Android Studio 3.4
Development Essentials

Kotlin Edition

Android Studio 3.4 Development Essentials — Kotlin Edition
© 2019 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

L INEPOAUCHION .ottt eb bbb bbb s b s b s b s b essssnssbsassasesnesnesssnnssnonns 1
1.1 Downloading the Code Samples..........c.oveeuriricueininiciiinicicircereeeee et 1
1.2 FEEADACK ...ttt 2
L3 EITALA ittt 2

2. Setting up an Android Studio Development Environment...........coccoveevenveininneininseininsnininnneneennineenen. 3
2.1 System ReqUITEIMENLS.oeveuiieininiriieciitrtcccctte ettt ettt s sa st ss s 3
2.2 Downloading the Android Studio Packageccccevicuiiniicininicininiccirccreceeecseeeeenene 3
2.3 Installing Android StUAIO........cccueueeeiricirecircc e eaees 3

2.3.1 Installation 0n WINAOWSccoiiiiiiniiriiiiciciicieie e ssaenaes 4
2.3.2 Installation on MacOS ..o 4
2.3.3 InStallation 0N LINUX.....cocceurireeeirirecieirieieteireeseetesesetseesesstese et esese st se e st ssesesesesaenes 5
2.4 The Android Studio Setup WiIzard..........cccvvecurininceininicincicriccietecie et 5
2.5 Installing Additional Android SDK Packagesc.ceceeeueirireeininicininiceiniccreneceeecsenseeeenenne 6
2.6 Making the Android SDK Tools Command-line Accessible...........cccouuerrerreerrecrnecrnierneerercenenees 8
2.6.1 WINAOWS 7ottt 8
2.6.2 WINAOWS 8.1 ..t 9
2.6.3 WINAOWS 10 1.oeuimiiicicieiieieieiscciets ettt ettt ettt ettt sttt ettt s 10
2.6.4 LINUX c.viiiiiiiicitcctet ettt s s bbbt s 10
2.6.5MACOS ... 10
2.7 Updating Android Studio and the SDKc.cccviircinncinicreereerereeereee e sseeeeseeeene 10
2.8 SUIMIMATY ..ottt b bbb 10

3. Creating an Example Android App in Android Studio.........ccccevveveivuiniinninsinsinsinniennicnennecninecnneneenne 11
3.1 ADOUL the PIrOJECT ..uecviieciciiciciriecicrc ettt ettt eeae 11
3.2 Creating a New Android ProJect......c.ccccvicueiriieriinicieiniceiniccieiecieseeicesesee e esesesenaeas 11
3.3 Creating an ACHIVILYcccuiiiiiiiiiiicc s 12
3.4 Defining the Project and SDK Settingsccceecuruveurieinieiniiieniiieicsieseeeesiesseessesessesenenens 12
3.5 Modifying the Example APPliCation........coceueurecerecuriecinieeineeeiereiesseeisesessesessesseessesessesessesessesees 13
3.6 Reviewing the Layout and Resource Files.........cccvuciicnerienernecrniernecneeeeseeesecereensesensenens 20
3.7 AddIng INtraction.......ccuiuiiiiiiiciiciie et ees 22
3.8 SUIMIMATY wiiiiiiiitcc e e b bbb bbb s b e 24

4. Creating an Android Virtual Device (AVD) in Android Studioccoveevueversrensenscnenscnsecncnnecscneenes 25
4.1 About Android Virtual DeViCesccccuiiiiriiiiiiiiiiiiiie s 25
4.2 Creating @ NeW AVD ... 26
4.3 Starting the EMULALOT. ..o sseseae 27
4.4 Running the Application in the AVD ...t eesesseeseseseacsenes 27
4.5 Run/Debug ConfiIgurations.............ccuciiiiiiiiiiieieiiiiee s ssssanss 29
4.6 Stopping a RUnning AppliCationc.ccccuieuiuricurieunieinicieeeeetenee e sseseens 30
4.7 AVD Command-line Creationccceeiiicininiiiniiiieisssssssssssssessssessssessssens 30
4.8 Android Virtual Device Configuration Files..........cccccoocvniiiniiicincinininiisicsccccicicne 32
4.9 Moving and Renaming an Android Virtual Deviceccccoeeuveeuricinivinininencneeeseeeene 32
4.10 SUIMIMATY covviiniiiiiniciceii ettt st b bbb s bbb se st s b s b bebessasan s 32

Table of Contents

5. Using and Configuring the Android Studio AVD Emulator

5.1 The Emulator ENVIFONMENTc.c.ouiiueiriiuiiriicieiicieeicceeieesetsecicseesesetsesesese e sesesesseaesesenas 33
5.2 The Emulator Toolbar OPtions.........ccveeeeueirieueirieieinineeieiseeetseeeeesssessiessssesesessesesesssesssessssssssenns 33
5.3 Working in Zoom MOEccoueuiueiiueicrneernicintienieeees e sese e ese s sessesssesssasesssseses 35
5.4 Resizing the EMulator WINdOW........cccciuiiiiiiiniiiniiiccieecceeese e sseessesseaens 35
5.5 Extended Control OPHiOnS.........cveueiririreereeueueieieieirieieisistseeeeseseseresesesesesststseseeesesesesesesesesesesssees 35
5.5.1 LOCATIOMNocuiiiiiiictctci s bbb 35
5.5.2 CIIULAT ..ottt ettt 36
5.5.3 CAIMIET A ..oviiiiii bbbt 36
5.5.4 BatterY..iiiiiiiiiiiccci s 36
5.5.5 PRONE ...t 36
5.5.6 Directional Pad.........c.coueeiiiiiininiieiiiceccicce ettt 36
5.5.7 MICTOPRONE. ...ttt bttt ettt ettt 36
5.5.8 FINGEIPIINT coviviiiiititiriiiittc et b s 36
5.5.9 VATtUAL SEINISOTS.....vuiutiiiiciiiicieiicietniceetecte ettt 36
5.5.10 STIAPSNOLS. .. cueuuiineiieieeieireeici ettt ettt ettt 36
5.5.11 SCIeEn RECOT.....cuuviiuiiriiicirircicrc ettt ettt 36
5.5.12 SELHINES wovviviiiiiiiciitc bbb 37
5.5.13 HePvvovoooeoeeeeeeeeeeeeeeeeeeeeeeeeees e seseesemeeeeesseseesssssssssssssseessee s s e ssess s 37
5.6 Working with Snapshots..........cocciiiiiiniiiiicc e 37
5.7 Drag and DIOP SUPPOTT.....c.cveueuriiciriniiieiiieieiieieieeeseiste e ssesesese e s s ssssesesssacsesenas 38
5.8 Configuring Fingerprint EMulationcccocenrnncncineeeeeeeseeereessesesseeenseesesessesees 38
5.9 SUIMIMATY .ottt sttt sttt s s e et a bt 40
6. A Tour of the Android Studio User INterfacecocueveeveenuensiisensiininniininnninennneneinensenenenesns
6.1 The WELCOME SCIEOIM.......cucueiiueecirieecieiecic ettt ettt 41
6.2 The Main WINAOW ...ttt et senas 42
6.3 The TOOL WINAOWSovueiecieeciriieieieieieeieee et s e st saesseaees 43
6.4 Android Studio Keyboard ShOrtCutsccoccueuriveueirincceiiniccnicrecereecteeese e 46
6.5 Switcher and Recent Files Navigationcccccevvceeiiciriniceiniicineceiniecreeesenesesesessesesesenne 46
6.6 Changing the Android Studio Themeccovcuvieinieiniercircrecrecee e eaees 47
6.7 SUININATY .ottt sttt sttt bbbttt s a ettt a e ettt a b bt 47
7. Testing Android Studio Apps on a Physical Android Device...........coceevivuiniinrensiinensienenscnsensncssennnes
7.1 An Overview of the Android Debug Bridge (ADB).......ccccvueurieinieiniveirrieireeeceeeeeeeenes 49
7.2 Enabling ADB on Android based Devices..........ccceuveurinircciriiceniniceinecieeceeeeesesseesenenne 49
7.2.1 MmacOS ADB CONfIGUIALIONcueueuerieciieeieieeeieeeeeeeeeie e sessese s ssese s s nsesessesesaenns 50
7.2.2 Windows ADB Configurationc.ccceeeuieuiieiniiniennicieinceessesessesessesesssessesessssessesessenns 51
7.2.3 Linux adb Configuration.........c.ceceecurecuniecuneeeineieieeeiceseeseieesese s ssese s sesessesessessesenns 52
7.3 Testing the adb ConNection...........ccccucciiiiiiiiiii s 52
74 SUININATY woovvevieiiiirieeieseetet ettt ettt s sa bt b ettt s e bttt s s a bt e e benesestanas 53
8. The Basics of the Android Studio Code Editor.........ccoevviivinriininsiinennrininniinennninennenenneneinenen
8.1 The Android Studio EdItOr..........ccoiiiiiiiiiiicicicc e seaees 55
8.2 Splitting the Editor WINAOWc.ccccuiiiiiiiniiiiiicciicctccccteeeeteeesese e s seeae 57
8.3 Code COMPIELIONvuvrruiiecieecirieeireteei ettt seaces 58
8.4 Statement COMPLEIONc.c.vriiueiriiecieiricicir ettt ettt 59
8.5 Parameter INformationc.coccuriicieinicciniiciecce ettt 59
8.6 Parameter Name HINEScooiiiiiriiiiicieceecnc ettt et ee et e e 60
8.7 COde GENETALIONcuvereiiieiceiciieiei ettt 60

ii

Table of Contents

8.8 COde FOLAING.......cviiiiiiiiiiiciii s 61
8.9 Quick Documentation LOOKUPc.c.curueuiiriniucieiricceiecieircctn ettt seeaeae 62
8.10 Code RefOrmatting.......ceuruiueuriiucuiirieieiriicieiicieieiecsetsteie sttt saeae 63
8.11 Finding Sample Code ... sas 63
8.12 SUMIMATY ..ttt bbb bbb bbb 64
9. An Overview of the Android Architecturecocvevienieniinieniiniinieiiieiciccreeeeenenenenesenens 65
9.1 The Android SOftWare SACKcocuvvcuicirieiicicccee e 65
9.2 The LINUX Kernel......cccviiiiiiiiiiiiiiiiciic s sassens 66
9.3 Android Runtime — ARTc.coiiiiriiiieiriccieirece ettt sttt 66
9.4 ANAIOid LiDIAriesccuvueuieciieciiicicieeieeteceece ettt 66
9.4.1 C/CA+ LIDIATiescuvuieiiiiiiciiciicti s sse e 67
9.5 Application FrameWOTK........coccuveuricuriciriciniciicieiecteectseessesessese s sese s ssasssssens 67
9.6 APPLICALIONSovueuviincicteicictetrt ettt ettt sttt sttt aenenes 68
0.7 SUIMIMIATY ...oviiiiiiircciciniccctt et ettt et s b bbb sb b b ettt s b b e 68
10. The Anatomy of an Android APPLICAtIONceervuiririuiirinsininiinintnnenesstessseseesse s ssssaessesnes 69
10.1 ANAroid ACHVIEIESvuvuiieiiiciiiciii et 69
10.2 Android Fragments..........ccccocuuiunimieiniciciciiisii et ssssssss s ssesesssssssssssssssaenas 69
10.3 ANATOid INEENES ...ttt st eae 70
10.4 Broadcast INTENTS. ..ot nns 70
10.5 Broadcast RECEIVETSc.ouiueuriiuieeiiiieiriceieinecee sttt ettt ettt teaeias 70
10.6 ANATOI SEIVICEScvuvriuiieiieiiieieiecie ettt 70
10.7 Content PrOVIAETSc.ccviiuiiiiiiiiiiiicicccic st ssssens 71
10.8 The Application Manifest...........ccveiercrricrnicinieeeis et sseae e seasesesens 71
10.9 APPLICAtion RESOUICTEScucuviiuceiiciciriicieirecicieiseicie ettt seaese et seaeaes 71
10.10 APPLiCation CONEEXL......cueucueuiceeiriieeiriieeietrieseieiseseuesseesesesescbe sttt s ssesese s sesesessesesesesseacses 71
10,11 SUIMINATY couviiiiinciiici st ss st ss bbb s b s b s astsssantes 71
11. An Introduction to KOtlin......ciiiiiiiiiiiiiiiiiiiiiiiiiiiininincnencsnenenenesnessssssessssessesessessenses 73
11.1 What 18 KOHN? ..ottt ettt sttt et 73
11.2 KON QNA JAVA. .ttt ettt ettt sa et st s be b et ene st e st et enesae s et enesressenis 73
11.3 Converting from Java to KOtlnccccriiiiniicininiceccirccicccee et eseseeseseeseaenes 73
11.4 Kotlin and Android StUAIOc.c.euveeeiririeieiniieirireeseeieceie ettt 74
11.5 Experimenting With KOtlinc...ccoveuieiiiceececceceee e 74
11.6 Semi-colons in KOtHN ..o 75
L1.7 SUINIMATY c.oiuiiiiiiciiici st css s s s bbb bbb b s b s sa st sssanaes 75
12. Kotlin Data Types,Variables and Nullabilityccccccevervirsuensinsensenninninnininncnicncnecncnecnesecsscseenes 77
12.1 KOthN Data TYPES.....vcuuiieciriicieiiiieiritcieirieieisiese et se s st sassesessesssessssssesesssacses 77
12.1.1 Integer Data TYPESccucuiiiiiiiiiiiiiccc e 78
12.1.2 Floating Point Data TYPeS.......ccoccueuriereirinicirinicieinieceeineeietsiseiese e s eesesesesesesesaeas 78
12.1.3 Boolean Data TYPe.......cccoiuviiiiiiiiiiiiiicii s sssns 78
12.1.4 Character Data TYPe.....cocoeuveeurieiieiieeirecreeee et sesens 78
12.1.5 String Data TYPe......cccceiuiiriririiiietcceieereetee ettt sesenenes 78
12.1.6 ESCAPE SEQUEIICEScvrviniiiiiniiiniiiierciits ettt ss bbb e 79
12.2 Mutable Variables...........c.occiricunieiieieiesieiee e sesse s sssasssssens 80
12.3 Immutable Variables ... e 80
12.4 Declaring Mutable and Immutable Variables..........c.cccocviviiiiicininininiiicccncrcicene 80
12.5 Data TYPes are ODJECESccuvcuieerrieiireeerieieteiee e se s st ssesens 80
12.6 Type Annotations and Type INferenceoccveeninecininecieinnecrnececeeeeeseeseseeseaenes 81

