4.1 C/CA IDIATIES. ...t 86
10.5 Application frameWOTK.......ccucueueureueiiirieeieireeeieiree ettt ses et sese et ses et ses st sese st sesesacs 87
10.6 APPLICALIONS w.evvreveeaieveincireieieiresetsetsesetsee st sese st ses et sebe et ses et ses et bbbt b sesessessesesaetsesesncs 87
10.7 SUIIMATY w.ceeiiiiiii ittt bbb bbbt 87
11. An Introduction t0 KOthN ...ttt ss s sessesesnes 89
11.1 What 18 KOtIN?ouvieiciiieeciecicieecteeeietreeeeet s sese s seseese s ssesensessessssessesssessesenses 89
11.2 KOtIN QNA JAVA ..ttt tes ettt ess st esese et snsesesessesensesenssssnesensnsssenseren
11.3 Converting from Java to KON c.....c.cccureueriireeeieinieeineeereeeneeeieneeeeenseseesesseseesessesessessesenses
11.4 Kotlin and Android StUAIOcceeeecireeeieireeereceeeeeeee s ssesensessesensessesenses
11.5 Experimenting With KOtccccveeeirieiiniecineceeeereeeneseienene e sseseesessesensensesennes

11.6 Semi-colons in Kotlin
11.7 SUMMATLY .o

12. Kotlin Data Types, Variables and Nullability

iii

Table of Contents

12.1 KOtHIN data tYPeS....ceeuceeeeerceeecieiricieireeeeieeesseisesesseaseeesssasese s sse s s sssasesesssasssesssasssesssssssenseanes
12.1.1 INteEET data tYPES ..cuvrcvreucreeencrerecereeceetressese st sese e ssese s s s ses s seese s ssessseseeas
12.1.2 Floating point data types
12.1.3 Boolean data type........ccocveureernerrercurerrennne
12.1.4 Character data type.......cccoocveeerrerrercurerrennne
12.1.5 String data type......cccoeeeeerrerrererrerrercrrernenenne
12.1.6 Escape sequences..

12.2 MUtable VAriablesccceureeriiriceiirieneieeeieeseiseseseaeesessse e ssssesesssssesesssasssesssasssesnsssssenseses

12.3 Immutable Variables........ccvcecireciceeeeieeeeeesae e sse s s nssaes

12.4 Declaring mutable and immutable variables

12.5 Data tYPes Qe ODJECES ..cuvuureeeemeirieenreerieenseereeensearesesseasesesssasesesssasesesssssesesssssesesssasesesssasssesssssssenneaes

12.6 Type annotations and type iNference..........oceuureceniereernirreenieeeeseeseeseseesensseesesesessesseenes

12.7 NUILEDLE TYP@...errurierriiecietreeeieireeeieieeereiseee st sseasese s sese s see s ese s sasese st e ese s ssesasaseaennsanes

12.8 The safe Call OPEIAtOrc.cuveuciieeciriceeireeicirece ettt bttt seaees

12.9 NOt-NUIL ASSEITION «.ecvuvvreerniiecencirieeeseereeeeeeseee et sese e eee s ese s sese s esesssasesesasasssennsanes

12.10 Nullable types and the let fUnCiON.........c.oveueureeeiereceircrree e eeenaenseees

12.11 Late initialization (IAt€INit)ccccovieviireeriereeieeeececteeeeteeereee oo ee e s s s s s s seseenenes

12.12 The EIVIS OPETALOTvutuuiuceeiriceetricieieeietseaei et tseeseseeese e tseseassseae et st sbeseseeaesessaaesesseaces

12.13 Type casting and type checking.........cceercrniecrniececeeeeeee e seesesenens

12.14 SUIMIMATY .ot as

13. Kotlin Operators and EXPIessionscoivuieinneisucsiisenensinssesinsissscsesissscsisssessesesssssssssssssesssssesssses

13.1 Expression syntax in KOtHIccereerinieeneinicicinecieineicsiseieeeseseseesesesessesessessesessessssessses 103
13.2 The Basic asSINMENT OPEIALOLccuuuiuimiuimieiiieseisese s sse s sassaesasss s sse s saes 103
13.3 Kotlin arithmetic OPETatorS.........cvcueeeurereueueeriueteereseaessesessesesessesesessssesesssssssesssssssesessssessses 103
13.4 Augmented assigNMENt OPETALOLScccuuruimruiuierimieseseeeneesess s sssssssssssssasessssessssesaces 104
13.5 Increment and deCrement OPEIALOLSc.cueueueueureueeeereseriereaeseeseseseesesessessssesssssssessessssesseses 104
13.6 EQUALILY OPEIALOTS ...ucvueeeeueieincereeeeseeseeeentisesesseesesetessese s ssesesssas s sse s saseae s sssesssassaesasssssesassnes 105
13.7 Boolean 10gical OPErators...........c.cucuuiiuiuiuiiriiiiseisise e s sse s sase s saes 105
13.8 RANGE OPEIALOT ...ttt b bbb b s
13.9 BitWiSE OPEIAtOLSccvviiiiriiiiiiitcccit bbb
13.9.1 BitWiSe INVETSION «.e.vvviiiiiicictctctetet bbb
13.9.2 Bitwise AND ..o
13.9.3 BitWise ORu.....ouciiiiiiiiii s
13.9.4 Bitwise XOR ..ottt
13.9.5 Bitwise left shift
13.9.6 Bitwise right shift
13,10 SUINIMATY c.viiiiiiccccieeet ettt bbbt b st

14. KOtLN CONEIOL FLOW ...eevveiieereeeiirieeeiienteeesessseessssssseesssssssessssssssessssssssesssnassss

14.1 LOOPINgG CONIOL FIOW.....cucvmiiieciiieciiteciecieee et seesaseneeas 111
14.1.1 The Kotlin for-in StatemMent.........cccveeeecureeeererreeeererreeenerreseeersesenesseseesessesensessesessessesessessenes 111
14.1.2 THE WHIIE LI0OP w.eveeieiiecirieeciritieint ettt ettt ettt ettt seaeta 112
14.1.3 The do ... WHIIE LOOD c.cuvrieeeireiieiricieirecieire ettt ettt seaenes 113
14.1.4 Breaking from LOOPSc.vveueureeeeerreeeeerreeceetreeeeensesemesseseesesseseesessesessessessesessesssessesessessenes 113
14.1.5 The continue StAtEIMENLc.cc.vveevrerreeeererreeeeretrereesessesemessesensessesessessesessessesessessesessessesesessenes 114
14.1.6 Break and continue 1aDels ..ot esensesenenenes 114

14.2 Conditional cONtrOl flOWccuevcuiueecriiercrieeerneieeereie e ssesesseseesesseneens 115
14.2.1 Using the if €XPIeSSIONScveueeeeerevemerreeeretreseeesseaemesseseesessesessessesessessessssessesesessesessessenes 115
14.2.2 Using if ... €lse ... @XPIESSIONS ...c.vucrreuemerreeererrieemetseaensessesensessesensessesessessesessessesensessesesessenes 116

iv

Table of Contents

14.2.3 Using if ... else if ... EXPIESSIONSc.cvuevreueurerreuemmerrirennerreremsessesensessesensessesemsessesessessesessessesenses 116
14.2.4 Using the when StateIMENtc.cocueueeerreeeererreeeeerrerenerseseeessesensessesessessesensessesessessesessessesenses 116
14.3 SUIMIMATY oottt bbb bbbt 117
15. An Overview of Kotlin Functions and Lambdasceeevueenieeineineiiniiniceinennennsennseensesennes 119
15.1 What i @ fUNCHONT ...ttt s es 119
15.2 How to declare a KOthin function ... ssesssssssssssssens 119
15.3 Calling @ KOthin fUnCtion..........ocviiiciiicincicieicicicccicisisee e ssesessasaens 120
15.4 Single expression fUNCHONS..........cc.iucuieciciciicicisecieiaeciesse s saees 120
15.5 LOCAL fUNCHONS ...cuveeeeiiieiiiieicct et s 120
15.6 Handling return VAlUeS ..ot sa s ssesessasaens 121
15.7 Declaring default function parameters ... eseesessessesesessesens 121
15.8 Variable number of function Parameterscooeoveereeeeereeuneereeeeseeneseeseeseessessesessessesessessssens 121
15.9 Lambda @XPIreSSIONS.......c.eueuueueueuieremetntireeesseiseseseeseaeseasesesseasesesssesesesssssssesssssssessssssaesnsssssesnssesaess
15.10 Higher-order functions
1511 SUINIMATY «.uiiiiiiiiiicctee ettt bbb s bbb
16. The Basics of Object-Oriented Programming in Kotlin..........cecvevenininnsnininninnnnenisininnenennees 125
16.1 What 18 Q1 ODJECLYeeeureeeineieececireeeeeeeeeeteae st ese s sse s sse s s sasasnsesasasssces 125
16.2 What 5 @ Class? ... 125
16.3 Declaring a KOtHI Classc..c.veeueureeeeiurecriiieireeeeeeiseee e nsessese s s sssssssesssssnsesssssescns 125

16.4 Adding properties t0 a Class........cveureerirrecriineernieneeieee et esessssessesssessaens 126
16.5 Defining MeEthods.......covuveuiureeceiicetireeieieeeeereeeseaesesesseee e ese s esesssasssesssasesesssssssesssssssns 126
16.6 Declaring and initializing a class inStance ..., 126
16.7 Primary and secoOndary CONSLITUCLOLSc..cvverrrreeriureemsiureeeneseesenseesesenseesssesssssesesesensessessssens 126
16.8 INItialiZer DIOCKSvuvuvureeeicireeciteeciieccteee et sse s ese s nae s nacns 129
16.9 Calling methods and accessing Properties.........oceurecerureererreemirreereuemerseesesessesersesessesens 129
16.10 CUSLOIM ACCESSOTSvuvuinirisiaimiriitiiii sttt b bbbt 129
16.11 Nested and INNET CLaSSES........ccueureermiureeerirreeeriirieeseereeesteseeeneseeeensesessesssasssessssssessssessessssssens 130
16.12 COMPANION ODJECES c..uvrveernieeiniiecitreeeteee et ese st eae s nac s eenacns 131
16.13 SUIMIMATY «.cuiiiiiiiiiicrst bbb bbb st 133
17. An Introduction to Kotlin Inheritance and Subclassing.........coccevcvevrecvinrensucninnecscnsenncncssensecsscnnees 135
17.1 Inheritance, classes, ANd SUDCIASSESveuveveerieeeeeeeeeeteteeeeeeeeeeeteetesteseeeeereseessessesteesseeessessesseseens 135
17.2 SUDCIASSING SYNEAX......uvuiuiuiiiiiereiitse et sse s s e 135
17.3 A Kotlin inheritance eXample.........ccovreeiurieiniiricinieneciniireeeeisesesseeseseseesesesssssesesssssesessssssens 136
17.4 Extending the functionality of @ SUDCIASS.........cceuruuriririiriiiccc s 137
17.5 Overriding inherited Methods ... 138
17.6 Adding a custom secondary CONSLITUCTOLc.cuuuiurimiuimiirieiese s sassesessaseens 139
17.7 Using the SavingSACCOUNt ClaSS.........ocuiuiuiciiciciiiiiisiseie e saees 139
17.8 SUIMIMATY «.eeiiiiiiii ettt 139
18. AN OVErview Of COMPOSEcceueiuireuieiiriniaiiinsinsesstnieseestssscsstsssssssstessesssssssssssssessesssssssssessssssssssssssses 141
18.1 Development before COMPOSE......cc.eueueuruemcirireeeirieieiricieiseeiseseaeietseseesaseseseseae s sessesessssesesees 141
18.2 Compose declarative SYNLAXocceeureererreeeriireerieeenieseeenessesenstesesesssasesessssesesessssessesssscns 141
18.3 CompPOSe 1S data-AIIiVEN ...ccuuriuceeirecirireieiriecintcie ettt tes et eae st seen 142
18.4 SUIMMATY ..ttt bbb 142
19. Composable FUNCLIONS OVEIVIEWccucivuiruiirirsuininsiinuisiniesesissecssestssscssissesssessessesssssesssesssssesssssssssess 143
19.1 What is a cOmpPosable fUNCHIONTcovureueiiirieciiirieieinecieiseieetsesesee st seb s ssseaens 143
19.2 Stateful vs. stateless COMPOSADIES........c.oveeueueueirieriuciniirieciireieieiseeetee et ssesseae s sesesesseaees 143

Table of Contents

19.3 Composable fUNCHON SYNEAXccciurreriuercrieenerieerereeenesese e ssessesessessesessessesessenens 144
19.4 Foundation and Material COMPOSAIEScceureueurireueininieeiricieinecierecieeeeisteie st sseaens 146
19.5 SUIMIMIATY .ot 147

20. An Overview of Compose State and ReCOMPOSItioN........cccevuevuirrerreisinninncsiniincniiencntsecseseseene

20.1 The DaSiCs O SLALE.......c..cureuuieeiciciciciiieiiite et saes 149
20.2 Introducing reCOMPOSItIONucuuceuiuieieiriiieieeise e sse s sees 149
20.3 Creating the StateEXample ProJECt........cccciriniineiiincieiseieieneieeeisesesssssesesesssesssesessssesaes 150
20.4 Declaring state in a compoSable...........cccuiiiiriniiniiccc e sees 150
20.5 Unidirectional data flow.........cccccueiiriiriiiicceee e sees 153
20.6 State NOISHINEG. ...coueueieieiereiiiscie e 155
20.7 Saving state through configuration changes...........c.cocvcvivcvciccinceinninininnsee s 157
20.8 SUIMMATY ..ttt et s s st 158

