
Jetpack Compose
Essentials

Jetpack Compose Essentials

ISBN-13: 978-1-951442-38-5

© 2022 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

i

Contents
Table of Contents
1. Start Here... 1

1.1 For Kotlin programmers... 1
1.2 For new Kotlin programmers... 1
1.3 Downloading the code samples.. 1
1.4 Feedback.. 2
1.5 Errata... 2

2. Setting up an Android Studio Development Environment.. 3
2.1 System requirements.. 3
2.2 Downloading the Android Studio package.. 3
2.3 Installing Android Studio.. 4

2.3.1 Installation on Windows.. 4
2.3.2 Installation on macOS.. 4
2.3.3 Installation on Linux... 5

2.4 The Android Studio setup wizard.. 5
2.5 Installing additional Android SDK packages... 6
2.6 Making the Android SDK tools command-line accessible... 9

2.6.1 Windows 8.1.. 9
2.6.2 Windows 10... 10
2.6.3 Windows 11... 10
2.6.4 Linux... 10
2.6.5 macOS... 10

2.7 Android Studio memory management... 11
2.8 Updating Android Studio and the SDK.. 11
2.9 Summary... 11

3. A Compose Project Overview... 13
3.1 About the project.. 13
3.2 Creating the project... 14
3.3 Creating an activity.. 14
3.4 Defining the project and SDK settings.. 15
3.5 Previewing the example project... 16
3.6 Reviewing the main activity.. 18
3.7 Preview updates.. 22
3.8 Summary... 22

4. An Example Compose Project.. 23
4.1 Getting started.. 23
4.2 Removing the template Code... 23
4.3 The Composable hierarchy... 24
4.4 Adding the DemoText composable... 24
4.5 Previewing the DemoText composable... 26
4.6 Adding the DemoSlider composable... 26
4.7 Adding the DemoScreen composable... 27

ii

Table of Contents

4.8 Previewing the DemoScreen composable... 29
4.9 Testing in interactive mode... 30
4.10 Completing the project.. 31
4.11 Summary... 31

5. Creating an Android Virtual Device (AVD) in Android Studio.. 33
5.1 About Android Virtual Devices... 33
5.2 Starting the emulator... 34
5.3 Running the application in the AVD... 35
5.4 Running on multiple devices.. 37
5.5 Stopping a running application.. 38
5.6 Supporting dark theme.. 38
5.7 Running the emulator in a separate window.. 39
5.8 Enabling the device frame... 40
5.9 AVD command-line creation... 41
5.10 Android Virtual Device configuration files.. 43
5.11 Moving and renaming an Android Virtual Device... 43
5.12 Summary... 43

6. Using and Configuring the Android Studio AVD Emulator ... 45
6.1 The emulator environment... 45
6.2 The emulator toolbar options... 45
6.3 Working in zoom mode... 47
6.4 Resizing the emulator window... 47
6.5 Extended control options.. 47

6.5.1 Location.. 48
6.5.2 Displays... 48
6.5.3 Cellular... 48
6.5.4 Battery... 48
6.5.5 Camera.. 48
6.5.6 Phone.. 48
6.5.7 Directional pad.. 48
6.5.8 Microphone.. 48
6.5.9 Fingerprint... 48
6.5.10 Virtual sensors... 49
6.5.11 Snapshots.. 49
6.5.12 Record and playback... 49
6.5.13 Google Play.. 49
6.5.14 Settings... 49
6.5.15 Help... 49

6.6 Working with snapshots.. 49
6.7 Configuring fingerprint emulation.. 50
6.8 The emulator in tool window mode.. 51
6.9 Summary... 52

7. A Tour of the Android Studio User Interface... 53
7.1 The Welcome screen.. 53
7.2 The main window... 54
7.3 The tool windows... 55
7.4 Android Studio keyboard shortcuts.. 58
7.5 Switcher and recent files navigation.. 59

iii

Table of Contents

7.6 Changing the Android Studio theme.. 60
7.7 Summary... 60

8. Testing Android Studio Apps on a Physical Android Device... 61
8.1 An overview of the Android Debug Bridge (ADB)... 61
8.2 Enabling USB debugging ADB on Android devices... 61

8.2.1 macOS ADB configuration.. 62
8.2.2 Windows ADB configuration.. 63
8.2.3 Linux adb configuration... 64

8.3 Resolving USB connection issues... 64
8.4 Enabling wireless debugging on Android devices... 65
8.5 Testing the adb connection... 67
8.6 Summary... 67

9. The Basics of the Android Studio Code Editor... 69
9.1 The Android Studio editor.. 69
9.2 Code mode.. 71
9.3 Splitting the editor window... 72
9.4 Code completion.. 72
9.5 Statement completion.. 74
9.6 Parameter information.. 74
9.7 Parameter name hints.. 74
9.8 Code generation... 74
9.9 Code folding... 75
9.10 Quick documentation lookup.. 77
9.11 Code reformatting.. 77
9.12 Finding sample code.. 78
9.13 Live templates... 78
9.14 Summary... 79

10. An Overview of the Android Architecture... 81
10.1 The Android software stack.. 81
10.2 The Linux kernel.. 82
10.3 Android runtime – ART... 82
10.4 Android libraries.. 82

10.4.1 C/C++ libraries.. 82
10.5 Application framework.. 83
10.6 Applications.. 83
10.7 Summary... 83

11. An Introduction to Kotlin... 85
11.1 What is Kotlin?... 85
11.2 Kotlin and Java.. 85
11.3 Converting from Java to Kotlin.. 85
11.4 Kotlin and Android Studio... 86
11.5 Experimenting with Kotlin... 86
11.6 Semi-colons in Kotlin.. 87
11.7 Summary... 87

12. Kotlin Data Types, Variables and Nullability... 89
12.1 Kotlin data types... 89

iv

Table of Contents

12.1.1 Integer data types.. 90
12.1.2 Floating point data types... 90
12.1.3 Boolean data type.. 90
12.1.4 Character data type... 90
12.1.5 String data type.. 90
12.1.6 Escape sequences... 91

12.2 Mutable variables... 92
12.3 Immutable variables... 92
12.4 Declaring mutable and immutable variables.. 92
12.5 Data types are objects.. 92
12.6 Type annotations and type inference... 93
12.7 Nullable type... 94
12.8 The safe call operator... 94
12.9 Not-null assertion.. 95
12.10 Nullable types and the let function.. 95
12.11 Late initialization (lateinit)... 96
12.12 The Elvis operator.. 97
12.13 Type casting and type checking... 97
12.14 Summary... 98

13. Kotlin Operators and Expressions.. 99
13.1 Expression syntax in Kotlin.. 99
13.2 The Basic assignment operator... 99
13.3 Kotlin arithmetic operators.. 99
13.4 Augmented assignment operators... 100
13.5 Increment and decrement operators... 100
13.6 Equality operators.. 101
13.7 Boolean logical operators.. 101
13.8 Range operator... 102
13.9 Bitwise operators.. 102

13.9.1 Bitwise Inversion... 102
13.9.2 Bitwise AND.. 103
13.9.3 Bitwise OR.. 103
13.9.4 Bitwise XOR... 103
13.9.5 Bitwise left shift... 104
13.9.6 Bitwise right shift.. 104

13.10 Summary... 105
14. Kotlin Control flow... 107

14.1 Looping control flow... 107
14.1.1 The Kotlin for-in Statement.. 107
14.1.2 The while loop ... 108
14.1.3 The do ... while loop ... 109
14.1.4 Breaking from Loops.. 109
14.1.5 The continue statement .. 110
14.1.6 Break and continue labels.. 110

14.2 Conditional control flow... 111
14.2.1 Using the if expressions ... 111
14.2.2 Using if ... else … expressions ... 112
14.2.3 Using if ... else if ... Expressions .. 112

v

Table of Contents

14.2.4 Using the when statement.. 112
14.3 Summary... 113

15. An Overview of Kotlin Functions and Lambdas.. 115
15.1 What is a function?.. 115
15.2 How to declare a Kotlin function... 115
15.3 Calling a Kotlin function... 116
15.4 Single expression functions.. 116
15.5 Local functions... 116
15.6 Handling return values.. 117
15.7 Declaring default function parameters... 117
15.8 Variable number of function parameters ... 117
15.9 Lambda expressions... 118
15.10 Higher-order functions... 119
15.11 Summary... 120

16. The Basics of Object-Oriented Programming in Kotlin... 121
16.1 What is an object?.. 121
16.2 What is a class?... 121
16.3 Declaring a Kotlin class... 121
16.4 Adding properties to a class.. 122
16.5 Defining methods... 122
16.6 Declaring and initializing a class instance.. 122
16.7 Primary and secondary constructors.. 122
16.8 Initializer blocks... 125
16.9 Calling methods and accessing properties.. 125
16.10 Custom accessors... 125
16.11 Nested and inner classes... 126
16.12 Companion objects.. 127
16.13 Summary... 129

17. An Introduction to Kotlin Inheritance and Subclassing.. 131
17.1 Inheritance, classes, and subclasses... 131
17.2 Subclassing syntax.. 131
17.3 A Kotlin inheritance example... 132
17.4 Extending the functionality of a subclass.. 133
17.5 Overriding inherited methods... 134
17.6 Adding a custom secondary constructor.. 135
17.7 Using the SavingsAccount class.. 135
17.8 Summary... 135

18. An Overview of Compose... 137
18.1 Development before Compose... 137
18.2 Compose declarative syntax.. 137
18.3 Compose is data-driven.. 138
18.4 Summary... 138

19. Composable Functions Overview... 141
19.1 What is a composable function?.. 141
19.2 Stateful vs. stateless composables... 141
19.3 Composable function syntax.. 142

vi

Table of Contents

19.4 Foundation and Material composables... 144
19.5 Summary... 145

20. An Overview of Compose State and Recomposition.. 147
20.1 The basics of state... 147
20.2 Introducing recomposition... 147
20.3 Creating the StateExample project... 148
20.4 Declaring state in a composable... 148
20.5 Unidirectional data flow.. 151
20.6 State hoisting... 153
20.7 Saving state through configuration changes... 155
20.8 Summary... 156

21. An Introduction to Composition Local.. 157
21.1 Understanding CompositionLocal.. 157
21.2 Using CompositionLocal.. 158
21.3 Creating the CompLocalDemo project... 159
21.4 Designing the layout.. 159
21.5 Adding the CompositionLocal state.. 160
21.6 Accessing the CompositionLocal state.. 161
21.7 Testing the design... 161
21.8 Summary... 164

22. An Overview of Compose Slot APIs... 165
22.1 Understanding slot APIs... 165
22.2 Declaring a slot API... 166
22.3 Calling slot API composables... 166
22.4 Summary... 168

23. A Compose Slot API Tutorial.. 169
23.1 About the project.. 169
23.2 Creating the SlotApiDemo project.. 169
23.3 Preparing the MainActivity class file... 169
23.4 Creating the MainScreen composable... 170
23.5 Adding the ScreenContent composable ... 171
23.6 Creating the Checkbox composable.. 172
23.7 Implementing the ScreenContent slot API... 173
23.8 Adding an Image drawable resource... 174
23.9 Writing the TitleImage composable.. 175
23.10 Completing the MainScreen composable... 176
23.11 Previewing the project... 178
23.12 Summary... 179

24. Using Modifiers in Compose... 181
24.1 An overview of modifiers.. 181
24.2 Creating the ModifierDemo project.. 181
24.3 Creating a modifier.. 182
24.4 Modifier ordering... 184
24.5 Adding modifier support to a composable... 184
24.6 Common built-in modifiers... 188
24.7 Combining modifiers.. 188

vii

Table of Contents

24.8 Summary... 189
25. Composing Layouts with Row and Column... 191

25.1 Creating the RowColDemo project... 191
25.2 Row composable... 192
25.3 Column composable.. 192
25.4 Combining Row and Column composables... 193
25.5 Layout alignment... 194
25.6 Layout arrangement positioning.. 196
25.7 Layout arrangement spacing... 198
25.8 Row and Column scope modifiers... 199
25.9 Scope modifier weights... 203
25.10 Summary... 204

