
Jetpack Compose 1.4
Essentials

Jetpack Compose 1.4 Essentials

ISBN-13: 978-1-951442-78-1

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0
Copyright

i

Contents
Table of Contents
1. Start Here .. 1

1.1 For Kotlin programmers .. 1
1.2 For new Kotlin programmers .. 1
1.3 Downloading the code samples ... 1
1.4 Feedback ... 2
1.5 Errata... 2

2. Setting up an Android Studio Development Environment ... 3
2.1 System requirements ... 3
2.2 Downloading the Android Studio package ... 3
2.3 Installing Android Studio ... 4

2.3.1 Installation on Windows ... 4
2.3.2 Installation on macOS ... 4
2.3.3 Installation on Linux .. 5

2.4 The Android Studio setup wizard ... 5
2.5 Installing additional Android SDK packages .. 6
2.6 Installing the Android SDK Command-line Tools ... 9

2.6.1 Windows 8.1 ... 10
2.6.2 Windows 10 .. 11
2.6.3 Windows 11 .. 11
2.6.4 Linux .. 11
2.6.5 macOS .. 11

2.7 Android Studio memory management .. 11
2.8 Updating Android Studio and the SDK ... 12
2.9 Summary .. 13

3. A Compose Project Overview .. 15
3.1 About the project ... 15
3.2 Creating the project .. 16
3.3 Creating an activity ... 16
3.4 Defining the project and SDK settings ... 17
3.5 Enabling the New Android Studio UI .. 18
3.6 Previewing the example project .. 19
3.7 Reviewing the main activity ... 22
3.8 Preview updates ... 25
3.9 Bill of Materials and the Compose version .. 26
3.10 Summary .. 27

4. An Example Compose Project ... 29
4.1 Getting started ... 29
4.2 Removing the template Code .. 29
4.3 The Composable hierarchy .. 30
4.4 Adding the DemoText composable .. 30
4.5 Previewing the DemoText composable .. 32

ii

Table of Contents

4.6 Adding the DemoSlider composable .. 32
4.7 Adding the DemoScreen composable .. 33
4.8 Previewing the DemoScreen composable .. 35
4.9 Adjusting preview settings ... 35
4.10 Testing in interactive mode .. 36
4.11 Completing the project ... 37
4.12 Summary .. 38

5. Creating an Android Virtual Device (AVD) in Android Studio ... 39
5.1 About Android Virtual Devices .. 39
5.2 Starting the Emulator .. 41
5.3 Running the Application in the AVD ... 42
5.4 Real-time updates with Live Edit .. 43
5.5 Running on Multiple Devices .. 44
5.6 Stopping a Running Application ... 45
5.7 Supporting Dark Theme ... 45
5.8 Running the Emulator in a Separate Window ... 46
5.9 Enabling the Device Frame .. 49
5.10 Summary .. 50

6. Using and Configuring the Android Studio AVD Emulator .. 51
6.1 The Emulator Environment ... 51
6.2 Emulator Toolbar Options ... 51
6.3 Working in Zoom Mode .. 53
6.4 Resizing the Emulator Window... 53
6.5 Extended Control Options ... 53

6.5.1 Location ... 54
6.5.2 Displays .. 54
6.5.3 Cellular .. 54
6.5.4 Battery .. 54
6.5.5 Camera ... 54
6.5.6 Phone ... 54
6.5.7 Directional Pad ... 54
6.5.8 Microphone ... 54
6.5.9 Fingerprint .. 54
6.5.10 Virtual Sensors ... 55
6.5.11 Snapshots ... 55
6.5.12 Record and Playback ... 55
6.5.13 Google Play ... 55
6.5.14 Settings .. 55
6.5.15 Help .. 55

6.6 Working with Snapshots ... 55
6.7 Configuring Fingerprint Emulation ... 56
6.8 The Emulator in Tool Window Mode ... 58
6.9 Creating a Resizable Emulator ... 58
6.10 Summary .. 60

7. A Tour of the Android Studio User Interface .. 61
7.1 The Welcome Screen ... 61
7.2 The Menu Bar .. 62
7.3 The Main Window .. 62

iii

Table of Contents

7.4 The Tool Windows .. 64
7.5 The Tool Window Menus ... 67
7.6 Android Studio Keyboard Shortcuts .. 67
7.7 Switcher and Recent Files Navigation .. 68
7.8 Changing the Android Studio Theme .. 69
7.9 Summary .. 70

8. Testing Android Studio Apps on a Physical Android Device .. 71
8.1 An Overview of the Android Debug Bridge (ADB) ... 71
8.2 Enabling USB Debugging ADB on Android Devices ... 71

8.2.1 macOS ADB Configuration .. 72
8.2.2 Windows ADB Configuration .. 73
8.2.3 Linux adb Configuration ... 74

8.3 Resolving USB Connection Issues .. 74
8.4 Enabling Wireless Debugging on Android Devices ... 75
8.5 Testing the adb Connection ... 77
8.6 Device Mirroring ... 77
8.7 Summary .. 77

9. The Basics of the Android Studio Code Editor .. 79
9.1 The Android Studio Editor... 79
9.2 Splitting the Editor Window .. 82
9.3 Code Completion .. 82
9.4 Statement Completion .. 84
9.5 Parameter Information ... 84
9.6 Parameter Name Hints ... 84
9.7 Code Generation ... 84
9.8 Code Folding .. 86
9.9 Quick Documentation Lookup ... 87
9.10 Code Reformatting.. 87
9.11 Finding Sample Code ... 88
9.12 Live Templates ... 88
9.13 Summary .. 89

10. An Overview of the Android Architecture .. 91
10.1 The Android software stack ... 91
10.2 The Linux kernel.. 92
10.3 Android runtime – ART .. 92
10.4 Android libraries ... 92

10.4.1 C/C++ libraries ... 92
10.5 Application framework ... 93
10.6 Applications ... 93
10.7 Summary .. 93

11. An Introduction to Kotlin .. 95
11.1 What is Kotlin? .. 95
11.2 Kotlin and Java ... 95
11.3 Converting from Java to Kotlin ... 95
11.4 Kotlin and Android Studio .. 96
11.5 Experimenting with Kotlin .. 96
11.6 Semi-colons in Kotlin ... 97

iv

Table of Contents

11.7 Summary .. 97
12. Kotlin Data Types, Variables and Nullability .. 99

12.1 Kotlin data types .. 99
12.1.1 Integer data types ... 100
12.1.2 Floating point data types .. 100
12.1.3 Boolean data type ... 100
12.1.4 Character data type .. 100
12.1.5 String data type ... 100
12.1.6 Escape sequences .. 101

12.2 Mutable variables .. 102
12.3 Immutable variables .. 102
12.4 Declaring mutable and immutable variables ... 102
12.5 Data types are objects ... 102
12.6 Type annotations and type inference .. 103
12.7 Nullable type .. 104
12.8 The safe call operator .. 104
12.9 Not-null assertion ... 105
12.10 Nullable types and the let function ... 105
12.11 Late initialization (lateinit) .. 106
12.12 The Elvis operator ... 107
12.13 Type casting and type checking... 107
12.14 Summary .. 108

13. Kotlin Operators and Expressions ... 109
13.1 Expression syntax in Kotlin ... 109
13.2 The Basic assignment operator .. 109
13.3 Kotlin arithmetic operators.. 109
13.4 Augmented assignment operators .. 110
13.5 Increment and decrement operators .. 110
13.6 Equality operators ... 111
13.7 Boolean logical operators ... 111
13.8 Range operator .. 112
13.9 Bitwise operators ... 112

13.9.1 Bitwise inversion .. 112
13.9.2 Bitwise AND ... 113
13.9.3 Bitwise OR ... 113
13.9.4 Bitwise XOR .. 113
13.9.5 Bitwise left shift .. 114
13.9.6 Bitwise right shift ... 114

13.10 Summary .. 115
14. Kotlin Control Flow ... 117

14.1 Looping control flow... 117
14.1.1 The Kotlin for-in Statement ... 117
14.1.2 The while loop .. 118
14.1.3 The do ... while loop .. 119
14.1.4 Breaking from Loops ... 119
14.1.5 The continue statement ... 120
14.1.6 Break and continue labels ... 120

14.2 Conditional control flow .. 121

v

Table of Contents

14.2.1 Using the if expressions .. 121
14.2.2 Using if ... else … expressions ... 122
14.2.3 Using if ... else if ... Expressions ... 122
14.2.4 Using the when statement ... 122

14.3 Summary .. 123
15. An Overview of Kotlin Functions and Lambdas ... 125

15.1 What is a function? ... 125
15.2 How to declare a Kotlin function .. 125
15.3 Calling a Kotlin function .. 126
15.4 Single expression functions.. 126
15.5 Local functions .. 126
15.6 Handling return values ... 127
15.7 Declaring default function parameters .. 127
15.8 Variable number of function parameters .. 127
15.9 Lambda expressions .. 128
15.10 Higher-order functions .. 129
15.11 Summary .. 130

16. The Basics of Object-Oriented Programming in Kotlin .. 131
16.1 What is an object? ... 131
16.2 What is a class? .. 131
16.3 Declaring a Kotlin class .. 131
16.4 Adding properties to a class ... 132
16.5 Defining methods .. 132
16.6 Declaring and initializing a class instance ... 132
16.7 Primary and secondary constructors ... 132
16.8 Initializer blocks .. 135
16.9 Calling methods and accessing properties ... 135
16.10 Custom accessors .. 135
16.11 Nested and inner classes... 136
16.12 Companion objects ... 137
16.13 Summary .. 139

17. An Introduction to Kotlin Inheritance and Subclassing ... 141
17.1 Inheritance, classes, and subclasses .. 141
17.2 Subclassing syntax ... 141
17.3 A Kotlin inheritance example .. 142
17.4 Extending the functionality of a subclass ... 143
17.5 Overriding inherited methods .. 144
17.6 Adding a custom secondary constructor ... 145
17.7 Using the SavingsAccount class ... 145
17.8 Summary .. 145

18. An Overview of Compose .. 147
18.1 Development before Compose .. 147
18.2 Compose declarative syntax ... 147
18.3 Compose is data-driven ... 148
18.4 Summary .. 148

19. Composable Functions Overview .. 149

vi

Table of Contents

19.1 What is a composable function? ... 149
19.2 Stateful vs. stateless composables .. 149
19.3 Composable function syntax ... 150
19.4 Foundation and Material composables .. 152
19.5 Summary .. 153

20. An Overview of Compose State and Recomposition ... 155
20.1 The basics of state .. 155
20.2 Introducing recomposition .. 155
20.3 Creating the StateExample project .. 156
20.4 Declaring state in a composable .. 156
20.5 Unidirectional data flow ... 159
20.6 State hoisting .. 161
20.7 Saving state through configuration changes .. 163
20.8 Summary .. 164

21. An Introduction to Composition Local ... 167
21.1 Understanding CompositionLocal ... 167
21.2 Using CompositionLocal ... 168
21.3 Creating the CompLocalDemo project .. 169
21.4 Designing the layout ... 169
21.5 Adding the CompositionLocal state ... 170
21.6 Accessing the CompositionLocal state ... 171
21.7 Testing the design .. 171
21.8 Summary .. 174

22. An Overview of Compose Slot APIs .. 175
22.1 Understanding slot APIs .. 175
22.2 Declaring a slot API .. 176
22.3 Calling slot API composables .. 176
22.4 Summary .. 178

23. A Compose Slot API Tutorial ... 179
23.1 About the project ... 179
23.2 Creating the SlotApiDemo project ... 179
23.3 Preparing the MainActivity class file .. 179
23.4 Creating the MainScreen composable .. 180
23.5 Adding the ScreenContent composable .. 181
23.6 Creating the Checkbox composable ... 182
23.7 Implementing the ScreenContent slot API .. 183
23.8 Adding an Image drawable resource .. 184
23.9 Coding the TitleImage composable .. 185
23.10 Completing the MainScreen composable .. 186
23.11 Previewing the project .. 188
23.12 Summary .. 189

24. Using Modifiers in Compose .. 191
24.1 An overview of modifiers ... 191
24.2 Creating the ModifierDemo project ... 191
24.3 Creating a modifier ... 192
24.4 Modifier ordering .. 194

vii

Table of Contents

24.5 Adding modifier support to a composable .. 194
24.6 Common built-in modifiers .. 198
24.7 Combining modifiers.. 198
24.8 Summary .. 199

25. Annotated Strings and Brush Styles... 201
25.1 What are annotated strings? .. 201
25.2 Using annotated strings .. 201
25.3 Brush Text Styling ... 202
25.4 Creating the example project ... 203
25.5 An example SpanStyle annotated string ... 203
25.6 An example ParagraphStyle annotated string ... 204
25.7 A Brush style example .. 207
25.8 Summary .. 208

26. Composing Layouts with Row and Column .. 209
26.1 Creating the RowColDemo project .. 209
26.2 Row composable .. 210
26.3 Column composable ... 210
26.4 Combining Row and Column composables .. 211
26.5 Layout alignment .. 212
26.6 Layout arrangement positioning ... 214
26.7 Layout arrangement spacing .. 216
26.8 Row and Column scope modifiers .. 217
26.9 Scope modifier weights .. 221
26.10 Summary .. 221

27. Box Layouts in Compose .. 223
27.1 An introduction to the Box composable .. 223
27.2 Creating the BoxLayout project .. 223
27.3 Adding the TextCell composable .. 223
27.4 Adding a Box layout .. 224
27.5 Box alignment .. 225
27.6 BoxScope modifiers .. 227
27.7 Using the clip() modifier .. 227
27.8 Summary .. 229

28. An Introduction to FlowRow and FlowColumn.. 231
28.1 FlowColumn and FlowRow ... 231
28.2 Maximum number of items ... 232
28.3 Working with main axis arrangement .. 232
28.4 Understanding cross-axis arrangement ... 234
28.5 Item alignment .. 235
28.6 Controlling item size... 236
28.7 Summary .. 237

29. A FlowRow and FlowColumn Tutorial .. 239
29.1 Creating the FlowLayoutDemo project .. 239
29.2 Generating random height and color values ... 240
29.3 Adding the Box Composable ... 241
29.4 Modifying the Flow arrangement ... 242

viii

Table of Contents

29.5 Modifying item alignment ... 242
29.6 Switching to FlowColumn ... 244
29.7 Using cross-axis arrangement .. 245
29.8 Adding item weights ... 245
29.9 Summary .. 246

30. Custom Layout Modifiers ... 247
30.1 Compose layout basics ... 247
30.2 Custom layouts .. 247
30.3 Creating the LayoutModifier project .. 247
30.4 Adding the ColorBox composable .. 248
30.5 Creating a custom layout modifier ... 249
30.6 Understanding default position... 249
30.7 Completing the layout modifier .. 249
30.8 Using a custom modifier .. 250
30.9 Working with alignment lines ... 251
30.10 Working with baselines .. 253
30.11 Summary .. 253

31. Building Custom Layouts ... 255
31.1 An overview of custom layouts ... 255
31.2 Custom layout syntax ... 255
31.3 Using a custom layout ... 256
31.4 Creating the CustomLayout project ... 257
31.5 Creating the CascadeLayout composable .. 257
31.6 Using the CascadeLayout composable ... 259
31.7 Summary .. 260

32. A Guide to ConstraintLayout in Compose .. 261
32.1 An introduction to ConstraintLayout .. 261
32.2 How ConstraintLayout works.. 261

32.2.1 Constraints .. 261
32.2.2 Margins .. 262
32.2.3 Opposing constraints ... 262
32.2.4 Constraint bias .. 263
32.2.5 Chains .. 264
32.2.6 Chain styles ... 264

32.3 Configuring dimensions ... 265
32.4 Guideline helper .. 265
32.5 Barrier helper ... 266
32.6 Summary .. 267

33. Working with ConstraintLayout in Compose ... 269
33.1 Calling ConstraintLayout ... 269
33.2 Generating references ... 269
33.3 Assigning a reference to a composable ... 269
33.4 Adding constraints .. 270
33.5 Creating the ConstraintLayout project .. 270
33.6 Adding the ConstraintLayout library ... 271
33.7 Adding a custom button composable ... 271
33.8 Basic constraints .. 272

ix

Table of Contents

33.9 Opposing constraints .. 273
33.10 Constraint bias... 274
33.11 Constraint margins ... 275
33.12 The importance of opposing constraints and bias .. 276
33.13 Creating chains .. 279
33.14 Working with guidelines .. 280
33.15 Working with barriers .. 281
33.16 Decoupling constraints with constraint sets.. 284
33.17 Summary .. 286

34. Working with IntrinsicSize in Compose .. 287
34.1 Intrinsic measurements .. 287
34.2 Max. vs Min. Intrinsic Size measurements .. 287
34.3 About the example project ... 288
34.4 Creating the IntrinsicSizeDemo project ... 289
34.5 Creating the custom text field .. 289
34.6 Adding the Text and Box components ... 290
34.7 Adding the top-level Column .. 290
34.8 Testing the project ... 291
34.9 Applying IntrinsicSize.Max measurements ... 291
34.10 Applying IntrinsicSize.Min measurements ... 292
34.11 Summary .. 292

35. Coroutines and LaunchedEffects in Jetpack Compose .. 293
35.1 What are coroutines? .. 293
35.2 Threads vs. coroutines .. 293
35.3 Coroutine Scope .. 294
35.4 Suspend functions ... 294
35.5 Coroutine dispatchers ... 294
35.6 Coroutine builders .. 295
35.7 Jobs .. 295
35.8 Coroutines – suspending and resuming .. 296
35.9 Coroutine channel communication .. 297
35.10 Understanding side effects ... 298
35.11 Summary .. 299

36. An Overview of Lists and Grids in Compose .. 301
36.1 Standard vs. lazy lists .. 301
36.2 Working with Column and Row lists ... 301
36.3 Creating lazy lists .. 302
36.4 Enabling scrolling with ScrollState ... 303
36.5 Programmatic scrolling .. 303
36.6 Sticky headers .. 304
36.7 Responding to scroll position .. 306
36.8 Creating a lazy grid ... 306
36.9 Summary .. 309

37. A Compose Row and Column List Tutorial .. 311
37.1 Creating the ListDemo project .. 311
37.2 Creating a Column-based list .. 311
37.3 Enabling list scrolling ... 313

x

Table of Contents

37.4 Manual scrolling .. 313
37.5 A Row list example .. 316
37.6 Summary .. 316

38. A Compose Lazy List Tutorial ... 317
38.1 Creating the LazyListDemo project .. 317
38.2 Adding list data to the project ... 317
38.3 Reading the XML data .. 319
38.4 Handling image loading ... 320
38.5 Designing the list item composable .. 322
38.6 Building the lazy list .. 323
38.7 Testing the project ... 324
38.8 Making list items clickable ... 324
38.9 Summary .. 326

39. Lazy List Sticky Headers and Scroll Detection ... 327
39.1 Grouping the list item data .. 327
39.2 Displaying the headers and items ... 327
39.3 Adding sticky headers ... 328
39.4 Reacting to scroll position ... 329
39.5 Adding the scroll button .. 331
39.6 Testing the finished app .. 333
39.7 Summary .. 333

40. A Compose Lazy Staggered Grid Tutorial .. 335
40.1 Lazy Staggered Grids .. 335
40.2 Creating the StaggeredGridDemo project ... 336
40.3 Adding the Box composable .. 337
40.4 Generating random height and color values ... 337
40.5 Creating the Staggered List .. 338
40.6 Testing the project ... 339
40.7 Switching to a horizontal staggered grid .. 340
40.8 Summary .. 341

41. VerticalPager and HorizontalPager in Compose .. 343
41.1 The Pager composables ... 343
41.2 Working with pager state ... 345
41.3 About the PagerDemo project ... 345
41.4 Creating the PagerDemo project ... 345
41.5 Modifying the build configuration ... 346
41.6 Adding the book cover images .. 346
41.7 Adding the HorizontalPager .. 347
41.8 Creating the page content .. 348
41.9 Testing the pager ... 349
41.10 Adding the arrow buttons .. 350
41.11 Summary .. 353

42. Compose Visibility Animation .. 355
42.1 Creating the AnimateVisibility project .. 355
42.2 Animating visibility .. 355
42.3 Defining enter and exit animations .. 358

xi

Table of Contents

42.4 Animation specs and animation easing ... 359
42.5 Repeating an animation ... 361
42.6 Different animations for different children ... 361
42.7 Auto-starting an animation ... 362
42.8 Implementing crossfading ... 363
42.9 Summary .. 365

43. Compose State-Driven Animation ... 367
43.1 Understanding state-driven animation .. 367
43.2 Introducing animate as state functions .. 367
43.3 Creating the AnimateState project .. 368
43.4 Animating rotation with animateFloatAsState .. 368
43.5 Animating color changes with animateColorAsState... 371
43.6 Animating motion with animateDpAsState .. 373
43.7 Adding spring effects .. 376
43.8 Working with keyframes .. 377
43.9 Combining multiple animations ... 378
43.10 Using the Animation Inspector ... 381
43.11 Summary .. 382

44. Canvas Graphics Drawing in Compose ... 383
44.1 Introducing the Canvas component ... 383
44.2 Creating the CanvasDemo project .. 383
44.3 Drawing a line and getting the canvas size .. 383
44.4 Drawing dashed lines.. 385
44.5 Drawing a rectangle .. 385
44.6 Applying rotation .. 389
44.7 Drawing circles and ovals ... 390
44.8 Drawing gradients ... 391
44.9 Drawing arcs .. 394
44.10 Drawing paths ... 395
44.11 Drawing points .. 396
44.12 Drawing an image ... 397
44.13 Drawing text .. 399
44.14 Summary .. 401

45. Working with ViewModels in Compose .. 403
45.1 What is Android Jetpack? .. 403
45.2 The “old” architecture ... 403
45.3 Modern Android architecture ... 403
45.4 The ViewModel component... 403
45.5 ViewModel implementation using state ... 404
45.6 Connecting a ViewModel state to an activity .. 405
45.7 ViewModel implementation using LiveData ... 406
45.8 Observing ViewModel LiveData within an activity ... 407
45.9 Summary .. 407

46. A Compose ViewModel Tutorial .. 409
46.1 About the project ... 409
46.2 Creating the ViewModelDemo project .. 410
46.3 Adding the ViewModel .. 410

xii

Table of Contents

46.4 Accessing DemoViewModel from MainActivity ... 411
46.5 Designing the temperature input composable .. 412
46.6 Designing the temperature input composable .. 414
46.7 Completing the user interface design ... 416
46.8 Testing the app ... 418
46.9 Summary .. 418

47. An Overview of Android SQLite Databases .. 419
47.1 Understanding database tables .. 419
47.2 Introducing database schema ... 419
47.3 Columns and data types .. 419
47.4 Database rows ... 420
47.5 Introducing primary keys ... 420
47.6 What is SQLite? ... 420
47.7 Structured Query Language (SQL) ... 420
47.8 Trying SQLite on an Android Virtual Device (AVD) .. 421
47.9 The Android Room persistence library .. 423
47.10 Summary .. 423

48. Room Databases and Compose ... 425
48.1 Revisiting modern app architecture ... 425
48.2 Key elements of Room database persistence ... 425

48.2.1 Repository ... 425
48.2.2 Room database ... 426
48.2.3 Data Access Object (DAO) ... 426
48.2.4 Entities ... 426
48.2.5 SQLite database .. 426

48.3 Understanding entities ... 427
48.4 Data Access Objects .. 429
48.5 The Room database ... 430
48.6 The Repository ... 431
48.7 In-Memory databases ... 432
48.8 Database Inspector .. 433
48.9 Summary .. 433

49. A Compose Room Database and Repository Tutorial .. 435
49.1 About the RoomDemo project .. 435
49.2 Creating the RoomDemo project .. 436
49.3 Modifying the build configuration ... 436
49.4 Building the entity ... 437
49.5 Creating the Data Access Object ... 438
49.6 Adding the Room database .. 439
49.7 Adding the repository ... 440
49.8 Adding the ViewModel .. 442
49.9 Designing the user interface .. 444
49.10 Writing a ViewModelProvider Factory class ... 445
49.11 Completing the MainScreen function .. 447
49.12 Testing the RoomDemo app .. 450
49.13 Using the Database Inspector .. 451
49.14 Summary .. 452

xiii

Table of Contents

50. An Overview of Navigation in Compose ... 453
50.1 Understanding navigation .. 453
50.2 Declaring a navigation controller.. 455
50.3 Declaring a navigation host ... 455
50.4 Adding destinations to the navigation graph .. 455
50.5 Navigating to destinations.. 456
50.6 Passing arguments to a destination ... 458
50.7 Working with bottom navigation bars ... 459
50.8 Summary .. 461

51. A Compose Navigation Tutorial .. 463
51.1 Creating the NavigationDemo project ... 463
51.2 About the NavigationDemo project ... 463
51.3 Declaring the navigation routes .. 464
51.4 Adding the home screen .. 464
51.5 Adding the welcome screen ... 466
51.6 Adding the profile screen ... 466
51.7 Creating the navigation controller and host .. 467
51.8 Implementing the screen navigation .. 468
51.9 Passing the user name argument ... 468
51.10 Testing the project ... 469
51.11 Summary .. 470

52. A Compose Navigation Bar Tutorial .. 471
52.1 Creating the BottomBarDemo project ... 471
52.2 Declaring the navigation routes .. 471
52.3 Designing bar items .. 472
52.4 Creating the bar item list .. 472
52.5 Adding the destination screens ... 473
52.6 Creating the navigation controller and host .. 475
52.7 Designing the navigation bar ... 476
52.8 Working with the Scaffold component ... 477
52.9 Testing the project ... 478
52.10 Summary .. 479