iii

Table of Contents

12.7 NUILADLE TYPE ...ttt sacnns 82
12.8 The Safe Call OPEratorc.ceuveeueirieucirireeieiricieisireeieiseese ettt ettt s sseseseseseaes 82
12.9 NOt-NUIL ASSEITION. ..ottt 83
12.10 Nullable Types and the let FUNCHONcccvvueieueecrricieciriceiecircereereieese e sseaeens 83
12.11 The EIVIS OPEIator ...c.cuviieeiiiucieirieieirirescieiseseseesteaesetsesese st ssesesessssesesetsesesessssesesessesesesesneaes 84
12.12 Type Casting and Type ChecKingcoccereeurinicrrininceiniicininiccteiecseseesesseeeesesseeseseneaes 85
12.13 SUIMIMIALY c.oorttiiicicieict st a s b s a et a s b s sasas 85
13. Kotlin Operators and EXPreSSIONScccevererererisuessessssnessesssssssnssssssssssssssssessssssssssssassssssssssssssssssssess
13.1 Expression Syntax in KOthn........cccocuiiiiiiicicccciec s 87
13.2 The Basic AssigNment OPEIator..........ccvueuiueeiureeureerierieenieeeeseesessesessesessesessesessesessesessessssenns 87
13.3 Kotlin Arithmetic OPeratorsc.ccoecuririereirincicirinicieinieeieitereeseesesseesesessesesesseesesessesesessseaes 87
13.4 Augmented Assignment OPEratorsccuueuvercuivriiinieieieiieiesseiseissesessessssse s sesenes 88
13.5 Increment and Decrement OPEratorscvceeureeeueirecuernineucreineesessisesesesseesessesesesessesesessesenes 88
13.6 EQUALILY OPCIatorsccuviuieciiiucieiricietrieicietsieieteeeiesetseese et sess et sessese e eseaesesssaesesesnsacs 89
13.7 Boolean Logical OPerators ..ot sssessssss s ssesenns 89
13.8 RaNGE OPEIALOTovviiiiiiiiic bbb 90
13.9 BitWisSe OPEIatorS.....ouvviviueiiririiiiiciiiiiiiereetitn ettt bt sa st s b b sens 90
13.9.1 BitWiSe INVETSIONeuvviuiriiitrieireeetectriett ettt ettt ee et ae et nene 91
13.9.2 BitWiSe AIND ...ttt ettt ettt ettt sttt 91
13.9.3 BItWiSe ORu...ecuiiiiiiiiiiiinciiicetit ettt st 91
13.9.4 BitWise XOR ..ottt sttt sttt sttt sttt et se s bt ene 92
13.9.5 Bitwise Left Shift......ccoveuieiiiriciricicrcccc e 92
13.9.6 Bitwise Right Shift......c.ccocvecuiininiiiiiciccrcccccce et eaeaes 92
13,10 SUIMIMIALY c.oovtviiiciciicici sttt b bbb bt nasas 93
14. Kotlin FIOW CONtIOLc.coviiiiiiiiiiiiiiiiininininininnnesnnnnsnssssssssssssessssssssssssssssssssssssssssssns
14.1 Looping FIOW CONEIOL ..ot sssenes 95
14.1.1 The Kotlin for-irt StateMENL.......c.vueuiueeiereierieiricireeieeeeieeseee s s ssesessesessesenses 95
14.1.2 The WHILE LOOP .ecvviiuiiiieciciieicteiticie ettt bttt ettt seseses 96
14.1.3 The do ... WHIlE 100D ...cuvieiieeciricirecireeccee et 97
14.1.4 Breaking from LOOPSccoueuriciriciieiiieiciecisecieieneieseseee e ssese s ssesessesessesennes 97
14.1.5 The continue StAEIMENTccccuviiuieirieiiiirieirieiece e sssessssessaesans 98
14.1.6 Break and Continue Labels.........covieueiieiniiiieiriieinicieiscesee ettt seeseaes 98
14.2 Conditional FIOW CONIOL.........cccuvveiicuieiieieieeeieeesee e ssese s s sessesssenns 99
14.2.1 Using the if EXPIeSSIONSc.coecueurinicuriniceeiniecieinieeteieere et sstsesesestsesessssssessssesesens 99
14.2.2 Using if ... else ... EXPIESSIONSc.cuoeuiuiiiuieieieiciiiiiiieieseisisssssse s ssssssssssssessssenns 100
14.2.3 Using if ... else if ... EXPIESSIONSc.oveuiueriuriciriciieiieieieieeeeeseeeseeensessesessesessesenenens 100
14.2.4 Using the when Statementc.ccvceuriircrninicieiniicereccneeeseese e seeaeae 100
14.3 SUIMINATY ..ottt a s b a s bt es 101
15. An Overview of Kotlin Functions and Lambdascccvvvininininininininininininnneninnnnnnnn,
15.1 What is @ FUNCHON?c.cuiiiiiiiiicicieiicietreeeeeeteie et senssaeseses 103
15.2 How to Declare a Kotlin FUNCHON «......cvveiiveiiieciccceci e neenenees 103
15.3 Calling a Kotlin FUNCHON......coviiuiiriiiiriiccinicircictrccteecie ettt seeacse s 104
15.4 Single EXpression FUNCHONSc.evcurecureeiieeieieieieeciseeeieeeeseeeessesessesessesessesessesessesessesessesssees 104
15.5 LOCAL FUNCHOMS «...cuceiieiieciictectectee e se s saennee 104
15.6 Handling Return ValUes.........c.cocueuriiciriniceiniicieinicctsiecteseceesetesese et sseaesessaseseseses 105
15.7 Declaring Default FUnction Parameters..........coceuveueecuneecrneieenieeencericinecineennesensesensesesessescsneees 105
15.8 Variable Number of Function Parametersc.cccccveeureernieerncerencrrecnneenneensesenesenesesenneees 105
15.9 Lambda EXPIeSSIONSc.cueveucuiiricuciritictniicictrieciestescsseesese sttt sseese st sssassessasescseses 106

iv

Table of Contents

15.10 Higher-order FUNCHONS ...c..ccvvueieurierrieirecieeiciecieeeiseicsseieseeenessesessese s ssesessesessesessesssacens 107
I5.11 SUINIMATY w.oviiiiiii bbb bbb 108
16. The Basics of Object Oriented Programming in Kotlinccocvveviiviivinnininninsinninnicncnnecncneennen 109
16.1 What 15 @n ODJECE?ocvieiiciiciceeeieeeee et 109
16.2 What 15 @ Class?cucuiiiiiiiiiiie i 109
16.3 Declaring a KOtln CLass...........ccocvuiiiiiiiiiiiie e ssesesenas 109
16.4 Adding Properties t0 @ Class.........cocecurieuicunieeiieiieieiiesreieeeeeeessesessese e ssesssaenns 110
16.5 Defining Methodsc.couicuiiiiiiiniiciniiccrccece ettt seseaes 110
16.6 Declaring and Initializing a Class INStaNCe...........cceueirieincinciriiniiniiciciccccecesenene 110
16.7 Primary and Secondary CONSIIUCIOLS.........ccuvueuiueuiuecrieeiieenireneesisessasessesessesessesessesessessssenns 110
16.8 Initializer BIOCKS.......coviiiiiiiiiiicic e 113
16.9 Calling Methods and Accessing Properties ..o 113
16.10 CUSLOM ACCESSOTSouiuiiiiininiiiriiciciiii bbb 113
16.11 Nested and INNer Classescocvuuiiiiniiiniiniiiiieiieiicicssises e sssanns 114
16.12 Companion ODBJECtS.........cviiiiiiiiiiiiiii s 115
16.13 SUINIMATY «.ouiiiiiiiiii bbb bbbt 117
17. An Introduction to Kotlin Inheritance and Subclassing..........cccevueeervueieinucninsninsenninsecnensecnncnseennens 119
17.1 Inheritance, Classes and SUbClasses.........c.ouccuieuiuricurieiriciniccce e 119
17.2 SUDCIASSING SYNTAX ...ucuviiieiiciiiiciciicictrtcieineeict ettt bttt bbb 119
17.3 A Kotlin Inheritance EXample........ccccviiuriniiiininiiieniceistceieiseeie ettt seseaes 120
17.4 Extending the Functionality of @ SUbClassccceueuvveiriciniciniiccceeeeeeeeene 121
17.5 Overriding Inherited Methods.........cccovicuiiniicininiiiiccecccccte e 122
17.6 Adding a Custom Secondary CONSIIUCIOL........c.ccuiuiuiieieiciieiieieieseicsisssessessssessesesenns 123
17.7 Using the SavingSACCOUNTE ClASScucvreeuieeiiieriieeeieeerieieieneeeeeseese e ssaenns 123
17.8 SUIMMATY ..ttt eb et s ettt sb bbb sa bbbt s sn b sens 123
18. Understanding Android Application and Activity Lifecycles........ccocevvirrernruinsiniiniecnscnnecsecnseennne 125
18.1 Android Applications and Resource Management..........cccocceeueeceeureneceeineeuceneseecseesesesensenenes 125
18.2 ANAroid Process SLAtescoucueueueurucrresciieeieieieie ettt ssesessess s s ssesessesessesessesssscsssacnns 125
18.2.1 FOreground PrOCESS ...ttt sscsssaees 126
18.2.2 ViSIDIE PrOCESSocvuiieiiiiic s 126
18.2.3 SEIVICE PIOCESSucuuiiiiiiiiiiii st 126
18.2.4 BacKGIOUNd PIOCESS......cuvucureeiiiciiieiciecieceeeeeienet ettt naees 126
18.2.5 EMPLY PTOCESS ..cvniiiiiiiiiiiiiicicie st 127
18.3 Inter-Process DePendenciesocuecuneueeniieicunicinicineeeeseeeeessesessesessesessesessesesseseesesssscens 127
18.4 The ACtiVIty LIfECYCle......viuieiiieiiieciciccee e 127
18.5 The ACHVILY SEACK......cccuiiriiucieiiciciiciciritcec ettt bbb 127
18.6 ACHIVILY STALES ...oucviiiictiictci e 128
18.7 Configuration ChANEEScccveueeeurecrrieiiieiieieie et ese e s saesesaenns 128
18.8 Handling State Change........c.ccoccueuriceirinicieiniciciniectestceieteicsetseeae sttt tseseses s esesessesesesesaeaes 129
18.9 SUIMMATY ...cuviiiiiiiiicicict st b bbb anaes 129
19. Handling Android Activity State Changes...........ccccevuevirrucnirsucninncninnininninescnesesesssesesssesseesaees 131
19.1 New vs. Old Lifecycle Techniques...........ccccueuviuiuniiniiiciciciciiiieeiccssseissesesenenns 131
19.2 The Activity and Fragment Classes..........ceuccuveueuriuemeurecurieinienieeeeeseessesessesessesessesessesessessssenns 131
19.3 Dynamic State vs. Persistent State........coeeeeeivininiiiicininninicciincccneeesessene s 133
19.4 The Android Lifecycle Methods............ccciiiniiniininiiiiccciicccccccseee e 134
19.5 LIEHIINIES ...ttt 135
19.6 Disabling Configuration Change ReStarts...........coccceveveeurinecreinincecrniniceneeeesiecseseesessenenes 136