26. Box Layouts in Compose... 205
26.1 An introduction to the Box composable... 205
26.2 Creating the BoxLayout project... 205
26.3 Adding the TextCell composable... 205
26.4 Adding a Box layout... 206
26.5 Box alignment... 207
26.6 BoxScope modifiers... 209
26.7 Using the clip() modifier... 209
26.8 Summary... 211

27. Custom Layout Modifiers.. 213
27.1 Compose layout basics.. 213
27.2 Custom layouts... 213
27.3 Creating the LayoutModifier project... 213
27.4 Adding the ColorBox composable... 214
27.5 Creating a custom layout modifier.. 215
27.6 Understanding default position... 215
27.7 Completing the layout modifier... 215
27.8 Using a custom modifier... 216
27.9 Working with alignment lines.. 217
27.10 Working with baselines... 219
27.11 Summary... 220

28. Building Custom Layouts.. 221
28.1 An overview of custom layouts.. 221
28.2 Custom layout syntax.. 221
28.3 Using a custom layout.. 222
28.4 Creating the CustomLayout project.. 223
28.5 Creating the CascadeLayout composable... 223
28.6 Using the CascadeLayout composable.. 225
28.7 Summary... 226

29. A Guide to ConstraintLayout in Compose... 227
29.1 An introduction to ConstraintLayout... 227
29.2 How ConstraintLayout works.. 227

29.2.1 Constraints... 227
29.2.2 Margins... 228

viii

Table of Contents

29.2.3 Opposing constraints.. 228
29.2.4 Constraint bias... 229
29.2.5 Chains... 230
29.2.6 Chain styles.. 230

29.3 Configuring dimensions.. 231
29.4 Guideline helper... 231
29.5 Barrier helper.. 232
29.6 Summary... 233

30. Working with ConstraintLayout in Compose.. 235
30.1 Calling ConstraintLayout.. 235
30.2 Generating references.. 235
30.3 Assigning a reference to a composable.. 235
30.4 Adding constraints... 236
30.5 Creating the ConstraintLayout project... 236
30.6 Adding the ConstraintLayout library.. 237
30.7 Adding a custom button composable.. 237
30.8 Basic constraints... 238
30.9 Opposing constraints... 239
30.10 Constraint bias... 240
30.11 Constraint margins.. 241
30.12 The importance of opposing constraints and bias... 242
30.13 Creating chains... 245
30.14 Working with guidelines... 246
30.15 Working with barriers... 247
30.16 Decoupling constraints with constraint sets.. 250
30.17 Summary... 252

31. Working with IntrinsicSize in Compose... 253
31.1 Intrinsic measurements... 253
31.2 Max. vs Min. Intrinsic Size measurements... 253
31.3 About the example project.. 254
31.4 Creating the IntrinsicSizeDemo project.. 255
31.5 Creating the custom text field... 255
31.6 Adding the Text and Box components.. 256
31.7 Adding the top-level Column... 256
31.8 Testing the project.. 257
31.9 Applying IntrinsicSize.Max measurements.. 257
31.10 Applying IntrinsicSize.Min measurements.. 258
31.11 Summary... 258

32. An Overview of Lists and Grids in Compose... 259
32.1 Standard vs. lazy lists... 259
32.2 Working with Column and Row lists.. 259
32.3 Creating lazy lists... 260
32.4 Enabling scrolling with ScrollState.. 261
32.5 Programmatic scrolling... 261
32.6 Sticky headers... 263
32.7 Responding to scroll position... 264
32.8 Creating a lazy grid.. 265
32.9 Summary... 267

ix

Table of Contents

33. A Compose Row and Column List Tutorial ... 269
33.1 Creating the ListDemo project... 269
33.2 Creating a Column-based list... 269
33.3 Enabling list scrolling.. 271
33.4 Manual scrolling... 271
33.5 A Row list example... 274
33.6 Summary... 274

34. A Compose Lazy List Tutorial .. 275
34.1 Creating the LazyListDemo project... 275
34.2 Adding list data to the project.. 275
34.3 Reading the XML data... 277
34.4 Handling image loading.. 278
34.5 Designing the list item composable... 280
34.6 Building the lazy list... 281
34.7 Testing the project.. 281
34.8 Making list items clickable.. 282
34.9 Summary... 284

35. Lazy List Sticky Headers and Scroll Detection .. 285
35.1 Grouping the list item data... 285
35.2 Displaying the headers and items.. 285
35.3 Adding sticky headers.. 286
35.4 Reacting to scroll position.. 287
35.5 Adding the scroll button... 289
35.6 Testing the finished app... 291
35.7 Summary... 291

36. Compose Visibility Animation... 293
36.1 Creating the AnimateVisibility project... 293
36.2 Animating visibility... 293
36.3 Defining enter and exit animations... 296
36.4 Animation specs and animation easing.. 297
36.5 Repeating an animation.. 299
36.6 Different animations for different children.. 299
36.7 Auto-starting an animation.. 300
36.8 Implementing crossfading.. 301
36.9 Summary... 302

37. Compose State-Driven Animation.. 303
37.1 Understanding state-driven animation... 303
37.2 Introducing animate as state functions... 303
37.3 Creating the AnimateState project... 304
37.4 Animating rotation with animateFloatAsState... 304
37.5 Animating color changes with animateColorAsState... 307
37.6 Animating motion with animateDpAsState... 309
37.7 Adding spring effects... 312
37.8 Working with keyframes... 313
37.9 Combining multiple animations.. 314
37.10 Using the Animation Inspector.. 316
37.11 Summary... 318

x

Table of Contents

38. Canvas Graphics Drawing in Compose.. 319
38.1 Introducing the Canvas component.. 319
38.2 Creating the CanvasDemo project... 319
38.3 Drawing a line and getting the canvas size... 319
38.4 Drawing dashed lines.. 321
38.5 Drawing a rectangle... 321
38.6 Applying rotation... 325
38.7 Drawing circles and ovals.. 326
38.8 Drawing gradients.. 327
38.9 Drawing arcs... 330
38.10 Drawing paths.. 331
38.11 Drawing points... 332
38.12 Drawing an image.. 333
38.13 Summary... 335

39. Working with ViewModels in Compose... 337
39.1 What is Android Jetpack?... 337
39.2 The “old” architecture.. 337
39.3 Modern Android architecture.. 337
39.4 The ViewModel component... 337
39.5 ViewModel implementation using state.. 338
39.6 Connecting a ViewModel state to an activity... 339
39.7 ViewModel implementation using LiveData.. 340
39.8 Observing ViewModel LiveData within an activity.. 341
39.9 Summary... 341

40. A Compose ViewModel Tutorial... 343
40.1 About the project.. 343
40.2 Creating the ViewModelDemo project... 344
40.3 Adding the ViewModel... 344
40.4 Accessing DemoViewModel from MainActivity.. 345
40.5 Designing the temperature input composable... 346
40.6 Designing the temperature input composable... 347
40.7 Completing the user interface design.. 350
40.8 Testing the app.. 351
40.9 Summary... 352

41. An Overview of Android SQLite Databases... 353
41.1 Understanding database tables... 353
41.2 Introducing database schema .. 353
41.3 Columns and data types ... 353
41.4 Database rows .. 354
41.5 Introducing primary keys .. 354
41.6 What is SQLite?.. 354
41.7 Structured Query Language (SQL).. 354
41.8 Trying SQLite on an Android Virtual Device (AVD)... 355
41.9 The Android Room persistence library... 357
41.10 Summary... 357

42. Room Databases and Compose .. 359
42.1 Revisiting modern app architecture.. 359

xi

Table of Contents

42.2 Key elements of Room database persistence.. 359
42.2.1 Repository.. 359
42.2.2 Room database.. 360
42.2.3 Data Access Object (DAO).. 360
42.2.4 Entities.. 360
42.2.5 SQLite database... 360

42.3 Understanding entities.. 361
42.4 Data Access Objects... 363
42.5 The Room database.. 364
42.6 The Repository.. 365
42.7 In-Memory databases.. 366
42.8 Database Inspector... 367
42.9 Summary... 367

43. A Compose Room Database and Repository Tutorial... 369
43.1 About the RoomDemo project... 369
43.2 Creating the RoomDemo project... 370
43.3 Modifying the build configuration.. 370
43.4 Building the entity.. 370
43.5 Creating the Data Access Object.. 372
43.6 Adding the Room database... 373
43.7 Adding the repository.. 374
43.8 Adding the ViewModel... 376
43.9 Designing the user interface... 378
43.10 Completing the MainScreen function... 380
43.11 Testing the RoomDemo app... 383
43.12 Using the Database Inspector... 383
43.13 Summary... 384

44. An Overview of Navigation in Compose.. 385
44.1 Understanding navigation... 385
44.2 Declaring a navigation controller.. 387
44.3 Declaring a navigation host.. 387
44.4 Adding destinations to the navigation graph... 387
44.5 Navigating to destinations.. 388
44.6 Passing arguments to a destination.. 390
44.7 Working with bottom navigation bars... 391
44.8 Summary... 393

45. A Compose Navigation Tutorial... 395
45.1 Creating the NavigationDemo project.. 395
45.2 About the NavigationDemo project.. 395
45.3 Declaring the navigation routes... 395
45.4 Adding the home screen... 396
45.5 Adding the welcome screen.. 397
45.6 Adding the profile screen.. 398
45.7 Creating the navigation controller and host... 399
45.8 Implementing the screen navigation... 399
45.9 Passing the user name argument.. 400
45.10 Testing the project.. 401
45.11 Summary... 403

xii

Table of Contents

46. A Compose Bottom Navigation Bar Tutorial... 405
46.1 Creating the BottomBarDemo project.. 405
46.2 Declaring the navigation routes... 405
46.3 Designing bar items... 406
46.4 Creating the bar item list... 406
46.5 Adding the destination screens.. 407
46.6 Creating the navigation controller and host... 409
46.7 Designing the navigation bar.. 410
46.8 Working with the Scaffold component.. 411
46.9 Testing the project.. 412
46.10 Summary... 412

47. Detecting Gestures in Compose.. 413
47.1 Compose gesture detection... 413
47.2 Creating the GestureDemo project.. 413
47.3 Detecting click gestures... 413
47.4 Detecting taps using PointerInputScope... 415
47.5 Detecting drag gestures... 416
47.6 Detecting drag gestures using PointerInputScope... 418
47.7 Scrolling using the scrollable modifier.. 419
47.8 Scrolling using the scroll modifiers... 420
47.9 Detecting pinch gestures... 422
47.10 Detecting rotation gestures... 423
47.11 Detecting translation gestures.. 424
47.12 Summary... 425

48. Detecting Swipe Gestures in Compose... 427
48.1 Swipe gestures and anchors.. 427
48.2 Detecting swipe gestures... 427
48.3 Declaring the anchors map... 428
48.4 Declaring thresholds.. 428
48.5 Moving a component in response to a swipe... 428
48.6 About the SwipeDemo project... 429
48.7 Creating the SwipeDemo project... 429
48.8 Setting up the swipeable state and anchors... 429
48.9 Designing the parent Box.. 430
48.10 Testing the project.. 433
48.11 Summary... 433

49. Working with Compose Theming... 435
49.1 Material Design 2 vs Material Design 3.. 435
49.2 Material Design 2 Theming.. 435
49.3 Material Design 3 Theming.. 438
49.4 Building a Custom Theme.. 439
49.5 Summary... 440

50. A Material Design 3 Theming Tutorial... 441
50.1 Creating the ThemeDemo project... 441
50.2 Adding the Material Design 3 library.. 441
50.3 Designing the user interface... 441
50.4 Building a new theme.. 443

xiii

Table of Contents

50.5 Adding the theme to the project.. 444
50.6 Enabling dynamic colors... 445
50.7 Summary... 447

51. Creating, Testing, and Uploading an Android App Bundle... 449
51.1 The release preparation process... 449
51.2 Android app bundles... 449
51.3 Register for a Google Play Developer Console account.. 450
51.4 Configuring the app in the console... 451
51.5 Enabling Google Play app signing... 452
51.6 Creating a keystore file.. 452
51.7 Creating the Android app bundle.. 454
51.8 Generating test APK files.. 455
51.9 Uploading the app bundle to the Google Play Developer Console... 456
51.10 Exploring the app bundle.. 457
51.11 Managing testers.. 458
51.12 Rolling the app out for testing.. 458
51.13 Uploading new app bundle revisions.. 459
51.14 Analyzing the app bundle file... 460
51.15 Summary... 460

52. An Overview of Gradle in Android Studio... 463
52.1 An Overview of Gradle... 463
52.2 Gradle and Android Studio.. 463

52.2.1 Sensible Defaults... 463
52.2.2 Dependencies.. 463
52.2.3 Build Variants.. 464
52.2.4 Manifest Entries.. 464
52.2.5 APK Signing... 464
52.2.6 ProGuard Support... 464

52.3 The Property and Settings Gradle Build Files.. 464
52.4 The Top-level Gradle Build File.. 465
52.5 Module Level Gradle Build Files.. 466
52.6 Configuring Signing Settings in the Build File... 468
52.7 Running Gradle Tasks from the Command-line... 469
52.8 Summary... 470

Index.. 471

1

Chapter 1

1. Start Here
The goal of this book is to teach you how to build Android applications using Jetpack Compose, Android Studio,
and the Kotlin programming language.