53. Detecting Gestures in Compose ... 481
53.1 Compose gesture detection .. 481
53.2 Creating the GestureDemo project ... 481
53.3 Detecting click gestures .. 481
53.4 Detecting taps using PointerInputScope .. 483
53.5 Detecting drag gestures .. 484
53.6 Detecting drag gestures using PointerInputScope .. 486
53.7 Scrolling using the scrollable modifier ... 487
53.8 Scrolling using the scroll modifiers .. 488
53.9 Detecting pinch gestures .. 490
53.10 Detecting rotation gestures .. 491
53.11 Detecting translation gestures ... 492
53.12 Summary .. 493

54. An Introduction to Kotlin Flow ... 495
54.1 Understanding Flows .. 495

xiv

Table of Contents

54.2 Creating the sample project ... 495
54.3 Adding a view model to the project .. 496
54.4 Declaring the flow ... 497
54.5 Emitting flow data ... 497
54.6 Collecting flow data as state ... 498
54.7 Transforming data with intermediaries ... 499
54.8 Collecting flow data .. 501
54.9 Adding a flow buffer ... 502
54.10 More terminal flow operators .. 503
54.11 Flow flattening ... 504
54.12 Combining multiple flows ... 506
54.13 Hot and cold flows .. 507
54.14 StateFlow .. 507
54.15 SharedFlow ... 508
54.16 Converting a flow from cold to hot .. 510
54.17 Summary .. 510

55. A Jetpack Compose SharedFlow Tutorial .. 511
55.1 About the project ... 511
55.2 Creating the SharedFlowDemo project .. 511
55.3 Adding a view model to the project .. 512
55.4 Declaring the SharedFlow .. 512
55.5 Collecting the flow values .. 513
55.6 Testing the SharedFlowDemo app .. 515
55.7 Handling flows in the background.. 515
55.8 Summary .. 517

56. Creating, Testing, and Uploading an Android App Bundle .. 519
56.1 The Release Preparation Process ... 519
56.2 Android App Bundles ... 519
56.3 Register for a Google Play Developer Console Account .. 520
56.4 Configuring the App in the Console .. 521
56.5 Enabling Google Play App Signing ... 522
56.6 Creating a Keystore File ... 522
56.7 Creating the Android App Bundle .. 523
56.8 Generating Test APK Files ... 525
56.9 Uploading the App Bundle to the Google Play Developer Console 526
56.10 Exploring the App Bundle ... 527
56.11 Managing Testers .. 528
56.12 Rolling the App Out for Testing .. 528
56.13 Uploading New App Bundle Revisions .. 529
56.14 Analyzing the App Bundle File ... 530
56.15 Summary .. 531

57. An Overview of Android In-App Billing ... 533
57.1 Preparing a project for In-App purchasing .. 533
57.2 Creating In-App products and subscriptions .. 533
57.3 Billing client initialization .. 534
57.4 Connecting to the Google Play Billing library .. 535
57.5 Querying available products .. 535
57.6 Starting the purchase process .. 536

xv

Table of Contents

57.7 Completing the purchase ... 536
57.8 Querying previous purchases .. 537
57.9 Summary .. 538

58. An Android In-App Purchasing Tutorial .. 539
58.1 About the In-App purchasing example project ... 539
58.2 Creating the InAppPurchase project .. 539
58.3 Adding libraries to the project ... 539
58.4 Adding the App to the Google Play Store .. 540
58.5 Creating an In-App product .. 540
58.6 Enabling license testers ... 541
58.7 Creating a purchase helper class ... 542
58.8 Adding the StateFlow streams ... 543
58.9 Initializing the billing client ... 543
58.10 Querying the product ... 544
58.11 Handling purchase updates ... 545
58.12 Launching the purchase flow ... 545
58.13 Consuming the product ... 546
58.14 Restoring a previous purchase ... 546
58.15 Completing the MainActivity .. 547
58.16 Testing the app ... 549
58.17 Troubleshooting .. 551
58.18 Summary .. 552

59. Working with Compose Theming .. 553
59.1 Material Design 2 vs. Material Design 3 .. 553
59.2 Material Design 3 theming .. 553
59.3 Building a custom theme ... 557
59.4 Summary .. 558

60. A Material Design 3 Theming Tutorial .. 559
60.1 Creating the ThemeDemo project .. 559
60.2 Designing the user interface .. 559
60.3 Building a new theme ... 561
60.4 Adding the theme to the project ... 562
60.5 Enabling dynamic colors .. 563
60.6 Summary .. 564

61. An Overview of Gradle in Android Studio .. 565
61.1 An Overview of Gradle .. 565
61.2 Gradle and Android Studio ... 565

61.2.1 Sensible Defaults .. 565
61.2.2 Dependencies.. 565
61.2.3 Build Variants ... 566
61.2.4 Manifest Entries ... 566
61.2.5 APK Signing .. 566
61.2.6 ProGuard Support .. 566

61.3 The Property and Settings Gradle Build File ... 566
61.4 The Top-level Gradle Build File ... 567
61.5 Module Level Gradle Build Files ... 568
61.6 Configuring Signing Settings in the Build File .. 571

xvi

Table of Contents

61.7 Running Gradle Tasks from the Command Line ... 572
61.8 Summary .. 572

Index ... 573

1

Chapter 1

1. Start Here
This book teaches you how to build Android applications using Jetpack Compose 1.4, Android Studio Giraffe
(2023.2.1), Material Design 3, and the Kotlin programming language.

The book begins with the basics by explaining how to set up an Android Studio development environment.

The book also includes in-depth chapters introducing the Kotlin programming language, including data types,
operators, control flow, functions, lambdas, coroutines, and object-oriented programming.

An introduction to the key concepts of Jetpack Compose and Android project architecture is followed by a
guided tour of Android Studio in Compose development mode. The book also covers the creation of custom
Composables and explains how functions are combined to create user interface layouts, including row, column,
box, flow, pager, and list components.

Other topics covered include data handling using state properties, key user interface design concepts such
as modifiers, navigation bars, and user interface navigation. Additional chapters explore building your own
reusable custom layout components.

The book covers graphics drawing, user interface animation, transitions, Kotlin Flows, and gesture handling.

Chapters also cover view models, SQLite databases, Room database access, the Database Inspector, live data,
and custom theme creation. Using in-app billing, you will also learn to generate extra revenue from your app.

Finally, the book explains how to package up a completed app and upload it to the Google Play Store for
publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code
for which is also available for download.

Assuming you already have some rudimentary programming experience, are ready to download Android Studio
and the Android SDK, and have access to a Windows, Mac, or Linux system, you are ready to start.

1.1 For Kotlin programmers
This book addresses the needs of existing Kotlin programmers and those new to Kotlin and Jetpack Compose
app development. If you are familiar with the Kotlin programming language, you can probably skip the Kotlin-
specific chapters.

1.2 For new Kotlin programmers
If you are new to Kotlin programming, the entire book is appropriate for you. Just start at the beginning and
keep going.

1.3 Downloading the code samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/compose14/index.php

The steps to load a project from the code samples into Android Studio are as follows:

https://www.ebookfrenzy.com/retail/compose14/index.php

2

Start Here

1. Click on the Open button option from the Welcome to Android Studio dialog.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.4 Feedback
We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have
any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

1.5 Errata
While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a
subject area of this size and complexity may include some errors and oversights. Any known issues with the
book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/compose14.html

If you find an error not listed in the errata, email our technical support team at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/errata/compose14.html

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on developing an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android Software Development Kit (SDK), the
Kotlin plug-in and the OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

• Windows 8/10/11 64-bit

• macOS 10.14 or later running on Intel or Apple silicon

• Chrome OS device with Intel i5 or higher

• Linux systems with version 2.31 or later of the GNU C Library (glibc)

• Minimum of 8GB of RAM

• Approximately 8GB of available disk space

• 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Giraffe 2022.3.1
using the Android API 33 SDK (Tiramisu), which, at the time of writing, are the latest stable releases.

Android Studio is, however, subject to frequent updates, so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page, which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio, there may be differences
between this book and the software. A web search for “Android Studio Giraffe” should provide the option to
download the older version if these differences become a problem. Alternatively, visit the following web page to
find Android Studio Giraffe 2022.3.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

4

Setting up an Android Studio Development Environment

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation to
meet your requirements in terms of the file system location into which Android Studio should be installed and
whether or not it should be made available to other system users. When prompted to select the components to
install, ensure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11, this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded as a disk image (.dmg) file. Once the android-studio-<version>-mac.
dmg file has been downloaded, locate it in a Finder window and double-click on it to open it, as shown in Figure
2-1:

Figure 2-1
To install the package, drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

5

Setting up an Android Studio Development Environment

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed, and execute the following command:
tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Therefore,
assuming that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory,
and execute the following command:
./studio.sh

2.4 The Android Studio setup wizard
If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click the
OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

6

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click the Finish
button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen UI theme:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

7

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Settings dialog
will appear as shown in Figure 2-5:

Figure 2-5
Google pairs each release of Android Studio with a maximum supported Application Programming Interface
(API) level of the Android SDK. In the case of Android Studio Giraffe, this is Android Tiramisu (API Level 33).
This information can be confirmed using the following link:

https://developer.android.com/studio/releases#api-level-support

Immediately after installing Android Studio for the first time, it is likely that only the latest supported version
of the Android SDK has been installed. To install older versions of the Android SDK, select the checkboxes
corresponding to the versions and click the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo).
This ensures that the apps run on a wide range of Android devices. Within the list of SDK versions, enable
the checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the OK button to install the SDK
in the resulting confirmation dialog. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

https://developer.android.com/studio/releases#api-level-support

8

Setting up an Android Studio Development Environment

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

• Android SDK Build-tools

• Android Emulator

• Android SDK Platform-tools

• Google Play Services

• Intel x86 Emulator Accelerator (HAXM installer)*

• Google USB Driver (Windows only)

• Layout Inspector image server for API 31 and 34
*Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based
Macs.

If any of the above packages are listed as Not Installed or requiring an update, select the checkboxes next to those
packages and click the Apply button to initiate the installation process. If the HAXM emulator settings dialog
appears, select the recommended memory allocation:

9

Setting up an Android Studio Development Environment

Figure 2-8
Once the installation is complete, review the package list and ensure that the selected packages are listed as
Installed in the Status column. If any are listed as Not installed, make sure they are selected and click the Apply
button again.

2.6 Installing the Android SDK Command-line Tools
Android Studio includes tools that allow some tasks to be performed from your operating system command
line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab, and locate the
Android SDK Command-line Tools (latest) package as shown in Figure 2-9:

Figure 2-9

If the command-line tools package is not already installed, enable it and click Apply, followed by OK to complete
the installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

10

Setting up an Android Studio Development Environment

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

Figure 2-10
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of
icons, select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it, and click
the Edit… button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an

11

Setting up an Android Studio Development Environment

incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
This configuration can be achieved on Linux by adding a command to the .bashrc file in your home directory
(specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file would read as
follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management
Android Studio is a large and complex software application with many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

12

Setting up an Android Studio Development Environment

Figure 2-11
To view and modify the current memory configuration, select the File -> Settings... main menu option (Android
Studio -> Settings... on macOS) and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12
When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the
currently loaded project. On the other hand, when a project is built and run from within Android Studio,
several background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option from the main menu.

2.8 Updating Android Studio and the SDK
From time to time, new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

13

Setting up an Android Studio Development Environment

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to install these packages on Windows,
macOS, and Linux.

15

Chapter 3

3. A Compose Project Overview
Now that we have installed Android Studio, the next step is to create an Android app using Jetpack Compose.
Although this project will use several Compose features, it is an intentionally simple example intended to provide
an early demonstration of Compose in action and an initial success on which to build as you work through the
remainder of the book. The project will also verify that your Android Studio environment is correctly installed
and configured.

This chapter will create a new project using the Android Studio Compose project template and explore both the
basic structure of a Compose-based Android Studio project and some of the key areas of Android Studio. The
next chapter will use this project to create a simple Android app.

Both chapters will briefly explain key features of Compose as they are introduced within the project. If anything
is unclear when you have completed the project, rest assured that all the areas covered in the tutorial will be
explored in greater detail in later chapters of the book.

3.1 About the project
The completed project will consist of two text components and a slider. When the slider is moved, the current
value will be displayed on one of the text components, while the font size of the second text instance will adjust
to match the current slider position. Once completed, the user interface for the app will appear as shown in
Figure 3-1:

Figure 3-1

16

A Compose Project Overview

3.2 Creating the project
The first step in building an app is to create a new project within Android Studio. Begin, therefore, by launching
Android Studio so that the “Welcome to Android Studio” screen appears as illustrated in Figure 3-2:

Figure 3-2
Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project button to display the first screen of the New Project wizard.

3.3 Creating an activity
The next step is to define the type of initial activity that is to be created for the application. The left-hand panel
provides a list of platform categories from which the Phone and Tablet option must be selected. Although various
activity types are available when developing Android applications, only the Empty Activity template provides a
pre-configured project ready to work with Compose. Select this option before clicking on the Next button:

Figure 3-3

17

A Compose Project Overview

3.4 Defining the project and SDK settings
In the project configuration window (Figure 3-4), set the Name field to ComposeDemo. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store:

Figure 3-4
The Package name uniquely identifies the application within the Google Play app store application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the application’s name. For example, if your domain is www.mycompany.
com, and the application has been named ComposeDemo, then the package name might be specified as follows:
com.mycompany.composedemo

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.composedemo

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in
most projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose link to see a full breakdown of the various Android versions still in use:

18

A Compose Project Overview

Figure 3-5
Finally, select Kotlin DSL (build.gradle.kts) as the build configuration language before clicking Finish to create
the project.

3.5 Enabling the New Android Studio UI
Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Giraffe
version. If your installation of Android Studio resembles Figure 3-6 below, then you will need to enable the new
UI before proceeding:

Figure 3-6
Enable the new UI by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

19

A Compose Project Overview

Figure 3-7
When prompted, restart Android Studio to activate the new user interface.

3.6 Previewing the example project
Once Android Studio has restarted, the main window will reappear using the new UI and containing our
AndroidSample project as illustrated in Figure 3-8 below:

Figure 3-8
The newly created project and references to associated files are listed in the Project tool window located on the
left-hand side of the main project window. The Project tool window has several modes in which information
can be displayed. By default, this panel should be in Android mode. This setting is controlled by the menu at
the top of the panel as highlighted in Figure 3-9. If the panel is not currently in Android mode, use the menu to
switch mode:

20

A Compose Project Overview

Figure 3-9
The code for the main activity of the project (an activity corresponds to a single user interface screen or module
within an Android app) is contained within the MainActivity.kt file located under app -> java -> com.example.
composedemo within the Project tool window as indicated in Figure 3-10:

Figure 3-10
Double-click on this file to load it into the main code editor panel. The editor can be used in different view
modes. Only the source code of the currently selected file is visible when the editor is in Code mode (as it is
in Figure 3-8 above). However, the most useful when working with Compose is Split mode. To switch between
Code and Split modes, click on the button marked A in Figure 3-11 below:

21

A Compose Project Overview

Figure 3-11
The button marked B above displays a menu that may also be used to change editor view modes:

Figure 3-12
Split mode displays the code editor (A) alongside the Preview panel (B) in which the current user interface
design will appear:

Figure 3-13

22

A Compose Project Overview

Only the Preview panel is displayed when the editor is in Design mode.

To get us started, Android Studio has already added some code to the MainActivity.kt file to display a Text
component configured to display a message which reads “Hello Android”.

If the project has not yet been built, the Preview panel will display the message shown in Figure 3-14:

Figure 3-14
If you see this notification, click on the Build & Refresh link to rebuild the project. After the build is complete,
the Preview panel should update to display the user interface defined by the code in the MainActivity.kt file:

Figure 3-15

3.7 Reviewing the main activity
Android applications are created by combining one or more elements known as Activities. An activity is a single,
standalone module of application functionality that either correlates directly to a single user interface screen
and its corresponding functionality, or acts as a container for a collection of related screens. An appointments
application might, for example, contain an activity screen that displays appointments set up for the current day.
The application might also utilize a second activity consisting of multiple screens where new appointments may
be entered by the user and existing appointments edited.

When we created the ComposeDemo project, Android Studio created a single initial activity for our app, named
it MainActivity, and generated some code for it in the MainActivity.kt file. This activity contains the first screen
that will be displayed when the app is run on a device. Before we modify the code for our requirements in the
next chapter, it is worth taking some time to review the code currently contained within the MainActivity.kt file.

The file begins with the following line (keep in mind that this may be different if you used your own domain
name instead of com.example):
package com.example.composedemo

This tells the build system that the classes and functions declared in this file belong to the com.example.
composedemo package which we configured when we created the project.

Next are a series of import directives. The Android SDK comprises a vast collection of libraries that provide the
foundation for building Android apps. If all of these libraries were included within an app the resulting app
bundle would be too large to run efficiently on a mobile device. To avoid this problem an app only imports the
libraries that it needs to be able to run:
import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

23

A Compose Project Overview

import androidx.compose.foundation.layout.fillMaxSize

import androidx.compose.material3.MaterialTheme

import androidx.compose.material3.Surface

import androidx.compose.material3.Text

.

.

Initially, the list of import directives will most likely be “folded” to save space. To unfold the list, click on the
small disclosure button indicated by the arrow in Figure 3-16 below:

Figure 3-16
The MainActivity class is then declared as a subclass of the Android ComponentActivity class:
class MainActivity : ComponentActivity() {

.

.

}

The MainActivity class implements a single method in the form of onCreate(). This is the first method that is
called when an activity is launched by the Android runtime system and is an artifact of the way apps used to be
developed before the introduction of Compose. The onCreate() method is used here to provide a bridge between
the containing activity and the Compose-based user interfaces that are to appear within it:
override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ComposeDemoTheme {

.

.

 }

 }

}

The method declares that the content of the activity’s user interface will be provided by a composable function
named ComposeDemoTheme. This composable function is declared in the Theme.kt file located under the app
-> <package name> -> ui.theme folder in the Project tool window. This, along with the other files in the ui.theme
folder defines the colors, fonts, and shapes to be used by the activity and provides a central location from which
to customize the overall theme of the app’s user interface.

The call to the ComposeDemoTheme composable function is configured to contain a Surface composable.
Surface is a built-in Compose component designed to provide a background for other composables:
ComposeDemoTheme {

 // A surface container using the 'background' color from the theme

 Surface(

24

A Compose Project Overview

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

.

.

}

In this case, the Surface component is configured to fill the entire screen and with the background set to the
standard background color defined by the Android Material Design theme. Material Design is a set of design
guidelines developed by Google to provide a consistent look and feel across all Android apps. It includes a theme
(including fonts and colors), a set of user interface components (such as button, text, and a range of text fields),
icons, and generally defines how an Android app should look, behave and respond to user interactions.

Finally, the Surface is configured to contain a composable function named Greeting which is passed a string
value that reads “Android”:
ComposeDemoTheme {

 // A surface container using the 'background' color from the theme

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 Greeting("Android")

 }

}

Outside of the scope of the MainActivity class, we encounter our first composable function declaration within
the activity. The function is named Greeting and is, unsurprisingly, marked as being composable by the @
Composable annotation:
@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {

 Text(

 text = "Hello $name!",

 modifier = modifier

)

}

The function accepts a String parameter (labeled name) and calls the built-in Text composable, passing through
a string value containing the word “Hello” concatenated with the name parameter. The function also accepts an
optional modifier parameter (a topic covered in the chapter titled “Using Modifiers in Compose”). As will soon
become evident as you work through the book, composable functions are the fundamental building blocks for
developing Android apps using Compose.

The second composable function declared in the MainActivity.kt file reads as follows:
@Preview(showBackground = true)

@Composable

fun GreetingPreview() {

 ComposeDemoTheme {

 Greeting("Android")

 }

}

25

A Compose Project Overview

Earlier in the chapter, we looked at how the Preview panel allows us to see how the user interface will appear
without having to compile and run the app. At first glance, it would be easy to assume that the preview rendering
is generated by the code in the onCreate() method. In fact, that method only gets called when the app runs
on a device or emulator. Previews are generated by preview composable functions. The @Preview annotation
associated with the function tells Android Studio that this is a preview function and that the content emitted by
the function is to be displayed in the Preview panel. As we will see later in the book, a single activity can contain
multiple preview composable functions configured to preview specific sections of a user interface using different
data values.

In addition, each preview may be configured by passing parameters to the @Preview annotation. For example,
to view the preview with the rest of the standard Android screen decorations, modify the preview annotation so
that it reads as follows:
@Preview(showSystemUi = true)

Once the preview has been updated, it should now be rendered as shown in Figure 3-17:

Figure 3-17

3.8 Preview updates
One final point worth noting is that the Preview panel is live and will automatically reflect minor changes made
to the composable functions that make up a preview. To see this in action, edit the call to the Greeting function
in the GreetingPreview() preview composable function to change the name from “Android” to “Compose”. Note
that as you make the change in the code editor, it is reflected in the preview.

More significant changes will require a build and refresh before being reflected in the preview. When this is
required, Android Studio will display the following “Out of date” notice at the top of the Preview panel and a
Build & Refresh button (indicated by the arrow in Figure 3-18):

Figure 3-18

26

A Compose Project Overview

Simply click on the button to update the preview for the latest changes. Occasionally, Android Studio will fail to
update the preview after code changes. If you believe that the preview no longer matches your code, hover the
mouse pointer over the Up-to-date status text and select Build & Refresh from the resulting menu, as illustrated
in Figure 3-19:

Figure 3-19

The Preview panel also includes an interactive mode that allows you to trigger events on the user interface
components (for example, clicking buttons, moving sliders, scrolling through lists, etc.). Since ComposeDemo
contains only an inanimate Text component at this stage, it makes more sense to introduce interactive mode in
the next chapter.

3.9 Bill of Materials and the Compose version
Although Jetpack Compose and Android Studio appear to be tightly integrated, they are two separate products
developed by different teams at Google. As a result, there is no guarantee that the most recent Android Studio
version will default to using the latest version of Jetpack Compose. It can, therefore, be helpful to know which
version of Jetpack Compose is being used by Android Studio. This is declared in a Bill of Materials (BOM)
setting within the build configuration files of your Android Studio projects.

To identify the BOM for a project, locate the Gradle Scripts -> build.gradle.kts (Module: app) file (highlighted in
the figure below) and double-click on it to load it into the editor:

Figure 3-20
With the file loaded into the editor, locate the compose-bom entry in the dependencies section:
dependencies {

.

.

27

A Compose Project Overview

 implementation(platform("androidx.compose:compose-bom:2023.03.00"))
.

.

In the above example, we can see that the project is using BOM 2023.03.00. With this information, we can use
the BOM to library version mapping web page at the following URL to identify the library versions being used
to build our app:

https://developer.android.com/jetpack/compose/bom/bom-mapping

Once the web page has loaded, select the BOM version from the menu highlighted in Figure 3-21 below. For
example, the figure shows that BOM 2023.03.00 uses version 1.4.0 of the Compose libraries:

Figure 3-21
The BOM does not currently define the versions of all the dependencies listed in the build file. Therefore, you
will see some library dependencies in the build.gradle.kts file that include a specific version number, as is the case
with the core-ktx and lifecycle-runtime-ktx libraries:
dependencies {

 implementation 'androidx.core:core-ktx:1.9.0'
 implementation 'androidx.lifecycle:lifecycle-runtime-ktx:2.6.1'
.

.

You can add specific version numbers to any libraries you add to the dependencies, though it is recommended
to rely on the BOM settings whenever possible to ensure library compatibility. However, a version number
declaration will be required when adding libraries not listed in the BOM. You can also override the BOM version
of a library by appending a version number to the declaration. The following declaration, for example, overrides
the version number in the BOM for the compose.ui library:
implementation 'androidx.compose.ui:ui:1.3.3'

3.10 Summary
In this chapter, we have created a new project using Android Studio’s Empty Activity template and explored some
of the code automatically generated for the project. We have also introduced several features of Android Studio
designed to make app development with Compose easier. The most useful features, and the places where you
will spend most of your time while developing Android apps, are the code editor and Preview panel.

While the default code in the MainActivity.kt file provides an interesting example of a basic user interface, it
bears no resemblance to the app we want to create. In the next chapter, we will modify and extend the app by
removing some of the template code and writing our own composable functions.

https://developer.android.com/jetpack/compose/bom/bom-mapping

29

Chapter 4

4. An Example Compose Project
In the previous chapter, we created a new Compose-based Android Studio project named ComposeDemo and
took some time to explore both Android Studio and some of the project code that it generated to get us started.
With those basic steps covered, this chapter will use the ComposeDemo project as the basis for a new app. This
will involve the creation of new composable functions, introduce the concept of state, and make use of the
Preview panel in interactive mode. As with the preceding chapter, key concepts explained in basic terms here
will be covered in significantly greater detail in later chapters.

4.1 Getting started
Start Android Studio if it is not already running and open the ComposeDemo project created in the previous
chapter. Once the project has loaded, double-click on the MainActivity.kt file (located in Project tool window
under app -> java -> <package name>) to open it in the code editor. If necessary, switch the editor into Split
mode so that both the editor and Preview panel are visible.

4.2 Removing the template Code
Within the MainActivity.kt file, delete some of the template code so that the file reads as follows:
package com.example.composedemo

.

.

