Android Studio 3.3
Development Essentials

Kotlin Edition

Android Studio 3.3 Development Essentials — Kotlin Edition
© 2019 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

1. INEFOAUCHION ..ceeenreieieeeiceeeereeecsneeeseeeesaeesssneesssesssssssssnssssssasssnsssssnssssssssssnssssanssssssasssnssssssessssessssnssssnsssssnanss 1
1.1 Downloading the Code SAMPIEScccreureeureurineiriirieirerseeneireerei et sesseseens 1
1.2 FEEADACK ...ttt sttt bttt b bbb b s s assssebebebebeb s s s ssssasansesetesas 2
1.3 B At ettt b e b et et a e e a e b ae b et et et et e b s be b et et et e s 2

2. Setting up an Android Studio Development Environment............cocevuereereencenes

2.1 System ReqUirements.........ccoccceuviieiricriinicininiciniieceiceeensessaesensssees
2.2 Downloading the Android Studio Package
2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene
2.3.1 Installation 0n WINAOWSccueureerirrieriirieeireeneeseeenetsese e sseesesesssasesessssessesssssssesssasesens 4
2.3.2 Installation 0n MACOSc.cveiireceiericeiree et ese s ese s sse s sse s ansns 4
2.3.3 Installation 0N LINUX.......cccvuureemirreerierieniireeeiseeeneesesesessesessssesesssssesessessssessssssessssssesssssssens 5
2.4 The Android Studio Setup WizZard.......ccc.eveeurireecurenicinineeineeieinecieseeietsescsetseess e eeesesseesesseneaes 5
2.5 Installing Additional Android SDK Packagescccceeueueecrnimeererieeremneeeeneeeeneeeenseeenessesenne 6
2.6 Making the Android SDK Tools Command-line Accessible...........ccoeuviemrerreeenernecenernecnnernennn. 8
2.6.1 WIIAOWS 7.ttt seas s ssese s ese s st ese s ese s sssssssssssscsnsssssnsassns 8
2.6.2 WINAOWS 8.1 ..ttt ssea s ssese s s sssasese st ese s esesssssssesssasescsnsasssnsassns 9
2.6.3 WINAOWS 10 ...t sse s s sse s sse s sse e s sssessesecsens
2.0.4 LINUX oottt sttt
2.6.5 MACOS.......c it
2.7 Updating Android Studio and the SDK
2.8 SUMMATY c.ccvririiciiincreiieesceese st ssssaesens

3. Creating an Example Android App in Android Studio.....

3.1 ADOUL the PIOJECL c.ceuveeuicicicireieecireiseetneieeeirei sttt sttt sttt
3.2 Creating a New AnNdroid ProjJect.......ocvecrernciniirencineinieineiseenesseesessesessessesessessesessessesessesscsenns
3.3 Creating an ACHIVILYcccciiiiiiiiiiicc e
3.4 Defining the Project and SDK Settingscecveureurereureurereireinereerersenessessesessessesessessesessessescssesscsenns
3.5 Modifying the Example APPIiCAtion......c.ccocureurereureurecineeneeineireetresseessessesessessesessessesessessesessesscsenns
3.6 Reviewing the Layout and Resource Files........cocvunirneiniinencineincncineinecneiseetneiseessesseessessesenns
3.7 AddINg INEIACTION ..cevuieeeecireeecircteeetrcteee ettt sttt nae
3.8 SUIMIMATY w.ocviiiiiii st

4. Creating an Android Virtual Device (AVD) in Android Studio

4.1 About Android Virtual Devicesc.coceeuverreemrenneee
4.2 Creating a New AVD ..o
4.3 Starting the Emulator...........ccccoovvvininncnncncnne,
4.4 Running the Application in the AVD...........cc........
4.5 Run/Debug Configurations............ccceeeveeeverrecuennee
4.6 Stopping a Running Application...........ccecuveeuennee.
4.7 AVD Command-line Creation ... ssssssssssssssssssssassses
4.8 Android Virtual Device Configuration Files.........cccoeveereenerneeeneineceneneeereeeereseeensenennes
4.9 Moving and Renaming an Android Virtual DeViCecccvevemreeeenerreeeenerreeeenenrenennenresensenrenennes
410 SUINIATY oottt s bbb s bbb s bbbt sa b s

Table of Contents

5. Using and Configuring the Android Studio AVD Emulator

5.1 The Emulator ENVIFONMENTc.coeuiiiiiiiicinieeceteeeeeeneseese e ssessennas

5.2 The Emulator Toolbar Options........c.ccececerureuecnee

5.3 Working in Zoom Modecccceevuverereurenenne

5.4 Resizing the Emulator Window

5.5 Extended Control Options........c.ccececurevecererennnes
5.5.1 LOCAtIONoviittttttt s
5.5.2 CIIUIAT ...ttt
5.5.3 CITIEI A ..ot bbb s
5.5.4 BAteIY.uiiiiiiiicccicr s
5.5.5 PRONE ...ouiiiiccc ettt
5.5.6 Directional Pad ..o saes
5.5.7 MICTOPRONE.cucuienieciricieieceeireicieeeet ettt se ettt s seseaeneans
5.5.8 FINGEIPIINT ..ottt
5.5.9 VIItUAL SENSOTS.....cuvrieieiieciiiieceeiiceieieeteeeset et saes
5.5.10 SNIAPSNOLS....cviucuieniectricieieeteteicieeee sttt b ettt sttt st n et ees
5.5.11 SCreemn RECOTAouiuiuiiiciiiicieiiecict et saes
5.5.12 GOOGLE PLay ..ottt
5.5.13 Settingscccovuvervivicuriricrriicriceicenes
5.5.14 Help.oeueureecireceeiecieeecieeeicrecieeeseeseaenees

5.6 Working with Snapshots.........cccccecevuverercenennenn.

5.7 Drag and Drop Support

5.8 Configuring Fingerprint Emulation

5.9 SUIMIMATY oot bbb

6. A Tour of the Android Studio USer INLEITACEcccvuureeeeirreereesirreeeessrreeessssseessesssseessssssseesssssssssssssssssssssns

7. Testing Android Studio Apps on a Physical Android Device

6.1 The WElCome SCrEEMNvuiiiiiiiiici s
6.2 The Main WINAOW ..ot ss s
6.3 The TOOl WINAOWScccuiiiiiiiiiici st
6.4 Android Studio Keyboard SHOTTCULSc.ecvcureurercireurecireinecireireeneiseeessesetsessesessessesessessesessesens
6.5 Switcher and Recent Files Navigationcocvceevcureurereunienercineinererseuneeesesseessessescssessesessessesessessens
6.6 Changing the Android Studio TREmeccocureueevcureurercererrercireireereieeeessee e ssessese e ssesessesens
0.7 SUITIITIATY ..ottt bbb bbb bbb bbb bbbt

7.1 An Overview of the Android Debug Bridge (ADB).......c.ccoveueuercrrernereremeeerneeneenenessenseesenenenne
7.2 Enabling ADB on Android based Devices
7.2.1 macOS ADB Configuration..........c.ccecveenee.
7.2.2 Windows ADB CONfIGUIATIONccuvuermreerereeeieeeeneieseasesensessessensensssssssssssssessessessessessens
7.2.3 Linux adb CONAIGUIAtION.......cceuiumercrermreeraereeeeieeeneasenease s ssensensesssssesssssssssesssssessessensens
7.3 Testing the adb CONNECHION........c.ccccuimiiciriicirc e neee
7.4 SUINIMATY oottt bbb bbbt s b

8. The Basics of the Android Studio Code EditOr........uuveiiiiieeereirieeeeeisireeesisssneessessseessssssseesssssssssssssssssssssns

ii

8.1 The Android StUAIO EQItOr.......ccoiieiererereieiiieteteteteeee ettt es s st es s s bt anenene
8.2 Splitting the EdItor WINAOWc.ccecueureciriurercireinecireireeinerseetsessesessessesessessesesessesessessesessessescsnesens
8.3 COde COMPLETION ...cuvvrveerirericirerirctreisectseteee s asesseae et bbb ses e sese e bsese e eesesncsens
8.4 Statement Completion.....
8.5 Parameter Information....
8.6 Parameter Name HINEScc.cviiiiiiiiiceetceeesee ettt e besbe st st ae e e rasvans

Table of Contents

8.7 COUE GENEIALION ...vuvvreeerrerereteecaiiete et ees ettt essssssaesesess s ss st esesesessasasssesesesassssasssesesesesessasssnsesans 60
8.8 C0dE FOLAING ...ttt nns 61
8.9 Quick Documentation LOOKUDcccvuveueureiueirincieineeenineecieieaetseeee e tsescsesseesstseseses et sssesessenenes 62
8.10 Code RefOrMAtting........cueveueueecrereecrriieeenereeeirereesenesseseaeseese et seesessessessssessesessessescssessesenns 63
8.11 Finding Sample COde ... sseseasessesessessessssessesenns 63
812 SUMMATY ..ot 64

9. An Overview of the ANAroid Architecturecccueeevueeerreeeirceeenreeecnieeenseeesseeeesseeessnesssssessssssssnsssssssssanens 65
9.1 The Android SOftWAre STACKccoeveuiviieeerereteeeeeeetete ettt ese st s s s bt senesenens 65
9.2 The LINUX KEITIEL.....uoueeeeevereveieeieeeetetetcteeee ettt ettt es st ses st bessasasesesesesesensasanesesens 66
9.3 Android RUNTIME — ARTc.cuouiiieeerctctieeeeeeeeteeeee ettt sttt s sss s s st sessnsesenenne 66
9.4 ANATOIA LIDIATIES . v.voveeveveveveveteeiieieteteteteeeee ettt esese st s s sesesesesesssssesesesesessasasesesesesesensasasesesens 66
9.4.1 C/CH+ LIDIATIES ...vvueevevevereteeeeiietereteteteeeeeteseseteesstesesesessasssesesesesessnsssesesesessssnsesesesesesessnsasesesns 67
9.5 Application FramewWOTK......cc.ocecciriuriciriinicieirenieccset ettt ene 67
9.6 APPLICALIONS «.ecrveeeiceinireteeei ettt sttt seb sttt sttt et sttt bttt bt 68
0.7 SUIMIMATY ..ottt bbbttt bbb bbbt s s ne 68

10. The Anatomy of an Android APPLICALIONcecvuiruirinrinsinisisisnsnisinisseseseesesessssssssssssessesses 69
10.1 ANAIOId ACHVITIES ..v.vevevceeeiieierereteeeiet ettt et ss s e s e s ss s s sebe e ssssssesesesesessssssssesesesessananns 69
10.2 Android Fragments..........cceueeeeeureueecrreremenrerenesseseeesseseesessesessessesessessesessessessssessesessessessssessesesses 69
10.3 ANAIOIA INEENLS ...uvevveveveeeeiiietereteeetee ettt et s s sa e ebe s ssss s sebe e ssasssesesesesessssssssesesesessannnns 70
10.4 BroadCast INTENES.......cceeiririerereteeeeieteteseeeetese e se e esssesssesesesesssssssesesesassssssesesesesessssssssesesesesssnnnns 70
10.5 BroadCast RECEIVETSc.cecvvirueverereieisterereeeiisseseseseesssssesesesesssssssesesesessssssssesesesessssssssesesesessssnnns 70
10.6 ANAIOIA SEIVICES ..uvviviviereiieieieteteeetet ettt s s eb e ss s s s ebe e asasssesebesesessasasssesesesessananns 70
10.7 CONLENE PTOVIAETS ..vveveeeeiriieieteteeeiet ettt esseste et essssssesese s sssssssesesesessssssssesesesessssssssesesesessasnnns 71
10.8 The ApPlication MAanIfestoc.cureveueiriniueireniieiriciereeiet ettt ettt sseeae st esse s ssseseseen 71
10.9 APPLICAtiON RESOUICESeueueimeeirinieeiricieireeietseseietsee st sese st aese sttt ese st esseaesssseseseen 71
10.10 APPLICAtION CONTEXL...cuviuuiucerieueirieieirieieeseeeetseseiessesese st sesesstseae st s bseaesesseaebeseaessssescsen 71
1011 SUIMIMATY ottt bbb bbb bbb bbb bbbt 71

11. An Introduction t0 KOtlNccceeeieeeeieeiereennseeecseecssneecseessseessssnssssassssssssssasssssassssssssssassssssssssssssssnsssssnes 73
11.1 WHat 18 KOTHINZ o ottt ettt ettt s ettt s s st et as s s esesesesensnsssenenesesessnsanes 73

11.2 Kotlin and Java
11.3 Converting from Java to Kotlin
11.4 Kotlin and Android Studio
11.5 Experimenting with Kotlin............
11.6 Semi-colons in KON ..ot
11,7 SUIIMATY ¢ttt bbbt

12. Kotlin Data Types,Variables and Nullabilitycccocevvviniruirisnsninininnnnnninininneneninsnseenen 77

12.1 KOtHN Data TYPES....cevcrrieercrrireierreeenetreeeiesseseesesseseesesseseesessesessessessssessessssessessssessessssessessssessesesses
12.1.1 Integer Data TYPEScoccuviiciririieriiiiiiritiese st sesssans
12.1.2 Floating Point Data TYPeS.......ccccrurereuriurererrerreerrerneesesseessessesessessesessessesessessesesessesessesseseens
12.1.3 BOOlean Data TYPe......cvuvercureueercerirnecireireenserseseaseseesessesesessessesessesesessessessssessesessessesssessesenns
12.1.4 Character Data TYPe......cecureeeercererrecireirierrerseeteseeseaessese e ssess s ssessesessessessssessessssesseseens
12.1.5 String Data TYPe......ccvviiriiiciriiciii st sesssaes
12.1.6 ESCAPE SEQUEIICEScuerrvrriiiniiitcrerencttteeere ettt s et sa s sttt sese e sessanes

12.2 Mutable Variables........c.cocceverreunncs

12.3 Immutable Variables

12.4 Declaring Mutable and Immutable Variables

12.5 Data Types are ODJectscoueverneeeererneemncrrecnnennene

iii

Table of Contents

12.6 Type Annotations and Type INEIeNCeccvurveuiurecuiureerirrecnieeeeneeseereeeesesseeeeeseseeseneenes
12.7 NUILEDLE TYPE .eururrrerriieerreiriecieireeeieeseeeresseee s sseasesesssasese s sse s esesssasesesssasesesssasssesssssssenseaes
12.8 The Safe Call Operator ..
12.9 Not-Null ASSertion........cccvcucivicininnininnininns
12.10 Nullable Types and the let Function..............
12.11 The Elvis Operatorccceceveneueerencverreneenenene
12.12 Type Casting and Type Checking...................
12,13 SUIMIMATY ..ottt bbb aas

13. Kotlin Operators and EXPIeSsionsccuciveeinriiscisinsicscssinsesississecsessisssessessesssesesssssssssessssssessessssnes

13.1 Expression Syntax in KOtlN.......cceeeeireeicineeieinceicieieeiseieeetseseseesesessessesesessesesessesessessenes
13.2 The Basic AsSigNMent OPErator.........ccccuiiuriuiuiusiuiesereieseesessessessessessssesssssssssesssssessssesssae
13.3 Kotlin Arithmetic OPeratorsocveeeereeeeeereveineereueiseeseseseesesesessesesessesesessesesessesesessesessesseses
13.4 Augmented AsSignment OPEratorscceuueuiuriureuiunereeseseeesessesssesessessesssssssssesssssessesesssse
13.5 Increment and Decrement OPEratorscveeereereeeereurevemeereseseesesesessesesessesessessesesessesessesseses
13.6 EQUALILY OPEIAtOLSucvevuievieeireeeiaetreeeesetsesetsetsesessetsesesses bt sese st sesesaessesesaessesesasssesesscssesesnesseses
13.7 Boolean Logical OPEratorscccueueuriuiuriuiesimiesesessessessessessesssssesssssesssssssssesssssessssesssse
13.8 RANEE OPEIALOL ..ottt n
13.9 Bitwise Operators........
13.9.1 Bitwise Inversion.....
13.9.2 Bitwise AND.........
13.9.3 Bitwise OR.........
13.9.4 Bitwise XOR..........
13.9.5 Bitwise Left SHift.......c.ccucuiiiiiciciriicicc s
13.9.6 Bitwise Right Shift.........ccccuiiiiiiiiiic e
13,10 SUINIMATY c.viiiiiiicccceie sttt e b s n s

14. KOtLN FLOW CONTIOLcceeeenreeeeeeirereeeeesrreessssssseessssssnessssssssesssasasssssns

15. An Overview of Kotlin Functions and Lambdas

iv

14.1 LoOPINgG FIOW CONLIOLouvreermirieciririeciitricieieeeneiseeeestasese s s sssas s sssasesesssasssesssasssesssssssensesnes
14.1.1 The Kotlin for-in Statement.........ccocveueevcurirrercrrerreernerneeeseeeesesseeaessesessessesessessesessessesesesens
14.1.2 THE WHIIE LOOP ..ereuceeereirireecieinictstneeeisetae s tese sttt bbbt ae et sese et sanesenas
14.1.3 The do ... WHILE LOOD .cucureeuiieiicirirceciriteie ettt ettt aese et saaenenes
14.1.4 Breaking from LOOPSccveuveerrerrecererrcnnne
14.1.5 The continue Statementcc.ceeeeurereneen.
14.1.6 Break and Continue Labels........................

14.2 Conditional Flow Control..........cccccovvuevcriurnnce
14.2.1 Using the if EXpressionsc.cceceveuveueen.
14.2.2 Using if ... else ... Expressions
14.2.3 Using if ... else if ... Expressions
14.2.4 Using the When StatemMentccocuveeeecrreeeencrreeeeneinerenerrereeersesenesseseesesseseesessesesessesesessenes

14.3 SUIMNIMNATY .ottt as

15.1 What is @ FUNCHONTcocuuiiiiiicic it saes 103
15.2 How to Declare a KOtlin FUNCHONc.couiriiiiirciccccc e saes
15.3 Calling @ Kotlin FUNCHON.......cc.ocuiiciiciciiiciecee e saes
15.4 Single EXPression FUNCHONS ..ot sse s saes
15.5 LOCAl FUNCHONSovvriiiicicici it st
15.6 Handling Return Values.........cccccccocvviniunennnen.

15.7 Declaring Default Function Parameters..........

15.8 Variable Number of Function Parameters

Table of Contents

15.9 Lambda EXPIreSSIONSc.c.eueueuriiueurecerireacisinesetsisesesseesetsesesessesessssesesetesesssesessessasssencsessenssssscneses 106
15.10 Higher-order FUNCHIONSc.ovcueureeerierieerieeeneireeereeeesseaseeensseesesssasesesssssssesssssesessessssessessssens 107
1511 SUIMIMATY wocuiiiiiiiiiiirs sttt 108

16. The Basics of Object Oriented Programming in Kotlincc.coeevcvvinnecninenncninnnncnsenncncssennecscnnee 109

16.1 What 18 a0 ODJECE? w..evueieeieiriecieiree ettt tseesese s easese st ese s sb s sseaeen 109
16.2 What 8 @ ClLaSS?couuiuieieieiiiiiiscisceic s 109
16.3 Declaring @ Kothin Class ..o sssssssssssssssens
16.4 Adding Properties t0 a Class..........ccvcuiucuncicicicicieinieiicisiseiseise e sse s ssesssssssens
16.5 Defining Methods ..o saees
16.6 Declaring and Initializing a Class INSTANCE.c.ccuririuriurimniiriiniinccce e eseceeaeaens
16.7 Primary and Secondary CONSIITUCLOLS.........c.weueureuereeremeeiereeeteeseseseesesessesssesssssesesssssssesessssens
16.8 Initializer BIOCKS.......c.cuuiuimiiiiiiriirccc e
16.9 Calling Methods and Accessing PrOPErties............ccciriiunieniinerseesenseeesseesensesesesssesssesssens
16.10 CUSLOIM ACCESSOLS ...ouviviiniuiinciiisciiisc st b seas e a s s bes
16.11 Nested and INNer CLaSSESocuiueuiicieiciieicisecieiiesisesese e sse s ssessssssaens
16.12 COmMPANION ODJECES.....vuvueueiieiriirieeincirieeieeseseseesesesseesesessesesessssese s s s sasesessssesessssesesnssssaees
16.13 SUIMNIMATY ..cuniiiiiiiicrtce ettt s bbb nas

17. An Introduction to Kotlin Inheritance and Subclassing

17.1 Inheritance, Classes and Subclasses

17.2 Subclassing Syntaxcoeceeeeverreeene
17.3 A Kotlin Inheritance EXample.......cceveurinicinineeeininieinicienecinsceseeceseese s ssesesessesesessesesees
17.4 Extending the Functionality of @ Subclasscoceuiurecriurecrnirrcircececeeeecneeeeeens
17.5 Overriding Inherited Methods.........couveiireceniirecrniirieireeieeeneeseeseeessessaeesessssesesssssnsens
17.6 Adding a Custom Secondary CONSTIUCLOL..........c.vveuiureeriureerirrreenieenseneaersensseesesessesessessssens
17.7 Using the SavingSACCOUNE ClaSSc.cvurvreermirreeeriirieerieeeniereeenesseeenseseesesseasesessssesessssssessesssscns
17.8 SUIMMATY ..ttt st

18. Understanding Android Application and Activity Lifecycles

18.1 Android Applications and Resource Management...........ccoceeureueecuseuceeesememscescsecesensnaens
18.2 Android Process Statesccoccveureureuneererniererseesennes
18.2.1 Foreground Process
18.2.2 Visible Process........ccccoecuruueunce.
18.2.3 Service Processcccocuvuuruenee.
18.2.4 Background Process
18.2.5 EMPLY PIOCESS ..ottt
18.3 Inter-Process DePendenciesceueureueuneuriuerneuneseseesesessesesesessesessesesesssssssesssssssesessssess
18.4 The ACHVILY LIfECTCLE. .. vttt seaeen
18.5 The ACHVILY SEACK.....c.cviiieeieirieeitiriectttrei ettt ettt ssaeen
18.6 ACHIVILY STALESviiiiiiiiccc e
18.7 Configuration CRANGEScocriuiiriiiicicicieieicisecieeieicsse st ss s seees
18.8 Handling State Change..........ccceuuriuiurciiicueicieieicisecieisesiscsssessssssse s sse s ssesssssessssssssens
18.9 SUIMMATY ..ottt bbb

19. Handling Android Activity State Changes.........cccceevevrenrisrisuisnsinissisinininisissisninsisisssnensssesesees 131

19.1 New vs. Old Lifecycle TEChNIQUES.......c.oveuiueeeriericriereenireeeneiseeeneesesesseasesensaesesssssnsessessesens
19.2 The Activity and Fragment Classes...
19.3 Dynamic State vs. Persistent State.....
19.4 The Android Lifecycle Methods........
19.5 Lifetimescocvcucivicicinninninncnninnn.

Table of Contents

19.6 Disabling Configuration Change RESLartscccuweeerreuemrerreeemernememerneemsersesemsersesesersesesseneens 136
19.7 Lifecycle Method LImItations.......cceueeecuiueeecrieemerieererieemenseeemensesensensesessessesessessesessessesessenens 136
19.8 SUIMMIATY ..ot 137

20. Android Activity State Changes by EXample.......c.couvvevinirrininrennnninnenncnininnscniniescniseeseseeeens
20.1 Creating the State Change Example Projectoocvvuviencincincincinininininenesesessseseesenes 139
20.2 Designing the User INTErface ... sssssesees 140
20.3 Overriding the Activity Lifecycle Methodsccocvinciiincincincicieieieiriescscscsse s 141
20.4 Filtering the Logcat Panel..........cc.ccccuiiiiiniiiiniincrccce e saes 143
20.5 Running the APPLCAtion ... s saes 144
20.6 Experimenting with the ACHVItYcccccciiiiininiccc e sees 145
20.7 SUIMIMATY ..ttt et sen st 146

21. Saving and Restoring the State of an Android AcCtivity.......coevvvuirirnrninisisnnninininnneneneene

21.1 Saving Dynamic STate ...
21.2 Default Saving of User Interface State
21.3 The Bundle Classccoveureueererrereenerreeeererrenennes
21.4 Saving the State.........coeverreeererrereererreeeererrenennes
21.5 Restoring the Stateccccveevereeenerreeererreennes
21.6 Testing the Application.........ccocveeeeverreecercrrenennee
21.7 SUMMATY .o

22. Understanding Android Views, View Groups and Layouts

22.1 Designing for Different Android DeviCes..........ccvuuriuiurcuienerncicicieieieineeeeisesseisesssese s
22.2 VIEWS Q1A VIEW GIOUPS ..ceuvvevuerieeineireeeiseireeetsetsesesessesessssesesssaseaesssesesesssssesessssssesssssssesssssssesnssnes
22.3 Android Layout Managersc..c.ccccueeeeeeunimniuremsiesesiesesseesessessessssssssssssesssssssssessssesssssessees
22.4 The VIEW HIETATCHYcuvuiiieiiiriicicireicitiree ettt sss e ss s ssies
22.5 Creating User INErfaces.........ccocuuuiuiciuriiniiiiisiisesise e ssessssasssssssss s saes
22.6 SUIMMATY ..ttt et n s st

23. A Guide to the Android Studio Layout Editor Tool

23.1 Basic vs. Empty Activity Templates
23.2 The Android Studio Layout Editor
23.3 Design Mode
23.4 The Palette.........ccocvrvimvriniiciciciciiiccn,

23.5 Design and Layout VIEWS......c..c.ceueureeeiurieriinienessesesesseeessessesessessesessssssesssssssesssssssesssssssesesses
23.6 TeXt MOE.....oimiiiiiiiiiicc e s
23.7 SettiNG AITIDULES.vveeeeereeeeeireeretreeeeiee et ss e eae s ese st eae s sse e saenasaes
23.8 Configuring Favorite AtIIDULEScccovurveuiereeriiricrireeieenteeeeeneseesesseesseseseeseseasesesseenes
23.9 ConvVerting VIEWS ..ot
23.10 Displaying Sample Datac.ccceureeeiiriernirreenieneeneenesesseseensessesesessssessssssesssssssessessssesesees
23.11 Creating a Custom Device DefiNitionoceueureeriereceiureeriereeniesesesieeeeeseseesesesseseseenes
23.12 Changing the Current DEVICE.........oueuureeuirreemirreereireeerieeensteseseseasesesssessesssssssesessssesesees
23,13 SUIIMATY «.oviiiiiiiii bbb bbb bbb bbb bbb bbb

24. A Guide to the Android ConstraintLayouULt.........coccoeereininrinnininsinncninninncsiniissceeisessesissssssesessene

24.1 How ConstraintLayout WOTKS........c.cccveureeeuiurieeineinieeineineseisteseaeseesesesssssesesssssssesssssssessssssesseses 169
24.1.1 Constraints
24.1.2 MArgins.......ccoevveieeeneereennnisiieesesenenes
24.1.3 Opposing Constraints
24.1.4 Constraint Bias ... s

vi

Table of Contents

24.1.5 CRAINS .ottt e et 172
24.1.6 Chain SEYIES.....cevieecireeeicireieecireiee e eeaene 172
24.2 Baseline ALIGNIMENTc.occveueercrrieererreeeietreeenenseeeesesseeeesessesensessesessessesessessesessessesessessesessessesesses 173
24.3 Working with GUIdEHINES ..o 174
24.4 Configuring Widget DImensions.........cccucuiiiiiiiiiie s ssssssssssssssssssens 174

24.5 Working With Barriers.......ccoiiiiie s 174
24,6 RATIOS .ottt 176
24.7 ConstraintLayout AAVANTAZESccccreeeererreuemerrereeerreremersesenessesensessesessessesessessesessessesessessesesses 176
24.8 ConstraintLayout AVailability........ccocveeeureernerreeeenerrieierreeeneresenetseseeessesensessesensessesensessesenses 176
24.9 SUMMATY ..ot bbb bbb bbb bbb 177

25. A Guide to using ConstraintLayout in Android Studio........c..cceveeerneercnsensucncnnenncsensnncsensecnsessennee 179

25.1 Design and Layout VIEWS........cc.cuiuriuiureiiencicieieieieiaesiessesisessssse e ssesssssssssssssssns
25.2 AULOCONNECE MOMAE ...t
25.3 INference MOdE.......ouuiuieiiiiiiiicieie ettt s
25.4 Manipulating Constraints Manuall............cccccininininineceseeeseseseseessesseseseas
25.5 Adding Constraints in the INSPECOr ..o
25.6 Deleting CONSLIAINES.........cvuriuiuieieiiieseieisesceese s sasssesss s s sse s ssesassses
25.7 Adjusting Constraint Bias.........ccccccoeevireniencrncucens

25.8 Understanding ConstraintLayout Margins..................
25.9 The Importance of Opposing Constraints and Bias ...
25.10 Configuring Widget Dimensions
25.11 Adding Guidelines............ccccoeuueunce.
25.12 AddINg BAITIETSucouimieiiiiiiiiiieieese ettt
25.13 Widget Group Alignment and Distribution.........cccccceieininininiincncincisccceieiececeenenns
25.14 Converting other Layouts to ConstraintLayOut..........ccceereueeuriuriererncincrseeemenescnnesssssesenens
25.15 SUIMIMATY ..ottt ettt bbb

26. Working with ConstraintLayout Chains and Ratios in Android Studioceccevvevrervenescsucsensennennes 195

26.1 Creating @ Chaill.......ccocveeereireeeeeineeneirereeereeenesseseese s ssese st sesessessesessessesessessesessessesenses
26.2 Changing the Chain SYLe ...t sese e ssesensessesensessesenses
26.3 Spread Inside Chain StYle........ccveeireemerreeeeineeeeetreeeeenrene e nsetsese s ssessesensessesensessesenses
26.4 Packed Chain Style.........cccceeureuenee.
26.5 Packed Chain Style with Bias
26.6 Weighted Chain.........cccovceeecenerreneen.
26.7 Working with Ratios..........cccecueeee.
26.8 SUMMATY ..ottt bbb

27. An Android Studio Layout Editor ConstraintLayout Tutorial.........cceceviveivenenuinriseisnsenenncsnisenennes 203

27.1 An Android Studio Layout Editor Tool EXamplecccveueeeuremeencireeeeneireeeeerereeeeseeeeeesenennes 203
27.2 Creating @ NeW ACHIVILYcvuiuiiiiiiiiciic s 203
27.3 Preparing the Layout Editor ENVIrONmentc.cccccueiriurininiineiniesesseiseiseeenesseseessecssssssesenns 205
27.4 Adding the Widgets to the User Interface...........ccococueieiuririniincinienerncineiscieecieceieesessesenens 205
27.5 Adding the CONSLIAINESccevuiuiiriiiieicrcic et sae e sae s 208
27.6 Testing the LayOULccccuiriiiiirciree et 210
27.7 Using the Layout INSPECLOTc.cuiuiiiiiircicicieieieiaecisieseiessssse et ssssssssessssssssssns 211
27.8 SUIMIMATY ..ottt 211

28. Manual XML Layout Design in Android StUdioccccevevuivuirensnnninisennnnninininnenincnsnseenene 213

28.1 Manually Creating an XML Layoutcccvceeeureeeererrieemerneremenrerenessenensensesensessesensesseseesessesenses
28.2 Manual XML vs. Visual Layout Design

vii

Table of Contents

28.3 SUMMIATY ..ttt bbb bbb bbb bbb
29. Managing Constraints using Constraint Sets

29.1 Kotlin Code vs. XIML Layout Fles.........cvueuriurieiniirieiniinieciniinieieisieeneesesessessesessessesesesssseseses

29.2 Creating VIEWS........cccouevvimiiviiciniceiicicnnes

29.3 View Attributes

29.4 CONSLIANT SELS.....cucviiiciiiiciii s n
29.4.1 Establishing CONNECHIONS........c.ccucuriiurimiiriiireiiiseetse s sssaes
29.4.2 Applying Constraints to @ LayOULcccocueiviuriuniirciniinerciciciceeieeceseseessesssisesssesessseseseeaa
29.4.3 Parent Constraint CONNECtiONS.........cccviiriiiciiinimiiiii s
29.4.4 §5izing CONSLIAINLScvvieiiiiiic s aes
29.4.5 Constraint Biasccocvuviiiiiiiiiiiii s
29.4.6 Alignment CONSLIAINTSc..cuucuuuurerieiirieieiaiesesse s sse s s s s s sas s e sessae
29.4.7 Copying and Applying Constraint Sets.........ccourureererncureucuceemeeesimeessisssisesssesesssssesseesas 219
29.4.8 ConstraintLayout CRaINSc..c.ecereerercireeneneireireeseireeres et tses e s e seseens
29.4.9 GUIAEIINESoueveiiriiircicc et
29.4.10 Removing Constraints........cccoeiiciiiiiic s ssnees
29.4.11 SCALING.....ceieiiiiiiiiitrec et e
29.4.12 Rotation

29.5 SUMMATY ...

30. An Android ConstraintSet Tutorial

30.1 Creating the Example Project in Android Studiocceeureeeeverneecincrneeeeneineeeerreceeerenenennenes 223
30.2 Adding VIEWS 10 Q0 ACHVILYc.everiuererreeeectreeeictreeeeetreeenesseseesenseseesessesessessesensessesessessesensessenes 223
30.3 Setting VIEW AIIDULES.....c.covvieeicireeeeetreeeecrreeeetreeeeetrese s nsese s ssesessessesessesenes 224
30.4 Creating VIEW IDS......ccoiiiiiiiiiic s 225
30.5 Configuring the COnStraint Set.......ccveeerreeercrreeereireeereeeerreeeeensesenessesenessesessessesessessenes 226
30.6 Adding the EItTeXt VIEWc.oceveurieeeerreieecireeeeetreeenetreseeesseseesensesessessesensessesessessesessessesessessenes 227
30.7 Converting Density Independent Pixels (dp) to Pixels (PX).....ccoeeererrereererrereererrereererrerenrennenee 228
30.8 SUMMATY ..ot bbb

31. A Guide to using Instant Run in Android Studio

31.1 Introducing Instant RUn........ccccecuvcuvcicirininennenn.
31.2 Understanding Instant Run Swapping Levels
31.3 Enabling and Disabling Instant Run....................
31.4 Using Instant Run........cccooviinnceiiinnnnnnne.
31.5 An Instant RUN TULOrTal c.....cvieiiiiiiccicc s
31.6 Triggering an Instant Run HOt SWap ...
31.7 Triggering an Instant Run Warm SWap ...
31.8 Triggering an Instant RuUn Cold SWap ...
31.9 The RUN BULLOI c.ucouviiieiiiciiiiiicici s sssss s ss s sss s s sassnas
31,10 SUMMATY ..ottt

32. An Overview and Example of Android Event Handlingccocovvvevisuirirnsneniscsnsnsensesscsscsnsennes 235

32.1 Understanding Android EVENts.........c.c.vcecureeencireeeneineeeenreenenneseeensesenesseseesessesessessesensessenes
32.2 Using the android:onClck RESOUICEcccueuevcrreeeeeirieeeereieeerreeeienseseeenseseesessesessessesensensenes
32.3 Event Listeners and Callback Methodsc.ccocveeeneinieneinicenerneecieineeeeineenenseeeesennenenennenes
32.4 An Event Handling Exampleccoccoceeunerenee.