Beginning with the basics, this book explains how to set up an Android Studio development environment.

The book also includes in-depth chapters introducing the Kotlin programming language including data types,
operators, control flow, functions, lambdas, and object-oriented programming.

An introduction to the key concepts of Jetpack Compose and Android project architecture is followed by a
guided tour of Android Studio in Compose development mode. The book also covers the creation of custom
Composables and explains how these functions are combined to create user interface layouts including the use
of row, column, box, and list components.

Other topics covered include data handling using state properties, key user interface design concepts such as
modifiers, navigation bars, and user interface navigation. Additional chapters explore building your own re-
usable custom layout components.

The book also includes chapters covering graphics drawing, user interface animation, transitions, and gesture
handling.

Chapters are also included covering view models, SQLite databases, Room database access, the Database
Inspector, live data, and custom theme creation.

Finally, the book explains how to package up a completed app and upload it to the Google Play Store for
publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code
for which is also available for download.

Assuming you already have some rudimentary programming experience, are ready to download Android Studio
and the Android SDK, and have access to a Windows, Mac, or Linux system, you are ready to get started.

1.1 For Kotlin programmers
This book has been designed to address the needs of both existing Kotlin programmers and those who are
new to both Kotlin and Jetpack Compose app development. If you are familiar with the Kotlin programming
language, you can probably skip the Kotlin specific chapters.

1.2 For new Kotlin programmers
If you are new to programming in Kotlin then the entire book is appropriate for you. Just start at the beginning
and keep going.

1.3 Downloading the code samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/compose/index.php

https://www.ebookfrenzy.com/retail/compose/index.php

2

Start Here

The steps to load a project from the code samples into Android Studio are as follows:

1.  From the Welcome to Android Studio dialog, click on the Open button option.

2.  In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.4 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.5 Errata
While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a
subject area of this size and complexity may include some errors and oversights. Any known issues with the
book will be outlined, together with solutions at the following URL:

https://www.ebookfrenzy.com/errata/compose.html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com.

https://www.ebookfrenzy.com/errata/swiftui-ios14.html

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK),
the Kotlin plug-in and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

•	 Windows 8/10/11 64-bit

•	 macOS 10.14 or later running on Intel or Apple silicon

•	 Chrome OS device with Intel i5 or higher

•	 Linux systems with version 2.31 or later of the GNU C Library (glibc)

•	 Minimum of 8GB of RAM (see below)

•	 Approximately 8GB of available disk space

•	 1280 x 800 minimum screen resolution

Although Android Studio will run on computers with 8GB of RAM, performance will be greatly improved on
systems containing more memory. This is particularly an issue if you plan to test your apps using the Android
Virtual Device emulator (AVD).

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Bumble Bee 2021.1.1
using the Android API 32 SDK which, at the time of writing, are the current versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for “Android Studio
Bumble Bee” should provide the option to download the older version if these differences become a problem.

https://developer.android.com/studio/index.html

4

Setting up an Android Studio Development Environment

Alternatively, visit the following web page to find Android Studio Bumble Bee 2021.1.1 in the archives:

https://developer.android.com/studio/archive

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1
To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

https://developer.android.com/studio/archive

5

Setting up an Android Studio Development Environment

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora-based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio setup wizard
If you are installing Android Studio for the first time the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the SDK Components Setup dialog (Figure 2-3). Within
this dialog, make sure that the Android SDK option is selected along with the latest API package before clicking
on the Next button:

6

Setting up an Android Studio Development Environment

Figure 2-3
After clicking Next, Android Studio will download and install the Android SDK and tools.

If you have previously installed an earlier version of Android Studio, the first time that this new version is
launched, a dialog may appear providing the option to import settings from a previous Android Studio version.
If you have settings from a previous version and would like to import them into the latest installation, select the
appropriate option and location. Alternatively, indicate that you do not need to import any previous settings and
click on the OK button to proceed.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

7

Setting up an Android Studio Development Environment

Figure 2-5
Immediately after installing Android Studio for the first, time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

8

Setting up an Android Studio Development Environment

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

•	 Android SDK Build-tools

•	 Android Emulator

•	 Android SDK Platform-tools

•	 Google Play Services

•	 Intel x86 Emulator Accelerator (HAXM installer)

•	 Google USB Driver (Windows only)

•	 Layout Inspector image server for API S

Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8
Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

9

Setting up an Android Studio Development Environment

2.6 Making the Android SDK tools command-line accessible
Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. For the operating system on which you are developing
to be able to find these tools, it will be necessary to add them to the system’s PATH environment variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):
<path_to_android_sdk_installation>/sdk/tools

<path_to_android_sdk_installation>/sdk/tools/bin

<path_to_android_sdk_installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-9:

Figure 2-9
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1.  On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2.  Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3.  In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit… button. Using the New button in the edit dialog, add three new entries to the path. For
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

C:\Users\demo\AppData\Local\Android\Sdk\tools

C:\Users\demo\AppData\Local\Android\Sdk\tools\bin

4.  Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that

10

Setting up an Android Studio Development Environment

the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

11

Setting up an Android Studio Development Environment

2.7 Android Studio memory management
Android Studio is a large and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-10
To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->
Preferences... on macOS) menu option and, in the resulting dialog, select the Memory Settings option listed
under System Settings in the left-hand navigation panel as illustrated in Figure 2-11 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

Figure 2-11

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

13

Chapter 3

3. A Compose Project Overview
Now that we have installed Android Studio, the next step is to create an Android app using Jetpack Compose.
Although this project will make use of several Compose features, it is an intentionally simple example intended
to provide an early demonstration of Compose in action and an initial success on which to build as you work
through the remainder of the book. The project will also serve to verify that your Android Studio environment
is correctly installed and configured.

This chapter will create a new project using the Android Studio Compose project template and explore both the
basic structure of a Compose-based Android Studio project and some of the key areas of Android Studio. In the
next chapter, we will use this project to create a simple Android app.

Both chapters will briefly explain key features of Compose as they are introduced within the project. If anything
is unclear when you have completed the project, rest assured that all of the areas covered in the tutorial will be
explored in greater detail in later chapters of the book.

3.1 About the project
The completed project will consist of two text components and a slider. When the slider is moved, the current
value will be displayed on one of the text components, while the font size of the second text instance will adjust
to match the current slider position. Once completed, the user interface for the app will appear as shown in
Figure 3-1:

Figure 3-1

14

A Compose Project Overview

3.2 Creating the project
The first step in building an app is to create a new project within Android Studio. Begin, therefore, by launching
Android Studio so that the “Welcome to Android Studio” screen appears as illustrated in Figure 3-2:

Figure 3-2
Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project button to display the first screen of the New Project wizard.

3.3 Creating an activity
The next step is to define the type of initial activity that is to be created for the application. The left-hand panel
provides a list of platform categories from which the Phone and Tablet option must be selected. Although a range
of different activity types is available when developing Android applications, only the Empty Compose Activity
template provides a pre-configured project ready to work with Compose. Select this option before clicking on
the Next button:

Figure 3-3

15

A Compose Project Overview

3.4 Defining the project and SDK settings
In the project configuration window (Figure 3-4), set the Name field to ComposeDemo. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store:

Figure 3-4
The Package name is used to uniquely identify the application within the Google Play app store application
ecosystem. Although this can be set to any string that uniquely identifies your app, it is traditionally based on
the reversed URL of your domain name followed by the name of the application. For example, if your domain
is www.mycompany.com, and the application has been named ComposeDemo, then the package name might be
specified as follows:
com.mycompany.composedemo

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.composedemo

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in
most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose link to see a full breakdown of the various Android versions still in use:

16

A Compose Project Overview

Figure 3-5
Since Compose only works with Kotlin, the Language menu is preset to Kotlin and cannot be changed. Click on
the Finish button to create the project.

3.5 Previewing the example project
At this point, Android Studio should have created a minimal example application project and opened the main
window.

Figure 3-6
The newly created project and references to associated files are listed in the Project tool window located on the
left-hand side of the main project window. The Project tool window has several modes in which information
can be displayed. By default, this panel should be in Android mode. This setting is controlled by the menu at
the top of the panel as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to

17

A Compose Project Overview

switch mode:

Figure 3-7
The code for the main activity of the project (an activity corresponds to a single user interface screen or module
within an Android app) is contained within the MainActivity.kt file located under app -> java -> com.example.
composedemo within the Project tool window as indicated in Figure 3-8:

Figure 3-8
Double-click on this file to load it into the main code editor panel. The editor can be used in different modes
when writing code, the most useful of which when working with Compose is Split mode. The current mode
can be changed using the buttons marked A in Figure 3-9. Split mode displays the code editor (B) alongside the
Preview panel (C) in which the current user interface design will appear:

18

A Compose Project Overview

Figure 3-9
To get us started, Android Studio has already added some code to the MainActivity.kt file to display a Text
component configured to display a message which reads “Hello Android”.

If the project has not yet been built, the Preview panel will display the message shown in Figure 3-10:

Figure 3-10
If you see this notification, click on the Build & Refresh link to rebuild the project. After the build is complete,
the Preview panel should update to display the user interface defined by the code in the MainActivity.kt file:

Figure 3-11

3.6 Reviewing the main activity
Android applications are created by bringing together one or more elements known as Activities. An activity
is a single, standalone module of application functionality that either correlates directly to a single user
interface screen and its corresponding functionality, or acts as a container for a collection of related screens. An
appointments application might, for example, contain an activity screen that displays appointments set up for
the current day. The application might also utilize a second activity consisting of multiple screens where new

19

A Compose Project Overview

appointments may be entered by the user and existing appointments edited.

When we created the ComposeDemo project, Android Studio created a single initial activity for our app, named
it MainActivity, and generated some code for it in the MainActivity.kt file. This activity contains the first screen
that will be displayed when the app is run on a device. Before we modify the code for our requirements in the
next chapter, it is worth taking some time to review the code currently contained within the MainActivity.kt file.

The file begins with the following line (keep in mind that this may be different if you used your own domain
name instead of com.example):
package com.example.composedemo

This tells the build system that the classes and functions declared in this file belong to the com.example.
composedemo package which we configured when we created the project.

Next are a series of import directives. The Android SDK is comprised of a vast collection of libraries that provide
the foundation for building Android apps. If all of these libraries were included within an app the resulting app
bundle would be too large to run efficiently on a mobile device. To avoid this problem an app only imports the
libraries that it needs to be able to run:
import android.os.Bundle

import androidx.activity.ComponentActivity

import androidx.activity.compose.setContent

import androidx.compose.material.MaterialTheme

import androidx.compose.material.Surface

import androidx.compose.material.Text

.

.

Initially, the list of import directives will most likely be “folded” to save space. To unfold the list, click on the
small “+” button indicated by the arrow in Figure 3-12 below:

Figure 3-12
The MainActivity class is then declared as a subclass of the Android ComponentActivity class:
class MainActivity : ComponentActivity() {

.

.