Table of Contents

19.7 Lifecycle Method Limitations.........cccccuiiniiiinininiciiiniiiiisicieicicisese s 136
19.8 SUIMMIATY ..ottt 137

20. Android Activity State Changes by Example.........coccooveveinieniinniniininiininniininnnininnenennenennenene
20.1 Creating the State Change Example PToOJectcccceuvureiricirieinienneeieeeeeeeceseeeeeeeeenene 139
20.2 Designing the User INtErfacec.ccovceuriecuririicirinicecceeee ittt ssesesessseacseses 140
20.3 Overriding the Activity Lifecycle Methodscccocviiiiiiccincincinininiiciccccciciene 141
20.4 Filtering the Logcat Panel...........cccouiiiiriiinicinieicccecreeeeese e sseseens 143
20.5 Running the APpLiCationc.cocccueuricueirinicieinieceeceeeseese ettt tties et sseaeseses 144
20.6 Experimenting with the ACtVItY......coccuveeeiercricincrceececrectreereieese e seaes 145
20.7 SUIMIMATY ..ottt bbb bbb bbb 146

21. Saving and Restoring the State of an Android ACtiVitycccccveveireiiininiincnniinennenennenenneneone
21.1 Saving Dynamic STae ... s 147
21.2 Default Saving of User INterface Statecooeeuerecrerriccininiceiniccieieciereteeceeeseesesseescseenes 147
21.3 The BUNALe CLaSsc.cueueeieiciriciricineicineieieeeeessesesseee et sess s s ssesessesesesessesessesesacseens 148
21.4 SaVING the STALe.....cocviciiciececee et 149
21.5 ReStOring the Statec.cvceuiiiciiiniiciri ettt ses 150
21.6 Testing the APPLICAtION......cevcuricereeireeeircieicecirectrees ettt sese s sesse s seees 150
21.7 SUIMIMATY c.oviiiiiiiicc bbb bbb 151

22. Understanding Android Views, View Groups and Layoutscecceeuvreereirrensnesensresensuesenssessesnnes
22.1 Designing for Different Android DeViCes..........ceuiueuiureneurecereeinienerenereeeseeenseeseeeneeeeseseene 153
22.2 VieWs and VIEW GIOUPSccueururuerririiietiieicieinieieietsesesessteaesesstseseetsssesesstacsesststacsesesssessssescseses 153
22.3 Android Layout Managersccceeuriuriimiiimniiminsiiiisisnisssisesssssssssesssssssssssssssssssssssssesssnes 153
22.4 The View HICTarChc.occuiciiciieiieciicectie et sene 155
22.5 Creating USer INEIfACES......c.cvurucuiiriiieiriiecieiricicieiecie ettt staes et sescseses 156
22.6 SUININATY ..oovuiuiiiicriicseset st ss s bbb bbb bR b s e s s bt s 156

23. A Guide to the Android Studio Layout Editor TOOLcccceverruiverruiniisuinerncninnenecscnecnsenecssennees
23.1 Basic vs. Empty Activity Templatescccocvuiiviciiinininiiiiicicscsesssesssesenes 157
23.2 The Android Studio Layout EdItOrccccveeuieiniriniircrcireereeeeneseeese e 159
23.3 DeSIGN MOQE.....oiuimiiiicieiiciciritctei ettt ettt 159
234 THE Palette ...t 160
23.5 Design and Layout VIEWS......c..cccvceeiueiciecrieiiieeieeeee e ssese s sessessssesssssssssscsnens 161
23.6 TEXE MOGE.....coiiieiiiiicc s 161
23.7 Setting AtIIDULES......cuiiiiiii e 162
23.8 ConVerting VIEWS ...t 164
23.9 Displaying Sample Datac.cocecueirieeeirinicieiniccieiecieeieie e etesesesstesessttsesessesesesssseseseses 165
23.10 Creating a Custom Device Definitionccccueeuviuiieiuiecicicieineiiceceeeseeesee e 166
23.11 Changing the Current DeVICe.........cecueeuricinieinieinireirecree e ssesens 166
23.12 SUININATY ceciiiieieniiiniiteeeettnt ettt sttt sttt s a bttt sb bbb ss b ne st asansasnne 167

24. A Guide to the Android ConstraintLayoUt.........cccceveevirviisiniininiininniininnineeeeeeeeeenenene
24.1 How ConstraintLayout WOTKS..........cccuriiiririiiiriniceiccieceeeictetecsesssescsesesesesssescseses 169
24.1.1 CONSLIAINTS.....cuivitititititeiee bbbt bbb 169
24.1.2 MATEINS ottt bbb s 170
24.1.3 Opposing CONSIIAINLS.ccuviiiiiicii b 170
24.1.4 Constraint Biascceviiiiiiiiiiiccicitt e 171
24.1.5 CRAINS vttt b et en 172
24.1.6 Chain SEYLES....cucucuiiecieiriecieirecie ettt ettt 172

vi

Table of Contents

24.2 Baseline ALINMENtccoeuuriiiricirieieeeeeereeeieress ettt se e sse e sssenns 173
24.3 Working with GUIAEHNESccvveuieiriciiicce e 174
24.4 Configuring Widget DImMenSIONScoecucueirecueirereereinicieirieeeseiteeesseesesessesesesseesesessesesesesseses 174
24.5 Working With BarTierScocueuvcureciricireeineieeieieieieieie et ssese s ssesessesssacssseens 174
24.6 RALIOS ..oviiiiiitctc bbb 176
24.7 ConstraintLayout AAVANTaAZescccveueueirieueirineereinieieisieeeseistesesseesesessesesessecsesessesesesssseses 176
24.8 ConstraintLayout Availability.........cccooviiiiiiiiiiniiiicce e 176
24.9 SUMMATY ..ottt bbb 177
25. A Guide to using ConstraintLayout in Android Studio..........ccueeviniiiiisicninnicninninennnenennneneenen. 179
25.1 Design and Layout VIEWS........c.ccvueuicuieeniieeiiieieieiseie e ssesessesessesessesessesessesssenns 179
25.2 AUtOCONNECt MO ...ttt 180
25.3 INfErenCe MOME.......cuvieiieciciiciectree ettt 181
25.4 Manipulating Constraints Manually.............cccecrenienieninncreeeeeeeeee e 181
25.5 Adding Constraints in the INSPECtOTccveeuevriricrrinicieirieci et seeeaes 183
25.6 Deleting Constraints.........cocciiuiiiiiiiii s sssnes 183
25.7 Adjusting Constraint Biasc.ccccreurieinieiieececieeeeeee e 184
25.8 Understanding ConstraintLayout Margins..........ccccceveceeueeneernineceeinenecrsinecsesnesesesesseesessenenes 184
25.9 The Importance of Opposing Constraints and Biasccccceereerercerevcrreceneemneeenereecrsecrneenn. 186
25.10 Configuring Widget DIMensions.........ccvueuiueeerreeuniernieenieeeieeessesessesessesesesessesessesessessssenns 188
25.11 Adding GUIAELINESc.ovovueueiriieciiiciciricce ettt 189
25.12 AddING BAITIETSucucvuieiieiciicirectreereieeee et ssaenns 190
25.13 Widget Group Alignment and Distribution.........cccccveennncncnceeeeceeene 192
25.14 Converting other Layouts to ConstraintLayout.........c.c.coeveeuririrceernnecrnineceinenecrenneeneneeenes 193
25.15 SUIMNIMATY .oviiiiiiiiieiiicte st b s bbb bbb bt b s ae b sasaes 194
26. Working with ConstraintLayout Chains and Ratios in Android Studiocc.cceveevueverrucnensuciennncnne 195
26.1 Creating @ Chail.......cccoiuiiiiiiiiciic e 195
26.2 Changing the Chain StYleccoiiiiice e 197
26.3 Spread Inside Chain Style.........ccviiinicininiiccceccree et saeaes 198
26.4 Packed Chain Style.........ccociiiiiciiiiicc s 198
26.5 Packed Chain Style With Bias........cccovoeurieiniiiicccccecceeeese e 198
26.6 Weighted CRaINccccuiiicieiicciccccecie ettt ettt 199
26.7 Working With Ratiosceuiiiiiciniiiiiiciciccciecsc s 200
26.8 SUMMATY ...oviiiiiii bbb 201
27. An Android Studio Layout Editor ConstraintLayout Tutorial.........c..ccecvvuerinruininsuesensnensecsncnennnenne 203
27.1 An Android Studio Layout Editor Tool EXampleccccevieeneirincinicrnicnneeeeeeeeneeeneeenne 203
27.2 Creating @ NeW ACHIVILY ...ccciivininiiiiiiiiicctncccn ettt ae s 203
27.3 Preparing the Layout Editor ENVironment..........ccceceveucicinciniinininicinciccececeieieneneene 205
27.4 Adding the Widgets to the User Interface..........coceoeuveernicrnieencirincrnecinicreeeeeeseeeneeeneeeenne 206
27.5 Adding the CONSLIAINESc.cvveueuririiieiriccreeeie ettt ettt naeaes 209
27.6 Testing the Layout ..o sssnes 210
27.7 Using the Layout INSPECLOTc.ovcuiueurieeriieeeieicreieite e ssese e sessesesaesnsenns 211
27.8 SUINIMATY ..ottt sttt ettt s a et sb sttt sa bt st bbbt nsaebenens 212
28. Manual XML Layout Design in Android Studiocoeeeiiininiininiininninninnnininnenenennnennenen. 213
28.1 Manually Creating an XML LayOULccoeveeueirineerrinicieinineereieceesseesesetsesesesseesesessesesesssseses 213
28.2 Manual XML vs. Visual Layout Design.........ccccveuviiiviiiniiiiiiiiniiiicsssensesssnns 216
28.3 SUMMIATY ..ttt bbb bbb 216
29. Managing Constraints using Constraint Sets..........ccuveiniieiiiiininieiniiennieiniennieieeeensee 217