21. An Introduction to Composition Local..........cocevieiiiriiiinninninninniciinsecninessestessestssssssessseseeans

21.1 Understanding CompositionLocalccccueureemiurecrnirnecrieeeneereeneeseesesesesessesesesssseseses
21.2 Using CompositionLocalccoceuverreeurerrenennes
21.3 Creating the CompLocalDemo project
21.4 Designing the layout..........ccceeveeeererreeercrreennes
21.5 Adding the CompositionLocal state................
21.6 Accessing the CompositionLocal state............
21.7 Testing the design........cccocuveeeverreeeenerreeererrenennes
21.8 SUMMIATY vttt bbb bbb bbb

22. An Overview of COmpoSe SIot APISccevieirreinininneinininncnintieesistssscsesiesseeesssessesssssssssessssssssns

22.1 Understanding SIot APISc.c.ccuuiiiririniiiesisesise e ssesse s saes
22.2 Declaring @ slot AP ...t saes
22.3 Calling slot APT cOMPOSADLES........ccccuuiuimiiieiiiiiireiieseice e saes
224 SUIMIMATY ..ttt ettt ettt ne st

23. A Compose Slot API Tutorial..........ccceeueeerernnnee.

23.1 About the Project.........oeeeeverreeenerreeeererreennes
23.2 Creating the SlotApiDemo project
23.3 Preparing the MainActivity class file...............
23.4 Creating the MainScreen composable
23.5 Adding the ScreenContent cOmMPOSADIEcceuiurecuiurecrnirricrreeeeieeeeee e neees 175
23.6 Creating the Checkbox cOmMPOSADIEccvurerirriecriireciiirceeereeeesseeeee e nsees 176
23.7 Implementing the ScreenContent slot APT........cccoceureceniireccierienreerieeeeneeeeeneeeeeneees 177
23.8 Adding an Image drawable IFESOULICEccuurremiurecrirricriereeneeeneeeeeesseeseenesenseseaeesensaes 178
23.9 Writing the TitleImage cOmMPOSADIEcccuirrieriiricicce e neees 179
23.10 Completing the MainScreen composable...........cvceurecrirreerieriernieneernieeeeneeeeeneeeeseseees 180
23.11 Previewing the PIrOJECt......ccrreceiireerirreereeseseneeseeesseaseaensessesesssasesessssssesssssssesssssssesnesnes 182
23,12 SUINIMATY «.oviiiiiiiic bbb bbb bbb bbb bbbt 183

24. Using Modifiers in COMPOSE.....c.courruirirrirsuinrinreisininseiscsisstessissessssssessessssssessssssessssssessesssssssssessssssssns

24.1 An overview Of MOIfIErS.......cc.ccuiuiiiiiciiiric e sees
24.2 Creating the ModifierDemo project................

24.3 Creating a modifier
24.4 Modifier ordering..........c.coocvceveuvceecuecrineunennenn.
24.5 Adding modifier support to a composable
24.6 Common built-in MOAIfIETSc.cucuuiuiiieiiirirc e sees

vi

Table of Contents

24.7 Combining MOMIfIETS.......ccevueueeirrieererrereeireieereeeeetreee e ssese et sese st sesessessesensessesessessesense
24.8 SUMMATY ..ot bbb bbb bbb
25. Annotated Strings and Brush Styles....
25.1 What are annotated strings?
25.2 Using annotated strings..................
25.3 Brush TeXt SEYHNEcucvuieiiiiiicrcce et
25.4 Creating the eXample PIOJECT..........oiiuruiincincineieieieiiecisieeeiessese et sse s sae s ssesassses
25.5 An example SpanStyle annotated String........cccccuocuecuciniririnininiseeseee e 197
25.6 An example ParagraphStyle annotated String ..o 198
25.7 A Brush style eXamPLec.oceeueureeeineireeeineirieeieineeeietseeeteesese et sesesset st sese st sesesaessesesaessesesaes 201
25.8 SUIMMIATY ..ottt 202
26. Composing Layouts with Row and Columm.........cuiviveninninuisinnininisinneniinieeensssememes 203
26.1 Creating the ROWCOIDEIMO PrOJECTcuvmevreeereeriecemerreeenserrerensenserensessesensessesensessesensessesensessesenses 203
26.2 ROW COMPOSADIE.......ouceieniiiriacieireeieireaeietreeiet ettt seae ettt sttt ettt s been 204
26.3 COlUMN COMPOSADLEueueiiaiirircieirecieirectet ettt ettt et been 204
26.4 Combining Row and Column composables............ccccuiiiiniiniciiiiien 205

26.5 Layout @liZNIMENtc.c.vvuevereeeecirieeeeireeeneteeenenseeeeses s ssesensessesessessesessessesessessesessessesensessesenses 206
26.6 Layout arrangement POSItiONINg.........cccovviviviiiiiiiiiiiiiic s 208
26.7 Layout arrangement SPACINEG........ccocuuiuiuiiiinininiiisimniisisscssse s ssssssssssssssns 210
26.8 Row and Column SCOPE MOMIfIETS.....c.c.cureueurireucrrinicirireeeirieicirecee ettt ssesessasesesees 211
26.9 Scope MOAIfIer WEIGNLScoueuveciiieicirecctrecerec ettt sese st sese s sesenaes 215
26.10 SUIMMATY ..ottt bbb 216
27. BoX Layouts N COMPOSE.......covuieruiiruiirnisiinsiinsuinsseissiisseississiossesssesssessssesssessssssssssssessessssssssssssesssssssses 217

27.1 An introduction to the Box cOmMpPOSable ..ot seeeeeiseeeeensenennes 217
27.2 Creating the BoXLayout PrOJECtc.cuuiuiurcucicmieeieiiiieieeeicissese e s s sssssesssssssssns 217
27.3 Adding the TextCell cOmMPOSADIEc.ccuiucicicicicieiriecce e 217
27.4 Adding @ BOX JayOUL.......cuuiiiiiciiicc ettt
27.5 BOX @lIGNIMENL ...ttt
27.6 BoxScope modifiers.........cccevevnenee.

27.7 Using the clip() modifier
27.8 SUMMATY ...ttt

28. Custom Layout MOIfIErs......ocvuivivinininuineininininnieiininisinieieiesssssssiesesenssssiesssssssssessses 225
28.1 ComPOSe JaYOUL DASICS ..ecvurreeiciieeicirerceireicerecect ettt sese st seseesessesenaes 225
28.2 CUSLOIM JAYOULS ...ttt sese st sese st sese st se st sesensessesennc 225
28.3 Creating the LayoutMOdifler PrOJECtcceueverreeeecrrieeeerreeenctreeenetseneesensenensesseseesessesensensesenses 225
28.4 Adding the ColorBox composable.........ccceueuiuieeecrrieeererreeneirerenetseneesensesensessesenessesensessesenses 226
28.5 Creating a custom layout MOIfIETcccuvueveireeeencirieeeeereectree s ssesenaes 227
28.6 Understanding default POSItION.........c.vveveureeeeerrieceerrieerneeeeireee et ssesensessesensessesenses 227
28.7 Completing the layout MOIfIErc.vueverieeieiriecireecreectree e seseesessesennes 227
28.8 Using a cUStOM MOGIFIETueuvuereeercireeeeerreeeeetreeeeetreeeee s ssessese s sesessessesensessesensessesenses
28.9 Working with alignment lINeSccvceeeureeernerneeenernieeenneenerereeetreneeessesensessesensessesensessesenses
28.10 Working With DaSElINescccuveueveureeeecrreeeeerreeictreeiereee et ssesessesseseesessesensessesenses
28.11 SUIMMATY ..ottt bbb bbb bbb

29. Building Custom Layouts.........cc.cceu..

29.1 An overview of custom layouts
29.2 CuStOM JaAYOUL STIEAXcvuvueerevincireeeieireeeietseeetetsesetetseseese st sese st s st sese st sesesaetsesessessesesac

vii

Table of Contents

29.3 USINg @ CUSLOM LAYOUL......vrvereiiecinerrieciierieeieeeeeneeeeenesseeessese e ese s ese e ssesssssnsesssssssesnsanes

29.4 Creating the CustomLAaYOUL PIOJECTvvuveevurvreemmirrieerirreeerreeeeeneeeesenesseseseesesessessesesssssnsenneses

29.5 Creating the CascadeLayout composable

29.6 Using the CascadeLayout composable.............

29.7 SUIMMATY woviiiiiiii bbb bbb bbb bbb bbb

30. A Guide to ConstraintLayout in COMPOSE.........ccverrvenuirirreininrinscninsiescsisseessisisseesessesssessessessssnes

30.1 An introduction to ConStraintLaYOULcveeevreereveeeerereireerereeeerereteesesesessesessessesessessesessessenes 239

30.2 How ConstraintLayOout WOTKS.c..ceuveereveeeurereineireeeieireseietsesetessesesessesessessesessessesessessesesesseses 239
30.2.1 CONSLIAINES ...ttt 239
30.2.2 MATGINS .ottt ettt 240
30.2.3 Opposing CONSTIANES.......c.cviviiiiiriiiniiiic st aes 240
30.2.4 CONSLrANE DIAS.....coiviiiicicicc e 241
30.2.5 CRAINS ..ottt 242
30.2.6 CHaIn SEYLES ..cuvueviuirierecireiricirei ettt sttt bttt st eae 242

30.3 Configuring diMeNSIONS...........cueucucucicumcicimiiieiseise st sss s 243

30.4 GUIENNE NELPET ...ucereieiiiiireicriere ettt seb ettt seb ettt 243

30.5 BarTier NEIPer.....c.cuiiieicircieicircectcirceeec ettt sttt 244

30.6 SUIMIMATY ..ottt 245

31. Working with ConstraintLayout in Compose

32. Working with IntrinsicSize in Compose

viii

31.1 Calling ConstraintLaYOUL.........ccveureuemerreeemerreremenrereeensesensessesensessesessessesensessesessessesessessesersessenes
31.2 GeNerating TEfEIeNICES.......cceereueeirreueererreeeesetreaeeesseaeesessese et sese e sesessessesessessesessessesessessesessessesen
31.3 Assigning a reference to @ cOMPOSADIE........c.ceviureueereirieeeeireeereeeteee e nenenes
31.4 AddING CONSIAINES....c.vucveeeerereecieireieeerreeeeet et sese s s s sese s sese s s s ssessesensesenes
31.5 Creating the ConstraintLayout PrOJECtc..cecureeeererreeemrerreeemerrereeensesensenseseesessesensessesensessenes
31.6 Adding the ConstraintLayout iDraryc.cceencnienerneenerneceneeereeesseseesensesenensenes
31.7 Adding a custom button cOmpPOSabIe...........c..ceveureeeereirieeeerreeereeeene et enenes
31.8 BaSiC CONSLIAINLSvucvviitcrictt ettt en
31.9 OppoSINg CONSLIAINES......ouviviiiriiciiiiiic s
31.10 Constraint bias........cccvieiurimiiiniiiiiiiii e
31.11 Constraint MArgins ... s
31.12 The importance of opposing constraints and bias
31.13 Creating chains.........ccecveueevcererreerrernecnrernenenne

31.14 Working with guidelines
31.15 Working with barriers........cccccvvvvcniveccrneennnce
31.16 Decoupling constraints with constraint sets
3117 SUMMATY ..o

32.1 INtrinsic MEASUIEMENTScoviuivireieieritiiiicctete ettt
32.2 Max. vs Min. Intrinsic Size Measurementscccoeveuriviciviiiininincniiece s
32.3 About the eXample PIrOJECT......cueuiureueireireeeieirereieireietetsereeet st sesetse s asesessetsesesetsesesaseneses
32.4 Creating the IntrinsicSiZeDemO PIOJECt.........ccvwuiuiuiuriiniirereircreiesenseieeiseessssesesesssesesssesesseses
32.5 Creating the custom teXt fleld........cociiiiiiiriiii e
32.6 Adding the Text and BOX COMPONENLScccvuiuiuiuieriiiireieicie e esesieaeeasesssasesesesesssesesseaes
32.7 Adding the top-level COIUMN........c.ccocuiiiiiiiirire e
32.8 TeStING the PIOJECT......cuiuiuiiiircicicie ettt
32.9 Applying IntrinsicSize.Max measurements....
32.10 Applying IntrinsicSize.Min measurements
32,11 SUMMATY ..ottt bbb

..