}

The MainActivity class implements a single method in the form of onCreate(). This is the first method that is
called when an activity is launched by the Android runtime system and is an artifact of the way apps used to be
developed before the introduction of Compose. The onCreate() method is used here to provide a bridge between
the containing activity and the Compose-based user interfaces that are to appear within it:
override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ComposeDemoTheme {

20

A Compose Project Overview

.

.

 }

 }

}

The method declares that the content of the activity’s user interface will be provided by a composable function
named ComposeDemoTheme. This composable function is declared in the Theme.kt file located under the app
-> <package name> -> ui.theme folder in the Project tool window. This, along with the other files in the ui.theme
folder defines the colors, fonts, and shapes to be used by the activity and provides a central location from which
to customize the overall theme of the app’s user interface.

The call to the ComposeDemoTheme composable function is configured to contain a Surface composable.
Surface is a built-in Compose component designed to provide a background for other composables:
ComposeDemoTheme {

 // A surface container using the 'background' color from the theme

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colors.background

.

.

}

In this case, the Surface component is configured to fill the entire screen and with the background set to the
standard background color defined by the Android Material Design theme. Material Design is a set of design
guidelines developed by Google to provide a consistent look and feel across all Android apps. It includes a theme
(including fonts and colors), a set of user interface components (such as button, text, and a range of text fields),
icons, and generally defines how an Android app should look, behave and respond to user interactions.

Finally, the Surface is configured to contain a composable function named Greeting which is passed a string
value that reads “Android”:
ComposeDemoTheme {

 // A surface container using the 'background' color from the theme

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colors.background

) {

 Greeting("Android")

 }

}

Outside of the scope of the MainActivity class, we encounter our first composable function declaration within
the activity. The function is named Greeting and is, unsurprisingly, marked as being composable by the @
Composable annotation:
@Composable

fun Greeting(name: String) {

 Text(text = "Hello $name!")

}

The function accepts a String parameter (labeled name) and calls the built-in Text composable, passing through

21

A Compose Project Overview

a string value containing the word “Hello” concatenated with the name parameter. As will soon become evident
as you work through the book, composable functions are the fundamental building blocks for developing
Android apps using Compose.

The second composable function declared in the MainActivity.kt file reads as follows:
@Preview(showBackground = true)

@Composable

fun DefaultPreview() {

 ComposeDemoTheme {

 Greeting("Android")

 }

}

Earlier in the chapter, we looked at how the Preview panel allows us to see how the user interface will appear
without having to compile and run the app. At first glance, it would be easy to assume that the preview rendering
is generated by the code in the onCreate() method. In fact, that method only gets called when the app runs
on a device or emulator. Previews are generated by preview composable functions. The @Preview annotation
associated with the function tells Android Studio that this is a preview function and that the content emitted by
the function is to be displayed in the Preview panel. As we will see later in the book, a single activity can contain
multiple preview composable functions configured to preview specific sections of a user interface using different
data values.

In addition, each preview may be configured by passing parameters to the @Preview annotation. For example,
to view the preview with the rest of the standard Android screen decorations, modify the preview annotation so
that it reads as follows:
@Preview(showSystemUi = true)

Once the preview has been updated, it should now be rendered as shown in Figure 3-13:

Figure 3-13

22

A Compose Project Overview

3.7 Preview updates
One final point worth noting is that the Preview panel is live and will automatically reflect minor changes made
to the composable functions that make up a preview. To see this in action, edit the call to the Greeting function
in the DefaultPreview() preview composable function to change the name from “Android” to “Compose”. Note
that as you make the change in the code editor, it is reflected in the preview.

More significant changes will require a build and refresh before being reflected in the preview. When this is
required, Android Studio will display the following notice at the top of the Preview panel:

Figure 3-14
Simply click on the Build & Refresh link to update the preview for the latest changes.

The Preview panel also includes an interactive mode that allows you to trigger events on the user interface
components (for example clicking buttons, moving sliders, scrolling through lists, etc.). Since ComposeDemo
contains only an inanimate Text component at this stage, it makes more sense to introduce interactive mode in
the next chapter.

3.8 Summary
In this chapter, we have created a new project using Android Studio’s Empty Compose Activity template and
explored some of the code automatically generated for the project. We have also introduced several features
of Android Studio designed to make app development with Compose easier. The most useful features, and the
places where you will spend most of your time while developing Android apps, are the code editor and Preview
panel.

While the default code in the MainActivity.kt file provides an interesting example of a basic user interface, it
bears no resemblance to the app we want to create. In the next chapter, we will modify and extend the app by
removing some of the template code and writing our own composable functions.

23

Chapter 4

4. An Example Compose Project
In the previous chapter, we created a new Compose-based Android Studio project named ComposeDemo and
took some time to explore both Android Studio and some of the project code that it generated to get us started.
With those basic steps covered, this chapter will use the ComposeDemo project as the basis for a new app. This
will involve the creation of new composable functions, introduce the concept of state, and make use of the
Preview panel in interactive mode. As with the preceding chapter, key concepts explained in basic terms here
will be covered in significantly greater detail in later chapters.

4.1 Getting started
Start Android Studio if it is not already running and open the ComposeDemo project created in the previous
chapter. Once the project has loaded, double-click on the MainActivity.kt file (located in Project tool window
under app -> java -> <package name>) to open it in the code editor. If necessary, switch the editor into Split
mode so that both the editor and Preview panel are visible.

4.2 Removing the template Code
Within the MainActivity.kt file, delete some of the template code so that the file reads as follows:
package com.example.composedemo

.

.

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ComposeDemoTheme {

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colors.background

) {

 Greeting("Android")

 }

 }

 }

 }

}

@Composable

fun Greeting(name: String) {

 Text(text = "Hello $name!")

}

@Preview(showSystemUi = true)

24

An Example Compose Project

@Composable

fun DefaultPreview() {

 ComposeDemoTheme {

 Greeting("Android")

 }

}

4.3 The Composable hierarchy
Before we start to write the composable functions that will make up our user interface, it helps to first
visualize the relationships between these components. The ability of one composable to call other composables
essentially allows us to build a hierarchy tree of components. Once completed, the composable hierarchy for our
ComposeDemo main activity can be represented as shown in Figure 4-1:

Figure 4-1
All of the elements in the above diagram, except for ComponentActivity, are composable functions. Of those
functions, the Surface, Column, Spacer, Text, and Slider functions are built-in composables provided by
Compose. The DemoScreen, DemoText, and DemoSlider composables, on the other hand, are functions that
we will create to provide both structure to the design and the custom functionality we require for our app. The
ComposeDemoTheme composable declaration can be found in the ui.theme -> Theme.kt file.

4.4 Adding the DemoText composable
We are now going to add a new composable function to the activity to represent the DemoText item in the
hierarchy tree. The purpose of this composable is to display a text string using a font size value which adjusts
in real-time as the slider is moved. Place the cursor beneath the final closing brace (}) of the MainActivity
declaration and add the following function declaration:
@Composable

fun DemoText() {

}

The @Composable annotation notifies the build system that this is a composable function. When the function is

25

An Example Compose Project

called, the plan is for it to be passed both a text string and the font size at which that text is to be displayed. This
means that we need to add some parameters to the function:
@Composable

fun DemoText(message: String, fontSize: Float) {
}

The next step is to make sure the text is displayed. To achieve this, we will make a call to the built-in Text
composable, passing through as parameters the message string, font size and, to make the text more prominent,
a bold font weight setting:
@Composable

fun DemoText(message: String, fontSize: Float) {

 Text(
 text = message,
 fontSize = fontSize.sp,
 fontWeight = FontWeight.Bold
)
}

Note that after making these changes, the code editor is indicating that “sp” and “FontWeight” are undefined.
This is happening because these are defined and implemented in libraries that have not yet been imported into
the MainActivity.kt file. One way to resolve this is to click on an undefined declaration so that it highlights as
shown below, and then press Alt+Enter (Opt+Enter on macOS) on the keyboard to automatically import the
missing library:

Figure 4-2
Alternatively, the missing import statements may be added manually to the list at the top of the file:
.

.

import androidx.compose.ui.text.font.FontWeight
import androidx.compose.ui.unit.sp
.

.

In the remainder of this book, all code examples will include any required library import statements.

We have now finished writing our first composable function. Notice that, except for the font weight, all the other
properties are passed to the function when it is called (a function that calls another function is generally referred
to as the caller). This increases the flexibility, and therefore re-usability, of the DemoText composable and is a key
goal to keep in mind when writing composable functions.

26

An Example Compose Project

4.5 Previewing the DemoText composable
At this point, the Preview panel will most likely be displaying a message which reads “No preview found”. The
reason for this is that our MainActivity.kt file does not contain any composable functions prefixed with the @
Preview annotation. Add a preview composable function for DemoText to the MainActivity.kt file as follows:
@Preview

@Composable

fun DemoTextPreview() {

 DemoText(message = "Welcome to Android", fontSize = 12f)

}

After adding the preview composable, the Preview panel should have detected the change and displayed the link
to build and refresh the preview rendering. Click the link and wait for the rebuild to complete, at which point
the DemoText composable should appear as shown in Figure 4-3:

Figure 4-3
Minor changes made to the code in the MainActivity.kt file such as changing values will be instantly reflected in
the preview without the need to build and refresh. For example, change the “Welcome to Android” text literal
to “Welcome to Compose” and note that the text in the Preview panel changes as you type. Similarly, increasing
the font size literal will instantly change the size of the text in the preview. This feature is referred to as Live Edit
and can be enabled and disabled using the menu button indicated in Figure 4-4:

Figure 4-4

4.6 Adding the DemoSlider composable
The DemoSlider composable is a little more complicated than DemoText. It will need to be passed a variable
containing the current slider position and an event handler function or lambda to call when the slider is
moved by the user so that the new position can be stored and passed to the two Text composables. With these
requirements in mind, add the function as follows:
.

.

import androidx.compose.foundation.layout.*
import androidx.compose.material.Slider

27

An Example Compose Project

import androidx.compose.ui.unit.dp
.

.

@Composable
fun DemoSlider(sliderPosition: Float, onPositionChange: (Float) -> Unit) {
 Slider(
 modifier = Modifier.padding(10.dp),
 valueRange = 20f..40f,
 value = sliderPosition,
 onValueChange = { onPositionChange(it) }
)
}

The DemoSlider declaration contains a single Slider composable which is, in turn, passed four parameters. The
first is a Modifier instance configured to add padding space around the slider. Modifier is a Kotlin class built into
Compose which allows a wide range of properties to be set on a composable within a single object. Modifiers can
also be created and customized in one composable before being passed to other composables where they can be
further modified before being applied.

The second value passed to the Slider is a range allowed for the slider value (in this case the slider is limited to
values between 20 and 40).

The next parameter sets the value of the slider to the position passed through by the caller. This ensures that each
time DemoSlider is recomposed it retains the last position value.

Finally, we set the onValueChange parameter of the Slider to call the function or lambda we will be passing to the
DemoSlider composable when we call it later. Each time the slider position changes, the call will be made and
passed the current value which we can access via the Kotlin it keyword. We can further simplify this by assigning
just the event handler parameter name (onPositionChange) and leaving the compiler to handle the passing of
the current value for us:

onValueChange = onPositionChange

4.7 Adding the DemoScreen composable
The next step in our project is to add the DemoScreen composable. This will contain a variable named
sliderPosition in which to store the current slider position and the implementation of the handlePositionChange
event handler to be passed to the DemoSlider. This lambda will be responsible for storing the current position
in the sliderPosition variable each time it is called with an updated value. Finally, DemoScreen will contain a
Column composable configured to display the DemoText, Spacer, DemoSlider and the second, as yet to be
added, Text composable in a vertical arrangement.

Start by adding the DemoScreen function as follows:
.

.

import androidx.compose.runtime.*
.

.