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ComposeDemoTheme {

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 Greeting("Android")

 }

 }

 }

 }

}

@Composable

fun Greeting(name: String, modifier: Modifier = Modifier) {

 Text(

 text = "Hello $name!",

 modifier = modifier

)

30

An Example Compose Project

}

@Preview(showSystemUi = true)

@Composable

fun GreetingPreview() {

 ComposeDemoTheme {

 Greeting("Android")

 }

}

4.3 The Composable hierarchy
Before we write the composable functions that will make up our user interface, it helps to visualize the relationships
between these components. The ability of one composable to call other composables essentially allows us to
build a hierarchy tree of components. Once completed, the composable hierarchy for our ComposeDemo main
activity can be represented as shown in Figure 4-1:

Figure 4-1
All of the elements in the above diagram, except for ComponentActivity, are composable functions. Of those
functions, the Surface, Column, Spacer, Text, and Slider functions are built-in composables provided by
Compose. The DemoScreen, DemoText, and DemoSlider composables, on the other hand, are functions that we
will create to provide both structure to the design and the custom functionality we require for our app. You can
find the ComposeDemoTheme composable declaration in the ui.theme -> Theme.kt file.

4.4 Adding the DemoText composable
We are now going to add a new composable function to the activity to represent the DemoText item in the
hierarchy tree. The purpose of this composable is to display a text string using a font size value that adjusts in
real-time as the slider moves. Place the cursor beneath the final closing brace (}) of the MainActivity declaration
and add the following function declaration:
@Composable

31

An Example Compose Project

fun DemoText() {

}

The @Composable annotation notifies the build system that this is a composable function. When the function is
called, the plan is for it to be passed both a text string and the font size at which that text is to be displayed. This
means that we need to add some parameters to the function:
@Composable

fun DemoText(message: String, fontSize: Float) {
}

The next step is to make sure the text is displayed. To achieve this, we will make a call to the built-in Text
composable, passing through as parameters the message string, font size and, to make the text more prominent,
a bold font weight setting:
@Composable

fun DemoText(message: String, fontSize: Float) {

 Text(
 text = message,
 fontSize = fontSize.sp,
 fontWeight = FontWeight.Bold
)
}

Note that after making these changes, the code editor indicates that “sp” and “FontWeight” are undefined.
This happens because these are defined and implemented in libraries that have not yet been imported into
the MainActivity.kt file. One way to resolve this is to click on an undefined declaration so that it highlights as
shown below, and then press Alt+Enter (Opt+Enter on macOS) on the keyboard to import the missing library
automatically:

Figure 4-2
Alternatively, you may add the missing import statements manually to the list at the top of the file:
.

.

import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.unit.sp
.

.

In the remainder of this book, all code examples will include any required library import statements.

We have now finished writing our first composable function. Notice that, except for the font weight, all the other

32

An Example Compose Project

properties are passed to the function when it is called (a function that calls another function is generally referred
to as the caller). This increases the flexibility, and therefore re-usability, of the DemoText composable and is a key
goal to keep in mind when writing composable functions.

4.5 Previewing the DemoText composable
At this point, the Preview panel will most likely be displaying a message which reads “No preview found”. The
reason for this is that our MainActivity.kt file does not contain any composable functions prefixed with the @
Preview annotation. Add a preview composable function for DemoText to the MainActivity.kt file as follows:
@Preview

@Composable

fun DemoTextPreview() {

 ComposeDemoTheme {

 DemoText(message = "Welcome to Android", fontSize = 12f)

 }

}

After adding the preview composable, the Preview panel should have detected the change and displayed the link
to build and refresh the preview rendering. Click the link and wait for the rebuild to complete, at which point
the DemoText composable should appear as shown in Figure 4-3:

Figure 4-3
Minor changes made to the code in the MainActivity.kt file such as changing values will be instantly reflected in
the preview without the need to build and refresh. For example, change the “Welcome to Android” text literal
to “Welcome to Compose” and note that the text in the Preview panel changes as you type. Similarly, increasing
the font size literal will instantly change the size of the text in the preview. This feature is referred to as Live Edit.

4.6 Adding the DemoSlider composable
The DemoSlider composable is a little more complicated than DemoText. It will need to be passed a variable
containing the current slider position and an event handler function or lambda to call when the slider is
moved by the user so that the new position can be stored and passed to the two Text composables. With these
requirements in mind, add the function as follows:
.

.

import androidx.compose.foundation.layout.*
import androidx.compose.material3.Slider
import androidx.compose.ui.unit.dp
.

.

@Composable
fun DemoSlider(sliderPosition: Float, onPositionChange: (Float) -> Unit) {
 Slider(
 modifier = Modifier.padding(10.dp),

33

An Example Compose Project

 valueRange = 20f..38f,
 value = sliderPosition,
 onValueChange = { onPositionChange(it) }
)
}

The DemoSlider declaration contains a single Slider composable which is, in turn, passed four parameters. The
first is a Modifier instance configured to add padding space around the slider. Modifier is a Kotlin class built into
Compose which allows a wide range of properties to be set on a composable within a single object. Modifiers can
also be created and customized in one composable before being passed to other composables where they can be
further modified before being applied.

The second value passed to the Slider is a range allowed for the slider value (in this case the slider is limited to
values between 20 and 38).

The next parameter sets the value of the slider to the position passed through by the caller. This ensures that each
time DemoSlider is recomposed it retains the last position value.

Finally, we set the onValueChange parameter of the Slider to call the function or lambda we will be passing to the
DemoSlider composable when we call it later. Each time the slider position changes, the call will be made and
passed the current value which we can access via the Kotlin it keyword. We can further simplify this by assigning
just the event handler parameter name (onPositionChange) and leaving the compiler to handle the passing of
the current value for us:

onValueChange = onPositionChange

4.7 Adding the DemoScreen composable
The next step in our project is to add the DemoScreen composable. This will contain a variable named
sliderPosition in which to store the current slider position and the implementation of the handlePositionChange
event handler to be passed to the DemoSlider. This lambda will be responsible for storing the current position
in the sliderPosition variable each time it is called with an updated value. Finally, DemoScreen will contain a
Column composable configured to display the DemoText, Spacer, DemoSlider and the second, as yet to be
added, Text composable in a vertical arrangement.

Start by adding the DemoScreen function as follows:
.

.

import androidx.compose.runtime.*
.

.

@Composable
fun DemoScreen() {

 var sliderPosition by remember { mutableStateOf(20f) }

 val handlePositionChange = { position : Float ->
 sliderPosition = position
 }
}

34

An Example Compose Project

The sliderPosition variable declaration requires some explanation. As we will learn later, the Compose system
repeatedly and rapidly recomposes user interface layouts in response to data changes. The change of slider
position will, therefore, cause DemoScreen to be recomposed along with all of the composables it calls. Consider
if we had declared and initialized our sliderPosition variable as follows:
var sliderPosition = 20f

Suppose the user slides the slider to position 21. The handlePositionChange event handler is called and stores the
new value in the sliderPosition variable as follows:
val handlePositionChange = { position : Float ->

 sliderPosition = position

}

The Compose runtime system detects this data change and recomposes the user interface, including a call to the
DemoScreen function. This will, in turn, reinitialize the sliderposition target state causing the previous value of
21 to be lost. Declaring the sliderPosition variable in this way informs Compose that the current value needs to
be remembered during recompositions:

var sliderPosition by remember { mutableStateOf(20f) }

The only remaining work within the DemoScreen implementation is to add a Column containing the required
composable functions:
.

.

import androidx.compose.ui.Alignment
.

.

@Composable

fun DemoScreen() {

 var sliderPosition by remember { mutableStateOf(20f) }

 val handlePositionChange = { position : Float ->

 sliderPosition = position

 }

 Column(
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Center,
 modifier = Modifier.fillMaxSize()
) {

 DemoText(message = "Welcome to Compose", fontSize = sliderPosition)

 Spacer(modifier = Modifier.height(150.dp))

 DemoSlider(
 sliderPosition = sliderPosition,
 onPositionChange = handlePositionChange

35

An Example Compose Project

)

 Text(
 style = MaterialTheme.typography.headlineMedium,
 text = sliderPosition.toInt().toString() + "sp"
)
 }
}

Points to note regarding these changes may be summarized as follows:

• When DemoSlider is called, it is passed a reference to our handlePositionChange event handler as the
onPositionChange parameter.

• The Column composable accepts parameters that customize layout behavior. In this case, we have configured
the column to center its children both horizontally and vertically.

• A Modifier has been passed to the Spacer to place a 150dp vertical space between the DemoText and
DemoSlider components.

• The second Text composable is configured to use the headlineMedium style of the Material theme. In addition,
the sliderPosition value is converted from a Float to an integer so that only whole numbers are displayed and
then converted to a string value before being displayed to the user.

4.8 Previewing the DemoScreen composable
To confirm that the DemoScreen layout meets our expectations, we need to modify the DemoTextPreview
composable:
.

.

@Preview(showSystemUi = true)
@Composable

fun DemoTextPreview() {

 ComposeDemoTheme {

 DemoScreen()
 }

}

Note that we have enabled the showSystemUi property of the preview so that we will experience how the app will
look when running on an Android device.

After performing a preview rebuild and refresh, the user interface should appear as originally shown in Figure
3-1.

4.9 Adjusting preview settings
The showSystemUi preview property is only one of many preview configuration options provided by Android
Studio. In addition, properties are available to change configuration settings, such as the device type, screen
size, orientation, API level, and locale. To access these configuration settings, click on the Preview configuration
picker button located in the gutter to the left of the @Preview line in the code editor, as shown in Figure 4-4:

36

An Example Compose Project

Figure 4-4
When the button is clicked, the panel shown in Figure 4-5 will appear, from which the full range of preview
configuration settings is available:

Figure 4-5

4.10 Testing in interactive mode
At this stage, we know that the user interface layout for our activity looks how we want it to, but we don’t know if
it will behave as intended. One option is to run the app on an emulator or physical device (topics covered in later
chapters). A quicker option, however, is to switch the preview panel into interactive mode. To start interactive
mode, hover the mouse pointer over the area above the preview canvas so that the two buttons shown in Figure
4-6 appear and click on the left-most button:

37

An Example Compose Project

Figure 4-6
When clicked, there will be a short delay when interactive mode starts, after which it should be possible to move
the slider and watch the two Text components update:

Figure 4-7
Click the button (highlighted in Figure 4-8 below) to exit interactive mode:

Figure 4-8

4.11 Completing the project
The final step is to make sure that the DemoScreen composable is called from within the Surface function
located in the onCreate() method of the MainActivity class. Locate this method and modify it as follows:
.

.

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ComposeDemoTheme {

 Surface(

38

An Example Compose Project

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colorScheme.background

) {

 DemoScreen()
 }

 }

 }

 }

}

This will ensure that, in addition to appearing in the preview panel, our user interface will also be displayed
when the app runs on a device or emulator (a topic that will be covered in later chapters).

4.12 Summary
In this chapter, we have extended our ComposeDemo project to include some additional user interface elements
in the form of two Text composables, a Spacer, and a Slider. These components were arranged vertically using
a Column composable. We also introduced the concept of mutable state variables and explained how they are
used to ensure that the app remembers state when the Compose runtime performs recompositions. The example
also demonstrated how to use event handlers to respond to user interaction (in this case, the user moving a
slider). Finally, we made use of the Preview panel in interactive mode to test the app without the need to compile
and run it on an emulator or physical device.

51

Chapter 6

6. Using and Configuring the
Android Studio AVD Emulator
Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features available to
customize the environment in both standalone and tool window modes.

6.1 The Emulator Environment
When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears, containing a representation of the chosen device type (in the
case of Figure 6-1, this is a Pixel 4 device):

Figure 6-1
The toolbar positioned along the right-hand edge of the window provides quick access to the emulator controls
and configuration options.

6.2 Emulator Toolbar Options
The emulator toolbar (Figure 6-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

52

Using and Configuring the Android Studio AVD Emulator

Figure 6-2
Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

• Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the emulator session when selected, while the
‘-’ option minimizes the entire window.

• Power – The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power off ” request sequence.

• Volume Up / Down – Two buttons that control the audio volume of playback within the simulator environment.

• Rotate Left/Right – Rotates the emulated device between portrait and landscape orientations.

• Take Screenshot – Takes a screenshot of the content displayed on the device screen. The captured image is
stored at the location specified in the Settings screen of the extended controls panel, as outlined later in this
chapter.

• Zoom Mode – This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

• Back – Performs the standard Android “Back” navigation to return to a previous screen.

• Home – Displays the device’s home screen.

• Overview – Simulates selection of the standard Android “Overview” navigation, which displays the currently
running apps on the device.

53

Using and Configuring the Android Studio AVD Emulator

• Fold Device – Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

• Extended Controls – Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

6.3 Working in Zoom Mode
The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active,
the toolbar button is depressed, and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode, the screen’s visible area may be panned using the horizontal and vertical scrollbars located
within the emulator window.

6.4 Resizing the Emulator Window
The emulator window’s size (and the device’s corresponding representation) can be changed at any time by
clicking and dragging on any of the corners or sides of the window.

6.5 Extended Control Options
The extended controls toolbar button displays the panel illustrated in Figure 6-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 6-3

54

Using and Configuring the Android Studio AVD Emulator

6.5.1 Location
The location controls allow simulated location information to be sent to the emulator as decimal or sexigesimal
coordinates. Location information can take the form of a single location or a sequence of points representing
the device’s movement, the latter being provided via a file in either GPS Exchange (GPX) or Keyhole Markup
Language (KML) format. Alternatively, the integrated Google Maps panel may be used to select single points or
travel routes visually.

6.5.2 Displays
In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

6.5.3 Cellular
The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc.) in addition to a range of voice and data
scenarios, such as roaming and denied access.

6.5.4 Battery
Various battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

6.5.5 Camera
The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

6.5.6 Phone
The phone extended controls provide two straightforward but helpful simulations within the emulator. The first
option simulates an incoming call from a designated phone number. This can be particularly useful when testing
how an app handles high-level interrupts.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

6.5.7 Directional Pad
A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

6.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

6.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on configuring fingerprint testing within the emulator will be covered later in this
chapter.

55

Using and Configuring the Android Studio AVD Emulator

6.5.10 Virtual Sensors
The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device, such as rotation, movement, and tilting through yaw, pitch, and roll settings.

6.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be saved and rapidly restored, making it
easy to return the emulator to an exact state. Snapshots are covered later in this chapter.

6.5.12 Record and Playback
Allows the emulator screen and audio to be recorded and saved in WebM or animated GIF format.

6.5.13 Google Play
If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version. It also provides the option to update the emulator to the latest version.

6.5.14 Settings
The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

6.5.15 Help
The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

6.6 Working with Snapshots
When an emulator starts for the first time, it performs a cold boot, much like a physical Android device when
powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory, and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can store additional snapshots at any point during the
execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be restored
to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken using the
Take Snapshot button (marked A in Figure 6-4). To restore an existing snapshot, select it from the list (B) and
click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the snapshot
name and description and to delete (E) the currently selected snapshot:

56

Using and Configuring the Android Studio AVD Emulator

Figure 6-4
You can also choose whether to start an emulator using either a cold boot, the most recent quick-boot snapshot,
or a previous snapshot by making a selection from the run target menu in the main toolbar, as illustrated in
Figure 6-5:

Figure 6-5

6.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. Configuring simulated fingerprints begins by launching the emulator, opening the Settings
app, and selecting the Security option.

Within the Security settings screen, select the fingerprint option. On the resulting information screen, click on

57

Using and Configuring the Android Studio AVD Emulator

the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled, a backup
screen unlocking method (such as a PIN) must be configured. Enter and confirm a suitable PIN and complete
the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point,
display the extended controls dialog, select the Fingerprint category in the left-hand panel, and make sure that
Finger 1 is selected in the main settings panel:

Figure 6-6
Click on the Touch Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will report
the successful addition of the fingerprint:

Figure 6-7
To add additional fingerprints, click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch Sensor button again.

58

Using and Configuring the Android Studio AVD Emulator

6.8 The Emulator in Tool Window Mode
As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator in an embedded tool window so that it does not appear in a
separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar, as shown in Figure 6-8:

Figure 6-8
From left to right, these buttons perform the following tasks (details of which match those for standalone mode):

• Power

• Volume Up

• Volume Down

• Rotate Left

• Rotate Right

• Back

• Home

• Overview

• Screenshot

• Snapshots

• Extended Controls

6.9 Creating a Resizable Emulator
In addition to emulators configured to match specific Android device models, Android Studio also provides a
resizable AVD that allows you to switch between phone, tablet, and foldable device sizes. To create a resizable
emulator, open the Device Manager and click the Create device button. Next, select the Resizable device definition
illustrated in Figure 6-9, and follow the usual steps to create a new AVD:

Figure 6-9

59

Using and Configuring the Android Studio AVD Emulator

When you run an app on the new emulator within a tool window, the Display mode option will appear in the
toolbar, allowing you to switch between emulator configurations as shown in Figure 6-10:

Figure 6-10
If the emulator is running in standalone mode, the Display mode option can be found in the side toolbar, as
shown below:

Figure 6-11
Once a foldable display mode has been selected, the Change posture menu may be used to test the app in open,
closed, and half-open configurations:

60

Using and Configuring the Android Studio AVD Emulator

Figure 6-12

6.10 Summary
Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without running them on a physical Android device. This chapter has provided a brief tour of
the emulator and highlighted key features available to configure and customize the environment to simulate
different testing conditions.

95

Chapter 11

11. An Introduction to Kotlin
Android development is performed primarily using Android Studio which is, in turn, based on the IntelliJ IDEA
development environment created by a company named JetBrains. Before the release of Android Studio 3.0, all
Android apps were written using Android Studio and the Java programming language (with some occasional
C++ code when needed).

Since the introduction of Android Studio 3.0, however, developers now have the option of creating Android apps
using another programming language called Kotlin. Although detailed coverage of all features of this language
is beyond the scope of this book (entire books can and have been written covering solely Kotlin), the objective
of this and the following six chapters is to provide enough information to begin programming in Kotlin and
quickly get up to speed developing Android apps using this programming language.

11.1 What is Kotlin?
Named after an island located in the Baltic Sea, Kotlin is a programming language created by JetBrains and
follows Java in the tradition of naming programming languages after islands. Kotlin code is intended to be easier
to understand and write and also safer than many other programming languages. The language, compiler, and
related tools are all open source and available for free under the Apache 2 license.

The primary goals of the Kotlin language are to make code both concise and safe. Code is generally considered
concise when it can be easily read and understood. Conciseness also plays a role when writing code, allowing
code to be written more quickly and with greater efficiency. In terms of safety, Kotlin includes several features
that improve the chances that potential problems will be identified when the code is being written instead of
causing runtime crashes.

A third objective in the design and implementation of Kotlin involves interoperability with Java.

11.2 Kotlin and Java
Originally introduced by Sun Microsystems in 1995 Java is still by far the most popular programming language
in use today. Until the introduction of Kotlin, it is quite likely that every Android app available on the market
was written in Java. Since acquiring the Android operating system, Google has invested heavily in tuning and
optimizing compilation and runtime environments for running Java-based code on Android devices.

Rather than try to re-invent the wheel, Kotlin is designed to both integrate with and work alongside Java. When
Kotlin code is compiled it generates the same bytecode as that generated by the Java compiler enabling projects
to be built using a combination of Java and Kotlin code. This compatibility also allows existing Java frameworks
and libraries to be used seamlessly from within Kotlin code and also for Kotlin code to be called from within
Java.

Kotlin’s creators also acknowledged that while there were ways to improve on existing languages, there are many
features of Java that did not need to be changed. Consequently, those familiar with programming in Java will
find many of these skills to be transferable to Kotlin-based development. Programmers with Swift programming
experience will also find much that is familiar when learning Kotlin.

11.3 Converting from Java to Kotlin
Given the high level of interoperability between Kotlin and Java, it is not essential to convert existing Java code
to Kotlin since these two languages will comfortably co-exist within the same project. That being said, Java code

96

An Introduction to Kotlin

can be converted to Kotlin from within Android Studio using a built-in Java to Kotlin converter. To convert an
entire Java source file to Kotlin, load the file into the Android Studio code editor and select the Code -> Convert
Java File to Kotlin File menu option. Alternatively, blocks of Java code may be converted to Kotlin by cutting the
code and pasting it into an existing Kotlin file within the Android Studio code editor. Note when performing
Java to Kotlin conversions that the Java code will not always convert to the best possible Kotlin code and that
time should be taken to review and tidy up the code after conversion.

11.4 Kotlin and Android Studio
Support for Kotlin is provided within Android Studio via the Kotlin Plug-in which is integrated by default into
Android Studio 3.0 or later.

11.5 Experimenting with Kotlin
When learning a new programming language, it is often useful to be able to enter and execute snippets of code.
One of the best ways to do this with Kotlin is to use the Kotlin Playground (Figure 11-1) located at https://play.
kotlinlang.org:

Figure 11-1
In addition to providing an environment in which Kotlin code may be quickly entered and executed, the
playground also includes a set of examples and tutorials demonstrating key Kotlin features in action.

Try out some Kotlin code by opening a browser window, navigating to the playground, and entering the following
into the main code panel:
fun main(args: Array<String>) {

 println("Welcome to Kotlin")

 for (i in 1..8) {

 println("i = $i")

 }

}

After entering the code, click on the Run button and note the output in the console panel:

https://play.kotlinlang.org/
https://play.kotlinlang.org/

97

An Introduction to Kotlin

Figure 11-2

11.6 Semi-colons in Kotlin
Unlike programming languages such as Java and C++, Kotlin does not require semi-colons at the end of each
statement or expression line. The following, therefore, is valid Kotlin code:
val mynumber = 10

println(mynumber)

Semi-colons are only required when multiple statements appear on the same line:
val mynumber = 10; println(mynumber)

11.7 Summary
For the first time since the Android operating system was introduced, developers now have an alternative to
writing apps in Java code. Kotlin is a programming language developed by JetBrains, the company that created
the development environment on which Android Studio is based. Kotlin is intended to make code safer and
easier to understand and write. Kotlin is also highly compatible with Java, allowing Java and Kotlin code to
co-exist within the same projects. This interoperability ensures that most of the standard Java and Java-based
Android libraries and frameworks are available for use when developing using Kotlin.

Kotlin support for Android Studio is provided via a plug-in bundled with Android Studio 3.0 or later. This plug-
in also provides a converter to translate Java code to Kotlin.

When learning Kotlin, the online playground provides a useful environment for quickly trying out Kotlin code.

109

Chapter 13

13. Kotlin Operators and Expressions
So far we have looked at using variables and constants in Kotlin and also described the different data types. Being
able to create variables is only part of the story, however. The next step is to learn how to use these variables in
Kotlin code. The primary method for working with data is in the form of expressions.

13.1 Expression syntax in Kotlin
The most basic expression consists of an operator, two operands, and an assignment. The following is an example
of an expression:
val myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=)
subsequently assigns the result of the addition to a variable named myresult. The operands could just have easily
been variables (or a mixture of values and variables) instead of the actual numerical values used in the example.

In the remainder of this chapter, we will look at the basic types of operators available in Kotlin.

13.2 The Basic assignment operator
We have already looked at the most basic of assignment operators, the = operator. This assignment operator
simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands.
The left-hand operand is the variable to which a value is to be assigned and the right-hand operand is the value
to be assigned. The right-hand operand is, more often than not, an expression that performs some type of
arithmetic or logical evaluation or a call to a function, the result of which will be assigned to the variable. The
following examples are all valid uses of the assignment operator:
var x: Int // Declare a mutable Int variable

val y = 10 // Declare and initialize an immutable Int variable

x = 10 // Assign a value to x

x = x + y // Assign the result of x + y to x

x = y // Assign the value of y to x

13.3 Kotlin arithmetic operators
Kotlin provides a range of operators for creating mathematical expressions. These operators primarily fall into
the category of binary operators in that they take two operands. The exception is the unary negative operator (-)
which serves to indicate that a value is negative rather than positive. This contrasts with the subtraction
operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Kotlin arithmetic operators:

Operator Description
-(unary) Negates the value of a variable or expression
* Multiplication

110

Kotlin Operators and Expressions

/ Division
+ Addition
- Subtraction
% Remainder/Modulo

Table 13-1
Note that multiple operators may be used in a single expression.

For example:
x = y * 10 + z - 5 / 4

13.4 Augmented assignment operators
In an earlier section, we looked at the basic assignment operator (=). Kotlin provides several operators designed
to combine an assignment with a mathematical or logical operation. These are primarily of use when performing
an evaluation where the result is to be stored in one of the operands. For example, one might write an expression
as follows:
x = x + y

The above expression adds the value contained in variable x to the value contained in variable y and stores the
result in variable x. This can be simplified using the addition augmented assignment operator:
x += y

The above expression performs the same task as x = x + y but saves the programmer some typing.