Table of Contents

29.1 Kotlin Code vs. XML Layout Files...........cceuoeuiiniiniiniiniiiniciciciciisiescsecscssssss s 217
29.2 Creating VIEWS......coviiiiiiiiiii st 217
29.3 VIEW AHIIDULES ..o 218
29.4 COnSIIAINE SEtS....c.cuiuiiiiiiiiiiiiiic e 218
29.4.1 Establishing CONNECtiONS.........ccvieuiuriiirieirieirieieeeeee et s s sesens 218
29.4.2 Applying Constraints t0 @ LaYOULccceuririeuririceeinieeinicciereereeecseseeseseeeaesesescsenes 218
29.4.3 Parent Constraint CONNECtiONS.........ccoccuiiiiiiniiiniiniiiccse e 218
29.4.4 Sizing CONSLIAINTSc.cviiiiiiiiicc e 219
29.4.5 Constraint Biascccceuiiiiiiiiiiiiiicici e 219
29.4.6 Alignment CONSLIAINEScccuiuiuiiiiieiieieiciciciies s saes 219
29.4.7 Copying and Applying Constraint Sets.........ccoeuremrieererrererrierrieinieeeeeeseessesessesensenens 219
29.4.8 ConstraintLayout Chainsc.coeeueiicuiinineciecieiccecie et eaeseses 219
29.4.9 GUIAEINESvecrreiiireciece ettt ettt eses 220
29.4.10 Removing COnStraints........ccouviiiiiiiiiniiii s 220
29.4. 11 SCAINEG. c..cuviiricieiicictrcc ettt ettt 220
29.4.12 ROTALION c..eniiiiiciceeicetecteieteectee ettt ettt se et a et ee 221
29.5 SUMMATY ..ottt 221
30. An Android ConstraintSet Tutorial...........ccoveviiiiiiiniininnininininnninnseeseseeeenes
30.1 Creating the Example Project in Android Studiocccvvcureeunicineeinincncccneeeeeene 223
30.2 Adding VIews t0 an ACHVILY ..c.c.evecueurinecrriricieirirecieiecieieieese ettt sesesesessesesesesseaenes 223
30.3 Setting VIew AHIIDULES.cc.oiuiuieiicicicic s 224
30.4 Creating VIew IDS ... 225
30.5 Configuring the CONStIAINt Set......c.cveueuririeueinirieieiieeieecretecte ettt seaenes 226
30.6 Adding the EdItTeXt VIEWccovcureeeiiueieiiciiciiieineieeeeseeesesessese s s ssesessessssesssasssessssessncsnens 227
30.7 Converting Density Independent Pixels (dp) to Pixels (PX).....ccocevereurerrererreemriemnieeeniereennne 228
30.8 SUINMATY ..vuiuiiiiineiciiiniectt ettt b et sa s bbb s bbbt sbsn e 229
31. A Guide to using Instant Run in Android Studio..........ccevvvevnirniriiensinniinicnncnnennecnneenncnnecneens
31.1 Introducing INStant RUIccccreiuiiriicrriiceiieceecieieeeiesetese sttt sessesesesenseaenes 231
31.2 Understanding Instant Run Swapping Levels..........cccccouviniriviincininininicicicccicienne 231
31.3 Enabling and Disabling Instant RUN........cccceeuieiiriircinicreereeeeeeeeeese e 232
31.4 Using Instant RUINL......cccoovniiiiiininiiiiiiiiniccctietnreeet e estsss e ssssssssnene 232
31.5 An Instant RUN TULOTIALc.ceuiiiieiiiririirccccceier ettt sene 233
31.6 Triggering an Instant Run Hot SWap ... 233
31.7 Triggering an Instant Run Warm SWap ..o e 233
31.8 Triggering an Instant Run Cold SWap ... 234
31.9 The RUN BUTOI c..cvuiiiiciecieceeic et seae 234
31,10 SUIMIMATY .eiuiiiiiiieieiiitnieeetit ettt sttt a bt s s bbbt s s bbb st sasnne 234
32. An Overview and Example of Android Event Handling..........cccccevvueinenieriecnsuinnennecisucnnensecieenn
32.1 Understanding Android EVENS........cooccueiriceirinecieinicieiniecretcicteeceeeseesessiescsesseseseseseaenes 235
32.2 Using the android:0nClick RESOUICE........ccuvucuiueiiiriiericerecireeee e esesene 235
32.3 Event Listeners and Callback Methodsccoveuieiinicinicinicnicreececeeeceeeceeeenene 236
32.4 An Event Handling EXamPIeccccuriciiiniiiininicieicicieiccietcietieicsesesesesseescsessesesesesenenes 236
32.5 Designing the User INTErfaceccvcueueuecureciniiciniieicescerecneeese s sseeessesseasssesnens 237
32.6 The Event Listener and Callback Method..........cccoveuurinciricinicnicececeeeceeeeeeeenene 238
32.7 Consuming EVENEScccvviueiiiininiiiiiiiiiinircceciie ettt sestsss e sesssssnene 239
32.8 SUIMMATY ..ottt bbb bbb 240

33. Android Touch and Multi-touch Event Handling

viii

Table of Contents

33.1 Intercepting TOUCh EVENLScvveuiueiiieieirecirecieceeciceeceeteie e sseaees 241
33.2 The MOtiONEVENTt ODJECt ...ttt naes 242
33.3 Understanding TOUCh ACHONS.c.coeueuriicieiniceiecieitcet ettt seeae 242
33.4 Handling Multiple TOUCKEScccviueuiieiiericiriciieneeeicinecineeeeeiesenese s ssese e esesseaees 242
33.5 An Example Multi-Touch Application.........ccovecueueinecurinincieiniccinrecieneceiereeseeeeseseeseeseeeene 243
33.6 Designing the Activity User INterfacecocooveeueinicreininceinicinnicericeieecreeeeereseesenene 243
33.7 Implementing the Touch Event LiSteNner.........cccveeueueuncurecinecrnecineeeeeeeneescsseenseeenseeenessenees 243
33.8 Running the Example APpliCation........ccceucurieuieinieeiiiniereeeeieeeee e esesenaens 246
33.9 SUIMIMATY ..ottt bbbt sa bbb bbb 246
34. Detecting Common Gestures using the Android Gesture Detector Class..........cceceerueerecirucrsnensnecnnnes 247
34.1 Implementing Common Gesture Detection..........ccuceurecerriricrrineeeinicereneereseeeseeseesenene 247
34.2 Creating an Example Gesture Detection Project ... 248
34.3 Implementing the Listener Class..........cccouvueurieinieinieeieireieeeeeeee e seseesesensns 248
34.4 Creating the GestureDetectorCompat INStANCe........ccceuvecuerriricrririeieirieerereereseeeeeseeseesenene 250
34.5 Implementing the onTouchEvent() Method.........ccoceurcinciniciniceecececneeeeeeeeenes 251
34.6 Testing the APPlICAtiON........c.cvcuieiiieiieicrc e eaees 251
34.7 SUIIINATY ..covvviiiiiiiirrccit ettt bbbt s sb bbbt s b et s bbbt s bbb 251
35. Implementing Custom Gesture and Pinch Recognition on Androidcceevvevvuevsnieieinecnsnccnnecnnne 253
35.1 The Android Gesture Builder Application.........c.coovecueiriceeirinicerinecericcieneereeeeeereeseesenene 253
35.2 The GestureOverlayView Classcccuiininiiniiniiniiiiccieciieie e sesssnes 253
35.3 Detecting GESUIES.......cucuuiiiiiiiiic b 253
35.4 Identifying SPecific GESLUIESc.cevriiueuririucreiicicieitcteitciete ettt seae 253
35.5 Building and Running the Gesture Builder Application............ccoeueucivciniirinininicincincnncnnen 254
35.6 Creating a GesStures File ... eaees 254
35.7 Creating the EXample PrOJectc.cvceuiiicieiniieiniicecictncice sttt sseese s ssesesesens 254
35.8 Extracting the Gestures File from the SD Cardcccccoeuviviniiiniiicincciiccccees 255
35.9 Adding the Gestures File to the Projectcccveinercinicinicieeeeeeceeenseeenceeneseenens 255
35.10 Designing the User INterfaceocceuevecurinincecininiciiniceinicctsirecieneeese e seeesesessesesenens 255
35.11 Loading the Gestures File ..o sens 256
35.12 Registering the EVent LIStENer.......ccoeicirieinieiniceereeeeeieenee s sseseesesenaees 257
35.13 Implementing the onGesturePerformed Method.........ccccvuvicurininccinnicenincerccenecene 257
35.14 Testing the APPlICAtION......c.cucurucuieciiieieirecireeeeeree ettt eae s eeaees 258
35.15 Configuring the GestureOVerlayVIeW.........c.ccccveiericrnicineeeeeeeeeseseesseeeneeeeesenans 258
35.16 INtercepting GeSLULES......ccovvviveriiiiririiieieciit ettt st sa et s b be e 259
35.17 Detecting PINCh GESTULES.........cccuiuiuiuiiiiciciciiiiie et snes 259
35.18 A Pinch Gesture EXample PTOJECt........cocvveurieinieiniicecirceceeieeeee e sseseeaens 259
35.19 SUIMMATY wovviiiiiiiiiereciit ettt es et sa bbbt s b et sb st s b b 261
36. An Introduction to Android Fragments............cuuieieinninniiniinninniiniiniininiinimnememmees 263
36.1 What is @ Fragment?c.cocccriieirininiciiecieitcicte ettt ese s ssesese s ssacsesens 263
36.2 Creating @ Fragmentccccviviviiiiiiiiiiii s 263
36.3 Adding a Fragment to an Activity using the Layout XML File........cccccoeevirnvcrneninncrnnnee 264
36.4 Adding and Managing Fragments in Codeccoceeeueurincueinnicinnenceniccieneereeeeeeseeseenenene 266
36.5 Handling Fragment EVENLScooeuieiiericinicinieneeecinecneeeiesesesese s escssesessesesesessessesees 267
36.6 Implementing Fragment COmMMUNICAION.cvvueuivemeurecrrecrrieieieeeerereeseseeenseee e nsesenaens 267
36.7 SUIIINATY .ooveviviniiiiirereciet ettt sttt b et sa bbbt s b et st sa bbb e s s b b 268
37. Using Fragments in Android Studio - An Example..........cccovviviniininiininsiininiininniininnienecnnennennene 271
37.1 About the Example Fragment Applicationc.ccoceecueurencueiniicrninecieiniccreneeseseesesessesesennene 271