@Composable
fun DemoScreen() {

28

An Example Compose Project

 var sliderPosition by remember { mutableStateOf(20f) }

 val handlePositionChange = { position : Float ->
 sliderPosition = position
 }
}

The sliderPosition variable declaration requires some explanation. As we will learn later, the Compose system
repeatedly and rapidly recomposes user interface layouts in response to data changes. The change of slider
position will, therefore, cause DemoScreen to be recomposed along with all of the composables it calls. Consider
if we had declared and initialized our sliderPosition variable as follows:
var sliderPosition = 20f

Suppose the user slides the slider to position 21. The handlePositionChange event handler is called and stores the
new value in the sliderPosition variable as follows:
val handlePositionChange = { position : Float ->

 sliderPosition = position

}

The Compose runtime system detects this data change and recomposes the user interface, including a call to the
DemoScreen function which will, in turn, reinitialize the sliderposition variable to 20 causing the previous value
of 21 to be lost. Declaring the sliderPosition variable in this way informs Compose that the current value needs
to be remembered during recompositions:

var sliderPosition by remember { mutableStateOf(20f) }

The only remaining work within the DemoScreen implementation is to add a Column containing the required
composable functions:
.

.

import androidx.compose.ui.Alignment
.

.

@Composable

fun DemoScreen() {

 var sliderPosition by remember { mutableStateOf(20f) }

 val handlePositionChange = { position : Float ->

 sliderPosition = position

 }

 Column(
 horizontalAlignment = Alignment.CenterHorizontally,
 verticalArrangement = Arrangement.Center,
 modifier = Modifier.fillMaxSize()
) {

 DemoText(message = "Welcome to Compose", fontSize = sliderPosition)

29

An Example Compose Project

 Spacer(modifier = Modifier.height(150.dp))

 DemoSlider(
 sliderPosition = sliderPosition,
 onPositionChange = handlePositionChange
)

 Text(
 style = MaterialTheme.typography.h2,
 text = sliderPosition.toInt().toString() + "sp"
)
 }
}

Points to note regarding these changes may be summarized as follows:

•	 When DemoSlider is called, it is passed a reference to our handlePositionChange event handler as the
onPositionChange parameter.

•	 The Column composable accepts parameters that customize layout behavior. In this case, we have configured
the column to center its children both horizontally and vertically.

•	 A Modifier has been passed to the Spacer to place a 150dp vertical space between the DemoText and
DemoSlider components.

•	 The second Text composable is configured to use the h2 (Heading 2) style of the Material theme. The
sliderPosition value is converted from a Float to an integer so that only whole numbers are displayed and then
converted to a string value before being displayed to the user.

4.8 Previewing the DemoScreen composable
To confirm that the DemoScreen layout meets our expectations, we need to add a preview composable to the
file. Note that the original DemoTextPreview composable may also be removed at this point:
.

.

@Preview(showBackground = true, showSystemUi = true)
@Composable
fun Preview() {
 ComposeDemoTheme {
 DemoScreen()
 }
}

@Preview(showBackground = true, showSystemUi = true)

@Composable

fun DemoTextPreview() {

 SimpleDemoTheme {

 DemoText(message = " Welcome to Compose", 25f)

 }

30

An Example Compose Project

}

Note that we have enabled the showSystemUi property of the preview so that we will experience how the app will
look when running on an Android device.

After performing a preview rebuild and refresh, the user interface should appear as originally shown in Figure
3-1.

4.9 Testing in interactive mode
At this stage, we know that the user interface layout for our activity looks how we want it to, but we don’t know
if it will behave as intended. One option is to run the app on an emulator or physical device (topics which are
covered in later chapters). A quicker option, however, is to switch the preview panel into interactive mode. This
is achieved by clicking on the button indicated in Figure 4-5 below:

Figure 4-5
When clicked, there will be a short delay when interactive mode starts, after which it should be possible to move
the slider and watch the two Text components update accordingly:

Figure 4-6
Click the stop button (marked A in Figure 4-7 below) to exit interactive mode. If it appears that the preview
needs to be refreshed, simply click on the Build Refresh button (B):

Figure 4-7

31

An Example Compose Project

4.10 Completing the project
The final step is to make sure that the DemoScreen composable is called from within the Surface function
located in the onCreate() method of the MainActivity class. Locate this method and modify it as follows:
.

.

class MainActivity : ComponentActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContent {

 ComposeDemoTheme {

 Surface(

 modifier = Modifier.fillMaxSize(),

 color = MaterialTheme.colors.background

) {

 DemoScreen()
 }

 }

 }

 }

}

This will ensure that, in addition to appearing in the preview panel, our user interface will also be displayed
when the app runs on a device or emulator (a topic that will be covered in later chapters).

4.11 Summary
In this chapter, we have extended our ComposeDemo project to include some additional user interface elements
in the form of two Text composables, a Spacer, and a Slider. These components were arranged vertically using
a Column composable. We also introduced the concept of mutable state variables and explained how they are
used to ensure that the app remembers state when the Compose runtime performs recompositions. The example
also demonstrated how to use event handlers to respond to user interaction (in this case the user moving a
slider). Finally, we made use of the Preview panel in interactive mode to test the app without the need to compile
and run it on an emulator or physical device.

33

Chapter 5

5. Creating an Android Virtual
Device (AVD) in Android Studio
Although the Android Studio Preview panel allows us to see the layout we are designing and test basic
functionality using interactive mode, it be will necessary to compile and run an entire app to fully test that it
works. An Android application may be tested by installing and running it either on a physical device or in an
Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and
configured to match the specifications of a particular device model. In this chapter, we will work through the
creation of such a virtual device using the Pixel 4 phone as a reference example.

5.1 About Android Virtual Devices
AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android-based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity, and the presence or otherwise of features such
as a camera, GPS navigation support, or an accelerometer. As part of the standard Android Studio installation,
several emulator templates are installed allowing AVDs to be configured for a range of different devices. Custom
configurations may be created to match any physical Android device by specifying properties such as processor
type, memory capacity, and the size and pixel density of the screen.

An AVD session can appear either as a separate window or embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step
is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting
the Tools -> Device Manager menu option from within the main window.

Once launched, the manager will appear as a tool window as shown in Figure 5-1:

Figure 5-1
To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device

34

Creating an Android Virtual Device (AVD) in Android Studio

button to open the Virtual Device Configuration dialog:

Figure 5-2
Within the dialog, perform the following steps to create a Pixel 4 compatible emulator:

1.  From the Category panel, select the Phone option to display the list of available Android phone AVD
templates.

2.  Select the Pixel 4 device option and click Next.

3.  On the System Image screen, select the latest version of Android. Note that if the system image has not yet
been installed a Download link will be provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or
ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

4.  Click Next to proceed and enter a descriptive name (for example Pixel 4 API 32) into the name field or
simply accept the default name.

5.  Click Finish to create the AVD.

6.  With the AVD created, the Device Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the Device Manager, select the AVD from the list, and click on the pencil icon in
the Actions column to edit the settings.

5.2 Starting the emulator
To perform a test run of the newly created AVD emulator, simply select the emulator from the Device Manager
and click on the launch button (the triangle in the Actions column). The emulator will appear embedded into
the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to
start will depend on the configuration of both the AVD and the system on which it is running:

35

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-3
To hide and show the emulator tool window, click on the Emulator tool window button (marked A above). Click
on the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can accommodate
multiple emulator sessions, with each session represented by a tab. Figure 5-4, for example, shows a tool window
with two emulator sessions:

Figure 5-4
To switch between sessions, simply click on the corresponding tab.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the Device Manager, select the new Pixel 4 entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change
the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the
emulator are covered in the next chapter (“Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

5.3 Running the application in the AVD
With an AVD emulator configured, the example ComposeDemo application created in the earlier chapter now
can be compiled and run. With the ComposeDemo project loaded into Android Studio, make sure that the

36

Creating an Android Virtual Device (AVD) in Android Studio

newly created Pixel 4 AVD is displayed in the device menu (marked A in Figure 5-5 below), then either click on
the run button represented by a green triangle (B), select the Run -> Run ‘app’ menu option or use the Ctrl-R
keyboard shortcut:

Figure 5-5
The device menu (A) may be used to select a different AVD instance or physical device as the run target, and
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 5-6
The app can also be run on the currently selected target by clicking on the icon in the editor gutter next to the
preview composable declaration as indicated by the arrow in Figure 5-7:

Figure 5-7
Once the application is installed and running, the user interface layout defined by the MainScreen function will
appear within the emulator:

37

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-8
If the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the
emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run tool window
will become available. The Run tool window will display diagnostic information as the application package is
installed and launched. Figure 5-9 shows the Run tool window output from a successful application launch:

Figure 5-9
If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured.

5.4 Running on multiple devices
The run menu shown in Figure 5-6 above includes an option to run the app on multiple emulators and devices
in parallel. When selected, this option displays the dialog shown in Figure 5-10 providing a list of both the AVDs
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or
devices to be targeted before clicking on the Run button:

38

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-10
After the Run button is clicked, Android Studio will launch the app on the selected emulators and devices.

5.5 Stopping a running application
To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
5-11:

Figure 5-11
An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running. Once the Run tool window appears, click
the stop button highlighted in Figure 5-12 below:

Figure 5-12

5.6 Supporting dark theme
Android 10 introduced the much-awaited dark theme, support for which is enabled by default in Android
Studio Compose-based app projects. To test dark theme in the AVD emulator, open the Settings app within the
running Android instance in the emulator. Within the Settings app, choose the Display category and enable the
Dark theme option as shown in Figure 5-13 so that the screen background turns black:

Figure 5-13
With dark theme enabled, run the ComposeDemo app and note that it appears using a dark theme including a
black background and a purple background color on the button as shown in Figure 5-14:

39

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-14
Return to the Settings app and turn off Dark theme mode before continuing.

5.7 Running the emulator in a separate window
So far in this chapter, we have only used the emulator as a tool window embedded within the main Android
Studio window. To run the emulator in a separate window, select the File -> Settings... menu option (Android
Studio -> Preferences... on macOS), navigate to Tools -> Emulator in the left-hand navigation panel of the
preferences dialog, and disable the Launch in a tool window option:

Figure 5-15
With the option disabled, click the Apply button followed by OK to commit the change, then exit the current
emulator session by clicking on the close button on the tab marked B in Figure 5-3 above.

40

Creating an Android Virtual Device (AVD) in Android Studio

Run the sample app once again, at which point the emulator will appear as a separate window as shown below:

Figure 5-16
The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before
committing to standalone mode, however, keep in mind that the emulator tool window may also be detached
from the main Android Studio window by clicking on the settings button (represented by the gear icon) in the
tool emulator toolbar and selecting the View Mode -> Float menu option:

Figure 5-17

5.8 Enabling the device frame
The emulator can be configured to appear with (Figure 5-14) or without the device frame (Figure 5-16). To
change the setting, open the Device Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings. In the settings screen, locate and change the Enable Device Frame option:

41

Creating an Android Virtual Device (AVD) in Android Studio

Figure 5-18

5.9 AVD command-line creation
As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly
from the command-line. This is achieved using the avdmanager tool in conjunction with some command-line
options. Once initiated, the tool will prompt for additional information before creating the new AVD.

The avdmanager tool requires access to the Java Runtime Environment (JRE) to run. If, when attempting to
run avdmanager, an error message appears indicating that the ‘java’ command cannot be found, the command
prompt or terminal window within which you are running the command can be configured to use the OpenJDK
environment bundled with Android Studio. Begin by identifying the location of the OpenJDK JRE as follows:

1.  Launch Android Studio and open the ComposeDemo project created earlier in the book.

2.  Select the File -> Settings... menu option (Android Studio -> Preferences... on macOS).

3.  Navigate to the Build, Execution, Deployment section and select the Gradle option listed under the Build
Tools category.

4.  Click on the Gradle JDK setting and make a note of the path for Android Studio default JDK:

Figure 5-19
On Windows, execute the following command within the command prompt window from which avdmanager is
to be run (where <path to jre> is replaced by the path copied from the Project Structure dialog above):
set JAVA_HOME=<path to jre>

On macOS or Linux, execute the following command:
export JAVA_HOME="<path to jre>"

If you expect to use the avdmanager tool frequently, follow the environment variable steps for your operating

42

Creating an Android Virtual Device (AVD) in Android Studio

system outlined in the chapter entitled “Setting up an Android Studio Development Environment” to configure
JAVA_HOME on a system-wide basis.