32.5 Designing the User Interface.......c.ccoceceeurerenee.

32.6 The Event Listener and Callback Method
32.7 Consuming Eventsccoovvniiiinnnnincncnnn.

viii

Table of Contents

32.8 SUMMATY ..o 240
33. Android Touch and Multi-touch Event Handlingccoccoverervininnecninnennecncnsenncnensenscsenseessesennee 241
33.1 Intercepting TOUCh EVENLScc.ovuiiiiiiiiiiciciciceicii st sae s
33.2 The MotionEvent Object................
33.3 Understanding Touch Actions
33.4 Handling Multiple TOUCKESccocriuiiniiiicicicicicici s sasassaes
33.5 An Example Multi-Touch APpliCationc.eueureeeeeereeeieireeeieirereecineeeieeseeeseeseseeessesesessesennes 243
33.6 Designing the Activity User INterfaceccocuueuoeieininininiininiseseisee e 243
33.7 Implementing the Touch Event LIStENer..........cc.ccuceucuiriniriiniiniieiseseiseneeesessessessessessesessnns 243
33.8 Running the Example APPlICAtion........c.ccvcucucucuciciiniineiiciscseese et ssessessessssesessins 246
33,9 SUMMATY ..ottt bbb 246
34. Detecting Common Gestures using the Android Gesture Detector Class.........ccccecerervererucsucsensenennes 247
34.1 Implementing Common Gesture DeteCtion.........ccocueueuerreuemrerreremerreremerrenenerseseesessesensessesense 247
34.2 Creating an Example Gesture Detection Projectcceeeenerreeenerneeenerneeesenseseesensenennes 248
34.3 Implementing the Listener Class.........eeureueererreeeererreeeeerneremensereeessesensessesensessesessessesenesseserse 248
34.4 Creating the GestureDetectorCompat INSTANCe..........ccerrevercrreremretreeemerreeenersesenessesenersesennes 250
34.5 Implementing the onTouchEvent() Method.........ccccveereecineencineeereeereeeiseeeeenrenennes 251
34.6 Testing the APPLICAtION.cvevcrrieeeerreeceireecereeeet ettt sese e sese s ssesensessesennes 251
34.7 SUMMATY ..ottt bbb bbb bbb 251
35. Implementing Custom Gesture and Pinch Recognition on Androidceccevervucerenrenseciensecsncsennee 253
35.1 The Android Gesture Builder APpliCation..........cevcureeeereureeeireerereeneireeeeeereeeieeseseeessesessessesennes 253
35.2 The GestureOVerlayVIEW CLasscveueureeeereereeeeneireeeieenesesessesesetsesessessesessessesesessesesessesesses 253
35.3 Detecting GESTULES.......cuvviuiiiiiiiriric s sa s 253
35.4 Identifying SPeCific GESLUIESociuiuierciciciieieiae it sae s sasassaes 253
35.5 Building and Running the Gesture Builder Application..........c.coccveuvcivcuvcencencuciciccninininnns 254
35.6 Creating @ Gestures Fileccooiiiiiniincicciccccsecceese e sae s 254
35.7 Creating the EXample PIOJECt.........ocviuuiincincinceieicieinieseiccise e sse s ssssssnens 254
35.8 Extracting the Gestures File from the SD Cardcccccovininininincncinciscciscecciececeenens 255
35.9 Adding the Gestures File to the Project ... 255
35.10 Designing the User INterfaceouvuvuncincinciciciiieininiiiiisesese et ssessesssssessssses 255
35.11 Loading the Gestures File ... ssessesaesssssesassaes 256
35.12 Registering the Event LIStENer........cccocuviuvcucuncicueiciieinieseiricisesese st ssessessessssssssssnns 257
35.13 Implementing the onGesturePerformed Method...........ccocviniuiiiniincincincincinicinieceieenenns 257
35.14 Testing the APPLCAtION.......c.cviuiriuiiriiicirciscicie et 258
35.15 Configuring the GestureOVerlayVIew..........c.ccccucucucininininiineniisescisesesessessessessessssseseseas 258
35.16 Intercepting GeSLUIES.......cviiuiviniiiiiciicc s 259
35.17 Detecting PINCh GESLUIES..........c.ccuriuiiiuiircicicicieiciicieeieicisise et sssss s sssassaes 259
35.18 A Pinch Gesture EXample PrOJECt......cccveeeeiveureueincereeeieireeeieireseeeiseeessessesesessesessessesessessesesne 259
35.19 SUIMMATY ..ottt 261
36. An Introduction to Android Fragments.........cocvcveirineninnisuisnsninisinnssnesisnsnieiesmsssssememes 263
36.1 What is @ FTagIMent?c.ccocuveeeiineeercirerenerereeenseeeesesseseesessesessessesessessesessessesessessesessessesessessesesses 263
36.2 Creating a Fragment ...

36.3 Adding a Fragment to an Activity using the Layout XML File
36.4 Adding and Managing Fragments in Code
36.5 Handling Fragment Eventscccccveeveverneerecrnennee
36.6 Implementing Fragment Communication............
36.7 SUMMATY ..o

ix

Table of Contents

37. Using Fragments in Android Studio - An Example........ccccoeereninnuinvinsennincnenncncnsenscscssensscssesssenes

37.1 About the Example Fragment Application
37.2 Creating the Example Project..........cccocovuureunecn.

37.3 Creating the First Fragment Layout.................

37.4 Creating the First Fragment Class

37.5 Creating the Second Fragment Layout............

37.6 Adding the Fragments t0 the ACHVILYccouuevurruriurerneereniireenerenerenseesenaeeseeseesesseesenessenenses
37.7 Making the Toolbar Fragment Talk t0 the ACVILYc.ccoveuererrereremeieneenenneineneererseesenennes 277
37.8 Making the Activity Talk to the Text Fragmentcccocveeneuricincnieeneneeenereeenereneeenenee 280
37.9 Testing the APPLICAtION.......c.cvueuieerciereeerereeaeeieeseiseesesse e ssssesssssssssssessasesssasensense 281
37.10 SUIMIMATY .ocuviiiiiiiiicreiiciiere s bbb s s 282

38. Modern Android App Architecture with Jetpack........cccevivvviinvinninninninnniiniinninninninnennecsncsacsaees

38.1 What is ANdroid JEPACK?c.cueevcireeeeerreieecireeeeetreeeietsereeetseseeesseseesessesessessesessessesessessesessessenes 283
38.2 The “Old” ArchiteCture.........ccuiuuiiciciiiiciiicir s

38.3 Modern Android Architecture............cccveuuee.
38.4 The ViewModel Componentccececererenecn.
38.5 The LiveData Component...........oceveeeecerereneene
38.6 LiveData and Data Binding.........ccccoceeveurerencen.
38.7 Android Lifecyclescccoeeevererrecrnerrercenernennne
38.8 Repository Modules....
38.9 SUMMATY ..ottt bbb bbb

39. An Android Jetpack ViewModel TUtorialccccceververrcninrennininneincninnecncnensecsessessssesessessscssessssses

39.1 ADOUL the PIOJECL «.....ceieeiiiiciieciciceeceeeee ettt sasaenen
39.2 Creating the ViewModel EXample PrOJEct.......coveuveurcrnierererereeereneeceenieesnesseesesseesenessessennes
39.3 ReVIeWINgG the PrOJECT......ccviiieeiciicicireicectrecee e sasaenen
39.3.1 The Main ACHIVILY.....cocceiericirireecrerecre e nees
39.3.2 The Content FIagmentccc..ceccrricriinenciniiicnereeeneeeseeeeeeseesesseseesesseseesessessesessenens
39.3.3 The VIEWMOdE] ...t
39.4 Designing the Fragment LayOUL.......c.c.cueeeueereureeneeneirernieseneseresersensessenssssssssssesssssessessesenses
39.5 Implementing the View Model..........cccccceervieunnnee.
39.6 Associating the Fragment with the View Model...
39.7 Modifying the Fragmentcccocoeveurerveerernerrennennee
39.8 Accessing the ViewModel Data...........ccoceveunee.
39.9 Testing the Project
39.10 Summary.........c.....

40. An Android Jetpack LiveData Tutorial..........ccccevvirivirnveiniinninniinninnniniinnnicnsinncnissiessesssnenesas

40.1 LiveData - A RECAP ..ottt 297
40.2 Adding LiveData to the VIEWMOMELcccviurreiirreciiiriciierieieeeecineeseesnessesesseseeseseseeseseses 297
40.3 Implementing the ODSEIVET ...ttt sssssesesseseese s ssssseseses 299
40.4 SUIMMATY w.ooniiiiiii bbb bbb bbb s bbb 300

41. An Overview of Android Jetpack Data Bindingc.ccecceverrurruinrernurncnsenncncnninsscsscsneesscssessesscssessecne

41.1 An Overview of Data BINAINGc.ccoeverereeienineeneniineieenseenensensessesaeessssssssessessessssessessensens
41.2 The Key Components of Data Binding
41.2.1 The Project Build Configuration...............
41.2.2 The Data Binding Layout File....................
41.2.3 The Layout File Data Element
41.2.4 The Binding Classes..........cccceeueueuveurimemeurieeieirireeetreeeeseesesesessesesessesessessesessessesesssssesensessenes

Table of Contents

41.2.5 Data Binding Variable ConfIguration............cccvcueeeeereurenemnernencmnernecenerneennenseensessesensesseseens 304
41.2.6 Binding EXpressions (ONe-Way).........ccccccururererrerreremrernenemrernesemsessesessessesessessesessessescssessescens 305
41.2.7 Binding Expressions (TWo-Way)........cccocuiiiininiii s 306

41.2.8 Event and Listener Bindingsccccocviiiiiininiicssssssseens 306

41.3 SUINIMATY oo bbb bbb bbb bbbt 307
42. An Android Jetpack Data Binding Tutorial...........ccoccevvviiveirinnucninsinnnninninncnininnncnisecsncneseencnens 309

42.1 Removing the Redundant Code...........ccocuuiiriinininiiincnceee e sseeasesesaens 309
42.2 Enabling Data BINdiNgccecviuiuiiniiiincicicicicieieciieseicisse e s ss s ssssssssssens 310
42.3 Adding the Layout EIMentc.ccocuiuiiiicicicicieiriisicsesesese e ssesssssesasens 311
42.4 Adding the Data Element to Layout File.........cccccceuiiiininiinininnciccccececeeeenenens 312
42.5 Working with the Binding Class ..o ssessesseseessesssssesaens 313
42.6 Assigning the ViewModel Instance to the Data Binding Variable ..o 314
42.7 Adding Binding EXPIreSSIONSccrcuiucrcieicumieiieiiisrieisssisesssese e ssesssssassssssssssens
42.8 Adding the Conversion Method ... ssesasessaens
42.9 Adding a Listener BINdingcocucvcuninciniciiiciciciiicsesesse e sssasssssssssaens
42.10 TeStING the APP....w ittt e
42,11 SUIMIMATY ¢ttt ettt b bbb benne

43. Working with Android Lifecycle-Aware Components....

43.1 Lifecycle AWArenesscoocveeeeverreeerrerreeeesensevensensenennes
43.2 Lifecycle OWners.........ccocveeeererreeennee
43.3 LIfeCycle ODSEIVETSucueueeeieeceeireeceeiieeneteee e ese et esesssaseaesssasssessssssesssssscsnsassns
43 .4 Lifecycle States and EVENLS........cocveeeiureeriirecrieneeneeseeestssesesessesesssssssessessssesssssssesessssesessssens
43.5 SUINIMATY oot a bbb bbb bbbt

44. An Android Jetpack Lifecycle Awareness Tutorialccocceverrueiinrerncninninncninnnncninsecncnennecscseens

44.1 Creating the Example Lifecycle Project........ccccciirininincniincneseiecseseieisecseseessessseens
44.2 Creating a Lifecycle ODSEIVET ..ot ssesasssesaens
44.3 Adding the ODSEIVET ..ot e e sa e aees
44.4 Testing the ODSEIVETcceiuiuiiniiiirecicic e e sae e aeas
44.5 Creating a Lifecycle Owner...................
44.6 Testing the Custom Lifecycle Owner...
44.7 SUINIMATY ..ottt b bbb sna

45. An Overview of the Navigation Architecture COmponent..........ococeevuireirensinsisrisisessessessessesessessessene 327
45.1 Understanding NavigatiOn........coceeeeeereeriureemirneenirneerieseesessesessessssesessssessssssessesessessessssens 327
45.2 Declaring a Navigation HOSt........c.ouccuiurecmirrecriinienireeniseeneiseeeneeeesesessesesssessesssessesessesens 329
45.3 The Navigation GIaphccccveiireeeniereeiireeeieeneee et sssssssesssessessssssessssssens 330
45.4 Accessing the Navigation COntroller.......c.cecurecriurecrnierecinieneereeneeneesesesesessessesensessessesens 331
45.5 Triggering a Navigation ACHONccoccuiiieiriniciniiciicccc s ses 332
45.6 Passing ATGUIMENTS.....ccccvviiiiiiiiiiiiii bbb 332
45.7 SUINMIMATY oot b bbbt 333
46. An Android Jetpack Navigation Component Tutorialcoceeeevervcninrnscninsnncnsensenscnensecscsenns 335
46.1 Creating the NavigationDemo Project ... enseesecsessesssssesaens
46.2 Adding Navigation to the Build Configuration....
46.3 Creating the Navigation Graph Resource File......
46.4 Declaring a Navigation Host.........ccccocvencrnincuncance
46.5 Adding Navigation Destinations...
46.6 Designing the Destination Fragment Layouts..........cccceueiniureuniircrneincinceeneneneiseceesseesseneenens

xi

Table of Contents

46.7 Adding an Action to the Navigation Graph.........ecccveeeeeenirrecrirnecrniunecrnieeeenneeeeenesenenesens
46.8 Implement the OnFragmentInteractionLiSteNneroceevreemirrecuniureernieeeeneeeneneeeeeneees
46.9 Triggering the ACtioncceceeveuvercrnerrerernerrescnnennne
46.10 Passing Data Using Safeargs
46.11 SUIMIMATY c.oviiiiiiiicc bbb bbb bbb bbb bbb

47. Creating and Managing Overflow Menus on Android

47.1 The OVErfloW MENU......cuiiiiiiciciciciiiiieiiieeisesese e sees
47.2 Creating an OVerflow MENU ... saes
47.3 Displaying an OVerflow MeNU.........c.cccueuiuimniunimniineiieneieiseseesessesseisesssssesssssssssessssesssssesaes
47.4 Responding to Menu Item Selections.........ccueiuiuiureiiencicincieicieneieieeeesesesesesssssesssese s
47.5 Creating Checkable Item GIrOUPS.........ccccuiiuiurimniineiiiseieeseee e ssesseisesssssesssesssssesssssesssssesaes
47.6 Menus and the Android Studio Menu Editor............cocvuiicincivciciniciiriecncscsceseeenes
47.7 Creating the EXample PTOJECt.........ccccuiiiiimriiiiincciseieescse e esessesssssssssesssssesssse e sees
47.8 Designing the MENU........c.cuuciciciiciieiiiiiisesise e ssesassse s s s saes
47.9 Modifying the onOptionsltemSelected() Method..........cccvcuciciiicicinininininireesccenes
47.10 Testing the APPLICATION.......c.cucucecicieciicireiiriieresi e saes
47.11 SUININATY c.viiiiiii sttt et n s st

48. Animating User Interfaces with the Android Transitions Framework...........ccocovcvevuirvrnsscsncsnnsennes 359

48.1 Introducing Android Transitions and Scenes
48.2 Using Interpolators with Transitions..................
48.3 Working with Scene Transitionscceceereernierecrniineerniereeneeeeeneeeeseseesesesesessesesssseseses

48.4 Custom Transitions and TransitionSets in Codecoueuureccrirrecrniurecrnierecreeeeeneeeeenneeees 362
48.5 Custom Transitions and TransitionSets in XML.......ccceceuriureemirreerniuneernieneeneeenensesereneees 362
48.6 Working With INtErPOLAtOrSccovueuemmierieeriireerirreeeeereeerees e ssasesessasesesssasnsesssasesesnssnes 364
48.7 Creating a Custom INterpolatorccoveeuiereeriurecriireeriereeneeeeeeneaeesesseeesenssensesssasesesnsenes 365
48.8 Using the beginDelayed Transition Method..........ceccuiureceniureccrierecrnieneernieeeeneeeeeneeeeeneees 366
48.9 SUMMATY ..ttt 366

49. An Android Transition Tutorial using beginDelayed Transition........c.ccecceverrerruccrernecscssensecscsensecene 367

49.1 Creating the Android Studio TransitionDemo Project
49.2 Preparing the Project Files........ccccccucucininininincnineicincnneanes
49.3 Implementing beginDelayedTransition Animation
49.4 Customizing the Transition
49.5 SUIMMATY ..ttt et b st

50. Implementing Android Scene Transitions — A TUtorial.........coccecvvevrencriirirnrnsenisesnsnsneninscsnesennes 373

50.1 An Overview of the Scene Transition Projectcccveereeercrreecenerneeeenerneeeesenseneesensenensennenes 373
50.2 Creating the Android Studio SceneTransitions Projectcccveevcereeeereereeeenerreeeencerevennennenee 373
50.3 Identifying and Preparing the ROOt CONAINETcccueuevereeeeerereierrerenerreneeenseseesensenenensenes
50.4 Designing the First SCENE.......oeeerreeeeeirieeetreeeieirereeteeeeetsesessessese s ssessesessessesensessenes
50.5 Designing the SECONA SCEME......cccemrriueeeireeeeireeceireeeetreeeee st nsese e ssese e ssesessessesensessenes
50.6 Entering the FIrst SCEMEcoviiieecrreeeireeetreeeeetneeeeeneseesessesessessesessessesessessesessessesessessenes
50.7 LOAING SCENE 2....ucvreieieiicireecictreieesetreeeesetseae et seseesessese s sseseesessesessessesessessesssessesessessessssessenen
50.8 Implementing the TranSItIONScoceverreeeeerreeeeerreeeieireeeeetreeeeerseseeensese s esessesessessesensessenes
50.9 Adding the Transition FIleccceireecineeeneireeeieeeereieeeneseeessesensesseseesessesessessesensessenes
50.10 Loading and Using the Transition Set
50.11 Configuring Additional Transitions..............

50.12 SUMMATY ..o

51. Working with the Floating Action Button and Snackbar

X1

Table of Contents

51.1 The Material DeSIGN.......ccocvueecrriererciriieeeirerreenrerseseasereeseasessese e ssessesessessesessessessssessesessessesenns 381
51.2 The Design LIDIArYcccocvevciniiricieeenenereereieeieiseseesessee e ssese e ssessssessesessessesenns 381
51.3 The Floating Action BUtton (FAB)cccvvvenrrcninecneneereireenereeesesecsensesseseaessesensessesenne 381

51.4 The SNackbar ... 382
51.5 Creating the EXample PIOJECt.....c.ccocuriueerciriurencineinecineieecineseetreiseensenseseseseesesessesensesesensessesenne 383
51.6 ReVIEWING the PIOJECT....ccccuiueeciiiricieieceireireereieetereee e seese s sesesseseesnns 383
51.7 Changing the Floating Action BUttoncccccviiininincciicnsssicis 384
51.8 Adding the ListView to the Content Layout........cccoceeeureurercrnerrencunernerennerneennerneeesessesensersesenne 385
51.9 Adding Items t0 the LIStVIEWc.coeueueerciriurecinerecieireennerseereseesenseneese e ssesessesesensessesenns 386
51.10 Adding an Action to the SNACKDAT ..o seaenne 388
5111 SUMMATY ottt bbb 389

52. Creating a Tabbed Interface using the TabLayout Componentcccceveerueereerersuceensensucssesseessesennes 391

52.1 An Introduction to the VIEWPAZET.........c.cccouiiiniiriiniiniirecise e 391
52.2 An Overview of the TabLayout COMPONENLccveueueereureeirerreeirerneetrerseessessesessessesessessesenns 391
52.3 Creating the TabLayoutDemo PrOjJect.........ccciiiriuiineiniinciniiseieisescieee s

52.4 Creating the First Fragment........c.ccociiiiiincnicscesesise s ssssessessesssssessscnens

52.5 Duplicating the Fragments..........c.ccccucuieiiinininiiseeisessse s ssessessesssssesssenns

52.6 Adding the TabLayout and ViewPager
52.7 Creating the Pager Adapter................
52.8 Performing the Initialization Tasks...
52.9 Testing the Application..........ccccc....
52.10 Customizing the TabLayout.........
52.11 Displaying Icon Tab ItemS.........cccucuucrmririniiniiniiriiieseseisessese e ssesse s ssessssssssssesssssns
52.12 SUIMMATY c..ouiiiiiiiiiiii sttt bbbt

53. Working with the RecyclerView and CardView Widgets.......ccevveriruisunrnrnsesisnisensnnesesscssssessessennes 403

53.1 An Overview of the ReCYClerVIEWccccuveureveiiurerciniirecnereereeeeneieee e sessesenseseesenne 403
53.2 An Overview Of the CardVIEWc.oceecururercineirencineinienereeeseensesee e sseseasessesessessesenns 405
53.3 Adding the Libraries to the PrOJECt.......cccvuevcuiurerciriuneceneireeineineerenseeseseeensessesessessesessessesenne 406
53,4 SUIMIMATY ..ottt bbbt 406

54. An Android RecyclerView and CardView Tutorial.........coccoverervinrinserncnnennincnnenscscnnenscssenneesesennee 407

54.1 Creating the CardDemo PIOJECt.........ccccuuiriiniuniiniiiineniiseeise e sse s s ssssssnes
54.2 Removing the Floating Action Buttonccccccceuc..
54.3 Adding the RecyclerView and CardView Libraries....
54.4 Designing the CardView Layout ...t ssesessessssessessesssssssescnns
54.5 Adding the ReCYCErVIEW......c.ccucuiiciiciiciiiiciiieicisise et sse s s
54.6 Creating the RecyclerView Adapter ...
54.7 Adding the ImMage Files.........ccocuuiiiiiiciiciieiiecise s
54.8 Initializing the RecyclerView COMPONENLt........ccovuiuriuiunimiireriinereiserciseneesessessessessesssssesesens
54.9 Testing the APPLCAtION.........ocuiuciciciicicieiieiceereci et
54.10 Responding to Card SEleCtiOnscccuiiiuiuniiniiiineniiseeise e sssssesssenens
54.11 SUMMATY c..ouiiiiiiiiiiiii ettt

55. A Layout Editor Sample Data Tutorialcccovevuivurrnvninisninnnnnininineinnenesnieieenssssememes

55.1 Adding Sample Data to @ PrOJECtc.ccecueurercrriurecireieecireireeireeeenneneeseneseesenessesenessesenseseesenns
55.2 Using Custom Sample Data
55.3 SUMIMATY ..ottt bbb

56. Working with the AppBar and Collapsing Toolbar Layouts

Table of Contents

56.1 The Anatomy Of an APPBAT ..ot sese s sesessessesensesenes
56.2 The EXAMPLE PIOJECToucuiueiieecicireieeerreieieireeeeeteseeet s esesseseesessesessessesessessesessessesessessessssessenes
56.3 Coordinating the RecyclerView and Toolbar-....

56.4 Introducing the Collapsing Toolbar Layout ...

56.5 Changing the Title and Scrim Color

56.6 SUMMATY ...

57. Implementing an Android Navigation DIaWerc.cocvvevinrinnecninninncnsinnenscninsecscsesssessesessscsnes
57.1 An Overview of the Navigation DIQWeETcceuriuiiuriniincrneincinieieiecrieeeesesesesssesessseseseenes 433
57.2 Opening and Closing the DIAWeTc.ccccuiiriniiniineinieseseseese e ssesseisesssssesssesssesesssssessssses 434
57.3 Responding to Drawer Item Selections..........ccouiuiuiuriiniencineincincieieicisieeisesesisesssesesseseseenes 435
57.4 Using the Navigation Drawer Activity Templatecccoocuveuvcinivcrncicinnininieinesisesescnneenes 436
57.5 Creating the Navigation Drawer Template Project..........cococvcuvcuvcucicininenineneissessesenseenes 436
57.6 The Template Layout ReSOUICe Files.......ccveureueiniureueineirieeieireieieireeeieineseeeiseseeessesessesseseseenenes 436
57.7 The Header Coloring Resource File..........cccociiiiiininiincinicisccieiccnieecsesesessesessseseseenes 437
57.8 The Template Menu ReSOUICe File.......c.vueiureueiniirieeineinieeieireicieineeetciseseeeeseseeeisesesesseseseanenes 437
57.9 The Template COdecvureueueuremeireireieieireeeieireseieireseteeseseset st tsesessessesesseasesessessesessessesessssseses 437
57.10 RUNNING the APP ..couiuriviiiiiircicicieci it 438
57.11 SUMMATY ..ottt 438

58. An Android Studio Master/Detail Flow Tutorialccoceoeirueinuiiinuiinicenincinniincnseenessnesesnens
58.1 The Master/Detail FIOW ... 439
58.2 Creating a Master/Detail FIow ACHIVItY........ccooviviviiiniiiinciccsieiines 440
58.3 The Anatomy of the Master/Detail Flow Template..........cccoceeverreueererrereererreeeenerrereesenrerensennenee 441
58.4 Modifying the Master/Detail Flow Templatecccccocovrniiniiniinieiiiiniiniincsieiines 442
58.5 Changing the Content MOdel..........cceurueerreeeniirieeineireeeereeeeeneseeenseseeesseseesessesessessesensessenes 442
58.6 Changing the Detail PAnecccocveeeerreeeercrreeeneirieeeieeeeeneeeeessesessessesessessesessessesessessesessesseses 444
58.7 Modifying the WebsiteDetailFragment CLass...........cocvuueurerrereererrereererrereesennenemsensereesessesersensenee 445
58.8 Modifying the WebsiteLiStACHIVILY Class.......cccveureueererreremrerreeeeerrereienrerenensenensenseseesessesenessenes
58.9 Adding Manifest PErmiSSIONS.cvvueuerreueeerreuemerrerenerrerenesseseesensesessessesensessesessessesessessesessesseses
58.10 RUNNIng the APPlICAtionc.cucvcurieeecrreeeeeireeeeetreeeeetrereeeteeeeesseseesessese s ssessesessessesensessenes
58.11 SUMMATY ..ttt bbb bbb s

59. An Overview of Android Intentsccuuueen.

59.1 An Overview of Intents...........cccccveeerereureueen.

59.2 EXplicit INtents........ccoeeeeveurerrererrerrecenerneeerernenenne

59.3 Returning Data from an ACHVILYc.ccccuociririniniincnirecscie e secseeseeeesesesesssesesssesessenes
59.4 TMPIICIE INTEIIES ..vovuirieireireeeicereeeietsete ettt sesete st sebe et seb et b et seb et sebe st sebebaetsesesasanenes
59.5 USING INtEN FILETS.......cuuiuiiiiiicicicicicieiiici it ssss s e
59.6 Checking Intent Availability ..o
59.7 SUIMIMATY ..ottt bbbttt bbb s

60. Android Explicit Intents - A Worked Example
60.1 Creating the Explicit Intent Example Application.........c.cceeueeeeerreecencrreeeenenrereeserreeeeenrerenennenee 455
60.2 Designing the User Interface Layout for MainACtIVItYcccveureueererreeemrerrereenerrereesenrenenennenee 455
60.3 Creating the Second ACtiVIty ClaSs.........ceerreuemnerreeeererreeenerreeeeerrereieeresenenseseesessesessessesensessenes 456
60.4 Designing the User Interface Layout for ACtiVityB.........ccocveeverreeeenerneeeenerneeenenreeeenreneeennenes 457
60.5 Reviewing the Application Manifest File

Xiv

60.6 Creating the Intent.........
60.7 Extracting Intent Data
60.8 Launching ActivityB as a Sub-Activity............

Table of Contents

60.9 Returning Data from @ SUb-ACHVILY......ccccveevvirreeeercrrieeereeereeeetreeeeenseee e sseseesesseseesessesenses
60.10 Testing the APPLICAtION.....c.cevcrrieereireeeeireeereeet et sese e sese et sesessessesensessesenses
60.11 SUIMMATY ..ottt bbb bbb bbb bbb

61. Android Implicit Intents — A Worked EXampleccccocevuerrinrernininnnncnnenncninsensncsessessscsesssessesesses

61.1 Creating the Android Studio Implicit Intent Example Project
61.2 Designing the User INterface ..o ssessessesasssesesssns
61.3 Creating the Implicit INENtcc.ovuriiiiriiiieicicceic e
61.4 Adding a Second Matching ACHVILYc.ccvcucucucueicieirirricine et
61.5 Adding the Web View to the Ul........cccociiiiiiiiciieiriecccseesecsee e
61.6 Obtaining the Intent URL.......ccocoiiiiiniiniincinciciieieieceieeicisise et ssessesssssesssssnns
61.7 Modifying the MyWebView Project Manifest Fileccococvinininernincineinciciciciececeeninnes
61.8 Installing the MyWebView Package on a Device.........cccoceuuriuiuniinienerncinceneecneieneneseiaesenenns
61.9 Testing the APPLICAtION.........cuuiuiuiiriiiircic et
61,10 SUIMMATY ..ottt e bbb

62. Android Broadcast Intents and Broadcast RECEIVELScccuuereeeerrvreererrsnereesssseessssssneessssssssesssssssessses

62.1 An Overview of Broadcast INENTS.........ccceuevcrreueencrreeeeernerenerrenenessesensessesensessesensessesensesseseeses
62.2 An Overview of Broadcast Receiversc.......
62.3 Obtaining Results from a Broadcast..........cccco......
62.4 Sticky Broadcast INtentscceeeveeereerecrreeencrnenne
62.5 The Broadcast Intent Example.......c.ccoccevvevcurencuenne
62.6 Creating the Example APPliCation.......c.ccoeueueeerreeeererreeeeernenenenrerenetsesensessenensessesensessesensessesenses
62.7 Creating and Sending the Broadcast INtent..........ccocureueeverreeenerreemnerneeenerreenerrenensessesenensenennes
62.8 Creating the Broadcast RECEIVETc.ouevureeecrrieceerrieeeireeeeiresenetsenensessenensessesensessesessessesenses
62.9 Registering the Broadcast RECEIVETcouieviireeencirieceeireecireneectreeeeenseeeesessesensessesessessesennes
62.10 Testing the Broadcast EXAMPLEc.oceueueeeierneeeencrrieieineeerereeetseneeensesensessesensessesessessesenses
62.11 Listening for System Broadcasts.........cccoceeeerreueererreeeerneremennerenersesensessesenessesensessesessessesesse
62.12 SUIMIMATY ..ottt

63. A Basic Overview of Threads and ASyncTasks.........cccceveerirrinrerninsinncninsinncnsinsenncsenesnscsensessesesnee

63.1 An OVerview of TRIEASccceuuiuriiiinciiireicicie et sae s
63.2 The Application Main Thread

63.3 Thread Handlers...........ccccoeuuruunccnce.
63.4 A Basic AsyncTask Example..........
63.5 Subclassing AsyncTask...................
63.6 TeStING the APP ..ot
63.7 Canceling @ TaSK.......cc.ccuruiririiicie s
63.8 SUMMATY ...ttt bbb

64. An Overview of Android Started and BoUNd SEIVICES.....cucuuereeerrrvreriirrrerereersrneeesssssneeesssssseesssssssessns

64.1 Started SEIVICES. ..o
64.2 INENT SEIVICE c..vuveeriectetect et es
64.3 BOUNA SEIVICE.....uiuiiiiiiiiicc s
64.4 The ANatomy Of @ SEIVICEcuevcrieererrereieirieeetreeeietreieee et sese e sese et sesessessesensessesenses
64.5 Controlling Destroyed Service Restart OPtions.........cccecuveeevcereeeencrreeemrerreeensersesensesseseesensesennes
64.6 Declaring a Service in the Manifest File.........c.ooeveirieerneenerneeenenieeeeeneeeesseseeensenennes
64.7 Starting a Service Running on System Startup
64.8 SUMMATYoviiiiiii s

65. Implementing an Android Started Service - A Worked Example

XV

Table of Contents

65.1 Creating the EXample PrOJECt.......cvveerreeeecrreeeeeireeeeeireeeeeneeeeesseseesessesensessesessessesessessesensessenes
65.2 Creating the SErvice Class........ceuererrereeerreeemenrereeenreremesseseeesseseesessesessessesessessesessessesesesseses
65.3 Adding the Service to the Manifest File
65.4 Starting the Servicecoovvererrevernerrercrrereennne

65.5 Testing the IntentService Example...................

65.6 Using the Service Class........cccooeuveeunerrercurerrennnn.

65.7 Creating the New Service........cceeeveuvevcrrerrenncn.

65.8 Modifying the User INteIface......cocvvevrreeeecrreeeeeireceireeeetreieeerereeensese s ssessesessessesensessenes
65.9 RUNNING the APPLCALIONcvueveueieieieierreecectreeeetreee ettt nseseese s sese et sesessessesensessenes
65.10 Creating an AsyncTask for Service Tasks........cocvevveureeernerreeemnernereinerreeenerneneesensesessensesensensenes 495
65.11 SUMMATY .. bbb 496

66. Android Local Bound Services - A Worked EXample.........c.cceveerernueninrinncnenninnncnsinnecscnenseesessessecne

66.1 Understanding Bound SErvices...........c.ccuiiniiniiniininincescie e isesseeseessesesssesssesesssssesssenes 497
66.2 Bound Service Interaction OPLONSc.eueureveeeureveieererersetreseeessesetsessesesessesessessesessessesessesseses 497
66.3 An Android Studio Local Bound Service EXampleccccveeeeveureeeineinereineinereeneerereeneeneseeneinenes 497
66.4 Adding a Bound Service to the Project ... 498
66.5 Implementing the BINder ...

66.6 Binding the Client to the Service
66.7 Completing the Example.........ccccccocvirirnninn.
66.8 Testing the Application
66.9 Summary........ccoeceveueee.

67. Android Remote Bound Services — A Worked Exampleccccccurvueeiinirnrisinniniccncnninncnscnnenscsseenenas

67.1 Client to Remote Service COMMUNICAtION.......cccueuererrivererreiererrereeenrereneeresenenseseeessesenensenes 505
67.2 Creating the Example ApplICation........c.oceveureueeerreeeeneinieenenreieeerseeeeensesensenseseesessesessessesesessenes 505
67.3 Designing the USer INTErfacec.vueuverreeeecrreueenerreeeieineeeeeneeeeesseseesesseseesesseseesessesessessesessessenes 505
67.4 Implementing the Remote Bound Service........cveuneencrreeeenernercenerneeeeeineneesenseeeesensesensensenes 506
67.5 Configuring a Remote Service in the Manifest File........ccccoenereeneneenencncnnecneneeennenee 507
67.6 Launching and Binding to the Remote Service........cccveeureenernecenerneeeeneneeenenreeesennenensennenee 507
67.7 Sending a Message to the Remote Service
67.8 SUIMIMATY ..ottt bbb bbb

68. An Android Notifications Tutorial

68.1 An Overview of Notifications..........cccccccoveuueee.

68.2 Creating the NotifyDemo Project....................

68.3 Designing the User INterface ..o
68.4 Creating the Second ACHVILYc.cuiuciciciciiiirieirce e
68.5 Creating a Notification Channel ...
68.6 Creating and Issuing a Basic NOtIfICAIONccceiuiuviiriiniirciniiciciciecccceccsesesesesseseseenes
68.7 Launching an Activity from a NotifiCation..........cccecveuriuniinciniincincicicicieieeceesessesensseseneenes 518
68.8 Adding Actions t0 @ NOTHICAIONcuuiuiuiiiiiiicircrse e 520
68.9 Bundled NOtIfICAtIONS ... saseas 520
68.10 SUMMATY ...oeieiiiiiit bbb 523

69. An Android Direct Reply Notification Tutorialcceccevveresisuiseisnnninisisnnnencncnenesncesen

69.1 Creating the DirectRepLY PIOJECc.ceriueecrrieeecireecieireeeeeireieeetreseeensese s esessesessessesensessenes
69.2 Designing the User Interface.........ccocoeceeurerenee.

69.3 Creating the Notification Channel
69.4 Building the RemoteInput Object....................
69.5 Creating the PendinglIntent.........c.ccoccoceeurerence.