Numerous augmented assignment operators are available in Kotlin. The most frequently used of which are
outlined in the following table:

Operator Description
x += y Add x to y and place result in x
x -= y Subtract y from x and place result in x
x *= y Multiply x by y and place result in x
x /= y Divide x by y and place result in x
x %= y Perform Modulo on x and y and place result in x

Table 13-2

13.5 Increment and decrement operators
Another useful shortcut can be achieved using the Kotlin increment and decrement operators (also referred to
as unary operators because they operate on a single operand). Consider the code fragment below:
x = x + 1 // Increase value of variable x by 1

x = x - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of using this approach, however, it is
quicker to use the ++ and -- operators. The following examples perform the same tasks as the examples above:
x++ // Increment x by 1

x-- // Decrement x by 1

These operators can be placed either before or after the variable name. If the operator is placed before the
variable name, the increment or decrement operation is performed before any other operations are performed
on the variable. For example, in the following code, x is incremented before it is assigned to y, leaving y with a

111

Kotlin Operators and Expressions

value of 10:
var x = 9

val y = ++x

In the next example, however, the value of x (9) is assigned to variable y before the decrement is performed. After
the expression is evaluated the value of y will be 9 and the value of x will be 8.
var x = 9

val y = x--

13.6 Equality operators
Kotlin also includes a set of logical operators useful for performing comparisons. These operators all return a
Boolean result depending on the result of the comparison. These operators are binary operators in that they work
with two operands.

Equality operators are most frequently used in constructing program control flow logic. For example
an if statement may be constructed based on whether one value matches another:
if (x == y) {

 // Perform task

}

The result of a comparison may also be stored in a Boolean variable. For example, the following code will result
in a true value being stored in the variable result:
var result: Boolean

val x = 10

val y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full
set of Kotlin comparison operators:

Operator Description
x == y Returns true if x is equal to y
x > y Returns true if x is greater than y
x >= y Returns true if x is greater than or equal to y
x < y Returns true if x is less than y
x <= y Returns true if x is less than or equal to y
x != y Returns true if x is not equal to y

Table 13-3

13.7 Boolean logical operators
Kotlin also provides a set of so-called logical operators designed to return Boolean true or false values. These
operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!),
AND (&&), and OR (||).

The NOT (!) operator simply inverts the current value of a Boolean variable or the result of an expression. For
example, if a variable named flag is currently true, prefixing the variable with a ‘!’ character will invert the value
to false:
val flag = true // variable is true

112

Kotlin Operators and Expressions

val secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true, otherwise, it returns false. For
example, the following code evaluates to true because at least one of the expressions on either side of the OR
operator is true:
if ((10 < 20) || (20 < 10)) {

 print("Expression is true")

}

The AND (&&) operator returns true only if both operands evaluate to be true. The following example will
return false because only one of the two operand expressions evaluates to true:
if ((10 < 20) && (20 < 10)) {

 print("Expression is true")

}

13.8 Range operator
Kotlin includes a useful operator that allows a range of values to be declared. As will be seen in later chapters,
this operator is invaluable when working with looping in program logic.

The syntax for the range operator is as follows:
x..y

This operator represents the range of numbers starting at x and ending at y where both x and y are included
within the range (referred to as a closed range). The range operator 5..8, for example, specifies the numbers 5,
6, 7, and 8.

13.9 Bitwise operators
As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros,
each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Kotlin
provides a range of bit operators.

Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C, and Java will find
nothing new in this area of the Kotlin language syntax. For those unfamiliar with binary numbers, now may be
a good time to seek out reference materials on the subject to understand how ones and zeros are formed into
bytes to form numbers. Other authors have done a much better job of describing the subject than we can do
within the scope of this book.

For this exercise, we will be working with the binary representation of two numbers. First, the decimal number
171 is represented in binary as:
10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to look at the Kotlin bitwise operators:

13.9.1 Bitwise inversion
The Bitwise inversion (also referred to as NOT) is performed using the inv() operation and has the effect of
inverting all of the bits in a number. In other words, all the zeros become ones and all the ones become zeros.
Taking our example 3 number, a Bitwise NOT operation has the following result:
00000011 NOT

113

Kotlin Operators and Expressions

========

11111100

The following Kotlin code, therefore, results in a value of -4:
val y = 3

val z = y.inv()

print("Result is $z")

13.9.2 Bitwise AND
The Bitwise AND is performed using the and() operation. It makes a bit-by-bit comparison of two numbers. Any
corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing in
the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result.
Taking our two example numbers, this would appear as follows:
10101011 AND

00000011

========

00000011

As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in
Kotlin code, therefore, we should find that the result is 3 (00000011):
val x = 171

val y = 3

val z = x.and(y)

print("Result is $z")

13.9.3 Bitwise OR
The bitwise OR also performs a bit-by-bit comparison of two binary sequences. Unlike the AND operation, the
OR places a 1 in the result if there is a 1 in the first or second operand. Using our example numbers, the result
will be as follows:
10101011 OR

00000011

========

10101011

If we perform this operation in Kotlin using the or() operation the result will be 171:
val x = 171

val y = 3

val z = x.or(y)

print("Result is $z")

13.9.4 Bitwise XOR
The bitwise XOR (commonly referred to as exclusive OR and performed using the xor() operation) performs a
similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions
in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For
example:
10101011 XOR

114

Kotlin Operators and Expressions

00000011

========

10101000

The result, in this case, is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some
Kotlin code:
val x = 171

val y = 3

val z = x.xor(y)

print("Result is $z")

When executed, we get the following output from print:
Result is 168

13.9.5 Bitwise left shift
The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an
integer one position to the left has the effect of doubling the value.

As the bits are shifted to the left, zeros are placed in the vacated rightmost (low order) positions. Note also that
once the leftmost (high order) bits are shifted beyond the size of the variable containing the value, those high
order bits are discarded:
10101011 Left Shift one bit

========

101010110

In Kotlin the bitwise left shift operator is performed using the shl() operation, passing through the number of bit
positions to be shifted. For example, to shift left by 1 bit:
val x = 171

val z = x.shl(1)

print("Result is $z")

When compiled and executed, the above code will display a message stating that the result is 342 which, when
converted to binary, equates to 101010110.

13.9.6 Bitwise right shift
A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite
direction. Shifting an integer one position to the right has the effect of halving the value.

Note that since we are shifting to the right there is no opportunity to retain the lowermost bits regardless of the
data type used to contain the result. As a result, the low order bits are discarded. Whether or not the vacated high
order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive and
negative numbers is set or not.
10101011 Right Shift one bit

========

01010101

The bitwise right shift is performed using the shr() operation passing through the shift count:
val x = 171

115

Kotlin Operators and Expressions

val z = x.shr(1)

print("Result is $z")

When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

13.10 Summary
Operators and expressions provide the underlying mechanism by which variables and constants are manipulated
and evaluated within Kotlin code. This can take the simplest of forms whereby two numbers are added using the
addition operator in an expression and the result stored in a variable using the assignment operator. Operators
fall into a range of categories, details of which have been covered in this chapter.

201

Chapter 25

25. Annotated Strings and Brush
Styles
The previous chapter explored how we use modifiers to change the appearance and behavior of composables.
Many examples used to demonstrate modifiers involved the Text composable, performing tasks such as changing
the font type, size, and weight. This chapter will introduce another powerful text-related feature of Jetpack
Compose, known as annotated strings. We will also look at brush styles and how they can be used to add more
effects to the text in a user interface.

25.1 What are annotated strings?
The previous chapter’s modifier examples changed the appearance of the entire string displayed by a Text
composable. For instance, we could not display part one part of the text in bold while another section was in
italics. It is for this reason that Jetpack Compose includes the annotated strings.

Annotated strings allow a text to be divided into multiple sections, each with its own style.

25.2 Using annotated strings
An AnnotatedString instance is created by calling the buildAnnotatedString function and passing it the text and
styles to be displayed. These string sections are combined via calls to the append function to create the complete
text to be displayed.

Two style types are supported, the first of which, SpanStyle, is used to apply styles to a span of individual
characters within a string. The syntax for building an annotated string using SpanStyle is as follows:
buildAnnotatedString {

 withStyle(style = SpanStyle(/* style settings */)) {

 append(/* text string */)

 }

 withStyle(style = SpanStyle(/* style settings */)) {

 append(/* more text */)

 }

.

.

}

A SpanStyle instance can be initialized with any combination of the following style options:

• color

• fontSize

• fontWeight

• fontStyle

202

Annotated Strings and Brush Styles

• fontSynthesis

• fontFamily

• fontFeatureSettings

• letterSpacing

• baselineShift,

• textGeometricTransform

• localeList

• background

• textDecoration

• shadow

ParagraphStyle, on the other hand, applies a style to paragraphs and can be used to modify the following
properties:

• textAlign

• textDirection

• lineHeight

• textIndent

The following is the basic syntax for using paragraph styles in annotated strings:
buildAnnotatedString {

 withStyle(style = ParagraphStyle(/* style settings */)) {

 append(/* text string */)

 }

 withStyle(style = ParagraphStyle(/* style settings */))

 append(/* more text */)

 }

.

.

}

25.3 Brush Text Styling
Additional effects may be added to any text by using the Compose Brush styling. Brush effects can be applied
directly to standard text strings or selectively to segments of an annotated string. For example, the following
syntax applies a radial color gradient to a Text composable (color gradients will be covered in the chapter entitled
“Canvas Graphics Drawing in Compose”):
val myColors = listOf(/* color list */)

Text(

 text = "text here",

203

Annotated Strings and Brush Styles

 style = TextStyle(

 brush = Brush.radialGradient(

 colors = myColors

)

)

)

25.4 Creating the example project
Launch Android Studio and select the New Project option from the welcome screen. Choose the Empty Activity
template within the New Project dialog before clicking the Next button.

Enter StringsDemo into the Name field and specify com.example.stringsdemo as the package name. Before
clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo). Once the
project has been created, the StringsDemo project should be listed in the Project tool window along the left-
hand edge of the Android Studio main window.

Within the MainActivity.kt file, delete the Greeting function and add a new empty composable named
MainScreen:
@Composable

fun MainScreen() {

}

Next, edit the OnCreate() method and GreetingPreview function to call MainScreen instead of Greeting.

25.5 An example SpanStyle annotated string
The first example we will create uses SpanStyle to build an annotated string consisting of multiple color and font
styles.

Begin by editing the MainActivity.kt file and modifying the MainScreen function to read as follows:
.

.

import androidx.compose.ui.graphics.Color
import androidx.compose.ui.text.buildAnnotatedString
import androidx.compose.ui.text.withStyle
import androidx.compose.ui.text.SpanStyle
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.text.font.FontStyle
import androidx.compose.foundation.layout.Column
import androidx.compose.ui.unit.sp
.

.

@Composable

fun MainScreen() {

 Column {
 SpanString()
 }
}

204

Annotated Strings and Brush Styles

Next, add the SpanString declaration to the MainActivity.kt file as follows:
@Composable

fun SpanString() {

 Text(

 buildAnnotatedString {

 withStyle(

 style = SpanStyle(fontWeight = FontWeight.Bold,

 fontSize = 30.sp)) {

 append("T")

 }

 withStyle(style = SpanStyle(color = Color.Gray)) {

 append("his")

 }

 append(" is ")

 withStyle(

 style = SpanStyle(

 fontWeight = FontWeight.Bold,

 fontStyle = FontStyle.Italic,

 color = Color.Blue

)

) {

 append("great!")

 }

 }

)

}

The example code creates an annotated string in three parts using several span styles for each section. After
making these changes, refer to the Preview panel, where the text should appear as shown in Figure 25-1:

Figure 25-1

25.6 An example ParagraphStyle annotated string
Now that we have seen how to create a span-style annotated string, the next step is to build a paragraph-
style string. Remaining in the MainActivity.kt file, make the following changes to add a new function named
ParaString and to call it from the MainScreen function:
.

.

import androidx.compose.ui.text.ParagraphStyle

205

Annotated Strings and Brush Styles

import androidx.compose.ui.text.style.TextAlign
import androidx.compose.ui.text.style.TextIndent
.

.

@Composable

fun MainScreen() {

 Column {

 SpanString()

 ParaString()
 }

}

@Composable
fun ParaString() {

 Text(
 buildAnnotatedString {
 append(
 "\nThis is some text that doesn't have any style applied to
it.\n")
 })
}

The above code gives us an unmodified paragraph against which we can compare the additional paragraphs we
will add. Next, modify the function to add an indented paragraph with an increased line height:
@Composable

fun ParaString() {

 Text(

 buildAnnotatedString {

 append("\nThis is some text that doesn't have any style applied to
it.\n")

 withStyle(style = ParagraphStyle(
 lineHeight = 30.sp,
 textIndent = TextIndent(
 firstLine = 60.sp,
 restLine = 25.sp))
) {
 append("This is some text that is indented more on the first lines
than the rest of the lines. It also has an increased line height.\n")
 }
 })

}

When the preview is rendered, it should resemble Figure 25-2 (note that we specified different indents for the

206

Annotated Strings and Brush Styles

first and remaining lines):

Figure 25-2
Next, add a third paragraph that uses right alignment as follows:
@Composable

fun ParaString() {

.

.

 append("This is some text that is indented more on the first lines
than the rest of the lines. It also has an increased line height.\n")

 }

 withStyle(style = ParagraphStyle(textAlign = TextAlign.End)) {
 append("This is some text that is right aligned.")
 }
 })

}

This change should result in the following preview:

Figure 25-3

207

Annotated Strings and Brush Styles

25.7 A Brush style example
The final example in this tutorial involves using the Brush style to change the text’s appearance. First, add another
function to the MainActivity.kt file and call it from within the MainScreen function:
.

.

import androidx.compose.ui.graphics.Brush
import androidx.compose.ui.text.ExperimentalTextApi
.

.

@Composable

fun MainScreen() {

 Column {

 SpanString()

 ParaString()

 BrushStyle()
 }

}

@OptIn(ExperimentalTextApi::class)
@Composable
fun BrushStyle() {

}

We will begin by declaring a list of colors and use a span style to display large, bold text as follows:
@OptIn(ExperimentalTextApi::class)

@Composable

fun BrushStyle() {

 val colorList: List<Color> = listOf(Color.Red, Color.Blue,
 Color.Magenta, Color.Yellow, Color.Green, Color.Red)

 Text(
 text = buildAnnotatedString {

 withStyle(
 style = SpanStyle(
 fontWeight = FontWeight.Bold,
 fontSize = 70.sp
)
) {
 append("COMPOSE!")
 }
 }
)

208

Annotated Strings and Brush Styles

}

All that remains is to apply a linearGradient brush to the style, using the previously declared color list:
@OptIn(ExperimentalTextApi::class)

@Composable

fun BrushStyle() {

 Text(

 text = buildAnnotatedString {

 withStyle(

 style = SpanStyle(

 fontWeight = FontWeight.Bold,

 fontSize = 70.sp,
 brush = Brush.linearGradient(colors = colorList)
)

) {

 append("COMPOSE!")

.

.

After completing the above changes, check that the new text appears in the preview panel as illustrated in Figure
39-3:

Figure 25-4

25.8 Summary
While modifiers provide a quick and convenient way to make changes to the appearance of text in a user
interface, they do not support multiple styles within a single string. On the other hand, annotated strings provide
greater flexibility in changing the appearance of text. Annotated strings are built using the buildAnnotatedString
function and can be configured using either span or paragraph styles. Another option for altering how text
appears is using the Brush style to change the text foreground creatively, such as using color gradients.

223

Chapter 27

27. Box Layouts in Compose
Now that we have an understanding of the Compose Row and Column composables, we will move on to look
at the third layout type provided by Compose in the form of the Box component. This chapter will introduce
the Box layout and explore some key parameters and modifiers available when designing user interface layouts.

27.1 An introduction to the Box composable
Unlike the Row and Column, which organize children in a horizontal row or vertical column, the Box layout
stacks its children on top of each other. The stacking order is defined by the order in which the children are
called within the Box declaration, with the first child positioned at the bottom of the stack. As with the Row
and Column layouts, Box is provided with several parameters and modifiers we can use to customize the layout.

27.2 Creating the BoxLayout project
Begin by launching Android Studio and, if necessary, closing any currently open projects using the File -> Close
Project menu option so that the Welcome screen appears.

Select the New Project option from the welcome screen, and when the new project dialog appears, choose the
Empty Activity template before clicking on the Next button.

Enter BoxLayout into the Name field and specify com.example.boxlayout as the package name. Before clicking
the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo). On completion of the
project creation process, the BoxLayout project should be listed in the Project tool window located along the
left-hand edge of the Android Studio main window.

Within the MainActivity.kt file, delete the Greeting function and add a new empty composable named
MainScreen:
@Composable

fun MainScreen() {

}

Next, change the OnCreate() method and GreetingPreview function to call MainScreen instead of Greeting.

27.3 Adding the TextCell composable
In this chapter, we will again use our TextCell composable, though to best demonstrate the features of the
Box layout, we will modify the declaration slightly so that it can be passed an optional font size when called.
Remaining within the MainActivity.kt file, add this composable function so that it reads as follows:
.

.

import androidx.compose.foundation.border
import androidx.compose.foundation.layout.padding
import androidx.compose.ui.graphics.Color
import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.text.style.TextAlign
import androidx.compose.ui.unit.dp

224

Box Layouts in Compose

import androidx.compose.ui.unit.sp
.

.

@Composable
fun TextCell(text: String, modifier: Modifier = Modifier, fontSize: Int = 150) {

 val cellModifier = Modifier
 .padding(4.dp)
 .border(width = 5.dp, color = Color.Black)

 Text(
 text = text, cellModifier.then(modifier),
 fontSize = fontSize.sp,
 fontWeight = FontWeight.Bold,
 textAlign = TextAlign.Center
)
}

27.4 Adding a Box layout
Next, modify the MainScreen function to include a Box layout with three TextCell children:
.

.

import androidx.compose.foundation.layout.Box
import androidx.compose.foundation.layout.size
.

.

@Composable

fun MainScreen() {

 Box {
 val height = 200.dp
 val width = 200.dp

 TextCell("1", Modifier.size(width = width, height = height))
 TextCell("2", Modifier.size(width = width, height = height))
 TextCell("3", Modifier.size(width = width, height = height))
 }
}

After modifying the function, update the Preview panel to reflect these latest changes. Once the layout appears
it should resemble Figure 27-1:

225

Box Layouts in Compose

Figure 27-1
The transparent nature of the Text composable allows us to see that the three children have, indeed, been stacked
directly on top of each other. While this transparency is useful to show that the children have been stacked, this
isn’t the behavior we are looking for in this example. To give the TextCell an opaque background, we need to
call the Text composable from within a Surface component. To achieve this, edit the TextCell function so that it
now reads as follows:
@Composable

fun TextCell(text: String, modifier: Modifier = Modifier, fontSize: Int = 150) {

.

.

 Surface {
 Text(

 text = text, cellModifier.then(modifier),

 fontSize = fontSize.sp,

 fontWeight = FontWeight.Bold,

 textAlign = TextAlign.Center

)

 }
}

When the preview is updated, only the last composable to be called by the Box will be visible because it is the
uppermost child of the stack.

27.5 Box alignment
The Box composable includes support for an alignment parameter to customize the positioning of the group of
children within the content area of the box. The parameter is named contentAlignment and may be set to any
one of the following values:

• Alignment.TopStart

• Alignment.TopCenter

• Alignment.TopEnd

• Alignment.CenterStart

• Alignment.Center

• Alignment.CenterEnd

• Alignment.BottomCenter

• Alignment.BottomEnd

• Alignment.BottomStart

226

Box Layouts in Compose

The diagram in Figure 27-2 illustrates the positioning of the Box content for each of the above settings:

Figure 27-2
To try out some of these alignments options, edit the Box declaration in the MainScreen function both to
increase its size and to add a contentAlignment parameter:
.

.

import androidx.compose.ui.Alignment
.

.

@Composable

fun MainScreen() {

.

.

 Box(contentAlignment = Alignment.CenterEnd,
 modifier = Modifier.size(400.dp, 400.dp)) {
 val height = 200.dp

 val width = 200.dp

 TextCell("1", Modifier.size(width = width, height = height))

 TextCell("2", Modifier.size(width = width, height = height))

 TextCell("3", Modifier.size(width = width, height = height))

 }

}

Refresh the preview and verify that the Box content now appears at the CenterEnd position within the Box
content area:

Figure 27-3

227

Box Layouts in Compose

27.6 BoxScope modifiers
In the chapter entitled “Composing Layouts with Row and Column”, we introduced ColumnScope and RowScope
and explored how these provide additional modifiers that can be applied individually to child components. In
the case of the Box layout, the following BoxScope modifiers are available to be applied to child composables:

• align() - Aligns the child within the Box content area using the specified Alignment value.

• matchParentSize() - Sizes the child on which the modifier is applied to match the size of the parent Box.

The set of Alignment values accepted by the align modifier is the same as those listed above for Box alignment.
The following changes to the MainScreen function demonstrate the align() modifier in action:
@Composable

fun MainScreen() {

.

.

 Box(modifier = Modifier.size(height = 90.dp, width = 290.dp)) {
 Text("TopStart", Modifier.align(Alignment.TopStart))
 Text("TopCenter", Modifier.align(Alignment.TopCenter))
 Text("TopEnd", Modifier.align(Alignment.TopEnd))

 Text("CenterStart", Modifier.align(Alignment.CenterStart))
 Text("Center", Modifier.align(Alignment.Center))
 Text(text = "CenterEnd", Modifier.align(Alignment.CenterEnd))

 Text("BottomStart", Modifier.align(Alignment.BottomStart))
 Text("BottomCenter", Modifier.align(Alignment.BottomCenter))
 Text("BottomEnd", Modifier.align(Alignment.BottomEnd))
 }

}

When previewed, the above Box layout will appear as shown in Figure 27-4 below:

Figure 27-4

27.7 Using the clip() modifier
The compose clip() modifier allows composables to be rendered to conform to specific shapes. Though not
specific to Box, the Box component provides perhaps the best example of clipping shapes. To define the shape of
a composable, the clip() modifier is called and passed a Shape value which can be RectangleShape, CircleShape,
RoundedCornerShape, or CutCornerShape.

The following code, for example, draws a Box clipped to appear as a circle:

228

Box Layouts in Compose

.

.

import androidx.compose.foundation.background
import androidx.compose.ui.draw.clip
import androidx.compose.foundation.shape.CircleShape
.

.

Box(Modifier.size(200.dp).clip(CircleShape).background(Color.Blue))
.

.

When rendered, the Box will appear as shown in Figure 27-5:

Figure 27-5
To draw a composable with rounded corners call RoundedCornerShape, passing through the radius for each
corner. If a single radius value is provided, it will be applied to all four corners:
.

.

import androidx.compose.foundation.shape.RoundedCornerShape
.

.

Box(Modifier.size(200.dp).clip(RoundedCornerShape(30.dp)).background(Color.Blue))

The above composable will appear as shown below:

Figure 27-6
As an alternative to rounded corners, composables may also be rendered with cut corners. In this case,
CutCornerShape is passed the cut length for the corners. Once again, we may specify different values for each
corner, or all corners cut equally with a single length parameter:

229

Box Layouts in Compose

.

.

import androidx.compose.foundation.shape.CutCornerShape
.

.

Box(Modifier.size(200.dp).clip(CutCornerShape(30.dp)).background(Color.Blue))
.

.

The following figure shows the Box rendered by the above code:

Figure 27-7

27.8 Summary
The Compose Box layout positions all of its children on top of each other in a stack arrangement, with the
first child positioned at the bottom of the stack. By default, this stack will be placed in the top left-hand corner
of the content area, though this can be changed using the contentAlignment parameter when calling the Box
composable.

Direct children of a Box layout have access to additional modifiers via RowScope. These modifiers allow
individual children to be positioned independently within the Box content using a collection of nine pre-defined
position settings.

301

Chapter 36

36. An Overview of Lists and Grids in
Compose
It is a common requirement when designing user interface layouts to present information in either scrollable
list or grid configurations. For basic list requirements, the Row and Column components can be re-purposed
to provide vertical and horizontal lists of child composables. Extremely large lists, however, are likely to cause
degraded performance if rendered using the standard Row and Column composables. For lists containing large
numbers of items, Compose provides the LazyColumn and LazyRow composables. Similarly, grid-based layouts
can be presented using the LazyVerticalGrid composable.

This chapter will introduce the basics of list and grid creation and management in Compose in preparation for
the tutorials in subsequent chapters.

36.1 Standard vs. lazy lists
Part of the popularity of lists is that they provide an effective way to present large amounts of items in a scrollable
format. Each item in a list is represented by a composable which may, itself, contain descendant composables.
When a list is created using the Row or Column component, all of the items it contains are also created at
initialization, regardless of how many are visible at any given time. While this does not necessarily pose a
problem for smaller lists, it can be an issue for lists containing many items.

Consider, for example, a list that is required to display 1000 photo images. It can be assumed with a reasonable
degree of certainty that only a small percentage of items will be visible to the user at any one time. If the
application was permitted to create each of the 1000 items in advance, however, the device would very quickly
run into memory and performance limitations.

When working with longer lists, the recommended course of action is to use LazyColumn, LazyRow, and
LazyVerticalGrid. These components only create those items that are visible to the user. As the user scrolls,
items that move out of the viewable area are destroyed to free up resources while those entering view are created
just in time to be displayed. This allows lists of potentially infinite length to be displayed with no performance
degradation.

Since there are differences in approach and features when working with Row and Column compared to the lazy
equivalents, this chapter will provide an overview of both types.

36.2 Working with Column and Row lists
Although lacking some of the features and performance advantages of the LazyColumn and LazyRow, the Row
and Column composables provide a good option for displaying shorter, basic lists of items. Lists are declared
in much the same way as regular rows and columns with the exception that each list item is usually generated
programmatically. The following declaration, for example, uses the Column component to create a vertical list
containing 100 instances of a composable named MyListItem:
Column {

 repeat(100) {

 MyListItem()

 }

302

An Overview of Lists and Grids in Compose

}

Similarly, the following example creates a horizontal list containing the same items:
Row {

 repeat(100) {

 MyListItem()

 }

}

The MyListItem composable can be anything from a single Text composable to a complex layout containing
multiple composables.