Table of Contents

33. Coroutines and LaunchedEffects in Jetpack COMPOSE.......cccerervuieirreriiisersenncssensecssessensscsesssessessesses 271

33.1 What 1€ COTOULINESTviiieiciieeeierceeteeeeeeeeee ettt esenaes 271
33.2 Threads vs. coroutines
33.3 Coroutine Scope......ccccceuevrererecunce
33.4 Suspend functions..........c.eceeeveveeneene
33.5 Coroutine dispatchers
33.6 Coroutine DUILAETScucviiiiiciiccccc et

33,7 JODS ettt ettt et et ettt a et ettt et s eae et e s et es e st s eas s ete s enensereneereneenetens

33.8 Coroutines — suspending and reSUMINGoceuveuriueenerrieenemrereeneireneeeeseseneesesenessesesessesennes 274
33.9 Coroutine channel COMMUNICAtION........c.cueumcrermermererieeeieneieietseseese e saessensssssscsscsns 275
33.10 Understanding side ffects...........cvuiurirrirreicrnereeereneineineineieiseseeseessesessessessessessssssscssesnes 276
33,11 SUIIMATY coovuieiiiiiiineiii it sese s bbbt s bbb s ea bbb n s 277

34. An Overview of Lists and Grids in COMPOSEcccevirrerrirrierereeesiesensssesessssesssessasesssssssasesssssossssssssns 279

34.1 Standard VS. JaZy LISESc.cuvcueueercrrieeercirereecireieietreietet ettt seae ettt s st seaenae
34.2 Working with Column and Row lists ..
34.3 Creating lazy listsccoceveeurevreccrnenrnnces
34.4 Enabling scrolling with ScrollState ...
34.5 Programmatic scrolling..................
34.6 Sticky headerscceveureurcrcrrernennn.
34.7 Responding to scroll position........
34.8 Creating a lazy gridc..ccocoeuveuenee.
34.9 SUMMATY ..ottt bbb bbb

35. A Compose Row and Column List TUtorialcccccevevverrenrinnernininnenncsninnencssinnecsessensscsesssesscssesses 289

35.1 Creating the ListDemO PrOJECcvcuiremerrermererenserenirieesneseseesesessensessessessessessessessessesscsscsnes
35.2 Creating @ Column-based LiSt...........cvuureuerrercrrerererereeneenieneineiseseese e nsessessessssscsscsns
35.3 ENabling list SCIOLINGccccuiuiiiiieiciriceiricecceeeeeeee et enenaes
35.4 Manual SCIOLNG........cccuiuiieiieicirierec ettt
35.5 A ROW liSt @XAMPLE...oucuiuiiieiricieirecreirecieicet ettt sseaese st s st seaenesen
35.60 SUIIMATY ..ot st

36. A Compose Lazy List Tutorial

36.1 Creating the LazyListDemo project
36.2 Adding list data to the project...........
36.3 Reading the XIMIL data........coceuveereeeeneireeceneinieeieireeeeetseeeeesseseeessesessessesessessesessessesessessesessessesesses
36.4 Handling image 10adingcccveureeeenerrereeneineeeineineieietneeeeetneseeetseseeetsesessessesessessesessessesessessesesse
36.5 Designing the list item composable
36.6 BUILAIng the JaZy LSt.......c.cuveureueecireeeicireieicireecieireicict et sese et seae et sese st sesessessesessessesesncs
36.7 TeStING the PrOJECT..c.vcvieeicireeeicireiccireeeetreie ettt ettt sese st sese st sesessessesesnc
36.8 Making list items ClICKADIe..........c.ovueveireueieireiecirecetreciceect ettt sese et seseesesseaeenes
36.9 SUMMATY ..ottt bbb

37. Lazy List Sticky Headers and Scroll Detectioncoceeeveerernininnenscsnennenncnennncsessensscsesssessessesnes 305

37.1 Grouping the List iem dataceceeueurerrerreicrerererereeeeeeeeeeieisesesse e ssessessessessessssscssesns
37.2 Displaying the headers and items
37.3 Adding sticky headers.........cccccccruunee.
37.4 Reacting to scroll position
37.5 Adding the scroll button
37.6 Testing the finished app..................
37.7 SUIIMATY ..ottt sese bbb s s bbb s

ix

Table of Contents

38. A Compose Lazy Staggered Grid TUtorialcccceveverinneininninneinsinninnecncsenneessesessscesessessscsessseses 313

38.1 Lazy Stag@ered GIIAS ...t sese e sesesssssesesssaenes
38.2 Creating the StaggeredGridDemo project......
38.3 Adding the Box composable............cccocruureunecn.
38.4 Generating random height and color values
38.5 Creating the Staggered List.........cccoocveecunennence.
38.6 Testing the PrOJECT ..ottt sasaenen
38.7 Switching to a horizontal staggered grid..........ccocoeviuriiincinienciriccrcereeeeeeeee e
38.8 SUIMIMATY ...ttt

39. Compose Visibility ANImMationccoceeveiviiernininninniinininiininceneneeesssssesesssesessesssesessssses 321

39.1 Creating the AnimateVisibility PrOJectcocvevcereeeeneureeenerreeeinerreeeierreeeeeeseseeessesesessesenseesenes
39.2 Animating VISIDILIEY ..c.cocueueucureueireiriieierneieietreeeeetreeeeetsese ettt seseesesseseesessesessessesessessesesseseses
39.3 Defining enter and eXit animationscccecureeeererrereereirereererrereesesseseesesseseesesseseesessesessessesessesseses
39.4 Animation specs and animation EaSINGc.ccvcureeeererrereererrereeserrereeserseseesesseseesessesessessesessesseses
39.5 Repeating an animationcccceevivninccnnee.
39.6 Different animations for different children
39.7 Auto-starting an animation ...
39.8 Implementing crossfadingcccveeeeecerercnecne
39.9 SUIMMATY ..ot bbb bbb

40. Compose State-Driven ANIMAatiON.......cuiiiiiiniieiiiiiinieinieniinieniemieemmenmemmemeemmseosee 333

40.1 Understanding state-driven animationcceeuveceeiureceniiriceienieeieeeeee e eseseeees 333
40.2 Introducing animate as State fUNCHONSc.ovveureuiererirrerererenerereerereeeaeeeeessessessesessesessensens 333
40.3 Creating the AnimateState PIrOJECt.......ocvweuiurieriuriciiiriceie e ssees 334
40.4 Animating rotation with animateFIoatASState..........covreueerercrererererieeneieesenneesenseesesenensens 334
40.5 Animating color changes with animateColorASState.........ocueverereereereeeereenernenreererseesersenennens 337
40.6 Animating motion with animateDPASSIALe..........coveuiureceriireceierc e 339
40.7 AddIng SPring effeCtSc.cvvemeucreecrereeieeieeirereree e e es
40.8 Working With KeYfTamescccueuuerereeeueieeiininiereeineeie e saesssssssssessesssssessssessessensens
40.9 Combining multiple animationscccceveeriurieuniericeniirieeireee e nseees
40.10 Using the Animation Inspector............c........

40.11 SUMMATLY c.ooiniiicriieiiccieneiesesssesseseses

41. Canvas Graphics Drawing in Compose

41.1 Introducing the Canvas COMPONENLc.veueureerirrreerriereeertereeseeseeesseasesessessesessessssessesessesseses 349
41.2 Creating the CanvasDemO PIOJECt......couuueurureerniureeerniireseriereenseeseeesseseesessesessessssssessesessesesees 349
41.3 Drawing a line and getting the Canvas SIZecoeeuveureeenrureeeieneeeniireerneseeesseseeesseseesesneses 349
41.4 Drawing dashed LINeS.........oceueureeiniureceiineeinceisecieisesessteseae s ssasesessssessessseesesssssssesnssees
41.5 Drawing @ T€CtANGLec.eureueuuiurieeieireecitireectei ettt seieessese st sae et eae b eae s ssaees
41.6 APPLYING FOTAtION c.cvuvvrreeieeieeciciriietetreeeeteseeetee et sese s sese b ese s ese b eae b ese s eae s saessesasses
41.7 Drawing Circles and OVAlS........coceereceiuriciniineeineinieieiseesseseesessesesssssesesssssssessssssessesssseseses
41.8 Drawing Gradients.......ccceureeeueureernerreeerierieeseesesesessesesessesesstesesesssssssesssasssesssssssesssssssesssssssesnsses
41.9 DIaWINE AICS ...vviiiiiiicicii bbb bbb bbb
41.10 DIaWing PAtRS c..c.ceucveeeieirieeieireieieireeeitiseeetei et ese s sesesssa s ese s s sssesse s s sssssesnsses
41.11 Drawing POINEScoiiiiiiiiiiiiiiiiiii bbbt bbb
41.12 Drawing an imagecccccueuiiiininiiiiicii bbbt
41.13 Drawing text
41.14 SUMMATY ..o

42. Working with ViewModels in Compose

X

Table of Contents

42.1 What is ANdroid JEtPACK?ccccueurereuririeieinecirtrce sttt sttt e sseesessenesees 369
42.2 The “0ld” arChItECTUIEc.cveveeeieireeciirec ettt sse s sse st sae s saenans

42.3 Modern Android architecture
42.4 The ViewModel component...........coceceeerecreerecenenee
42.5 ViewModel implementation using state................
42.6 Connecting a ViewModel state to an activity
42.7 ViewModel implementation using LiveData...............
42.8 Observing ViewModel LiveData within an activity
42.9 SUINIMATY oot a bbb

43. A Compose ViewModel TUtorial.........cocceveverruininrenniniinninncniniininineenisissesesiesscsessessesesssessessens

43,1 ADOUL The PrOJECL....eueuieeeeiiireeeieireecitirtietetseee ettt sttt esaeen
43.2 Creating the ViewModelDemo Project ... ssensessesasssessssssaens
43.3 Adding the VIEWMOUELcciuiiiiiiiiciciciciciiecieecice e s sasaens
43.4 Accessing DemoViewModel from MainACHVItYccecuviuriuniircrneincincieneeieeceeseeaseeeeaens
43.5 Designing the temperature input composableccouririniiincinincincicecceceeeeeens
43.6 Designing the temperature input composableccouriiiniiincinincincceceeceeeeeens
43.7 Completing the user interface design........ccococuuriririurininineiree e eseseseseeaens
43.8 Testing the app
43.9 SUMMATY ..o

44. An Overview of Android SQLite Databases

44.1 Understanding database tables.........c.cveiureerniureciniinicirceciseeeeeeeessseese s neseesens
44.2 Introducing database SChemaccvveeriiricniincrcc e eaeeaens
44.3 Columns and data tYPEScveeeeureerirreeriireeeereenerseesteseee s sssesssessssssesssessesssessesssasssens
44.4 Database FOWScuuiimimiiiirii i
44.5 Introducing primary KEYSccecveerreernirreemirneeniseenteseeeseesesesseesssesessssessssssessssssesessssens
44.6 What 18 SQLITE?vveerereeeeeireeeneteeeneeseesetseee e ssess s sssasese e s sssasesesssasssessssssscsssssssnsssssns 386
44.7 Structured Query Language (SQL)c.ovcuiureerirnecmiireenereeneieeeneeseeesessesesssessessesessesessesens
44.8 Trying SQLite on an Android Virtual Device (AVD)
44.9 The Android Room persistence IDrary ... crecierecininecrnineeneeeseeeeeseneeseeeesens
44,10 SUINIMATY w.ocuiiiiiiiiiiiiiis st b bbb s a bbb bbb bbbt

45. Room Databases and Compose

45.1 Revisiting modern app architecture
45.2 Key elements of Room database persistence
45.2.1 REPOSITOTY ..ttt
45.2.2 ROOM dAtADASEcoueerieriiiiiiiiseiiscie et
45.2.3 Data Access ObJect (DAQ) ...ecuureeureinereiriineeererseeesesseetsessee bbb ssessessssesscsesns
45.2.4 ENTTIES ..ottt bbbt
45.2.5 SQLILE AALADASE c..veeeieceiceeee ettt ettt sttt s ae s ne st enenerens
45.3 Understanding entitiesccecviurcicinciciciciceicieeeeicese e s ss s ssessssssaens
45.4 Data ACCESS ODJECESucvreveimierieeireireieitesiaetetsesetsessese et esesse s ssasese e seae b sese b sssese s saessssssesn
45.5 The ROOM databDase.........ccuvuiuiuiiniiiicicicic i aees
45.6 THE REPOSITOIY....cvuivrieiniireeeieirieeieiresetetstie ettt sese st ese st bbbttt bbb eeaeen
45.7 IN-MemOTY dataDasesc.cveueeeeeureueeiiriieieireeeeeseieseesese e sese s sese st ses s sss s ssas s esesseen
45.8 Database INSPECTOTc.cueueuiureeeieireeeitireeetetseee e sese ettt sbseae s sese bbb seae st sae s saesseen
45.9 SUINMATY 1.ttt s bbbt

46. A Compose Room Database and Repository Tutorial
46.1 About the ROOMDEMO PrOJECt......vucvmivmeerieeencrieenererenereeneresensesesenenseseens

xi

Table of Contents

46.2 Creating the ROOMDEMO PrOJECT......c.cuuivruerirrieerirriecieireeerieeeeeneeseeessasesesseeesesssssnsessssssseseses
46.3 Modifying the build configuration
46.4 Building the entity.......ccccocveeeverreeenerrecererreennes