Xvi

Table of Contents

69.6 Creating the Reply ACHON.cocuveuererrieeeerrieeetreeeeetreeeeenseaensessesensessesessessesessessesensessesessessesense 528
69.7 Receiving Direct Reply INPUL........covcuiueierrieeeeireceeireeeenneeeneiresenetsenessessesensessesensessesensessesenses 531
69.8 Updating the NOTACAtIONc.cvcurieercrreeeieireiceireeeietreeeeeeeenessesensetsese e ssese s sesensessesensessesenses 532

69.9 SUMMIATY ..ot 533

70. An Introduction to Android Multi-Window SUPPOTt........c.ceeevvinrinrininsennininnenncnensesscsesseessesennes 535
70.1 Split-Screen, Freeform and Picture-in-Picture Modes........ccocveveeeereueecerereeneerereeneerereeneerenennes 535
70.2 Entering Multi-Window MOde ... ssessessessssessssnns 536
70.3 Enabling Freeform SUPPOItccoiuiuiiiincincicieieieicieeeeicisise et sse s sasssesssans 537
70.4 Checking for Freeform SUPPOIT ... sse s 537
70.5 Enabling Multi-Window Support in an App ... 538
70.6 Specifying Multi-Window AHIIDULES ..o 538
70.7 Detecting Multi-Window Mode in an ACHVILYccceueiuririnieneiniinesciseisceeseneneiaesessneseneans 539
70.8 Receiving Multi-Window NOHHCAONSc.cocueueicieiririieiseseisecee e 539
70.9 Launching an Activity in Multi-Window Modeccccvuriininincincinciseincieieccieesieeenens 540
70.10 Configuring Freeform Activity Size and POSItION.........ccocviuviuniiniircrncinciscicicicccieeeceencinns 540
70.11 SUIMMATY ..ttt e 541
71. An Android Studio Multi-Window Split-Screen and Freeform Tutorial.........c.cccceeerviriuecncrnensucncnnes 543
71.1 Creating the Multi-Window Project...........cccrecinirenceninencinerneenneeeeeseeensensesensessesensessesenne
71.2 Designing the MainActivity User Interface
71.3 Adding the Second Activitycceverreeererrereerernenee
71.4 Launching the Second ACHIVILYcoceeveurerercrreinecineneeinereeeeee e seeseasessesessessesenns
71.5 Enabling Multi-Window MOode.........cccecururercurierercineineennerneeenesseessenseessesseseaessesesessesesessesenns
71.6 Testing Multi-Window SUPPOIT ... sseseasessesessessesenns
71.7 Launching the Second Activity in a Different Windowcccccveuveeenervencnenencnenercenerneenne 547
71.8 SUIMIMATY ..ottt bbb 548
72. An Overview of Android SQLite DatabDasesccceeerrreeeeeerrreeeeeessseeeeessssseeeesssssseessssssssessssssssessssssssesns 549
72.1 Understanding Database Tables.............c.ccvcuuvcincueieieinieniiiisesese et ssessessessessesessns 549
72.2 Introducing Database SChema ..o 549
72.3 Columns and Data TYPES ..c.c.eecereeeereerereeeerereieireseietseseseesesessessesessetsesessessesessessesessessesesessesesns 549
72.4 Database ROWS ..ottt 550
72.5 Introducing Primary Keysccviiiniincincineieieieieieieseicissise e ssessssssssssssssns 550
72.6 WRAL 1S SQLIEE? ...ttt ettt ettt ettt ess s s et saessesese st ensssesesssaessssesessenesarens 550
72.7 Structured Query Language (SQL)........cccuvcuuneuueiiininieniiiisiseiseese e ssessessesssssesssssns 550
72.8 Trying SQLite on an Android Virtual Device (AVD)ccocviniuninerncineineecieicieiecesiaseenens 551
72.9 The Android ROom Persistence LiDIary.......cccvecereeeneereeeeneireeeneineeeieireseeseeseseesessesessessesesnes 553
72.10 SUIMIMATY ..ottt bbbt 553
73. The Android Room Persistence LiDraryccccvvivivnininiinnnnininnnnnnnniicnsneenes 555
73.1 Revisiting Modern App ArchiteCturec.ccecueureecuriurecrneireeinerneenereeeneseeensessesenessesesessesenne 555
73.2 Key Elements of Room Database PersiStence...........ceeeururercrrerrecenerreernerreemnerneenressesensersesenne 555
73.2.1 REPOSIIOTY ...ttt 556
73.2.2 ROOM Databasecocuiuieiiiiiiniiiss s sssssees 556
73.2.3 Data Access Object (DAQ)cuveurrecrieererieererieencseeensesesessessesessessesessessessssessesssessescens 556
73.2.4 BNEEIES oottt e
73.2.5 SQLite Database.......................

73.3 Understanding Entities

73.4 Data Access Objects.......cecceurereneen.

73.5 The Room Database........................

xvii

Table of Contents

73.6 THe REPOSILOTY ...ecvurrieirieecieireecietreeeesesseeeeset e sseseeses s ssesessessesessessesessessesssessesessessesessesenen 561
73.7 In-Memory Databasesccc.vceeerrieenerreeeeeineeeireeeietreeeeenseseee s ssessesessessesessessesessessenes 562
73.8 SUIMMATY ..ottt bbb 562
74. An Android TableLayout and TableROW Tutorialc.coccevucrinirreininenncninsensucnensenscsensessscssesseenes
74.1 The TableLayout and TableROW Layout VIEWS......c.cccveveureureeeenerrereineerereeeesesesessesesseesesesseesenes 563
74.2 Creating the Room Database PTOJECtccccuiuiuniuiiiriiniinciiicieieieieceiieeiscsesesesssesessesessenes 564
74.3 Converting to a LinearLayout..........cccviiiniiciiii s 564
74.4 Adding the TableLayout to the User Interface............cocveuveuniuncencincineicininenisisessisessesenseenes 565
74.5 Configuring the TabIEROWSc.ccccuiiieiiiiiiirircrre et 566
74.6 Adding the Button Bar to the Layout ... 567
74.7 Adding the ReCYClerVIEW.........cucuiiiiiiiciciiiicrcsics e ssesas s 568
74.8 Adjusting the Layout Margins ... ssessessesssssssssssssssesssssessssses 569
74.9 SUIMIMATY ..ottt bbbt 569

75. An Android Room Database and Repository Tutorial

75.1 About the RoomDemo Project...........cccneunee.
75.2 Modifying the Build Configuration
75.3 Building the Entity.......cccooceeenevecncnencrnernennn.

75.4 Creating the Data Access Object........cccveunee.

75.5 Adding the Room Database........ccccocveeeurerence.

75.6 Adding the Repositoryccoceeeenervecurerncnnnne

75.7 Modifying the VIEWIMOMEL.........covuiuemirrieeicireeeireeeicireeeeeneeeeenseseesessesessesseseesessesessessesensessenes
75.8 Creating the Product Item LayOuLc..cceeureeeenerreeeenernieeeerreienesseeeiessesenesseseesessesessessesensessenes
75.9 Adding the RecyclerView Adapter.........oceecirieenerneeeeerreieeenreeeeenseseeenseseesensesessessesensessenes
75.10 Preparing the Main Fragmentccocveueeureeeenerreeeenerneeeeeneeeeenseseesessesensenseseesessesessessesensessenes
75.11 Adding the BUttOn LiStENETS.......c.oveverreeemcrreeererrieeeetreeenenreeeeenseseesesseseesessesessessesessessesessessenes
75.12 Adding LiveData ODSEIVELScvveverreueeerreremerrerenetsesenensesensensesessessesessessesessessesessessesessesseses
75.13 Initializing the RECYCIEIVIEW.......c.vuevcirieeicireeecireecieieeeetreeeee s ssese e ssesessessesensenenes
75.14 Testing the ROOMDEIMO APDcucvreueeirriveencrrireeeireeeeetsereeesreseeesseseesessesessessesessessesessessesessesseses
75.15 SUMMATY ..ot bbb bbb bbb

76. Accessing Cloud Storage using the Android Storage Access FrameworK..........ccoccevvvvucecrrucsucccrnnnnes

76.1 The Storage Access FrameworK ...
76.2 Working with the Storage Access Framework...
76.3 Filtering Picker File LiStingsccccccoeuvuuriureunn.
76.4 Handling Intent ReSUILS.........cocuiiciiiciciciciiiicccesee s
76.5 Reading the Content 0f @ FIlec.cccuiiiiniiiiciccce e
76.6 Writing Content t0 a FIle ...
76.7 Deleting @ File.......c.ovuiuiiiiiiiiicicicccicciaci ittt
76.8 Gaining Persistent Access t0 a File........ccccuviiiiiiiininicccieeeeecceeceesesesessese e
76.9 SUIMIMATY ...ttt e bbbt

77. An Android Storage Access Framework EXample.........coccovcvuiviirnnnrininiininnnninininnnnencnsncnsen

77.1 About the Storage Access Framework Example.........c.oceveureeeenerneecenerneeemneineeeenenneeeesennenensennenee
77.2 Creating the Storage Access Framework Example
77.3 Designing the USer INTErfacecvveverreueecrreeeenerreecieineeeneteeeeesseseeenseseesesseseesessesessessesessessenes
77.4 Declaring Request Codes.........coceunervercurerrenncn.

77.5 Creating a New Storage File........cccoocveeernenence.

77.6 The onActivityResult() Method
77.7 Saving to a Storage File........cccooeveernervencrnernencnn.

Xviii

Table of Contents

77.8 Opening and Reading a Storage Filec.ccccvveinirncinincncinenicnccceeeneseeesesseseneseeaenne 598
77.9 Testing the Storage Access APPLICAtIONc.cocueuecrreureceriireeirereeerereee e nsereesenne 600
77.10 SUMMATY ..ottt bbb 600
78. Implementing Video Playback on Android using the VideoView and MediaController Classes 601
78.1 Introducing the Android VideoView Classccccuiriuiurinieneinienerncineeseeeseiesenmesisssesesees

78.2 Introducing the Android MediaController CLasscccvuiuriuriererncircrneeereiencineneiseenennns
78.3 Creating the Video Playback EXamplec.ccccuiueiiirininininiineneinecscciesesiesesaessessesanenns
78.4 Designing the VideoPlayer Layoutccccccuvcuueicieininiiriiiseseisesctsesesessessessessesssssesessnns
78.5 Configuring the VIdEOVIEWc.cciuiiiiiincincicicieieiieceecsise et sse s ssesassnens
78.6 Adding Internet PErMISSIONccocuiuriuiureicicicieieiieiieieeeicsssese et ssessess s ssessssses
78.7 Adding the MediaController to the Video VIEW........ccccouiiriniiniiniinerncincineicieicieieesseeeinenns
78.8 Setting up the onPreparedLiStENETc.ccvcuiuvcuueiciiinieiiriecise e saesasenes
78.9 SUIMMATY ..ottt bbbt

79. Android Picture-in-Picture MOdE........cceeeereeeeerrrrreeeeesrneessssssneesssssssessssssssessssssssssssssssasssssssssssssssssssssss

79.1 Picture-in-Picture Features................
79.2 Enabling Picture-in-Picture Mode
79.3 Configuring Picture-in-Picture Parameters
79.4 Entering Picture-in-Picture Mode..........ccocceueuneee.
79.5 Detecting Picture-in-Picture Mode Changes
79.6 Adding Picture-in-Picture Actions.......c.ccocceuveunee

79.7 SUIMIMATY ..ottt bbb bbb bbb bbbttt

80. An Android Picture-in-Picture TUtOrial.......ccccccovceeeerirreeeenirieeeeiisseeeeessssseeeesssssseesssssseeessssssssesssssssseses

80.1 Adding Picture-in-Picture Support to the Manifest..........cccocvevirerncinciscincenciciciecrieeneans
80.2 Adding a Picture-in-Picture BUtONcococuvcuueieieinieniiriiisesise e ssessesse s
80.3 Entering Picture-in-Picture Modec.ccvcuuvcieicirieiniiiniisessise et ssessessessssnens
80.4 Detecting Picture-in-Picture Mode Changes............cccceueirinineniincincincisceneieieceieseieeenens
80.5 Adding a Broadcast RECEIVETocuiuiuiincicicicicieiiciieeiccise e ssesse s ssesassnes
80.6 Adding the PiP ACHON.......ccouuiuiiiiiiircicrcicci it
80.7 Testing the Picture-in-Picture Action
80.8 SUMMATY ...ttt

81. Video Recording and Image Capture on Android using Camera Intents

81.1 Checking for Camera SUPPOIt........cccueueverrevererreeeeerreeemsessesemsessesemsessesemsessesessessesessessesessessesesses
81.2 Calling the Video Capture INENt.........c.ccoeueueverreeeererrieenenreeenerseremsesseseesessesensessesessessesessessesenses
81.3 Calling the Image Capture INTENT.........ccveueuerrerrieeererreeemerreeenetrerensetseseesessesensessesessessesessessesenses
81.4 Creating an Android Studio Video Recording Project...........cveveureeeererreeenerreeeenerreeeenerrenennes
81.5 Designing the User Interface Layoutccveureueercrreeeenerneremerneremetsenemessesenessesenessesessessesenses
81.6 Checking for the Camera ...t eetsese s ssesensessesensessesense
81.7 Launching the Video Capture INtent........coceueureueercrrieeenerneeeeeireeneireeeeesreeenesseseeessesensessesenses
81.8 Handling the INtent RETUITc..coveverrieeieireeeeineeeeetreeeenreeeetsesensetseseesessesessessesensessesensessesenses
81.9 Testing the APPLICAtION.ccvueviireeereirereeirecetreeeeet et sese et sese st sesensessesennes
81,10 SUMMATY ..ttt bbb bbb bbb

82. Making Runtime Permission Requests in Android

82.1 Understanding Normal and Dangerous Permissions
82.2 Creating the Permissions Example Project
82.3 Checking for a Permission..........ccoecveuveuniurcrneunnne
82.4 Requesting Permission at Runtime

Xix

Table of Contents

82.5 Providing a Rationale for the Permission ReqUEStccccvvuevrerreeeererreeeenerneeeenerrereeenrenenennenes 632
82.6 Testing the PermiSsions APP.......cccveeeerreeeeerrereeerrereeessesemessesessessesessessesessessesessessesessessesersesseses 634
82.7 SUMMATY ..ottt bbb s 634
83. Android Audio Recording and Playback using MediaPlayer and MediaRecorderc.ccecerueruucne 635
83.1 Playing AUGIO «...cuceuimieiiiiiiiicicic st 635
83.2 Recording Audio and Video using the MediaRecorder Class..........cccccoeunuurimrinirniinerneencrncenes 636
83.3 About the EXamPle PrOJECTc.euiueueireirieeieireeeieireeeieisesetetseseeetsesetseasesessetsesessessesesessesessssnenes 637
83.4 Creating the AUdIOAPP PIOJECt.......ccuiuiuiiiiiiiiieirctse et 637
83.5 Designing the User INterface ..o ssecieiseeisssesesesssesessesessenes 637
83.6 Checking for Microphone Availability...........cccooiniiininiinciniincincccccceeceeeeseseseeenes 638
83.7 Performing the Activity INitialiZationcccceueiuriiiininiinciniicsc e 639
83.8 Implementing the record Audio() Method............ccocviuriiiiinciniincincincicinineecencsseeeieenes 640
83.9 Implementing the stopAudio() Method..........cccocuiiiiniiniinciniincinicciciceeressesseseseneenes 640
83.10 Implementing the playAudio() method........cccocviiiiniiiininincinceccceeereeeeenes 641
83.11 Configuring and Requesting PermisSionsccceeureuriurcueucencuneeemsecnieeeesssesenssesesssesesseenes 641
83.12 Testing the APPLICAtION. ..ot 644
83,13 SUMMATY ..o 644

84. Working with the Google Maps Android API in Android Studioceceeuvrerrenenisucsensensenesncsncennes 645

84.1 The Elements of the Google Maps Android APTccocvenerneeeneneeenennecenerneeesennesenennenes 645
84.2 Creating the Go0gle Maps PrOJECt......cvvueveureeeecrreeeeeireeeeeiereeesseseeessesensenseseesessesessessesessessenes 646
84.3 Obtaining Your Developer SIZNAtUrec..ccureeeererreeemerreremersereeensesenenseseeessesessessesessessenes 646
84.4 Adding the Apache HTTP Legacy Library Requirementccceeureeeererrereererreveencererenrennenee 647
84.5 Testing the APPLICAtION.....c.ccvvueuereireeeeerreieeeireeeetreeeeetsese et sese s ssese et sesessessesensessenes 647
84.6 Understanding Geocoding and Reverse GeoCOdINgcvuewvereveererrereeeurereeserreveesenrenensennenee 648
84.7 Adding a Map t0 an APPLICAtIONc.cveveueercrreeeecrreeeeeireeeeerreeeeeteseesessese s ssesessessesensessenes
84.8 Requesting Current Location Permission...........ccccvviinciciinccccnens
84.9 Displaying the User’s Current LOCAtIONc.cvcureeeercureeemrerreeeenernereeenrerenensesensensesessessesenensenes
84.10 Changing the Map TYPEcvccuureeeerreeeeeereeeeetreeeeessesemesseseesessesessessesessessessssessesessessesesessenes
84.11 Displaying Map Controls t0 the USeTccveureeeereureeemnerreeemerrereeennesenensesenessesessessesesessenes
84.12 Handling Map Gesture INteraction........ccocveueecrreeeererreeemnernereesernereeensesensensesensessesessessesenessenes
84.12.1 Map Zooming Gestures...........cccoceveunnee.
84.12.2 Map Scrolling/Panning Gestures.............
84.12.3 Map Tilt Gestures.......coccvereueererereurcrcunnnene
84.12.4 Map Rotation Gestures...........ccccceevererunnen
84.13 Creating Map Markers.........ccocveeeunervevcrrerrennn.
84.14 Controlling the Map Cameracccoeuuvuunee.
84.15 SUMMATY ..ot bbb

85. Printing with the Android Printing Framework

85.1 The Android Printing ATChIteCtULEcccuuiiuiuriuiiirciiseescic e
85.2 The Print Service PIUGINSccucucuiiiiiciciiiiciiesiscsese e sseae
85.3 GOOgle CloUd PriNf......c.iuiiiiiicicicicicieciiciiiciesi e
85.4 Printing to GOOGle DIIVe.........ccuiuiiiiiiiciciiiicicsisesese s
85.58aVE S PDF ...ttt
85.6 Printing from Android DEVICES ... ssessessesssssesesesssesesssesesssnes
85.7 Options for Building Print Support into Android APps.........ccccueceveecirinenirenenieserseeserseenes 662

85.7.1 Image Printing..........cocooeivrenieiennnniiicceeececcnn

85.7.2 Creating and Printing HTML Content

85.7.3 Printing @ Web Page........c.ccocuiiiiiiiiiice e

Table of Contents

85.7.4 Printing a Custom DOCUMENLt ... 665
85.8 SUMMATY ..ot e 665

86. An Android HTML and Web Content Printing EXamplecccccovurruenenernuencnrenscsensenscssenseessessennee 667
86.1 Creating the HTML Printing Example Application.cceceeuveuviercuncineincenceneicecienscneenenns 667
86.2 Printing Dynamic HTML Content ... 667
86.3 Creating the Web Page Printing EXample.........cccccocuininininininincnciseeeeiceeseinesiesnesenens 670
86.4 Removing the Floating Action BUttONc.cc.ccucueiriiniininininesiseccceeseseeseesaessesasaees 670
86.5 Designing the User Interface Layoutcccccuvcuueicicininininiinesiseseise e 670
86.6 Loading the Web Page into the WebVIew ... 671
86.7 Adding the Print Menu OPtion..........ccvueuveucicucueicieinieseiisisessese st sssssesssssessssses 672
86.8 SUMMIATY ...t 674
87. A Guide to Android Custom Document Printing.........cocevceuvrnrnneninisunsnsensininnisnnnncsncnsesesene 675
87.1 An Overview of Android Custom Document Printingcccecveeeverreeenerreeenerreeeenerrenennes 675
87.1.1 Custom Print AdaPLers.......cocevcrcueureceeinincieireeietrecietseieisesesetseseseseese s sseesetseaesessesesesens 675
87.2 Preparing the Custom Document Printing Project.......c.cccercreeenerneeenerneeeesenseseesensenennes 676
87.3 Creating the Custom Print Adapler.......ccvcicencrreeenerneenerrereeetreenesseseeessesenessesesessesenses 677
87.4 Implementing the onLayout() Callback Method.........ccccveeverreemncireeenerreeeerreeceerreeeeenreeennes 678
87.5 Implementing the onWrite() Callback Methodccoeuveevcineercinececrecereeceerreneeennenennes 681
87.6 Checking a Page is IN RANGEc.vuevcrrieeiiiriccirccieeereeeereseesetsesense s sseseesessesessessesenses 683
87.7 Drawing the Content on the Page Canvascccocveeerreererreeemnerneeeeerseemsessesensessesessesseseene 684
87.8 Starting the Print JOD ..ot sese e sesenaes 686
87.9 Testing the APPLICAtION.cvuevcrrieeieereeeeireeccireeeet ettt sese s sese st sesensessesenaes 687
87.10 SUIMMATY ..ottt bbb bbb bbb 687
88. An Introduction to Android APP LinKS.......ccccevevvuevuininrinninsinnecnininnincnennenisessscsesessscsessessesesnes 689
88.1 An Overview of ANdroid APP Linksccccvceeeveureeeincirieeineinieienereicineeeieiseseseeseseeessesessessesesnes 689
88.2 AP Link INent FILLETSceueviiireicicireeeicireecicinceetet ettt sese et sesesse st sesessesses s ssesennc 689
88.3 Handling App Link INTENESc.cuiuiiieriicircicicicieiciie et sse s s sssasaens 690
88.4 Associating the App with @ Website..........cocuvcuviioiiiiiriiiie e 690
88.5 SUMMIATY ...ttt 691
89. An Android Studio App Links Tutorialccccccevieviiviiniriinsiiniiniiinencetnencsenesesessesesesessessessesnes 693
89.1 About the EXaMPLe APD ..cecvriveeeirereieirieieireeieireeeieteaetstsese sttt sesesessesese st sseess s sesesesenesees 693
89.2 The Database SChema ... 693
89.3 Loading and RUNNINg the PTOJECtcceureueiineeencrrieecineeeirereectreieesesseseeessesensessesensessesennes 694
89.4 Adding the URL Mapping.......ccoeveeeeerreremeerevememreseeesseaemsessesemsessesessessesessessessssessesessessesessessesesss 695
89.5 Adding the INtent Filter........ccieiireeirieerecetreeereeeetrerenetsese e sesensessesensessesenses 698
89.6 Adding Intent Handling Code..........cc.eeueurieeeirieencrrieeerneeeireeenetseeensessesensessesensessesensessesennes 698
89.7 Testing the APP LiNK......c.ccieiiriecireeeirccetneeietreeeeensese s ssessese s ssesensessesensessesessessesense 701
89.8 Associating an App Link with @ Web SItec..cvecireeerniencineerecereeereeeeeseseeensenennes 702
89.9 SUMMIATY ..ot 703
90. An Introduction to Android INStant APPScccererrucnenrirscnsinnienissinscnisissscsesiessesessessesssesesssssens 705
90.1 An Overview of Android INStANt APPSc.ceeeeureeeereireeeereirereieireseeeisesesessesesessesesessesesessesesnes

90.2 Instant App Feature Modules
90.3 Instant App Project Structure
90.4 The Application and Feature Build Plugins..........
90.5 Installing the Instant Apps Development SDK.....
90.6 SUIMIMIATY ...ttt

XXi

Table of Contents

91. An Android Instant APp TUtOrialcccueeviiirniininiiniininininceenescstnscststsscsessessesssssssssessssssenne

91.1 Creating the Instant APP PrOJeCt.......ccccriiiuririnciriciiericeereeeeeseeerese e sssssesenensenes
91.2 Reviewing the Project.........ccccovcuveecunerveccuncrnenncn.
91.3 Testing the Installable App.......cccccveuvvcurerence.
91.4 Testing the Instant App
91.5 Reviewing the Instant App APK Files
91.6 SUINIMATIY ...ttt bbb s s bbbt s

92. Adapting an Android Studio Project for INStant APps........coceceerserrinsinesnsnsnsinesssssssessesssssssssesses
92.1 GettiNg StArted......ccvreeeeireeeieireeeieireeeiet ettt sese et seb et se st sebe st sese st sese st s saesnenes 715
92.2 Adding the Application APK ModUIE........ccoeevverreueireireeeieireieeetreeeieireeeeetseseeessesessesseseeessenes 716
92.3 Adding an Instant APp MOUIE.........cccureueueirerrencireeeineireeeeireieeeiseeeeeeseseeesseseesessesesessesessesnenes 718
92.4 Testing the INSTANT APP ...cevereeeereerereererrereeetseeeeetseseeetsesesessesessessesessessesessessesessessesessessesessesseses 719
92.5 SUIMIMATY ..ottt bbb 719

93. A Guide to the Android Studio Profiler

93.1 Accessing the ANdroid PIOfILETc.cueveveiciniiniineniireniree e nseesenaeeseessessesssesensssenennes
93.2 Enabling Advanced Profiling...........cccccceuureuneen.

93.3 The Android Profiler Tool Window
93.4 The Sessions Panel
93.5 The CPU Profiler.....
93.6 MEMOTY PrOfIETouuceeiiiiiiiireicicccen et sasssaessesssasessase s sasessennes
93.7 NEtWOIK PIOMILETeueeiriiiiireicicciceieninieaeieiseissas e sasssaesssssssessasenssasenscnnes
93.8 ENEIGY PIOfIlEr ...t sasssaesssssssse s sasesssnne
93.9 SUIMIMATY ...ttt s

94. An Android Biometric Authentication Tutorial.........ccccccirrvvveeeeeeeeieeieiirrrrrsereeeeeeeeesssssssssssssseessesssnes

94.1 An Overview of Biometric Authentication...........ccceuviinciniincincicicicininisccseines
94.2 Creating the Biometric Authentication Projectcocvevcreeeeneireeeenerreeeesernereesenreseeseeseseesennenee
94.3 Configuring Device Fingerprint AUthenticationccceeveeereereeeenerreeeerernereeseerereeseesesensennenee
94.4 Adding the Biometric Permission to the Manifest File
94.5 Designing the User Interface.......c.ccocooceeureueneen.

94.6 Adding a Toast Convenience Method..............

94.7 Checking the Security Settings..........ccoccveueuee.

94.8 Configuring the Authentication Callbacks
94.9 Adding the CancellationSIGNal........ccvcureueecireueeneireeeireirereierreieeessereeesseseeesseseesessesessessesesessenes
94.10 Starting the BIometric PIOMPTL ...c..cevevreveecireeeeeirieeieireeeeeteeeeesseseeesseseesessesessessesessessesesessenes
94.11 Testing the PrOJECt.....cccrceencureueereireeeieireieietreeeeetseeeeetseseeesseseasessesessessesessessesessessesessessesessesseses
94,12 SUMIMATY ..ot bbb bbb bbb

95. Creating, Testing and Uploading an Android App Bundle..........cocceeeervuiiinninscnsinnenncnscnnenncnensenne

95.1 The Release Preparation PrOCeSScouveeireveineirieeineirieeietseseietseseteesesessssesessssesesssssesessssenns 739
95.2 Android APP BUundIes.......c.occucurecueinenceeiricerecieieciseectsteeciseeie et ssees e seaeseenes 739
95.3 Register for a Google Play Developer Console ACCOUNL.........c.cuerreceeeeeeeenenneerennierersensenennes 740
95.4 Configuring the App in the CONSOLe ..o erenseeenieeeeessessesseesenssasenennes 740
95.5 Enabling Google Play APp SIGNING.......ccceuereuriuniuniireiniirenesesenersensessensesssssssssesssesesessensenses 741
95.6 Enabling ProGuardcccceuecreencereuncenenenne

95.7 Creating a Keystore Filec..ccoccvevvvcncrnnnne.

95.8 Creating the Android App Bundle
95.9 Generating Test APK Files..........cccoceeveureurennnn.

95.10 Uploading the App Bundle to the Google Play Developer Consolecccccoceuveuriueuncunenne 746

xxii

Table of Contents

95.11 Exploring the App BUundIec..ccceiiicincceeereecrereeetreneesensesesessesensessesessessesenses 747
95.12 Managing TESTEIScceuueurieiueiriiiiirieiiieteeie ettt sss s e ssssse s 749
95.13 Uploading Instant App BUNdLes.........ccccueeueinieencirieeerneeeireeeineeeenreeeeesseseeesseseesessesennes 750
95.14 Uploading New App Bundle ReVISIONSc.ceuevcrreeemerreeemerrerenetreeenensenenensesensesseseesessesennes 751
95.15 Analyzing the App Bundle Fileccirincincenccneeeineeeeieeesseseeesseseesensesennes 752
95.16 Enabling Google Play Signing for an EXisting Appcccceveureeeererreeenerreennernereenerseneesensenennes 753
95.17 SUIMIMATY ..ttt bbb bbb bbb bbb 754

96. An Overview of Gradle in ANdroid StUAIO.......cccvveeeeeirieeeeiirreeeerisreeeeerssseeeessssseeeesssssasessssssssessssssssesss 755

96.1 An OVerview of Gradle ..ot
96.2 Gradle and Android StUAIO ..o
96.2.1 Sensible Defaults ..o
96.2.2 DEPENAEIICIES.....eueeeereeeerieriacieereaeitesese ittt st ese bt eas
96.2.3 BUIld VATTANTS ...t
96.2.4 MANIfest ENIIEScveuuiuieiiiiiiciisceiesc e ss s
96.2.5 APK SIGNING.....oiiiiiiiiiiiiiin s
96.2.6 PrOGUATA SUPPOTIL....ereueriirieciieriecitirieieistcisessesetseiesae s s sese s ese b sese s sseaens
96.3 The Top-level Gradle Build File.......ccoceiureueineinieeincirieeicneiecireieecineeeeciseeeeetsesesessesesessesennes
96.4 Module Level Gradle Build Files..........c.cccccecuucnce.
96.5 Configuring Signing Settings in the Build File.........
96.6 Running Gradle Tasks from the Command-line
96.7 Summary

Xxiii

Chapter 1

1. Introduction

In 2018 Google introduced Android Jetpack to the developer community. Designed to make it quicker and
easier to develop modern and reliable Android apps, Jetpack consists of a set of tools, libraries and architectural
guidelines. The main elements of Android Jetpack consist of the Android Studio Integrated Development
Environment (IDE), the Android Architecture Components and the Modern App Architecture Guidelines, all
of which are covered in this latest edition of Android Studio Development Essentials.

Fully updated for Android Studio 3.3 and Android 9, the goal of this book is to teach the skills necessary to
develop Android based applications using the Kotlin programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android development
and testing environment followed by an introduction to programming in Kotlin including data types, flow
control, functions, lambdas and object-oriented programming.

An overview of Android Studio is included covering areas such as tool windows, the code editor and the Layout
Editor tool. An introduction to the architecture of Android is followed by an in-depth look at the design of
Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle
management, Room database access, app navigation, live data and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, camera
access and the playback and recording of both video and audio. This edition of the book also covers printing,
transitions and cloud-based file storage.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers and collapsing toolbars.

In addition to covering general Android development techniques, the book also includes Google Play specific
topics such as implementing maps using the Google Maps Android API, and submitting apps to the Google Play
Developer Console.

Other key features of Android Studio 3.3 and Android 9 are also covered in detail including the Layout Editor,
the ConstraintLayout and ConstraintSet classes, constraint chains and barriers, direct reply notifications and
multi-window support.

Chapters also cover advanced features of Android Studio such as App Links, Instant Apps, the Android Studio
Profiler and Gradle build configuration.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac or Linux system and ideas for some apps to develop, you are
ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/as33kotlin/index.php

https://www.ebookfrenzy.com/retail/as33kotlin/index.php

Introduction
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, select the Open an existing Android Studio project option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/as33kotlin.html

In the event that you find an error not listed in the errata, please let us know by emailing our technical support
team at feedback@ebookfrenzy.com. They are there to help you and will work to resolve any problems you may
encounter.

mailto:feedback%40ebookfrenzy.com?subject=
https://www.ebookfrenzy.com/errata/as33kotlin.html
mailto:feedback%40ebookfrenzy.com?subject=

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves a number of steps consisting of installing the Android
Studio Integrated Development Environment (IDE) which also includes the Android Software Development Kit
(SDK), the Kotlin plug-in and Open]JDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS and Linux based systems.

2.1 System Requirements

Android application development may be performed on any of the following system types:
o Windows 7/8/10 (32-bit or 64-bit)

o macOS 10.10 or later (Intel based systems only)

o Linux systems with version 2.19 or later of GNU C Library (glibc)

o Minimum of 3GB of RAM (8GB is preferred)

 Approximately 4GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio Package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio version 3.3 which,
at the time writing is the current version.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for Android Studio 3.3
should provide the option to download the older version in the event that these differences become a problem.

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

https://developer.android.com/studio/index.html

Setting up an Android Studio Development Environment

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-ide-<version>-
windows.exe) in a Windows Explorer window and double-click on it to start the installation process, clicking
the Yes button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio, Android SDK and Android Virtual Device options are
all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the task bar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the executable and selecting the Pin to Taskbar
menu option. Note that the executable is provided in 32-bit (studio) and 64-bit (studio64) executable versions. If
you are running a 32-bit system be sure to use the studio executable.

2.3.2 Installation on macOS

Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-ide-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The
Android Studio package will then be installed into the Applications folder of the system, a process which will
typically take a few minutes to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:

unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a sub-directory named android-studio. Assuming,

therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:

./studio.sh

When running on a 64-bit Linux system, it will be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:

sudo apt-get install 1ibc6:1386 libncurses5:1386 libstdc++6:1386 1ib32z1 libbz2-
1.0:1386

On Red Hat and Fedora based 64-bit systems, use the following command:

sudo yum install z1ib.i686 ncurses-1libs.i1686 bzip2-1libs.1686

2.4 The Android Studio Setup Wizard

The first time that Android Studio is launched after being installed, a dialog will appear providing the option to
import settings from a previous Android Studio version. If you have settings from a previous version and would
like to import them into the latest installation, select the appropriate option and location. Alternatively, indicate
that you do not need to import any previous settings and click on the OK button to proceed.

Next, the setup wizard may appear as shown in Figure 2-2 though this dialog does not appear on all platforms:

Figure 2-2
If the wizard appears, click on the Next button, choose the Standard installation option and click on Next once
again.

Android Studio will proceed to download and configure the latest Android SDK and some additional components
and packages. Once this process has completed, click on the Finish button in the Downloading Components
dialog at which point the Welcome to Android Studio screen should then appear:

Setting up an Android Studio Development Environment

Figure 2-3
2.5 Installing Additional Android SDK Packages

The steps performed so far have installed Java, the Android Studio IDE and the current set of default Android
SDK packages. Before proceeding, it is worth taking some time to verify which packages are installed and to
install any missing or updated packages.

This task can be performed using the Android SDK Settings screen, which may be launched from within the
Android Studio tool by selecting the Configure -> SDK Manager option from within the Android Studio welcome
dialog. Once invoked, the Android SDK screen of the default settings dialog will appear as shown in Figure 2-4:

Figure 2-4

Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are available for update, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-5:

Setting up an Android Studio Development Environment

Figure 2-5

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, a number of tools are also installed for building Android applications.
To view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-6:

Figure 2-6

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

« Android SDK Build-tools

 Android Emulator

« Android SDK Platform-tools

 Android SDK Tools

» Google Play Services

o Instant Apps Development SDK

« Intel x86 Emulator Accelerator (HAXM installer)

o ConstraintLayout for Android

Setting up an Android Studio Development Environment
« Solver for ConstraintLayout

+ Android Support Repository

» Google Repository

« Google USB Driver (Windows only)

In the event that any of the above packages are listed as Not Installed or requiring an update, simply select the
checkboxes next to those packages and click on the Apply button to initiate the installation process.

Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

2.6 Making the Android SDK Tools Command-line Accessible

Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. In order for the operating system on which you are
developing to be able to find these tools, it will be necessary to add them to the system’s PATH environment
variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):

<path to android sdk installation>/sdk/tools
<path to android sdk installation>/sdk/tools/bin
<path to android sdk installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-7:

Figure 2-7

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 7

1. Right-click on Computer in the desktop start menu and select Properties from the resulting menu.

2. In the properties panel, select the Advanced System Settings link and, in the resulting dialog, click on the
Environment Variables... button.

3. Inthe Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on Edit.... Locate the end of the current variable value string and append the path to the Android platform

Setting up an Android Studio Development Environment

tools to the end, using a semicolon to separate the path from the preceding values. For example, assuming

the Android SDK was installed into C:\Users\demo\AppData\Local\Android\sdk, the following would be

appended to the end of the current Path value:
;C:\Users\demo\AppData\Local\Android\sdk\platform-tools; C:\Users\demo\AppData\
Local\Android\sdk\tools; C:\Users\demo\AppData\Local\Android\sdk\tools\bin

4. Click on OK in each dialog box and close the system properties control panel.

Once the above steps are complete, verify that the path is correctly set by opening a Command Prompt window
(Start -> All Programs -> Accessories -> Command Prompt) and at the prompt enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the tools path setting by attempting to launch the AVD Manager command line tool (don't
worry if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most
likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. Follow the steps outlined for Windows 7 starting from step 2 through to step 4.

Open the command prompt window (move the mouse to the bottom right-hand corner of the screen, select the
Search option and enter cmd into the search box). Select Command Prompt from the search results.

Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the fools path setting by attempting to run the AVD Manager command line tool (don’t worry if
the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most

9

Setting up an Android Studio Development Environment

likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.3 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 7 starting from step 3.

2.6.4 Linux

On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin: /home/demo/android-studio/bin: $PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

A number of techniques may be employed to modify the $PATH environment variable on macOS. Arguably
the cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to
$PATH. Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be
configured by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Updating Android Studio and the SDK

From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, click on the Configure -> Check for Update menu option within
the Android Studio welcome screen, or use the Help -> Check for Update menu option accessible from within
the Android Studio main window.

2.8 Summary

Prior to beginning the development of Android based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS and Linux.

10

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of a simple Android application project using Android Studio. Once the
project has been created, a later chapter will explore the use of the Android emulator environment to perform a
test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a very simple currency conversion calculator (so simple,
in fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project
will also make use of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

11

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
simply click on the Start a new Android Studio project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the option to create a Basic Activity on
the Phone and Tablet screen. The Basic Activity option creates a template user interface consisting of an app bar,
menu, content area and a single floating action button.