36.3 Creating lazy lists
Lazy lists are created using the LazyColumn and LazyRow composables. These layouts place children within
a LazyListScope block which provides additional features for managing and customizing the list items. For
example, individual items may be added to a lazy list via calls to the item() function of the LazyListScope:
LazyColumn {

 item {

 MyListItem()

 }

}

Alternatively, multiple items may be added in a single statement by calling the items() function:
LazyColumn {

 items(1000) { index ->

 Text("This is item $index");

 }

}

LazyListScope also provides the itemsIndexed() function which associates the item content with an index value,
for example:
val colorNamesList = listOf("Red", "Green", "Blue", "Indigo")

LazyColumn {

 itemsIndexed(colorNamesList) { index, item ->

 Text("$index = $item")

 }

}

When rendered, the above lazy column will appear as shown in Figure 36-1 below:

Figure 36-1

303

An Overview of Lists and Grids in Compose

Lazy lists also support the addition of headers to groups of items in a list using the stickyHeader() function. This
topic will be covered in more detail later in the chapter.

36.4 Enabling scrolling with ScrollState
While the above Column and Row list examples will display a list of items, only those that fit into the viewable
screen area will be accessible to the user. This is because lists are not scrollable by default. To make Row and
Column-based lists scrollable, some additional steps are needed. LazyList and LazyRow, on the other hand,
support scrolling by default.

The first step in enabling list scrolling when working with Row and Column-based lists is to create a ScrollState
instance. This is a special state object designed to allow Row and Column parents to remember the current scroll
position through recompositions. A ScrollState instance is generated via a call to the rememberScrollState()
function, for example:
val scrollState = rememberScrollState()

Once created, the scroll state is passed as a parameter to the Column or Row composable using the verticalScroll()
and horizontalScroll() modifiers. In the following example, vertical scrolling is being enabled in a Column list:
Column(Modifier.verticalScroll(scrollState)) {
 repeat(100) {

 MyListItem()

 }

}

Similarly, the following code enables horizontal scrolling on a LazyRow list:
Row(Modifier.horizontalScroll(scrollState)) {
 repeat(1000) {

 MyListItem()

 }

}

36.5 Programmatic scrolling
We generally think of scrolling as being something a user performs through dragging or swiping gestures on the
device screen. It is also important to know how to change the current scroll position from within code. An app
screen might, for example, contain buttons which can be tapped to scroll to the start and end of a list. The steps
to implement this behavior differ between Row and Columns lists and the lazy list equivalents.

When working with Row and Column lists, programmatic scrolling can be performed by calling the following
functions on the ScrollState instance:

• animateScrollTo(value: Int) - Scrolls smoothly to the specified pixel position in the list using animation.

• scrollTo(value: Int) - Scrolls instantly to the specified pixel position.

Note that the value parameters in the above function represent the list position in pixels instead of referencing a
specific item number. It is safe to assume that the start of the list is represented by pixel position 0, but the pixel
position representing the end of the list may be less obvious. Fortunately, the maximum scroll position can be
identified by accessing the maxValue property of the scroll state instance:
val maxScrollPosition = scrollState.maxValue

To programmatically scroll LazyColumn and LazyRow lists, functions need to be called on a LazyListState
instance which can be obtained via a call to the rememberLazyListState() function as follows:

304

An Overview of Lists and Grids in Compose

val listState = rememberLazyListState()

Once the list state has been obtained, it must be applied to the LazyRow or LazyColumn declaration as follows:
.

.

LazyColumn(

 state = listState,

{

.

.

Scrolling can then be performed via calls to the following functions on the list state instance:

• animateScrollToItem(index: Int) - Scrolls smoothly to the specified list item (where 0 is the first item).

• scrollToItem(index: Int) - Scrolls instantly to the specified list item (where 0 is the first item).

In this case, the scrolling position is referenced by the index of the item instead of pixel position.

One complication is that all four of the above scroll functions are coroutine functions. As outlined in the chapter
titled “Coroutines and LaunchedEffects in Jetpack Compose”, coroutines are a feature of Kotlin that allows blocks
of code to execute asynchronously without blocking the thread from which they are launched (in this case the
main thread which is responsible for making sure the app remains responsive to the user). Coroutines can be
implemented without having to worry about building complex implementations or directly managing multiple
threads. Because of the way they are implemented, coroutines are much more efficient and less resource-intensive
than using traditional multi-threading options. One of the key requirements of coroutine functions is that they
must be launched from within a coroutine scope.

As with ScrollState and LazyListState, we need access to a CoroutineScope instance that will be remembered
through recompositions. This requires a call to the rememberCoroutineScope() function as follows:
val coroutineScope = rememberCoroutineScope()

Once we have a coroutine scope, we can use it to launch the scroll functions. The following code, for example,
declares a Button component configured to launch the animateScrollTo() function within the coroutine scope.
In this case, the button will cause the list to scroll to the end position when clicked:
.

.

Button(onClick = {

 coroutineScope.launch {
 scrollState.animateScrollTo(scrollState.maxValue)
 }
.

.

}

36.6 Sticky headers
Sticky headers is a feature only available within lazy lists that allows list items to be grouped under a corresponding
header. Sticky headers are created using the LazyListScope stickyHeader() function.

The headers are referred to as being sticky because they remain visible on the screen while the current group is
scrolling. Once a group scrolls from view, the header for the next group takes its place. Figure 36-2, for example,

305

An Overview of Lists and Grids in Compose

shows a list with sticky headers. Note that although the Apple group is scrolled partially out of view, the header
remains in position at the top of the screen:

Figure 36-2
When working with sticky headers, the list content must be stored in an Array or List which has been mapped
using the Kotlin groupBy() function. The groupBy() function accepts a lambda which is used to define the
selector which defines how data is to be grouped. This selector then serves as the key to access the elements of
each group. Consider, for example, the following list which contains mobile phone models:
val phones = listOf("Apple iPhone 12", "Google Pixel 4", "Google Pixel 6",

 "Samsung Galaxy 6s", "Apple iPhone 7", "OnePlus 7", "OnePlus 9 Pro",

 "Apple iPhone 13", "Samsung Galaxy Z Flip", "Google Pixel 4a",

 "Apple iPhone 8")

Now suppose that we want to group the phone models by manufacturer. To do this we would use the first word
of each string (in other words, the text before the first space character) as the selector when calling groupBy() to
map the list:
val groupedPhones = phones.groupBy { it.substringBefore(' ') }

Once the phones have been grouped by manufacturer, we can use the forEach statement to create a sticky header
for each manufacture name, and display the phones in the corresponding group as list items:
groupedPhones.forEach { (manufacturer, models) ->

 stickyHeader {

 Text(

 text = manufacturer,

 color = Color.White,

 modifier = Modifier

 .background(Color.Gray)

306

An Overview of Lists and Grids in Compose

 .padding(5.dp)

 .fillMaxWidth()

)

 }

 items(models) { model ->

 MyListItem(model)

 }

}

In the above forEach lambda, manufacturer represents the selector key (for example “Apple”) and models an
array containing the items in the corresponding manufacturer group (“Apple iPhone 12”, “Apple iPhone 7”, and
so on for the Apple selector):
groupedPhones.forEach { (manufacturer, models) ->

The selector key is then used as the text for the sticky header, and the models list is passed to the items() function
to display all the group elements, in this case using a custom composable named MyListItem for each item:
items(models) { model ->

 MyListItem(model)

}

When rendered, the above code will display the list shown in Figure 36-2 above.

36.7 Responding to scroll position
Both LazyRow and LazyColumn allow actions to be performed when a list scrolls to a specified item position.
This can be particularly useful for displaying a “scroll to top” button that appears only when the user scrolls
towards the end of the list.

The behavior is implemented by accessing the firstVisibleItemIndex property of the LazyListState instance which
contains the index of the item that is currently the first visible item in the list. For example, if the user scrolls a
LazyColumn list such that the third item in the list is currently the topmost visible item, firstVisibleItemIndex
will contain a value of 2 (since indexes start counting at 0). The following code, for example, could be used to
display a “scroll to top” button when the first visible item index exceeds 8:
val firstVisible = listState.firstVisibleItemIndex

if (firstVisible > 8) {

 // Display scroll to top button

}

36.8 Creating a lazy grid
Grid layouts may be created using the LazyVerticalGrid composable. The appearance of the grid is controlled by
the cells parameter that can be set to either adaptive or fixed mode. In adaptive mode, the grid will calculate the
number of rows and columns that will fit into the available space, with even spacing between items and subject
to a minimum specified cell size. Fixed mode, on the other hand, is passed the number of rows to be displayed
and sizes each column width equally to fill the width of the available space.

The following code, for example, declares a grid containing 30 cells, each with a minimum width of 60dp:
LazyVerticalGrid(GridCells.Adaptive(minSize = 60.dp),

 state = rememberLazyGridState(),

307

An Overview of Lists and Grids in Compose

 contentPadding = PaddingValues(10.dp)

) {

 items(30) { index ->

 Card(

 colors = CardDefaults.cardColors(

 containerColor = MaterialTheme.colorScheme.primary

),

 modifier = Modifier.padding(5.dp).fillMaxSize()) {

 Text(

 "$index",

 textAlign = TextAlign.Center,

 fontSize = 30.sp,

 color = Color.White,

 modifier = Modifier.width(120.dp)

)

 }

 }

}

When called, the LazyVerticalGrid composable will fit as many items as possible into each row without making
the column width smaller than 60dp as illustrated in the figure below:

Figure 36-3
The following code organizes items in a grid containing three columns:
LazyVerticalGrid(

 GridCells.Fixed(3),

 state = rememberLazyGridState(),

 contentPadding = PaddingValues(10.dp)

) {

 items(15) { index ->

 Card(colors = CardDefaults.cardColors(

 containerColor = MaterialTheme.colorScheme.primary

),

 modifier = Modifier.padding(5.dp).fillMaxSize()) {

 Text(

308

An Overview of Lists and Grids in Compose

 "$index",

 fontSize = 35.sp,

 color = Color.White,

 textAlign = TextAlign.Center,

 modifier = Modifier.width(120.dp))

 }

 }

}

The layout from the above code will appear as illustrated in Figure 36-4 below:

Figure 36-4
Both the above grid examples used a Card composable containing a Text component for each cell item. The Card
component provides a surface into which to group content and actions relating to a single content topic and is
often used as the basis for list items. Although we provided a Text composable as the child, the content in a card
can be any composable, including containers such as Row, Column, and Box layouts. A key feature of Card is the
ability to create a shadow effect by specifying an elevation:
Card(

 modifier = Modifier

 .fillMaxWidth()

 .padding(15.dp),

 elevation = CardDefaults.cardElevation(

 defaultElevation = 10.dp

)

) {

 Column(horizontalAlignment = Alignment.CenterHorizontally,

 modifier = Modifier.padding(15.dp).fillMaxWidth()

) {

 Text("Jetpack Compose", fontSize = 30.sp,)

 Text("Card Example", fontSize = 20.sp)

 }

}

When rendered, the above Card component will appear as shown in Figure 36-5:

309

An Overview of Lists and Grids in Compose

Figure 36-5

36.9 Summary
Lists in Compose may be created using either standard or lazy list components. The lazy components have
the advantage that they can present large amounts of content without impacting the performance of the app
or the device on which it is running. This is achieved by creating list items only when they become visible and
destroying them as they scroll out of view. Lists can be presented in row, column, and grid formats and can be
static or scrollable. It is also possible to programmatically scroll lists to specific positions and to trigger events
based on the current scroll position.

403

Chapter 45

45. Working with ViewModels in
Compose
Until a few years ago, Google did not recommend a specific approach to building Android apps other than to
provide tools and development kits while letting developers decide what worked best for a particular project
or individual programming style. That changed in 2017 with the introduction of the Android Architecture
Components which became part of Android Jetpack when it was released in 2018. Jetpack has of course, since
been expanded with the addition of Compose.

This chapter will provide an overview of the concepts of Jetpack, Android app architecture recommendations,
and the ViewModel component.

45.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture Components, Android Support Library,
and the Compose framework together with a set of guidelines that recommend how an Android App should be
structured. The Android Architecture Components were designed to make it quicker and easier both to perform
common tasks when developing Android apps while also conforming to the key principle of the architectural
guidelines. While many of these components have been superseded by features built into Compose, the
ViewModel architecture component remains relevant today. Before exploring the ViewModel component, it
first helps to understand both the old and new approaches to Android app architecture.

45.2 The “old” architecture
In the chapter entitled “An Example Compose Project”, an Android project was created consisting of a single
activity that contained all of the code for presenting and managing the user interface together with the back-end
logic of the app. Up until the introduction of Jetpack, the most common architecture followed this paradigm
with apps consisting of multiple activities (one for each screen within the app) with each activity class to some
degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

45.3 Modern Android architecture
At the most basic level, Google now advocates single activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept called “separation of concerns”). One of the keys to this approach is the
ViewModel component.

45.4 The ViewModel component
The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.

404

Working with ViewModels in Compose

When designed in this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data needed by those controllers.

A ViewModel is implemented as a separate class and contains state values containing the model data and
functions that can be called to manage that data. The activity containing the user interface observes the model
state values such that any value changes trigger a recomposition. User interface events relating to the model data
such as a button click are configured to call the appropriate function within the ViewModel. This is, in fact, a
direct implementation of the unidirectional data flow concept described in the chapter entitled “An Overview of
Compose State and Recomposition”. The diagram in Figure 45-1 illustrates this concept as it relates to activities
and ViewModels:

Figure 45-1
This separation of responsibility addresses the issues relating to the lifecycle of activities. Regardless of how
many times an activity is recreated during the lifecycle of an app, the ViewModel instances remain in memory
thereby maintaining data consistency. A ViewModel used by an activity, for example, will remain in memory
until the activity finishes which, in the single activity app, is not until the app exits.

In addition to using ViewModels, the code responsible for gathering data from data sources such as web services
or databases should be built into a separate repository module instead of being bundled with the view model.
This topic will be covered in detail beginning with the chapter entitled “Room Databases and Compose”.

45.5 ViewModel implementation using state
The main purpose of a ViewModel is to store data that can be observed by the user interface of an activity. This
allows the user interface to react when changes occur to the ViewModel data. There are two ways to declare the
data within a ViewModel so that it is observable. One option is to use the Compose state mechanism which has
been used extensively throughout this book. An alternative approach is to use the Jetpack LiveData component,
a topic that will be covered later in this chapter.

Much like the state declared within composables, ViewModel state is declared using the mutableStateOf group
of functions. The following ViewModel declaration, for example, declares a state containing an integer count
value with an initial value of 0:
class MyViewModel : ViewModel() {

 var customerCount by mutableStateOf(0)

}

With some data encapsulated in the model, the next step is to add a function that can be called from within the
UI to change the counter value:

405

Working with ViewModels in Compose

class MyViewModel : ViewModel() {

 var customerCount by mutableStateOf(0)

 fun increaseCount() {

 customerCount++

 }

}

Even complex models are nothing more than a continuation of these two basic state and function building
blocks.

45.6 Connecting a ViewModel state to an activity
A ViewModel is of little use unless it can be used within the composables that make up the app user interface.
All this requires is to pass an instance of the ViewModel as a parameter to a composable from which the state
values and functions can be accessed. Programming convention recommends that these steps be performed in a
composable dedicated solely for this task and located at the top of the screen’s composable hierarchy. The model
state and event handler functions can then be passed to child composables as necessary. The following code
shows an example of how a ViewModel might be accessed from within an activity:
class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ViewModelWorkTheme {

 Surface(color = MaterialTheme.colorScheme.background) {

 TopLevel()

 }

 }

 }

 }

}

@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 MainScreen(model.customerCount) { model.increaseCount() }

}

@Composable

fun MainScreen(count: Int, addCount: () -> Unit = {}) {

 Column(horizontalAlignment = Alignment.CenterHorizontally,

 modifier = Modifier.fillMaxWidth()) {

 Text("Total customers = $count",

 Modifier.padding(10.dp))

 Button(

 onClick = addCount,

) {

 Text(text = "Add a Customer")

406

Working with ViewModels in Compose

 }

 }

}

In the above example, the first function call is made by the onCreate() method to the TopLevel composable
which is declared with a default ViewModel parameter initialized via a call to the viewModel() function:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {
.

.

The viewModel() function is provided by the Compose view model lifecycle library which needs to be added to
the project’s build dependencies when working with view models as follows:
dependencies {

.

.

 implementation("androidx.lifecycle:lifecycle-viewmodel-compose:2.6.1")
.

.

If an instance of the view model has already been created within the current scope, the viewModel() function will
return a reference to that instance. Otherwise, a new view model instance will be created and returned.

With access to the ViewModel instance, the TopLevel function is then able to obtain references to the view model
customerCount state variable and increaseCount() function which it passes to the MainScreen composable:
MainScreen(model.customerCount) { model.increaseCount() }

As implemented, Button clicks will result in calls to the view model increaseCount() function which, in turn,
increments the customerCount state. This change in state triggers a recomposition of the user interface, resulting
in the new customer count value appearing in the Text composable.

The use of state and view models will be demonstrated in the chapter entitled “A Compose ViewModel Tutorial”.

45.7 ViewModel implementation using LiveData
The Jetpack LiveData component predates the introduction of Compose and can be used as a wrapper around
data values within a view model. Once contained in a LiveData instance, those variables become observable to
composables within an activity. LiveData instances can be declared as being mutable using the MutableLiveData
class, allowing the ViewModel functions to make changes to the underlying data value. An example view model
designed to store a customer name could, for example, be implemented as follows using MutableLiveData
instead of state:
class MyViewModel : ViewModel() {

 var customerName: MutableLiveData<String> = MutableLiveData("")

 fun setName(name: String) {

 customerName.value = name

 }

}

Note that new values must be assigned to the live data variable via the value property.

407

Working with ViewModels in Compose

45.8 Observing ViewModel LiveData within an activity
As with state, the first step when working with LiveData is to obtain an instance of the view model within an
initialization composable:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

}

Once we have access to a view model instance, the next step is to make the live data observable. This is achieved
by calling the observeAsState() method on the live data object:
@Composable

fun TopLevel(model: MyViewModel = viewModel()) {

 var customerName: String by model.customerName.observeAsState("")
}

In the above code, the observeAsState() call converts the live data value into a state instance and assigns it to
the customerName variable. Once converted, the state will behave in the same way as any other state object,
including triggering recompositions whenever the underlying value changes.

The use of LiveData and view models will be demonstrated in the chapter entitled “A Compose Room Database
and Repository Tutorial”.

45.9 Summary
Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That changed with the introduction of Android Jetpack which consists of a set of tools, components, libraries,
and architecture guidelines. These architectural guidelines recommend that an app project be divided into
separate modules, each being responsible for a particular area of functionality, otherwise known as “separation
of concerns”. In particular, the guidelines recommend separating the view data model of an app from the code
responsible for handling the user interface. This is achieved using the ViewModel component. In this chapter,
we have covered ViewModel-based architecture and demonstrated how this is implemented when developing
with Compose. We have also explored how to observe and access view model data from within an activity using
both state and LiveData.

419

Chapter 47

47. An Overview of Android SQLite
Databases
Mobile applications that do not need to store at least some amount of persistent data are few and far between.
The use of databases is an essential aspect of most applications, ranging from applications that are almost entirely
data-driven, to those that simply need to store small amounts of data such as the prevailing score of a game.

The importance of persistent data storage becomes even more evident when taking into consideration the
somewhat transient lifecycle of the typical Android application. With the ever-present risk that the Android
runtime system will terminate an application component to free up resources, a comprehensive data storage
strategy to avoid data loss is a key factor in the design and implementation of any application development
strategy.

This chapter will provide an overview of the SQLite database management system bundled with the Android
operating system, together with an outline of the Android SDK classes that are provided to facilitate persistent
SQLite-based database storage from within an Android application. Before delving into the specifics of SQLite
in the context of Android development, however, a brief overview of databases and SQL will be covered.

47.1 Understanding database tables
Database tables provide the most basic level of data structure in a database. Each database can contain multiple
tables and each table is designed to hold information of a specific type. For example, a database may contain a
customer table that contains the name, address, and telephone number for each of the customers of a particular
business. The same database may also include a products table used to store the product descriptions with
associated product codes for the items sold by the business.

Each table in a database is assigned a name that must be unique within that particular database. A table name,
once assigned to a table in one database, may not be used for another table except within the context of another
database.

47.2 Introducing database schema
Database Schemas define the characteristics of the data stored in a database table. For example, the table schema
for a customer database table might define that the customer name is a string of no more than 20 characters in
length and that the customer phone number is a numerical data field of a certain format.

Schemas are also used to define the structure of entire databases and the relationship between the various tables
contained in each database.

47.3 Columns and data types
It is helpful at this stage to begin to view a database table as being similar to a spreadsheet where data is stored
in rows and columns.

Each column represents a data field in the corresponding table. For example, the name, address, and telephone
data fields of a table are all columns.

Each column, in turn, is defined to contain a certain type of data. A column designed to store numbers would,

420

An Overview of Android SQLite Databases

therefore, be defined as containing numerical data.

47.4 Database rows
Each new record that is saved to a table is stored in a row. Each row, in turn, consists of the columns of data
associated with the saved record.

Once again, consider the spreadsheet analogy described earlier in this chapter. Each entry in a customer table
is equivalent to a row in a spreadsheet and each column contains the data for each customer (name, address,
telephone, etc). When a new customer is added to the table, a new row is created and the data for that customer
is stored in the corresponding columns of the new row.

Rows are also sometimes referred to as records or entries and these terms can generally be used interchangeably.

47.5 Introducing primary keys
Each database table should contain one or more columns that can be used to identify each row in the table
uniquely. This is known in database terminology as the Primary Key. For example, a table may use a bank
account number column as the primary key. Alternatively, a customer table may use the customer’s social
security number as the primary key.

Primary keys allow the database management system to identify a specific row in a table uniquely. Without
a primary key, it would not be possible to retrieve or delete a specific row in a table because there can be no
certainty that the correct row has been selected. For example, suppose a table existed where the customer’s
last name had been defined as the primary key. Imagine then the problem that might arise if more than one
customer named “Smith” were recorded in the database. Without some guaranteed way to identify a specific row
uniquely, it would be impossible to ensure the correct data was being accessed at any given time.

Primary keys can comprise a single column or multiple columns in a table. To qualify as a single column primary
key, no two rows can contain matching primary key values. When using multiple columns to construct a primary
key, individual column values do not need to be unique, but all the columns’ values combined must be unique.

47.6 What is SQLite?
SQLite is an embedded, relational database management system (RDBMS). Most relational databases (Oracle,
SQL Server, and MySQL being prime examples) are standalone server processes that run independently, and
in cooperation with, applications that require database access. SQLite is referred to as embedded because it is
provided in the form of a library that is linked into applications. As such, there is no standalone database server
running in the background. All database operations are handled internally within the application through calls
to functions contained in the SQLite library.

The developers of SQLite have placed the technology into the public domain with the result that it is now a
widely deployed database solution.

SQLite is written in the C programming language and as such, the Android SDK provides a Java-based “wrapper”
around the underlying database interface. This essentially consists of a set of classes that may be utilized within
the Java or Kotlin code of an application to create and manage SQLite-based databases.

For additional information about SQLite refer to https://www.sqlite.org.

47.7 Structured Query Language (SQL)
Data is accessed in SQLite databases using a high-level language known as Structured Query Language. This is
usually abbreviated to SQL and pronounced sequel. SQL is a standard language used by most relational database
management systems. SQLite conforms mostly to the SQL-92 standard.

http://www.sqlite.org

421

An Overview of Android SQLite Databases

SQL is essentially a very simple and easy-to-use language designed specifically to enable the reading and writing
of database data. Because SQL contains a small set of keywords, it can be learned quickly. In addition, SQL
syntax is more or less identical between most DBMS implementations, so having learned SQL for one system,
your skills will likely transfer to other database management systems.

While some basic SQL statements will be used within this chapter, a detailed overview of SQL is beyond the
scope of this book. There are, however, many other resources that provide a far better overview of SQL than we
could ever hope to provide in a single chapter here.

47.8 Trying SQLite on an Android Virtual Device (AVD)
For readers unfamiliar with databases in general and SQLite in particular, diving right into creating an Android
application that uses SQLite may seem a little intimidating. Fortunately, Android is shipped with SQLite pre-
installed, including an interactive environment for issuing SQL commands from within an adb shell session
connected to a running Android AVD emulator instance. This is both a useful way to learn about SQLite and
SQL and also an invaluable tool for identifying problems with databases created by applications running in an
emulator.

To launch an interactive SQLite session, begin by running an AVD session. This can be achieved from within
Android Studio by launching the Device Manager (Tools -> Device Manager), selecting a previously configured
AVD, and clicking on the start button.

Once the AVD is up and running, open a Terminal or Command-Prompt window and connect to the emulator
using the adb command-line tool as follows (note that the –e flag directs the tool to look for an emulator with
which to connect, rather than a physical device):
adb –e shell

Once connected, the shell environment will provide a command prompt at which commands may be entered.
Begin by obtaining superuser privileges using the su command:
Generic_x86:/ su

root@android:/ #

If a message appears indicating that superuser privileges are not allowed, the AVD instance likely includes
Google Play support. To resolve this create a new AVD and, on the “Choose a device definition” screen, select a
device that does not have a marker in the “Play Store” column.