Assuming that the system has been configured such that the Android SDK tools directory is included in the
PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following
command in a terminal or command window:
avdmanager list targets

The resulting output from the above command will contain a list of Android SDK versions that are available on
the system. For example:
Available Android targets:

id: 1 or "android-29"

 Name: Android API 29

 Type: Platform

 API level: 29

 Revision: 1

id: 2 or "android-26"

 Name: Android API 26

 Type: Platform

 API level: 26

 Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command-line. For example, to
create a new AVD named myAVD using the target ID for the Android API level 29 device using the x86 ABI, the
following command may be used:
avdmanager create avd -n myAVD -k "system-images;android-29;google_apis_
playstore;x86"

The avdmanager tool will create the new AVD to the specifications required for a basic Android 8 device, also
providing the option to create a custom configuration to match the specification of a specific device if required.
Once a new AVD has been created from the command-line, it may not show up in the Android Device Manager
tool until the Refresh button is clicked.

In addition to the creation of new AVDs, several other tasks may be performed from the command-line. For
example, a list of currently available AVDs may be obtained using the list avd command-line arguments:
avdmanager list avd

Available Android Virtual Devices:

 Name: Pixel_XL_API_28_No_Play

 Device: pixel_xl (Google)

 Path: /Users/neilsmyth/.android/avd/Pixel_XL_API_28_No_Play.avd

 Target: Google APIs (Google Inc.)

 Based on: Android API 28 Tag/ABI: google_apis/x86

 Skin: pixel_xl_silver

 Sdcard: 512M

Similarly, to delete an existing AVD, simply use the delete option as follows:

43

Creating an Android Virtual Device (AVD) in Android Studio

avdmanager delete avd –n <avd name>

5.10 Android Virtual Device configuration files
By default, the files associated with an AVD are stored in the .android/avd sub-directory of the user’s home
directory, the structure of which is as follows (where <avd name> is replaced by the name assigned to the AVD):
<avd name>.avd/config.ini

<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions and memory specified
during the AVD creation process. These settings may be changed directly within the configuration file and will
be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD files. Note that
a change to the image.sysdir value in the config.ini file will also need to be reflected in the target value of this file.

5.11 Moving and renaming an Android Virtual Device
The current name or the location of the AVD files may be altered from the command-line using the avdmanager
tool’s move avd argument. For example, to rename an AVD named Pixel4 to Pixel4a, the following command
may be executed:
avdmanager move avd -n Pixel4 -r Pixel4a

To physically relocate the files associated with the AVD, the following command syntax should be used:
avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Pixel4Test:
avdmanager move avd -n Pixel4 -p /tmp/Pixel4Test

Note that the destination directory must not already exist before executing the command to move an AVD.

5.12 Summary
A typical application development process follows a cycle of coding, compiling, and running in a test
environment. Android applications may be tested on either a physical Android device or using an Android
Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool
which may be used either as a command-line tool or via a graphical user interface. When creating an AVD to
simulate a specific Android device model, the virtual device should be configured with a hardware specification
matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android
Studio user interface.

45

Chapter 6

6. Using and Configuring the
Android Studio AVD Emulator
Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
available to customize the environment in both standalone and tool window modes.

6.1 The emulator environment
When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears containing a representation of the chosen device type (in the
case of Figure 6-1 this is a Pixel 4 device):

Figure 6-1
Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.

6.2 The emulator toolbar options
The emulator toolbar (Figure 6-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

46

Using and Configuring the Android Studio AVD Emulator

Figure 6-2
Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

•	 Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the emulator session when selected while the
‘-’ option minimizes the entire window.

•	 Power – The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power off ” request sequence.

•	 Volume Up / Down – Two buttons that control the audio volume of playback within the simulator environment.

•	 Rotate Left/Right – Rotates the emulated device between portrait and landscape orientations.

•	 Take Screenshot – Takes a screenshot of the content currently displayed on the device screen. The captured
image is stored at the location specified in the Settings screen of the extended controls panel as outlined later
in this chapter.

•	 Zoom Mode – This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

•	 Back – Performs the standard Android “Back” navigation to return to a previous screen.

•	 Home – Displays the device home screen.

•	 Overview – Simulates selection of the standard Android “Overview” navigation which displays the currently
running apps on the device.

47

Using and Configuring the Android Studio AVD Emulator

•	 Fold Device – Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

•	 Extended Controls – Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

6.3 Working in zoom mode
The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

6.4 Resizing the emulator window
The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

6.5 Extended control options
The extended controls toolbar button displays the panel illustrated in Figure 6-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 6-3

48

Using and Configuring the Android Studio AVD Emulator

6.5.1 Location
The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format. Alternatively, the integrated Google Maps panel may be used to
visually select single points or travel routes.

6.5.2 Displays
In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

6.5.3 Cellular
The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

6.5.4 Battery
A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

6.5.5 Camera
The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

6.5.6 Phone
The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing how an app handles high-level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

6.5.7 Directional pad
A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

6.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

6.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

49

Using and Configuring the Android Studio AVD Emulator

6.5.10 Virtual sensors
The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement, and tilting through yaw, pitch and roll settings.

6.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in later in this chapter.

6.5.12 Record and playback
Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

6.5.13 Google Play
If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version and provides the option to update the emulator to the latest version.

6.5.14 Settings
The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

6.5.15 Help
The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

6.6 Working with snapshots
When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 6-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

50

Using and Configuring the Android Studio AVD Emulator

Figure 6-4
The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by
default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to
reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous
quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager), click on the down arrow in the Actions
column for the emulator and select the Cold Boot Now menu option.

Figure 6-5

6.7 Configuring fingerprint emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app, and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a
backup screen unlocking method (such as a PIN) must be configured. Click on the Fingerprint + PIN button
and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN and
complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that

51

Using and Configuring the Android Studio AVD Emulator

Finger 1 is selected in the main settings panel:

Figure 6-6
Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will
report the successful addition of the fingerprint:

Figure 6-7
To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch the Sensor button once again.

6.8 The emulator in tool window mode
As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator as an embedded tool window so that it does not appear in a
separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar as shown in Figure 6-8:

52

Using and Configuring the Android Studio AVD Emulator

Figure 6-8
From left to right, these buttons perform the following tasks (details of which match those for standalone mode):

•	 Power

•	 Volume Up

•	 Volume Down

•	 Rotate Left

•	 Rotate Right

•	 Back

•	 Home

•	 Overview

•	 Screenshot

•	 Snapshots

•	 Extended Controls

6.9 Summary
Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without the need to run on a physical Android device. This chapter has provided a brief tour of the
emulator and highlighted key features that are available to configure and customize the environment to simulate
different testing conditions.

53

Chapter 7

7. A Tour of the Android Studio User
Interface
While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

7.1 The Welcome screen
The welcome screen (Figure 7-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will bypass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 7-1
In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening
and creating projects along with access to projects currently under version control. In addition, the Customize
screen provides options to change the theme and font settings used by both the IDE and the editor. Android
Studio plugins may be viewed, installed, and managed using the Plugins option.

Additional options are available by clicking on the menu button as shown in Figure 7-2:

54

A Tour of the Android Studio User Interface

Figure 7-2

7.2 The main window
When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 7-3.

Figure 7-3
The various elements of the main window can be summarized as follows:

A – Menu Bar – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick access
to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting
the Customize Menus and Toolbars… menu option. If the toolbar is not visible, it can be displayed using the View
-> Appearance -> Toolbar menu option.

C – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class. Select a method from the list to be taken to the corresponding location within the
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.

55

A Tour of the Android Studio User Interface

D – Editor Window – The editor window displays the content of the file on which the developer is currently
working. When multiple files are open, each file is represented by a tab located along the top edge of the editor
as shown in Figure 7-4.

Figure 7-4
E – Status Bar – The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will display a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in
several different ways. The default setting is the Android view which is the mode primarily used in the remainder
of this book.

The project tool window is just one of many tool windows available within the Android Studio environment.

7.3 The tool windows
In addition to the project view tool window, Android Studio also includes many other windows which, when
enabled, are displayed along the bottom and sides of the main window. The tool window quick access menu can
be displayed by hovering the mouse pointer over the button located in the far left-hand corner of the status bar
(Figure 7-5) without clicking the mouse button.

Figure 7-5
Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right, and bottom edges of the main window (as indicated by the arrows in

56

A Tour of the Android Studio User Interface

Figure 7-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 7-6
Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window toolbars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 7-7 shows the settings menu for the Project tool window. Options
are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android
Studio main window, and to move and resize the tool panel.

Figure 7-7
All of the windows also include a far-right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window

57

A Tour of the Android Studio User Interface

focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s toolbar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

•	 App Inspector - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

•	 Build - The build tool window displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

•	 Build Variants – The build variants tool window provides a quick way to configure different build targets
for the current application project (for example different builds for debugging and release versions of the
application, or multiple builds to target different device categories).

•	 Device File Explorer – Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator allowing the
filesystem to be browsed and files copied to the local filesystem.

•	 Device Manager - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

•	 Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

•	 Event Log – The event log window displays messages relating to events and activities performed within
Android Studio. The successful build of a project, for example, or the fact that an application is now running
will be reported within this tool window.

•	 Favorites – A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list
can be accessed through this Favorites tool window.

•	 Gradle – The Gradle tool window provides a view of the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater
detail later in this book.

•	 Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

•	 Logcat – The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

•	 Problems - A central location in which to view all of the current errors or warnings within the project.
Double-clicking on an item in the problem list will take you to the problem file and location.

•	 Profiler – The Android Profiler tool window provides real-time monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

•	 Project – The project view provides an overview of the file structure that makes up the project allowing for

58

A Tour of the Android Studio User Interface

quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be
loaded into the appropriate editing tool.

•	 Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout
files contained with the project.

•	 Run – The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing
to install and run on a device or emulator, this window will typically provide diagnostic information relating
to the problem.

•	 Structure – The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the source file in the editor window.

•	 Terminal – Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

•	 TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting
the File -> Settings… menu option (Android Studio -> Preferences… on macOS) and navigating to the TODO
page listed under Editor.

7.4 Android Studio keyboard shortcuts
Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option. You may also list and modify the
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS)
and clicking on the Keymap entry as shown in Figure 7-8 below:

Figure 7-8

59

A Tour of the Android Studio User Interface

7.5 Switcher and recent files navigation
Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 7-9).

Figure 7-9
Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure
7-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the
mouse pointer can be used to select an option or the keyboard arrow keys used to scroll through the file name
and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 7-10

60

A Tour of the Android Studio User Interface

7.6 Changing the Android Studio theme
The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option or via the File -> Settings… menu option (Android Studio -> Preferences… on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance & Behavior option followed by Appearance in the
left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes
available will depend on the platform but usually include options such as Light, IntelliJ, Windows, High Contrast,
and Darcula. Figure 7-11 shows an example of the main window with the Darcula theme selected:

Figure 7-11
To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

Figure 7-12

7.7 Summary
The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar or via the
optional tool window bars.

There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of
default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

61

Chapter 8

8. Testing Android Studio Apps on a
Physical Android Device
While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no substitute
for performing real-world application testing on a physical Android device and there are some Android features
that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). In this chapter, we explain how to configure the adb environment to enable application testing on
an Android device with macOS, Windows, and Linux-based systems.

8.1 An overview of the Android Debug Bridge (ADB)
The primary purpose of the ADB is to facilitate interaction between a development system, in this case, Android
Studio, and both AVD emulators and Android devices to run and debug applications. ADB allows you to connect
to devices either over a WiFi network or directly using a USB cable.

The ADB consists of a client, a server process running in the background on the development system, and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active
virtual or physical devices may be obtained using the devices command-line argument. The following command
output indicates the presence of an AVD on the system but no physical devices:
$ adb devices

List of devices attached

emulator-5554 device

8.2 Enabling USB debugging ADB on Android devices
Before ADB can connect to an Android device, that device must first be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1.  Open the Settings app on the device and select the About tablet or About phone option (on some versions of
Android this can be found on the System page of the Settings app).

2.  On the About screen, scroll down to the Build number field (Figure 8-1) and tap on it seven times until a
message appears indicating that developer mode has been enabled. If the Build number is not listed on the
About screen it may be available via the Software information option. Alternatively, unfold the Advanced
section of the list if available.