Figure 3-2
With the Basic Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:

com.mycompany.androidsample
If you do not have a domain name you can enter any other string into the Company Domain field, or you may

use example.com for the purposes of testing, though this will need to be changed before an application can be
published:

com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

12

Creating an Example Android App in Android Studio

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the SDK that will be used in most of the
projects created in this book unless a necessary feature is only available in a more recent version. While Android
Studio allows older SDK versions to be selected, many of the security and privacy features built into Android
were only introduced after the API 25 SDK was released. To improve app security, Google announced that
starting in August 2018 the Google Play store will only accept new apps built using API 26 or newer. This same
restriction was also applied to updates of existing apps after October 2018.

Instant Apps will not be covered until later in this book so make sure that the This project will support instant
apps option is disabled.

Figure 3-3
Finally, change the Language menu to Kotlin and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application

At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4
13

Creating an Example Android App in Android Studio

The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel will be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

Figure 3-5

The example project created for us when we selected the option to create an activity consists of a user interface
containing a label that will read “Hello World!” when the application is executed.

The next step in this tutorial is to modify the user interface of our application so that it displays a larger text view
object with a different message to the one provided for us by Android Studio.

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. This layout file includes the app bar (also known as an
action bar) that appears across the top of the device screen (marked A in Figure 3-6) and the floating action
button (the email button marked B). In addition to these items, the activity_main.xml layout file contains a
reference to a second file containing the content layout (marked C):

Figure 3-6
14

Creating an Example Android App in Android Studio

By default, the content layout is contained within a file named content_main.xml and it is within this file that
changes to the layout of the activity are made. Using the Project tool window, locate this file as illustrated in
Figure 3-7:

Figure 3-7

Once located, double-click on the file to load it into the user interface Layout Editor tool which will appear in
the center panel of the Android Studio main window:

Figure 3-8

In the toolbar across the top of the Layout Editor window is a menu (currently set to Nexus 4 in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon.

As can be seen in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface

components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category

15

Creating an Example Android App in Android Studio

consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
with a single child in the form of a TextView object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to make sure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
magnet icon. When disabled the magnet appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:

Figure 3-11

16

Creating an Example Android App in Android Studio

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property and change the current value from
“Button” to “Convert” as shown in Figure 3-13:

Figure 3-13

A useful shortcut to changing the text property of a component is to double-click on it in the layout. This will
automatically locate the attribute in the attributes panel and select it ready for editing.

The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
button (Figure 3-14) to add any missing constraints to the layout:

17

Creating an Example Android App in Android Studio

Figure 3-14

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-15. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-15

When clicked, a panel (Figure 3-16) will appear describing the nature of the problems and offering some possible
corrective measures:

Figure 3-16

Currently, the only warning listed reads as follows:

Hardcoded string "Convert", should use @string resource

This 118N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different

18

Creating an Example Android App in Android Studio

spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-17).
Within this panel, change the resource name field to convert_string and leave the resource value set to Convert
before clicking on the OK button.

Figure 3-17

It is also worth noting that the string could also have been assigned to a resource when it was entered into the
Attributes panel. This involves clicking on the button displaying three dots to the right of the property field in
the Attributes panel and selecting the Add new resource -> New String Value... menu option from the resulting
Resources dialog. In practice, however, it is often quicker to simply set values directly into the Attributes panel
fields for any widgets in the layout, then work sequentially through the list in the warnings dialog to extract any
necessary resources when the layout is complete.

The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the widget palette, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-18:

19

Creating an Example Android App in Android Studio

Figure 3-18

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the ID assigned to the widget in the user interface layout. The default ID
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-19:

Figure 3-19
Change the ID to dollarText before proceeding.

3.6 Reviewing the Layout and Resource Files

Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
content_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot

20

Creating an Example Android App in Android Studio

modify the XML directly in order to make user interface changes and, in some instances, this may actually be
quicker than using the Layout Editor tool. At the bottom of the Layout Editor panel are two tabs labeled Design
and Text respectively. To switch to the XML view simply select the Text tab as shown in Figure 3-20:

Figure 3-20

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the Button object. We can also see that the text property of the Button is set to our
convert_string resource. Although varying in complexity and content, all user interface layouts are structured in
this hierarchical, XML based way.

One of the more powerful features of Android Studio can be found to the right-hand side of the XML editing
panel. If the panel is not visible, display it by selecting the Preview button located along the right-hand edge of the
Android Studio window. This is the Preview panel and shows the current visual state of the layout. As changes
are made to the XML layout, these will be reflected in the preview panel. The layout may also be modified
visually from within the Preview panel with the changes appearing in the XML listing. To see this in action,
modify the XML layout to change the background color of the ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"

app:layout behavior="@string/appbar scrolling view behavior"
tools:context=".MainActivity"
tools:showIn="@layout/activity android sample"
android:background="#££2438" >

</android.support.constraint.ConstraintLayout>

21

Creating an Example Android App in Android Studio

Note that the color of the preview changes in real-time to match the new setting in the XML file. Note also that a
small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Change
the color value to #a0ff28 and note that both the small square in the margin and the preview change to green.

Finally, use the Project view to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:

<resources>
<string name="app name">AndroidSample</string>
<string name="action settings">Settings</string>
<string name="convert string">Convert</string>
<string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Text mode, click on the “@string/convert_string” property setting so that it highlights and then press Ctrl-B
on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and take you
to the line in that file where this resource is declared. Use this opportunity to revert the string resource back to
the original “Convert” text.

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open Editor menu option. This will display the
Translation Editor in the main panel of the Android Studio window:

Figure 3-21

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.7 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

22

Creating an Example Android App in Android Studio

Figure 3-22

Next, double-click on the MainActivity.kt file to load it into the code editor and add the code for the
convertCurrency method to the class file so that it reads as follows, noting that it is also necessary to import
some additional Android packages:

package com.ebookfrenzy.androidsample

import android.os.Bundle

import com.google.android.material.snackbar.Snackbar
import android.support.v7.app.AppCompatActivity
import android.view.Menu

import android.view.Menultem

import android.view.View

import kotlinx.android.synthetic.main.activity main.*

import kotlinx.android.synthetic.main.content main.*

class MainActivity : AppCompatActivity() {

fun convertCurrency (view: View) {
if (dollarText.text.isNotEmpty()) {

val dollarValue = dollarText.text.toString() .toFloat()

val euroValue dollarValue * 0.85f

textView. text = euroValue.toString()

} else {
textView. text = "No Value"

23

Creating an Example Android App in Android Studio
}

The method begins by checking the text property of the dollarText EditText view to make sure that it is not
empty (in other words that the user has entered a dollar value). If a value has not been entered, a “No Value”
string is displayed on the resultText view. If, on the other hand, a dollar amount has been entered, it is converted
into a floating point value and the equivalent euro value calculated. This floating point value is then converted
into a string and displayed on the resultText view. If any of this is unclear, rest assured that these concepts will
be covered in greater detail in later chapters.

The project is now complete and ready to run, a task that will be performed in the next chapter after an AVD
emulator session as been created for testing purposes.

3.8 Summary

While not excessively complex, a number of steps are involved in setting up an Android development
environment. Having performed those steps, it is worth working through a simple example to make sure the
environment is correctly installed and configured. In this chapter, we have created a simple application and then
used the Android Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the
importance of using resources wherever possible, particularly in the case of string values, and briefly touched
on the topic of layouts. Next we looked at the underlying XML that is used to store the user interface designs of
Android applications.

While it is useful to be able to preview a layout from within the Android Studio Layout Editor tool, there is no
substitute for testing an application by compiling and running it.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

24

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio

In the course of developing Android apps in Android Studio it will be necessary to compile and run an application
multiple times. An Android application may be tested by installing and running it either on a physical device or
in an Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created
and configured to match the specifications of a particular device model. The goal of this chapter, therefore, is
to work through the steps involved in creating such a virtual device using the Nexus 5X phone as a reference
example.

4.1 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity and the presence or otherwise of features such
as a camera, GPS navigation support or an accelerometer. As part of the standard Android Studio installation,
a number of emulator templates are installed allowing AVDs to be configured for a range of different devices.
Additional templates may be loaded or custom configurations created to match any physical Android device
by specifying properties such as processor type, memory capacity and the size and pixel density of the screen.
Check the online developer documentation for your device to find out if emulator definitions are available for
download and installation into the AVD environment.

When launched, an AVD will appear as a window containing an emulated Android device environment. Figure
4-1, for example, shows an AVD session configured to emulate the Google Nexus 5X model.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface.

Figure 4-1
25

Creating an Android Virtual Device (AVD) in Android Studio
4.2 Creating a New AVD

In order to test the behavior of an application in the absence of a physical device, it will be necessary to create an
AVD for a specific Android device configuration.

To create a new AVD, the first step is to launch the AVD Manager. This can be achieved from within the Android
Studio environment by selecting the Tools -> Android -> AVD Manager menu option from within the main
window.

Once launched, the tool will appear as outlined in Figure 4-2 if existing AVD instances have been created:

Figure 4-2

To add an additional AVD, begin by clicking on the Create Virtual Device button in order to invoke the Virtual
Device Configuration dialog:

Figure 4-3
Within the dialog, perform the following steps to create a Nexus 5X compatible emulator:

1. From the Category panel, select the Phone option to display the list of available Android tablet AVD

26

Creating an Android Virtual Device (AVD) in Android Studio
templates.
2. Select the Nexus 5X device option and click Next.

3. On the System Image screen, select the latest version of Android (at time of writing this is API level 28,
Android 9.0 with Google Play) for the x86 ABI. Note that if the system image has not yet been installed a
Download link will be provided next to the Release Name. Click this link to download and install the system
image before selecting it. If the image you need is not listed, click on the x86 images and Other images tabs
to view alternative lists.

4. Click Next to proceed and enter a descriptive name (for example Nexus 5X API 28) into the name field or
simply accept the default name.

5. Click Finish to create the AVD.

6. With the AVD created, the AVD Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the AVD Manager, select the AVD from the list and click on the pencil icon in
the Actions column of the device row in the AVD Manager.

4.3 Starting the Emulator

To perform a test run of the newly created AVD emulator, simply select the emulator from the AVD Manager
and click on the launch button (the green triangle in the Actions column). The emulator will appear in a new
window and begin the startup process. The amount of time it takes for the emulator to start will depend on the
configuration of both the AVD and the system on which it is running.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the AVD Manager, select the new Nexus 5X entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen locate the Startup and orientation section and
change the orientation setting. Exit and restart the emulator session to see this change take effect. More details
on the emulator are covered in the next chapter (“Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.4 Running the Application in the AVD

With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, simply click on the run
button represented by a green triangle located in the Android Studio toolbar as shown in Figure 4-4 below, select
the Run -> Run app’ menu option or use the Ctrl-R keyboard shortcut:

Figure 4-4

By default, Android Studio will respond to the run request by displaying the Select Deployment Target dialog.
This provides the option to execute the application on an AVD instance that is already running, or to launch
a new AVD session specifically for this application. Figure 4-5 lists the previously created Nexus 5X AVD as
a running device as a result of the steps performed in the preceding section. With this device selected in the
dialog, click on OK to install and run the application on the emulator.

27

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-5

Once the application is installed and running, the user interface for the MainActivity class will appear within
the emulator:

Figure 4-6

In the event that the activity does not automatically launch, check to see if the launch icon has appeared among
the apps on the emulator. If it has, simply click on it to launch the application. Once the run process begins, the
Run and Logcat tool windows will become available. The Run tool window will display diagnostic information
as the application package is installed and launched. Figure 4-7 shows the Run tool window output from a
successful application launch:

Figure 4-7

28

Creating an Android Virtual Device (AVD) in Android Studio

If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured.

4.5 Run/Debug Configurations

A particular project can be configured such that a specific device or emulator is used automatically each time it
is run from within Android Studio. This avoids the necessity to make a selection from the device chooser each
time the application is executed. To review and modify the Run/Debug configuration, click on the button to
the left of the run button in the Android Studio toolbar and select the Edit Configurations... option from the
resulting menu:

Figure 4-8

In the Run/Debug Configurations dialog, the application may be configured to always use a preferred emulator
by selecting Emulator from the Target menu located in the Deployment Target Options section and selecting the
emulator from the drop down menu. Figure 4-9, for example, shows the AndroidSample application configured
to run by default on the previously created Nexus 5X emulator:

Figure 4-9

29

Creating an Android Virtual Device (AVD) in Android Studio

Be sure to switch the Target menu setting back to “Open Select Deployment Target Dialog” mode before moving
on to the next chapter of the book.
4.6 Stopping a Running Application

To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
4-10:

Figure 4-10

An app may also be terminated using the Logcat tool window. Begin by displaying the Logcat tool window using
the window bar button that becomes available when the app is running. Once the Logcat tool window appears,
select the androidsample app menu highlighted in Figure 4-11 below:

Figure 4-11

With the process selected, stop it by clicking on the red Terminate Application button in the toolbar to the left of
the process list indicated by the arrow in the above figure.

4.7 AVD Command-line Creation

As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly
from the command-line. This is achieved using the avdmanager tool in conjunction with some command-line
options. Once initiated, the tool will prompt for additional information before creating the new AVD.

The avdmanager tool requires access to the Java Runtime Environment (JRE) in order to run. If, when attempting
run avdmanager, an error message appears indicating that the ‘java’ command cannot be found, the command
prompt or terminal window within which you are running the command can be configured to use the Open]JDK
environment bundled with Android Studio. Begin by identifying the location of the Open]DK JRE as follows:

1. Launch Android Studio and open the AndroidSample project created earlier in the book.
2. Select the File -> Project Structure... menu option.

3. Copy the path contained within the JDK location field of the Project Structure dialog. This represents the
location of the JRE bundled with Android Studio.

On Windows, execute the following command within the command prompt window from which avdmanager is
to be run (where <path to jre> is replaced by the path copied from the Project Structure dialog above):

set JAVA HOME=<path to jre>

On macOS or Linux, execute the following command:
export JAVA HOME="<path to jre>"

30

Creating an Android Virtual Device (AVD) in Android Studio

If you expect to use the avdmanager tool frequently, follow the environment variable steps for your operating
system outlined in the chapter entitled “Setting up an Android Studio Development Environment” to configure
JAVA_HOME on a system-wide basis.

Assuming that the system has been configured such that the Android SDK tools directory is included in the
PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following
command in a terminal or command window:

avdmanager list targets

The resulting output from the above command will contain a list of Android SDK versions that are available on
the system. For example:
Available Android targets:
id: 1 or "android-28"
Name: Android API 28
Type: Platform
API level: 28
Revision: 3
id: 2 or "android-26"
Name: Android API 26
Type: Platform
API level: 26

Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command line. For example, to
create a new AVD named Nexus9 using the target ID for the Android API level 26 device using the x86 ABI, the
following command may be used:

avdmanager create avd -n Nexus9 -k "system-images;android-26;google apis;x86"

The android tool will create the new AVD to the specifications required for a basic Android 8 device, also
providing the option to create a custom configuration to match the specification of a specific device if required.
Once a new AVD has been created from the command line, it may not show up in the Android Device Manager
tool until the Refresh button is clicked.

In addition to the creation of new AVDs, a number of other tasks may be performed from the command line.
For example, a list of currently available AVDs may be obtained using the list avd command line arguments:

avdmanager list avd

Available Android Virtual Devices:

Name: Pixel XL API 28 No Play
Device: pixel x1 (Google)

Path: /Users/neilsmyth/.android/avd/Pixel XL API 28 No Play.avd
Target: Google APIs (Google Inc.)

Based on: Android API 28 Tag/ABI: google apis/x86

Skin: pixel x1 silver

Sdcard: 512M

Similarly, to delete an existing AVD, simply use the delete option as follows:

31

Creating an Android Virtual Device (AVD) in Android Studio

avdmanager delete avd —-n <avd name>

4.8 Android Virtual Device Configuration Files

By default, the files associated with an AVD are stored in the .android/avd sub-directory of the user’s home
directory, the structure of which is as follows (where <avd name> is replaced by the name assigned to the AVD):

<avd name>.avd/config.ini
<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions and memory specified
during the AVD creation process. These settings may be changed directly within the configuration file and will
be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD files. Note that
a change to the image.sysdir value in the config.ini file will also need to be reflected in the target value of this file.

4.9 Moving and Renaming an Android Virtual Device

The current name or the location of the AVD files may be altered from the command line using the avdmanager
tool’s move avd argument. For example, to rename an AVD named Nexus9 to Nexus9B, the following command
may be executed:

avdmanager move avd -n Nexus9 -r Nexus9B

To physically relocate the files associated with the AVD, the following command syntax should be used:

avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Nexus9Test:

avdmanager move avd -n Nexus9 -p /tmp/Nexus9Test

Note that the destination directory must not already exist prior to executing the command to move an AVD.

4.10 Summary

A typical application development process follows a cycle of coding, compiling and running in a test environment.
Android applications may be tested on either a physical Android device or using an Android Virtual Device
(AVD) emulator. AVDs are created and managed using the Android AVD Manager tool which may be used
either as a command line tool or using a graphical user interface. When creating an AVD to simulate a specific
Android device model it is important that the virtual device be configured with a hardware specification that
matches that of the physical device.

32

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator

The Android Virtual Device (AVD) emulator environment bundled with Android Studio 1.x was an
uncharacteristically weak point in an otherwise reputable application development environment. Regarded by
many developers as slow, inflexible and unreliable, the emulator was long overdue for an overhaul. Fortunately,
Android Studio 2 introduced an enhanced emulator environment providing significant improvements in terms
of configuration flexibility and overall performance and further enhancements have been made in subsequent
releases.

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
avaijlable to customize the environment.

5.1 The Emulator Environment

When launched, the emulator displays an initial splash screen during the loading process. Once loaded, the
main emulator window appears containing a representation of the chosen device type (in the case of Figure 5-1
this is a Nexus 5X device):

Figure 5-1

Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.

5.2 The Emulator Toolbar Options

The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

33

Using and Configuring the Android Studio AVD Emulator

Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear, or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

« Exit / Minimize - The uppermost X’ button in the toolbar exits the emulator session when selected while the
‘- option minimizes the entire window.

» Power - The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power off” request sequence.

Volume Up / Down - Two buttons that control the audio volume of playback within the simulator environment.

Rotate Left/Right — Rotates the emulated device between portrait and landscape orientations.

Screenshot — Takes a screenshot of the content currently displayed on the device screen. The captured image
is stored at the location specified in the Settings screen of the extended controls panel as outlined later in this
chapter.

» Zoom Mode - This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

o Back - Simulates selection of the standard Android “Back” button. As with the Home and Overview buttons
outlined below, the same results can be achieved by selecting the actual buttons on the emulator screen.

« Home - Simulates selection of the standard Android “Home” button.

o Overview — Simulates selection of the standard Android “Overview” button which displays the currently
running apps on the device.

34

Using and Configuring the Android Studio AVD Emulator

» Extended Controls - Displays the extended controls panel, allowing for the configuration of options such as
simulated location and telephony activity, battery strength, cellular network type and fingerprint identification.

5.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

5.4 Resizing the Emulator Window
The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3
5.5.1 Location

The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format.

A single location is transmitted to the emulator when the Send button is clicked. The transmission of GPS data
points begins once the “play” button located beneath the data table is selected. The speed at which the GPS data
points are fed to the emulator can be controlled using the speed menu adjacent to the play button.

35

Using and Configuring the Android Studio AVD Emulator
5.5.2 Cellular

The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

5.5.3 Camera

The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.4 Battery

A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health and whether the AC charger is currently connected.

5.5.5 Phone

The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing the way in which an app handles high level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.6 Directional Pad

A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.7 Microphone

The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.8 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

5.5.9 Virtual Sensors

The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement and tilting through yaw, pitch and roll settings.

5.5.10 Snapshots

Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in detail later in this chapter.

5.5.11 Screen Record

Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

36

Using and Configuring the Android Studio AVD Emulator
5.5.12 Google Play

Google Play will need to be present on AVD instances on which Google services such as in-app purchasing need
to be tested. This extended controls screen displays the version of Google Play installed on the current AVD
instance and provides the option to update or deactivate the Google Play installation. When the Update button
is clicked, the appropriate Google Play Store page will load on the emulator allowing changes to be made to the
installation, including deactivating Google Play.

5.5.13 Settings

The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and to configure the emulator window to appear on top of other windows on
the desktop.

5.5.14 Help

The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots

When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

Figure 5-4

37

Using and Configuring the Android Studio AVD Emulator

The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by
default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to
reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous
quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager), click on the down arrow in the actions
column for the emulator and select the Cold Boot Now menu option.

Figure 5-5

5.7 Drag and Drop Support

An Android application is packaged into an APK file when it is built. When Android Studio built and ran the
AndroidSample app created earlier in this book, for example, the application was compiled and packaged into
an APK file. That APK file was then transferred to the emulator and launched.

The Android Studio emulator also supports installation of apps by dragging and dropping the corresponding
APK file onto the emulator window. To experience this in action, start the emulator, open Settings and select the
Apps & notifications option followed by the App Info option on the subsequent screen. Within the list of installed
apps, locate and select the AndroidSample app and, in the app detail screen, uninstall the app from the emulator.

Open the file system navigation tool for your operating system (e.g. Windows Explorer for Windows or Finder
for macOS) and navigate to the folder containing the AndroidSample project. Within this folder locate the app/
build/outputs/apk/debug subfolder which should contain an APK file named app-debug.apk. Drag this file and
drop it onto the emulator window. The dialog shown in (Figure 5-6) will subsequently appear as the APK file is
installed.

Figure 5-6
Once the APK file installation has completed, locate the app on the device and click on it to launch it.

In addition to APK files, any other type of file such as image, video or data files can be installed onto the
emulator using this drag and drop feature. Such files are added to the SD card storage area of the emulator where
they may subsequently be accessed from within app code.

38

Using and Configuring the Android Studio AVD Emulator

5.8 Configuring Fingerprint Emulation

The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a
backup screen unlocking method (such as a PIN number) must be configured. Click on the Fingerprint + PIN
button and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN
number and complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-7

Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will
report the successful addition of the fingerprint:

Figure 5-8

39

Using and Configuring the Android Studio AVD Emulator

To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch the Semsor button once again. The topic of building
fingerprint authentication into an Android app is covered in detail in the chapter entitled “An Android Biometric
Authentication Tutorial”.

5.9 Summary

Android Studio 3.3 contains a new and improved Android Virtual Device emulator environment designed
to make it easier to test applications without the need to run on a physical Android device. This chapter has
provided a brief tour of the emulator and highlighted key features that are available to configure and customize
the environment to simulate different testing conditions

40

Chapter 6

6. A Tour of the Android Studio User
Interface

While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen

The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will by-pass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1

In addition to a list of recent projects, the Quick Start menu provides a range of options for performing tasks
such as opening, creating and importing projects along with access to projects currently under version control.
In addition, the Configure menu at the bottom of the window provides access to the SDK Manager along with a
vast array of settings and configuration options. A review of these options will quickly reveal that there is almost
no aspect of Android Studio that cannot be configured and tailored to your specific needs.

The Configure menu also includes an option to check if updates to Android Studio are available for download.

41

A Tour of the Android Studio User Interface
6.2 The Main Window

When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-2.

Figure 6-2
The various elements of the main window can be summarized as follows:
A - Menu Bar - Contains a range of menus for performing tasks within the Android Studio environment.

B - Toolbar - A selection of shortcuts to frequently performed actions. The toolbar buttons provide quicker
access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and
selecting the Customize Menus and Toolbars... menu option.

C - Navigation Bar - The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the subfolders
and files at that location ready for selection. This provides an alternative to the Project tool window.

D - Editor Window - The editor window displays the content of the file on which the developer is currently
working. What gets displayed in this location, however, is subject to context. When editing code, for example,
the code editor will appear. When working on a user interface layout file, on the other hand, the user interface
Layout Editor tool will appear. When multiple files are open, each file is represented by a tab located along the
top edge of the editor as shown in Figure 6-3.

42

A Tour of the Android Studio User Interface

Figure 6-3

E - Status Bar - The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will provide a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F - Project Tool Window - The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project
in a number of different ways. The default setting is the Android view which is the mode primarily used in the
remainder of this book.

The project tool window is just one of a number of tool windows available within the Android Studio environment.

6.3 The Tool Windows

In addition to the project view tool window, Android Studio also includes a number of other windows which,
when enabled, are displayed along the bottom and sides of the main window. The tool window quick access
menu can be accessed by hovering the mouse pointer over the button located in the far left-hand corner of the
status bar (Figure 6-4) without clicking the mouse button.

Figure 6-4

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right and bottom edges of the main window (as indicated by the arrows in
Figure 6-5) and contain buttons for showing and hiding each of the tool windows. When the tool window bars

43

A Tour of the Android Studio User Interface

are displayed, a second click on the button in the status bar will hide them.

Figure 6-5

Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window tool bars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-6 shows the settings menu for the project view tool window.
Options are available, for example, to undock a window and to allow it to float outside of the boundaries of the
Android Studio main window and to move and resize the tool panel.

Figure 6-6
44

A Tour of the Android Studio User Interface

All of the windows also include a far right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s tool bar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

Project - The project view provides an overview of the file structure that makes up the project allowing for quick
navigation between files. Generally, double-clicking on a file in the project view will cause that file to be loaded
into the appropriate editing tool.

Structure - The structure tool provides a high level view of the structure of the source file currently displayed in
the editor. This information includes a list of items such as classes, methods and variables in the file. Selecting an
item from the structure list will take you to that location in the source file in the editor window.

Captures — The captures tool window provides access to performance data files that have been generated by the
monitoring tools contained within Android Studio.

Favorites — A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list can
be accessed through this Favorites tool window.

Build Variants — The build variants tool window provides a quick way to configure different build targets for the
current application project (for example different builds for debugging and release versions of the application, or
multiple builds to target different device categories).

TODO - As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look for
comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting the
File -> Settings... menu option (Android Studio -> Preferences... on macOS) and navigating to the TODO page
listed under Editor.

Messages — The messages tool window records output from the Gradle build system (Gradle is the underlying
system used by Android Studio for building the various parts of projects into runnable applications) and can be
useful for identifying the causes of build problems when compiling application projects.

Logcat - The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Terminal — Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

Build - The build tool windows displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

Run - The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing to
install and run on a device or emulator, this window will typically provide diagnostic information relating to
the problem.

Logcat - The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

45

A Tour of the Android Studio User Interface

Event Log - The event log window displays messages relating to events and activities performed within Android
Studio. The successful build of a project, for example, or the fact that an application is now running will be
reported within this tool window.

Gradle - The Gradle tool window provides a view onto the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project into
an executable application. Right-click on a top level Gradle task and select the Open Gradle Config menu option
to load the Gradle build file for the current project into the editor. Gradle will be covered in greater detail later
in this book.

Android Profiler - The Android Profiler tool window provides realtime monitoring and analysis tools for
identifying performance issues within running apps, including CPU, memory and network usage. This option
becomes available when an app is currently running.

Device File Explorer — The Device File Explorer tool window provides direct access to the filesystem of the
currently connected Android device or emulator allowing the filesystem to be browsed and files copied to the
local filesystem.

6.4 Android Studio Keyboard Shortcuts

Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option.

6.5 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-7).

Figure 6-7

Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options, while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure 6-8).
This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse
pointer can be used to select an option or, alternatively, the keyboard arrow keys used to scroll through the file
name and tool window options. Pressing the Enter key will select the currently highlighted item.

46

A Tour of the Android Studio User Interface

Figure 6-8
6.6 Changing the Android Studio Theme

The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option, or via the File -> Settings... menu option (Android Studio -> Preferences... on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance option in the left-hand panel and then change the
setting of the Theme menu before clicking on the Apply button. The themes available will depend on the platform
but usually include options such as Light, Intelli], Windows, Default and Darcula. Figure 6-9 shows an example
of the main window with the Darcula theme selected:

Figure 6-9

6.7 Summary

The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar, or via the
optional tool window bars.

There are very few actions within Android Studio which cannot be triggered via a keyboard shortcut. A keymap
of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

47

Chapter 7

7. Testing Android Studio Apps on a
Physical Android Device

While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no
substitute for performing real world application testing on a physical Android device and there are a number of
Android features that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). In this chapter we will work through the steps to configure the adb environment to enable
application testing on a physical Android device with macOS, Windows and Linux based systems.

7.1 An Overview of the Android Debug Bridge (ADB)

The primary purpose of the ADB is to facilitate interaction between a development system, in this case Android
Studio, and both AVD emulators and physical Android devices for the purposes of running and debugging
applications.

The ADB consists of a client, a server process running in the background on the development system and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active
virtual or physical devices may be obtained using the devices command-line argument. The following command
output indicates the presence of an AVD on the system but no physical devices:

$ adb devices

List of devices attached

emulator-5554 device

7.2 Enabling ADB on Android based Devices

Before ADB can connect to an Android device, that device must first be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1. Open the Settings app on the device and select the About tablet or About phone option (on newer versions
of Android this can be found on the System page of the Settings app).

2. On the About screen, scroll down to the Build number field (Figure 7-1) and tap on it seven times until a
message appears indicating that developer mode has been enabled. If the build number is not displayed,
unfold the Advanced section of the list.

49

Testing Android Studio Apps on a Physical Android Device

Figure 7-1

3. Return to the main Settings screen and note the appearance of a new option titled Developer options. Select
this option and locate the setting on the developer screen entitled USB debugging. Enable the switch next
to this item as illustrated in Figure 7-2:

Figure 7-2

4. Swipe downward from the top of the screen to display the notifications panel (Figure 7-3) and note that the
device is currently connected for debugging.

Figure 7-3

At this point, the device is now configured to accept debugging connections from adb on the development
system. All that remains is to configure the development system to detect the device when it is attached. While
this is a relatively straightforward process, the steps involved differ depending on whether the development
system is running Windows, macOS or Linux. Note that the following steps assume that the Android SDK
platform-tools directory is included in the operating system PATH environment variable as described in the
chapter entitled “Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration

In order to configure the ADB environment on a macOS system, connect the device to the computer system
using a USB cable, open a terminal window and execute the following command to restart the adb server:

$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:

$ adb devices
List of devices attached
74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure

50

Testing Android Studio Apps on a Physical Android Device

7-4 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as
being available:

List of devices attached

015d41d4454b£80c device

In the event that the device is not listed, try logging out and then back in to the macOS desktop and, if the
problem persists, rebooting the system.

7.2.2 Windows ADB Configuration

The first step in configuring a Windows based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
Android Device. If you have a Google Nexus device, then it will be necessary to install and configure the Google
USB Driver package on your Windows system. Detailed steps to achieve this are outlined on the following web

page:
https://developer.android.com/sdk/win-usb.html
For Android devices not supported by the Google USB driver, it will be necessary to download the drivers

provided by the device manufacturer. A listing of drivers together with download and installation information
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:

adb devices

This command should output information about the connected device similar to the following:

List of devices attached

HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
7-4 seeking permission to Allow USB debugging.

Figure 7-4
Enable the checkbox next to the option that reads Always allow from this computer, before clicking on OK.
Repeating the adb devices command should now list the device as being ready:
List of devices attached
HT4CTJT01906 device
In the event that the device is not listed, execute the following commands to restart the ADB server:

51

http://developer.android.com/sdk/win-usb.html
http://developer.android.com/tools/extras/oem-usb.html

Testing Android Studio Apps on a Physical Android Device

adb kill-server

adb start-server

If the device is still not listed, try executing the following command:

android update adb
Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration

For the purposes of this chapter, we will once again use Ubuntu Linux as a reference example in terms of
configuring adb on Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not
listed, run the following command to add your account to the group:

sudo usermod -aG plugdev $LOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:

sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server and check the list of attached devices:

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454bf80c offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 7-4 seeking permission to Allow USB debugging.

7.3 Testing the adb Connection

Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “Creating an Example Android App in Android
Studio” on the device.

Launch Android Studio, open the AndroidSample project and, once the project has loaded, click on the run
button located in the Android Studio toolbar (Figure 7-5).

Figure 7-5

Assuming that the project has not previously been configured to run automatically in an emulator environment,
the deployment target selection dialog will appear with the connected Android device listed as a currently
running device. Figure 7-6, for example, lists a Nexus 9 device as a suitable target for installing and executing
the application.

52

Testing Android Studio Apps on a Physical Android Device

Figure 7-6

To make this the default device for testing, enable the Use same device for future launches option. With the
device selected, click on the OK button to install and run the application on the device. As with the emulator
environment, diagnostic output relating to the installation and launch of the application on the device will be
logged in the Run tool window.

7.4 Summary

While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep
in mind that there is no real substitute for making sure an application functions correctly on a physical Android
device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps in order to be able to load applications directly
onto an Android device from within the Android Studio development environment. The exact steps to achieve
this goal differ depending on the development platform being used. In this chapter, we have covered those steps
for Linux, macOS and Windows based platforms.

53

Chapter 8

8. The Basics of the Android Studio
Code Editor

Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor

The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Kotlin source code
file loaded:

Figure 8-1
55

The Basics of the Android Studio Code Editor
The elements that comprise the editor window can be summarized as follows:

A — Document Tabs - Android Studio is capable of holding multiple files open for editing at any one time.
As each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top
edge of the editor window. A small dropdown menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-Right
keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism (accessible
via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B — The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched on
by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu option.

C — The Status Bar - Though the status bar is actually part of the main window, as opposed to the editor, it
does contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line dialog.

D — The Editor Area - This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E — The Validation and Marker Sidebar - Android Studio incorporates a feature referred to as “on-the-
fly code analysis” What this essentially means is that as you are typing code, the editor is analyzing the code to
check for warnings and syntax errors. The indicator at the top of the validation sidebar will change from a green
check mark (no warnings or errors detected) to a yellow square (warnings detected) or red alert icon (errors
have been detected). Clicking on this indicator will display a popup containing a summary of the issues found
with the code in the editor as illustrated in Figure 8-2:

Figure 8-2

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup

56

The Basics of the Android Studio Code Editor

containing a description of the issue (Figure 8-3):

Figure 8-3

Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area
of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-4)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-4

It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over
any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window

By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into
multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 8-5, for example, shows the splitter in action with the editor
split into three panels:

Figure 8-5
57

The Basics of the Android Studio Code Editor

The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion

The Android Studio editor has a considerable amount of built-in knowledge of Kotlin programming syntax and
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-6, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-6

If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the
keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred
to as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-Ctrl-
Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings... menu option (or Android Studio -> Preferences... on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-7:

58

The Basics of the Android Studio Code Editor

Figure 8-7

8.4 Statement Completion

Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:

myMethod ()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:

myMethod () {

)
8.5 Parameter Information

It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard

sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-8

59

The Basics of the Android Studio Code Editor

8.6 Parameter Name Hints

The code editor may be configured to display parameter name hints within method calls. Figure 8-9, for example,
highlights the parameter name hints within the calls to the make() and setAction() methods of the Snackbar class:

Figure 8-9

The settings for this mode may be configured by selecting the File -> Settings (Android Studio -> Preferences
on macOS) menu option followed by Editor -> Appearance in the left-hand panel. On the Appearance screen,
enable or disable the Show parameter name hints option. To adjust the hint settings, click on the Configure...
button, select the programming language and make any necessary adjustments.

8.7 Code Generation

In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-10 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-10

For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio
generate a stub method for this, simply select the Override Methods... option from the code generation list and
select the onStop() method from the resulting list of available methods:

60

The Basics of the Android Studio Code Editor

Figure 8-11

Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Kotlin source file as follows:
override fun onStop () {

super.onStop ()

}
8.8 Code Folding

Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-12, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-12

Clicking on either of these markers will fold the statement such that only the signature line is visible as shown
61

The Basics of the Android Studio Code Editor

in Figure 8-13:

Figure 8-13

To unfold a collapsed section of code, simply click on the ‘+ marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{...}” indicator as shown in Figure 8-14. The editor will
then display the lens overlay containing the folded code block:

Figure 8-14

All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings... (Android Studio -> Preferences... on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-15):

Figure 8-15

8.9 Quick Documentation Lookup

Context sensitive Kotlin and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will
display a popup containing the relevant reference documentation for the item. Figure 8-16, for example, shows

62

The Basics of the Android Studio Code Editor

the documentation for the Android Snackbar class.

Figure 8-16

Once displayed, the documentation popup can be moved around the screen as needed. Clicking on the push pin
icon located in the right-hand corner of the popup title bar will ensure that the popup remains visible once focus
moves back to the editor, leaving the documentation visible as a reference while typing code.

8.10 Code Reformatting

In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a web site), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Alt-L on macOS) keyboard shortcut sequence. To display the
Reformat Code dialog (Figure 8-17) use the Ctrl-Alt-Shift-L (Cmd-Alt-Shift-L on macOS). This dialog provides
the option to reformat only the currently selected code, the entire source file currently active in the editor or only
code that has changed as the result of a source code control update.