Data stored in SQLite databases are stored in database files on the file system of the Android device on which the
application is running. By default, the file system path for these database files is as follows:
/data/data/<package name>/databases/<database filename>.db

For example, if an application with the package name com.example.MyDBApp creates a database named
mydatabase.db, the path to the file on the device would read as follows:
/data/data/com.example.MyDBApp/databases/mydatabase.db

For this exercise, therefore, change directory to /data/data within the adb shell and create a sub-directory
hierarchy suitable for some SQLite experimentation:
cd /data/data

mkdir com.example.dbexample

cd com.example.dbexample

mkdir databases

cd databases

With a suitable location created for the database file, launch the interactive SQLite tool as follows:

422

An Overview of Android SQLite Databases

root@android:/data/data/databases # sqlite3 ./mydatabase.db

sqlite3 ./mydatabase.db

SQLite version 3.8.10.2 2015-05-20 18:17:19

Enter ".help" for usage hints.

sqlite>

At the sqlite> prompt, commands may be entered to perform tasks such as creating tables and inserting and
retrieving data. For example, to create a new table in our database with fields to hold ID, name, address, and
phone number fields the following statement is required:
create table contacts (_id integer primary key autoincrement, name text, address
text, phone text);

Note that each row in a table should have a primary key that is unique to that row. In the above example, we have
designated the ID field as the primary key, declared it as being of type integer, and asked SQLite to increment
the number automatically each time a row is added. This is a common way to make sure that each row has a
unique primary key. On most other platforms, the choice of name for the primary key is arbitrary. In the case
of Android, however, the key must be named _id for the database to be fully accessible using all of the Android
database-related classes. The remaining fields are each declared as being of type text.

To list the tables in the currently selected database, use the .tables statement:
sqlite> .tables

contacts

To insert records into the table:
sqlite> insert into contacts (name, address, phone) values ("Bill Smith", "123
Main Street, California", "123-555-2323");

sqlite> insert into contacts (name, address, phone) values ("Mike Parks", "10
Upping Street, Idaho", "444-444-1212");

To retrieve all rows from a table:
sqlite> select * from contacts;

1|Bill Smith|123 Main Street, California|123-555-2323

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To extract a row that meets specific criteria:
sqlite> select * from contacts where name="Mike Parks";

2|Mike Parks|10 Upping Street, Idaho|444-444-1212

To exit from the sqlite3 interactive environment:
sqlite> .exit

When running an Android application in the emulator environment, any database files will be created on the
file system of the emulator using the previously discussed path convention. This has the advantage that you can
connect with adb, navigate to the location of the database file, load it into the sqlite3 interactive tool and perform
tasks on the data to identify possible problems occurring in the application code.

It is also important to note that, while it is possible to connect with an adb shell to a physical Android device,
the shell is not granted sufficient privileges by default to create and manage SQLite databases. Debugging of
database problems is, therefore, best performed using an AVD session. Alternatively, databases can be inspected
on both emulators and devices using the Android Studio Database Inspector, a topic that will be covered later.

423

An Overview of Android SQLite Databases

47.9 The Android Room persistence library
SQLite is, as previously mentioned, written in the C programming language while Android applications are
primarily developed using Java or Kotlin. To bridge this “language gap” in the past, the Android SDK included a
set of classes that provide a layer on top of the SQLite database management system. Although still available in
the SDK, the use of these classes involves writing a considerable amount of code and does not take advantage of
the new architecture guidelines and features such as view models and LiveData. To address these shortcomings,
the Android Jetpack Architecture Components include the Room persistent library. This library provides a high-
level interface on top of the SQLite database system that makes it easy to store data locally on Android devices
with minimal coding while also conforming to the recommendations for modern application architecture.

The next few chapters will provide an overview and tutorial of SQLite database management using the Room
persistence library.

47.10 Summary
SQLite is a lightweight, embedded relational database management system that is included as part of the
Android framework and provides a mechanism for implementing organized persistent data storage for Android
applications. When combined with the Room persistence library, Android provides a modern way to implement
data storage from within an Android app.

The goal of this chapter was to provide an overview of databases in general and SQLite in particular within
the context of Android application development. The next chapters will provide an overview of the Room
persistence library, after which we will work through the creation of an example application.

453

Chapter 50

50. An Overview of Navigation in
Compose
Very few Android apps today consist of just a single screen. In reality, most apps comprise multiple screens
through which the user navigates using screen gestures, button clicks, and menu selections. Before the
introduction of Android Jetpack, the implementation of navigation within an app was primarily a manual
coding process with no easy way to view and organize potentially complex navigation paths. This situation
improved considerably, however, with the introduction of the Android Navigation Architecture Component,
which has now been extended to support navigation in Compose-based apps. This chapter will provide an
overview of navigation within Compose, including explanations of routes, navigation graphs, the navigation
back stack, passing arguments, and the NavHostController and NavHost classes.

50.1 Understanding navigation
Every app has a home screen that appears after the app has launched and after any splash screen has appeared
(a splash screen being the app branding screen that appears temporarily while the app loads). From this home
screen, the user will typically perform tasks that will result in other screens appearing. These screens will usually
take the form of other composables within the project. A messaging app, for example, might have a home screen
listing current messages from which the user can navigate to another screen to access a contact list or a settings
screen. The contacts list screen, in turn, might allow the user to navigate to other screens where new users can
be added or existing contacts updated. Graphically, the app’s navigation graph might be represented as shown
in Figure 50-1:

Figure 50-1
Each screen that makes up an app, including the home screen, is referred to as a destination and is usually a
composable or activity. The Android navigation architecture uses a navigation back stack to track the user’s path

454

An Overview of Navigation in Compose

through the destinations within the app. When the app first launches, the home screen is the first destination
placed onto the stack and becomes the current destination. When the user navigates to another destination,
that screen becomes the current destination and is pushed onto the back stack above the home destination. As
the user navigates to other screens, they are also pushed onto the stack. Figure 50-2, for example, shows the
current state of the navigation stack for the hypothetical messaging app after the user has launched the app and
is navigating to the “Add Contact” screen:

Figure 50-2
As the user navigates back through the screens using the system back button, each destination composable is
popped off the stack until the home screen is once again the only destination on the stack. In Figure 50-3, the
user has navigated back from the Add Contact screen, popping it off the stack and making the Contact List
screen composable the current destination:

Figure 50-3
All the work involved in navigating between destinations and managing the navigation stack is handled by a
navigation controller, represented by the NavHostController class. It is also possible to manually pop composables
off the stack so that the app returns to a screen lower down the stack when the user navigates backward from
the current screen.

Adding navigation to an Android project using the Navigation Architecture Component is a straightforward
process involving a navigation host, navigation graph, navigation actions, and a minimal amount of code writing
to obtain a reference to, and interact with, the navigation controller instance.

455

An Overview of Navigation in Compose

50.2 Declaring a navigation controller
The first step in adding navigation to an app project is to create a NavHostController instance. This is responsible
for managing the back stack and keeping track of which composable is the current destination. So that the
integrity of the back stack is maintained through recomposition, NavHostController is a stateful object and is
created via a call to the rememberNavController() method as follows:
val navController = rememberNavController()

Once a navigation controller has been created it needs to be assigned to a NavHost instance.

50.3 Declaring a navigation host
The navigation host (NavHost) is a special component that is added to the user interface layout of an activity
and serves as a placeholder for the destinations through which the user will navigate. Figure 50-4, for example,
shows a typical activity screen and highlights the area represented by the navigation host:

Figure 50-4
When it is called, NavHost must be passed a NavHostController instance, a composable to serve as the start
destination, and a navigation graph. The navigation graph consists of all the composables that are to be available
as navigation destinations within the context of the navigation controller. These destinations are declared in the
form of routes:
NavHost(navController = navController, startDestination = <start route>) {

 // Navigation graph destinations

}

50.4 Adding destinations to the navigation graph
Destinations are added to the navigation graph by making calls to the composable() method and providing
a route and destination. The route is simply a string value that uniquely identifies the destination within the
context of the current navigation controller. The destination is the composable to be called when the navigation
is performed. The following NavHost declaration includes a navigation graph consisting of three destinations,

456

An Overview of Navigation in Compose

with the “home” route configured as the start destination:
NavHost(navController = navController, startDestination = "home") {

 composable("home") {

 Home()

 }

 composable("customers") {

 Customers()

 }

 composable("purchases") {

 Purchases()

 }

}

A more flexible alternative to hard-coding the route strings into the composable() method calls is to define the
routes in a sealed class:
sealed class Routes(val route: String) {

 object Home : Routes("home")

 object Customers : Routes("customers")

 object Purchases : Routes("purchases")

}

With the class declared, the NavHost will now reference the routes as follows:
NavHost(navController = navController, startDestination = Routes.Home.route) {

 composable(Routes.Home.route) {
 Home()

 }

 composable(Routes.Customers.route) {
 Customers()

 }

 composable(Routes.Purchases.route) {
 Purchases()

 }

}

The use of the sealed class approach gives us the advantage of a single location in which to make changes to the
routes. Also, it adds syntax validation to avoid mistyping a route string when creating a NavHost or performing
navigation.

50.5 Navigating to destinations
The primary mechanism for triggering navigation is via calls to the navigate() method of the navigation controller
instance, specifying the route for the destination composable. The following code, for example, configures a

457

An Overview of Navigation in Compose

Button component to navigate to the Customers screen when clicked:
Button(onClick = {

 navController.navigate(Routes.Customers.route)
}) {

 Text(text = "Navigate to Customers")

}

The navigate() method also accepts a trailing lambda containing navigation options, one of which is the popUpTo()
function. Consider, for example, a scenario where the user starts on the home screen and then navigates to the
customer screen. The customer screen displays a list of customer names which, when clicked navigates to the
purchases screen populated with a list of the selected customer’s previous purchases. At this point, the back stack
contains the customer and home destinations. If the user where to tap the back button located at the bottom
of the screen, the app will navigate back to the customer screen. The popUpTo() navigation option allows us to
pop items off the stack back to the specific destination. We could, for example, pop all destinations off the stack
before navigating to the purchases screen so that only the home destination remains on the back stack as follows:
Button(onClick = {

 navController.navigate(Routes.Customers.route) {
 popUpTo(Routes.Home.route)
 }
}) {

 Text(text = "Navigate to Customers")

}

Now when the user clicks the back button on the purchases screen, the app will navigate directly to the home
screen. The popUpTo() method also accepts options. The following, for example, uses the inclusive option to also
pop the home destination off the stack before performing the navigation:
Button(onClick = {

 navController.navigate(Routes.Customers.route) {
 popUpTo(Routes.Home.route) {
 inclusive = true
 }
 }
}) {

 Text(text = "Navigate to Customers")

}

By default, an attempt to navigate from the current destination to itself will push an additional destination
instance onto the stack. In most situations, this is unlikely to be the desired behavior. To prevent the addition of
multiple instances of the same destination to the top of the stack, set the launchSingleTop option to true when
calling the navigate() method:
Button(onClick = {

 navController.navigate(Routes.Customers.route) {
 launchSingleTop = true
 }
}) {

 Text(text = "Navigate to Customers")

}

458

An Overview of Navigation in Compose

The saveState and restoreState options, if set to true, will automatically save and restore the state of back stack
entries when the user reselects a destination that has been selected previously.

50.6 Passing arguments to a destination
It is a common requirement when navigating from one screen to another to need to pass an argument to the
destination. Compose supports the passing of arguments of a wide range of types from one screen to another
and involves several steps. In our hypothetical example, we would probably need to pass the name of the selected
customer from the customer screen to the purchases screen so that the correct purchase history can be displayed.

The first step in navigating with arguments involves adding the argument name to the destination route. We can,
for example, add an argument named “customerName” to the purchases route as follows:
NavHost(navController = navController, startDestination = Routes.Home.route) {

.

.

 composable(Routes.Purchases.route + "/{customerName}") {
 Purchases()

 }

.

.

}

When the app triggers navigation to the customer destination, the value to be assigned to the argument will
be stored within the corresponding back stack entry. The back stack entry for the current navigation is passed
as a parameter to the trailing lambda of the composable() method where it can be extracted and passed to the
Customer composable:
composable(Routes.Purchases.route + "/{customerName}") { backStackEntry ->

 val customerName = backStackEntry.arguments?.getString("customerName")

 Purchases(customerName)
}

By default, the navigation argument is assumed to be of String type. To pass arguments of different types, the
type must be specified using the NavType enumeration via the composable() method arguments parameter. In
the following example, the parameter type is declared as being of type Int. Note also that the argument now
needs to be extracted from the back stack entry using getInt() instead of getString():
composable(Routes.Purchases.route + "/{customerId}",
 arguments = listOf(navArgument("customerId") { type = NavType.IntType })) {
 navBackStack ->

 Customers(navBackStack.arguments?.getInt("customerId"))
}

Returning to the original string argument example, the Purchases composable now needs to be modified to
expect a String parameter:
@Composable

fun Customers(customerName: String?) {

.

.

459

An Overview of Navigation in Compose

}

The final step is to pass a value for the argument when making the navigate() method call. We do this by
appending the argument value to the end of the destination route. Assuming that the value we need to pass to
the purchases screen is stored as a state variable named selectedCustomer, the navigate() call would be written
as follows:
var selectedCustomer by remember {

 mutableStateOf("")

}

// Code to identify selected customer here

Button(onClick = {

 navController.navigate(Routes.Customers.route + "/$selectedCustomer")
}) {

 Text(text = "Navigate to Customers")

}

When the button is clicked, the following sequence of events will occur:

1. A back stack entry is created for the current destination.

2. The current selectedCustomer state value is stored in the back stack entry.

3. The back stack entry is pushed onto the back stack.

4. The composable() method for the purchase route in the NavHost declaration is called.

5. The trailing lambda of the composable() method extracts the argument value from the back stack entry and
passes it to the Purchases composable.

50.7 Working with bottom navigation bars
So far in this chapter, we have focused on navigation in response to click events on Button components. Another
common form of navigation involves the bottom navigation bar.

The bottom navigation bar appears at the bottom of the screen and displays a list of navigation items, usually
comprising an icon and a label. Clicking on an item navigates to a different screen within the current activity.
An example bottom navigation bar is illustrated in Figure 50-5 below:

Figure 50-5
The core components of bottom bar navigation are the Compose BottomNavigation and BottomNavigationItem
components. Implementation typically involves a parent BottomNavigationBar containing a forEach loop which
iterates through a list creating each BottomNavigationItem child. Each child is configured with the label and
icon to be displayed and an onClick handler to perform the navigation to the corresponding destination. Typical
syntax will read as follows:
BottomNavigation {

460

An Overview of Navigation in Compose

 <items list>.forEach { navItem ->

 BottomNavigationItem(

 selected = <true | false>,

 onClick = {

 navController.navigate(navItem.route) {

 popUpTo(navController.graph.findStartDestination().id) {

 saveState = true

 }

 launchSingleTop = true

 restoreState = true

 }

 },

 icon = {

 <icon>

 },

 label = {

 <text>

 },

)

 }

}

Note that the PopUpTo() method is called to ensure that if the user clicks the back button the navigation returns
to the start destination. We can identify the start destination by calling the findStartDestination() method on the
navigation graph:
navController.graph.findStartDestination()

Also, the launchSingleTop, saveState, and restoreState options must be enabled when working with bottom bar
navigation.

Each BottomNavigationItem needs to be told whether it is the currently selected item via the selected property.
When working with bottom bar navigation, you will need to write code to compare the route associated with the
item against the current route selection. We can obtain the current route selection by gaining access to the back
stack via the currentBackStackEntryAsState() method of the navigation controller and accessing the destination
route property, for example:
BottomNavigation {

 val backStackEntry by navController.currentBackStackEntryAsState()
 val currentRoute = backStackEntry?.destination?.route

 NavBarItems.BarItems.forEach { navItem ->

 BottomNavigationItem(

 selected = currentRoute == navItem.route
.

461

An Overview of Navigation in Compose

.

The two routes are then compared and the result assigned to the selected property. A more detailed example of
bottom bar navigation will be demonstrated in the chapter entitled “A Compose Navigation Bar Tutorial”.

50.8 Summary
This chapter has covered the addition of navigation to Android apps using the Compose support built into
the Jetpack Navigation Architecture Component. Navigation is implemented by creating an instance of the
NavHostController class and associating it with a NavHost instance. The NavHost instance is configured with
the starting destination and the navigation routes that make up the navigation graph for the current activity.
Navigation is then performed by making calls to the navigate() method of the navigation controller instance,
passing through the path of the destination composable. Compose also supports the passing of arguments to the
destination composable. Navigation may also be added to screens using the Compose BottomNavigation and
BottomNavigationItem components.

533

Chapter 57

57. An Overview of Android In-App
Billing
In the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. However,
Google soon introduced another revenue opportunity by embedding advertising within applications. Perhaps
the most common and lucrative option is now to charge the user for purchasing items from within the application
after it has been installed. This typically takes the form of access to a higher level in a game, acquiring virtual
goods or currency, or subscribing to premium content in the digital edition of a magazine or newspaper.

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next chapter will walk you through creating
an example app that includes in-app purchasing features.

57.1 Preparing a project for In-App purchasing
Building in-app purchasing into an app will require a Google Play Developer Console account, which was
covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. In addition, you
must also register a Google merchant account and configure your payment settings. You can find these settings
by navigating to Setup -> Payments profile in the Play Console. Note that merchant registration is not available
in all countries. For details, refer to the following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app will then need to be uploaded to the console and enabled for in-app purchasing. The console will not
activate in-app purchasing support for an app, however, unless the Google Play Billing Library has been added
to the module-level build.gradle.kts file. When working with Kotlin, the Google Play Kotlin Extensions Library
is also recommended:
dependencies {

.

.

 implementation("com.android.billingclient:billing:<latest version>")
 implementation("com.android.billingclient:billing-ktx:<latest version>")
.

.

}

Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

57.2 Creating In-App products and subscriptions
Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel as highlighted in Figure 57-1 below:

https://support.google.com/googleplay/android-developer/answer/9306917

534

An Overview of Android In-App Billing

Figure 57-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into
the categories of consumable (the item must be purchased each time it is required by the user such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed on a regular schedule such as access to news
content or the premium features of an app. When creating a subscription, a base plan is defined specifying the
price, renewal period (monthly, annually, etc.), and whether the subscription auto-renews. Users can also be
provided with discount offers and given the option of pre-purchasing a subscription.

57.3 Billing client initialization
A BillingClient instance handles communication between your app and the Google Play Billing Library.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =

 PurchasesUpdatedListener { billingResult, purchases ->

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

 && purchases != null

) {

 for (purchase in purchases) {

 // Process the purchases

 }

 } else if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.USER_CANCELED

) {

 // Purchase cancelled by user

 } else {

535

An Overview of Android In-App Billing

 // Handle errors here

 }

 }

billingClient = BillingClient.newBuilder(this)

 .setListener(purchasesUpdatedListener)

 .enablePendingPurchases()

 .build()

57.4 Connecting to the Google Play Billing library
After successfully creating the Billing Client, the next step is initializing a connection to the Google Play Billing
Library. To establish this connection, a call needs to be made to the startConnection() method of the billing client
instance. Since the connection is performed asynchronously, a BillingClientStateListener handler needs to be
implemented to receive a callback indicating whether the connection was successful. Code should also be added
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method which can be used to check that the client is ready:
billingClient.startConnection(object : BillingClientStateListener {

 override fun onBillingSetupFinished(

 billingResult: BillingResult

) {

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

) {

 // Connection successful

 } else {

 // Connection failed

 }

 }

 override fun onBillingServiceDisconnected() {

 // Connection to billing service lost

 }

})

57.5 Querying available products
Once the billing environment is initialized and ready to go, the next step is to request the details of the products
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):
val queryProductDetailsParams = QueryProductDetailsParams.newBuilder()

 .setProductList(

 ImmutableList.of(

 QueryProductDetailsParams.Product.newBuilder()

536

An Overview of Android In-App Billing

 .setProductId(productId)

 .setProductType(

 BillingClient.ProductType.INAPP

)

 .build()

)

)

 .build()

billingClient.queryProductDetailsAsync(

 queryProductDetailsParams

) { billingResult, productDetailsList ->

 if (!productDetailsList.isEmpty()) {

 // Process list of matching products

 } else {

 // No product matches found

 }

}

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler (in this case in
the form of a lambda code block) which, in turn, is called and passed a list of ProductDetail objects containing
information about the matching products. For example, we can call methods on these objects to get information
such as the product name, title, description, price, and offer details.

57.6 Starting the purchase process
Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the item being purchased.
val billingFlowParams = BillingFlowParams.newBuilder()

 .setProductDetailsParamsList(

 ImmutableList.of(

 BillingFlowParams.ProductDetailsParams.newBuilder()

 .setProductDetails(productDetails)

 .build()

)

)

 .build()

billingClient.launchBillingFlow(this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.

57.7 Completing the purchase
When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:

537

An Overview of Android In-App Billing

if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED) {

 // Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {

 // Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it will need to be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance together with an AcknowledgePurchaseResponseListener handler. Managed product purchases and
subscriptions are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase(acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener);

val acknowledgePurchaseParams = AcknowledgePurchaseParams.newBuilder()

 .setPurchaseToken(purchase.purchaseToken)

 .build()

val acknowledgePurchaseResponseListener = AcknowledgePurchaseResponseListener {

 // Check acknowledgement result

}

billingClient.acknowledgePurchase(

 acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener

)

For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token and a call to the billing client’s consumePurchase() method:
val consumeParams = ConsumeParams.newBuilder()

 .setPurchaseToken(purchase.purchaseToken)

 .build()

coroutineScope.launch {

 val result = billingClient.consumePurchase(consumeParams)

 if (result.billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK) {

 // Purchase successfully consumed

 }

}

57.8 Querying previous purchases
When working with in-app billing it is a common requirement to check whether a user has already purchased a
product or subscription. A list of all the user’s previous purchases of a specific type can be generated by calling

538

An Overview of Android In-App Billing

the queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:
val queryPurchasesParams = QueryPurchasesParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build()

billingClient.queryPurchasesAsync(

 queryPurchasesParams,

 purchasesListener

)

.

.

private val purchasesListener =

 PurchasesResponseListener { billingResult, purchases ->

 if (!purchases.isEmpty()) {

 // Access existing active purchases

 } else {

 // No

 }

 }

To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:
val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build()

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams) {
billingResult, historyList ->

 // Process purchase history list

}

57.9 Summary
In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. In this chapter, we have explored managed products and subscriptions and explained
the difference between consumable and non-consumable products. In-app purchasing support is added to
an app using the Google Play In-app Billing Library and involves creating and initializing a billing client on
which methods are called to perform tasks such as making purchases, listing available products, and consuming
existing purchases. The next chapter contains a tutorial demonstrating the addition of in-app purchases to an
Android Studio project.