46.5 Creating the Data Access Object.........ccocueueee.

46.6 Adding the Room database.........ccccreeurerrennncs

46.7 Adding the repoSitory........ccecveeeererrecercrrerennes

46.8 Adding the ViewModelccccovvvvverreeercrreennes

46.9 Designing the User INtErfacecovueeuiirecriereerierecieireeneee e sseessessas s ssasesenssees
46.10 Writing a ViewModelProvider FActory class.........cccvuveeuiurecrniurecrniunecnnieseeneeenenenseeneees 412
46.11 Completing the MainScreen fUnCHion.........c.oeeerecreerecrniereeneereeneeseeseeeeseseseesesesensensees 414
46.12 Testing the ROOMDEIMO @PPcucvuereeeemirrieerirriemiereeereeseeesstesesensessesessasesessssssessssssessssssessses 417
46.13 Using the Database INSPECLOL.........ovcuiureerirreeriereciitreeerieseeneeseeessasesessasssesssssssesssssseseses 417
46.14 SUININATY «.ocviiiiiiiicc bbb bbb bbb bbb bbb bbb 418

47. An Overview of Navigation in COMPOSEc..ccvveririrrerninsinsisinsinscsississscsessiesseesesssessesstssssssessssssesne 419

47.1 Understanding Navigation..........c.cucucueeerueriuniuniuniuiinesieseseesese e ssessesssssssssssssssessssessssessees
47.2 Declaring a navigation CONLIONLET..........c.cciiiiuiiiiniiiirccc e saes
47.3 Declaring a navigation oSt ... sees
47.4 Adding destinations to the navigation graph
47.5 Navigating to destinations...........ccccccecreureunen.
47.6 Passing arguments to a destination..................
47.7 Working with bottom navigation bars
47.8 SUIMMATY ..ottt e bbbt s s st

48. A Compose Navigation TULOFIAlcevvevrivuireininininnininiinisiiiiesssnsesessssssssesssssssemes 429

48.1 Creating the NavigatioNDemOo PrOJECtcouuveuiureeerirreerirreenieeeeneeseseseeeesessessesesessssesesees 429
48.2 About the NavigatioNDemO PrOJECtcveuirreeemiureeerirreeeriereeeneeseseseaseseseesesesessesesesssseseses 429
48.3 Declaring the Navigation TOULESccvurverirreemiureereireeeteee e sseeesessessssesssaseseseses 429
48.4 Adding the NOMEe SCIEEIcuuuieeiiieciiricict et ssaes 430
48.5 Adding the WelCOmMEe SCIEEI.......ccuiuieeeiiriceicetr ettt ese e ssaes 431
48.6 Adding the Profile SCrEENcveuiureceiericieireettrceiee e ese e nsaes 432
48.7 Creating the navigation controller and host.........c..ccvvurecenirreccnirrecrnirceeeeeeeeeeneeees 433
48.8 Implementing the screen navigation
48.9 Passing the user name argument.........cc.cveeene.
48.10 Testing the project
48.11 SUMMAIY ..ot

49. A Compose Navigation Bar Tutorial.........ccccoeevevininnerninninnininninncnininncsinisscseneesncsisesseeeeene 439

49.1 Creating the BottomBarDemo PrOJectcouiuiuriuiurcuienereienenseeseieeeisesesssesssssesssssessssseseees 439
49.2 Declaring the Navigation FOULEScueuiiuniuriuiineiiiseicee e sees 439
49.3 DesigNing Dar IEIMISc.uiucuiuciciciiecccieeeiceeicn et ees 440
49.4 Creating the bar ftem TSt ... saes 440
49.5 Adding the destination SCIEENSc..c.cvuuiuiuriuriiniineiiisece e sees 441
49.6 Creating the navigation controller and host...........cococvuincivcicciniieicieiriecreree s 443
49.7 Designing the Navigation bar...........cccciiiinicce e sees 443
49.8 Working with the Scaffold component...........cocviniiinciniincinciccececeecseeeese s 445
49.9 TeSting the PIOJECt.......ocuiuiicicicicciicc s

49.10 SUIMIMATY ..ttt ettt et b s s st

50. Detecting Gestures in Compose

50.1 Compose gesture detection.........c.cvceeeecurerenecne

xii

Table of Contents

50.2 Creating the GeStureDemO PIOJECt......ccocuueeureurercrrerreerrerreeesersesessessesesesseseasessesesessesessessesenne 447
50.3 Detecting CLICK GESTUIES........cucvcrieicireieeeireieereieetrereee e sese s seesnns 447
50.4 Detecting taps using PointerInputScope.........ccccviiiiiiiiciiiiie, 449
50.5 Detecting drag ESTUIESc.cvcueurercueueererrerreearenseseaesseseasessesessessesessessesesessesessessesessessesessessesenns 450
50.6 Detecting drag gestures using PointerInputSCope.......couuveeeererrecmrerrercrnerneenrenneenressesensereeaenne 452

50.7 Scrolling using the scrollable MOAIflEr ..o 453
50.8 Scrolling using the SCroll MOAIfIETScc.vvuecureurecireiricirercre e reeaenne 454
50.9 Detecting PInch ESTUIESc.cccueuicireieeeireriereieetereee e seeseasesesenseseesnns 456
50.10 Detecting rotation GESTUIES..........ccccuiiiiiiiiiiiii s 457
50.11 Detecting translation GEStUIES...........c.eeeurerrercrreurecrrereeererreeasersesensesseseseseeseasesseseasessesessessesenne 458
50.12 SUMMATY ..ottt bbbt bbb 459
51. An Introduction to Kotlin FIOWccueiiiiiniiininiiinicinicetsenisensntenteessesssessssessssessssssessssessssenes 461
51.1 Understanding FIOWS...........ccuvcuuiiciiciciciiiiieisiisese e sse s ssssssssssssssssns 461
51.2 Creating the SAmMPle PrOJECtocuiucuicicieiciirireireiise s 461
51.3 Adding a view model to the PrOJEct........cccciiiiniiriiniininiircise e 462
51.4 Declaring the flow ... 463
51.5 EMitting flOw data.........cocoiucicinciiicciciciciecceiccse e 463
51.6 Collecting flow data as STAte..........ccocuucueicirieiiieeieici et 464
51.7 Transforming data with intermediaries ..o 465
51.8 Collecting fIoW datac.ccucuicicicicicicicccieceieci e 467
51.9 Adding a flow DUTErcoiviii e 468
51.10 More terminal flOW OPEIAtOrS......cccveveeurerreeireireeiretreeiretseetsessese bt b s ssese s sesseanns 469
51.11 FIOW flattening......coeuiuimiicicicicicieicii it sse s s ss s 470
51.12 Combining multiple fLOWSc.ccucuiieiiiriiiiirisece e 472
51.13 Hot and cOld fLOWS ..o sa s 473
51.14 SEAtEFLOW ...ttt 473
51.15 SRHAT@AFIOW. ..ottt 474
51.16 Converting a flow from cold t0 hotccccuiiiiiiiiniiccccccc e 476
51,17 SUMMATY c..ouiiiiiiiiiii ettt 476
52. A Jetpack Compose SharedFIow Tutorialc.coceveiviriniiiiinennininenceinencstsesecsstsessessessessesnes 477
52.1 ADOUL the PIOJECT....cirivicirerecireieectreieeetseieee et sese s seeaenns
52.2 Creating the SharedFlowDemo project
52.3 Adding a view model to the project...........ccceeuneee.

52.4 Declaring the SharedFlow..............
52.5 Collecting the flow values...................
52.6 Testing the SharedFlowDemo app ...
52.7 Handling flows in the background....
52.8 SUMIMATY ..ottt bbb bbb

53. Creating, Testing, and Uploading an Android App Bundle.........ccoovvevirnininrenncncnsenscsennecsncnennee 485

53.1 The release Preparation PrOCESSc.ererereererrereererreeesesseessesseessessesessessesessessesessessesessesscsesns
53.2 Android app DUNALESccoveueeeiriericireieecirercrerec ettt
53.3 Register for a Google Play Developer Console account............ocuecucucucuneueecimeisimeerineeenennas
53.4 Configuring the app in the Console...........ccciiiiiriininine e
53.5 Enabling Google Play app SIGNINGccceuriiiurimniuniiiiniiiseisise e sessesessessessessessesssssssscses
53.6 Creating @ Keystore flle ...
53.7 Creating the Android app bundle
53.8 Generating test APK fIlesc.ccocuriiriiinininiicccccceecececeeeeeaesceens
53.9 Uploading the app bundle to the Google Play Developer Console

xiii

Table of Contents

54. An Overview of Android In-App Billing

55. An Android In-App Purchasing Tutorial

56. Working with Compose Theming

57. A Material Design 3 Theming Tutorial

Xiv

53.10 Exploring the app bundle.........c.coeiineeineeeeereeeneeeenseseesseseesessesessessesensensenes
53.11 Managing teSLETSccccovviriiiiiiiiiciiiiiicc s
53.12 Rolling the app out for testing..........cccveuueuee.

53.13 Uploading new app bundle revisions
53.14 Analyzing the app bundle file............c...........
53.15 SUMMATY ..o

54.1 Preparing a project for In-App purchasing...........ceceeveuviureuneincenceneineeeisieencessessesesssesesseenes 499
54.2 Creating In-App products and SubSCIIPHIONSccevuriuiereuiincicicie e 499
54.3 Billing client initialiZation...........cc.ocuecuciciciciiiiiiiee e 500
54.4 Connecting to the Google Play Billing library ..o 501
54.5 Querying available ProdUCES..........c.cccuuiriiniiiiicrc e 501
54.6 Starting the purchase ProCeSSccuiriiriuniiriiirirensese e sssaesa s 502
54.7 Completing the PUIrChase ... 502
54.8 Querying previous PUIChaSsesc.cccuuerriiiuniiiiiisese st 503
54.9 SUIMIMATY ..ottt bbb 504

55.1 About the In-App purchasing eXample PrOJeCt........cveeureeererrereererreremrerreremsensereesersesensensenes 505
55.2 Creating the InAppPurchase project
55.3 Adding libraries to the project.........c.ccccveuneuce.

55.4 Adding the App to the Google Play StOre........cccvvevveureeernerreeeenerreneeeireeeeeiseneeenseneeensesenensenes
55.5 Creating an In-APP PrOAUCEcccveevcrreeeecrreeeeeireeeeetreeeeeneeeeenseseesessese s ssessesessessesensessenes
55.6 ENabling LICENSe tESLETS.......cvvueueeiriuererreieieireieeetreeensetsesenessesensessesessensesessessesensessesessessesessessenes
55.7 Creating a purchase helper classc.coecrenireeinerneeeenneceeeeeneeeesseseeessesesessesensensenes
55.8 Adding the StateFLOW STIEAIMSc..vuevuereueercrreeeeeireeeietrereeeneeeee s nseseesensesessessesessessesensessenes
55.9 Initializing the billing CHENT.......ccccvvererrieeeireccercceeeeeee e sese st s nsenenes
55.10 QUErying the ProAUCT......cccocucueecirieeeerreeeetreeeetreee et sese s sesessessese s sesessessesensessenes
55.11 Handling purchase Updatesccvcureeeeerreeeerrieeenennieeneneeeeeneseeessesensesseseesessesessessesensessenes
55.12 Launching the purchase flow.........cccecieinnncncecceeeneseeseseeessesesessesensessenes
55.13 Consuming the PrOQUCTc.cceeureeeerreieeeireeeireeeetreee et ssesessessesessessesessessesensessenes
55.14 Restoring a previous purchase
55.15 Completing the MainActivity.........ccocrereuee.
55.16 Testing the app.......oceeeeereerercererrerennerrecerernenenne
55.17 Troubleshooting
55.18 SUMMATY ..ttt bbb s

56.1 Material Design 2 vs. Material DeSigI 3cccouuiuiuiiiniiniinciiinciicieieceiieeecsesisesssesessseseseenes 519
56.2 Material Design 3 theming ..o ssesssses s sseaes 519
56.3 Building @ custom themie ... 523
56.4 SUIMIMATY ..ottt bbbttt bbbt es 524

57.1 Creating the ThemeDemO PIOJECTc.cueueeerreeeeerrereeerreeenenrereeenseseesessesensessesessessesessessesersessenes 525
57.2 Designing the USer INTErfaCeocvueverreeeecrreeeeeireieietrereenrereeesseseesessesensessesessessesessessesessessenes
57.3 Building a new theme........ccccveveeenervcvcrnernennn.

57.4 Adding the theme to the project
57.5 Enabling dynamic colors..........ceeeunervecurerenecn.
57.6 SUMMATY ...

...

..

Table of Contents

58. An Overview of Gradle in ANdroid STUAIO.....ccocuureeeeirrreeeiirireeeiirieeeessssneeessssseessssssesessssssssessssssssssns

58.1 AN OVEIVIEW Of GIAAIE.......oovvrceeeieieeetetctcc ettt ettt be s s st sesenn

58.2 Gradle and Android Studio

58.2.1 Sensible defaults...........cccouuu.....
58.2.2 Dependencies.........cocveeereunenee
58.2.3 Build variants.........c.cccoeuvereueenee.
58.2.4 MANILEST ENLTIES ..euvuvreerrieieeiriiriaeieesise et teas e ase s b ess bbb eeaens
58.2.5 APK SIGNING....ciiiiiriiiiiiiciici s
58.2.6 PrOGUATA SUPPOIL ...cecvreuruiinceeieneietreacietseeeeeseseseeesese s seestaessesesessessaessasesesseasaessesesessencsesnens

58.3 The Properties and Settings Gradle build filescocveuvireninerncrnernceernenecneeeeecseneenenns 532
58.4 The top-level gradle build filec.cccuerercirieiririneeee e eaesseesenes 533
58.5 Module level Gradle build files............ccoiueiuiiiiiriinciiicnce s 534
58.6 Configuring signing settings in the build file.........cccocvenevireniinencrnernciceccneeeeeceesenenns 537
58.7 Running Gradle tasks from the command-lineccococvereninernernerncrncrneneccneeeeecnencenenns 538
58.8 SUIMIMATY ..ot st 538

XV

Chapter 1

1. Start Here

This book aims to teach you how to build Android applications using Jetpack Compose 1.3, Android Studio
Flamingo (2022.2.1), Material Design 3, and the Kotlin programming language.