ix

Table of Contents

37.2 Creating the Example Projectcccccviiiiiniiiciciiiicicicccccicsesescsssssessssnns 271
37.3 Creating the First Fragment Layout.........ccccoccuvieiniriniinicinicineeeeeeeeeseeenceneeeseeeesesene 271
37.4 Creating the First Fragment Classccoveeurirecreinincreininecreiicecieiecteseesessieesesseesesessesenes 273
37.5 Creating the Second Fragment LayOut.........ccccucueciciiiiiniininiciciciiiiciciecscscsesse s 274
37.6 Adding the Fragments t0o the ACIVILYccoueuieiniriniiricircirecrce e 276
37.7 Making the Toolbar Fragment Talk to the ACtVItYc.ccocvevereirinceirncciririccriccerecceeenes 277
37.8 Making the Activity Talk to the Text Fragmentcoccecocveecureerneemneremneremerneenneenneeeeseeeeesnene 280
37.9 Testing the APPlICAtION.....c..cccuveuiueeiieiciicee e seae 281
37.10 SUIMIMATY ..ocviiiniiiiciiiiiteeetis ettt et b s et s s bbbt s s bbbt s snne 282
38. Modern Android App Architecture with JetpacKccevvvvueisirniiniinniininnninninniinncnennecneennesne
38.1 What is Android JEtPACK?ccceuvieiuriiciririeeiiccieici ettt ssesesesesseaenes 283
38.2 The “Old” ArChIteCTUIE......c.vucureecieeeicierciecrecitie ettt seae 283
38.3 Modern Android ATChIiteCtUIEc.cuvcuieciiciiccect e 283
38.4 The ViewModel COMPONENLcvuevuriiucrriiiieiieieieiieieteeeeerestesesesesese st ssaseacsessesesesesseaeses 284
38.5 The LiveData COMPONENLc.veuiueerirerereecrieertierteeeeeseessesessesessesessesessesessessssessesesssssesssesnens 284
38.6 LiveData and Data BInding........c..cccccueueuriimniciniciicccreeeeeeeesse e ssesene 285
38.7 ANAroid LIfECYCLESoviuiuiiieciriiciciiect ettt 286
38.8 RePOSItOIY MOQUIES........cucvreeiiiceici ettt e seae 286
38.9 SUMMATY ..ottt 287
39. An Android Jetpack ViewModel Tutorial...........cccocevveriiriruiinirniinniininnninnniinninnenneonesnesseseses
39.1 ADOUL the PIOJECT ..cueueeiieciecieciceece ettt 289
39.2 Creating the ViewModel EXample Project.........occevceirinecreinincieiniicinineccisiecreseesensnenenes 289
39.3 Reviewing the PrOJect ...t sanae 290
39.3.1 The Main ACHVILY.....cc.eveeurieiieeeiieierecieeiseieeieeeteese e s s sensesenaes 290
39.3.2 The Content Fragmentccccvuveeuriieeiniccieiiceiniecsesecieieteaesesseesesesesesessesesessssescseses 290
39.3.3 The VIEWMOMELvuiiiicieicicieicincineicieiccee ettt seaes 291
39.4 Designing the Fragment LayOUL..........ccccvueuriemnieriiniieneircireeeeesenesesseseese e nsesesseseens 292
39.5 Implementing the VIew Model.........cooccuiiiiiiniicininiccnececiceecteeciesseeecseseseseseeeaenes 293
39.6 Associating the Fragment with the View Model..........cccocovuiiiivinininininicincccncicicn, 293
39.7 Modifying the Fragment ...t sse s ssssssseseens 294
39.8 Accessing the ViewModel Data........c.occcuriniiiininicieinicciecneicicieiecteisecessieecsessesesesesseaenes 294
39.9 Testing the PrOJECt.......cccuiiiiiiiiiiciccci s 295
39.10 SUMMATY ..ottt 295
40. An Android Jetpack LiveData Tutorialcccceevueiriinveririnninnenininninneniiinesesisemesnessesesnesnes
40.1 LiveData - A RECAP c.covvvrverericiriririeieetetrert ettt ettt e et se st sesaene 297
40.2 Adding LiveData to the VIEWMOdel.........ccccoviuiuriniireiriiiiicecceiecieeeceeeesesseescaenes 297
40.3 Implementing the ODSEIVETccvvcueucineeeireericiricirieeiteieieseseeesseessesessesessesessesessesessesesaeseens 299
40.4 SUIMMATY ..ottt 300
41. An Overview of Android Jetpack Data Binding........cccceceevueversiinensinennenenncnenneniinenieneenenennes
41.1 An Overview of Data BiNding........cccvveurieuneiriciniciricieeeceecreeireeinesesesenesensesensesessesseens 301
41.2 The Key Components of Data Bindingccoceceuereereininccniniceininecieneceisiesceeeseeessesescseenes 301
41.2.1 The Project Build Configuration............ccccueueieiniiniiinicicienicieeicie s 301
41.2.2 The Data Binding Layout File........ccoceieiriniirnciricircneceeceereeeeeesseeeneseeeeeesesene 302
41.2.3 The Layout File Data EIementccccceviveueuninicininicieiiccininciciricecseiseeseseeesesesseseseseenene 303
41.2.4 The Binding Classescccceviuiiiiiiiiiiiiiiiiiiisss s ssssssesnns 304
41.2.5 Data Binding Variable Configuration............coceecuvevcunecuneeineeeneieeereeeneeenseeeneseeseseeesens 304
41.2.6 Binding Expressions (One-Way)........ccccueeurirecrriniceeininecrnineeiessieseseeseesessesesesessesesessesens 305

Table of Contents

41.2.7 Binding EXpressions (TWo-Way).......ccccccreuriurencerencrrescureenneseneseneseesesesesseeessssessesssscsseses 306
41.2.8 Event and Listener Bindingsccccocceuveeuieinininiinicinieeeeeeeecieee s 306
41.3 SUINIMATY coviiiiiiiiiiereeiit ettt st sttt sb b s s bbb et s bbbt as s b b sens 307

42. An Android Jetpack Data Binding Tutorial..........ccocccvviriiiiiinsinniinsiinninninninninnecneennenneeneennen. 309
42.1 Removing the Redundant Code...........ccviuiiiieininicieiiceieeceieieecteeesetesceesesseesesseeeesens 309
42.2 Enabling Data BINdiNgccoveuveeueurincunicinicneeieieieieessiessesesseeesseeessesessessesessesessesessesessesesnes 310
42.3 Adding the Layout EIEMentc.ccccoeueuiuriciriciicieceeeeeees e ssesessesessesenenenaes 311
42.4 Adding the Data Element to Layout File........cc.ccccvniciininicinnnceiniceiccisicceneceesseeecnens 312
42.5 Working with the Binding Class ... 313
42.6 Assigning the ViewModel Instance to the Data Binding Variablec..ccococvceunieinienennnes 314
42.7 Adding Binding EXPIreSSIONSc.ceveeueuriicuiirieieinineeieiieseiensteseseteeesesstsesessssesesessesesesseescsens 314
42.8 Adding the Conversion Method ... 315
42.9 Adding a Listener Bindingcccceeueeneuricirieiniciniececseeeseeeneienesensessesessesessesessesensesennes 316
42.10 TeStING the APP...ccuiiriieciriricieiriecirirecetrecie ettt ettt eeacbes 316
42,11 SUIMMATY c.ooveitiiiiciieiceet st a bbb bbbt es 316

43. Working with Android Lifecycle-Aware COMPONENTS......ccccevuerrerreesirrecsensecssensecssessressesssessesssessesssees 317
43.1 LifeCycle AWATENESScuvueiiiiiiiiiiiiiiieieictci it 317
43.2 LIfECYCle OWINETS ...ttt naes 317
43.3 LIfECYCle ODSEIVELSvuiuviiuieeiriciciriricictrieicteseeie ettt ettt eeacses 318
43.4 Lifecycle States and EVENtS..........ccccviiciiiiniiniiiiicccicicci e 318
43.5 SUINMIMATY ..ottt bbb bbbt 320

44. An Android Jetpack Lifecycle Awareness Tutorialc.ccocevvueverveininsiininneininninennenecnenecnneneene 321
44.1 Creating the Example Lifecycle Project........ccoccveecrncrincrneciniciececiseceseeeseensenensenennes 321
44.2 Creating a Lifecycle ODSEIVeT........cooviiiiiiurinicicinieciertcicieeeese ettt ssesesessesescsees 321
44.3 Adding the ODSEIVET ..ot 323
44.4 TeSting the ODSEIVETccoveuieiieeeeieeeirecereeieesese ettt s s ssesesesenacs 323
44.5 Creating @ Lifecycle OWNET.........cccviriieiriicieiricceiecie ettt seeacsees 324
44.6 Testing the Custom Lifecycle OWNET........c.ccccuiuiiiicicincieieiiiicieecicsissssesese s 326
44.7 SUINIMATY ..ot bbb bbb bbbt 326

45. An Overview of the Navigation Architecture COmponent...........o.ccevevveerenreenensressecsensecsensecssessecsnees 327
45.1 Understanding Navigation........cccecueercurecrricenieerereieseeesseesseseseiesseensesesessesessesessesessesessesesses 327
45.2 Declaring @ Navigation HOSE........ccceveeiuriicininiccneceeccieeeee ettt esesesseescsees 329
45.3 The Navigation Graph ... 330
45.4 Accessing the Navigation Controller.........cocccinieincinincinieieeeeeeeeeeeseessesessesessesennes 331
45.5 Triggering a Navigation ACHONccccceiieeiiieiiieieiie et renen 332
45.6 Passing ATGUIMENTS.......cccuiiiiiiiiiieiiiiicccce et b bt 332
45.7 SUINIMATY ..ottt b bbb bbbt 333

46. An Android Jetpack Navigation Component Tutorialcccccevevvuevervuciinsuissinscnennenecnenecnneneennees 335
46.1 Creating the NavigationDemo Projectcccvceirincrnineineeeeiieeeeeneeseessesessesensesessesennes 335
46.2 Adding Navigation to the Build Configuration...........ccceueeuvieunicinicinininiiricricricneenennes 335
46.3 Creating the Navigation Graph Resource File.........c.ccoovuvieininccinnicnnccrccreccnccnees 336
46.4 Declaring a Navigation HOSt........ccocuevcuricinicinieicceiecieeeeeneeeeiencse s ssesessesessesessesenses 337
46.5 Adding Navigation Destinations..........ccvueeuririeueininecreiniceieireeseseeeesesstesesssesesessesesessesescsens 339
46.6 Designing the Destination Fragment Layouts.........c.ccccevuveeueinincuerniniereinieneiniecsenneceesseeeenens 341
46.7 Adding an Action to the Navigation Graph........c.ccecevevvcrreeineenicenieneirecseereeneensenennes 342
46.8 Implement the OnFragmentInteractionListenerccceccuvieuvieiniceniininiiriciricriceenennnes 343

xi

Table of Contents

46.9 Triggering the ACHONccouiiiiiciiiiii s 344
46.10 Passing Data Using Safeargsccceeuvueueureciricirieiieieieeeseeessesessesessesessesessesessesessenssees 345
46.11 SUININATY .ottt ettt st s sb bbb bbbt sb b 348

47. Creating and Managing Overflow Menus on Android.........ccccoeeeerneesinnucnenncnenncnsenncssenscsseeseseens
47.1 The OVErfloW MENUciiimiiiiiiiciiiiiiciiise s s snans 349
47.2 Creating an OVerflow MENU ..o sanas 349
47.3 Displaying an OVerflow MENU.........cc.ccccuiueuiurinciricirienienieeeiseesseessesessesessesesesensesessesessesssens 350
47.4 Responding to Menu Item SeleCtions.........ccvucueurinecueirinieininiceiniecieeciereeicreseeseseeescseaes 351
47.5 Creating Checkable Item Groups...........ccccueuciniiniiniiniiiiisiceecicisise s 351
47.6 Menus and the Android Studio Menu Editor ... 352
47.7 Creating the EXample PrOJECt......ccovceuiiiiiiniiiiniiccicceiece ettt sesesesessesesesssescseses 353
47.8 Designing the MeNU.........ccceueurecuricinieineeeieieeciseeiseeeseeesseae s ssesessesessesessesessesessesessesesaessens 353
47.9 Moditying the onOptionsItemSelected() Method..........ccccoveveiiiivciricinicinicneeeeceeeeees 356
47.10 Testing the APPLCAtION.ccurircuiiriieiriccteircce ettt seaese s 357
47.11 SUIMINATY c.oovviiecieiiciete st ss et a st b s bR bbb b s bt as bt s 357

48. Animating User Interfaces with the Android Transitions Framework............ccccocevvnvnvnininnnnnnnnns
48.1 Introducing Android Transitions and SCENESccccuiriveivciniiriininicieiccccie e 359
48.2 Using Interpolators with Transitions.........ccccecuveecuriemnieenieenieerecreereeeeseneseneseneseseneens 360
48.3 Working with Scene Transitionsc.cceccererccieineeeinieceeeeeiecieeesessetiesesseesesssescseses 360
48.4 Custom Transitions and TransitionSets in COdecoueuvueureurercurircerecirecereeneeeeeereeenenes 362
48.5 Custom Transitions and TransitionSets in XML........ccoccvieunireneirincirineinienneeneeeereeeneeeneees 362
48.6 Working with INterPOIatorsccceveeueuririciriniccirnececcece ettt eeeacseaes 364
48.7 Creating a Custom INterpolator ... snae 365
48.8 Using the beginDelayed Transition Method..........ccoccuvieuiriniirincirinciricrcreeseeeeeeeeeneees 366
48.9 SUIMMATY ..ttt ettt sttt s b e et sa bbbttt sbsnne 366

49. An Android Transition Tutorial using beginDelayed Transition...........ccecceverveevecnscnneciseciscnsneennne
49.1 Creating the Android Studio TransitionDemo Project..........cccccovuvecreunercerrnecerirenccrrenecueenee 367
49.2 Preparing the Project Files.........ccociiiiiiiiciccccececcscsesie e 367
49.3 Implementing beginDelayed Transition Animationccceceeeeurereureerreeureennereeereneneeenenes 367
49.4 Customizing the Transitionc.c.covvceeuriricirinincciene ettt eetaes et seeaeseses 370
49.5 SUIMIMATY ..ottt a bbb s e s as bt s 371