573

Index

Index

Symbols
?. 105

2D graphics 381

@Composable 24, 149

@ExperimentalFoundationApi 326

:: operator 107

@Preview 25

showSystemUi 25

A
acknowledgePurchase() method 535

Activity Manager 93

adb

command-line tool 71

connection testing 77

device pairing 75

enabling on Android devices 71

Linux configuration 74

list devices 71

macOS configuration 72

overview 71

restart server 72

testing connection 77

WiFi debugging 75

Windows configuration 73

Wireless debugging 75

Wireless pairing 75

AlertDialog 153

align() 227

alignByBaseline() 219

Alignment.Bottom 213, 217

Alignment.BottomCenter 225

Alignment.BottomEnd 225

Alignment.BottomStart 225

Alignment.Center 225

Alignment.CenterEnd 225

Alignment.CenterHorizontally 213

Alignment.CenterStart 225

Alignment.CenterVertically 213, 217

Alignment.End 213

alignment lines 249

Alignment.Start 213

Alignment.Top 213, 217

Alignment.TopCenter 225

Alignment.TopEnd 225

Alignment.TopStart 225

Android

architecture 91

runtime 92

SDK Packages 6

Android Architecture Components 401

Android Debug Bridge. See ADB

Android Development

System Requirements 3

Android Jetpack 401

Android Libraries 92

Android Monitor tool window 45

Android Native Development Kit 93

Android SDK Location

identifying 10

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10

Android Software Stack 91

Android Studio

Animation Inspector 379

Asset Studio 184

changing theme 69

574

Index

Database Inspector 451

downloading 3

Editor Window 64

installation 4

Layout Editor 147

Linux installation 5

macOS installation 4

Navigation Bar 63

Project tool window 64

setup wizard 5

Status Bar 64

Toolbar 63

Tool window bars 64

tool windows 64

updating 12

Welcome Screen 61

Windows installation 4

Android Support Library, 401

Android Virtual Device. See AVD

overview 39

Android Virtual Device Manager 39

AndroidX libraries 564

animate as state functions 365

animateColorAsState() function 365, 369, 371

animateDpAsState() function 373, 378

AnimatedVisibility 353

animation specs 357

enter and exit animations 356

expandHorizontally() 356

expandIn() 356

expandVertically() 356

fadeIn() 356

fadeOut() 359

MutableTransitionState 363

scaleIn() 359

scaleOut() 359

shrinkHorizontally() 359

shrinkOut() 359

shrinkVertically() 359

slideIn() 357

slideInHorizontally() 357

slideInVertically() 357

slideOut() 357

slideOutHorizontally() 357

slideOutVertically() 357

animateEnterExit() modifier 362

animateFloatAsState() function 366

animateScrollTo() function 304, 313

animateScrollToItem(index: Int) 302

animateScrollTo(value: Int) 301

Animation

auto-starting 360

combining animations 376

inspector 379

keyframes 375

KeyframesSpec 375

motion 373

spring effects 374

state-based 365

visibility 353

Animation damping

DampingRatioHighBouncy 374

DampingRatioLowBouncy 374

DampingRatioMediumBouncy 374

DampingRatioNoBouncy 374

Animation Inspector 379

AnimationSpec 357

tween() function 360

Animation specs 357

Animation stiffness

StiffnessHigh 375

StiffnessLow 375

StiffnessMedium 375

StiffnessMediumLow 375

StiffnessVeryLow 375

annotated strings 201, 397

append function 201

buildAnnotatedString function 201

ParagraphStyle 202

SpanStyle 201

APK analyzer 528

APK file 523

APK File

analyzing 528

575

Index
APK Signing 564

APK Wizard dialog 520

App Bundles 517

creating 523

overview 517

revisions 527

uploading 524

append function 201

App Inspector 65

Application

stopping 45

Application Framework 93

Arrangement.Bottom 215

Arrangement.Center 214, 215

Arrangement.End 214

Arrangement.SpaceAround 216

Arrangement.SpaceBetween 216

Arrangement.SpaceEvenly 216

Arrangement.Start 214

Arrangement.Top 215

ART 92

as 107

as? 107

asFlow() builder 495

Asset Studio 184

asSharedFlow() 508

asStateFlow() 505

async 293

AVD

Change posture 59

cold boot 56

command-line creation 39

creation 39

device frame 49

Display mode 59

launch in tool window 49

overview 39

quickboot 56

Resizable 58

running an application 42

Snapshots 55

standalone 46

starting 41

Startup size and orientation 42

B
background modifier 198

barriers 279

Barriers 264

constrained views 264

baseline

alignment 217

baselines 251

BaseTextField 152

BillingClient 536

acknowledgePurchase() method 535

consumeAsync() method 535

getPurchaseState() method 536

initialization 532, 543

launchBillingFlow() method 534

queryProductDetailsAsync() method 535

queryPurchasesAsync() method 536

startConnection() method 533

BillingResult 551

getDebugMessage() 551

Bill of Materials. See BOM

Bitwise AND 113

Bitwise Inversion 112

Bitwise Left Shift 114

Bitwise OR 113

Bitwise Right Shift 114

Bitwise XOR 113

BOM 26

build.gradle.kts 26

compose-bom 26

library version mapping 27

override library version 27

Boolean 100

BottomNavigation 153, 457

BottomNavigationItem 457

Box 152

align() 227

alignment 225

Alignment.BottomCenter 225

576

Index

Alignment.BottomEnd 225

Alignment.BottomStart 225

Alignment.Center 225

Alignment.CenterEnd 225

Alignment.CenterStart 225

Alignment.TopCenter 225

Alignment.TopEnd 225

Alignment.TopStart 225

BoxScope 227

contentAlignment 225

matchParentSize() 227

overview 223

tutorial 223

BoxScope

align() 227

matchParentSize() 227

modifiers 227

BoxWithConstraints 152

Brush Text Styling 202

buffer() operator 502

buildAnnotatedString function 201

Build tool window 66

Build Variants , 66

tool window 66

Button 153

by keyword 158

C
cancelAndJoin() 294

cancelChildren() 296

Canvas 152

DrawScope 381

inset() function 385

overview 381

size 381

Card 153

example 306

C/C++ Libraries 92

centerAround() function 268

chain head 262

chaining modifiers 193

chains 262

chain styles 262

Char 100

Checkbox 153, 182

CircleShape 227

CircularProgressIndicator 153

clickable 198

clip 198

Clip Art 185

clip() modifier 227

CircleShape 227

CutCornerShape 227

RectangleShape 227

RoundedCornerShape 227

close() function 393

Code completion 82

Code editor 20

Split mode 20

Code Editor

basics 79

Code completion 82

Code Generation 84

Code Reformatting 87

Document Tabs 80

Editing area 80

Gutter Area 80

Live Templates 88

Splitting 82

Statement Completion 84

Status Bar 81

Code Generation 84

Code Reformatting 87

code samples

download 1

Coil

library 318

rememberImagePainter() function 319

cold boot 56

Cold flow 505

convert to hot 508

collectLatest() operator 500

collect() operator 496

ColorFilter 398

577

Index
color filtering 398

Column 152

Alignment.CenterHorizontally 213

Alignment.End 213

Alignment.Start 213

Arrangement.Bottom 215

Arrangement.Center 215

Arrangement.SpaceAround 216

Arrangement.SpaceBetween 216

Arrangement.SpaceEvenly 216

Arrangement.Top 215

Layout alignment 212

list 299

list tutorial 309

overview 210

scope 217

scope modifiers 217

spacing 216

tutorial 209

verticalArrangement 214

Column lists 299

ColumnScope 217

Modifier.align() 217

Modifier.alignBy() 217

Modifier.weight() 217

combine() operator 504

combining modifiers 198

Communicating Sequential Processes 291

Companion Objects 137

components 149

Composable

adding a 30

previewing 32

Composable function

syntax 150

composable functions 149

composables

add modifier support 194

Composables

Foundation 152

Material 152

Compose

before 147

components 149

data-driven 148

declarative syntax 147

functions 149

layout overview 245

modifiers 191

overview 147

state 148

compose-bom 26

compose() method 453

CompositionLocal

example 169

overview 167

state 170, 171

syntax 168

compositionLocalOf() function 168

conflate() operator 500

constrainAs() modifier function 267

constrain() function 283

Constraint bias 272

Constraint Bias 261

ConstraintLayout 152

adding constraints 268

barriers 279

Barriers 264

basic constraints 270

centerAround() function 268

chain head 262

chains 262

chain styles 262

constrainAs() function 267

constrain() function 283

Constraint bias 272

Constraint Bias 261

Constraint margins 273

Constraints 259

constraint sets 282

createEndBarrier() 279

createHorizontalChain() 277

createRefFor() function 283

createRef() function 267

578

Index

createRefs() function 267

createStartBarrier() 279

createTopBarrier() 279

createVerticalChain() 277

creating chains 277

generating references 267

guidelines 278

Guidelines 265

how to call 267

layout() modifier 286

library 269

linkTo() function 268

Margins 260

Opposing constraints 271

Opposing Constraints 260, 276

overview of 259

Packed chain 263

reference assignment 267

Spread chain 262

Spread inside chain 262

Weighted chain 262

Widget Dimensions 263

Constraint margins 273

constraints 254

constraint sets 282

consumeAsync() method 535

ConsumeParams 546

contentAlignment 225

Content Provider 93

Coroutine Builders 293

async 293

coroutineScope 293

launch 293

runBlocking 293

supervisorScope 293

withContext 293

Coroutine Dispatchers 292

Coroutines 302, 493

channel communication 297

coroutine scope 302

CoroutineScope 302

GlobalScope 292

LaunchedEffect 296

rememberCoroutineScope() 304

rememberCoroutineScope() function 292

SideEffect 296

Side Effects 296

Suspend Functions 292

suspending 294

ViewModelScope 292

vs Threads 291

vs. Threads 291

coroutineScope 293

CoroutineScope 292, 302

rememberCoroutineScope() 304

createEndBarrier() 279

createHorizontalChain() 277

createRefFor() function 283

createRef() function 267

createRefs() 267

createStartBarrier() 279

createTopBarrier() 279

createVerticalChain() 277

cross axis arrangement 243

Crossfading 361

currentBackStackEntryAsState() method 458, 476

Custom Accessors 135

Custom layout 253

building 253

constraints 254

Layout() composable 254

measurables 254

overview 253

Placeable 254

syntax 253

custom layout modifiers 245

alignment lines 249

baselines 251

creating 247

default position 247

Custom layouts

overview 245

tutorial 245

Custom Theme

579

Index
building 555

CutCornerShape 227

D
DampingRatioHighBouncy 374

DampingRatioLowBouncy 374

DampingRatioMediumBouncy 374

DampingRatioNoBouncy 374

Dark Theme 45

enable on device 45

dashPathEffect() method 383

Data Access Object (DAO) 424, 436

Data Access Objects 427

Database Inspector 433, 451

live updates 451

SQL query 451

Database Rows 418

Database Schema 417

Database Tables 417

data-driven 148

DDMS 45

Debugging

enabling on device 71

declarative syntax 147

Default Function Parameters 127

default position 247

derivedStateOf 329

Device File Explorer 66

device frame 49

Device Mirroring 77

enabling 77

device pairing 75

Dispatchers.Default 293

Dispatchers.IO 295

Dispatchers.Main 292

drag gestures 482

drawable

folder 184

drawArc() function 392

drawCircle() function 388

drawImage() function 395

Drawing

arcs 392

circle 388

close() 393

dashed lines 383

dashPathEffect() 383

drawArc() 392

drawImage() 395

drawPath() 393

drawPoints() 394

drawRect() 383

drawRoundRect() 386

gradients 389

images 395

line 381

oval 388

points 394

rectangle 383

rotate() 387

rotation 387

Drawing text 397

drawLine() function 382

drawPath() function 393

drawPoints() function 394

drawRect() function 383

drawRoundRect() function 386

DrawScope 381

drawText() function 397, 398

DropdownMenu 153

DROP_LATEST 507

DROP_OLDEST 507

DurationBasedAnimationSpec 357

Dynamic colors

enabling in Android 561

E
Elvis Operator 107

emit 149

Empty Compose Activity

template 16

Emulator

battery 54

cellular configuration 54

580

Index

configuring fingerprints 56

directional pad 54

extended control options 53

Extended controls 53

fingerprint 54

location configuration 54

phone settings 54

Resizable 58

resize 53

rotate 52

Screen Record 55

Snapshots 55

starting 41

take screenshot 52

toolbar 51

toolbar options 51

tool window mode 58

Virtual Sensors 55

zoom 52

enablePendingPurchases() method 535

enabling ADB support 71

enter animations 356

EnterTransition.None 362

Errata 2

Escape Sequences 101

ettings.gradle file 564

exit animations 356

ExitTransition.None 362

expandHorizontally() 356

expandIn() 356

expandVertically() 356

Extended Control

options 53

F
fadeIn() 356

fadeOut() 359

Files

switching between 80

fillMaxHeight 198

fillMaxSize 198

fillMaxWidth 198

filter() operator 498

findStartDestination() method 458

Fingerprint

emulation 56

firstVisibleItemIndex 304

flatMapConcat() operator 503

flatMapMerge() operator 503

Float 100

FloatingActionButton 153

Flow 493

asFlow() builder 495

asSharedFlow() 508

asStateFlow() 505

backgroudn handling 513

buffering 500

buffer() operator 502

builder 495

cold 505

collect() 499

collecting data 499

collectLatest() operator 500

combine() operator 504

conflate() operator 500

emit() 495

emitting data 495

filter() operator 498

flatMapConcat() operator 503

flatMapMerge() operator 503

flattening 502

flowOf() builder 495

flow of flows 502

fold() operator 502

hot 505

MutableSharedFlow 508

MutableStateFlow 505

onEach() operator 504

reduce() operator 501, 502

repeatOnLifecycle 514

SharedFlow 506

shareIn() function 508

single() operator 500

StateFlow 505

581

Index
transform() operator 498

try/finally 499

zip() operator 504

flow builder 495

FlowColumn 231, 237, 242

cross axis arrangement 243

maxItemsInEachColumn 232

tutorial 237

Flow layout

arrangement 240

Flow layouts

cross axis arrangement 234

fillMaxHeight() 236

fillMaxWidth() 236

Fractional sizing 236

horizontalArrangement 243

Item alignment 235

item weights 243

main axis arrangement 232

verticalArrangement 243

weight 236

flowOf() builder 495

flow of flows 502

FlowRow 231, 237, 239

cross axis arrangement 243

horizontalArrangement 240

item alignment 240

maxItemsInEachRow 232

tutorial 237

Flows

combining 504

Introduction to 493

FontWeight 31

forEachIndexed 243

forEach loop 256

Foundation components 152

Foundation Composables 152

Foundation libraries 346

Foundation library 237

Function Parameters

variable number of 127

Functions 125

G
Gestures 479

click 479

drag 482

horizontalScroll() 486

overview 479

pinch gestures 490

PointerInputScope 483

rememberScrollableState() function 485

rememberScrollState() 486

rememberTransformableState() 490

rotation gestures 489

scrollable() modifier 485

scroll modifiers 486

taps 483

translation gestures 490

tutorial 479

verticalScroll() 486

getDebugMessage() 551

getPurchaseState() method 536

getStringArray() method 317

GlobalScope 292

GNU/Linux 92

Google Play App Signing 520

Google Play Billing Library 531

Google Play Console 538

Creating an in-app product 538

License Testers 539

Google Play Developer Console 518

Google Play store 17

Gradient drawing 389

Gradle

APK signing settings 571

Build Variants 564

command line tasks 572

dependencies 563

Manifest Entries 564

overview 563

sensible defaults 563

Gradle Build File

top level 567

Gradle Build Files

582

Index

module level 566

gradle.properties file 564

Graphics

drawing 381

Grid

overview 299

groupBy() function 303

guidelines 278

H
Higher-order Functions 129

horizontalArrangement 214, 216, 243

HorizontalPager 341

animateScrollToPage() 343

scrollToPage() 343

state 342

syntax 341

horizontalScroll() 486

Hot flows 505

I
Image 152

add drawable resource 184

painterResource method 186

Immutable Variables 102

INAPP 536

In-App Products 531

In-App Purchasing 537

acknowledgePurchase() method 535

BillingClient 532

BillingResult 551

consumeAsync() method 535

ConsumeParams 546

Consuming purchases 544

enablePendingPurchases() method 535

getPurchaseState() method 536

Google Play Billing Library 531

launchBillingFlow() method 534

Libraries 537

newBuilder() method 532

onBillingServiceDisconnected() callback 542

onBillingServiceDisconnected() method 533

onBillingSetupFinished() listener 544

onProductDetailsResponse() callback 542

Overview 531

ProductDetail 534

ProductDetails 543

products 531

ProductType 536

Purchase Flow 545

PurchaseResponseListener 536

PurchasesUpdatedListener 534

PurchaseUpdatedListener 543

purchase updates 543

queryProductDetailsAsync() 542

queryProductDetailsAsync() method 535

queryPurchasesAsync() 546

queryPurchasesAsync() method 536

startConnection() method 533

subscriptions 531

tutorial 537

Initializer Blocks 135

In-Memory Database 430

Inner Classes 136

inset() function 385

InstrinsicSize.Max 289

InstrinsicSize.Min 289, 290

intelligent recomposition 155

IntelliJ IDEA 95

Interactive mode 36

Intrinsic measurements 285

IntrinsicSize 285

intrinsic measurements 285

Max 285

Min 285

tutorial 287

is 107

isInitialized property 107

isSystemInDarkTheme() function 170

item() function 300

items() function 300

itemsIndexed() function 300

J

583

Index
Java

convert to Kotlin 95

Java Native Interface 93

JetBrains 95

Jetpack Compose

see Compose 147

join() 296

K
keyboardOptions 413

Keyboard Shortcuts 67

keyframe 360

keyframes 375

KeyframesSpec 375

keyframes() function 375

KeyframesSpec 375

Keystore File

creation 520

Kotlin

accessing class properties 135

and Java 95

arithmetic operators 109

assignment operator 109

augmented assignment operators 110

bitwise operators 112

Boolean 100

break 120

breaking from loops 119

calling class methods 135

Char 100

class declaration 131

class initialization 132

class properties 132

Companion Objects 137

conditional control flow 121

continue labels 120

continue statement 120

control flow 117

convert from Java 95

Custom Accessors 135

data types 99

decrement operator 110

Default Function Parameters 127

defining class methods 132

do ... while loop 119

Elvis Operator 107

equality operators 111

Escape Sequences 101

expression syntax 109

Float 100

Flow 493

for-in statement 117

function calling 126

Functions 125

groupBy() function 303

Higher-order Functions 129

if ... else ... expressions 122

if expressions 121

Immutable Variables 102

increment operator 110

inheritance 141

Initializer Blocks 135

Inner Classes 136

introduction 95

Lambda Expressions 128

let Function 105

Local Functions 126

logical operators 111

looping 117

Mutable Variables 102

Not-Null Assertion 105

Nullable Type 104

Overriding inherited methods 144

playground 96

Primary Constructor 132

properties 135

range operator 112

Safe Call Operator 104

Secondary Constructors 132

Single Expression Functions 126

String 100

subclassing 141

subStringBefore() method 319

Type Annotations 103

584

Index

Type Casting 107

Type Checking 107

Type Inference 103

variable parameters 127

when statement 122

while loop 118

L
Lambda Expressions 128

lateinit 106

Late Initialization 106

launch 293

launchBillingFlow() method 534

LaunchedEffect 296

launchSingleTop 455

Layout alignment 212

Layout arrangement 214

Layout arrangement spacing 216

Layout components 152

Layout() composable 254

Layout Editor 147

Layout Inspector 66

layout modifier 198

layout() modifier 286

LazyColumn 152, 299

creation 300

scroll position detection 304

LazyHorizontalStaggeredGrid 333, 338

syntax 334

LazyList

tutorial 315

Lazy lists 299

Scrolling 301

LazyListScope 300

item() function 300

items() function 300

itemsIndexed() function 300

stickyHeader() function 304

LazyListState 304

firstVisibleItemIndex 304

LazyRow 152, 299

creation 300

scroll position detection 304

LazyVerticalGrid 299

adaptive mode 306

fixed mode 306

LazyVerticalStaggeredGrid 333, 336

syntax 333

let Function 105

libc 92

License Testers 539

Lifecycle.State.CREATED 514

Lifecycle.State.DESTROYED 514

Lifecycle.State.INITIALIZED 514

Lifecycle.State.RESUMED 514

Lifecycle.State.STARTED 514

LinearProgressIndicator 153

lineTo() 393

lineTo() function 393

linkTo() function 268

Linux Kernel 92

list devices 71

Lists

clickable items 322

enabling scrolling 301

overview 299

literals

live editing 32

LiveData 404

observeAsState() 405

Live Edit 43

disabling 32

enabling 32

of literals 32

Live Templates 88

Local Functions 126

Location Manager 93

Logcat

tool window 65

M
MainActivity.kt file 20

template code 29

map method 254

585

Index
matchParentSize() 227

Material Composables 152

Material Design 2 551

Material Design 2 Theming 551

Material Design 3 551

Material Design components 153

Material Theme Builder 557

Material You 551

maxValue property 313

measurables 254

measure() function 400

measureTimeMillis() function 500

Memory Indicator 81

Minimum SDK

setting 17

ModalDrawer 153

Modern Android architecture 401

modifier

adding to composable 194

chaining 193

combining 198

creating a 192

ordering 194

tutorial 191

Modifier.align() 217

Modifier.alignBy() 217

modifiers

build-in 198

overview 191

Modifier.weight() 217

multiple devices

testing app on 44

MutableLiveData 404

MutableSharedFlow 508

MutableState 156

MutableStateFlow 505

mutableStateOf function 149

mutableStateOf() function 157

MutableTransitionState 363

Mutable Variables 102

N

NavHost 453, 467, 473

NavHostController 451, 467, 473

navigate() method 455

Navigation 451

BottomNavigation 457

BottomNavigationItem 457

compose() method 453

currentBackStackEntryAsState() method 458

declaring routes 464

findStartDestination() method 458

graph 453

launchSingleTop 455

NavHost 453, 467

NavHostController 451, 467

navigate() method 455

navigation graph 451

NavType 456

overview 451

passing arguments

popUpTo() method 455

route 453

stack 451, 452

start destination 453

tutorial 461

Navigation Architecture Component 451

NavigationBar 474

NavigationBarItem 474

Navigation bars 457

navigation graph 451, 453

Navigation Host 455

NavType 456

newBuilder() method 532

Notifications Manager 93

Not-Null Assertion 105

Nullable Type 104

O
observeAsState() 405

Offset() function 382

offset modifier 198

onBillingServiceDisconnected() callback 542

onBillingServiceDisconnected() method 533

586

Index

onBillingSetupFinished() listener 544

onCreate() method 25

onEach() operator 504

onProductDetailsResponse() callback 542

OpenJDK 3

Opposing constraints 271

OutlinedButton 329

OutlinedTextField 407

P
Package Manager 93

Package name 17

Packed chain 263

padding 198

Pager 341

animateScrollToPage() 343

scrollToPage() 343

state 342

syntax , 232

Pager state 342

painterResource method 186

ParagraphStyle 202

PathEffect 383

pinch gestures 490

Placeable 254

PointerInputScope 483

drag gestures 486

tap gestures 483

popUpTo() method 455

Preview configuration picker 35

Preview panel 25

build and refresh 25

Interactive mode 36

settings 35

Primary Constructor 132

Problems

tool window 66

ProductDetail 534

ProductDetails 543

ProductType 536

Profiler

tool window 66

proguard-rules.pro file 568

ProGuard Support 564

project

create new 16

package name 17

Project tool window 19, 65

Android mode 19

PurchaseResponseListener 536

PurchasesUpdatedListener 536, 543

Q
queryProductDetailsAsync() 542

queryProductDetailsAsync() method 535

queryPurchaseHistoryAsync() method 536

queryPurchasesAsync() 546

queryPurchasesAsync() method 536

quickboot snapshot 56

Quick Documentation 87

R
RadioButton 153

Random

nextInt() 238

Random.nextInt() method 337, 240

Range Operator 112

Recent Files Navigation 68

recomposition 148

intelligent recomposition 155

overview 155

RectangleShape 227

reduce() operator 501, 502

relativeLineTo() function 393

Release Preparation 517

rememberCoroutineScope() function 292, 304, 311

rememberDraggableState() function 482

rememberImagePainter() function 319

remember keyword 157

rememberPagerState 342

rememberSaveable keyword 164

rememberScrollableState() function 485

rememberScrollState() 486

rememberScrollState() function 301, 311

587

Index
rememberTextMeasurer() function 397

rememberTransformableState() 490

rememberTransformationState() function 488

repeatable() function 361

RepeatableSpec

repeatable() 361

RepeatMode.Reverse 361

repeatOnLifecycle 514

Repository

tutorial 433

Resizable Emulator 58

Resource Manager 93, 65

Room

Data Access Object (DAO) 424

entities 424, 425

In-Memory Database 430

Repository 425

Room Database 424

tutorial 433

Room Database Persistence 423

Room persistence library 434

Room Persistence Library 421

rotate modifier 198

rotation gestures 489

RoundedCornerShape 227

Row 152

Alignment.Bottom 213

Alignment.CenterVertically 213

Alignment.Top 213

Arrangement.Center 214

Arrangement.End 214

Arrangement.SpaceAround 216

Arrangement.SpaceBetween 216

Arrangement.SpaceEvenly 216

Arrangement.Start 214

horizontalArrangement 214

Layout alignment 212

Layout arrangement 214

list 299

list example 314

overview 210

scope 217

scope modifiers 217

spacing 216

tutorial 209

Row lists 299

RowScope 217

Modifier.align() 217

Modifier.alignBy() 217

Modifier.alignByBaseline() 217

Modifier.paddingFrom() 218

Modifier.weight() 218

Run

tool window 65

runBlocking 293

Running Devices

tool window 77

S
Safe Call Operator 104

Scaffold 153, 475

bottomBar 478

TopAppBar 476

scaleIn() 359

scale modifier 198

scaleOut() 359

Scope modifiers

weights 221

scrollable modifier 198

scrollable() modifier 485, 486

Scroll detection

example 325

scroll modifiers 486

ScrollState

maxValue property 313

rememberScrollState() function 301

scrollToItem(index: Int) 302

scrollToPage() 343

scrollTo(value: Int) 301

SDK Packages 6

SDK settings 17

Secondary Constructors 132

Secure Sockets Layer (SSL) 92

settings.gradle.kts file 564

588

Index

Shape 153

Shapes

CircleShape 227

CutCornerShape 227

RectangleShape 227

RoundedCornerShape 227

SharedFlow 506, 509

backgroudn handling 513

DROP_LATEST 507

DROP_OLDEST 507

in ViewModel 510

repeatOnLifecycle 514

SUSPEND 507

tutorial 509

shareIn() function 508

SharingStarted.Eagerly() 508

SharingStarted.Lazily() 508

SharingStarted.WhileSubscribed() 508

showSystemUi 25, 310

shrinkHorizontally() 359

shrinkOut() 359

shrinkVertically() 359

SideEffect 296

Side Effects 296

single() operator 500

size modifier 198

slideIn() 357

slideInHorizontally() 357

slideInVertically() 357

slideOut() 357

slideOutHorizontally() 357

slideOutVertically() 357

Slider 153

Slider component 33

Slot APIs

calling 176

declaring 176

overview 175

tutorial 179

Snackbar 153

Snapshots

emulator 55

SpanStyle 201

Spread chain 262

Spread inside chain 262

Spring effects 374

spring() function 374

SQL 418

SQLite 417

AVD command-line use 419

Columns and Data Types 417

overview 418

Primary keys 418

Staggered Grids 333

startConnection() method 533

start destination 453

state 148

basics of 155

by keyword 158

configuration changes 163

declaring 156

hoisting 161

MutableState 156

mutableStateOf() function 157

overview 155

remember keyword 157

rememberSaveable 164

Unidirectional data flow 159

StateFlow 505

stateful 155

stateful composables 149

State hoisting 161

stateless composables 149

Statement Completion 84

staticCompositionLocalOf() function 168, 170

Status Bar Widgets 81

Memory Indicator 81

stickyHeader 326

stickyHeader() function 304

Sticky headers

adding 326

example 325

stickyHeader() function 304

StiffnessHigh 375

589

Index
StiffnessLow 375

StiffnessMedium 375

StiffnessMediumLow 375

StiffnessVeryLow 375

String 100

Structure

tool window 66

Structured Query Language 418

Structure tool window 66

SUBS 536

subscriptions 531

subStringBefore() method 319

supervisorScope 293

Surface component 24, 225

SUSPEND 507

Suspend Functions 292

Switch 153

Switcher 68

system requirements 3

T
Telephony Manager 93

Terminal

tool window 66

Text 153

Text component 150

TextField 153

TextMeasurer 397

measure() function 400

TextStyle 416

Theme

building a custom 555

Theming 551

tutorial 557

TODO

tool window 67

Tool window bars 64

Tool windows 64

TopAppBar 153, 476

trailingIcon 414

TransformableState 490

transform() operator 498

translation gestures 490

try/finally 499

tween() function 360

Type Annotations 103

Type Casting 107

Type Checking 107

Type Inference 103

Type.kt file 556

U
UI Controllers 402

UI_NIGHT_MODE_YES 171

Unidirectional data flow 159

updateTransition() function 366, 373, 376

upload key 520

USB connection issues

resolving 74

V
Vector Asset

add to project 184

verticalArrangement 214, 216

VerticalPager

animateScrollToPage() 343

scrollToPage() 343

state 342

syntax , 232

verticalScroll() 486

verticalScroll() modifier 311

ViewModel

example 408

lifecycle library 404, 408, 494, 509

LiveData 404

observeAsState() 405

overview 401

tutorial 407

using state 402

viewModel() 404, 410, 444

ViewModelProvider Factory 443

ViewModelStoreOwner 444

viewModel() function 404, 410, 444

ViewModelProvider Factory 443

ViewModelScope 292

ViewModelStoreOwner 444

View System 93

Virtual Device Configuration dialog 40

Virtual Sensors 55

Visibility animation 353

W
Weighted chain 262

Welcome screen 61

while Loop 118

Widget Dimensions 263

WiFi debugging 75

Wireless debugging 75

Wireless pairing 75

withContext 293

X
XML resource

reading an 315

Z
zip() operator 504

	1. Start Here
	1.1 For Kotlin programmers
	1.2 For new Kotlin programmers
	1.3 Downloading the code samples
	1.4 Feedback
	1.5 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. A Compose Project Overview
	3.1 About the project
	3.2 Creating the project
	3.3 Creating an activity
	3.4 Defining the project and SDK settings
	3.5 Enabling the New Android Studio UI
	3.6 Previewing the example project
	3.7 Reviewing the main activity
	3.8 Preview updates
	3.9 Bill of Materials and the Compose version
	3.10 Summary