The book begins with the basics by explaining how to set up an Android Studio development environment.

The book also includes in-depth chapters introducing the Kotlin programming language, including data types,
operators, control flow, functions, lambdas, coroutines, and object-oriented programming.

An introduction to the key concepts of Jetpack Compose and Android project architecture is followed by a
guided tour of Android Studio in Compose development mode. The book also covers the creation of custom
Composables and explains how functions are combined to create user interface layouts, including row, column,
box, and list components.

Other topics covered include data handling using state properties, key user interface design concepts such
as modifiers, navigation bars, and user interface navigation. Additional chapters explore building your own
reusable custom layout components.

The book covers graphics drawing, user interface animation, transitions, Kotlin Flows, and gesture handling.

Chapters also cover view models, SQLite databases, Room database access, the Database Inspector, live data,
and custom theme creation. Using in-app billing, you will also learn to generate extra revenue from your app.

Finally, the book explains how to package up a completed app and upload it to the Google Play Store for
publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code
for which is also available for download.

Assuming you already have some rudimentary programming experience, are ready to download Android Studio
and the Android SDK, and have access to a Windows, Mac, or Linux system, you are ready to start.

1.1 For Kotlin programmers

This book addresses the needs of existing Kotlin programmers and those new to Kotlin and Jetpack Compose
app development. If you are familiar with the Kotlin programming language, you can probably skip the Kotlin-
specific chapters.

1.2 For new Kotlin programmers

If you are new to Kotlin programming, the entire book is appropriate for you. Just start at the beginning and
keep going.

1.3 Downloading the code samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/composel3/index.php

The steps to load a project from the code samples into Android Studio are as follows:

https://www.ebookfrenzy.com/retail/compose13/index.php

Start Here
1. Click on the Open button option from the Welcome to Android Studio dialog.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.4 Feedback

We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have
any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

1.5 Errata

While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a
subject area of this size and complexity may include some errors and oversights. Any known issues with the
book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/composel3.html

If you find an error not listed in the errata, email our technical support team at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/errata/compose13.html

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK),
the Kotlin plug-in and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements

Android application development may be performed on any of the following system types:
« Windows 8/10/11 64-bit

« macOS 10.14 or later running on Intel or Apple silicon

« Chrome OS device with Intel i5 or higher

o Linux systems with version 2.31 or later of the GNU C Library (glibc)

o Minimum of 8GB of RAM

« Approximately 8GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Flamingo 2022.2.1
using the Android API 33 SDK (Tiramisu) which, at the time of writing, are the latest versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for “Android Studio
Flamingo” should provide the option to download the older version if these differences become a problem.
Alternatively, visit the following web page to find Android Studio Flamingo 2022.2.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

Setting up an Android Studio Development Environment

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS

Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

4

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip
Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,

therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:

./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:

sudo apt-get install 1ibc6:1386 libncurses5:1386 libstdc++6:1386 1ib32z1 libbz2-
1.0:1386

On Red Hat and Fedora-based 64-bit systems, use the following command:

sudo yum install z1ib.i686 ncurses-1libs.i1686 bzip2-1libs.1686

2.4 The Android Studio setup wizard

If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click on
the OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2

If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click on the
Finish button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen Ul theme:

Figure 2-4
2.5 Installing additional Android SDK packages

The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

Figure 2-5

Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
7

Setting up an Android Studio Development Environment

view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

o Android SDK Build-tools

 Android Emulator

o Android SDK Platform-tools

» Google Play Services

« Intel x86 Emulator Accelerator (HAXM installer)’

» Google USB Driver (Windows only)

« Layout Inspector image server for API 31 and T

“Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8

Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the

8

Setting up an Android Studio Development Environment

Apply button again.
2.6 Installing the Android SDK Command-line Tools

Android Studio includes a set of tools that allow some tasks to be performed from your operating system
command line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab and
enable the Show Package Details option in the bottom left-hand corner of the window. Next, scroll down the
list of packages and, when the Android SDK Command-line Tools (latest) package comes into view, enable it as
shown in Figure 2-9:

Figure 2-9

After you have selected the command-line tools package, click on Apply followed by OK to complete the
installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):

<path to android sdk installation>/sdk/cmdline-tools/latest/bin

<path to android sdk installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

Setting up an Android Studio Development Environment

Figure 2-10

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. Inthe Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit... button. Using the New button in the edit dialog, add three new entries to the path. For
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin
C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering ¢md into the Run
dialog. Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that

the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

10

Setting up an Android Studio Development Environment

2.6.3 Windows 11

Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux

On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:

/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:

sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management

Android Studio is alarge and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-11

To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->

11

Setting up an Android Studio Development Environment

Preferences... on macOS) menu option and, in the resulting dialog, select Appearance ¢ Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

Figure 2-12

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the currently
loaded project. On the other hand, when a project is built and run from within Android Studio, a number of
background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option.

2.8 Updating Android Studio and the SDK

From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary

Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

12

Chapter 3

3. A Compose Project Overview

Now that we have installed Android Studio, the next step is to create an Android app using Jetpack Compose.
Although this project will make use of several Compose features, it is an intentionally simple example intended
to provide an early demonstration of Compose in action and an initial success on which to build as you work
through the remainder of the book. The project will also serve to verify that your Android Studio environment
is correctly installed and configured.

This chapter will create a new project using the Android Studio Compose project template and explore both the
basic structure of a Compose-based Android Studio project and some of the key areas of Android Studio. In the
next chapter, we will use this project to create a simple Android app.

Both chapters will briefly explain key features of Compose as they are introduced within the project. If anything
is unclear when you have completed the project, rest assured that all of the areas covered in the tutorial will be
explored in greater detail in later chapters of the book.

3.1 About the project

The completed project will consist of two text components and a slider. When the slider is moved, the current
value will be displayed on one of the text components, while the font size of the second text instance will adjust
to match the current slider position. Once completed, the user interface for the app will appear as shown in
Figure 3-1:

Figure 3-1
13

A Compose Project Overview

3.2 Creating the project

The first step in building an app is to create a new project within Android Studio. Begin, therefore, by launching
Android Studio so that the “Welcome to Android Studio” screen appears as illustrated in Figure 3-2:

Figure 3-2

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project button to display the first screen of the New Project wizard.

3.3 Creating an activity

The next step is to define the type of initial activity that is to be created for the application. The left-hand panel
provides a list of platform categories from which the Phone and Tablet option must be selected. Although a range
of different activity types is available when developing Android applications, only the Empty Activity template
provides a pre-configured project ready to work with Compose. Select this option before clicking on the Next
button:

Figure 3-3
14

A Compose Project Overview

3.4 Defining the project and SDK settings

In the project configuration window (Figure 3-4), set the Name field to ComposeDemo. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store:

Figure 3-4
The Package name is used to uniquely identify the application within the Google Play app store application
ecosystem. Although this can be set to any string that uniquely identifies your app, it is traditionally based on
the reversed URL of your domain name followed by the name of the application. For example, if your domain
is www.mycompany.com, and the application has been named ComposeDemo, then the package name might be
specified as follows:

com.mycompany .composedemo

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:

com.example.composedemo

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in
most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose link to see a full breakdown of the various Android versions still in use:

15

A Compose Project Overview

Figure 3-5
Click on the Finish button to create the project.

3.5 Previewing the example project

At this point, Android Studio should have created a minimal example application project and opened the main
window.

Figure 3-6

The newly created project and references to associated files are listed in the Project tool window located on the
left-hand side of the main project window. The Project tool window has several modes in which information
can be displayed. By default, this panel should be in Android mode. This setting is controlled by the menu at
the top of the panel as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to
switch mode:

16

A Compose Project Overview

Figure 3-7

The code for the main activity of the project (an activity corresponds to a single user interface screen or module
within an Android app) is contained within the MainActivity.kt file located under app -> java -> com.example.
composedemo within the Project tool window as indicated in Figure 3-8:

Figure 3-8

Double-click on this file to load it into the main code editor panel. The editor can be used in different modes
when writing code, the most useful of which when working with Compose is Split mode. The current mode
can be changed using the buttons marked A in Figure 3-9. Split mode displays the code editor (B) alongside the
Preview panel (C) in which the current user interface design will appear:

17

A Compose Project Overview

Figure 3-9
To get us started, Android Studio has already added some code to the MainActivity.kt file to display a Text
component configured to display a message which reads “Hello Android”

If the project has not yet been built, the Preview panel will display the message shown in Figure 3-10:

Figure 3-10

If you see this notification, click on the Build & Refresh link to rebuild the project. After the build is complete,
the Preview panel should update to display the user interface defined by the code in the MainActivity.kt file:

Figure 3-11
3.6 Reviewing the main activity

Android applications are created by bringing together one or more elements known as Activities. An activity
is a single, standalone module of application functionality that either correlates directly to a single user
interface screen and its corresponding functionality, or acts as a container for a collection of related screens. An
appointments application might, for example, contain an activity screen that displays appointments set up for
the current day. The application might also utilize a second activity consisting of multiple screens where new
appointments may be entered by the user and existing appointments edited.

When we created the ComposeDemo project, Android Studio created a single initial activity for our app, named

18

A Compose Project Overview

it MainActivity, and generated some code for it in the MainActivity.kt file. This activity contains the first screen
that will be displayed when the app is run on a device. Before we modify the code for our requirements in the
next chapter, it is worth taking some time to review the code currently contained within the MainActivity.kt file.

The file begins with the following line (keep in mind that this may be different if you used your own domain
name instead of com.example):

package com.example.composedemo

This tells the build system that the classes and functions declared in this file belong to the com.example.
composedemo package which we configured when we created the project.

Next are a series of import directives. The Android SDK is comprised of a vast collection of libraries that provide
the foundation for building Android apps. If all of these libraries were included within an app the resulting app
bundle would be too large to run efficiently on a mobile device. To avoid this problem an app only imports the
libraries that it needs to be able to run:

import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.material3.MaterialTheme

import androidx.compose.material3.Surface

import androidx.compose.material3.Text

Initially, the list of import directives will most likely be “folded” to save space. To unfold the list, click on the
small “+” button indicated by the arrow in Figure 3-12 below:

Figure 3-12
The MainActivity class is then declared as a subclass of the Android ComponentActivity class:

class MainActivity : ComponentActivity() {

}
The MainActivity class implements a single method in the form of onCreate(). This is the first method that is
called when an activity is launched by the Android runtime system and is an artifact of the way apps used to be
developed before the introduction of Compose. The onCreate() method is used here to provide a bridge between
the containing activity and the Compose-based user interfaces that are to appear within it:
override fun onCreate (savedInstanceState: Bundle?) {

super.onCreate (savedInstanceState)

setContent {

ComposeDemoTheme {

19

A Compose Project Overview

}

The method declares that the content of the activity’s user interface will be provided by a composable function
named ComposeDemoTheme. This composable function is declared in the Theme.kt file located under the app
-> <package name> -> ui.theme folder in the Project tool window. This, along with the other files in the ui.theme
folder defines the colors, fonts, and shapes to be used by the activity and provides a central location from which
to customize the overall theme of the app’s user interface.

The call to the ComposeDemoTheme composable function is configured to contain a Surface composable.
Surface is a built-in Compose component designed to provide a background for other composables:
ComposeDemoTheme {
// A surface container using the 'background' color from the theme
Surface (
modifier = Modifier.fillMaxSize (),

color = MaterialTheme.colorScheme.background

}

In this case, the Surface component is configured to fill the entire screen and with the background set to the
standard background color defined by the Android Material Design theme. Material Design is a set of design
guidelines developed by Google to provide a consistent look and feel across all Android apps. It includes a theme
(including fonts and colors), a set of user interface components (such as button, text, and a range of text fields),
icons, and generally defines how an Android app should look, behave and respond to user interactions.

Finally, the Surface is configured to contain a composable function named Greeting which is passed a string
value that reads “Android”™:
ComposeDemoTheme {
// A surface container using the 'background' color from the theme
Surface (
modifier = Modifier.fillMaxSize (),

color = MaterialTheme.colorScheme.background
Greeting ("Android")

}

Outside of the scope of the MainActivity class, we encounter our first composable function declaration within
the activity. The function is named Greeting and is, unsurprisingly, marked as being composable by the @
Composable annotation:

@Composable
fun Greeting(name: String, modifier: Modifier = Modifier) {
Text (
text = "Hello S$name!",
modifier = modifier

20

A Compose Project Overview
}

The function accepts a String parameter (labeled name) and calls the built-in Text composable, passing through
a string value containing the word “Hello” concatenated with the name parameter. The function also accepts an
optional modifier parameter (a topic covered in the chapter titled “Using Modifiers in Compose”). As will soon
become evident as you work through the book, composable functions are the fundamental building blocks for
developing Android apps using Compose.