Figure 8-17

The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences... on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog, for
example, unfold the Code Style section, select Kotlin and, from the Kotlin settings, select the Arrangement tab.

8.11 Finding Sample Code

The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample

63

The Basics of the Android Studio Code Editor

Code menu option. The Find Sample Code panel (Figure 8-18) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

Figure 8-18

8.12 Summary

The Android Studio editor goes to great length to reduce the amount of typing needed to write code and
to make that code easier to read and navigate. In this chapter we have covered a number of the key editor
features including code completion, code generation, editor window splitting, code folding, reformatting and

documentation lookup.

64

Chapter 9

9. An Overview of the Android
Architecture

So far in this book, steps have been taken to set up an environment suitable for the development of Android
applications using Android Studio. An initial step has also been taken into the process of application development
through the creation of a simple Android Studio application project.

Before delving further into the practical matters of Android application development, however, it is important
to gain an understanding of some of the more abstract concepts of both the Android SDK and Android
development in general. Gaining a clear understanding of these concepts now will provide a sound foundation
on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of
this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack

Android is structured in the form of a software stack comprising applications, an operating system, run-time
environment, middleware, services and libraries. This architecture can, perhaps, best be represented visually
as outlined in Figure 9-1. Each layer of the stack, and the corresponding elements within each layer, are tightly
integrated and carefully tuned to provide the optimal application development and execution environment
for mobile devices. The remainder of this chapter will work through the different layers of the Android stack,
starting at the bottom with the Linux Kernel.

Figure 9-1

65

An Overview of the Android Architecture

9.2 The Linux Kernel

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between
the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the
kernel provides preemptive multitasking, low-level core system services such as memory, process and power
management in addition to providing a network stack and device drivers for hardware such as the device display,
Wi-Fi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities
and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system
referred to as GNU/Linux. Various Linux distributions have been derived from these basic underpinnings such
as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the
Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In
fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to
both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find
this software at the heart of the Android software stack.

9.3 Android Runtime — ART

When an Android app is built within Android Studio it is compiled into an intermediate bytecode format
(referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime
(ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the
native instructions required by the device processor. This format is known as Executable and Linkable Format
(ELEF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster
application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries

In addition to a set of standard Java development libraries (providing support for such general purpose tasks as
string handling, networking and file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples
of libraries in this category include the application framework libraries in addition to those that facilitate user
interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:
« android.app - Provides access to the application model and is the cornerstone of all Android applications.

« android.content — Facilitates content access, publishing and messaging between applications and application
components.

« android.database - Used to access data published by content providers and includes SQLite database
management classes.

o android.graphics - A low-level 2D graphics drawing API including colors, points, filters, rectangles and
canvases.

« android.hardware - Presents an API providing access to hardware such as the accelerometer and light sensor.

66

An Overview of the Android Architecture
« android.opengl - A Java interface to the OpenGL ES 3D graphics rendering API.

« android.os - Provides applications with access to standard operating system services including messages,
system services and inter-process communication.

« android.media - Provides classes to enable playback of audio and video.

« android.net — A set of APIs providing access to the network stack. Includes android.net.wifi, which provides
access to the device’s wireless stack.

o android.print - Includes a set of classes that enable content to be sent to configured printers from within
Android applications.

« android.provider - A set of convenience classes that provide access to standard Android content provider
databases such as those maintained by the calendar and contact applications.

« android.text — Used to render and manipulate text on a device display.

o android.util - A set of utility classes for performing tasks such as string and number conversion, XML
handling and date and time manipulation.

o android.view - The fundamental building blocks of application user interfaces.

« android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views,
layout managers, radio buttons etc.

« android.webkit - A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++ based libraries contained in this layer of the Android software stack.

9.4.1 C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary
APIs for developers writing Android applications. It is important to note, however, that the core libraries do
not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based
libraries. When making calls, for example, to the android.opengl library to draw 3D graphics on the device
display, the library actually ultimately makes calls to the OpenGL ES C++ library which, in turn, works with the
underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback,
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java based
Android core library APIs. In the event that direct access to these libraries is needed, this can be achieved using
the Android Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or
Kotlin programming languages (such as C and C++) from within Java code using the Java Native Interface (JNI).

9.5 Application Framework

The Application Framework is a set of services that collectively form the environment in which Android
applications run and are managed. This framework implements the concept that Android applications are
constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in
that an application is also able to publish its capabilities along with any corresponding data so that they can be

67

An Overview of the Android Architecture

found and reused by other applications.

The Android framework includes the following key services:

o Activity Manager - Controls all aspects of the application lifecycle and activity stack.

 Content Providers — Allows applications to publish and share data with other applications.

Resource Manager - Provides access to non-code embedded resources such as strings, color settings and user
interface layouts.

o Notifications Manager - Allows applications to display alerts and notifications to the user.
» View System - An extensible set of views used to create application user interfaces.

» Package Manager - The system by which applications are able to find out information about other applications
currently installed on the device.

Telephony Manager — Provides information to the application about the telephony services available on the
device such as status and subscriber information.

Location Manager - Provides access to the location services allowing an application to receive updates about
location changes.

9.6 Applications

Located at the top of the Android software stack are the applications. These comprise both the native applications
provided with the particular Android implementation (for example web browser and email applications) and
the third party applications installed by the user after purchasing the device.

9.7 Summary

A good Android development knowledge foundation requires an understanding of the overall architecture of
Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel,
a runtime environment and corresponding libraries, an application framework and a set of applications.
Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the
Android Studio build environment. When the application is subsequently installed on a device, this bytecode
is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the
Android architecture are performance and efficiency, both in application execution and in the implementation
of reuse in application design.

68

Chapter 10

10. The Anatomy of an Android
Application

Regardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail both the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities

Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this
is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities. An activity
is a single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointments application might, for example, have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application, for example, might contain an activity specifically for composing
and sending an email message. A developer might be writing an application that also has a requirement to send
an email message. Rather than develop an email composition activity specifically for the new application, the
developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may make use of the activity in unanticipated ways)
and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved
using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be specifically started as a sub-activity of the originating activity.

10.2 Android Fragments

An activity, as described above, typically represents a single user interface screen within an app. One option is
to construct the activity using a single user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each of these sections is referred to as a
fragment, each of which consists of part of the user interface layout and a matching class file (declared as a
subclass of the Android Fragment class). In this scenario, an activity simply becomes a container into which one
or more fragments are embedded.

69

The Anatomy of an Android Application

In fact, fragments provide an efficient alternative to having each user interface screen represented by a
separate activity. Instead, an app can consist of a single activity that switches between different fragments, each
representing a different app screen.

10.3 Android Intents

Intents are the mechanism by which one activity is able to launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents

Another type of Intent, the Broadcast Intent, is a system wide intent that is sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status such as the completion of system start up, connection of an external
power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time, or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers

Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A
Broadcast Receiver must be registered by an application and configured with an Intent Filter to indicate the
types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked
by the Android runtime regardless of whether the application that registered the receiver is currently running.
The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service,
making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the
background and do not have a user interface.

10.6 Android Services

Android Services are processes that run in the background and do not have a user interface. They can be started
and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal
for situations where an application needs to continue performing tasks but does not necessarily need a user
interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events
using notifications and toasts (small notification messages that appear on the screen without interrupting the
currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be
terminated as a last resort by the system in order to free up resources. In the event that the runtime does need
to kill a Service, however, it will be automatically restarted as soon as adequate resources once again become
available. A Service can reduce the risk of termination by declaring itself as needing to run in the foreground. This
is achieved by making a call to startForeground(). This is only recommended for situations where termination
would be detrimental to the user experience (for example, if the user is listening to audio being streamed by the
Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming

70

The Anatomy of an Android Application

of audio that should continue when the application is no longer active, or a stock market tracking application
that needs to notify the user when a share hits a specified price.

10.7 Content Providers

Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data through the implementation of a Content Provider
including the ability to add, remove and query the data (subject to permissions). Access to the data is provided
via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a
file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access
data such as contacts and media files. The Content Providers currently available on an Android system may be
located using a Content Resolver.

10.8 The Application Manifest

The glue that pulls together the various elements that comprise an application is the Application Manifest file.
It is within this XML based file that the application outlines the activities, services, broadcast receivers, data
providers and permissions that make up the complete application.

10.9 Application Resources

In addition to the manifest file and the Dex files that contain the byte code, an Android application package will
also typically contain a collection of resource files. These files contain resources such as the strings, images, fonts
and colors that appear in the user interface together with the XML representation of the user interface layouts.
By default, these files are stored in the /res sub-directory of the application project’s hierarchy.

10.10 Application Context

When an application is compiled, a class named R is created that contains references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and make changes to the application’s environment at runtime.

10.11 Summary

A number of different elements can be brought together in order to create an Android application. In this
chapter, we have provided a high-level overview of Activities, Fragments, Services, Intents and Broadcast
Receivers together with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of
functionality in the form of activities and intents, while data sharing between applications is achieved by the
implementation of content providers.

While activities and activities are focused on areas where the user interacts with the application (an activity
essentially equating to a single user interface screen and often made up of one or more fragments), background
processing is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however,
that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a
solid knowledge foundation on which to build your own applications.

71

Chapter 11

11. An Introduction to Kotlin

Android development is performed primarily using Android Studio which is, in turn, based on the Intelli] IDEA
development environment created by a company named JetBrains. Prior to the release of Android Studio 3.0,
all Android apps were written using Android Studio and the Java programming language (with some occasional
C++ code when needed).

Since the introduction of Android Studio 3.0, however, developers now have the option of creating Android apps
using another programming language called Kotlin. Although detailed coverage of all features of this language
is beyond the scope of this book (entire books can and have been written covering solely Kotlin), the objective
of this and the following six chapters is to provide enough information to begin programming in Kotlin and
quickly get up to speed developing Android apps using this programming language.

11.1 What is Kotlin?

Named after an island located in the Baltic Sea, Kotlin is a programming language created by JetBrains and
follows Java in the tradition of naming programming languages after islands. Kotlin code is intended to be easier
to understand and write and also safer than many other programming languages. The language, compiler and
related tools are all open source and available for free under the Apache 2 license.

The primary goals of the Kotlin language are to make code both concise and safe. Code is generally considered
concise when it can be easily read and understood. Conciseness also plays a role when writing code, allowing
code to be written more quickly and with greater efficiency. In terms of safety, Kotlin includes a number of
features that improve the chances that potential problems will be identified when the code is being written
instead of causing runtime crashes.

A third objective in the design and implementation of Kotlin involves interoperability with Java.

11.2 Kotlin and Java

Originally introduced by Sun Microsystems in 1995 Java is still by far the most popular programming language
in use today. Until the introduction of Kotlin, it is quite likely that every Android app available on the market
was written in Java. Since acquiring the Android operating system, Google has invested heavily in tuning and
optimizing compilation and runtime environments for running Java-based code on Android devices.

Rather than try to re-invent the wheel, Kotlin is design to both integrate with and work alongside Java. When
Kotlin code is compiled it generates the same bytecode as that generated by the Java compiler enabling projects
to be built using a combination of Java and Kotlin code. This compatibility also allows existing Java frameworks
and libraries to be used seamlessly from within Kotlin code and also for Kotlin code to be called from within
Java.

Kotlin’s creators also acknowledged that while there were ways to improve on existing languages, there are many
features of Java that did not need to be changed. Consequently, those familiar with programming in Java will
find many of these skills to be transferable to Kotlin-based development. Programmers with Swift programming
experience will also find much that is familiar when learning Kotlin.

11.3 Converting from Java to Kotlin

Given the high level of interoperability between Kotlin and Java it is not essential to convert existing Java code
to Kotlin since these two languages will comfortably co-exist within the same project. That being said, Java code
73

An Introduction to Kotlin

can be converted to Kotlin from within Android Studio using a built-in Java to Kotlin converter. To convert an
entire Java source file to Kotlin, load the file into the Android Studio code editor and select the Code -> Convert
Java File to Kotlin File menu option. Alternatively, blocks of Java code may be converted to Kotlin by cutting the
code and pasting it into an existing Kotlin file within the Android Studio code editor. Note when performing
Java to Kotlin conversions that the Java code will not always convert to the best possible Kotlin code and that
time should be taken to review and tidy up the code after conversion.

11.4 Kotlin and Android Studio

Support for Kotlin is provided within Android Studio via the Kotlin Plug-in which is integrated by default into
Android Studio 3.0 or later.

11.5 Experimenting with Kotlin

When learning a new programming language, it is often useful to be able to enter and execute snippets of code.
One of the best ways to do this with Kotlin is to use the online playground (Figure 11-1) located at https://try.
kotl.in. In addition to providing an environment in which Kotlin code may be quickly entered and executed, the
online playground also includes a set of examples demonstrating key Kotlin features in action.

The panel on the left-hand side (marked A in Figure 11-1) contains a list of coding examples together with any
examples you create. Code is typed into the main panel (B) and executed by clicking the Run button (C). Any
output from the code execution appears in the console panel (D). Arguments may be passed through to the
main function by entering them into the field marked E.

Figure 11-1

Try out some Kotlin code by opening a browser window, navigating to the online playground and entering the
following into the main code panel:

74

An Introduction to Kotlin

fun main(args: Array<String>) {
println ("Welcome to Kotlin")

for (i in 1..8) {

println("i = $i")

}

After entering the code, click on the Run button and note the output in the console panel:

Figure 11-2

The online playground may also be used to find the Kotlin equivalent for fragments of Java code. Simply enter
(or cut and paste) the Java code into the main panel and click on the Convert from Java button (marked E).

11.6 Semi-colons in Kotlin

Unlike programming languages such as Java and C++, Kotlin does not require semi-colons at the end of each
statement or expression line. The following, therefore, is valid Kotlin code:

val mynumber = 10
println (mynumber)
Semi-colons are only required when multiple statements appear on the same line:

val mynumber = 10; println (mynumber)

11.7 Summary

For the first time since the Android operating system was introduced, developers now have an alternative to
writing apps in Java code. Kotlin is a programming language developed by JetBrains, the company that created
the development environment on which Android Studio is based. Kotlin is intended to make code safer and
easier to understand and write. Kotlin is also highly compatible with Java, allowing Java and Kotlin code to
co-exist within the same projects. This interoperability ensures that most of the standard Java and Java-based
Android libraries and frameworks are available for use when developing using Kotlin.

Kotlin support for Android Studio is provided via a plug-in bundled with Android Studio 3.0 or later. This plug-
in also provides a converter to translate Java code to Kotlin.

When learning Kotlin, the online playground provides a useful environment for quickly trying out Kotlin code.

75

Chapter 12

12. Kotlin Data Types,Variables and
Nullability

Both this and the following few chapters are intended to introduce the basics of the Kotlin programming
language. This chapter will focus on the various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, type casting and Kotlin’s handling of null values.

As outlined in the previous chapter, entitled “An Introduction to Kotlin” a useful way to experiment with the
language is to use the Kotlin online playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://try.kotl.in and use the playground to try out the code in both this and the
other Kotlin introductory chapters that follow.

12.1 Kotlin Data Types

When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on
disk drives and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each
1 or 0 is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte.
When people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can
be handled simultaneously by the CPU bus. A 64-bit CPU, for example, is able to handle data in 64-bit blocks,
resulting in faster performance than a 32-bit based system.

Humans, of course, don’t think in binary. We work with decimal numbers, letters and words. In order for a
human to easily (‘easily’ being a relative term in this context) program a computer, some middle ground between
human and computer thinking is needed. This is where programming languages such as Kotlin come into
play. Programming languages allow humans to express instructions to a computer in terms and structures we
understand, and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Kotlin define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Kotlin program we could do so with syntax similar to the following:

val mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:

1010

Similarly, we can express a letter, the visual representation of a digit (‘0" through to ‘9’) or punctuation mark
(referred to in computer terminology as characters) using the following syntax:

val myletter = 'c'

Once again, this is understandable by a human programmer, but gets compiled down to a binary sequence

for the CPU to understand. In this case, the letter €’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to human readable characters). When

77

http://try.kotl.in

Kotlin Data Types,Variables and Nullability

converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Kotlin.

12.1.1 Integer Data Types

Kotlin integer data types are used to store whole numbers (in other words a number with no decimal places). All
integers in Kotlin are signed (in other words capable of storing positive, negative and zero values).

Kotlin provides support for 8, 16, 32 and 64 bit integers (represented by the Byte, Short, Int and Long types
respectively).

12.1.2 Floating Point Data Types

The Kotlin floating point data types are able to store values containing decimal places. For example, 4353.1223
would be stored in a floating point data type. Kotlin provides two floating point data types in the form of Float
and Double. Which type to use depends on the size of value to be stored and the level of precision required. The
Double type can be used to store up to 64-bit floating point numbers. The Float data type, on the other hand, is
limited to 32-bit floating point numbers.

12.1.3 Boolean Data Type

Kotlin, like other languages, includes a data type for the purpose of handling true or false (1 or 0) conditions.
Two Boolean constant values (true and false) are provided by Kotlin specifically for working with Boolean data

types.
12.1.4 Character Data Type

The Kotlin Char data type is used to store a single character of rendered text such as a letter, numerical digit,
punctuation mark or symbol. Internally characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points that are combined to represent a single
visible character.

The following lines assign a variety of different characters to Character type variables:
val myCharl = 'f'
val myChar2 = ':'
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The following example assigns the X’ character
to a variable using Unicode:

val myChar4 = '\u0058"'

Note the use of single quotes when assigning a character to a variable. This indicates to Kotlin that this is a Char
data type as opposed to double quotes which indicate a String data type.

12.1.5 String Data Type

The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated and modified. Double quotes are used to surround single line strings
during assignment, for example:

val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes

78

Kotlin Data Types, Variables and Nullability

val message = """You have 10 new messages,
5 old messages
and 6 spam messages."""
The leading spaces on each line of a multi-line string can be removed by making a call to the trimMargin()
function of the String data type:
val message = """You have 10 new messages,
5 old messages

and 6 spam messages.""".trimMargin ()

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before outputting it to the console:

val username = "John"
val inboxCount = 25
val maxcount = 100

val message = "S$Susername has $inboxCount message. Message capacity remaining is
${maxcount - inboxCount}"

println (message)

When executed, the code will output the following message:

John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape Sequences

In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape characters) available for specifying items such as a new line, tab or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:

var backslash = "\\!

The complete list of special characters supported by Kotlin is as follows:

o \n - New line

o \r - Carriage return

o \t - Horizontal tab

« \\ - Backslash

« \” - Double quote (used when placing a double quote into a string declaration)

« \"- Single quote (used when placing a single quote into a string declaration)

\$ - Used when a character sequence containing a $ is misinterpreted as a variable in a string template.

« \unnnn - Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the

79

Kotlin Data Types,Variables and Nullability

Unicode character.

12.2 Mutable Variables

Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable
may then be used in the Kotlin code to access the value assigned to that variable. This access can involve either
reading the value of the variable or, in the case of mutable variables, changing the value.

12.3 Immutable Variables

Often referred to as a constant, an immutable variable is similar to a mutable variable in that it provides a named
location in memory to store a data value. Immutable variables differ in one significant way in that once a value
has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value which is used repeatedly throughout the application
code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be clear to someone reading your Kotlin
code why you used the value 5 in an expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable values also have the advantage that if the
programmer needs to change a widely used value, it only needs to be changed once in the constant declaration
and not each time it is referenced.

12.4 Declaring Mutable and Immutable Variables

Mutable variables are declared using the var keyword and may be initialized with a value at creation time. For
example:

var userCount = 10
If the variable is declared without an initial value, the type of the variable must also be declared (a topic which will

be covered in more detail in the next section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:

var userCount: Int

userCount = 42

Immutable variables are declared using the val keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring the variable without initializing it:
val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in preference to mutable variables
whenever possible.

12.5 Data Types are Objects

All of the above data types are actually objects, each of which provides a range of functions and properties that
may be used to perform a variety of different type specific tasks. These functions and properties are accessed
using so-called dot notation. Dot notation involves accessing a function or property of an object by specifying
the variable name followed by a dot followed in turn by the name of the property to be accessed or function to
be called.

A string variable, for example, can be converted to uppercase via a call to the toUpperCase() function of the
String class:

80

Kotlin Data Types, Variables and Nullability

val myString = "The quick brown fox"

val uppercase = myString.toUpperCase ()

Similarly, the length of a string is available by accessing the length property:
val length = myString.length

Functions are also available within the String class to perform tasks such as comparisons and checking for the
presence of a specific word. The following code, for example, will return a true Boolean value since the word
“fox” appears within the string assigned to the myString variable:

val result = myString.contains ("fox")

All of the number data types include functions for performing tasks such as converting from one data type to
another such as converting an Int to a Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the Kotlin data type classes is beyond the
scope of this book (there are hundreds). An exhaustive list for all data types can, however, be found within the
Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/
12.6 Type Annotations and Type Inference

Kotlin is categorized as a statically typed programming language. This essentially means that once the data
type of a variable has been identified, that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed programming languages where a variable,
once declared, can subsequently be used to store other data types.

There are two ways in which the type of a variable will be identified. One approach is to use a type annotation at
the point the variable is declared in the code. This is achieved by placing a colon after the variable name followed
by the type declaration. The following line of code, for example, declares a variable named userCount as being
of type Int:

val userCount: Int = 10
In the absence of a type annotation in a declaration, the Kotlin compiler uses a technique referred to as type
inference to identify the type of the variable. When relying on type inference, the compiler looks to see what type

of value is being assigned to the variable at the point that it is initialized and uses that as the type. Consider, for
example, the following variable declarations:

var signalStrength = 2.231

val companyName = "My Company"

During compilation of the above lines of code, Kotlin will infer that the signalStrength variable is of type Double
(type inference in Kotlin defaults to Double for all floating point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:

val iosBookType = false

val bookTitle: String

81

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

Kotlin Data Types,Variables and Nullability

if (iosBookType) {

bookTitle = "i0S App Development Essentials"
} else {

bookTitle = "Android Studio Development Essentials"
}
12.7 Nullable Type

Kotlin nullable types are a concept that does not exist in most other programming languages (with the exception
of the optional type in Swift). The purpose of nullable types is to provide a safe and consistent approach to
handling situations where a variable may have a null value assigned to it. In other words, the objective is to avoid
the common problem of code crashing with the null pointer exception errors that occur when code encounters
a null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it. Consider, for example, the following code:

val username: String = null

An attempt to compile the above code will result in a compilation error similar to the following:

Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be specifically declared as a nullable type by
placing a question mark (?) after the type declaration:

val username: String? = null

The username variable can now have a null value assigned to it without triggering a compiler error. Once a
variable has been declared as nullable, a range of restrictions are then imposed on that variable by the compiler

to prevent it being used in situations where it might cause a null pointer exception to occur. A nullable variable,
cannot, for example, be assigned to a variable of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the compiler:

Error: Type mismatch: inferred type is String? but String was expected

The only way that the assignment will be permitted is if some code is added to check that the value assigned to
the nullable variable is non-null:

val username: String? = null

if (username != null) {
val firstname: String = username

}

In the above case, the assignment will only take place if the username variable references a non-null value.

12.8 The Safe Call Operator

A nullable variable also cannot be used to call a function or to access a property in the usual way. Earlier in this
chapter the toUpperCase() function was called on a String object. Given the possibility that this could cause a
function to be called on a null reference, the following code will be disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase ()

82

Kotlin Data Types, Variables and Nullability

The exact error message generated by the compiler in this situation reads as follows:

Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable
receiver of type String?

In this instance, the compiler is essentially refusing to allow the function call to be made because no attempt
has been made to verify that the variable is non-null. One way around this is to add some code to verify that
something other than null value has been assigned to the variable prior to making the function call:
if (username != null) {

val uppercase = username.toUpperCase ()
}
A much more efficient way to achieve this same verification, however, is to call the function using the safe call
operator (represented by ?.) as follows:

val uppercase = username?.toUpperCase ()

In the above example, if the username variable is null, the toUpperCase() function will not be called and execution
will proceed at the next line of code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be used when accessing properties:

val uppercase = username?.length

12.9 Not-Null Assertion

The not-null assertion removes all of the compiler restrictions from a nullable type, allowing it to be used in
the same ways as a non-null type, even if it has been assigned a null value. This assertion is implemented using
double exclamation marks after the variable name, for example:

val username: String? = null

val length = username!!.length

The above code will now compile, but will crash with the following exception at runtime since an attempt is
being made to call a function on a non existent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid. Use of the not-null assertion is
generally discouraged and should only be used in situations where you are certain that the value will not be null.

12.10 Nullable Types and the let Function

Earlier in this chapter we looked at how the safe call operator can be used when making a call to a function
belonging to a nullable type. This technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem occurs when passing a nullable type as an
argument to a function which is expecting a non-null parameter. As an example, consider the times() function
of the Int data type. When called on an Int object and passed another integer value as an argument, the function
multiplies the two values and returns the result. When the following code is executed, for example, the value of
200 will be displayed within the console:

val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times (secondNumber)

print (result)

The above example works because the secondNumber variable is a non-null type. A problem, however, occurs if
83

Kotlin Data Types,Variables and Nullability

the secondNumber variable is declared as being of nullable type:

val firstNumber = 10

val secondNumber: Int? = 20

val result = firstNumber.times (secondNumber)

print (result)

Now the compilation will fail with the following error message because a nullable type is being passed to a
function that is expecting a non-null parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to simply write an if statement to verify that the value assigned to the
variable is non-null before making the call to the function:
val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber !'= null) {
val result = firstNumber.times (secondNumber)
print (result)

}

A more convenient approach to addressing the issue, however, involves use of the let function. When called on a
nullable type object, the let function converts the nullable type to a non-null variable named it which may then
be referenced within a lambda statement.
secondNumber?.let {

val result = firstNumber.times (it)

print (result)

}

Note the use of the safe call operator when calling the lef function on secondVariable in the above example. This
ensures that the function is only called when the variable is assigned a non-null value.

12.11 The Elvis Operator

The Kotlin Elvis operator can be used in conjunction with nullable types to define a default value that is to be
returned in the event that a value or expression result is null. The Elvis operator (:) is used to separate two
expressions. If the expression on the left does not resolve to a null value that value is returned, otherwise the
result of the rightmost expression is returned. This can be thought of as a quick alternative to writing an if-else
statement to check for a null value. Consider the following code:
if (myString != null) {

return myString
} else {

return "String is null"

}

The same result can be achieved with less coding using the Elvis operator as follows:

return myString ?: "String is null"

84

Kotlin Data Types, Variables and Nullability

12.12 Type Casting and Type Checking

When compiling Kotlin code, the compiler can typically infer the type of an object. Situations will occur,
however, where the compiler is unable to identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this situation it may be necessary to let
the compiler know the type of object that your code is expecting or to write code that checks whether the object
is of a particular type.

Letting the compiler know the type of object that is expected is known as type casting and is achieved within
Kotlin code using the as cast operator. The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a KeyguardManager object:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as KeyguardManager
The Kotlin language includes both safe and unsafe cast operators. The above cast is an unsafe cast and will

cause the app to throw an exception if the cast cannot be performed. A safe cast, on the other hand, uses the as?
operator and returns null if the cast cannot be performed:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as? KeyguardManager
A type check can be performed to verify that an object conforms to a specific type using the is operator, for
example:
if (keyMgr is KeyguardManager) {
// It is a KeyguardManager object
}

12.13 Summary

This chapter has begun the introduction to Kotlin by exploring data types together with an overview of how to
declare variables. The chapter has also introduced concepts such as nullable types, type casting and type checking
and the Elvis operator, each of which is an integral part of Kotlin programming and designed specifically to
make code writing less prone to error.

85

Chapter 13

13. Kotlin Operators and Expressions

So far we have looked at using variables and constants in Kotlin and also described the different data types.
Being able to create variables is only part of the story however. The next step is to learn how to use these variables
in Kotlin code. The primary method for working with data is in the form of expressions.

13.1 Expression Syntax in Kotlin
The most basic expression consists of an operator, two operands and an assignment. The following is an example
of an expression:

val myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=)
subsequently assigns the result of the addition to a variable named myresult. The operands could just have easily
been variables (or a mixture of values and variables) instead of the actual numerical values used in the example.

In the remainder of this chapter we will look at the basic types of operators available in Kotlin.

13.2 The Basic Assignment Operator

We have already looked at the most basic of assignment operators, the = operator. This assignment operator
simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands.
The left-hand operand is the variable to which a value is to be assigned and the right-hand operand is the value
to be assigned. The right-hand operand is, more often than not, an expression which performs some type of
arithmetic or logical evaluation or a call to a function, the result of which will be assigned to the variable. The
following examples are all valid uses of the assignment operator:

var x: Int // Declare a mutable Int variable

val y = 10 // Declare and initialize an immutable Int variable

x = 10 // Assign a value to x
X = x + y // Assign the result of x + y to x
x = vy // Assign the value of y to x

13.3 Kotlin Arithmetic Operators

Kotlin provides a range of operators for the purpose of creating mathematical expressions. These operators
primarily fall into the category of binary operators in that they take two operands. The exception is the unary
negative operator (-) which serves to indicate that a value is negative rather than positive. This contrasts with
the subtraction operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Kotlin arithmetic operators:

Operator Description
-(unary) Negates the value of a variable or expression
* Multiplication

87

Kotlin Operators and Expressions

/ Division

+ Addition

- Subtraction

% Remainder/Modulo

Table 13-1
Note that multiple operators may be used in a single expression.

For example:
x =y * 10 + z - 5/ 4

13.4 Augmented Assignment Operators

In an earlier section we looked at the basic assignment operator (=). Kotlin provides a number of operators
designed to combine an assignment with a mathematical or logical operation. These are primarily of use when
performing an evaluation where the result is to be stored in one of the operands. For example, one might write
an expression as follows:

X =x +y

The above expression adds the value contained in variable x to the value contained in variable y and stores the
result in variable x. This can be simplified using the addition augmented assignment operator:

X +t=y
The above expression performs exactly the same task as x = x + y but saves the programmer some typing.

Numerous augmented assignment operators are available in Kotlin. The most frequently used of which are
outlined in the following table:

Operator Description

X+=y Add x to y and place result in x

X-=y Subtract y from x and place result in x

x*=y Multiply x by y and place result in x

x/=y Divide x by y and place result in x

X %=y Perform Modulo on x and y and place result in x

Table 13-2

13.5 Increment and Decrement Operators

Another useful shortcut can be achieved using the Kotlin increment and decrement operators (also referred to
as unary operators because they operate on a single operand). Consider the code fragment below:

x = x + 1 // Increase value of variable x by 1
x = x - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of using this approach, however, it is
quicker to use the ++ and -- operators. The following examples perform exactly the same tasks as the examples
above:

x++ // Increment x by 1

x-- // Decrement x by 1
These operators can be placed either before or after the variable name. If the operator is placed before the

88

Kotlin Operators and Expressions

variable name, the increment or decrement operation is performed before any other operations are performed
on the variable. For example, in the following code, x is incremented before it is assigned to y, leaving y with a
value of 10:

var x = 9

val y = ++x

In the next example, however, the value of x (9) is assigned to variable y before the decrement is performed. After
the expression is evaluated the value of y will be 9 and the value of x will be 8.

var x = 9

val y = x—-

13.6 Equality Operators

Kotlin also includes a set of logical operators useful for performing comparisons. These operators all return a
Boolean result depending on the result of the comparison. These operators are binary operators in that they work
with two operands.

Equality operators are most frequently used in constructing program flow control logic. For example
an if statement may be constructed based on whether one value matches another:

if x ==y {
// Perform task
}
The result of a comparison may also be stored in a Boolean variable. For example, the following code will result
in a true value being stored in the variable result:

var result: Bool
val x = 10
val y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full
set of Kotlin comparison operators:

Operator Description

X == Returns true if x is equal to y

x>y Returns true if x is greater than y

X>=y Returns true if x is greater than or equal to y
X<y Returns true if x is less than y

X<=y Returns true if x is less than or equal to y
x!l=y Returns true if x is not equal to y

Table 13-3

13.7 Boolean Logical Operators

Kotlin also provides a set of so called logical operators designed to return Boolean true or false values. These
operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!),
AND (&&) and OR (|]).

The NOT (!) operator simply inverts the current value of a Boolean variable, or the result of an expression. For

89

Kotlin Operators and Expressions

example, if a variable named flag is currently true, prefixing the variable with a ‘" character will invert the value
to false:
val flag = true // variable is true

val secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true, otherwise it returns false. For
example, the following code evaluates to true because at least one of the expressions either side of the OR
operator is true:
if ((10 < 20) || (20 < 10)) {

print ("Expression is true")

}

The AND (&&) operator returns true only if both operands evaluate to be true. The following example will
return false because only one of the two operand expressions evaluates to true:

if ((10 < 20) && (20 < 10)) {

print ("Expression is true")

}
13.8 Range Operator

Kotlin includes a useful operator that allows a range of values to be declared. As will be seen in later chapters,
this operator is invaluable when working with looping in program logic.

The syntax for the range operator is as follows:
X..y

This operator represents the range of numbers starting at x and ending at y where both x and y are included
within the range (referred to as a closed range). The range operator 5..8, for example, specifies the numbers 5,
6,7 and 8.

13.9 Bitwise Operators

As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros,
each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Kotlin
provides a range of bit operators.

Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C and Java will find
nothing new in this area of the Kotlin language syntax. For those unfamiliar with binary numbers, now may be a
good time to seek out reference materials on the subject in order to understand how ones and zeros are formed
into bytes to form numbers. Other authors have done a much better job of describing the subject than we can
do within the scope of this book.

For the purposes of this exercise we will be working with the binary representation of two numbers. First, the
decimal number 171 is represented in binary as:

10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to look at the Kotlin bitwise operators:

90

Kotlin Operators and Expressions

13.9.1 Bitwise Inversion

The Bitwise inversion (also referred to as NOT) is performed using the inv() operation and has the effect of
inverting all of the bits in a number. In other words, all the zeros become ones and all the ones become zeros.
Taking our example 3 number, a Bitwise NOT operation has the following result:

00000011 NOT

11111100

The following Kotlin code, therefore, results in a value of -4:
val vy = 3

val z = y.inv ()

print ("Result is $z")

13.9.2 Bitwise AND

The Bitwise AND is performed using the and() operation. It makes a bit by bit comparison of two numbers. Any
corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing in
the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result.
Taking our two example numbers, this would appear as follows:

10101011 AND

00000011

00000011

As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in
Kotlin code, therefore, we should find that the result is 3 (00000011):

val x = 171

val y = 3

val z = x.and(y)

print ("Result is $z")

13.9.3 Bitwise OR

The bitwise OR also performs a bit by bit comparison of two binary sequences. Unlike the AND operation, the
OR places a 1 in the result if there is a 1 in the first or second operand. Using our example numbers, the result
will be as follows:

10101011 OR
00000011

10101011

If we perform this operation in Kotlin using the or() operation the result will be 171:
val x = 171
val y = 3

val z = x.o0r(y)
print ("Result is $z")

91

Kotlin Operators and Expressions

13.9.4 Bitwise XOR

The bitwise XOR (commonly referred to as exclusive OR and performed using the xor() operation) performs a
similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions
in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For
example:

10101011 XOR

00000011

10101000

The result in this case is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some
Kotlin code:

val x = 171

val y = 3

val z = x.xor(y)

print ("Result is $z")

When executed, we get the following output from print:
Result is 168

13.9.5 Bitwise Left Shift

The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an
integer one position to the left has the effect of doubling the value.

As the bits are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that
once the left most (high order) bits are shifted beyond the size of the variable containing the value, those high
order bits are discarded:

10101011 Left Shift one bit

101010110

In Kotlin the bitwise left shift operator is performed using the shi() operation, passing through the number of bit
positions to be shifted. For example, to shift left by 1 bit:

val x = 171

val z = x.shl (1)

print ("Result is $z")

When compiled and executed, the above code will display a message stating that the result is 342 which, when
converted to binary, equates to 101010110.

13.9.6 Bitwise Right Shift

A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite
direction. Shifting an integer one position to the right has the effect of halving the value.

Note that since we are shifting to the right there is no opportunity to retain the lower most bits regardless of the
data type used to contain the result. As a result the low order bits are discarded. Whether or not the vacated high
order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive and
negative numbers is set or not.

92

Kotlin Operators and Expressions

10101011 Right Shift one bit

01010101

The bitwise right shift is performed using the shr() operation passing through the shift count:
val x = 171

val z = x.shr(l)

print ("Result is $z")

When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

13.10 Summary

Operators and expressions provide the underlying mechanism by which variables and constants are manipulated
and evaluated within Kotlin code. This can take the simplest of forms whereby two numbers are added using the
addition operator in an expression and the result stored in a variable using the assignment operator. Operators
fall into a range of categories, details of which have been covered in this chapter.