50. Implementing Android Scene Transitions — A Tutorial.........ccccevevvuerenrcninscnrnncnsenncnenncnensesenne
50.1 An Overview of the Scene Transition Projectcccucvvcrecurecrreceneeeneinieiseeseenneeeeseeeeeeene 373
50.2 Creating the Android Studio SceneTransitions Projectccocevcvvcrvevcrneceneeeeneennnennene 373
50.3 Identifying and Preparing the ROOt CONAINETc.cccuevrireucreirececiriecieineeicisieecreseeseseeeaenes 373
50.4 Designing the FIrst SCENE......c.oueuiiiuriciniciricintieeieces ettt sese e seens 373
50.5 Designing the Second SCENE......c..ccuiuiciieiriciie e 374
50.6 Entering the FirSt SCEMNEccccuriiiiiriniciiiricciric ettt seseaenes 375
50.7 LoAdINg SCEME 2.....uuiiiiiiiciiiciciiecteeet ettt 376
50.8 Implementing the Transitionscocevceecrriemriernieeeiecrcree e sene 377
50.9 Adding the Transition File ...t seeeaenes 377
50.10 Loading and Using the Transition Set..........cecccceirivcueirinierninineieiriicieneersecseseeseseseaenes 377
50.11 Configuring Additional Transitionscccecceeeerieeneurncurecireereerereeeee e seeenseeeneeeeseseene 378
50.12 SUIMIMATY .eiuiiiiiiiireniitnieieeettt ettt sttt sa et a bbbt sb s s bbbt sssbebesestseassnsaene 379

51. Working with the Floating Action Button and Snackbaroiiininiinininniniininiineneinnennenne
51.1 The Material DeSIN......cccceurieucuririieeirieicieiricieirei ettt sttt seseaenes 381

xii

Table of Contents

51.2 The DeSign LIDIAIYccceeureciniciicieieieireciseeireeereseeessee et sese e saessesessssesssaessssssscssesces 381
51.3 The Floating Action Button (FAB)cccccviinieniccrceceeceee e ssesenaens 381
51.4 The SNACKDAT ... 382
51.5 Creating the EXample Project.........ooiiinciiiiiiiiciciciccie s ssnes 383
51.6 Reviewing the PrOJECt ... saees 383
51.7 Changing the Floating Action BUttOnccvuceieinicieinincciicciircccce e 384
51.8 Adding the ListView to the Content Layout...........ccceucieineinirniiiinicicicciniisisicieeenns 385
51.9 Adding Items t0 the LiStVIEWccoveuieiiiiiciricicccccreee s eseseeaees 386
51.10 Adding an Action to the SNackbar..........ccoviiiricinininccccrccece e 388
51.11 SUIMMATY ..ottt bbb bbb e 389
52. Creating a Tabbed Interface using the TabLayout Componentcccccevueeervuesersucssensecssessecssessnene 391
52.1 An Introduction to the VIEWPAGeTcccocrueuricurieineeeieircireceeeeeeee e seseesesseaees 391
52.2 An Overview of the TabLayout COMPONENLccueueueureerrierrieiieeeee e nsesenaens 391
52.3 Creating the TabLayoutDemo Project........coeeiceininceininiciriniccniccreneeseseeeeesesseeseneene 392
52.4 Creating the First Fragment...........ccccccoiiiiiiiiiicccss s 392
52.5 Duplicating the FIagments..........cccecueuiuricrrieinieineneeeeeeeseesesesese s ssessssessssessessssens 393
52.6 Adding the TabLayout and VIeWPagerc.ccocceueicuiininceiniccinirecicircereeereeeesesessesesenene 394
52.7 Creating the Pager Adapter...........ooiiiiciniiiiicccc e seses 395
52.8 Performing the Initialization TasKs.........cccceueeurieinieinieineincrcecee s 396
52.9 Testing the APPLICAtION.......cccccuriricieiriiciiri ettt ettt 398
52.10 Customizing the TabLayouLt..........cccceiiiiiniiniiniiiiiciec s sses 399
52.11 Displaying Icon Tab ItemS........ccccvieuiureiuricrnieiieieeeereceeees e naees 400
52.12 SUIMMATY oveviiiiiiiiireeiit ettt b et s ss bbbt s b b et sssa bt sss bbb se s 401
53. Working with the RecyclerView and CardView Widgets.........ccovervuirieriruinsinseinsuensicnecneennnecneenses 403
53.1 An Overview oOf the ReCyClerVIEW......c.covicueiniicininiciniicciiccirieccnecie et 403
53.2 An Overview of the CardVIEW ..o esesseee s ssesseaees 405
53.3 Adding the Libraries t0 the PrOject........cccieiniienciricriceeeeeee s 406
53,4 SUITIMATY ..covvviiniiiiieectit ettt s sa bbb b et sa bbb bbbt 406
54. An Android RecyclerView and CardView Tutorial..........ccoceeeveevruiriiciseinninninieinnennnieneenncnneeneeee 407
54.1 Creating the CardDemo PIOJect.........cccvceiniiueirinicieiiceiniccieieeieseeese e sseaesesens 407
54.2 Removing the Floating Action BUtton ... 407
54.3 Adding the RecyclerView and CardView Libraries..........cccoccveeunieenereenernecrneceneenneeeeennenns 407
54.4 Designing the CardVIiew Layoutccovecenieerrinicieiniceiniccinecieseeeseseeseseeesesesseseseseens 408
54.5 Adding the Recycler VIEW ... sssnes 409
54.6 Creating the RecyclerView Adapter..........occveieinieiniinicinicieeeeee e nsesesseseeaens 409
54.7 Adding the Image Files.......cccviiiiiiiiccccce et 411
54.8 Initializing the RecyclerView COmMPONENt............ccceuuicicineiniiniiriiicieieiciscieiseeisesesenesnes 412
54.9 Testing the APPlICAtION.......ccovcuieiieeiieecier e eaees 412
54.10 Responding to Card SEleCtionsSc.ceueecueuricueirinicieiniceiniccesireeieseesese s seesesesesseaeseseens 413
54.11 SUIMIMATY ..ovuriiniiiiiciiie sttt b s bbb s b b s s 414
55. A Layout Editor Sample Data Tutorialcccocvvuerirnininnrinnenninninnininiinicscnecseseesessesesssesesssene 415
55.1 Adding Sample Data t0 @ PrOJECtc.ocueueurecuricirieeireecicirecec e sesesseseeaees 415
55.2 Using Custom Sample Dataccoveuieiiurecrricinieeeeeeeceeseseseseseseseseesessesessssessesessessssees 419
55.3 SUITMATY ..ovveviiiiiiiicectit ettt st sa ettt b et s sa bbb a bbb 422
56. Working with the AppBar and Collapsing Toolbar Layouts...........cccceeuevervuerinsuesnnsnesensnensecssensecsnene 423
56.1 The Anatomy Of an APPBATcccuiiriiiiriicieiri ettt 423

xiii

Table of Contents

56.2 The EXamPle PIOJECTvccuieciieciieeiiieicieetceie ittt ssese st ssae e esesens 424
56.3 Coordinating the RecyclerView and Toolbar..........cccocicinieinicinicereeececeeenne 424
56.4 Introducing the Collapsing Toolbar Layoutc.cccccueuevecreininccrninicininiceiniecreneceneneenes 426
56.5 Changing the Title and Scrim Colorcouiiiiiciiiniiiiiccc e 429
56.0 SUIMIMATY ..ottt bbb bbb 430
57. Implementing an Android Navigation DIawercuceeniniinininninennninennineininemeneenee
57.1 An Overview of the Navigation DIQWeTccceuiueeiurineuricrreenrienereeeseeeseesenseeessseesesenseseens 431
57.2 Opening and Closing the DIaWercccovceirirecieinincieinececiceceeees e seneaenes 432
57.3 Responding to Drawer Item Selections............cucucueiiuniuniininicineiniiniiiciciecieciess e 433
57.4 Using the Navigation Drawer Activity Templateccccoueeurieinieinieninencnieeneeeceeenene 434
57.5 Creating the Navigation Drawer Template Project..........ococccevevceurnecrnnenccinncceeneceneeneenes 434
57.6 The Template Layout Resource Files.........cccocueiniriniirncinecireeneeneecreeeseeensceenseeeeseeeeesene 434
57.7 The Header Coloring Resource File..........cccocieiniriniirincinicinierieeeeceeseeenceneee e 435
57.8 The Template Menu Resource File........ccoviiicniniciiniceccccieeccnccie e 435
57.9 The Template COdec.ouveureueureeurieeiiieieiieieeiteeeeeeees et ssese s ese s ssessssaesscsnens 435
57.10 RUNNING the APD c.ceveiiciiciiceec ettt seeae 436
57.11 SUIMIMATY oottt sttt s b bt s bbb s bbb ss st sbsnne 436
58. An Android Studio Master/Detail Flow Tutorialccevveviiviininniininniininniineinienennenninennenes
58.1 The Master/Detail FIOW ... 437
58.2 Creating a Master/Detail FIow ACHVItY........cceueiiiiiniiniininiciciciciicicieccei e 438
58.3 The Anatomy of the Master/Detail Flow Template............ccccoeuviviinininininicinciciiicsicien, 439
58.4 Modifying the Master/Detail FIow Templatec.ccoecueurrecrrinencerninccrninicenecenecneneneeenes 440
58.5 Changing the Content Model...........ccccocuiiiiiiiinciniiiiicecseeese e 440
58.6 Changing the Detail Pane ... ssesene 442
58.7 Modifying the WebsiteDetailFragment Class..........ccoccceurneerrininciernineceninecciniecreneeseneeenenes 443
58.8 Modifying the WebsiteListActivity Class.........cccocoeuviuriuriuniininicinciniiiiiciciecenesseesesnne 444
58.9 Adding Manifest PermiSSions.........coceueureerricmnieemniieeierieireetreessesessesessesesse e sseessseessssssseseens 445
58.10 Running the ApPliCation........ccveeucuriicurinicieiiccieirtcicteece ettt seacnes 445
58.11 SUIMMATY c..ovuiuiiiiicieiiie et b bbbt a st saeaes 446
59. An Overview of ANdroid INTENtScccvvevveriiriiiiniininiininiiinniiinnnenrsnesesesesesssesesssssssssenes
59.1 AN OVEIrVIEW Of INENESccuvuvrieiieeiciieiicieeieietcieeees st se st eaeenessene 447
59.2 EXPICIE IS ...viuieieiicieiricicteirece ettt ettt ettt 447
59.3 Returning Data from an ACHVILYcccccuririeeirirecieiicieieineceecieteecteseese et seeeaenes 448
59.4 TMPLICIE INTEIES ...ovuvuieieiiaeieieicieietecieistee ettt ettt ettt bbbt besaeaenes 449
59.5 USINgG INteNt FIlterS.......cuveiieciiciiieiiie e seae 450
59.6 Checking Intent AVailabilitycccceveciririciiniricerccrece e 451
59.7 SUIMMATY ..ottt bbb bbb 451
60. Android Explicit Intents - A Worked EXample........cccccvevuirririerirnnnscnssenisenssssnsssssssssssssssssssssssssess
60.1 Creating the Explicit Intent Example Application..........ccceecereeereeenereenernerernecnneenneeeeseeneseenene 453
60.2 Designing the User Interface Layout for MainACtiVitycoeceureeureremereerernecmneenneeeeneeeeenene 453
60.3 Creating the Second ACtiVIty Class.........ceveeueurerecueinincieinineereecieeeacieseeses e sesesesesesenes 454
60.4 Designing the User Interface Layout for ACtiVityB........cccooocureernieineeninencrnicrnceneeeneeeeenene 455
60.5 Reviewing the Application Manifest Filecoccoerciriciniccnieiececeeeeeneeeeeeeeenene 456
60.6 Creating the INTENT ..ottt eeaene 457
60.7 Extracting Intent Data ... 458
60.8 Launching ActivityB as @ Sub-ACtVItYcoceuvieuririniircircreeeeee e 458
60.9 Returning Data from @ SUD-ACHVItY.....c.coveiueiriricreiricicerece e seeeaenes 459