62

Testing Android Studio Apps on a Physical Android Device

Figure 8-1
3.  Return to the main Settings screen and note the appearance of a new option titled Developer options (on

newer versions of Android this option is listed on the System settings screen). Select this option and on the
resulting screen, locate the USB debugging option as illustrated in Figure 8-2:

Figure 8-2
4.  Enable the USB debugging option and tap the Allow button when confirmation is requested.

At this point, the device is now configured to accept debugging connections from adb on the development
system over a USB connection. All that remains is to configure the development system to detect the device
when it is attached. While this is a relatively straightforward process, the steps involved differ depending on
whether the development system is running Windows, macOS, or Linux. Note that the following steps assume
that the Android SDK platform-tools directory is included in the operating system PATH environment variable
as described in the chapter entitled “Setting up an Android Studio Development Environment”.

8.2.1 macOS ADB configuration
To configure the ADB environment on a macOS system, connect the device to the computer system using a USB
cable, open a terminal window and execute the following command to restart the adb server:
$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:
$ adb devices

List of devices attached

74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure
8-3 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK.

63

Testing Android Studio Apps on a Physical Android Device

Figure 8-3
Repeating the adb devices command should now list the device as being available:
List of devices attached

015d41d4454bf80c device

If the device is not listed, try logging out and then back into the macOS desktop and, if the problem persists,
rebooting the system.

8.2.2 Windows ADB configuration
The first step in configuring a Windows-based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
the Android Device. If you have a Google device such as a Pixel phone, then it will be necessary to install and
configure the Google USB Driver package on your Windows system. Detailed steps to achieve this are outlined
on the following web page:

https://developer.android.com/sdk/win-usb.html

For Android devices not supported by the Google USB driver, it will be necessary to download the drivers
provided by the device manufacturer. A listing of drivers together with download and installation information
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:
adb devices

This command should output information about the connected device similar to the following:
List of devices attached

HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
8-3 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as
being ready:
List of devices attached

HT4CTJT01906 device

If the device is not listed, execute the following commands to restart the ADB server:
adb kill-server

adb start-server

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

64

Testing Android Studio Apps on a Physical Android Device

If the device is still not listed, try executing the following command:
android update adb

Note that it may also be necessary to reboot the system.

8.2.3 Linux adb configuration
For this chapter, we will once again use Ubuntu Linux as a reference example in terms of configuring adb on
Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not
listed, run the following command to add your account to the group:
sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:
sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server and check the list of attached devices:
$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 8-3 seeking permission to Allow USB debugging.

8.3 Resolving USB connection issues
If you are unable to successfully connect to the device using the above steps, display the run target menu (Figure
8-4) and select the Troubleshoot Device Connections option:

Figure 8-4
The connection assistant will scan for devices and report problems and possible solutions.

65

Testing Android Studio Apps on a Physical Android Device

8.4 Enabling wireless debugging on Android devices
Follow steps 1 through 3 from section 8.2 above, this time enabling the Wireless Debugging option as shown in
Figure 8-5:

Figure 8-5
Next, tap the above Wireless debugging entry to display the screen shown in Figure 8-6:

Figure 8-6
If the device you are using has a camera, select Pair device with QR code, otherwise select the Pair device with
pairing code option. Depending on your selection, the Settings app will either start a camera session or display a
pairing code as shown in Figure 8-7:

Figure 8-7
With an option selected, return to Android Studio and select the Pair Devices Using WiFi option from the run
target menu as illustrated in Figure 8-8:

66

Testing Android Studio Apps on a Physical Android Device

Figure 8-8
In the pairing dialog, select either Pair using QR code or Pair using pairing code depending on your previous
selection in the Settings app on the device:

Figure 8-9
Either scan the QR code using the Android device or enter the pairing code displayed on the device screen into
the Android Studio dialog (Figure 8-10) to complete the pairing process:

Figure 8-10
If the pairing process fails, try rebooting both the development system and Android device and try again.

67

Testing Android Studio Apps on a Physical Android Device

8.5 Testing the adb connection
Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “An Example Compose Project” on the device.
Launch Android Studio, open the ComposeDemo project, and verify that the device appears in the device
selection menu as highlighted in Figure 8-11:

Figure 8-11
Select the device from the list and click on the run button (the green arrow button located immediately to the
right of the device menu) to install and run the app.

8.6 Summary
While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep
in mind that there is no real substitute for making sure an application functions correctly on a physical Android
device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps to be able to load applications directly onto an
Android device from within the Android Studio development environment either via a USB cable or over a WiFi
network. The exact steps to achieve this goal differ depending on the development platform being used. In this
chapter, we have covered those steps for Linux, macOS, and Windows-based platforms.

	1. Start Here
	1.1 For Kotlin programmers
	1.2 For new Kotlin programmers
	1.3 Downloading the code samples
	1.4 Feedback
	1.5 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Making the Android SDK tools command-line accessible
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. A Compose Project Overview
	3.1 About the project
	3.2 Creating the project
	3.3 Creating an activity
	3.4 Defining the project and SDK settings
	3.5 Previewing the example project
	3.6 Reviewing the main activity
	3.7 Preview updates
	3.8 Summary

	4. An Example Compose Project
	4.1 Getting started
	4.2 Removing the template Code
	4.3 The Composable hierarchy
	4.4 Adding the DemoText composable
	4.5 Previewing the DemoText composable
	4.6 Adding the DemoSlider composable
	4.7 Adding the DemoScreen composable
	4.8 Previewing the DemoScreen composable
	4.9 Testing in interactive mode
	4.10 Completing the project
	4.11 Summary

	5. Creating an Android Virtual Device (AVD) in Android Studio
	5.1 About Android Virtual Devices
	5.2 Starting the emulator
	5.3 Running the application in the AVD
	5.4 Running on multiple devices
	5.5 Stopping a running application
	5.6 Supporting dark theme
	5.7 Running the emulator in a separate window
	5.8 Enabling the device frame
	5.9 AVD command-line creation
	5.10 Android Virtual Device configuration files
	5.11 Moving and renaming an Android Virtual Device
	5.12 Summary

	6. Using and Configuring the Android Studio AVD Emulator
	6.1 The emulator environment
	6.2 The emulator toolbar options
	6.3 Working in zoom mode
	6.4 Resizing the emulator window
	6.5 Extended control options
	6.5.1 Location
	6.5.2 Displays
	6.5.3 Cellular
	6.5.4 Battery
	6.5.5 Camera
	6.5.6 Phone
	6.5.7 Directional pad
	6.5.8 Microphone
	6.5.9 Fingerprint
	6.5.10 Virtual sensors
	6.5.11 Snapshots
	6.5.12 Record and playback
	6.5.13 Google Play
	6.5.14 Settings
	6.5.15 Help

	6.6 Working with snapshots
	6.7 Configuring fingerprint emulation
	6.8 The emulator in tool window mode
	6.9 Summary

	7. A Tour of the Android Studio User Interface
	7.1 The Welcome screen
	7.2 The main window
	7.3 The tool windows
	7.4 Android Studio keyboard shortcuts
	7.5 Switcher and recent files navigation
	7.6 Changing the Android Studio theme
	7.7 Summary

	8. Testing Android Studio Apps on a Physical Android Device
	8.1 An overview of the Android Debug Bridge (ADB)
	8.2 Enabling USB debugging ADB on Android devices
	8.2.1 macOS ADB configuration
	8.2.2 Windows ADB configuration
	8.2.3 Linux adb configuration

	8.3 Resolving USB connection issues
	8.4 Enabling wireless debugging on Android devices
	8.5 Testing the adb connection
	8.6 Summary

	9. The Basics of the Android Studio Code Editor
	9.1 The Android Studio editor
	9.2 Code mode
	9.3 Splitting the editor window
	9.4 Code completion
	9.5 Statement completion
	9.6 Parameter information
	9.7 Parameter name hints
	9.8 Code generation
	9.9 Code folding
	9.10 Quick documentation lookup
	9.11 Code reformatting
	9.12 Finding sample code
	9.13 Live templates
	9.14 Summary

	10. An Overview of the Android Architecture
	10.1 The Android software stack
	10.2 The Linux kernel
	10.3 Android runtime – ART
	10.4 Android libraries
	10.4.1 C/C++ libraries

	10.5 Application framework
	10.6 Applications
	10.7 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables and Nullability
	12.1 Kotlin data types
	12.1.1 Integer data types
	12.1.2 Floating point data types
	12.1.3 Boolean data type
	12.1.4 Character data type
	12.1.5 String data type
	12.1.6 Escape sequences

	12.2 Mutable variables
	12.3 Immutable variables
	12.4 Declaring mutable and immutable variables
	12.5 Data types are objects
	12.6 Type annotations and type inference
	12.7 Nullable type
	12.8 The safe call operator
	12.9 Not-null assertion
	12.10 Nullable types and the let function
	12.11 Late initialization (lateinit)
	12.12 The Elvis operator
	12.13 Type casting and type checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression syntax in Kotlin
	13.2 The Basic assignment operator
	13.3 Kotlin arithmetic operators
	13.4 Augmented assignment operators
	13.5 Increment and decrement operators
	13.6 Equality operators
	13.7 Boolean logical operators
	13.8 Range operator
	13.9 Bitwise operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise left shift
	13.9.6 Bitwise right shift

	13.10 Summary

	14. Kotlin Control flow
	14.1 Looping control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue statement
	14.1.6 Break and continue labels

	14.2 Conditional control flow
	14.2.1 Using the if expressions
	14.2.2 Using if ... else … expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a function?
	15.2 How to declare a Kotlin function
	15.3 Calling a Kotlin function
	15.4 Single expression functions
	15.5 Local functions
	15.6 Handling return values
	15.7 Declaring default function parameters
	15.8 Variable number of function parameters
	15.9 Lambda expressions
	15.10 Higher-order functions
	15.11 Summary

	16. The Basics of Object-Oriented Programming in Kotlin
	16.1 What is an object?
	16.2 What is a class?
	16.3 Declaring a Kotlin class
	16.4 Adding properties to a class
	16.5 Defining methods
	16.6 Declaring and initializing a class instance
	16.7 Primary and secondary constructors
	16.8 Initializer blocks
	16.9 Calling methods and accessing properties
	16.10 Custom accessors
	16.11 Nested and inner classes
	16.12 Companion objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, classes, and subclasses
	17.2 Subclassing syntax
	17.3 A Kotlin inheritance example
	17.4 Extending the functionality of a subclass
	17.5 Overriding inherited methods
	17.6 Adding a custom secondary constructor
	17.7 Using the SavingsAccount class
	17.8 Summary

	18. An Overview of Compose
	18.1 Development before Compose
	18.2 Compose declarative syntax
	18.3 Compose is data-driven
	18.4 Summary

	19. Composable Functions Overview
	19.1 What is a composable function?
	19.2 Stateful vs. stateless composables
	19.3 Composable function syntax
	19.4 Foundation and Material composables
	19.5 Summary

	20. An Overview of Compose State and Recomposition
	20.1 The basics of state
	20.2 Introducing recomposition
	20.3 Creating the StateExample project
	20.4 Declaring state in a composable
	20.5 Unidirectional data flow
	20.6 State hoisting
	20.7 Saving state through configuration changes
	20.8 Summary

	21. An Introduction to Composition Local
	21.1 Understanding CompositionLocal
	21.2 Using CompositionLocal
	21.3 Creating the CompLocalDemo project
	21.4 Designing the layout
	21.5 Adding the CompositionLocal state
	21.6 Accessing the CompositionLocal state
	21.7 Testing the design
	21.8 Summary

	22. An Overview of Compose Slot APIs
	22.1 Understanding slot APIs
	22.2 Declaring a slot API
	22.3 Calling slot API composables
	22.4 Summary

	23. A Compose Slot API Tutorial
	23.1 About the project
	23.2 Creating the SlotApiDemo project
	23.3 Preparing the MainActivity class file
	23.4 Creating the MainScreen composable
	23.5 Adding the ScreenContent composable
	23.6 Creating the Checkbox composable
	23.7 Implementing the ScreenContent slot API
	23.8 Adding an Image drawable resource
	23.9 Writing the TitleImage composable
	23.10 Completing the MainScreen composable
	23.11 Previewing the project
	23.12 Summary