The second composable function declared in the MainActivity.kt file reads as follows:
@Preview (showBackground = true)
@Composable
fun GreetingPreview () {
ComposeDemoTheme {
Greeting ("Android")

}

Earlier in the chapter, we looked at how the Preview panel allows us to see how the user interface will appear
without having to compile and run the app. At first glance, it would be easy to assume that the preview rendering
is generated by the code in the onCreate() method. In fact, that method only gets called when the app runs
on a device or emulator. Previews are generated by preview composable functions. The @Preview annotation
associated with the function tells Android Studio that this is a preview function and that the content emitted by
the function is to be displayed in the Preview panel. As we will see later in the book, a single activity can contain
multiple preview composable functions configured to preview specific sections of a user interface using different
data values.

In addition, each preview may be configured by passing parameters to the @Preview annotation. For example,
to view the preview with the rest of the standard Android screen decorations, modify the preview annotation so
that it reads as follows:

@Preview (showSystemUi = true)

Once the preview has been updated, it should now be rendered as shown in Figure 3-13:

Figure 3-13

21

A Compose Project Overview

3.7 Preview updates

One final point worth noting is that the Preview panel is live and will automatically reflect minor changes made
to the composable functions that make up a preview. To see this in action, edit the call to the Greeting function
in the GreetingPreview() preview composable function to change the name from “Android” to “Compose”. Note
that as you make the change in the code editor, it is reflected in the preview.

More significant changes will require a build and refresh before being reflected in the preview. When this is
required, Android Studio will display the following “Out of date” notice at the top of the Preview panel and a
Build & Refresh button (indicated by the arrow in Figure 3-14):

Figure 3-14

Simply click on the button to update the preview for the latest changes. Occasionally, Android Studio will fail to
update the preview after code changes. If you believe that the preview no longer matches your code, hover the
mouse pointer over the Up-to-date status text and select Build & Refresh from the resulting menu, as illustrated
in Figure 3-15:

Figure 3-15

The Preview panel also includes an interactive mode that allows you to trigger events on the user interface
components (for example clicking buttons, moving sliders, scrolling through lists, etc.). Since ComposeDemo
contains only an inanimate Text component at this stage, it makes more sense to introduce interactive mode in
the next chapter.

3.8 Bill of Materials and the Compose version

Although Jetpack Compose and Android Studio appear to be tightly integrated, they are two separate products
developed by different teams at Google. As a result, there is no guarantee that the most recent Android Studio
version will default to using the latest version of Jetpack Compose. It can, therefore, be helpful to know which
version of Jetpack Compose is being used by Android Studio. This is declared in a Bill of Materials (BOM)
setting within the build configuration files of your Android Studio projects.

To identify the BOM for a project, locate the Gradle Scripts -> build.gradle (Module: app) file (highlighted in the
figure below) and double-click on it to load it into the editor:

22

A Compose Project Overview

Figure 3-16
With the file loaded into the editor, locate the compose-bom entry in the dependencies section:

dependencies {

implementation platform('androidx.compose:compose-bom:2022.10.00")

In the above example, we can see that the project is using BOM 2022.10.00. With this information, we can use
the BOM to library version mapping web page at the following URL to identify the library versions being used
to build our app:

https://developer.android.com/jetpack/compose/bom/bom-mapping

Once the web page has loaded, select the BOM version from the menu highlighted in Figure 3-17 below. For
example, the figure shows that BOM 2022.10.00 uses version 1.3.2 of the Compose libraries:

Figure 3-17
The BOM does not currently define the versions of all the dependencies listed in the build file. Therefore, you
will see some library dependencies in the build.gradle file that include a specific version number, as is the case
with the core-ktx and lifecycle-runtime-ktx libraries:
23

https://developer.android.com/jetpack/compose/bom/bom-mapping

A Compose Project Overview

dependencies {

implementation 'androidx.core:core-ktx:1.8.0'

implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.3.1"

You can add specific version numbers to any libraries you add to the dependencies, though it is recommended
to rely on the BOM settings whenever possible to ensure library compatibility. However, a version number
declaration will be required when adding libraries not listed in the BOM. You can also override the BOM version
of alibrary by appending a version number to the declaration. The following declaration, for example, overrides
the version number in the BOM for the compose.ui library:

implementation 'androidx.compose.ui:ui:1.3.3"'

3.9 Summary

In this chapter, we have created a new project using Android Studio’s Empty Activity template and explored some
of the code automatically generated for the project. We have also introduced several features of Android Studio
designed to make app development with Compose easier. The most useful features, and the places where you
will spend most of your time while developing Android apps, are the code editor and Preview panel.

While the default code in the MainActivity.kt file provides an interesting example of a basic user interface, it
bears no resemblance to the app we want to create. In the next chapter, we will modify and extend the app by
removing some of the template code and writing our own composable functions.

24

Chapter 5

5. Creating an Android Virtual
Device (AVD) in Android Studio

Although the Android Studio Preview panel allows us to see the layout we are designing and test basic
functionality using interactive mode, it be will necessary to compile and run an entire app to fully test that it
works. An Android application may be tested by installing and running it either on a physical device or in an
Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and
configured to match the specifications of a particular device model. In this chapter, we will work through the
creation of such a virtual device using the Pixel 4a phone as a reference example.

5.1 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android-based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity, and the presence or otherwise of features such
as a camera, GPS navigation support, or an accelerometer. As part of the standard Android Studio installation,
several emulator templates are installed allowing AVDs to be configured for a range of different devices. Custom
configurations may be created to match any physical Android device by specifying properties such as processor
type, memory capacity, and the size and pixel density of the screen.

An AVD session can appear either as a separate window or embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step
is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting
the Tools -> Device Manager menu option from within the main window.

Once launched, the manager will appear as a tool window as shown in Figure 5-1:

Figure 5-1
To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device

35

Creating an Android Virtual Device (AVD) in Android Studio

button to open the Virtual Device Configuration dialog:

Figure 5-2

Within the dialog, perform the following steps to create a Pixel 4a compatible emulator:

L.

From the Category panel, select the Phone option to display the list of available Android phone AVD
templates.

Select the Pixel 4a device option and click Next.

On the System Image screen, select the latest version of Android. Note that if the system image has not yet
been installed a Download link will be provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or
ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

Click Next to proceed and enter a descriptive name (for example Pixel 4a API 33) into the name field or
simply accept the default name.

Click Finish to create the AVD.

With the AVD created, the Device Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the Device Manager, select the AVD from the list, and click on the pencil icon in
the Actions column to edit the settings.

5.2 Starting the emulator

To perform a test run of the newly created AVD emulator, simply select the emulator from the Device Manager
and click on the launch button (the triangle in the Actions column). The emulator will appear embedded into
the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to
start will depend on the configuration of both the AVD and the system on which it is running:

36

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-3

To hide and show the emulator tool window, click on the Emulator tool window button (marked A above). Click
on the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can accommodate
multiple emulator sessions, with each session represented by a tab. Figure 5-4, for example, shows a tool window

with two emulator sessions:

Figure 5-4
To switch between sessions, simply click on the corresponding tab.
Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the Device Manager, select the new Pixel 4a entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change

the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the
emulator are covered in the next chapter “Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

5.3 Running the application in the AVD

With an AVD emulator configured, the example ComposeDemo application created in the earlier chapter now
can be compiled and run. With the ComposeDemo project loaded into Android Studio, make sure that the

37

Creating an Android Virtual Device (AVD) in Android Studio

newly created Pixel 4a AVD is displayed in the device menu (marked A in Figure 5-5 below), then either click
on the run button represented by a green triangle (B), select the Run -> Run ‘app’ menu option or use the Ctrl-R
keyboard shortcut:

Figure 5-5

The device menu (A) may be used to select a different AVD instance or physical device as the run target, and
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 5-6

The app can also be run on the currently selected target by clicking on the icon in the editor gutter next to the
preview composable declaration as indicated by the arrow in Figure 5-7:

Figure 5-7
Once the application is installed and running, the user interface layout defined by the MainScreen function will
appear within the emulator:

38

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-8

If the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the
emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run tool window
will become available. The Run tool window will display diagnostic information as the application package is
installed and launched. Figure 5-9 shows the Run tool window output from a successful application launch:

Figure 5-9
If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured.

5.4 Real-time updates with Live Edit

With the app running, now is an excellent time to introduce the Live Edit feature. Like interactive mode in the
Preview panel, Live Edit updates the appearance and behavior of the app running on the device or emulator as
changes are made to the code. This feature allows code changes to be tested in real time without having to build
and re-run the project. Try out Live Edit by changing the text displayed by the DemoText composable as follows:

DemoText (message = "This is Compose 1.3", fontSize = sliderPosition)

With each keystroke, the text in the running app will update to reflect the change. Live Edit is currently limited

39

Creating an Android Virtual Device (AVD) in Android Studio

to changes made within the body of existing functions. It will not, for example, handle the addition, removal, or
renaming of functions.

5.5 Running on multiple devices

The run menu shown in Figure 5-6 above includes an option to run the app on multiple emulators and devices
in parallel. When selected, this option displays the dialog shown in Figure 5-10 providing a list of both the AVDs
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or
devices to be targeted before clicking on the Run button:

Figure 5-10

After the Run button is clicked, Android Studio will launch the app on the selected emulators and devices.

5.6 Stopping a running application

To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
5-11:

Figure 5-11

An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running as illustrated in Figure 5-12:

Figure 5-12
Once the Run tool window appears, click the stop button highlighted in Figure 5-13 below:

Figure 5-13

40

Creating an Android Virtual Device (AVD) in Android Studio

5.7 Supporting dark theme

Android 10 introduced the much-awaited dark theme, support for which is enabled by default in Android
Studio Compose-based app projects. To test dark theme in the AVD emulator, open the Settings app within the
running Android instance in the emulator. Within the Settings app, choose the Display category and enable the
Dark theme option as shown in Figure 5-14 so that the screen background turns black:

Figure 5-14

With dark theme enabled, run the ComposeDemo app and note that it appears using a dark theme including a
black background and a purple background color on the button as shown in Figure 5-15:

Figure 5-15

Return to the Settings app and turn off Dark theme mode before continuing.

5.8 Running the emulator in a separate window

So far in this chapter, we have only used the emulator as a tool window embedded within the main Android
Studio window. To run the emulator in a separate window, select the File -> Settings... menu option (Android
Studio -> Preferences... on macOS), navigate to Tools -> Emulator in the left-hand navigation panel of the
preferences dialog, and disable the Launch in a tool window option:

41

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-16
With the option disabled, click the Apply button followed by OK to commit the change, then exit the current
emulator session by clicking on the close button on the tab marked B in Figure 5-3 above.

Run the sample app once again, at which point the emulator will appear as a separate window as shown below:

Figure 5-17

The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before
committing to standalone mode, however, keep in mind that the emulator tool window may also be detached
from the main Android Studio window by clicking on the settings button (represented by the gear icon) in the
tool emulator toolbar and selecting the View Mode -> Float menu option:

42

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-18
5.9 Enabling the device frame

The emulator can be configured to appear with (Figure 5-15) or without the device frame (Figure 5-17). To
change the setting, open the Device Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings. In the settings screen, locate and change the Enable Device Frame option:

Figure 5-19
5.10 Summary

A typical application development process follows a cycle of coding, compiling, and running in a test
environment. Android applications may be tested on either a physical Android device or using an Android
Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool.
When creating an AVD to simulate a specific Android device model, the virtual device should be configured
with a hardware specification matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android
Studio user interface.

43

Chapter 7

7. A Tour of the Android Studio User
Interface

While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

7.1 The Welcome Screen

The welcome screen (Figure 7-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will bypass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 7-1

In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening
and creating projects along with access to projects currently under version control. In addition, the Customize
screen provides options to change the theme and font settings used by both the IDE and the editor. Android
Studio plugins may be viewed, installed, and managed using the Plugins option.

55

A Tour of the Android Studio User Interface

Additional options are available by clicking on the menu button as shown in Figure 7-2:

Figure 7-2
7.2 The Main Window

When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 7-3.

Figure 7-3

The various elements of the main window can be summarized as follows:
A - Menu Bar - Contains a range of menus for performing tasks within the Android Studio environment.

B - Toolbar - A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick access
to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting
the Customize Menus and Toolbars... menu option. If the toolbar is not visible, it can be displayed using the View
-> Appearance -> Toolbar menu option.

C - Navigation Bar - The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class. Select a method from the list to be taken to the corresponding location within the
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.

56

A Tour of the Android Studio User Interface

D - Editor Window - The editor window displays the content of the file on which the developer is currently
working. When multiple files are open, each file is represented by a tab located along the top edge of the editor
as shown in Figure 7-4:

Figure 7-4

E - Status Bar - The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will display a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F - Project Tool Window - The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in
several different ways. The default setting is the Android view which is the mode primarily used in the remainder
of this book.

The project tool window is just one of many tool windows available within the Android Studio environment.

7.3 The Tool Windows

In addition to the project view tool window, Android Studio also includes many other windows which, when
enabled, are displayed along the bottom and sides of the main window. The tool window quick access menu can
be displayed by hovering the mouse pointer over the button located in the far left-hand corner of the status bar
(Figure 7-5) without clicking the mouse button.