Xiv

Table of Contents

60.10 Testing the APPLCAtION.......c.evcureciricirecireeeie ettt eaenns 460
60.11 SUIMMATY ..ottt bbb 460
61. Android Implicit Intents - A Worked EXamplecccccoeerviriiinsinninnneinnnnninnninnnnennesnennenenee 461
61.1 Creating the Android Studio Implicit Intent Example Projectccoceveeunevenervecrrecrnennn. 461
61.2 Designing the User INterfaceoccevecurinicreininecininicicriecteiiceetseccseesesesesseese e ssesesesesenes 461
61.3 Creating the Implicit INtentccceuiuiiiiiiiiiiciiicc e 462
61.4 Adding a Second Matching ACHVILYccouueveueeeirieiricrieeeeee e 462
61.5 Adding the Web View t0 the Ul.......cccooviiiiiiiininicinicerecietceeeeicseseesesseese e sseseseseseaes 463
61.6 Obtaining the Intent URLcccccocviiiiiiiiiiciiiiiieicic s 463
61.7 Modifying the MyWebView Project Manifest Filecccoeuviurinciriccinicnieneeceereenennne 464
61.8 Installing the MyWebView Package on a Device.........ccccvueucuriniceeininicrninecciniccrenecneneeenes 466
61.9 Testing the APPLCAtION.......cvvuvcuriciricireeieieeieetee ettt seaenns 466
61.10 SUIMMATY ..ottt 467
62. Android Broadcast Intents and Broadcast RECEIVerSccoevuerrerrerreniernennennenncnneienenenenennenenenenns 469
62.1 An Overview of Broadcast INENLS..........ccvuueueueecreirerriernieieeeeeseseseeesese s sessenns 469
62.2 An Overview of Broadcast RECEIVELScouiuiiimiiiniciniciiiiciecese s 470
62.3 Obtaining Results from a Broadcast...........ccccccuiuiiniiinicicinciniiniiiciccceeicecese e 471
62.4 Sticky Broadcast INTENLSc.oveureciieirieiieieieeeieieieie e sssenas 471
62.5 The Broadcast Intent EXample........cccccveeuriireiininicininiccieiccieeceeteeiessieesesseese e ssesesesesseaes 472
62.6 Creating the Example AppliCationccveueueueecrrecinicrnieeinieeenesseenesessesessesesesessesessesesaessesenns 472
62.7 Creating and Sending the Broadcast INtent...........cccoveuviemnieeneirincinecnnicreeeeeseeeneeeneeeenne 472
62.8 Creating the Broadcast RECEIVETcviueuriieuiininiciriniciciricctceceeict e seeeaes 473
62.9 Registering the Broadcast RECEIVETcccuciiiiiniiniiiiiiciccie e 474
62.10 Testing the Broadcast EXAMPLecc.occeuiuemiueecrrierieieeeeeeesessesessesesese s sssenns 475
62.11 Listening for System Broadcasts..........cccceeeueurenecreiniceeiniecreiieeeniecseieesesseesesesseesesenenes 475
62.12 SUINIMATY ..ottt b bbb bbb bbbt s s bt nasas 475
63. A Basic Overview of Threads and ASyncTasks.......cc.cevevvervrerrerninrinninnecninnecninnecneneenisnesesnesesnnene 477
63.1 AN OVErvIeW Of TRICAAScucvuvucereuciicirecireieeieiciici ettt seaenns 477
63.2 The Application Main Thread.........cccevveeirinineueirinccecierec ettt 477
63.3 Thread Handlers...........ccviiiiiiiiiiiiiiicci s 477
63.4 A Basic AsyncTask EXample.........cccoiiiiiiiiiiiiicicnsss s 477
63.5 Subclassing ASYNCTASKcuiuviiriciriciieee e 479
63.6 TESHING The APP.c.cveviiiciriiciciriecieitie ettt sttt 482
63.7 Canceling @ TasK.......cccciiiiiiiii e 482
63.8 SUMMATY ..ottt 482
64. An Overview of Android Started and Bound Services...........coevuerrerreriernesresnennennenninnennennennennennensenenns 483
64.1 STArted SEIVICES.....uuvurieciieeicirecirectre ettt 483
64.2 INENT SEIVICE c..uviviiiiiiiic bbbt 483
64.3 BOUNA SEIVICE ...ttt 484
64.4 The ANatomy Of @ SEIVICE ...uvuvuiuiciciecree e 484
64.5 Controlling Destroyed Service Restart Options..........ccceeueereecuriniceeinenecenineceernenceseineesessenenes 485
64.6 Declaring a Service in the Manifest File.........cccccocoouniiiiiiiincniniiiccccnccieeene 485
64.7 Starting a Service Running on System Startup...........ccccceviininnniniicce 486
64.8 SUITIIMATY ...ttt ettt ettt sttt sttt s b et a bbbt s b b nens 486
65. Implementing an Android Started Service - A Worked Examplecccoouevivniininniininsnineisnensecnnenne 487
65.1 Creating the EXample PrOJeCtocceviciriniciiiniccieincicieececi ettt seeenes 487

XV

Table of Contents

65.2 Creating the Service Class..........couiiiiininiii s 487
65.3 Adding the Service to the Manifest File........cccccoviiiincinicicicceceeeeeenne 488
65.4 Starting the SEIVICE ..ottt seaene 489
65.5 Testing the IntentService EXample.........ccocoiiiiiiiiiiiiniiniiiccccccccseesenne 489
65.6 Using the Service Class........ccviuieiiieiiirieiiciieiireieeeessee e sens 490
65.7 Creating the NeW SEIVICE.......ccviiiriiiiriricieiecieitcieteece ettt seseacnes 490
65.8 Modifying the User INterface............cccocveiviuniunisicinciniiiisiciciciccsisiessese s sssssenns 491
65.9 Running the APPLiCAtiONc.vcuieeiieiiiriciieiiecee et seae 492
65.10 Creating an AsyncTask for Service Tasks.........cocccervcueirnicreininccinnicnnccreceeeseneneaenes 493
65.11 SUIMMATY ..ottt bbb bbb s saeaes 494
66. Android Local Bound Services — A Worked EXample........ccccoevereruinrenserinenincnnenisenssessensssesssessnees
66.1 Understanding Bound SErvices...........ccocviiiiicinciniiniiniiicicicsciisscsesscsssessssesaenns 495
66.2 Bound Service Interaction OPHONSc.c.eureueueureeecueirieieieineseeeineeietseeseseesesesesseesesessesesesesenene 495
66.3 An Android Studio Local Bound Service EXampleccccceveveueunnccinininecinneceniceneeneenes 495
66.4 Adding a Bound Service to the Projectcccccuvieiniinininicicicincniiicicicccceeeenne 496
66.5 Implementing the Binder ... 496
66.6 Binding the Client to the SErVICe ...t seseaenes 498
66.7 Completing the EXamPIe.......c.occcieieiiinicicniccecincenecree e ssee s ssesnens 500
66.8 Testing the APPlICAtION.....c..cccuveuieiiiecicree e seae 501
06.9 SUIIIIMATY ...oviviiiiiiiciciicectt ettt et b et sa bbb bbb ss st sbsnne 501
67. Android Remote Bound Services — A Worked EXampleccccovueeruernernecnsinnennecnscnsennecnseensnees
67.1 Client to Remote Service CommUNICAtiON.........cccveiiuriiiriciriciieiciee e 503
67.2 Creating the Example APPliCationceuecurecuieeiniericericerecineetee e seseesessesesseeeseeeeseeessesnens 503
67.3 Designing the User INTerface ..ot sseseens 503
67.4 Implementing the Remote Bound Service.........coccceveuiinecieinincciniccinniccncceeeeneeeenes 504
67.5 Configuring a Remote Service in the Manifest File...........ccceoeuvciniininininivcincnincninicicin, 505
67.6 Launching and Binding to the Remote Service..........oveurecuriernieineeenireecrnieneeneeecenenene 505
67.7 Sending a Message to the RemOte SEIVICEcouvuueueiricueirinecreiriiieiriecieisecereecreseeieseeeaenes 507
67.8 SUIMNIMATY ..ottt b bbb bbb s saeaes 507
68. An Android Notifications Tutorialccceveviiinininininiinininininissseseseens
68.1 An Overview of NOtHfICAtIONS.ceviuereuicriecieieitiecereee et ese et eaessesene 509
68.2 Creating the NotifyDemo Project.........cocieinininininciricireereeeseeseeese e sseeeseeesesessesens 511
68.3 Designing the User INterfacecccvecuriniciininccieinicicisicceeci ettt seeeaenes 511
68.4 Creating the SeCONd ACHVILYcovueuiueieurieiiciieciece ettt seae 511
68.5 Creating a Notification Channelccc.occuveuieinininiinccreeeeere e 512
68.6 Creating and Issuing a Basic NOtIficationccccerevcueininecreinenceciriecnneccrecresecieneeeaenes 514
68.7 Launching an Activity from a NOtification.........ccceeeureerercerecirecineeeecreeeeeesceneeeeeeeeesene 516
68.8 Adding Actions to @ NOtHfICAtIONcuvecueecrieciiieiccee e 518
68.9 Bundled NOtIfICAtIONS........c.ccuiiiiiiiiiiicciie e 518
68.10 SUMMATY ..ottt 520
69. An Android Direct Reply Notification Tutorialcccoeceevervuivinnininncninncncnncnenncnenscnesnecsenne
69.1 Creating the DireCtReply PrOJECtc.cveuecuriuciniuciiieicisicirecireeeie et sseseens 523
69.2 Designing the User INTerface ..o ssesesseseens 523
69.3 Creating the Notification Channel..........c.cocceurvecininiincecceccece e 524
69.4 Building the RemoteInput ObJecCt........ccccuevieueiriiecieiicicieicieiceteceeeessee e seseaenes 525
69.5 Creating the PendingIntent........c..ccoeuevcureernicmnieenieeieeereeree s ssesesseseens 526
69.6 Creating the Reply ACION......cccovieuiiriiciririceircicieecieteecte ettt seeeaene 526