	24. Using Modifiers in Compose
	24.1 An overview of modifiers
	24.2 Creating the ModifierDemo project
	24.3 Creating a modifier
	24.4 Modifier ordering
	24.5 Adding modifier support to a composable
	24.6 Common built-in modifiers
	24.7 Combining modifiers
	24.8 Summary

	25. Composing Layouts with Row and Column
	25.1 Creating the RowColDemo project
	25.2 Row composable
	25.3 Column composable
	25.4 Combining Row and Column composables
	25.5 Layout alignment
	25.6 Layout arrangement positioning
	25.7 Layout arrangement spacing
	25.8 Row and Column scope modifiers
	25.9 Scope modifier weights
	25.10 Summary

	26. Box Layouts in Compose
	26.1 An introduction to the Box composable
	26.2 Creating the BoxLayout project
	26.3 Adding the TextCell composable
	26.4 Adding a Box layout
	26.5 Box alignment
	26.6 BoxScope modifiers
	26.7 Using the clip() modifier
	26.8 Summary

	27. Custom Layout Modifiers
	27.1 Compose layout basics
	27.2 Custom layouts
	27.3 Creating the LayoutModifier project
	27.4 Adding the ColorBox composable
	27.5 Creating a custom layout modifier
	27.6 Understanding default position
	27.7 Completing the layout modifier
	27.8 Using a custom modifier
	27.9 Working with alignment lines
	27.10 Working with baselines
	27.11 Summary

	28. Building Custom Layouts
	28.1 An overview of custom layouts
	28.2 Custom layout syntax
	28.3 Using a custom layout
	28.4 Creating the CustomLayout project
	28.5 Creating the CascadeLayout composable
	28.6 Using the CascadeLayout composable
	28.7 Summary

	29. A Guide to ConstraintLayout in Compose
	29.1 An introduction to ConstraintLayout
	29.2 How ConstraintLayout works
	29.2.1 Constraints
	29.2.2 Margins
	29.2.3 Opposing constraints
	29.2.4 Constraint bias
	29.2.5 Chains
	29.2.6 Chain styles

	29.3 Configuring dimensions
	29.4 Guideline helper
	29.5 Barrier helper
	29.6 Summary

	30. Working with ConstraintLayout in Compose
	30.1 Calling ConstraintLayout
	30.2 Generating references
	30.3 Assigning a reference to a composable
	30.4 Adding constraints
	30.5 Creating the ConstraintLayout project
	30.6 Adding the ConstraintLayout library
	30.7 Adding a custom button composable
	30.8 Basic constraints
	30.9 Opposing constraints
	30.10 Constraint bias
	30.11 Constraint margins
	30.12 The importance of opposing constraints and bias
	30.13 Creating chains
	30.14 Working with guidelines
	30.15 Working with barriers
	30.16 Decoupling constraints with constraint sets
	30.17 Summary

	31. Working with IntrinsicSize in Compose
	31.1 Intrinsic measurements
	31.2 Max. vs Min. Intrinsic Size measurements
	31.3 About the example project
	31.4 Creating the IntrinsicSizeDemo project
	31.5 Creating the custom text field
	31.6 Adding the Text and Box components
	31.7 Adding the top-level Column
	31.8 Testing the project
	31.9 Applying IntrinsicSize.Max measurements
	31.10 Applying IntrinsicSize.Min measurements
	31.11 Summary

	32. An Overview of Lists and Grids in Compose
	32.1 Standard vs. lazy lists
	32.2 Working with Column and Row lists
	32.3 Creating lazy lists
	32.4 Enabling scrolling with ScrollState
	32.5 Programmatic scrolling
	32.6 Sticky headers
	32.7 Responding to scroll position
	32.8 Creating a lazy grid
	32.9 Summary

	33. A Compose Row and Column List Tutorial
	33.1 Creating the ListDemo project
	33.2 Creating a Column-based list
	33.3 Enabling list scrolling
	33.4 Manual scrolling
	33.5 A Row list example
	33.6 Summary

	34. A Compose Lazy List Tutorial
	34.1 Creating the LazyListDemo project
	34.2 Adding list data to the project
	34.3 Reading the XML data
	34.4 Handling image loading
	34.5 Designing the list item composable
	34.6 Building the lazy list
	34.7 Testing the project
	34.8 Making list items clickable
	34.9 Summary

	35. Lazy List Sticky Headers and Scroll Detection
	35.1 Grouping the list item data
	35.2 Displaying the headers and items
	35.3 Adding sticky headers
	35.4 Reacting to scroll position
	35.5 Adding the scroll button
	35.6 Testing the finished app
	35.7 Summary

	36. Compose Visibility Animation
	36.1 Creating the AnimateVisibility project
	36.2 Animating visibility
	36.3 Defining enter and exit animations
	36.4 Animation specs and animation easing
	36.5 Repeating an animation
	36.6 Different animations for different children
	36.7 Auto-starting an animation
	36.8 Implementing crossfading
	36.9 Summary

	37. Compose State-Driven Animation
	37.1 Understanding state-driven animation
	37.2 Introducing animate as state functions
	37.3 Creating the AnimateState project
	37.4 Animating rotation with animateFloatAsState
	37.5 Animating color changes with animateColorAsState
	37.6 Animating motion with animateDpAsState
	37.7 Adding spring effects
	37.8 Working with keyframes
	37.9 Combining multiple animations
	37.10 Using the Animation Inspector
	37.11 Summary

	38. Canvas Graphics Drawing in Compose
	38.1 Introducing the Canvas component
	38.2 Creating the CanvasDemo project
	38.3 Drawing a line and getting the canvas size
	38.4 Drawing dashed lines
	38.5 Drawing a rectangle
	38.6 Applying rotation
	38.7 Drawing circles and ovals
	38.8 Drawing gradients
	38.9 Drawing arcs
	38.10 Drawing paths
	38.11 Drawing points
	38.12 Drawing an image
	38.13 Summary

	39. Working with ViewModels in Compose
	39.1 What is Android Jetpack?
	39.2 The “old” architecture
	39.3 Modern Android architecture
	39.4 The ViewModel component
	39.5 ViewModel implementation using state
	39.6 Connecting a ViewModel state to an activity
	39.7 ViewModel implementation using LiveData
	39.8 Observing ViewModel LiveData within an activity
	39.9 Summary

	40. A Compose ViewModel Tutorial
	40.1 About the project
	40.2 Creating the ViewModelDemo project
	40.3 Adding the ViewModel
	40.4 Accessing DemoViewModel from MainActivity
	40.5 Designing the temperature input composable
	40.6 Designing the temperature input composable
	40.7 Completing the user interface design
	40.8 Testing the app
	40.9 Summary

	41. An Overview of Android SQLite Databases
	41.1 Understanding database tables
	41.2 Introducing database schema
	41.3 Columns and data types
	41.4 Database rows
	41.5 Introducing primary keys
	41.6 What is SQLite?
	41.7 Structured Query Language (SQL)
	41.8 Trying SQLite on an Android Virtual Device (AVD)
	41.9 The Android Room persistence library
	41.10 Summary

	42. Room Databases and Compose
	42.1 Revisiting modern app architecture
	42.2 Key elements of Room database persistence
	42.2.1 Repository
	42.2.2 Room database
	42.2.3 Data Access Object (DAO)
	42.2.4 Entities
	42.2.5 SQLite database

	42.3 Understanding entities
	42.4 Data Access Objects
	42.5 The Room database
	42.6 The Repository
	42.7 In-Memory databases
	42.8 Database Inspector
	42.9 Summary

	43. A Compose Room Database and Repository Tutorial
	43.1 About the RoomDemo project
	43.2 Creating the RoomDemo project
	43.3 Modifying the build configuration
	43.4 Building the entity
	43.5 Creating the Data Access Object
	43.6 Adding the Room database
	43.7 Adding the repository
	43.8 Adding the ViewModel
	43.9 Designing the user interface
	43.10 Completing the MainScreen function
	43.11 Testing the RoomDemo app
	43.12 Using the Database Inspector
	43.13 Summary

	44. An Overview of Navigation in Compose
	44.1 Understanding navigation
	44.2 Declaring a navigation controller
	44.3 Declaring a navigation host
	44.4 Adding destinations to the navigation graph
	44.5 Navigating to destinations
	44.6 Passing arguments to a destination
	44.7 Working with bottom navigation bars
	44.8 Summary

	45. A Compose Navigation Tutorial
	45.1 Creating the NavigationDemo project
	45.2 About the NavigationDemo project
	45.3 Declaring the navigation routes
	45.4 Adding the home screen
	45.5 Adding the welcome screen
	45.6 Adding the profile screen
	45.7 Creating the navigation controller and host
	45.8 Implementing the screen navigation
	45.9 Passing the user name argument
	45.10 Testing the project
	45.11 Summary

	46. A Compose Bottom Navigation Bar Tutorial
	46.1 Creating the BottomBarDemo project
	46.2 Declaring the navigation routes
	46.3 Designing bar items
	46.4 Creating the bar item list
	46.5 Adding the destination screens
	46.6 Creating the navigation controller and host
	46.7 Designing the navigation bar
	46.8 Working with the Scaffold component
	46.9 Testing the project
	46.10 Summary

	47. Detecting Gestures in Compose
	47.1 Compose gesture detection
	47.2 Creating the GestureDemo project
	47.3 Detecting click gestures
	47.4 Detecting taps using PointerInputScope
	47.5 Detecting drag gestures
	47.6 Detecting drag gestures using PointerInputScope
	47.7 Scrolling using the scrollable modifier
	47.8 Scrolling using the scroll modifiers
	47.9 Detecting pinch gestures
	47.10 Detecting rotation gestures
	47.11 Detecting translation gestures
	47.12 Summary

	48. Detecting Swipe Gestures in Compose
	48.1 Swipe gestures and anchors
	48.2 Detecting swipe gestures
	48.3 Declaring the anchors map
	48.4 Declaring thresholds
	48.5 Moving a component in response to a swipe
	48.6 About the SwipeDemo project
	48.7 Creating the SwipeDemo project
	48.8 Setting up the swipeable state and anchors
	48.9 Designing the parent Box
	48.10 Testing the project
	48.11 Summary

	49. Working with Compose Theming
	49.1 Material Design 2 vs Material Design 3
	49.2 Material Design 2 Theming
	49.3 Material Design 3 Theming
	49.4 Building a Custom Theme
	49.5 Summary

	50. A Material Design 3 Theming Tutorial
	50.1 Creating the ThemeDemo project
	50.2 Adding the Material Design 3 library
	50.3 Designing the user interface
	50.4 Building a new theme
	50.5 Adding the theme to the project
	50.6 Enabling dynamic colors
	50.7 Summary

	51. Creating, Testing, and Uploading an Android App Bundle
	51.1 The release preparation process
	51.2 Android app bundles
	51.3 Register for a Google Play Developer Console account
	51.4 Configuring the app in the console
	51.5 Enabling Google Play app signing
	51.6 Creating a keystore file
	51.7 Creating the Android app bundle
	51.8 Generating test APK files
	51.9 Uploading the app bundle to the Google Play Developer Console
	51.10 Exploring the app bundle
	51.11 Managing testers
	51.12 Rolling the app out for testing
	51.13 Uploading new app bundle revisions
	51.14 Analyzing the app bundle file
	51.15 Summary

	52. An Overview of Gradle in Android Studio
	52.1 An Overview of Gradle
	52.2 Gradle and Android Studio
	52.2.1 Sensible Defaults
	52.2.2 Dependencies
	52.2.3 Build Variants
	52.2.4 Manifest Entries
	52.2.5 APK Signing
	52.2.6 ProGuard Support

	52.3 The Property and Settings Gradle Build Files
	52.4 The Top-level Gradle Build File
	52.5 Module Level Gradle Build Files
	52.6 Configuring Signing Settings in the Build File
	52.7 Running Gradle Tasks from the Command-line
	52.8 Summary

	Index
	_Ref381877478
	_Ref382489559
	_Ref382490730