Figure 7-5
57

A Tour of the Android Studio User Interface

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right, and bottom edges of the main window (as indicated by the arrows in
Figure 7-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 7-6

Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window toolbars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 7-7 shows the settings menu for the Project tool window. Options
are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android
Studio main window, and to move and resize the tool panel.

58

A Tour of the Android Studio User Interface

Figure 7-7

All of the windows also include a far-right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s toolbar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

» App Inspector - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

o Build - The build tool window displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

o Build Variants - The build variants tool window provides a quick way to configure different build targets
for the current application project (for example different builds for debugging and release versions of the
application, or multiple builds to target different device categories).

o Device File Explorer — Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator allowing the
filesystem to be browsed and files copied to the local filesystem.

o Device Manager - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

o Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

o Event Log - The event log window displays messages relating to events and activities performed within
Android Studio. The successful build of a project, for example, or the fact that an application is now running
will be reported within this tool window.

« Favorites — A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list
can be accessed through this Favorites tool window.

o Find - Search for code and text within your project files.

o Gradle - The Gradle tool window provides a view of the Gradle tasks that make up the project build
59

A Tour of the Android Studio User Interface

configuration. The window lists the tasks that are involved in compiling the various elements of the project
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater
detail later in this book.

« Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

« Logcat — The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

o Problems - A central location in which to view all of the current errors or warnings within the project.
Double-clicking on an item in the problem list will take you to the problem file and location.

« Profiler - The Android Profiler tool window provides real-time monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

o Project — The project view provides an overview of the file structure that makes up the project allowing for
quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be
loaded into the appropriate editing tool.

Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout
files contained with the project.

« Run - The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing
to install and run on a device or emulator, this window will typically provide diagnostic information relating
to the problem.

Structure - The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the source file in the editor window.

« Running Devices - Displays any AVD instances running within the current Android Studio session.

o Terminal - Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

« TODO - As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting
the File -> Settings... menu option (Android Studio -> Preferences... on macOS) and navigating to the TODO
page listed under Editor.

o Version Control - This tool window is used when the project files are under source code version control,
allowing access to Git repositories and code change history.

7.4 Android Studio Keyboard Shortcuts

Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keyboard Shortcuts menu option. You may also list and modify the
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS)

60

A Tour of the Android Studio User Interface

and clicking on the Keymap entry as shown in Figure 7-8 below:

Figure 7-8
7.5 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 7-9).

Figure 7-9

Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure
7-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the

61

A Tour of the Android Studio User Interface

mouse pointer can be used to select an option or the keyboard arrow keys used to scroll through the file name
and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 7-10
7.6 Changing the Android Studio Theme

The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Customize option or via the File -> Settings... menu option (Android Studio -> Preferences... on macOS) of
the main window.

Once the settings dialog is displayed, select the Appearance ¢~ Behavior option followed by Appearance in the
left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes
available will depend on the platform but usually include options such as Light, Intelli], Windows, High Contrast,
and Darcula. Figure 7-11 shows an example of the main window with the Darcula theme selected:

Figure 7-11

To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

62

A Tour of the Android Studio User Interface

Figure 7-12
7.7 Summary

The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar or via the
optional tool window bars.

There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of
default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

63

Chapter 14

14. Kotlin Control Flow

Regardless of the programming language used, application development is largely an exercise in applying
logic, and much of the art of programming involves writing code that makes decisions based on one or more
criteria. Such decisions define which code gets executed, how many times it is executed, and, conversely, which
code gets bypassed when the program is running. This is often referred to as control flow since it controls the
flow of program execution. Control flow typically falls into the categories of looping control (how often code is
executed) and conditional control flow (whether or not code is executed). This chapter is intended to provide an
introductory overview of both types of control flow in Kotlin.

14.1 Looping control flow

This chapter will begin by looking at control flow in the form of loops. Loops are essentially sequences of Kotlin
statements that are to be executed repeatedly until a specified condition is met. The first looping statement we
will explore is the for loop.

14.1.1 The Kotlin for-in Statement

The for-in loop is used to iterate over a sequence of items contained in a collection or number range.

The syntax of the for-in loop is as follows:
for variable name in collection or range {
// code to be executed

}

In this syntax, variable name is the name to be used for a variable that will contain the current item from the
collection or range through which the loop is iterating. The code in the body of the loop will typically use this
name as a reference to the current item in the loop cycle. The collection or range references the item through
which the loop is iterating. This could, for example, be an array of string values, a range operator, or even a string
of characters.

Consider, for example, the following for-in loop construct:
for (index in 1..5) {
println ("Value of index is $index")

}

The loop begins by stating that the current item is to be assigned to a constant named index. The statement then
declares a closed range operator to indicate that the for loop is to iterate through a range of numbers, starting at
1 and ending at 5. The body of the loop simply prints out a message to the console indicating the current value
assigned to the index constant, resulting in the following output:

Value of index is
Value of index is
Value of index is

Value of index is

g w N

Value of index is

The for-in loop is of particular benefit when working with collections such as arrays. In fact, the for-in loop can
be used to iterate through any object that contains more than one item. The following loop, for example, outputs
111

Kotlin Control Flow

each of the characters in the specified string:
for (index in "Hello") {
println("Value of index is $index")
}
The operation of a for-in loop may be configured using the downTo and until functions. The downTo function

causes the for loop to work backward through the specified collection until the specified number is reached. The
following for loop counts backward from 100 until the number 90 is reached:

for (index in 100 downTo 90) {
print ("$index.. ")
}
When executed, the above loop will generate the following output:
100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..
The until function operates in much the same way with the exception that counting starts from the bottom of

the collection range and works up until (but not including) the specified endpoint (a concept referred to as a
half-closed range):

for (index in 1 until 10) {
print ("$index.. ")
}
The output from the above code will range from the start value of 1 through to 9:
1..2.. 3..4..5.. 6.. 7.. 8.. 9..

The increment used on each iteration through the loop may also be defined using the step function as follows:
for (index in 0 until 100 step 10) {
print ("$index.. ")
}
The above code will result in the following console output:
0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..

14.1.2 The while loop

The Kotlin for loop described previously works well when it is known in advance how many times a particular
task needs to be repeated in a program. There will, however, be instances where code needs to be repeated until
a certain condition is met, with no way of knowing in advance how many repetitions are going to be needed to
meet that criterion. To address this need, Kotlin includes the while loop.

Essentially, the while loop repeats a set of tasks while a specified condition is met. The while loop syntax is

defined as follows:

while condition {
// Kotlin statements go here

}

In the above syntax, condition is an expression that will return either true or false and the // Kotlin statements go
here comment represents the code to be executed while the condition expression is true. For example:

var myCount = 0

while (myCount < 100) {

112

Kotlin Control Flow

myCount++
println (myCount)
}

In the above example, the while expression will evaluate whether the myCount variable is less than 100. If it is
already greater than 100, the code in the braces is skipped and the loop exits without performing any tasks.

If, on the other hand, myCount is not greater than 100 the code in the braces is executed and the loop returns to
the while statement and repeats the evaluation of myCount. This process repeats until the value of myCount is
greater than 100, at which point the loop exits.

14.1.3 The do ... while loop

It is often helpful to think of the do ... while loop as an inverted while loop. The while loop evaluates an expression
before executing the code contained in the body of the loop. If the expression evaluates to false on the first check
then the code is not executed. The do ... while loop, on the other hand, is provided for situations where you know
that the code contained in the body of the loop will always need to be executed at least once. For example, you
may want to keep stepping through the items in an array until a specific item is found. You know that you have
to at least check the first item in the array to have any hope of finding the entry you need. The syntax for the do
... while loop is as follows:

do {

// Kotlin statements here

} while conditional expression

In the do ... while example below the loop will continue until the value of a variable named i equals 0:

var 1 = 10

do {
i__
println (i)
} while (i > 0)
14.1.4 Breaking from Loops

Having created a loop, it is possible that under certain conditions you might want to break out of the loop before
the completion criteria have been met (particularly if you have created an infinite loop). One such example
might involve continually checking for activity on a network socket. Once activity has been detected it will most
likely be necessary to break out of the monitoring loop and perform some other task.

To break out of a loop, Kotlin provides the break statement which breaks out of the current loop and resumes
execution at the code directly after the loop. For example:

var j = 10

for (i in 0..100)
{

if (3 > 100) {
break

113

Kotlin Control Flow
println("j = $3j")
}

In the above example, the loop will continue to execute until the value of j exceeds 100 at which point the loop
will exit and execution will continue with the next line of code after the loop.

14.1.5 The continue statement

The continue statement causes all remaining code statements in a loop to be skipped, and execution to be
returned to the top of the loop. In the following example, the printin function is only called when the value of

variable i is an even number:

var 1 =1

while (i < 20)
{

i+=1

if (1 $ 2 !'=0) {
continue

}

println("i = $i")

}

The continue statement in the above example will cause the println call to be skipped unless the value of i can be
divided by 2 with no remainder. If the continue statement is triggered, execution will skip to the top of the while
loop and the statements in the body of the loop will be repeated (until the value of i exceeds 19).

14.1.6 Break and continue labels

Kotlin expressions may be assigned a label by preceding the expression with a label name followed by the @ sign.
This label may then be referenced when using break and continue statements to designate where execution is
to resume. This is particularly useful when breaking out of nested loops. The following code contains a for loop
nested within another for loop. The inner loop contains a break statement which is executed when the value of

j reaches 10:
for (i in 1..100) {

println ("Outer loop i = $i")

for (j in 1..100) {
println("Inner loop j = $3j")
if (J == 10) break

}

As currently implemented, the break statement will exit the inner for loop but execution will resume at the top
of the outer for loop. Suppose, however, that the break statement is required to also exit the outer loop. This can
be achieved by assigning a label to the outer loop and referencing that label with the break statement as follows:

outerloop@ for (i in 1..100) {

114

Kotlin Control Flow

println ("Outer loop i = $i")

for (j in 1..100) {
println("Inner loop j = $3")
if (3 == 10) break@outerloop

}

Now when the value assigned to variable j reaches 10 the break statement will break out of both loops and
resume execution at the line of code immediately following the outer loop.

14.2 Conditional control flow

In the previous chapter, we looked at how to use logical expressions in Kotlin to determine whether something
is true or false. Since programming is largely an exercise in applying logic, much of the art of programming
involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets
executed and, conversely, which code gets bypassed when the program is executing.

14.2.1 Using the if expressions
The if expression is perhaps the most basic of control flow options available to the Kotlin programmer.

Programmers who are familiar with C, Swift, C++, or Java will immediately be comfortable using Kotlin if
statements, although there are some subtle differences.

The basic syntax of the Kotlin if expression is as follows:
if (boolean expression) {

// Kotlin code to be performed when expression evaluates to true

}

Unlike some other programming languages, it is important to note that the braces are optional in Kotlin if only
one line of code is associated with the if expression. In fact, in this scenario, the statement is often placed on the
same line as the if expression.

Essentially if the Boolean expression evaluates to true then the code in the body of the statement is executed. If,
on the other hand, the expression evaluates to false the code in the body of the statement is skipped.

For example, if a decision needs to be made depending on whether one value is greater than another, we would
write code similar to the following:

val x = 10

if (x > 9) println("x is greater than 9!")
Clearly, x is indeed greater than 9 causing the message to appear in the console panel.

At this point, it is important to notice that we have been referring to the if expression instead of the if statement.
The reason for this is that unlike the if statement in other programming languages, the Kotlin if returns a result.
This allows if constructs to be used within expressions. As an example, a typical if expression to identify the
largest of two numbers and assign the result to a variable might read as follows:
if (x > vy)
largest = x

else

115

Kotlin Control Flow
largest = vy

The same result can be achieved using the if statement within an expression using the following syntax:

variable = if (condition) return val 1 else return val 2

The original example can, therefore be re-written as follows:

val largest = if (x > y) x else y

The technique is not limited to returning the values contained within the condition. The following example is
also a valid use of if in an expression, in this case assigning a string value to the variable:

val largest = if (x > y) "x is greatest" else "y is greatest"

println(largest)

For those familiar with programming languages such as Java, this feature allows code constructs similar to
ternary statements to be implemented in Kotlin.

14.2.2 Using if ... else ... expressions
The next variation of the if expression allows us to also specify some code to perform if the expression in the if
expression evaluates to false. The syntax for this construct is as follows:
if (boolean expression) {
// Code to be executed if expression is true
} else {
// Code to be executed if expression is false

}

The braces are, once again, optional if only one line of code is to be executed.

Using the above syntax, we can now extend our previous example to display a different message if the comparison
expression evaluates to be false:

val x = 10

if (x > 9) println("x is greater than 9!")

else println("x is less than 9!")
In this case, the second println statement will execute if the value of x was less than 9.

14.2.3 Using if ... else if ... Expressions

So far we have looked at if statements that make decisions based on the result of a single logical expression.
Sometimes it becomes necessary to make decisions based on several different criteria. For this purpose, we can
use the if ... else if ... construct, an example of which is as follows:

var x = 9

if (x == 10) println("x is 10")
else if (x == 9) println("x is 9")
else 1if (x == 8) println("x is 8")
else println("x is less than 8")

}
14.2.4 Using the when statement

The Kotlin when statement provides a cleaner alternative to the if ... else if ... construct and uses the following
syntax:

116

Kotlin Control Flow

when (value) {
matchl -> // code to be executed on match

match2 -> // code to be executed on match

else -> // default code to executed if no match

}
Using this syntax, the previous if ... else if ... construct can be rewritten to use the when statement:
when (x) {

10 -> println ("x is 10")

9 -> println("x is 9")

8 -> println("x is 8")

else -> println("x is less than 8")
}

The when statement is similar to the switch statement found in many other programming languages.