93

Chapter 14

14. Kotlin Flow Control

Regardless of the programming language used, application development is largely an exercise in applying logic,
and much of the art of programming involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed, how many times it is executed and, conversely, which code
gets by-passed when the program is executing. This is often referred to as flow control since it controls the
flow of program execution. Flow control typically falls into the categories of looping control (how often code is
executed) and conditional flow control (whether or not code is executed). This chapter is intended to provide an
introductory overview of both types of flow control in Kotlin.

14.1 Looping Flow Control
This chapter will begin by looking at flow control in the form of loops. Loops are essentially sequences of Kotlin

statements which are to be executed repeatedly until a specified condition is met. The first looping statement we
will explore is the for loop.

14.1.1 The Kotlin for-in Statement

The for-in loop is used to iterate over a sequence of items contained in a collection or number range.

The syntax of the for-in loop is as follows:
for variable name in collection or range {
// code to be executed

}

In this syntax, variable name is the name to be used for a variable that will contain the current item from the
collection or range through which the loop is iterating. The code in the body of the loop will typically use this
name as a reference to the current item in the loop cycle. The collection or range references the item through
which the loop is iterating. This could, for example, be an array of string values, a range operator or even a string
of characters.

Consider, for example, the following for-in loop construct:
for (index in 1..5) {
println ("Value of index is $index")

}

The loop begins by stating that the current item is to be assigned to a constant named index. The statement then
declares a closed range operator to indicate that the for loop is to iterate through a range of numbers, starting at
1 and ending at 5. The body of the loop simply prints out a message to the console indicating the current value
assigned to the index constant, resulting in the following output:

Value of index is
Value of index is
Value of index is

Value of index is

g w N

Value of index is

The for-in loop is of particular benefit when working with collections such as arrays. In fact, the for-in loop can
be used to iterate through any object that contains more than one item. The following loop, for example, outputs

95

Kotlin Flow Control

each of the characters in the specified string:
for (index in "Hello") {
println("Value of index is $index")
}
The operation of a for-in loop may be configured using the downTo and until functions. The downTo function

causes the for loop to work backwards through the specified collection until the specified number is reached.
The following for loop counts backwards from 100 until the number 90 is reached:

for (index in 100 downTo 90) {
print ("$index.. ")
}
When executed, the above loop will generate the following output:
100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..
The until function operates in much the same way with the exception that counting starts from the bottom of

the collection range and works up until (but not including) the specified end point (a concept referred to as a
half closed range):

for (index in 1 until 10) {
print ("$index.. ")
}
The output from the above code will range from the start value of 1 through to 9:
1..2.. 3..4..5.. 6.. 7.. 8.. 9..

The increment used on each iteration through the loop may also be defined using the step function as follows:
for (index in 0 until 100 step 10) {
print ("$index.. ")
}
The above code will result in the following console output:
0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..

14.1.2 The while Loop

The Kotlin for loop described previously works well when it is known in advance how many times a particular
task needs to be repeated in a program. There will, however, be instances where code needs to be repeated until
a certain condition is met, with no way of knowing in advance how many repetitions are going to be needed to
meet that criteria. To address this need, Kotlin includes the while loop.

Essentially, the while loop repeats a set of tasks while a specified condition is met. The while loop syntax is
defined as follows:

while condition {
// Kotlin statements go here

}

In the above syntax, condition is an expression that will return either true or false and the // Kotlin statements go
here comment represents the code to be executed while the condition expression is true. For example:

var myCount = 0
while (myCount < 100) {

96

Kotlin Flow Control

myCount++
println (myCount)
}

In the above example, the while expression will evaluate whether the myCount variable is less than 100. If it is
already greater than 100, the code in the braces is skipped and the loop exits without performing any tasks.

If, on the other hand, myCount is not greater than 100 the code in the braces is executed and the loop returns to
the while statement and repeats the evaluation of myCount. This process repeats until the value of myCount is
greater than 100, at which point the loop exits.

14.1.3 The do ... while loop

It is often helpful to think of the do ... while loop as an inverted while loop. The while loop evaluates an expression
before executing the code contained in the body of the loop. If the expression evaluates to false on the first check
then the code is not executed. The do ... while loop, on the other hand, is provided for situations where you know
that the code contained in the body of the loop will always need to be executed at least once. For example, you
may want to keep stepping through the items in an array until a specific item is found. You know that you have
to at least check the first item in the array to have any hope of finding the entry you need. The syntax for the do
... while loop is as follows:

do {

// Kotlin statements here

} while conditional expression

In the do ... while example below the loop will continue until the value of a variable named i equals 0:

var 1 = 10

do {
i__
println (i)
} while (i > 0)
14.1.4 Breaking from Loops

Having created a loop, it is possible that under certain conditions you might want to break out of the loop before
the completion criteria have been met (particularly if you have created an infinite loop). One such example
might involve continually checking for activity on a network socket. Once activity has been detected it will most
likely be necessary to break out of the monitoring loop and perform some other task.

For the purpose of breaking out of a loop, Kotlin provides the break statement which breaks out of the current
loop and resumes execution at the code directly after the loop. For example:

var j = 10
for (i in 0..100)

{

if (3 > 100) {
break

97

Kotlin Flow Control
println("j = $3")
}

In the above example the loop will continue to execute until the value of j exceeds 100 at which point the loop
will exit and execution will continue with the next line of code after the loop.

14.1.5 The continue Statement

The continue statement causes all remaining code statements in a loop to be skipped, and execution to be
returned to the top of the loop. In the following example, the println function is only called when the value of

variable i is an even number:

var 1 =1

while (i < 20)
{

i+=1

if (1 $ 2 !'=0) {
continue

}

println("i = $i")

}

The continue statement in the above example will cause the println call to be skipped unless the value of i can be
divided by 2 with no remainder. If the continue statement is triggered, execution will skip to the top of the while
loop and the statements in the body of the loop will be repeated (until the value of i exceeds 19).

14.1.6 Break and Continue Labels

Kotlin expressions may be assigned a label by preceding the expression with a label name followed by the @ sign.
This label may then be referenced when using break and continue statements to designate where execution is to
resume. This is particularly useful when breaking out of nested loops. The following code contains a for loop
nested within another for loop. The inner loop contains a break statement which is executed when the value of

j reaches 10:
for (i in 1..100) {

println ("Outer loop i = $i")

for (j in 1..100) {
println("Inner loop j = $3j")
if (J == 10) break

}

As currently implemented, the break statement will exit the inner for loop but execution will resume at the top
of the outer for loop. Suppose, however, that the break statement is required to also exit the outer loop. This can
be achieved by assigning a label to the outer loop and referencing that label with the break statement as follows:

outerloop@ for (i in 1..100) {

98

Kotlin Flow Control

println ("Outer loop i = $i")

for (j in 1..100) {
println("Inner loop j = $3")
if (3 == 10) break@outerloop

}

Now when the value assigned to variable j reaches 10 the break statement will break out of both loops and
resume execution at the line of code immediately following the outer loop.

14.2 Conditional Flow Control

In the previous chapter we looked at how to use logical expressions in Kotlin to determine whether something
is true or false. Since programming is largely an exercise in applying logic, much of the art of programming
involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets
executed and, conversely, which code gets by-passed when the program is executing.

14.2.1 Using the if Expressions
The if expression is perhaps the most basic of flow control options available to the Kotlin programmer.

Programmers who are familiar with C, Swift, C++ or Java will immediately be comfortable using Kotlin if
statements, although there are some subtle differences.

The basic syntax of the Kotlin if expression is as follows:
if (boolean expression) {

// Kotlin code to be performed when expression evaluates to true

}

Unlike some other programming languages, it is important to note that the braces are optional in Kotlin if only
one line of code is associated with the if expression. In fact, in this scenario, the statement is often placed on the
same line as the if expression.

Essentially if the Boolean expression evaluates to true then the code in the body of the statement is executed. If,
on the other hand, the expression evaluates to false the code in the body of the statement is skipped.

For example, if a decision needs to be made depending on whether one value is greater than another, we would
write code similar to the following:

val x = 10

if (x > 9) println("x is greater than 9!")
Clearly, x is indeed greater than 9 causing the message to appear in the console panel.

At this point it is important to notice that we have been referring to the if expression instead of the if statement.
The reason for this is that unlike the if statement in other programming languages, the Kotlin if returns a result.
This allows if constructs to be used within expressions. As an example, a typical if expression to identify the
largest of two numbers and assign the result to a variable might read as follows:
if (x > vy)

largest = x
else

99

Kotlin Flow Control
largest = vy

The same result can be achieved using the if statement within an expression using the following syntax:

variable = if (condition) return val 1 else return val 2

The original example can, therefore be re-written as follows:

val largest = if (x > y) x else y

The technique is not limited to returning the values contained within the condition. The following example is
also a valid use of if in an expression, in this case assigning a string value to the variable:

val largest = if (x > y) "x is greatest" else "y is greatest"

println(largest)

For those familiar with programming languages such as Java, this feature allows code constructs similar to
ternary statements to be implemented in Kotlin.

14.2.2 Using if ... else ... Expressions
The next variation of the if expression allows us to also specify some code to perform if the expression in the if
expression evaluates to false. The syntax for this construct is as follows:
if (boolean expression) {
// Code to be executed if expression is true
} else {

// Code to be executed if expression is false

}

The braces are, once again, optional if only one line of code is to be executed.

Using the above syntax, we can now extend our previous example to display a different message if the comparison
expression evaluates to be false:

val x = 10

if (x > 9) println("x is greater than 9!")

else println("x is less than 9!")
In this case, the second println statement will execute if the value of x was less than 9.

14.2.3 Using if ... else if ... Expressions

So far we have looked at if statements which make decisions based on the result of a single logical expression.
Sometimes it becomes necessary to make decisions based on a number of different criteria. For this purpose, we
can use the if ... else if ... construct, an example of which is as follows:

var x = 9

if (x == 10) println("x is 10")
else if (x == 9) println("x is 9")
else 1if (x == 8) println("x is 8")
else println("x is less than 8")

}
14.2.4 Using the when Statement

The Kotlin when statement provides a cleaner alternative to the if ... else if ... construct and uses the following
syntax:

100

Kotlin Flow Control

when (value) {
matchl -> // code to be executed on match

match2 -> // code to be executed on match

else -> // default code to executed if no match

}
Using this syntax, the previous if ... else if ... construct can be rewritten to use the when statement:
when (x) {

10 -> println ("x is 10")

9 -> println("x is 9")

8 -> println("x is 8")

else -> println("x is less than 8")
}

The when statement is similar to the switch statement found in many other programming languages.

14.3 Summary

The term flow control is used to describe the logic that dictates the execution path that is taken through the
source code of an application as it runs. This chapter has looked at the two types of flow control provided by
Kotlin (looping and conditional) and explored the various Kotlin constructs that are available to implement

both forms of flow control logic.

101

Chapter 15

15. An Overview of Kotlin Functions
and Lambdas

Kotlin functions and lambdas are a vital part of writing well-structured and efficient code and provide a way to
organize programs while avoiding code repetition. In this chapter we will look at how functions and lambdas
are declared and used within Kotlin.

15.1 What is a Function?

A function is a named block of code that can be called upon to perform a specific task. It can be provided data
on which to perform the task and is capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Kotlin program, the code to perform the arithmetic
can be placed in a function. The function can be programmed to accept the values on which the arithmetic
is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the
program code where the calculation is required the function is simply called, parameter values passed through
as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however,
a subtle difference. The values that a function is able to accept when it is called are referred to as parameters. At
the point that the function is actually called and passed those values, however, they are referred to as arguments.
15.2 How to Declare a Kotlin Function

A Kotlin function is declared using the following syntax:

fun <function name> (<para name>: <para type>, <para name>: <para type>, ...):
<return type> {

// Function code

}

This combination of function name, parameters and return type are referred to as the function signature or type.
Explanations of the various fields of the function declaration are as follows:

o fun - The prefix keyword used to notify the Kotlin compiler that this is a function.

o <function name> - The name assigned to the function. This is the name by which the function will be
referenced when it is called from within the application code.

o <para name> - The name by which the parameter is to be referenced in the function code.
« <para type> - The type of the corresponding parameter.

o <return type> - The data type of the result returned by the function. If the function does not return a result
then no return type is specified.

« Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result and simply displays a message:
fun sayHello () {
103

An Overview of Kotlin Functions and Lambdas

println("Hello")
}
The following sample function, on the other hand, takes an integer and a string as parameters and returns a
string result:
fun buildMessageFor (name: String, count: Int): String {

return ("$name, you are customer number S$count")

)
15.3 Calling a Kotlin Function

Once declared, functions are called using the following syntax:
<function name> (<argl>, <arg2>, ...)
Each argument passed through to a function must match the parameters the function is configured to accept.

For example, to call a function named sayHello that takes no parameters and returns no value, we would write
the following code:

sayHello ()

In the case of a message that accepts parameters, the function could be called as follows:
buildMessageFor ("John", 10)

15.4 Single Expression Functions

When a function contains a single expression, it is not necessary to include the braces around the expression.
All that is required is an equals sign (=) after the function declaration followed by the expression. The following
function contains a single expression declared in the usual way:

fun multiply(x: Int, y: Int): Int {
return x * y
}
Below is the same function expressed as a single line expression:
fun multiply(x: Int, y: Int): Int = x * vy
When using single line expressions, the return type may be omitted in situations where the compiler is able to
infer the type returned by the expression making for even more compact code:

fun multiply(x: Int, y: Int) = x * vy

15.5 Local Functions

A local function is a function that is embedded within another function. In addition, a local function has access
to all of the variables contained within the enclosing function:

fun main(args: Array<String>) {

val name = "John"

val count = 5
fun displayString() {

for (index in 0..count) {

println (name)

104

An Overview of Kotlin Functions and Lambdas

displayString ()
}

15.6 Handling Return Values

To call a function named buildMessage that takes two parameters and returns a result, on the other hand, we
might write the following code:

val message = buildMessageFor ("John", 10)

To improve code readability, the parameter names may also be specified when making the function call:
val message = buildMessageFor (name = "John", count = 10)

In the above examples, we have created a new variable called message and then used the assignment operator (=)
to store the result returned by the function.

15.7 Declaring Default Function Parameters

Kotlin provides the ability to designate a default parameter value to be used in the event that the value is not
provided as an argument when the function is called. This simply involves assigning the default value to the
parameter when the function is declared.

To see default parameters in action the buildMessageFor function will be modified so that the string “Customer”
is used as a default in the event that a customer name is not passed through as an argument. Similarly, the count
parameter is declared with a default value of 0:

fun buildMessageFor (name: String = "Customer", count: Int = 0): String {

return ("$name, you are customer number S$count")

}

When parameter names are used when making the function call, any parameters for which defaults have been
specified may be omitted. The following function call, for example, omits the customer name argument but still
compiles because the parameter name has been specified for the second argument:

val message = buildMessageFor (count = 10)

If parameter names are not used within the function call, however, only the trailing arguments may be omitted:

val message = buildMessageFor ("John") // Valid
val message = buildMessageFor (10) // Invalid

15.8 Variable Number of Function Parameters

It is not always possible to know in advance the number of parameters a function will need to accept when it is
called within application code. Kotlin handles this possibility through the use of the vararg keyword to indicate
that the function accepts an arbitrary number of parameters of a specified data type. Within the body of the
function, the parameters are made available in the form of an array object. The following function, for example,
takes as parameters a variable number of String values and then outputs them to the console panel:
fun displayStrings(vararg strings: String)
{

for (string in strings) {

println(string)

displayStrings ("one", "two", "three", "four")

105

An Overview of Kotlin Functions and Lambdas
Kotlin does not permit multiple vararg parameters within a function and any single parameters supported by
the function must be declared before the vararg declaration:
fun displayStrings(name: String, vararg strings: String)
{
for (string in strings) {

println(string)

}
15.9 Lambda Expressions

Having covered the basics of functions in Kotlin it is now time to look at the concept of lambda expressions.
Essentially, lambdas are self-contained blocks of code. The following code, for example, declares a lambda,
assigns it to a variable named sayHello and then calls the function via the lambda reference:

val sayHello = { println("Hello") }
sayHello ()
Lambda expressions may also be configured to accept parameters and return results. The syntax for this is as
follows:
{<para name>: <para type>, <para name> <para type>, ... —>
// Lambda expression here

}

The following lambda expression, for example, accepts two integer parameters and returns an integer result:

val multiply = { vall: Int, wval2: Int -> vall * val2 }
val result = multiply (10, 20)

Note that the above lambda examples have assigned the lambda code block to a variable. This is also possible
when working with functions. Of course, the following syntax will execute the function and assign the result of
that execution to a variable, instead of assigning the function itself to the variable:

val myvar = myfunction ()

To assign a function reference to a variable, simply remove the parentheses and prefix the function name with
double colons (::) as follows. The function may then be called simply by referencing the variable name:

val mavar = ::myfunction

myvar ()

A lambda block may be executed directly by placing parentheses at the end of the expression including any
arguments. The following lambda directly executes the multiplication lambda expression multiplying 10 by 20.
val result = { vall: Int, val2: Int -> vall * val2 } (10, 20)

The last expression within a lambda serves as the expressions return value (hence the value of 200 being assigned
to the result variable in the above multiplication examples). In fact, unlike functions, lambdas do not support
the return statement. In the absence of an expression that returns a result (such as an arithmetic or comparison

expression), simply declaring the value as the last item in the lambda will cause that value to be returned. The
following lambda returns the Boolean true value after printing a message:

val result = { println("Hello"); true } ()

Similarly, the following lambda simply returns a string literal:

val nextmessage = { println("Hello"); "Goodbye" 1} ()

106

An Overview of Kotlin Functions and Lambdas

A particularly useful feature of lambdas and the ability to create function references is that they can be both
passed to functions as arguments and returned as results. This concept, however, requires an understanding of
function types and higher-order functions.

15.10 Higher-order Functions

On the surface, lambdas and function references do not seem to be particularly compelling features. The
possibilities that these features offer become more apparent, however, when we consider that lambdas and
function references have the same capabilities of many other data types. In particular, these may be passed
through as arguments to another function, or even returned as a result from a function.

A function that is capable of receiving a function or lambda as an argument, or returning one as a result is
referred to as a higher-order function.

Before we look at what is, essentially, the ability to plug one function into another, it is first necessary to explore
the concept of function types. The type of a function is dictated by a combination of the parameters it accepts and
the type of result it returns. A function which accepts an Int and a Double as parameters and returns a String
result for example is considered to have the following function type:

(Int, Double) -> String

In order to accept a function as a parameter, the receiving function simply declares the type of the function it is
able to accept.

For the purposes of an example, we will begin by declaring two unit conversion functions:

fun inchesToFeet (inches: Double): Double {
return inches * 0.0833333

fun inchesToYards (inches: Double): Double {
return inches * 0.0277778
}

The example now needs an additional function, the purpose of which is to perform a unit conversion and print
the result in the console panel. This function needs to be as general purpose as possible, capable of performing
a variety of different measurement unit conversions. In order to demonstrate functions as parameters, this
new function will take as a parameter a function type that matches both the inchesToFeet and inchesToYards
functions together with a value to be converted. Since the type of these functions is equivalent to (Double) ->
Double, our general purpose function can be written as follows:

fun outputConversion (converterFunc: (Double) -> Double, value: Double) ({
val result = converterFunc (value)

println ("Result of conversion is S$result")

}

When the outputConversion function is called, it will need to be passed a function matching the declared type.
That function will be called to perform the conversion and the result displayed in the console panel. This means
that the same function can be called to convert inches to both feet and yards, simply by “plugging in” the
appropriate converter function as a parameter, keeping in mind that it is the function reference that is being
passed as an argument:

outputConversion (::inchesToFeet, 22.45)

outputConversion (::inchesToYards, 22.45)

Functions can also be returned as a data type simply by declaring the type of the function as the return type.
107

An Overview of Kotlin Functions and Lambdas

The following function is configured to return either our inchesToFeet or inchesToYards function type (in other
words a function which accepts and returns a Double value) based on the value of a Boolean parameter:
fun decideFunction (feet: Boolean): (Double) -> Double
{
if (feet) {

return ::inchesToFeet
} else {
return ::inchesToYards

}

When called, the function will return a function reference which can then be used to perform the conversion:
val converter = decideFunction (true)
val result = converter (22.4)

println (result)

15.11 Summary

Functions and lambda expressions are self-contained blocks of code that can be called upon to perform a
specific task and provide a mechanism for structuring code and promoting reuse. This chapter has introduced
the basic concepts of function and lambda declaration and implementation in addition to the use of higher-
order functions that allow lambdas and functions to be passed as arguments and returned as results.

108

Chapter 16

16. The Basics of Object Oriented
Programming in Kotlin

Kotlin provides extensive support for developing object-oriented applications. The subject area of object oriented
programming is, however, large. As such, a detailed overview of object oriented software development is beyond
the scope of this book. Instead, we will introduce the basic concepts involved in object oriented programming
and then move on to explaining the concept as it relates to Kotlin application development.

16.1 What is an Object?

Objects (also referred to as instances) are self-contained modules of functionality that can be easily used, and
re-used as the building blocks for a software application.

Objects consist of data variables (called properties) and functions (called methods) that can be accessed and
called on the object or instance to perform tasks and are collectively referred to as class members.

16.2 What is a Class?

Much as a blueprint or architect’s drawing defines what an item or a building will look like once it has been
constructed, a class defines what an object will look like when it is created. It defines, for example, what the
methods will do and what the properties will be.

16.3 Declaring a Kotlin Class

Before an object can be instantiated, we first need to define the class ‘blueprint’ for the object. In this chapter
we will create a bank account class to demonstrate the basic concepts of Kotlin object oriented programming.
In declaring a new Kotlin class we specify an optional parent class from which the new class is derived and also
define the properties and methods that the class will contain. The basic syntax for a new class is as follows:

class NewClassName: ParentClass {
// Properties
// Methods

}

The Properties section of the declaration defines the variables and constants that are to be contained within the
class. These are declared in the same way that any other variable would be declared in Kotlin.

The Methods sections define the methods that are available to be called on the class and instances of the class.
These are essentially functions specific to the class that perform a particular operation when called upon and
will be described in greater detail later in this chapter.

To create an example outline for our BankAccount class, we would use the following:

class BankAccount {

}

Now that we have the outline syntax for our class, the next step is to add some properties to it.

109

The Basics of Object Oriented Programming in Kotlin

16.4 Adding Properties to a Class

A key goal of object oriented programming is a concept referred to as data encapsulation. The idea behind data
encapsulation is that data should be stored within classes and accessed only through methods defined in that
class. Data encapsulated in a class are referred to as properties or instance variables.

Instances of our BankAccount class will be required to store some data, specifically a bank account number and
the balance currently held within the account. Properties are declared in the same way any other variables are
declared in Kotlin. We can, therefore, add these variables as follows:

class BankAccount {
var accountBalance: Double = 0.0
var accountNumber: Int = 0

}

Having defined our properties, we can now move on to defining the methods of the class that will allow us to
work with our properties while staying true to the data encapsulation model.

16.5 Defining Methods

The methods of a class are essentially code routines that can be called upon to perform specific tasks within the
context of that class.

Methods are declared within the opening and closing braces of the class to which they belong and are declared
using the standard Kotlin function declaration syntax.

For example, the declaration of a method to display the account balance in our example might read as follows:

class BankAccount {
var accountBalance: Double = 0.0

var accountNumber: Int = 0

fun displayBalance ()
{

println ("Number $accountNumber")

println ("Current balance is $accountBalance")

}
16.6 Declaring and Initializing a Class Instance

So far all we have done is define the blueprint for our class. In order to do anything with this class, we need to
create instances of it. The first step in this process is to declare a variable to store a reference to the instance when
it is created. We do this as follows:

val accountl: BankAccount = BankAccount ()

When executed, an instance of our BankAccount class will have been created and will be accessible via the
accountl variable. Of course, the Kotlin compiler will be able to use inference here, making the type declaration
optional:

val accountl = BankAccount ()

16.7 Primary and Secondary Constructors

A class will often need to perform some initialization tasks at the point of creation. These tasks can be
implemented using constructors within the class. In the case of the BankAccount class, it would be useful to be

110

The Basics of Object Oriented Programming in Kotlin

able to initialize the account number and balance properties with values when a new class instance is created. To
achieve this, a secondary constructor can be declared within the class header as follows:

class BankAccount {

var accountBalance: Double = 0.0

var accountNumber: Int = 0

constructor (number: Int, balance: Double) {
accountNumber = number
accountBalance = balance

}

When creating an instance of the class, it will now be necessary to provide initialization values for the account
number and balance properties as follows:

val accountl: BankAccount = BankAccount (456456234, 342.98)

A class can contain multiple secondary constructors allowing instances of the class to be initiated with different
value sets. The following variation of the BankAccount class includes an additional secondary constructor
for use when initializing an instance with the customer’s last name in addition to the corresponding account
number and balance:

class BankAccount {

var accountBalance: Double = 0.0
var accountNumber: Int = 0

var lastName: String = ""

constructor (number: Int,
balance: Double) {
accountNumber = number

accountBalance = balance

constructor (number: Int,
balance: Double,
name: String) {
accountNumber = number
accountBalance = balance

lastName = name

}

Instances of the BankAccount may now also be created as follows:

111

The Basics of Object Oriented Programming in Kotlin

val accountl: BankAccount = BankAccount (456456234, 342.98, "Smith")

It is also possible to use a primary constructor to perform basic initialization tasks. The primary constructor for
a class is declared within the class header as follows:

class BankAccount (val accountNumber: Int, var accountBalance: Double) {

fun displayBalance ()
{
println ("Number S$accountNumber")

println ("Current balance is $accountBalance")

}

Note that now both properties have been declared in the primary constructor, it is no longer necessary to also
declare the variables within the body of the class. Since the account number will now not change after an instance
of the class has been created, this property is declared as being immutable using the val keyword.

Although a class may only contain one primary constructor, Kotlin allows multiple secondary constructors to be
declared in addition to the primary constructor. In the following class declaration the constructor that handles
the account number and balance is declared as the primary constructor while the variation that also accepts the
user’s last name is declared as a secondary constructor:

class BankAccount (val accountNumber: Int, wvar accountBalance: Double) {
var lastName: String = ""

constructor (accountNumber: Int,
accountBalance: Double,

name: String) : this(accountNumber, accountBalance) {

lastName = name

}

In the above example there are two key points which need to be noted. First, since the lastName property is
referenced by a secondary constructor, the variable is not handled automatically by the primary constructor and
must be declared within the body of the class and initialized within the constructor.

var lastName: String = ""

lastName = name

Second, although the accountNumber and accountBalance properties are accepted as parameters to the
secondary constructor, the variable declarations are still handled by the primary constructor and do not need
to be declared. To associate the references to these properties in the secondary constructor with the primary
constructor, however, they must be linked back to the primary constructor using the this keyword:

this (accountNumber, accountBalance)...

112

The Basics of Object Oriented Programming in Kotlin

16.8 Initializer Blocks

In addition to the primary and secondary constructors, a class may also contain initializer blocks which are called
after the constructors. Since a primary constructor cannot contain any code, these methods are a particularly
useful location for adding code to perform initialization tasks when an instance of the class is created. Initializer
blocks are declared using the init keyword with the initialization code enclosed in braces:

class BankAccount (val accountNumber: Int, var accountBalance: Double) {

init {
// Initialization code goes here

)
16.9 Calling Methods and Accessing Properties

Now is probably a good time to recap what we have done so far in this chapter. We have now created a new
Kotlin class named BankAccount. Within this new class we declared primary and secondary constructors to
accept and initialize account number, balance and customer name properties. In the preceding sections we also
covered the steps necessary to create and initialize an instance of our new class. The next step is to learn how
to call the instance methods and access the properties we built into our class. This is most easily achieved using
dot notation.

Dot notation involves accessing a property, or calling a method by specifying a class instance followed by a dot
followed in turn by the name of the property or method:

classInstance.propertyname
classInstance.methodname ()
For example, to get the current value of our accountBalance instance variable:

val balancel = accountl.accountBalance

Dot notation can also be used to set values of instance properties:

accountl.accountBalance = 6789.98

The same technique is used to call methods on a class instance. For example, to call the displayBalance method
on an instance of the BankAccount class:

accountl.displayBalance ()

16.10 Custom Accessors

When accessing the accountBalance property in the previous section, the code is making use of property
accessors that are provided automatically by Kotlin. In addition to these default accessors it is also possible
to implement custom accessors that allow calculations or other logic to be performed before the property is
returned or set.

Custom accessors are implemented by creating getter and optional corresponding setter methods containing
the code to perform any tasks before returning the property. Consider, for example, that the BankAcccount class
might need an additional property to contain the current balance less any recent banking fees. Rather than use
a standard accessor, it makes more sense to use a custom accessor which calculates this value on request. The
modified BankAccount class might now read as follows:

class BankAccount (val accountNumber: Int, var accountBalance: Double) {

113

The Basics of Object Oriented Programming in Kotlin

val fees: Double = 25.00

val balancelessFees: Double

get() {
return accountBalance - fees

fun displayBalance ()
{

println ("Number S$accountNumber")

println ("Current balance is $accountBalance")

}

The above code adds a getter that returns a computed property based on the current balance minus a fee amount.
An optional setter could also be declared in much the same way to set the balance value less fees:

val fees: Double = 25.00

var balancelessFees: Double
get () {
return accountBalance - fees
}
set (value) {
accountBalance = value - fees

}

The new setter takes as a parameter a Double value from which it deducts the fee value before assigning the
result to the current balance property. Regardless of the fact that these are custom accessors, they are accessed in
the same way as stored properties using dot-notation. The following code gets the current balance less the fees
value before setting the property to a new value:

val balancel = accountl.balanceLessFees

accountl.balancelessFees = 12123.12

16.11 Nested and Inner Classes

Kotlin allows one class to be nested within another class. In the following code, for example, ClassB is nested
inside ClassA:
class ClassA {
class ClassB {
}
}

In the above example, ClassB does not have access to any of the properties within the outer class. If access is
required, the nested class must be declared using the inner directive. In the example below ClassB now has access
to the myProperty variable belonging to ClassA:

114

The Basics of Object Oriented Programming in Kotlin

class ClassA {
var myProperty: Int = 10

inner class ClassB {
val result = 20 + myProperty

)
16.12 Companion Objects

A Kotlin class can also contain a companion object. A companion object contains methods and variables that are
common to all instances of the class. In addition to being accessible via class instances, these properties are also
accessible at the class level (in other words without the need to create an instance of the class).

The syntax for declaring a companion object within a class is as follows:
class ClassName: ParentClass {

// Properties
// Methods

companion object {
// properties
// methods

}
To experience a simple companion object example in action, enter the following into the Kotlin online

playground at https://try.kotl.in:
class MyClass {

fun showCount () {
println ("counter = " + counter)

companion object {
var counter = 1

fun counterUp() {
counter += 1

fun main(args: Array<String>) {
println (MyClass.counter)

}

The class contains a companion object consisting of a counter variable and a method to increment that variable.
The class also contains a method to display the current counter value. The main() method simply displays the

115

The Basics of Object Oriented Programming in Kotlin

current value of the counter variable, but does so by calling the method on the class itself instead of a class
instance:

println (MyClass.counter)

Modify the main() method to also increment the counter, displaying the current value both before and after:
fun main(args: Array<String>) {

println (MyClass.counter)

MyClass.counterUp ()

println (MyClass.counter)

}

Run the code and verify that the following output appears in the console:

1
2

Next, add some code to create an instance of MyClass before making a call to the showCount() method:
fun main(args: Array<String>) {

println (MyClass.counter)

MyClass.counterUp ()

println (MyClass.counter)

val instanceA = MyClass()
instanceA.showCount ()

}

When executed, the following output will appear in the console:
1
2

counter = 2

Clearly, the class has access to the variables and methods contained within the companion object.

Another useful aspect of companion objects is that all instances of the containing class see the same companion
object, including current variable values. To see this in action, create a second instance of MyClass and call the
showCount() method on that instance:
fun main(args: Array<String>) {

println (MyClass.counter)

MyClass.counterUp ()

println (MyClass.counter)

val instanceA = MyClass()

instanceA.showCount ()

val instanceB = MyClass()
instanceB.showCount ()
}
When run, the code will produce the following console output:
1

116

The Basics of Object Oriented Programming in Kotlin

2
counter = 2
counter = 2

Note that both instances return the incremented value of 2, showing that the two class instances are sharing the
same companion object data.

16.13 Summary

Object oriented programming languages such as Kotlin encourage the creation of classes to promote code reuse
and the encapsulation of data within class instances. This chapter has covered the basic concepts of classes and
instances within Kotlin together with an overview of primary and secondary constructors, initializer blocks,
properties, methods, companion objects and custom accessors.

117

Chapter 17

17. An Introduction to Kotlin
Inheritance and Subclassing

In “The Basics of Object Oriented Programming in Kotlin” we covered the basic concepts of object-oriented
programming and worked through an example of creating and working with a new class using Kotlin. In that
example, our new class was not specifically derived from a base class (though in practice, all Kotlin classes
are ultimately derived from the Any class). In this chapter we will provide an introduction to the concepts of
subclassing, inheritance and extensions in Kotlin.

17.1 Inheritance, Classes and Subclasses

The concept of inheritance brings something of a real-world view to programming. It allows a class to be defined
that has a certain set of characteristics (such as methods and properties) and then other classes to be created
which are derived from that class. The derived class inherits all of the features of the parent class and typically
then adds some features of its own. In fact, all classes in Kotlin are ultimately subclasses of the Any superclass
which provides the basic foundation on which all classes are based.

By deriving classes we create what is often referred to as a class hierarchy. The class at the top of the hierarchy
is known as the base class or root class and the derived classes as subclasses or child classes. Any number of
subclasses may be derived from a class. The class from which a subclass is derived is called the parent class or
superclass.

Classes need not only be derived from a root class. For example, a subclass can also inherit from another subclass
with the potential to create large and complex class hierarchies.

In Kotlin a subclass can only be derived from a single direct parent class. This is a concept referred to as single
inheritance.

17.2 Subclassing Syntax

As a safety measure designed to make Kotlin code less prone to error, before a subclass can be derived from a
parent class, the parent class must be declared as open. This is achieved by placing the open keyword within the
class header:

open class MyParentClass {
var myProperty: Int = 0
}
With a simple class of this type, the subclass can be created as follows:

class MySubClass : MyParentClass () {

}

For classes containing primary or secondary constructors, the rules for creating a subclass are slightly more
complicated. Consider the following parent class which contains a primary constructor:

open class MyParentClass (var myProperty: Int) {

119

An Introduction to Kotlin Inheritance and Subclassing

}
In order to create a subclass of this class, the subclass declaration references any base class parameters while also
initializing the parent class using the following syntax:

class MySubClass (myProperty: Int) : MyParentClass (myProperty) ({

}

If, on the other hand, the parent class contains one or more secondary constructors, the constructors must also
be implemented within the subclass declaration and include a call to the secondary constructors of the parent
class, passing through as arguments the values passed to the subclass secondary constructor. When working
with subclasses, the parent class can be referenced using the super keyword. A parent class with a secondary
constructor might read as follows:

open class MyParentClass {

var myProperty: Int = 0

constructor (number: Int) {

myProperty = number

}

The code for the corresponding subclass would need to be implemented as follows:

class MySubClass : MyParentClass {

constructor (number: Int) : super (number)

}
If additional tasks need to be performed within the constructor of the subclass, this can be placed within curly
braces after the constructor declaration:

class MySubClass : MyParentClass {

constructor (number: Int) : super (number) {

// Subclass constructor code here

}
17.3 A Kotlin Inheritance Example

As with most programming concepts, the subject of inheritance in Kotlin is perhaps best illustrated with an
example. In “The Basics of Object Oriented Programming in Kotlin” we created a class named BankAccount
designed to hold a bank account number and corresponding current balance. The BankAccount class contained
both properties and methods. A simplified declaration for this class is reproduced below and will be used for the
basis of the subclassing example in this chapter:

class BankAccount {

var accountNumber = 0

var accountBalance = 0.0

constructor (number: Int, balance: Double) {

accountNumber = number

120

An Introduction to Kotlin Inheritance and Subclassing

accountBalance = balance

open fun displayBalance ()
{
println ("Number S$accountNumber")

println ("Current balance is SaccountBalance")

}

Though this is a somewhat rudimentary class, it does everything necessary if all you need it to do is store an
account number and account balance. Suppose, however, that in addition to the BankAccount class you also
needed a class to be used for savings accounts. A savings account will still need to hold an account number and
a current balance and methods will still be needed to access that data. One option would be to create an entirely
new class, one that duplicates all of the functionality of the BankAccount class together with the new features
required by a savings account. A more efficient approach, however, would be to create a new class that is a
subclass of the BankAccount class. The new class will then inherit all the features of the BankAccount class but
can then be extended to add the additional functionality required by a savings account. Before a subclass of the
BankAccount class can be created, the declaration needs to be modified to declare the class as open:

open class BankAccount {

To create a subclass of BankAccount that we will call SavingsAccount, we simply declare the new class, this time
specifying BankAccount as the parent class and add code to call the constructor on the parent class:
class SavingsAccount : BankAccount {
constructor (accountNumber: Int, accountBalance: Double)
super (accountNumber, accountBalance)

}

Note that although we have yet to add any properties or methods, the class has actually inherited all the methods
and properties of the parent BankAccount class. We could, therefore, create an instance of the SavingsAccount
class and set variables and call methods in exactly the same way we did with the BankAccount class in previous
examples. That said, we haven't really achieved anything unless we actually take steps to extend the class.