	4. An Example Compose Project
	4.1 Getting started
	4.2 Removing the template Code
	4.3 The Composable hierarchy
	4.4 Adding the DemoText composable
	4.5 Previewing the DemoText composable
	4.6 Adding the DemoSlider composable
	4.7 Adding the DemoScreen composable
	4.8 Previewing the DemoScreen composable
	4.9 Adjusting preview settings
	4.10 Testing in interactive mode
	4.11 Completing the project
	4.12 Summary

	5. Creating an Android Virtual Device (AVD) in Android Studio
	5.1 About Android Virtual Devices
	5.2 Starting the Emulator
	5.3 Running the Application in the AVD
	5.4 Real-time updates with Live Edit
	5.5 Running on Multiple Devices
	5.6 Stopping a Running Application
	5.7 Supporting Dark Theme
	5.8 Running the Emulator in a Separate Window
	5.9 Enabling the Device Frame
	5.10 Summary

	6. Using and Configuring the Android Studio AVD Emulator
	6.1 The Emulator Environment
	6.2 Emulator Toolbar Options
	6.3 Working in Zoom Mode
	6.4 Resizing the Emulator Window
	6.5 Extended Control Options
	6.5.1 Location
	6.5.2 Displays
	6.5.3 Cellular
	6.5.4 Battery
	6.5.5 Camera
	6.5.6 Phone
	6.5.7 Directional Pad
	6.5.8 Microphone
	6.5.9 Fingerprint
	6.5.10 Virtual Sensors
	6.5.11 Snapshots
	6.5.12 Record and Playback
	6.5.13 Google Play
	6.5.14 Settings
	6.5.15 Help

	6.6 Working with Snapshots
	6.7 Configuring Fingerprint Emulation
	6.8 The Emulator in Tool Window Mode
	6.9 Creating a Resizable Emulator
	6.10 Summary

	7. A Tour of the Android Studio User Interface
	7.1 The Welcome Screen
	7.2 The Menu Bar
	7.3 The Main Window
	7.4 The Tool Windows
	7.5 The Tool Window Menus
	7.6 Android Studio Keyboard Shortcuts
	7.7 Switcher and Recent Files Navigation
	7.8 Changing the Android Studio Theme
	7.9 Summary

	8. Testing Android Studio Apps on a Physical Android Device
	8.1 An Overview of the Android Debug Bridge (ADB)
	8.2 Enabling USB Debugging ADB on Android Devices
	8.2.1 macOS ADB Configuration
	8.2.2 Windows ADB Configuration
	8.2.3 Linux adb Configuration

	8.3 Resolving USB Connection Issues
	8.4 Enabling Wireless Debugging on Android Devices
	8.5 Testing the adb Connection
	8.6 Device Mirroring
	8.7 Summary

	9. The Basics of the Android Studio Code Editor
	9.1 The Android Studio Editor
	9.2 Splitting the Editor Window
	9.3 Code Completion
	9.4 Statement Completion
	9.5 Parameter Information
	9.6 Parameter Name Hints
	9.7 Code Generation
	9.8 Code Folding
	9.9 Quick Documentation Lookup
	9.10 Code Reformatting
	9.11 Finding Sample Code
	9.12 Live Templates
	9.13 Summary

	10. An Overview of the Android Architecture
	10.1 The Android software stack
	10.2 The Linux kernel
	10.3 Android runtime – ART
	10.4 Android libraries
	10.4.1 C/C++ libraries

	10.5 Application framework
	10.6 Applications
	10.7 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables and Nullability
	12.1 Kotlin data types
	12.1.1 Integer data types
	12.1.2 Floating point data types
	12.1.3 Boolean data type
	12.1.4 Character data type
	12.1.5 String data type
	12.1.6 Escape sequences

	12.2 Mutable variables
	12.3 Immutable variables
	12.4 Declaring mutable and immutable variables
	12.5 Data types are objects
	12.6 Type annotations and type inference
	12.7 Nullable type
	12.8 The safe call operator
	12.9 Not-null assertion
	12.10 Nullable types and the let function
	12.11 Late initialization (lateinit)
	12.12 The Elvis operator
	12.13 Type casting and type checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression syntax in Kotlin
	13.2 The Basic assignment operator
	13.3 Kotlin arithmetic operators
	13.4 Augmented assignment operators
	13.5 Increment and decrement operators
	13.6 Equality operators
	13.7 Boolean logical operators
	13.8 Range operator
	13.9 Bitwise operators
	13.9.1 Bitwise inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise left shift
	13.9.6 Bitwise right shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue statement
	14.1.6 Break and continue labels

	14.2 Conditional control flow
	14.2.1 Using the if expressions
	14.2.2 Using if ... else … expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a function?
	15.2 How to declare a Kotlin function
	15.3 Calling a Kotlin function
	15.4 Single expression functions
	15.5 Local functions
	15.6 Handling return values
	15.7 Declaring default function parameters
	15.8 Variable number of function parameters
	15.9 Lambda expressions
	15.10 Higher-order functions
	15.11 Summary

	16. The Basics of Object-Oriented Programming in Kotlin
	16.1 What is an object?
	16.2 What is a class?
	16.3 Declaring a Kotlin class
	16.4 Adding properties to a class
	16.5 Defining methods
	16.6 Declaring and initializing a class instance
	16.7 Primary and secondary constructors
	16.8 Initializer blocks
	16.9 Calling methods and accessing properties
	16.10 Custom accessors
	16.11 Nested and inner classes
	16.12 Companion objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, classes, and subclasses
	17.2 Subclassing syntax
	17.3 A Kotlin inheritance example
	17.4 Extending the functionality of a subclass
	17.5 Overriding inherited methods
	17.6 Adding a custom secondary constructor
	17.7 Using the SavingsAccount class
	17.8 Summary

	18. An Overview of Compose
	18.1 Development before Compose
	18.2 Compose declarative syntax
	18.3 Compose is data-driven
	18.4 Summary

	19. Composable Functions Overview
	19.1 What is a composable function?
	19.2 Stateful vs. stateless composables
	19.3 Composable function syntax
	19.4 Foundation and Material composables
	19.5 Summary

	20. An Overview of Compose State and Recomposition
	20.1 The basics of state
	20.2 Introducing recomposition
	20.3 Creating the StateExample project
	20.4 Declaring state in a composable
	20.5 Unidirectional data flow
	20.6 State hoisting
	20.7 Saving state through configuration changes
	20.8 Summary

	21. An Introduction to Composition Local
	21.1 Understanding CompositionLocal
	21.2 Using CompositionLocal
	21.3 Creating the CompLocalDemo project
	21.4 Designing the layout
	21.5 Adding the CompositionLocal state
	21.6 Accessing the CompositionLocal state
	21.7 Testing the design
	21.8 Summary

	22. An Overview of Compose Slot APIs
	22.1 Understanding slot APIs
	22.2 Declaring a slot API
	22.3 Calling slot API composables
	22.4 Summary

	23. A Compose Slot API Tutorial
	23.1 About the project
	23.2 Creating the SlotApiDemo project
	23.3 Preparing the MainActivity class file
	23.4 Creating the MainScreen composable
	23.5 Adding the ScreenContent composable
	23.6 Creating the Checkbox composable
	23.7 Implementing the ScreenContent slot API
	23.8 Adding an Image drawable resource
	23.9 Coding the TitleImage composable
	23.10 Completing the MainScreen composable
	23.11 Previewing the project
	23.12 Summary

	24. Using Modifiers in Compose
	24.1 An overview of modifiers
	24.2 Creating the ModifierDemo project
	24.3 Creating a modifier
	24.4 Modifier ordering
	24.5 Adding modifier support to a composable
	24.6 Common built-in modifiers
	24.7 Combining modifiers
	24.8 Summary

	25. Annotated Strings and Brush Styles
	25.1 What are annotated strings?
	25.2 Using annotated strings
	25.3 Brush Text Styling
	25.4 Creating the example project
	25.5 An example SpanStyle annotated string
	25.6 An example ParagraphStyle annotated string
	25.7 A Brush style example
	25.8 Summary

	26. Composing Layouts with Row and Column
	26.1 Creating the RowColDemo project
	26.2 Row composable
	26.3 Column composable
	26.4 Combining Row and Column composables
	26.5 Layout alignment
	26.6 Layout arrangement positioning
	26.7 Layout arrangement spacing
	26.8 Row and Column scope modifiers
	26.9 Scope modifier weights
	26.10 Summary

	27. Box Layouts in Compose
	27.1 An introduction to the Box composable
	27.2 Creating the BoxLayout project
	27.3 Adding the TextCell composable
	27.4 Adding a Box layout
	27.5 Box alignment
	27.6 BoxScope modifiers
	27.7 Using the clip() modifier
	27.8 Summary

	28. An Introduction to FlowRow and FlowColumn
	28.1 FlowColumn and FlowRow
	28.2 Maximum number of items
	28.3 Working with main axis arrangement
	28.4 Understanding cross-axis arrangement
	28.5 Item alignment
	28.6 Controlling item size
	28.7 Summary

	29. A FlowRow and FlowColumn Tutorial
	29.1 Creating the FlowLayoutDemo project
	29.2 Generating random height and color values
	29.3 Adding the Box Composable
	29.4 Modifying the Flow arrangement
	29.5 Modifying item alignment
	29.6 Switching to FlowColumn
	29.7 Using cross-axis arrangement
	29.8 Adding item weights
	29.9 Summary

	30. Custom Layout Modifiers
	30.1 Compose layout basics
	30.2 Custom layouts
	30.3 Creating the LayoutModifier project
	30.4 Adding the ColorBox composable
	30.5 Creating a custom layout modifier
	30.6 Understanding default position
	30.7 Completing the layout modifier
	30.8 Using a custom modifier
	30.9 Working with alignment lines
	30.10 Working with baselines
	30.11 Summary

	31. Building Custom Layouts
	31.1 An overview of custom layouts
	31.2 Custom layout syntax
	31.3 Using a custom layout
	31.4 Creating the CustomLayout project
	31.5 Creating the CascadeLayout composable
	31.6 Using the CascadeLayout composable
	31.7 Summary

	32. A Guide to ConstraintLayout in Compose
	32.1 An introduction to ConstraintLayout
	32.2 How ConstraintLayout works
	32.2.1 Constraints
	32.2.2 Margins
	32.2.3 Opposing constraints
	32.2.4 Constraint bias
	32.2.5 Chains
	32.2.6 Chain styles

	32.3 Configuring dimensions
	32.4 Guideline helper
	32.5 Barrier helper
	32.6 Summary

	33. Working with ConstraintLayout in Compose
	33.1 Calling ConstraintLayout
	33.2 Generating references
	33.3 Assigning a reference to a composable
	33.4 Adding constraints
	33.5 Creating the ConstraintLayout project
	33.6 Adding the ConstraintLayout library
	33.7 Adding a custom button composable
	33.8 Basic constraints
	33.9 Opposing constraints
	33.10 Constraint bias
	33.11 Constraint margins
	33.12 The importance of opposing constraints and bias
	33.13 Creating chains
	33.14 Working with guidelines
	33.15 Working with barriers
	33.16 Decoupling constraints with constraint sets
	33.17 Summary

	34. Working with IntrinsicSize in Compose
	34.1 Intrinsic measurements
	34.2 Max. vs Min. Intrinsic Size measurements
	34.3 About the example project
	34.4 Creating the IntrinsicSizeDemo project
	34.5 Creating the custom text field
	34.6 Adding the Text and Box components
	34.7 Adding the top-level Column
	34.8 Testing the project
	34.9 Applying IntrinsicSize.Max measurements
	34.10 Applying IntrinsicSize.Min measurements
	34.11 Summary

	35. Coroutines and LaunchedEffects in Jetpack Compose
	35.1 What are coroutines?
	35.2 Threads vs. coroutines
	35.3 Coroutine Scope
	35.4 Suspend functions
	35.5 Coroutine dispatchers
	35.6 Coroutine builders
	35.7 Jobs
	35.8 Coroutines – suspending and resuming
	35.9 Coroutine channel communication
	35.10 Understanding side effects
	35.11 Summary

	36. An Overview of Lists and Grids in Compose
	36.1 Standard vs. lazy lists
	36.2 Working with Column and Row lists
	36.3 Creating lazy lists
	36.4 Enabling scrolling with ScrollState
	36.5 Programmatic scrolling
	36.6 Sticky headers
	36.7 Responding to scroll position
	36.8 Creating a lazy grid
	36.9 Summary

	37. A Compose Row and Column List Tutorial
	37.1 Creating the ListDemo project
	37.2 Creating a Column-based list
	37.3 Enabling list scrolling
	37.4 Manual scrolling
	37.5 A Row list example
	37.6 Summary

	38. A Compose Lazy List Tutorial
	38.1 Creating the LazyListDemo project
	38.2 Adding list data to the project
	38.3 Reading the XML data
	38.4 Handling image loading
	38.5 Designing the list item composable
	38.6 Building the lazy list
	38.7 Testing the project
	38.8 Making list items clickable
	38.9 Summary

	39. Lazy List Sticky Headers and Scroll Detection
	39.1 Grouping the list item data
	39.2 Displaying the headers and items
	39.3 Adding sticky headers
	39.4 Reacting to scroll position
	39.5 Adding the scroll button
	39.6 Testing the finished app
	39.7 Summary

	40. A Compose Lazy Staggered Grid Tutorial
	40.1 Lazy Staggered Grids
	40.2 Creating the StaggeredGridDemo project
	40.3 Adding the Box composable
	40.4 Generating random height and color values
	40.5 Creating the Staggered List
	40.6 Testing the project
	40.7 Switching to a horizontal staggered grid
	40.8 Summary

	41. VerticalPager and HorizontalPager in Compose
	41.1 The Pager composables
	41.2 Working with pager state
	41.3 About the PagerDemo project
	41.4 Creating the PagerDemo project
	41.5 Modifying the build configuration
	41.6 Adding the book cover images
	41.7 Adding the HorizontalPager
	41.8 Creating the page content
	41.9 Testing the pager
	41.10 Adding the arrow buttons
	41.11 Summary

	42. Compose Visibility Animation
	42.1 Creating the AnimateVisibility project
	42.2 Animating visibility
	42.3 Defining enter and exit animations
	42.4 Animation specs and animation easing
	42.5 Repeating an animation
	42.6 Different animations for different children
	42.7 Auto-starting an animation
	42.8 Implementing crossfading
	42.9 Summary

	43. Compose State-Driven Animation
	43.1 Understanding state-driven animation
	43.2 Introducing animate as state functions
	43.3 Creating the AnimateState project
	43.4 Animating rotation with animateFloatAsState
	43.5 Animating color changes with animateColorAsState
	43.6 Animating motion with animateDpAsState
	43.7 Adding spring effects
	43.8 Working with keyframes
	43.9 Combining multiple animations
	43.10 Using the Animation Inspector
	43.11 Summary

	44. Canvas Graphics Drawing in Compose
	44.1 Introducing the Canvas component
	44.2 Creating the CanvasDemo project
	44.3 Drawing a line and getting the canvas size
	44.4 Drawing dashed lines
	44.5 Drawing a rectangle
	44.6 Applying rotation
	44.7 Drawing circles and ovals
	44.8 Drawing gradients
	44.9 Drawing arcs
	44.10 Drawing paths
	44.11 Drawing points
	44.12 Drawing an image
	44.13 Drawing text
	44.14 Summary

	45. Working with ViewModels in Compose
	45.1 What is Android Jetpack?
	45.2 The “old” architecture
	45.3 Modern Android architecture
	45.4 The ViewModel component
	45.5 ViewModel implementation using state
	45.6 Connecting a ViewModel state to an activity
	45.7 ViewModel implementation using LiveData
	45.8 Observing ViewModel LiveData within an activity
	45.9 Summary

	46. A Compose ViewModel Tutorial
	46.1 About the project
	46.2 Creating the ViewModelDemo project
	46.3 Adding the ViewModel
	46.4 Accessing DemoViewModel from MainActivity
	46.5 Designing the temperature input composable
	46.6 Designing the temperature input composable
	46.7 Completing the user interface design
	46.8 Testing the app
	46.9 Summary

	47. An Overview of Android SQLite Databases
	47.1 Understanding database tables
	47.2 Introducing database schema
	47.3 Columns and data types
	47.4 Database rows
	47.5 Introducing primary keys
	47.6 What is SQLite?
	47.7 Structured Query Language (SQL)
	47.8 Trying SQLite on an Android Virtual Device (AVD)
	47.9 The Android Room persistence library
	47.10 Summary

	48. Room Databases and Compose
	48.1 Revisiting modern app architecture
	48.2 Key elements of Room database persistence
	48.2.1 Repository
	48.2.2 Room database
	48.2.3 Data Access Object (DAO)
	48.2.4 Entities
	48.2.5 SQLite database

	48.3 Understanding entities
	48.4 Data Access Objects
	48.5 The Room database
	48.6 The Repository
	48.7 In-Memory databases
	48.8 Database Inspector
	48.9 Summary

	49. A Compose Room Database and Repository Tutorial
	49.1 About the RoomDemo project
	49.2 Creating the RoomDemo project
	49.3 Modifying the build configuration
	49.4 Building the entity
	49.5 Creating the Data Access Object
	49.6 Adding the Room database
	49.7 Adding the repository
	49.8 Adding the ViewModel
	49.9 Designing the user interface
	49.10 Writing a ViewModelProvider Factory class
	49.11 Completing the MainScreen function
	49.12 Testing the RoomDemo app
	49.13 Using the Database Inspector
	49.14 Summary

	50. An Overview of Navigation in Compose
	50.1 Understanding navigation
	50.2 Declaring a navigation controller
	50.3 Declaring a navigation host
	50.4 Adding destinations to the navigation graph
	50.5 Navigating to destinations
	50.6 Passing arguments to a destination
	50.7 Working with bottom navigation bars
	50.8 Summary

	51. A Compose Navigation Tutorial
	51.1 Creating the NavigationDemo project
	51.2 About the NavigationDemo project
	51.3 Declaring the navigation routes
	51.4 Adding the home screen
	51.5 Adding the welcome screen
	51.6 Adding the profile screen
	51.7 Creating the navigation controller and host
	51.8 Implementing the screen navigation
	51.9 Passing the user name argument
	51.10 Testing the project
	51.11 Summary

	52. A Compose Navigation Bar Tutorial
	52.1 Creating the BottomBarDemo project
	52.2 Declaring the navigation routes
	52.3 Designing bar items
	52.4 Creating the bar item list
	52.5 Adding the destination screens
	52.6 Creating the navigation controller and host
	52.7 Designing the navigation bar
	52.8 Working with the Scaffold component
	52.9 Testing the project
	52.10 Summary

	53. Detecting Gestures in Compose
	53.1 Compose gesture detection
	53.2 Creating the GestureDemo project
	53.3 Detecting click gestures
	53.4 Detecting taps using PointerInputScope
	53.5 Detecting drag gestures
	53.6 Detecting drag gestures using PointerInputScope
	53.7 Scrolling using the scrollable modifier
	53.8 Scrolling using the scroll modifiers
	53.9 Detecting pinch gestures
	53.10 Detecting rotation gestures
	53.11 Detecting translation gestures
	53.12 Summary

	54. An Introduction to Kotlin Flow
	54.1 Understanding Flows
	54.2 Creating the sample project
	54.3 Adding a view model to the project
	54.4 Declaring the flow
	54.5 Emitting flow data
	54.6 Collecting flow data as state
	54.7 Transforming data with intermediaries
	54.8 Collecting flow data
	54.9 Adding a flow buffer
	54.10 More terminal flow operators
	54.11 Flow flattening
	54.12 Combining multiple flows
	54.13 Hot and cold flows
	54.14 StateFlow
	54.15 SharedFlow
	54.16 Converting a flow from cold to hot
	54.17 Summary

	55. A Jetpack Compose SharedFlow Tutorial
	55.1 About the project
	55.2 Creating the SharedFlowDemo project
	55.3 Adding a view model to the project
	55.4 Declaring the SharedFlow
	55.5 Collecting the flow values
	55.6 Testing the SharedFlowDemo app
	55.7 Handling flows in the background
	55.8 Summary

	56. Creating, Testing, and Uploading an Android App Bundle
	56.1 The Release Preparation Process
	56.2 Android App Bundles
	56.3 Register for a Google Play Developer Console Account
	56.4 Configuring the App in the Console
	56.5 Enabling Google Play App Signing
	56.6 Creating a Keystore File
	56.7 Creating the Android App Bundle
	56.8 Generating Test APK Files
	56.9 Uploading the App Bundle to the Google Play Developer Console
	56.10 Exploring the App Bundle
	56.11 Managing Testers
	56.12 Rolling the App Out for Testing
	56.13 Uploading New App Bundle Revisions
	56.14 Analyzing the App Bundle File
	56.15 Summary

	57. An Overview of Android In-App Billing
	57.1 Preparing a project for In-App purchasing
	57.2 Creating In-App products and subscriptions
	57.3 Billing client initialization
	57.4 Connecting to the Google Play Billing library
	57.5 Querying available products
	57.6 Starting the purchase process
	57.7 Completing the purchase
	57.8 Querying previous purchases
	57.9 Summary

	58. An Android In-App Purchasing Tutorial
	58.1 About the In-App purchasing example project
	58.2 Creating the InAppPurchase project
	58.3 Adding libraries to the project
	58.4 Adding the App to the Google Play Store
	58.5 Creating an In-App product
	58.6 Enabling license testers
	58.7 Creating a purchase helper class
	58.8 Adding the StateFlow streams
	58.9 Initializing the billing client
	58.10 Querying the product
	58.11 Handling purchase updates
	58.12 Launching the purchase flow
	58.13 Consuming the product
	58.14 Restoring a previous purchase
	58.15 Completing the MainActivity
	58.16 Testing the app
	58.17 Troubleshooting
	58.18 Summary

	59. Working with Compose Theming
	59.1 Material Design 2 vs. Material Design 3
	59.2 Material Design 3 theming
	59.3 Building a custom theme
	59.4 Summary

	60. A Material Design 3 Theming Tutorial
	60.1 Creating the ThemeDemo project
	60.2 Designing the user interface
	60.3 Building a new theme
	60.4 Adding the theme to the project
	60.5 Enabling dynamic colors
	60.6 Summary

	61. An Overview of Gradle in Android Studio
	61.1 An Overview of Gradle
	61.2 Gradle and Android Studio
	61.2.1 Sensible Defaults
	61.2.2 Dependencies
	61.2.3 Build Variants
	61.2.4 Manifest Entries
	61.2.5 APK Signing
	61.2.6 ProGuard Support

	61.3 The Property and Settings Gradle Build File
	61.4 The Top-level Gradle Build File
	61.5 Module Level Gradle Build Files
	61.6 Configuring Signing Settings in the Build File
	61.7 Running Gradle Tasks from the Command Line
	61.8 Summary

	Index