14.3 Summary

The term control flow is used to describe the logic that dictates the execution path that is taken through the
source code of an application as it runs. This chapter has looked at the two types of control flow provided by
Kotlin (looping and conditional) and explored the various Kotlin constructs that are available to implement

both forms of control flow logic.

117

Chapter 15

15. An Overview of Kotlin Functions
and Lambdas

Kotlin functions and lambdas are a vital part of writing well-structured and efficient code and provide a way to
organize programs while avoiding code repetition. In this chapter, we will look at how functions and lambdas
are declared and used within Kotlin.

15.1 What is a function?

A function is a named block of code that can be called upon to perform a specific task. It can be provided data
on which to perform the task and is capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Kotlin program, the code to perform the arithmetic
can be placed in a function. The function can be programmed to accept the values on which the arithmetic
is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the
program code where the calculation is required, the function is simply called, parameter values passed through
as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however,
a subtle difference. The values that a function can accept when it is called are referred to as parameters. At the
point that the function is called and passed those values, however, they are referred to as arguments.

15.2 How to declare a Kotlin function

A Kotlin function is declared using the following syntax:

fun <function name> (<para name>: <para type>, <para name>: <para type>, ...):
<return type> {

// Function code

}

This combination of function name, parameters, and return type is referred to as the function signature or type.
Explanations of the various fields of the function declaration are as follows:

o fun - The prefix keyword used to notify the Kotlin compiler that this is a function.

o <function name> - The name assigned to the function. This is the name by which the function will be
referenced when it is called from within the application code.

o <para name> - The name by which the parameter is to be referenced in the function code.
« <para type> - The type of the corresponding parameter.

o <return type> - The data type of the result returned by the function. If the function does not return a result
then no return type is specified.

« Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result, and simply displays a message:
fun sayHello () {
119

An Overview of Kotlin Functions and Lambdas

println("Hello")
}
The following sample function, on the other hand, takes an integer and a string as parameters and returns a
string result:
fun buildMessageFor (name: String, count: Int): String {

return ("$name, you are customer number S$count")

)
15.3 Calling a Kotlin function

Once declared, functions are called using the following syntax:
<function name> (<argl>, <arg2>, ...)
Each argument passed through to a function must match the parameters the function is configured to accept.

For example, to call a function named sayHello that takes no parameters and returns no value, we would write
the following code:

sayHello ()

In the case of a message that accepts parameters, the function could be called as follows:
buildMessageFor ("John", 10)

15.4 Single expression functions

When a function contains a single expression, it is not necessary to include the braces around the expression.
All that is required is an equals sign (=) after the function declaration followed by the expression. The following
function contains a single expression declared in the usual way:

fun multiply(x: Int, y: Int): Int {
return x * y
}
Below is the same function expressed as a single line expression:
fun multiply(x: Int, y: Int): Int = x * vy
When using single-line expressions, the return type may be omitted in situations where the compiler can infer
the type returned by the expression making for even more compact code:

fun multiply(x: Int, y: Int) = x * vy

15.5 Local functions

A local function is a function that is embedded within another function. In addition, a local function has access
to all of the variables contained within the enclosing function:

fun main(args: Array<String>) {

val name = "John"

val count = 5
fun displayString() {

for (index in 0..count) {

println (name)

120

An Overview of Kotlin Functions and Lambdas

displayString ()
}

15.6 Handling return values

To call a function named buildMessage that takes two parameters and returns a result, on the other hand, we
might write the following code:

val message = buildMessageFor ("John", 10)

To improve code readability, the parameter names may also be specified when making the function call:
val message = buildMessageFor (name = "John", count = 10)

In the above examples, we have created a new variable called message and then used the assignment operator (=)
to store the result returned by the function.

15.7 Declaring default function parameters

Kotlin provides the ability to designate a default parameter value to be used if the value is not provided as an
argument when the function is called. This simply involves assigning the default value to the parameter when
the function is declared.

To see default parameters in action the buildMessageFor function will be modified so that the string “Customer”
is used as a default if a customer name is not passed through as an argument. Similarly, the count parameter is
declared with a default value of 0:

fun buildMessageFor (name: String = "Customer", count: Int = 0): String {

return ("$name, you are customer number S$count")

}

When parameter names are used when making the function call, any parameters for which defaults have been
specified may be omitted. The following function call, for example, omits the customer name argument but still
compiles because the parameter name has been specified for the second argument:

val message = buildMessageFor (count = 10)

If parameter names are not used within the function call, however, only the trailing arguments may be omitted:

val message = buildMessageFor ("John") // Valid
val message = buildMessageFor (10) // Invalid

15.8 Variable number of function parameters

It is not always possible to know in advance the number of parameters a function will need to accept when it
is called within the application code. Kotlin handles this possibility through the use of the vararg keyword to
indicate that the function accepts an arbitrary number of parameters of a specified data type. Within the body
of the function, the parameters are made available in the form of an array object. The following function, for
example, takes as parameters a variable number of String values and then outputs them to the console panel:
fun displayStrings(vararg strings: String)
{

for (string in strings) {

println(string)

displayStrings ("one", "two", "three", "four")

121

An Overview of Kotlin Functions and Lambdas
Kotlin does not permit multiple vararg parameters within a function and any single parameters supported by
the function must be declared before the vararg declaration:
fun displayStrings(name: String, vararg strings: String)
{
for (string in strings) {

println(string)

}
15.9 Lambda expressions

Having covered the basics of functions in Kotlin it is now time to look at the concept of lambda expressions.
Essentially, lambdas are self-contained blocks of code. The following code, for example, declares a lambda,
assigns it to a variable named sayHello, and then calls the function via the lambda reference:

val sayHello = { println("Hello") }
sayHello ()
Lambda expressions may also be configured to accept parameters and return results. The syntax for this is as
follows:
{<para name>: <para type>, <para name> <para type>, ... —>
// Lambda expression here

}

The following lambda expression, for example, accepts two integer parameters and returns an integer result:

val multiply = { vall: Int, wval2: Int -> vall * val2 }
val result = multiply (10, 20)

Note that the above lambda examples have assigned the lambda code block to a variable. This is also possible
when working with functions. Of course, the following syntax will execute the function and assign the result of
that execution to a variable, instead of assigning the function itself to the variable:

val myvar = myfunction ()

To assign a function reference to a variable, simply remove the parentheses and prefix the function name with
double colons (::) as follows. The function may then be called simply by referencing the variable name:

val myvar = ::myfunction

myvar ()

A lambda block may be executed directly by placing parentheses at the end of the expression including any
arguments. The following lambda directly executes the multiplication lambda expression multiplying 10 by 20.
val result = { vall: Int, val2: Int -> vall * val2 } (10, 20)

The last expression within a lambda serves as the expression’s return value (hence the value of 200 being assigned
to the result variable in the above multiplication examples). In fact, unlike functions, lambdas do not support
the return statement. In the absence of an expression that returns a result (such as an arithmetic or comparison

expression), simply declaring the value as the last item in the lambda will cause that value to be returned. The
following lambda returns the Boolean true value after printing a message:

val result = { println("Hello"); true } ()

Similarly, the following lambda simply returns a string literal:

val nextmessage = { println("Hello"); "Goodbye" 1} ()

122

An Overview of Kotlin Functions and Lambdas

A particularly useful feature of lambdas and the ability to create function references is that they can be both
passed to functions as arguments and returned as results. This concept, however, requires an understanding of
function types and higher-order functions.

15.10 Higher-order functions

On the surface, lambdas and function references do not seem to be particularly compelling features. The
possibilities that these features offer become more apparent, however, when we consider that lambdas and
function references have the same capabilities as many other data types. In particular, these may be passed
through as arguments to another function, or even returned as a result from a function.

A function that is capable of receiving a function or lambda as an argument, or returning one as a result is
referred to as a higher-order function.

Before we look at what is, essentially, the ability to plug one function into another, it is first necessary to explore
the concept of function types. The type of a function is dictated by a combination of the parameters it accepts
and the type of result it returns. A function that accepts an Int and a Double as parameters and returns a String
result for example is considered to have the following function type:

(Int, Double) -> String
To accept a function as a parameter, the receiving function simply declares the type of function it can accept.

As an example, we will begin by declaring two unit conversion functions:

fun inchesToFeet (inches: Double): Double {
return inches * 0.0833333

fun inchesToYards (inches: Double): Double {
return inches * 0.0277778
}

The example now needs an additional function, the purpose of which is to perform a unit conversion and print
the result in the console panel. This function needs to be as general-purpose as possible, capable of performing
a variety of different measurement unit conversions. To demonstrate functions as parameters, this new function
will take as a parameter a function type that matches both the inchesToFeet and inchesToYards functions
together with a value to be converted. Since the type of these functions is equivalent to (Double) -> Double, our
general-purpose function can be written as follows:

fun outputConversion (converterFunc: (Double) -> Double, value: Double) ({
val result = converterFunc (value)
println ("Result of conversion is S$result")

}

When the outputConversion function is called, it will need to be passed a function matching the declared type.
That function will be called to perform the conversion and the result displayed in the console panel. This means
that the same function can be called to convert inches to both feet and yards, simply by “plugging in” the
appropriate converter function as a parameter, keeping in mind that it is the function reference that is being
passed as an argument:

outputConversion (::inchesToFeet, 22.45)

outputConversion (::inchesToYards, 22.45)

Functions can also be returned as a data type simply by declaring the type of the function as the return type.
The following function is configured to return either our inchesToFeet or inchesToYards function type (in other

123

An Overview of Kotlin Functions and Lambdas

words a function that accepts and returns a Double value) based on the value of a Boolean parameter:

fun decideFunction (feet: Boolean): (Double) -> Double

{
if (feet) {

return ::inchesToFeet
} else {
return ::inchesToYards

}

When called, the function will return a function reference which can then be used to perform the conversion:
val converter = decideFunction (true)
val result = converter (22.4)

println (result)

15.11 Summary

Functions and lambda expressions are self-contained blocks of code that can be called upon to perform a
specific task and provide a mechanism for structuring code and promoting reuse. This chapter has introduced
the basic concepts of function and lambda declaration and implementation in addition to the use of higher-
order functions that allow lambdas and functions to be passed as arguments and returned as results.

124

Chapter 20

20. An Overview of Compose State
and Recomposition

State is the cornerstone of how the Compose system is implemented. As such, a clear understanding of state is an
essential step in becoming a proficient Compose developer. In this chapter, we will explore and demonstrate the
basic concepts of state and explain the meaning of related terms such as recomposition, unidirectional data flow,
and state hoisting. The chapter will also cover saving and restoring state through configuration changes.

20.1 The basics of state

In declarative languages such as Compose, state is generally referred to as “a value that can change over time”.
At first glance, this sounds much like any other data in an app. A standard Kotlin variable, for example, is by
definition designed to store a value that can change at any time during execution. State, however, differs from a
standard variable in two significant ways.

First, the value assigned to a state variable in a composable function needs to be remembered. In other words,
each time a composable function containing state (a stateful function) is called, it must remember any state
values from the last time it was invoked. This is different from a standard variable which would be re-initialized
each time a call is made to the function in which it is declared.

The second key difference is that a change to any state variable has far reaching implications for the entire
hierarchy tree of composable functions that make up a user interface. To understand why this is the case, we
now need to talk about recomposition.

20.2 Introducing recomposition

When developing with Compose, we build apps by creating hierarchies of composable functions. As previously
discussed, a composable function can be thought of as taking data and using that data to generate sections of a
user interface layout. These elements are then rendered on the screen by the Compose runtime system. In most
cases, the data passed from one composable function to another will have been declared as a state variable in a
parent function. This means that any change of state value in a parent composable will need to be reflected in
any child composables to which the state has been passed. Compose addresses this by performing an operation
referred to as recomposition.

Recomposition occurs whenever a state value changes within a hierarchy of composable functions. As soon as
Compose detects a state change, it works through all of the composable functions in the activity and recomposes
any functions affected by the state value change. Recomposing simply means that the function gets called again
and passed the new state value.

Recomposing the entire composable tree for a user interface each time a state value changes would be a highly
inefficient approach to rendering and updating a user interface. Compose avoids this overhead using a technique
called intelligent recomposition that involves only recomposing those functions directly affected by the state
change. In other words, only functions that read the state value will be recomposed when the value changes.

149

An Overview of Compose State and Recomposition

20.3 Creating the StateExample project

Launch Android Studio and select the New Project option from the welcome screen. Within the resulting new
project dialog, choose the Empty Activity template before clicking on the Next button.

Enter StateExample into the Name field and specify com.example.stateexample as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo). On
completion of the project creation process, the StateExample project should be listed in the Project tool window
located along the left-hand edge of the Android Studio main window.

20.4 Declaring state in a composable

The first step in declaring a state value is to wrap it in a MutableState object. MutableState is a Compose class
which is referred to as an observable type. Any function that reads a state value is said to have subscribed to
that obse