17.4 Extending the Functionality of a Subclass

So far we have been able to create a subclass that contains all the functionality of the parent class. In order for
this exercise to make sense, however, we now need to extend the subclass so that it has the features we need to
make it useful for storing savings account information. To do this, we simply add the properties and methods
that provide the new functionality, just as we would for any other class we might wish to create:
class SavingsAccount : BankAccount {

var interestRate: Double = 0.0

constructor (accountNumber: Int, accountBalance: Double)

super (accountNumber, accountBalance)
fun calculateInterest(): Double

{

return interestRate * accountBalance

121

An Introduction to Kotlin Inheritance and Subclassing
}
17.5 Overriding Inherited Methods

When using inheritance it is not unusual to find a method in the parent class that almost does what you need,
but requires modification to provide the precise functionality you require. That being said, it is also possible
you'll inherit a method with a name that describes exactly what you want to do, but it actually does not come
close to doing what you need. One option in this scenario would be to ignore the inherited method and write
a new method with an entirely new name. A better option is to override the inherited method and write a new
version of it in the subclass.

Before proceeding with an example, there are three rules that must be obeyed when overriding a method.
First, the overriding method in the subclass must take exactly the same number and type of parameters as the
overridden method in the parent class. Second, the new method must have the same return type as the parent
method. Finally, the original method in the parent class must be declared as open before the compiler will allow
it to be overridden.

In our BankAccount class we have a method named displayBalance that displays the bank account number
and current balance held by an instance of the class. In our SavingsAccount subclass we might also want to
output the current interest rate assigned to the account. To achieve this, we simply declare a new version of the
displayBalance method in our SavingsAccount subclass, prefixed with the override keyword:

class SavingsAccount : BankAccount {

var interestRate: Double = 0.0

constructor (accountNumber: Int, accountBalance: Double)

super (accountNumber, accountBalance)

fun calculateInterest(): Double

{

return interestRate * accountBalance

override fun displayBalance ()

{
println ("Number $accountNumber")
println("Current balance is $accountBalance")

println("Prevailing interest rate is $interestRate")

}

Before this code will compile, the displayBalance method in the BankAccount class must be declared as open:
open fun displayBalance ()
{

println ("Number S$accountNumber")

println ("Current balance is S$accountBalance")

}

It is also possible to make a call to the overridden method in the super class from within a subclass. The
displayBalance method of the super class could, for example, be called to display the account number and
balance, before the interest rate is displayed, thereby eliminating further code duplication:

122

An Introduction to Kotlin Inheritance and Subclassing

override fun displayBalance ()
{
super .displayBalance ()
println ("Prevailing interest rate is $interestRate")

)
17.6 Adding a Custom Secondary Constructor

As the SavingsAccount class currently stands, it makes a call to the secondary constructor from the parent
BankAccount class which was implemented as follows:
constructor (accountNumber: Int, accountBalance: Double)

super (accountNumber, accountBalance)

Clearly this constructor takes the necessary steps to initialize both the account number and balance properties
of the class. The SavingsAccount class, however, contains an additional property in the form of the interest
rate variable. The SavingsAccount class, therefore, needs its own constructor to ensure that the interestRate
property is initialized when instances of the class are created. Modify the SavingsAccount class one last time to
add an additional secondary constructor allowing the interest rate to also be specified when class instances are
initialized:

class SavingsAccount : BankAccount {
var interestRate: Double = 0.0

constructor (accountNumber: Int, accountBalance: Double)

super (accountNumber, accountBalance)

constructor (accountNumber: Int, accountBalance: Double, rate: Double)
super (accountNumber, accountBalance) {

interestRate = rate

)
17.7 Using the SavingsAccount Class

Now that we have completed work on our SavingsAccount class, the class can be used in some example code in
much the same way as the parent BankAccount class:

val savingsl = SavingsAccount (12311, 600.00, 0.07)

println(savingsl.calculateInterest())

savingsl.displayBalance ()

17.8 Summary

Inheritance extends the concept of object re-use in object oriented programming by allowing new classes to be
derived from existing classes, with those new classes subsequently extended to add new functionality. When an
existing class provides some, but not all, of the functionality required by the programmer, inheritance allows
that class to be used as the basis for a new subclass. The new subclass will inherit all the capabilities of the parent
class, but may then be extended to add the missing functionality.

123

Chapter 18

18. Understanding Android
Application and Activity Lifecycles

In earlier chapters we have learned that Android applications run within processes and that they are comprised
of multiple components in the form of activities, Services and Broadcast Receivers. The goal of this chapter is to
expand on this knowledge by looking at the lifecycle of applications and activities within the Android runtime
system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that both the operating system and the applications running on it
remain responsive to the user at all times. In order to achieve this, Android is given full control over the lifecycle
and state of both the processes in which the applications run, and the individual components that comprise
those applications.

An important factor in developing Android applications, therefore, is to gain an understanding of both the
application and activity lifecycle management models of Android, and the ways in which an application can
react to the state changes that are likely to be imposed upon it during its execution lifetime.

18.1 Android Applications and Resource Management

Each running Android application is viewed by the operating system as a separate process. If the system identifies
that resources on the device are reaching capacity it will take steps to terminate processes to free up memory.

When making a determination as to which process to terminate in order to free up memory, the system takes
into consideration both the priority and state of all currently running processes, combining these factors to
create what is referred to by Google as an importance hierarchy. Processes are then terminated starting with
the lowest priority and working up the hierarchy until sufficient resources have been liberated for the system to
function.

18.2 Android Process States

Processes host applications and applications are made up of components. Within an Android system, the current
state of a process is defined by the highest-ranking active component within the application that it hosts. As
outlined in Figure 18-1, a process can be in one of the following five states at any given time:

125

Understanding Android Application and Activity Lifecycles

Figure 18-1

18.2.1 Foreground Process

These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active and these are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

o Hosts an activity with which the user is currently interacting.
« Hosts a Service connected to the activity with which the user is interacting.

o Hosts a Service that has indicated, via a call to startForeground(), that termination would be disruptive to the
user experience.

« Hosts a Service executing either its onCreate(), onResume() or onStart() callbacks.

 Hosts a Broadcast Receiver that is currently executing its onReceive() method.

18.2.2 Visible Process

A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process” This is typically the case when an activity in the process is visible to the user
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

18.2.3 Service Process

Processes that contain a Service that has already been started and is currently executing.

18.2.4 Background Process

A process that contains one or more activities that are not currently visible to the user, and does not host a Service
that qualifies for Service Process status. Processes that fall into this category are at high risk of termination in the
event that additional memory needs to be freed for higher priority processes. Android maintains a dynamic list
of background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

126

Understanding Android Application and Activity Lifecycles
18.2.5 Empty Process

Empty processes no longer contain any active applications and are held in memory ready to serve as hosts for
newly launched applications. This is somewhat analogous to keeping the doors open and the engine running on
a bus in anticipation of passengers arriving. Such processes are, obviously, considered the lowest priority and are
the first to be killed to free up resources.

18.3 Inter-Process Dependencies

The situation with regard to determining the highest priority process is slightly more complex than outlined in
the preceding section for the simple reason that processes can often be inter-dependent. As such, when making
a determination as to the priority of a process, the Android system will also take into consideration whether the
process is in some way serving another process of higher priority (for example, a service process acting as the
content provider for a foreground process). As a basic rule, the Android documentation states that a process can
never be ranked lower than another process that it is currently serving.

18.4 The Activity Lifecycle

As we have previously determined, the state of an Android process is determined largely by the status of the
activities and components that make up the application that it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

18.5 The Activity Stack

For each application that is running on an Android device, the runtime system maintains an Activity Stack.
When an application is launched, the first of the application’s activities to be started is placed onto the stack.
When a second activity is started, it is placed on the top of the stack and the previous activity is pushed down.
The activity at the top of the stack is referred to as the active (or running) activity. When the active activity exits,
it is popped off the stack by the runtime and the activity located immediately beneath it in the stack becomes
the current active activity. The activity at the top of the stack might, for example, simply exit because the task
for which it is responsible has been completed. Alternatively, the user may have selected a “Back” button on the
screen to return to the previous activity, causing the current activity to be popped off the stack by the runtime
system and therefore destroyed. A visual representation of the Android Activity Stack is illustrated in Figure
18-2.

As shown in the diagram, new activities are pushed on to the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity, or
popped off the stack when it exits or the user navigates to the previous activity. In the event that resources
become constrained, the runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

127

Understanding Android Application and Activity Lifecycles

Figure 18-2

18.6 Activity States

An activity can be in one of a number of different states during the course of its execution within an application:

Active / Running - The activity is at the top of the Activity Stack, is the foreground task visible on the
device screen, has focus and is currently interacting with the user. This is the least likely activity to be
terminated in the event of a resource shortage.

Paused - The activity is visible to the user but does not currently have focus (typically because this activity
is partially obscured by the current active activity). Paused activities are held in memory, remain attached
to the window manager, retain all state information and can quickly be restored to active status when
moved to the top of the Activity Stack.

Stopped - The activity is currently not visible to the user (in other words it is totally obscured on the
device display by other activities). As with paused activities, it retains all state and member information,
but is at higher risk of termination in low memory situations.

Killed - The activity has been terminated by the runtime system in order to free up memory and is no
longer present on the Activity Stack. Such activities must be restarted if required by the application.

18.7 Configuration Changes

So far in this chapter, we have looked at two of the causes for the change in state of an Android activity, namely
the movement of an activity between the foreground and background, and termination of an activity by the
runtime system in order to free up memory. In fact, there is a third scenario in which the state of an activity can
dramatically change and this involves a change to the device configuration.

128

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape, or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of
the user interface and simply destroying and recreating impacted activities is the quickest way for an activity to
respond to the configuration change. It is, however, possible to configure an activity so that it is not restarted by
the system in response to specific configuration changes.

18.8 Handling State Change

If nothing else, it should be clear from this chapter that an application and, by definition, the components
contained therein will transition through many states during the course of its lifespan. Of particular importance
is the fact that these state changes (up to and including complete termination) are imposed upon the application
by the Android runtime subject to the actions of the user and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple,
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within in app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach, and one that is recommended by Google, involves the lifecycle classes included with the
Jetpack Android Architecture components, introduced in “Modern Android App Architecture with Jetpack” and
explained in more detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

18.9 Summary

Mobile devices are typically considered to be resource constrained, particularly in terms of on-board memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, is made up of components in
the form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities in order to free
up memory. Process state is taken into consideration by the runtime system when deciding whether a process is
a suitable candidate for termination. The state of a process is largely dependent upon the status of the activities
hosted by that process.

The key message of this chapter is that an application moves through a variety of states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes and
activities that are not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

129

Chapter 19

19. Handling Android Activity State
Changes

Based on the information outlined in the chapter entitled “Understanding Android Application and Activity
Lifecycles” it is now evident that the activities and fragments that make up an application pass through a variety
of different states during the course of the application’s lifespan. The change from one state to the other is
imposed by the Android runtime system and is, therefore, largely beyond the control of the activity itself. That
does not, however, mean that the app cannot react to those changes and take appropriate actions.

The primary objective of this chapter is to provide a high-level overview of the ways in which an activity may
be notified of a state change and to outline the areas where it is advisable to save or restore state information.
Having covered this information, the chapter will then touch briefly on the subject of activity lifetimes.

19.1 New vs. Old Lifecycle Techniques

Up until recently, there was a standard way to build lifecycle awareness into an app. This is the approach covered
in this chapter and involves implementing a set of methods (one for each lifecycle state) within an activity or
fragment instance that get called by the operating system when the lifecycle status of that object changes. This
approach has remained unchanged since the early years of the Android operating system and, while still a viable
option today, it does have some limitations which will be explained later in this chapter.

With the introduction of the lifecycle classes with the Jetpack Android Architecture Components, a better
approach to lifecycle handling is now available. This modern approach to lifecycle management (together
with the Jetpack components and architecture guidelines) will be covered in detail in later chapters. It is still
important, however, to understand the traditional lifecycle methods for a couple of reasons. First, as an Android
developer you will not be completely insulated from the traditional lifecycle methods and will still make use
of some of them. More importantly, understanding the older way of handling lifecycles will provide a good
knowledge foundation on which to begin learning the new approach later in the book.

19.2 The Activity and Fragment Classes

With few exceptions, activities and fragments in an application are created as subclasses of the Android
AppCompatActivity class and Fragment classes respectively.

Consider, for example, the simple AndroidSample project created in “Creating an Example Android App in
Android Studio”. Load this project into the Android Studio environment and locate the MainActivity.kt file
(located in app -> java -> com.<your domain>.androidsample). Having located the file, double-click on it to load
it into the editor where it should read as follows:

package com.ebookfrenzy.androidsample

import android.os.Bundle

import android.support.design.widget.Snackbar
import android.support.v7.app.AppCompatActivity
import android.view.Menu

import android.view.Menultem

131

Handling Android Activity State Changes

import kotlinx.android.synthetic.main.activity main.*

import kotlinx.android.synthetic.main.content main.*
class MainActivity : AppCompatActivity() {

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.activity android sample)

setSupportActionBar (toolbar)

fun convertCurrency(view: View) {

if (dollarText.text.isNotEmpty()) {
val dollarValue = dollarText.text.toString() .toFloat ()
val euroValue = dollarValue * 0.85f
textView.text = euroValue.toString()

} else {

textView.text = "No Value"

fab.setOnClickListener { view ->
Snackbar.make (view, "Replace with your own action",
Snackbar.LENGTH LONG)

.setAction ("Action", null) .show()

override fun onCreateOptionsMenu (menu: Menu) : Boolean {
// Inflate the menu; this adds items to the action bar if it is present.
menulnflater.inflate (R.menu.menu main, menu)

return true

override fun onOptionsItemSelected(item: Menultem): Boolean {
// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
return when (item.itemId) {
R.id.action_settings -> true

else -> super.onOptionsItemSelected (item)

132

Handling Android Activity State Changes

When the project was created, we instructed Android Studio also to create an initial activity named MainActivity.
As is evident from the above code, the MainActivity class is a subclass of the AppCompatActivity class.

A review of the reference documentation for the AppCompatActivity class would reveal that it is itself a subclass
of the Activity class. This can be verified within the Android Studio editor using the Hierarchy tool window.
With the MainActivity.kt file loaded into the editor, click on AppCompatActivity in the class declaration line
and press the Ctrl-H keyboard shortcut. The hierarchy tool window will subsequently appear displaying the class
hierarchy for the selected class. As illustrated in Figure 19-1, AppCompatActivity is clearly subclassed from the
FragmentActivity class which is itself ultimately a subclass of the Activity class:

Figure 19-1

The Activity and Fragment classes contain a range of methods that are intended to be called by the Android
runtime to notify the object when its state is changing. For the purposes of this chapter, we will refer to these as
the lifecycle methods. An activity or fragment class simply needs to override these methods and implement the
necessary functionality within them in order to react accordingly to state changes.

One such method is named onCreate() and, turning once again to the above code fragment, we can see that this
method has already been overridden and implemented for us in the MainActivity class. In a later section we will
explore in detail both onCreate() and the other relevant lifecycle methods of the Activity and Fragment classes.

19.3 Dynamic State vs. Persistent State

A key objective of lifecycle management is ensuring that the state of the activity is saved and restored at
appropriate times. When talking about state in this context we mean the data that is currently being held within
the activity and the appearance of the user interface. The activity might, for example, maintain a data model in
memory that needs to be saved to a database, content provider or file. Such state information, because it persists
from one invocation of the application to another, is referred to as the persistent state.

The appearance of the user interface (such as text entered into a text field but not yet committed to the
application’s internal data model) is referred to as the dynamic state, since it is typically only retained during a
single invocation of the application (and also referred to as user interface state or instance state).

Understanding the differences between these two states is important because both the ways they are saved, and
the reasons for doing so, differ.

The purpose of saving the persistent state is to avoid the loss of data that may result from an activity being killed
by the runtime system while in the background. The dynamic state, on the other hand, is saved and restored for
reasons that are slightly more complex.

133

Handling Android Activity State Changes

Consider, for example, that an application contains an activity (which we will refer to as Activity A) containing
a text field and some radio buttons. During the course of using the application, the user enters some text into
the text field and makes a selection from the radio buttons. Before performing an action to save these changes,
however, the user then switches to another activity causing Activity A to be pushed down the Activity Stack
and placed into the background. After some time, the runtime system ascertains that memory is low and
consequently Kkills Activity A to free up resources. As far as the user is concerned, however, Activity A was simply
placed into the background and is ready to be moved to the foreground at any time. On returning Activity A to
the foreground the user would, quite reasonably, expect the entered text and radio button selections to have been
retained. In this scenario, however, a new instance of Activity A will have been created and, if the dynamic state
was not saved and restored, the previous user input lost.

The main purpose of saving dynamic state, therefore, is to give the perception of seamless switching between
foreground and background activities, regardless of the fact that activities may actually have been killed and
restarted without the user’s knowledge.

The mechanisms for saving persistent and dynamic state will become clearer in the following sections of this
chapter.

19.4 The Android Lifecycle Methods

As previously explained, the Activity and Fragment classes contain a number of lifecycle methods which act as
event handlers when the state of an instance changes. The primary methods supported by the Android Activity
and Fragment class are as follows:

« onCreate(savedInstanceState: Bundle?) - The method that is called when the activity is first created and the
ideal location for most initialization tasks to be performed. The method is passed an argument in the form of a
Bundle object that may contain dynamic state information (typically relating to the state of the user interface)
from a prior invocation of the activity.

onRestart() - Called when the activity is about to restart after having previously been stopped by the runtime
system.

onStart() — Always called immediately after the call to the onCreate() or onRestart() methods, this method
indicates to the activity that it is about to become visible to the user. This call will be followed by a call to
onResume() if the activity moves to the top of the activity stack, or onStop() in the event that it is pushed down
the stack by another activity.

onResume() — Indicates that the activity is now at the top of the activity stack and is the activity with which
the user is currently interacting.

» onPause() - Indicates that a previous activity is about to become the foreground activity. This call will be
followed by a call to either the onResume() or onStop() method depending on whether the activity moves back
to the foreground or becomes invisible to the user. Steps may be taken within this method to store persistent
state information not yet saved by the app. To avoid delays in switching between activities, time consuming
operations such as storing data to a database or performing network operations should be avoided within this
method. This method should also ensure that any CPU intensive tasks such as animation are stopped.

« onStop() - The activity is now no longer visible to the user. The two possible scenarios that may follow this
call are a call to onRestart() in the event that the activity moves to the foreground again, or onDestroy() if the
activity is being terminated.

« onDestroy() — The activity is about to be destroyed, either voluntarily because the activity has completed its
tasks and has called the finish() method or because the runtime is terminating it either to release memory or
due to a configuration change (such as the orientation of the device changing). It is important to note that a

134

Handling Android Activity State Changes
call will not always be made to onDestroy() when an activity is terminated.

« onConfigurationChanged() - Called when a configuration change occurs for which the activity has indicated
it is not to be restarted. The method is passed a Configuration object outlining the new device configuration
and it is then the responsibility of the activity to react to the change.

The following lifecycle methods only apply to the Fragment class:
« onAttach() - Called when the fragment is assigned to an activity.
« onCreateView() - Called to create and return the fragment’s user interface layout view hierarchy.

« onActivityCreated() - The onCreate() method of the activity with which the fragment is associated has
completed execution.

» onViewStatusRestored() - The fragment’s saved view hierarchy has been restored.

In addition to the lifecycle methods outlined above, there are two methods intended specifically for saving and
restoring the dynamic state of an activity:

» onRestoreInstanceState(savedInstanceState: Bundle?) — This method is called immediately after a call to
the onStart() method in the event that the activity is restarting from a previous invocation in which state
was saved. As with onCreate(), this method is passed a Bundle object containing the previous state data.
This method is typically used in situations where it makes more sense to restore a previous state after the
initialization of the activity has been performed in onCreate() and onStart().

« onSavelnstanceState(outState: Bundle?) - Called before an activity is destroyed so that the current dynamic
state (usually relating to the user interface) can be saved. The method is passed the Bundle object into which the
state should be saved and which is subsequently passed through to the onCreate() and onRestorelnstanceState()
methods when the activity is restarted. Note that this method is only called in situations where the runtime
ascertains that dynamic state needs to be saved.

When overriding the above methods, it is important to remember that, with the exception of
onRestorelnstanceState() and onSavelnstanceState(), the method implementation must include a call to the
corresponding method in the super class. For example, the following method overrides the onRestart() method
but also includes a call to the super class instance of the method:

override fun onRestart () {

super.onRestart ()

Log.1(TAG, "onRestart")
}
Failure to make this super class call in method overrides will result in the runtime throwing an exception during
execution. While calls to the super class in the onRestorelnstanceState() and onSavelnstanceState() methods are
optional (they can, for example, be omitted when implementing custom save and restoration behavior) there are

considerable benefits to using them, a subject that will be covered in the chapter entitled “Saving and Restoring
the State of an Android Activity”.

19.5 Lifetimes

The final topic to be covered involves an outline of the entire, visible and foreground lifetimes through which an
activity or fragment will transition during execution:

« Entire Lifetime —The term “entire lifetime” is used to describe everything that takes place between the initial
call to the onCreate() method and the call to onDestroy() prior to the object terminating.

135

Handling Android Activity State Changes

« Visible Lifetime - Covers the periods of execution between the call to onStart() and onStop(). During this
period the activity or fragment is visible to the user though may not be the object with which the user is
currently interacting.

o Foreground Lifetime - Refers to the periods of execution between calls to the onResume() and onPause()
methods.

It is important to note that an activity or fragment may pass through the foreground and visible lifetimes multiple
times during the course of the entire lifetime.

The concepts of lifetimes and lifecycle methods are illustrated in Figure 19-2:

Figure 19-2

19.6 Disabling Configuration Change Restarts

As previously outlined, an activity may indicate that it is not to be restarted in the event of certain configuration

changes. This is achieved by adding an android:configChanges directive to the activity element within the project

manifest file. The following manifest file excerpt, for example, indicates that the activity should not be restarted

in the event of configuration changes relating to orientation or device-wide font size:

<activity android:name=".MainActivity"
android:configChanges="orientation|fontScale"

android:label="@string/app name">

19.7 Lifecycle Method Limitations

As discussed at the start of this chapter, lifecycle methods have been in use for many years and, until recently,
were the only mechanism available for handling lifecycle state changes for activities and fragments. There are,
however, shortcomings to this approach.

One issue with the lifecycle methods is that they do not provide an easy way for an activity or fragment to find
out its current lifecycle state at any given point during app execution. Instead the object would need to track the
state internally, or wait for the next lifecycle method call.

Also, the methods do not provide a simple way for one object to observe the lifecycle state changes of other
objects within an app. This is a serious consideration since many other objects within an app can potentially be

136

Handling Android Activity State Changes
impacted by a lifecycle state change in a given activity or fragment.

The lifecycle methods are also only available on subclasses of the Fragment and Activity classes. It is not possible,
therefore, to build custom classes that are truly lifecycle aware.

Finally, the lifecycle methods result in most of the lifecycle handling code being written within the activity
or fragment which can lead to complex and error prone code. Ideally, much of this code should reside in the
other classes that are impacted by the state change. An app that streams video, for example, might include a
class designed specifically to manage the incoming stream. If the app needs to pause the stream when the main
activity is stopped, the code to do so should reside in the streaming class, not the main activity.

All of these problems and more are resolved by using lifecycle-aware components, a topic which will be covered
starting with the chapter entitled “Modern Android App Architecture with Jetpack”.

19.8 Summary

All activities are derived from the Android Activity class which, in turn, contains a number of lifecycle methods
that are designed to be called by the runtime system when the state of an activity changes. Similarly, the Fragment
class contains a number of comparable methods. By overriding these methods, activities and fragments can
respond to state changes and, where necessary, take steps to save and restore the current state of both the activity
and the application. Lifecycle state can be thought of as taking two forms. The persistent state refers to data that
needs to be stored between application invocations (for example to a file or database). Dynamic state, on the
other hand, relates instead to the current appearance of the user interface.

Although lifecycle methods have a number of limitations that can be avoided by making use of lifecycle-aware
components, an understanding of these methods is important in order to fully understand the new approaches
to lifecycle management covered later in this book.

In this chapter, we have highlighted the lifecycle methods available to activities and covered the concept of
activity lifetimes. In the next chapter, entitled “Android Activity State Changes by Example”, we will implement
an example application that puts much of this theory into practice.

137

Chapter 20

20. Android Activity State Changes by
Example

The previous chapters have discussed in some detail the different states and lifecycles of the activities that
comprise an Android application. In this chapter, we will put the theory of handling activity state changes into
practice through the creation of an example application. The purpose of this example application is to provide
a real world demonstration of an activity as it passes through a variety of different states within the Android
runtime.

In the next chapter, entitled “Saving and Restoring the State of an Android Activity”, the example project
constructed in this chapter will be extended to demonstrate the saving and restoration of dynamic activity state.

20.1 Creating the State Change Example Project

The first step in this exercise is to create the new project. Begin by launching Android Studio and, if necessary,
closing any currently open projects using the File -> Close Project menu option so that the Welcome screen
appears.

Select the Start a new Android Studio project quick start option from the welcome screen and, within the resulting
new project dialog, choose the Basic Activity template before clicking on the Next button.

Enter StateChange into the Name field and specify com.ebookfrenzy.statechange as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin.

Upon completion of the project creation process, the StateChange project should be listed in the Project tool
window located along the left-hand edge of the Android Studio main window.

The next action to take involves the design of the content area of the user interface for the activity. This is
stored in a file named content_main.xml which should already be loaded into the Layout Editor tool. If it is not,
navigate to it in the project tool window where it can be found in the app -> res -> layout folder. Once located,
double-clicking on the file will load it into the Android Studio Layout Editor tool.

139

Android Activity State Changes by Example

Figure 20-1

20.2 Designing the User Interface

With the user interface layout loaded into the Layout Editor tool, it is now time to design the user interface for
the example application. Instead of the “Hello world!” TextView currently present in the user interface design,
the activity actually requires an EditText view. Select the TextView object in the Layout Editor canvas and press
the Delete key on the keyboard to remove it from the design.

From the Palette located on the left side of the Layout Editor, select the Text category and, from the list of text
components, click and drag a Plain Text component over to the visual representation of the device screen. Move
the component to the center of the display so that the center guidelines appear and drop it into place so that the
layout resembles that of Figure 20-2.

Figure 20-2

When using the EditText widget it is necessary to specify an input type for the view. This simply defines the type
of text or data that will be entered by the user. For example, if the input type is set to Phone, the user will be
restricted to entering numerical digits into the view. Alternatively, if the input type is set to TextCapCharacters,

140

Android Activity State Changes by Example
the input will default to upper case characters. Input type settings may also be combined.

For the purposes of this example, we will set the input type to support general text input. To do so, select the
EditText widget in the layout and locate the inputType entry within the Attributes tool window. Click on the
current setting to open the list of options and, within the list, switch off textPersonName and enable text before
clicking on the OK button.

By default the EditText is displaying text which reads “Name”. Remaining within the Attributes panel, delete this
from the text property field so that the view is blank within the layout.

20.3 Overriding the Activity Lifecycle Methods

At this point, the project contains a single activity named MainActivity, which is derived from the Android
AppCompatActivity class. The source code for this activity is contained within the MainActivity.kt file which
should already be open in an editor session and represented by a tab in the editor tab bar. In the event that the file
is no longer open, navigate to it in the Project tool window panel (app -> java -> com.ebookfrenzy.statechange ->
MainActivity) and double-click on it to load the file into the editor. Once loaded the code should read as follows:

package com.ebookfrenzy.statechange

import android.os.Bundle

import com.google.android.material.snackbar.Snackbar
import android.support.v7.app.AppCompatActivity
import android.view.Menu

import android.view.MenulItem
import kotlinx.android.synthetic.main.activity main.*
class MainActivity : AppCompatActivity() {

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.activity state change)

setSupportActionBar (toolbar)

fab.setOnClickListener { view ->
Snackbar.make (view, "Replace with your own action",
Snackbar.LENGTH LONG)

.setAction ("Action", null) .show ()

override fun onCreateOptionsMenu (menu: Menu): Boolean {
// Inflate the menu; this adds items to the action bar if it is present.
menulnflater.inflate (R.menu.menu main, menu)

return true

override fun onOptionsItemSelected(item: Menultem): Boolean {

141

Android Activity State Changes by Example

// Handle action bar item clicks here. The action bar will
// automatically handle clicks on the Home/Up button, so long
// as you specify a parent activity in AndroidManifest.xml.
return when (item.itemId) {

R.id.action_settings -> true

else -> super.onOptionsItemSelected (item)

}

So far the only lifecycle method overridden by the activity is the onCreate() method which has been implemented
to call the super class instance of the method before setting up the user interface for the activity. We will now
modify this method so that it outputs a diagnostic message in the Android Studio Logcat panel each time it
executes. For this, we will use the Log class, which requires that we import android.util. Log and declare a tag that
will enable us to filter these messages in the log output:

package com.ebookfrenzy.statechange

import android.os.Bundle

import com.google.android.material.snackbar.Snackbar
import android.support.v7.app.AppCompatActivity
import android.view.Menu

import android.view.Menultem

import android.util.Log
import kotlinx.android.synthetic.main.activity main.*
class MainActivity : AppCompatActivity() {

val TAG = "StateChange"

override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.activity state change)

setSupportActionBar (toolbar)

fab.setOnClickListener { view ->
Snackbar.make (view, "Replace with your own action",
Snackbar.LENGTH LONG)
.setAction ("Action", null) .show/()

}
Log.i (TAG, "onCreate")

}
The next task is to override some more methods, with each one containing a corresponding log call. These

142

Android Activity State Changes by Example

override methods may be added manually or generated using the Alt-Insert keyboard shortcut as outlined in the
chapter entitled “The Basics of the Android Studio Code Editor”. Note that the Log calls will still need to be added
manually if the methods are being auto-generated:
override fun onStart () {

super.onStart ()

Log.1i(TAG, "onStart")

override fun onResume () {
super.onResume ()

Log.1 (TAG, "onResume")

override fun onPause () {
super.onPause ()

Log.1i(TAG, "onPause")

override fun onStop () {
super.onStop ()
Log.1i(TAG, "onStop")

override fun onRestart () {
super.onRestart ()
Log.1i (TAG, "onRestart")

override fun onDestroy () {
super.onDestroy ()

Log.1 (TAG, "onDestroy")

override fun onSavelInstanceState (outState: Bundle?) {
super.onSavelnstanceState (outState)

Log.1(TAG, "onSavelInstanceState")

override fun onRestorelnstanceState (savedInstanceState: Bundle?) {
super.onRestoreInstanceState (savedInstanceState)
Log.1(TAG, "onRestorelInstanceState")

}

20.4 Filtering the Logcat Panel

The purpose of the code added to the overridden methods in MainActivity.kt is to output logging information
to the Logcat tool window. This output can be configured to display all events relating to the device or emulator

143

Android Activity State Changes by Example

session, or restricted to those events that relate to the currently selected app. The output can also be further
restricted to only those log events that match a specified filter.

Display the Logcat tool window and click on the filter menu (marked as B in Figure 20-3) to review the available
options. When this menu is set to Show only selected application, only those messages relating to the app selected
in the menu marked as A will be displayed in the Logcat panel. Choosing No Filter, on the other hand, will
display all the messages generated by the device or emulator.

Figure 20-3

Before running the application, it is worth demonstrating the creation of a filter which, when selected, will
further restrict the log output to ensure that only those log messages containing the tag declared in our activity
are displayed.

From the filter menu (B), select the Edit Filter Configuration menu option. In the Create New Logcat Filter dialog
(Figure 20-4), name the filter Lifecycle and, in the Log Tag field, enter the Tag value declared in MainActivity.kt
(in the above code example this was StateChange).

Figure 20-4

Enter the package identifier in the Package Name field (clicking on the search icon in the text field will drop
down a menu from which the package name may be selected) and, when the changes are complete, click on the
OK button to create the filter and dismiss the dialog. Instead of listing No Filters, the newly created filter should
now be selected in the Logcat tool window.

20.5 Running the Application

For optimal results, the application should be run on a physical Android device or emulator. With the device
configured and connected to the development computer, click on the run button represented by a green triangle
located in the Android Studio toolbar as shown in Figure 20-5 below, select the Run -> Run... menu option or
use the Shift+F10 keyboard shortcut:

144

Android Activity State Changes by Example

Figure 20-5

Select the physical Android device from the Choose Device dialog if it appears (assuming that you have not
already configured it to be the default target). After Android Studio has built the application and installed it on
the device it should start up and be running in the foreground.

A review of the Logcat panel should indicate which methods have so far been triggered (taking care to ensure
that the Lifecycle filter created in the preceding section is selected to filter out log events that are not currently
of interest to us):

Figure 20-6

20.6 Experimenting with the Activity

With the diagnostics working, it is now time to exercise the application with a view to gaining an understanding
of the activity lifecycle state changes. To begin with, consider the initial sequence of log events in the Logcat
panel:

onCreate
onStart

onResume

Clearly, the initial state changes are exactly as outlined in “Understanding Android Application and Activity
Lifecycles”. Note, however, that a call was not made to onRestorelnstanceState() since the Android runtime
detected that there was no state to restore in this situation.

Tap on the Home icon in the bottom status bar on the device display and note the sequence of method calls
reported in the log as follows:

onPause

onStop
onSavelnstanceState

In this case, the runtime has noticed that the activity is no longer in the foreground, is not visible to the user
and has stopped the activity, but not without providing an opportunity for the activity to save the dynamic state.
Depending on whether the runtime ultimately destroyed the activity or simply restarted it, the activity will
either be notified it has been restarted via a call to onRestart() or will go through the creation sequence again
when the user returns to the activity.

As outlined in “Understanding Android Application and Activity Lifecycles”, the destruction and recreation of
an activity can be triggered by making a configuration change to the device, such as rotating from portrait to
landscape. To see this in action, simply rotate the device while the StateChange application is in the foreground.
When using the emulator, device rotation may be simulated using the rotation button located in the emulator
toolbar. The resulting sequence of method calls in the log should read as follows:

145

Android Activity State Changes by Example

onPause

onStop
onSavelnstanceState
onDestroy

onCreate

onStart
onRestoreInstanceState

onResume

Clearly, the runtime system has given the activity an opportunity to save state before being destroyed and
restarted.

20.7 Summary

The old adage that a picture is worth a thousand words holds just as true for examples when learning a new
programming paradigm. In this chapter, we have created an example Android application for the purpose of
demonstrating the different lifecycle states through which an activity is likely to pass. In the course of developing
the project in this chapter, we also looked at a mechanism for generating diagnostic logging information from
within an activity.

In the next chapter, we will extend the StateChange example project to demonstrate how to save and restore an
activity’s dynamic state.

146

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System Requirements
	2.2 Downloading the Android Studio Package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio Setup Wizard
	2.5 Installing Additional Android SDK Packages
	2.6 Making the Android SDK Tools Command-line Accessible
	2.6.1 Windows 7
	2.6.2 Windows 8.1
	2.6.3 Windows 10
	2.6.4 Linux
	2.6.5 macOS

	2.7 Updating Android Studio and the SDK
	2.8 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Reviewing the Layout and Resource Files
	3.7 Adding Interaction
	3.8 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Creating a New AVD
	4.3 Starting the Emulator
	4.4 Running the Application in the AVD
	4.5 Run/Debug Configurations
	4.6 Stopping a Running Application
	4.7 AVD Command-line Creation
	4.8 Android Virtual Device Configuration Files
	4.9 Moving and Renaming an Android Virtual Device
	4.10 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 The Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Cellular
	5.5.3 Camera
	5.5.4 Battery
	5.5.5 Phone
	5.5.6 Directional Pad
	5.5.7 Microphone
	5.5.8 Fingerprint
	5.5.9 Virtual Sensors
	5.5.10 Snapshots
	5.5.11 Screen Record
	5.5.12 Google Play
	5.5.13 Settings
	5.5.14 Help

	5.6 Working with Snapshots
	5.7 Drag and Drop Support
	5.8 Configuring Fingerprint Emulation
	5.9 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling ADB on Android based Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Testing the adb Connection
	7.4 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types,Variables and Nullability
	12.1 Kotlin Data Types
	12.1.1 Integer Data Types
	12.1.2 Floating Point Data Types
	12.1.3 Boolean Data Type
	12.1.4 Character Data Type
	12.1.5 String Data Type
	12.1.6 Escape Sequences

	12.2 Mutable Variables
	12.3 Immutable Variables
	12.4 Declaring Mutable and Immutable Variables
	12.5 Data Types are Objects
	12.6 Type Annotations and Type Inference
	12.7 Nullable Type
	12.8 The Safe Call Operator
	12.9 Not-Null Assertion
	12.10 Nullable Types and the let Function
	12.11 The Elvis Operator
	12.12 Type Casting and Type Checking
	12.13 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression Syntax in Kotlin
	13.2 The Basic Assignment Operator
	13.3 Kotlin Arithmetic Operators
	13.4 Augmented Assignment Operators
	13.5 Increment and Decrement Operators
	13.6 Equality Operators
	13.7 Boolean Logical Operators
	13.8 Range Operator
	13.9 Bitwise Operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise Left Shift
	13.9.6 Bitwise Right Shift

	13.10 Summary

	14. Kotlin Flow Control
	14.1 Looping Flow Control
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while Loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue Statement
	14.1.6 Break and Continue Labels

	14.2 Conditional Flow Control
	14.2.1 Using the if Expressions
	14.2.2 Using if ... else … Expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when Statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a Function?
	15.2 How to Declare a Kotlin Function
	15.3 Calling a Kotlin Function
	15.4 Single Expression Functions
	15.5 Local Functions
	15.6 Handling Return Values
	15.7 Declaring Default Function Parameters
	15.8 Variable Number of Function Parameters
	15.9 Lambda Expressions
	15.10 Higher-order Functions
	15.11 Summary

	16. The Basics of Object Oriented Programming in Kotlin
	16.1 What is an Object?
	16.2 What is a Class?
	16.3 Declaring a Kotlin Class
	16.4 Adding Properties to a Class
	16.5 Defining Methods
	16.6 Declaring and Initializing a Class Instance
	16.7 Primary and Secondary Constructors
	16.8 Initializer Blocks
	16.9 Calling Methods and Accessing Properties
	16.10 Custom Accessors
	16.11 Nested and Inner Classes
	16.12 Companion Objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, Classes and Subclasses
	17.2 Subclassing Syntax
	17.3 A Kotlin Inheritance Example
	17.4 Extending the Functionality of a Subclass
	17.5 Overriding Inherited Methods
	17.6 Adding a Custom Secondary Constructor
	17.7 Using the SavingsAccount Class
	17.8 Summary

	18. Understanding Android Application and Activity Lifecycles
	18.1 Android Applications and Resource Management
	18.2 Android Process States
	18.2.1 Foreground Process
	18.2.2 Visible Process
	18.2.3 Service Process
	18.2.4 Background Process
	18.2.5 Empty Process

	18.3 Inter-Process Dependencies
	18.4 The Activity Lifecycle
	18.5 The Activity Stack
	18.6 Activity States
	18.7 Configuration Changes
	18.8 Handling State Change
	18.9 Summary

	19. Handling Android Activity State Changes
	19.1 New vs. Old Lifecycle Techniques
	19.2 The Activity and Fragment Classes
	19.3 Dynamic State vs. Persistent State
	19.4 The Android Lifecycle Methods
	19.5 Lifetimes
	19.6 Disabling Configuration Change Restarts
	19.7 Lifecycle Method Limitations
	19.8 Summary

	20. Android Activity State Changes by Example
	20.1 Creating the State Change Example Project
	20.2 Designing the User Interface
	20.3 Overriding the Activity Lifecycle Methods
	20.4 Filtering the Logcat Panel
	20.5 Running the Application
	20.6 Experimenting with the Activity
	20.7 Summary

	21. Saving and Restoring the State of an Android Activity
	21.1 Saving Dynamic State
	21.2 Default Saving of User Interface State
	21.3 The Bundle Class
	21.4 Saving the State
	21.5 Restoring the State
	21.6 Testing the Application
	21.7 Summary

	22. Understanding Android Views, View Groups and Layouts
	22.1 Designing for Different Android Devices
	22.2 Views and View Groups
	22.3 Android Layout Managers
	22.4 The View Hierarchy
	22.5 Creating User Interfaces
	22.6 Summary

	23. A Guide to the Android Studio Layout Editor Tool
	23.1 Basic vs. Empty Activity Templates
	23.2 The Android Studio Layout Editor
	23.3 Design Mode
	23.4 The Palette
	23.5 Design and Layout Views
	23.6 Text Mode
	23.7 Setting Attributes
	23.8 Configuring Favorite Attributes
	23.9 Converting Views
	23.10 Displaying Sample Data
	23.11 Creating a Custom Device Definition
	23.12 Changing the Current Device
	23.13 Summary

	24. A Guide to the Android ConstraintLayout
	24.1 How ConstraintLayout Works
	24.1.1 Constraints
	24.1.2 Margins
	24.1.3 Opposing Constraints
	24.1.4 Constraint Bias
	24.1.5 Chains
	24.1.6 Chain Styles

	24.2 Baseline Alignment
	24.3 Working with Guidelines
	24.4 Configuring Widget Dimensions
	24.5 Working with Barriers
	24.6 Ratios
	24.7 ConstraintLayout Advantages
	24.8 ConstraintLayout Availability
	24.9 Summary

	25. A Guide to using ConstraintLayout in Android Studio
	25.1 Design and Layout Views
	25.2 Autoconnect Mode
	25.3 Inference Mode
	25.4 Manipulating Constraints Manually
	25.5 Adding Constraints in the Inspector
	25.6 Deleting Constraints
	25.7 Adjusting Constraint Bias
	25.8 Understanding ConstraintLayout Margins
	25.9 The Importance of Opposing Constraints and Bias
	25.10 Configuring Widget Dimensions
	25.11 Adding Guidelines
	25.12 Adding Barriers
	25.13 Widget Group Alignment and Distribution
	25.14 Converting other Layouts to ConstraintLayout
	25.15 Summary

	26. Working with ConstraintLayout Chains and Ratios in Android Studio
	26.1 Creating a Chain
	26.2 Changing the Chain Style
	26.3 Spread Inside Chain Style
	26.4 Packed Chain Style
	26.5 Packed Chain Style with Bias
	26.6 Weighted Chain
	26.7 Working with Ratios
	26.8 Summary

	27. An Android Studio Layout Editor ConstraintLayout Tutorial
	27.1 An Android Studio Layout Editor Tool Example
	27.2 Creating a New Activity
	27.3 Preparing the Layout Editor Environment
	27.4 Adding the Widgets to the User Interface
	27.5 Adding the Constraints
	27.6 Testing the Layout
	27.7 Using the Layout Inspector
	27.8 Summary

	28. Manual XML Layout Design in Android Studio
	28.1 Manually Creating an XML Layout
	28.2 Manual XML vs. Visual Layout Design
	28.3 Summary

	29. Managing Constraints using Constraint Sets
	29.1 Kotlin Code vs. XML Layout Files
	29.2 Creating Views
	29.3 View Attributes
	29.4 Constraint Sets
	29.4.1 Establishing Connections
	29.4.2 Applying Constraints to a Layout
	29.4.3 Parent Constraint Connections
	29.4.4 Sizing Constraints
	29.4.5 Constraint Bias
	29.4.6 Alignment Constraints
	29.4.7 Copying and Applying Constraint Sets
	29.4.8 ConstraintLayout Chains
	29.4.9 Guidelines
	29.4.10 Removing Constraints
	29.4.11 Scaling
	29.4.12 Rotation

	29.5 Summary

	30. An Android ConstraintSet Tutorial
	30.1 Creating the Example Project in Android Studio
	30.2 Adding Views to an Activity
	30.3 Setting View Attributes
	30.4 Creating View IDs
	30.5 Configuring the Constraint Set
	30.6 Adding the EditText View
	30.7 Converting Density Independent Pixels (dp) to Pixels (px)
	30.8 Summary

	31. A Guide to using Instant Run in Android Studio
	31.1 Introducing Instant Run
	31.2 Understanding Instant Run Swapping Levels
	31.3 Enabling and Disabling Instant Run
	31.4 Using Instant Run
	31.5 An Instant Run Tutorial
	31.6 Triggering an Instant Run Hot Swap
	31.7 Triggering an Instant Run Warm Swap
	31.8 Triggering an Instant Run Cold Swap
	31.9 The Run Button
	31.10 Summary

	32. An Overview and Example of Android Event Handling
	32.1 Understanding Android Events
	32.2 Using the android:onClick Resource
	32.3 Event Listeners and Callback Methods
	32.4 An Event Handling Example
	32.5 Designing the User Interface
	32.6 The Event Listener and Callback Method
	32.7 Consuming Events
	32.8 Summary

	33. Android Touch and Multi-touch Event Handling
	33.1 Intercepting Touch Events
	33.2 The MotionEvent Object
	33.3 Understanding Touch Actions
	33.4 Handling Multiple Touches
	33.5 An Example Multi-Touch Application
	33.6 Designing the Activity User Interface
	33.7 Implementing the Touch Event Listener
	33.8 Running the Example Application
	33.9 Summary

	34. Detecting Common Gestures using the Android Gesture Detector Class
	34.1 Implementing Common Gesture Detection
	34.2 Creating an Example Gesture Detection Project
	34.3 Implementing the Listener Class
	34.4 Creating the GestureDetectorCompat Instance
	34.5 Implementing the onTouchEvent() Method
	34.6 Testing the Application
	34.7 Summary

	35. Implementing Custom Gesture and Pinch Recognition on Android
	35.1 The Android Gesture Builder Application
	35.2 The GestureOverlayView Class
	35.3 Detecting Gestures
	35.4 Identifying Specific Gestures
	35.5 Building and Running the Gesture Builder Application
	35.6 Creating a Gestures File
	35.7 Creating the Example Project
	35.8 Extracting the Gestures File from the SD Card
	35.9 Adding the Gestures File to the Project
	35.10 Designing the User Interface
	35.11 Loading the Gestures File
	35.12 Registering the Event Listener
	35.13 Implementing the onGesturePerformed Method
	35.14 Testing the Application
	35.15 Configuring the GestureOverlayView
	35.16 Intercepting Gestures
	35.17 Detecting Pinch Gestures
	35.18 A Pinch Gesture Example Project
	35.19 Summary

	36. An Introduction to Android Fragments
	36.1 What is a Fragment?
	36.2 Creating a Fragment
	36.3 Adding a Fragment to an Activity using the Layout XML File
	36.4 Adding and Managing Fragments in Code
	36.5 Handling Fragment Events
	36.6 Implementing Fragment Communication
	36.7 Summary

	37. Using Fragments in Android Studio - An Example
	37.1 About the Example Fragment Application
	37.2 Creating the Example Project
	37.3 Creating the First Fragment Layout
	37.4 Creating the First Fragment Class
	37.5 Creating the Second Fragment Layout
	37.6 Adding the Fragments to the Activity
	37.7 Making the Toolbar Fragment Talk to the Activity
	37.8 Making the Activity Talk to the Text Fragment
	37.9 Testing the Application
	37.10 Summary

	38. Modern Android App Architecture with Jetpack
	38.1 What is Android Jetpack?
	38.2 The “Old” Architecture
	38.3 Modern Android Architecture
	38.4 The ViewModel Component
	38.5 The LiveData Component
	38.6 LiveData and Data Binding
	38.7 Android Lifecycles
	38.8 Repository Modules
	38.9 Summary

	39. An Android Jetpack ViewModel Tutorial
	39.1 About the Project
	39.2 Creating the ViewModel Example Project
	39.3 Reviewing the Project
	39.3.1 The Main Activity
	39.3.2 The Content Fragment
	39.3.3 The ViewModel

	39.4 Designing the Fragment Layout
	39.5 Implementing the View Model
	39.6 Associating the Fragment with the View Model
	39.7 Modifying the Fragment
	39.8 Accessing the ViewModel Data
	39.9 Testing the Project
	39.10 Summary

	40. An Android Jetpack LiveData Tutorial
	40.1 LiveData - A Recap
	40.2 Adding LiveData to the ViewModel
	40.3 Implementing the Observer
	40.4 Summary

	41. An Overview of Android Jetpack Data Binding
	41.1 An Overview of Data Binding
	41.2 The Key Components of Data Binding
	41.2.1 The Project Build Configuration
	41.2.2 The Data Binding Layout File
	41.2.3 The Layout File Data Element
	41.2.4 The Binding Classes
	41.2.5 Data Binding Variable Configuration
	41.2.6 Binding Expressions (One-Way)
	41.2.7 Binding Expressions (Two-Way)
	41.2.8 Event and Listener Bindings

	41.3 Summary

	42. An Android Jetpack Data Binding Tutorial
	42.1 Removing the Redundant Code
	42.2 Enabling Data Binding
	42.3 Adding the Layout Element
	42.4 Adding the Data Element to Layout File
	42.5 Working with the Binding Class
	42.6 Assigning the ViewModel Instance to the Data Binding Variable
	42.7 Adding Binding Expressions
	42.8 Adding the Conversion Method
	42.9 Adding a Listener Binding
	42.10 Testing the App
	42.11 Summary

	43. Working with Android Lifecycle-Aware Components
	43.1 Lifecycle Awareness
	43.2 Lifecycle Owners
	43.3 Lifecycle Observers
	43.4 Lifecycle States and Events
	43.5 Summary

	44. An Android Jetpack Lifecycle Awareness Tutorial
	44.1 Creating the Example Lifecycle Project
	44.2 Creating a Lifecycle Observer
	44.3 Adding the Observer
	44.4 Testing the Observer
	44.5 Creating a Lifecycle Owner
	44.6 Testing the Custom Lifecycle Owner
	44.7 Summary

	45. An Overview of the Navigation Architecture Component
	45.1 Understanding Navigation
	45.2 Declaring a Navigation Host
	45.3 The Navigation Graph
	45.4 Accessing the Navigation Controller
	45.5 Triggering a Navigation Action
	45.6 Passing Arguments
	45.7 Summary

	46. An Android Jetpack Navigation Component Tutorial
	46.1 Creating the NavigationDemo Project
	46.2 Adding Navigation to the Build Configuration
	46.3 Creating the Navigation Graph Resource File
	46.4 Declaring a Navigation Host
	46.5 Adding Navigation Destinations
	46.6 Designing the Destination Fragment Layouts
	46.7 Adding an Action to the Navigation Graph
	46.8 Implement the OnFragmentInteractionListener
	46.9 Triggering the Action
	46.10 Passing Data Using Safeargs
	46.11 Summary

	47. Creating and Managing Overflow Menus on Android
	47.1 The Overflow Menu
	47.2 Creating an Overflow Menu
	47.3 Displaying an Overflow Menu
	47.4 Responding to Menu Item Selections
	47.5 Creating Checkable Item Groups
	47.6 Menus and the Android Studio Menu Editor
	47.7 Creating the Example Project
	47.8 Designing the Menu
	47.9 Modifying the onOptionsItemSelected() Method
	47.10 Testing the Application
	47.11 Summary

	48. Animating User Interfaces with the Android Transitions Framework
	48.1 Introducing Android Transitions and Scenes
	48.2 Using Interpolators with Transitions
	48.3 Working with Scene Transitions
	48.4 Custom Transitions and TransitionSets in Code
	48.5 Custom Transitions and TransitionSets in XML
	48.6 Working with Interpolators
	48.7 Creating a Custom Interpolator
	48.8 Using the beginDelayedTransition Method
	48.9 Summary

	49. An Android Transition Tutorial using beginDelayedTransition
	49.1 Creating the Android Studio TransitionDemo Project
	49.2 Preparing the Project Files
	49.3 Implementing beginDelayedTransition Animation
	49.4 Customizing the Transition
	49.5 Summary

	50. Implementing Android Scene Transitions – A Tutorial
	50.1 An Overview of the Scene Transition Project
	50.2 Creating the Android Studio SceneTransitions Project
	50.3 Identifying and Preparing the Root Container
	50.4 Designing the First Scene
	50.5 Designing the Second Scene
	50.6 Entering the First Scene
	50.7 Loading Scene 2
	50.8 Implementing the Transitions
	50.9 Adding the Transition File
	50.10 Loading and Using the Transition Set
	50.11 Configuring Additional Transitions
	50.12 Summary

	51. Working with the Floating Action Button and Snackbar
	51.1 The Material Design
	51.2 The Design Library
	51.3 The Floating Action Button (FAB)
	51.4 The Snackbar
	51.5 Creating the Example Project
	51.6 Reviewing the Project
	51.7 Changing the Floating Action Button
	51.8 Adding the ListView to the Content Layout
	51.9 Adding Items to the ListView
	51.10 Adding an Action to the Snackbar
	51.11 Summary

	52. Creating a Tabbed Interface using the TabLayout Component
	52.1 An Introduction to the ViewPager
	52.2 An Overview of the TabLayout Component
	52.3 Creating the TabLayoutDemo Project
	52.4 Creating the First Fragment
	52.5 Duplicating the Fragments
	52.6 Adding the TabLayout and ViewPager
	52.7 Creating the Pager Adapter
	52.8 Performing the Initialization Tasks
	52.9 Testing the Application
	52.10 Customizing the TabLayout
	52.11 Displaying Icon Tab Items
	52.12 Summary

	53. Working with the RecyclerView and CardView Widgets
	53.1 An Overview of the RecyclerView
	53.2 An Overview of the CardView
	53.3 Adding the Libraries to the Project
	53.4 Summary

	54. An Android RecyclerView and CardView Tutorial
	54.1 Creating the CardDemo Project
	54.2 Removing the Floating Action Button
	54.3 Adding the RecyclerView and CardView Libraries
	54.4 Designing the CardView Layout
	54.5 Adding the RecyclerView
	54.6 Creating the RecyclerView Adapter
	54.7 Adding the Image Files
	54.8 Initializing the RecyclerView Component
	54.9 Testing the Application
	54.10 Responding to Card Selections
	54.11 Summary

	55. A Layout Editor Sample Data Tutorial
	55.1 Adding Sample Data to a Project
	55.2 Using Custom Sample Data
	55.3 Summary

	56. Working with the AppBar and Collapsing Toolbar Layouts
	56.1 The Anatomy of an AppBar
	56.2 The Example Project
	56.3 Coordinating the RecyclerView and Toolbar
	56.4 Introducing the Collapsing Toolbar Layout
	56.5 Changing the Title and Scrim Color
	56.6 Summary

	57. Implementing an Android Navigation Drawer
	57.1 An Overview of the Navigation Drawer
	57.2 Opening and Closing the Drawer
	57.3 Responding to Drawer Item Selections
	57.4 Using the Navigation Drawer Activity Template
	57.5 Creating the Navigation Drawer Template Project
	57.6 The Template Layout Resource Files
	57.7 The Header Coloring Resource File
	57.8 The Template Menu Resource File
	57.9 The Template Code
	57.10 Running the App
	57.11 Summary

	58. An Android Studio Master/Detail Flow Tutorial
	58.1 The Master/Detail Flow
	58.2 Creating a Master/Detail Flow Activity
	58.3 The Anatomy of the Master/Detail Flow Template
	58.4 Modifying the Master/Detail Flow Template
	58.5 Changing the Content Model
	58.6 Changing the Detail Pane
	58.7 Modifying the WebsiteDetailFragment Class
	58.8 Modifying the WebsiteListActivity Class
	58.9 Adding Manifest Permissions
	58.10 Running the Application
	58.11 Summary

	59. An Overview of Android Intents
	59.1 An Overview of Intents
	59.2 Explicit Intents
	59.3 Returning Data from an Activity
	59.4 Implicit Intents
	59.5 Using Intent Filters
	59.6 Checking Intent Availability
	59.7 Summary

	60. Android Explicit Intents – A Worked Example
	60.1 Creating the Explicit Intent Example Application
	60.2 Designing the User Interface Layout for MainActivity
	60.3 Creating the Second Activity Class
	60.4 Designing the User Interface Layout for ActivityB
	60.5 Reviewing the Application Manifest File
	60.6 Creating the Intent
	60.7 Extracting Intent Data
	60.8 Launching ActivityB as a Sub-Activity
	60.9 Returning Data from a Sub-Activity
	60.10 Testing the Application
	60.11 Summary

	61. Android Implicit Intents – A Worked Example
	61.1 Creating the Android Studio Implicit Intent Example Project
	61.2 Designing the User Interface
	61.3 Creating the Implicit Intent
	61.4 Adding a Second Matching Activity
	61.5 Adding the Web View to the UI
	61.6 Obtaining the Intent URL
	61.7 Modifying the MyWebView Project Manifest File
	61.8 Installing the MyWebView Package on a Device
	61.9 Testing the Application
	61.10 Summary

	62. Android Broadcast Intents and Broadcast Receivers
	62.1 An Overview of Broadcast Intents
	62.2 An Overview of Broadcast Receivers
	62.3 Obtaining Results from a Broadcast
	62.4 Sticky Broadcast Intents
	62.5 The Broadcast Intent Example
	62.6 Creating the Example Application
	62.7 Creating and Sending the Broadcast Intent
	62.8 Creating the Broadcast Receiver
	62.9 Registering the Broadcast Receiver
	62.10 Testing the Broadcast Example
	62.11 Listening for System Broadcasts
	62.12 Summary

	63. A Basic Overview of Threads and AsyncTasks
	63.1 An Overview of Threads
	63.2 The Application Main Thread
	63.3 Thread Handlers
	63.4 A Basic AsyncTask Example
	63.5 Subclassing AsyncTask
	63.6 Testing the App
	63.7 Canceling a Task
	63.8 Summary

	64. An Overview of Android Started and Bound Services
	64.1 Started Services
	64.2 Intent Service
	64.3 Bound Service
	64.4 The Anatomy of a Service
	64.5 Controlling Destroyed Service Restart Options
	64.6 Declaring a Service in the Manifest File
	64.7 Starting a Service Running on System Startup
	64.8 Summary

	65. Implementing an Android Started Service – A Worked Example
	65.1 Creating the Example Project
	65.2 Creating the Service Class
	65.3 Adding the Service to the Manifest File
	65.4 Starting the Service
	65.5 Testing the IntentService Example
	65.6 Using the Service Class
	65.7 Creating the New Service
	65.8 Modifying the User Interface
	65.9 Running the Application
	65.10 Creating an AsyncTask for Service Tasks
	65.11 Summary

	66. Android Local Bound Services – A Worked Example
	66.1 Understanding Bound Services
	66.2 Bound Service Interaction Options
	66.3 An Android Studio Local Bound Service Example
	66.4 Adding a Bound Service to the Project
	66.5 Implementing the Binder
	66.6 Binding the Client to the Service
	66.7 Completing the Example
	66.8 Testing the Application
	66.9 Summary

	67. Android Remote Bound Services – A Worked Example
	67.1 Client to Remote Service Communication
	67.2 Creating the Example Application
	67.3 Designing the User Interface
	67.4 Implementing the Remote Bound Service
	67.5 Configuring a Remote Service in the Manifest File
	67.6 Launching and Binding to the Remote Service
	67.7 Sending a Message to the Remote Service
	67.8 Summary

	68. An Android Notifications Tutorial
	68.1 An Overview of Notifications
	68.2 Creating the NotifyDemo Project
	68.3 Designing the User Interface
	68.4 Creating the Second Activity
	68.5 Creating a Notification Channel
	68.6 Creating and Issuing a Basic Notification
	68.7 Launching an Activity from a Notification
	68.8 Adding Actions to a Notification
	68.9 Bundled Notifications
	68.10 Summary

	69. An Android Direct Reply Notification Tutorial
	69.1 Creating the DirectReply Project
	69.2 Designing the User Interface
	69.3 Creating the Notification Channel
	69.4 Building the RemoteInput Object
	69.5 Creating the PendingIntent
	69.6 Creating the Reply Action
	69.7 Receiving Direct Reply Input
	69.8 Updating the Notification
	69.9 Summary

	70. An Introduction to Android Multi-Window Support
	70.1 Split-Screen, Freeform and Picture-in-Picture Modes
	70.2 Entering Multi-Window Mode
	70.3 Enabling Freeform Support
	70.4 Checking for Freeform Support
	70.5 Enabling Multi-Window Support in an App
	70.6 Specifying Multi-Window Attributes
	70.7 Detecting Multi-Window Mode in an Activity
	70.8 Receiving Multi-Window Notifications
	70.9 Launching an Activity in Multi-Window Mode
	70.10 Configuring Freeform Activity Size and Position
	70.11 Summary

	71. An Android Studio Multi-Window Split-Screen and Freeform Tutorial
	71.1 Creating the Multi-Window Project
	71.2 Designing the MainActivity User Interface
	71.3 Adding the Second Activity
	71.4 Launching the Second Activity
	71.5 Enabling Multi-Window Mode
	71.6 Testing Multi-Window Support
	71.7 Launching the Second Activity in a Different Window
	71.8 Summary

	72. An Overview of Android SQLite Databases
	72.1 Understanding Database Tables
	72.2 Introducing Database Schema
	72.3 Columns and Data Types
	72.4 Database Rows
	72.5 Introducing Primary Keys
	72.6 What is SQLite?
	72.7 Structured Query Language (SQL)
	72.8 Trying SQLite on an Android Virtual Device (AVD)
	72.9 The Android Room Persistence Library
	72.10 Summary

	73. The Android Room Persistence Library
	73.1 Revisiting Modern App Architecture
	73.2 Key Elements of Room Database Persistence
	73.2.1 Repository
	73.2.2 Room Database
	73.2.3 Data Access Object (DAO)
	73.2.4 Entities
	73.2.5 SQLite Database

	73.3 Understanding Entities
	73.4 Data Access Objects
	73.5 The Room Database
	73.6 The Repository
	73.7 In-Memory Databases
	73.8 Summary

	74. An Android TableLayout and TableRow Tutorial
	74.1 The TableLayout and TableRow Layout Views
	74.2 Creating the Room Database Project
	74.3 Converting to a LinearLayout
	74.4 Adding the TableLayout to the User Interface
	74.5 Configuring the TableRows
	74.6 Adding the Button Bar to the Layout
	74.7 Adding the RecyclerView
	74.8 Adjusting the Layout Margins
	74.9 Summary

	75. An Android Room Database and Repository Tutorial
	75.1 About the RoomDemo Project
	75.2 Modifying the Build Configuration
	75.3 Building the Entity
	75.4 Creating the Data Access Object
	75.5 Adding the Room Database
	75.6 Adding the Repository
	75.7 Modifying the ViewModel
	75.8 Creating the Product Item Layout
	75.9 Adding the RecyclerView Adapter
	75.10 Preparing the Main Fragment
	75.11 Adding the Button Listeners
	75.12 Adding LiveData Observers
	75.13 Initializing the RecyclerView
	75.14 Testing the RoomDemo App
	75.15 Summary

	76. Accessing Cloud Storage using the Android Storage Access Framework
	76.1 The Storage Access Framework
	76.2 Working with the Storage Access Framework
	76.3 Filtering Picker File Listings
	76.4 Handling Intent Results
	76.5 Reading the Content of a File
	76.6 Writing Content to a File
	76.7 Deleting a File
	76.8 Gaining Persistent Access to a File
	76.9 Summary

	77. An Android Storage Access Framework Example
	77.1 About the Storage Access Framework Example
	77.2 Creating the Storage Access Framework Example
	77.3 Designing the User Interface
	77.4 Declaring Request Codes
	77.5 Creating a New Storage File
	77.6 The onActivityResult() Method
	77.7 Saving to a Storage File
	77.8 Opening and Reading a Storage File
	77.9 Testing the Storage Access Application
	77.10 Summary

	78. Implementing Video Playback on Android using the VideoView and MediaController Classes
	78.1 Introducing the Android VideoView Class
	78.2 Introducing the Android MediaController Class
	78.3 Creating the Video Playback Example
	78.4 Designing the VideoPlayer Layout
	78.5 Configuring the VideoView
	78.6 Adding Internet Permission
	78.7 Adding the MediaController to the Video View
	78.8 Setting up the onPreparedListener
	78.9 Summary

	79. Android Picture-in-Picture Mode
	79.1 Picture-in-Picture Features
	79.2 Enabling Picture-in-Picture Mode
	79.3 Configuring Picture-in-Picture Parameters
	79.4 Entering Picture-in-Picture Mode
	79.5 Detecting Picture-in-Picture Mode Changes
	79.6 Adding Picture-in-Picture Actions
	79.7 Summary

	80. An Android Picture-in-Picture Tutorial
	80.1 Adding Picture-in-Picture Support to the Manifest
	80.2 Adding a Picture-in-Picture Button
	80.3 Entering Picture-in-Picture Mode
	80.4 Detecting Picture-in-Picture Mode Changes
	80.5 Adding a Broadcast Receiver
	80.6 Adding the PiP Action
	80.7 Testing the Picture-in-Picture Action
	80.8 Summary

	81. Video Recording and Image Capture on Android using Camera Intents
	81.1 Checking for Camera Support
	81.2 Calling the Video Capture Intent
	81.3 Calling the Image Capture Intent
	81.4 Creating an Android Studio Video Recording Project
	81.5 Designing the User Interface Layout
	81.6 Checking for the Camera
	81.7 Launching the Video Capture Intent
	81.8 Handling the Intent Return
	81.9 Testing the Application
	81.10 Summary

	82. Making Runtime Permission Requests in Android
	82.1 Understanding Normal and Dangerous Permissions
	82.2 Creating the Permissions Example Project
	82.3 Checking for a Permission
	82.4 Requesting Permission at Runtime
	82.5 Providing a Rationale for the Permission Request
	82.6 Testing the Permissions App
	82.7 Summary

	83. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	83.1 Playing Audio
	83.2 Recording Audio and Video using the MediaRecorder Class
	83.3 About the Example Project
	83.4 Creating the AudioApp Project
	83.5 Designing the User Interface
	83.6 Checking for Microphone Availability
	83.7 Performing the Activity Initialization
	83.8 Implementing the recordAudio() Method
	83.9 Implementing the stopAudio() Method
	83.10 Implementing the playAudio() method
	83.11 Configuring and Requesting Permissions
	83.12 Testing the Application
	83.13 Summary

	84. Working with the Google Maps Android API in Android Studio
	84.1 The Elements of the Google Maps Android API
	84.2 Creating the Google Maps Project
	84.3 Obtaining Your Developer Signature
	84.4 Adding the Apache HTTP Legacy Library Requirement
	84.5 Testing the Application
	84.6 Understanding Geocoding and Reverse Geocoding
	84.7 Adding a Map to an Application
	84.8 Requesting Current Location Permission
	84.9 Displaying the User’s Current Location
	84.10 Changing the Map Type
	84.11 Displaying Map Controls to the User
	84.12 Handling Map Gesture Interaction
	84.12.1 Map Zooming Gestures
	84.12.2 Map Scrolling/Panning Gestures
	84.12.3 Map Tilt Gestures
	84.12.4 Map Rotation Gestures

	84.13 Creating Map Markers
	84.14 Controlling the Map Camera
	84.15 Summary

	85. Printing with the Android Printing Framework
	85.1 The Android Printing Architecture
	85.2 The Print Service Plugins
	85.3 Google Cloud Print
	85.4 Printing to Google Drive
	85.5 Save as PDF
	85.6 Printing from Android Devices
	85.7 Options for Building Print Support into Android Apps
	85.7.1 Image Printing
	85.7.2 Creating and Printing HTML Content
	85.7.3 Printing a Web Page
	85.7.4 Printing a Custom Document

	85.8 Summary

	86. An Android HTML and Web Content Printing Example
	86.1 Creating the HTML Printing Example Application
	86.2 Printing Dynamic HTML Content
	86.3 Creating the Web Page Printing Example
	86.4 Removing the Floating Action Button
	86.5 Designing the User Interface Layout
	86.6 Loading the Web Page into the WebView
	86.7 Adding the Print Menu Option
	86.8 Summary

	87. A Guide to Android Custom Document Printing
	87.1 An Overview of Android Custom Document Printing
	87.1.1 Custom Print Adapters

	87.2 Preparing the Custom Document Printing Project
	87.3 Creating the Custom Print Adapter
	87.4 Implementing the onLayout() Callback Method
	87.5 Implementing the onWrite() Callback Method
	87.6 Checking a Page is in Range
	87.7 Drawing the Content on the Page Canvas
	87.8 Starting the Print Job
	87.9 Testing the Application
	87.10 Summary

	88. An Introduction to Android App Links
	88.1 An Overview of Android App Links
	88.2 App Link Intent Filters
	88.3 Handling App Link Intents
	88.4 Associating the App with a Website
	88.5 Summary

	89. An Android Studio App Links Tutorial
	89.1 About the Example App
	89.2 The Database Schema
	89.3 Loading and Running the Project
	89.4 Adding the URL Mapping
	89.5 Adding the Intent Filter
	89.6 Adding Intent Handling Code
	89.7 Testing the App Link
	89.8 Associating an App Link with a Web Site
	89.9 Summary

	90. An Introduction to Android Instant Apps
	90.1 An Overview of Android Instant Apps
	90.2 Instant App Feature Modules
	90.3 Instant App Project Structure
	90.4 The Application and Feature Build Plugins
	90.5 Installing the Instant Apps Development SDK
	90.6 Summary

	91. An Android Instant App Tutorial
	91.1 Creating the Instant App Project
	91.2 Reviewing the Project
	91.3 Testing the Installable App
	91.4 Testing the Instant App
	91.5 Reviewing the Instant App APK Files
	91.6 Summary

	92. Adapting an Android Studio Project for Instant Apps
	92.1 Getting Started
	92.2 Adding the Application APK Module
	92.3 Adding an Instant App Module
	92.4 Testing the Instant App
	92.5 Summary

	93. A Guide to the Android Studio Profiler
	93.1 Accessing the Android Profiler
	93.2 Enabling Advanced Profiling
	93.3 The Android Profiler Tool Window
	93.4 The Sessions Panel
	93.5 The CPU Profiler
	93.6 Memory Profiler
	93.7 Network Profiler
	93.8 Energy Profiler
	93.9 Summary

	94. An Android Biometric Authentication Tutorial
	94.1 An Overview of Biometric Authentication
	94.2 Creating the Biometric Authentication Project
	94.3 Configuring Device Fingerprint Authentication
	94.4 Adding the Biometric Permission to the Manifest File
	94.5 Designing the User Interface
	94.6 Adding a Toast Convenience Method
	94.7 Checking the Security Settings
	94.8 Configuring the Authentication Callbacks
	94.9 Adding the CancellationSignal
	94.10 Starting the Biometric Prompt
	94.11 Testing the Project
	94.12 Summary

	95. Creating, Testing and Uploading an Android App Bundle
	95.1 The Release Preparation Process
	95.2 Android App Bundles
	95.3 Register for a Google Play Developer Console Account
	95.4 Configuring the App in the Console
	95.5 Enabling Google Play App Signing
	95.6 Enabling ProGuard
	95.7 Creating a Keystore File
	95.8 Creating the Android App Bundle
	95.9 Generating Test APK Files
	95.10 Uploading the App Bundle to the Google Play Developer Console
	95.11 Exploring the App Bundle
	95.12 Managing Testers
	95.13 Uploading Instant App Bundles
	95.14 Uploading New App Bundle Revisions
	95.15 Analyzing the App Bundle File
	95.16 Enabling Google Play Signing for an Existing App
	95.17 Summary

	96. An Overview of Gradle in Android Studio
	96.1 An Overview of Gradle
	96.2 Gradle and Android Studio
	96.2.1 Sensible Defaults
	96.2.2 Dependencies
	96.2.3 Build Variants
	96.2.4 Manifest Entries
	96.2.5 APK Signing
	96.2.6 ProGuard Support

	96.3 The Top-level Gradle Build File
	96.4 Module Level Gradle Build Files
	96.5 Configuring Signing Settings in the Build File
	96.6 Running Gradle Tasks from the Command-line
	96.7 Summary

	Index
	_GoBack
	_Ref381951250
	_Ref381951280
	_Ref381877478
	_Ref381877919
	_Ref382489559
	_Ref381949033
	_Ref382490730
	_GoBack
	_GoBack
	_Ref384718331
	_Ref324774345