xvi

Table of Contents

69.7 Receiving Direct Reply INPUL.........ccccuiuiiiiiiiiciiiiiciccc s 529
69.8 Updating the NOtIICAIONc.veuiciiciiciieccccc e 530
69.9 SUIMIMATY ..ottt st s b et b bbb b besens 531
70. An Introduction to Android Multi-Window SUpport............eiininninninneinns 533
70.1 Split-Screen, Freeform and Picture-in-Picture Modes..........cocccurureiuerrnecreinincrerninecreenienenene 533
70.2 Entering Multi-Window MOdeccceueuicinicinecinieinerecneeneeieieseseseseescssesessesessesessessesees 534
70.3 Enabling Freeform SUPPOIt ... esesenaees 535
70.4 Checking for Freeform SUPPOItccccuvicieiniciciniicietcctncceiecie et sseaesesene 535
70.5 Enabling Multi-Window SUpPpOrt in an APpcccccveeeecurecrnecrneeineeererenereescsseesseeensesensessesees 536
70.6 Specifying Multi-Window Attributesccc.oceurierieencirencineeieieeeee e eseseeaens 536
70.7 Detecting Multi-Window Mode in an ACtIVItYcccevercerrricrrineceiniccreneereeeeeneeseesenene 537
70.8 Receiving Multi-Window NOtIICAtIONSccvveueeeureeeeeiriciniciecieeiereneieescnseesseee s esesseaees 537
70.9 Launching an Activity in Multi-Window Modeccceercnicinienieeecrcseeeeeeneenes 538
70.10 Configuring Freeform Activity Size and POSItion.........cccccvuvccurirececininccieineceeeecreeceenne 538
70.11 SUIMMATY ..ottt b s bbbt a s 539
71. An Android Studio Multi-Window Split-Screen and Freeform Tutorial...........cccccevruerrerirvnnincrncnnnnes 541
71.1 Creating the Multi-Window Project.........cccccccniinicicinciniiiiciecccicsisscse s 541
71.2 Designing the MainActivity User INterfacecccveevcurecrricrnecinieeeeeeeceeceseeeeeeeeeenens 541
71.3 Adding the SEcoNd ACHVILY ...c.cvoveveirircueiriicieirc ettt seae 542
71.4 Launching the Second ACHVILYccoveiiiiiniiniiniiiciccccce s es 542
71.5 Enabling Multi-Window Mode........c.ccciricinicinicicrceeeeieenee e sesessesensees 543
71.6 Testing Multi-WindOW SUPPOIt ...ttt seae 543
71.7 Launching the Second Activity in a Different Windowcccceucivcivcincininininicincincnene. 545
71.8 SUIMIMATY ..ottt s 546
72. An Overview of Android SQLite Databasescccccceeeeeeiiierrrrrnreeeeeiesssssrseeeeeeessssssssssseseesssssssssssseseses 547
72.1 Understanding Database Tables ..o nseseeaens 547
72.2 Introducing Database SChemacccviiiinciinnccccc e 547
72.3 Columns and Data TYPESccccvuviiiriiiiiiiciiiiceee et sssnes 547
72.4 Database ROWScccuiueuiiiiiiiciieiiciceeeeeess et naes 548
72.5 Introducing Primary KeYSccccereeirinicininiccieiicieitcetcicseteeiesseesese s seesesesesseaesesens 548
72.6 WHat iS SQLITE? ...cuvviiieieirieieirieietet sttt ettt ettt ettt ettt seens 548
72.7 Structured Query Language (SQL)coeureeuriernieinieeeeirecieeeeneieneseneseesessesessssenesessesessens 548
72.8 Trying SQLite on an Android Virtual Device (AVD)cccvvicurirerieinnccrenecreneneereeneesenene 549
72.9 The Android Room Persistence Library..........cooeiicincinciniinininiciecciccsieiciesenenens 551
72.10 SUMMATY oo bbb 551
73. The Android Room Persistence LIDraryc.ccooceevinviininnicninnicnineninncninncinenenenenenenen. 553
73.1 Revisiting Modern App ATChIteCtULEc.cvcuieuieeireeeeerecreeeeeeee e seseeaees 553
73.2 Key Elements of Room Database Persistence.........cocceuvevcueurinccrrinecieinnccieneeseseeecneeseesenene 553
73.2.1 REPOSITOTY ocvivitiiiiiii bbb s 554
73.2.2 ROOIM DAtaD@SEcvuveemiiieciicieicieecte et 554
73.2.3 Data Access ObJect (DAO) ...c.ceuiueiriieuririieieiecieisieeteteese sttt ssesesesseeaesees 554
73.2.4 ENHES c.oviviiiiiiicciiiit i bbb 554
73.2.5 SQLILE DAtADASE ..ottt ettt ettt r e sttt re s 554
73.3 Understanding ENtities.......occcviceiriieirinicienicci ettt sseesese s esesesesssacsesens 555
73.4 Data ACCESS ODJECESuvuiuiiuieciiicieicieieieiseet sttt tsese ettt ses s eeaes 557
73.5 The ROOM Databasec.cccuieuieiiieiieeicireeeeeieeeeeee e ssesenaees 558
73.6 THe REPOSIEOIYucuuiiiiiieiiciciricicieireci ettt bttt ettt 559

xvii

Table of Contents

73.7 In-MemOTry Databasesc..ccueucueueriueieuierieiieeiieeeeeseessesessese s sesessesessesssesssesssesssassacssens 560
73.8 SUIMMATY ..ottt 560
74. An Android TableLayout and TableRow Tutorialcccevveriiruineisuinennnenennninennenecnnenesnneneenes
74.1 The TableLayout and TableROW Layout VIEWS..........ccccevveurecureerriemnireeereeensieenseeeneeeseeeeseneene 561
74.2 Creating the Room Database PTOJectcccuvivieueinincriininicreiccirccieeccsieecseeeseneeeaenes 562
74.3 Converting to a LinearLayout........ccooiiiciiiciicccc e 562
74.4 Adding the TableLayout to the User Interface.........ccoceuveureccirieiniceneeenerneeeienienneeeeeeeenene 563
74.5 Configuring the TablEeROWSc.c.cccciuriiiiririiiciiicecccere ettt eeaenes 564
74.6 Adding the Button Bar to the Layoutcc.eccveeuieincerincerecinecreereecreeeseeenseeeseeesseee s 565
74.7 Adding the ReCYCIer VIEW......c..ccuiiiiiiiiiccciiccce e seae 566
74.8 Adjusting the Layout Marginsc.covecueirieeininecreinicieiniecreineesesssesesessesesessasesesessesesessssesenes 567
74.9 SUINIMATY ..ottt bbbt bbbt a s sasaes 567
75. An Android Room Database and Repository Tutorial...........cccevueverrucnensecsinnucsenncnenncnensecscnnees
75.1 About the ROOmMDEMO PrOJEct.......ccccuiiiiiiiiiiiiciciciciiiiicecisie e 569
75.2 Modifying the Build COnfiguration..........ccceccuveeuireniurincericireeeenereeeseeeseeenseeesseeessesensesens 569
75.3 Building the BNtc.cocceiriiciriicciiecrcccceeceeece ettt seaenes 569
75.4 Creating the Data AcCess ObJECt.......c.ccuuuiiiuiuiiiciciiiiiiicicceciee e 571
75.5 Adding the ROOm Database..........cccueiiuricrnicinieiieieirecireeee e sseseens 572
75.6 Adding the REPOSILOTYc.cviiuciiiiiiiiiecieirecciei ettt seaenes 573
75.7 Modifying the VIEWMOMEL........ccoveuiuriiiriciiciiiceieciscereciree e seaessesnens 576
75.8 Creating the Product Item LayOulc.cccuveeurieiiiriiercirecireereeeseeeseeseseese e ssesensesens 577
75.9 Adding the RecyclerView Adapter........covceurirccueiniciciniieieiecieieiecieisescsesseeecsessesesesesseaenes 578
75.10 Preparing the Main Fragment ..o 579
75.11 Adding the Button LIStENeTs.........ccoceueureerriemniieiiiecircereetreesreie e ssse s ssesesseseens 580
75.12 Adding LiveData ODSEIVETSccccruiucuririeieirieicieinieieieieeeretsteseseiesesessesesesseesesessesesessseaeses 581
75.13 Initializing the ReCYCIEIVIEW.......c.cocuveuiciiciiicicieicerece e sene 581
75.14 Testing the ROOMDEMO APPcuovuiuriuicriiciieiiieieeseeeseseesese e sse e sssessssesseseens 581
75.15 SUIMIMATY ..ottt es ettt s a bbb sa bbb s bbb ss st sasnne 582
76. Accessing Cloud Storage using the Android Storage Access FrameworK..........ccocceveeeruennncrinecinncnne
76.1 The Storage Access FIrameWorK........coccueirieeininicreinicieiniecetcecteeicteseese e sseseseseseaenes 583
76.2 Working with the Storage Access Framework..........ocevcurecurecinieineeencinecinecnccneeeeseeeeeeene 584
76.3 Filtering Picker File LIStINGScoceuiueveuricrrieiieiieceecereeisese e sesse e ssseensssenseseens 584
76.4 Handling INtent RESUILS........cccccuriiiuiirieciriiccrcceecictecicteeceet et sesseaenes 585
76.5 Reading the Content 0f @ File ..ot ssesene 586
76.6 Writing Content t0 @ File ... eseseae 586
76.7 Deleting @ File ...ttt 587
76.8 Gaining Persistent Access t0 a File......ccocvcuricinieininincrcrcneceeee e 587
76.9 SUIMIMATY ..ottt bbb bbb 588
77. An Android Storage Access Framework EXample..........ccoccevveviiniininnicnenneninnnenenncnenneneinencne
77.1 About the Storage Access Framework Example.......cccoocuvciniemnieinieninencnecnecnneeeceeenene 589
77.2 Creating the Storage Access Framework Example.........coococccevveeinncrcnniccnnccenecceenecnes 589
77.3 Designing the User INterfacecccucuvuiininiiciciciiiisiciciccciieseseesesssesse e 589
77.4 Declaring ReqUESt COAeSc.vvuiuemiuerciieiieiiieiieeees e ssaesssasssesnens 590
77.5 Creating a New Storage File.........cccciiiiciiniiciccecieeci ettt seeeaenes 591
77.6 The onActivityResult() Methodcooeuvicuniciniciniccircirecneeee e esesene 592
77.7 Saving t0 @ StOrage File ... 593
77.8 Opening and Reading a Storage Fileocceieciininciinnciecccciccreeceeeieseeeaenes 596

xviii

Table of Contents

77.9 Testing the Storage Access APPlICAtiONccccuiuiiiericiciniinc s 598
77.10 SUMMATY ..ot bbbt 598
78. Implementing Video Playback on Android using the VideoView and MediaController Classes 599
78.1 Introducing the Android VideoView Classcccvueueurecrricrniciniieeeeeeecneeenseeeneeeeeseenens 599
78.2 Introducing the Android MediaController Classcccevueerririceirnecreinicreeiecreeneceenene 600
78.3 Creating the Video Playback EXampleccccocviiiiiniiiciniiniiiiicicccccccccens 600
78.4 Designing the VideoPlayer Layout ..o s nsesensens 600
78.5 Configuring the VIdeOVIEW........cceuriiiiiinicieiniccietciece ettt seae 601
78.6 Adding Internet PermiSSiOncceceuveeercuricenectneeeineeeeerseeiseessesessesessesensessesessesessesessesessessesees 602
78.7 Adding the MediaController to the Video VIeW.......cccccveuricinicinicinieierecrecseeeeeeeneenes 603
78.8 Setting up the onPreparedLiSteNerccocccueiricucieinicieiriccrcctee et 604
78.9 SUMIMATY ..ottt 605
79. Android Picture-in-Picture Mode.........cocvviriiniiniiniiniiniiniiniinniniiinininenininininenenesenssssssesssenss 607
79.1 Picture-in-Picture FEatures........cccviiiiiiniiiiciscsne s 607
79.2 Enabling Picture-in-Picture Mode.........cccocuieinieinirinciriceceeieeeee e sesessesenans 608
79.3 Configuring Picture-in-Picture Parameterscoccceuvevcerrinicrrinecieinincereneeresseesesenseesennens 608
79.4 Entering Picture-in-Picture Mode..........ccccocueuiiniiniininiciciciiniiis s sssnns 609
79.5 Detecting Picture-in-Picture Mode Changes............ccocuvcurecrneeinicenereeereecrneenseeeseeeneseenens 609
79.6 Adding Picture-in-Picture ACHIONS.......ccovecueiricucirinicieiicieinicct ettt sssaesesene 609
79.7 SUIMIMATY ..oviiiiiiiiiicic e bbb a e 610
80. An Android Picture-in-Picture Tutorial.........cooveviiniiniiniiniiniiniiniiniiiiiiiiniinenenenenenensnenenenenns 611
80.1 Adding Picture-in-Picture Support to the Manifest...........cooccuveeurieeneerneneceneceneercecenenes 611
80.2 Adding a Picture-in-Picture BUTONccovccurieiieiniicicirceeeeienee e sseseeaens 611
80.3 Entering Picture-in-Picture MoOde........cocvecueuviiucininicieinicciiccisecicnecereseeresseesesesseaesenene 612
80.4 Detecting Picture-in-Picture Mode Changes..........ccccccucuviuniiniiriinicieincnncireiisieicienenenens 613
80.5 Adding a Broadcast RECEIVETcoueuiurmiureciieiieeieeeieeeseeiesesesse e ssesenaees 614
80.6 Adding the PiP ACHON. ...ttt 615
80.7 Testing the Picture-in-Picture ACtion ..o 617
80.8 SUMIMATY ..ottt 618
81. Video Recording and Image Capture on Android using Camera Intentsccccevueereerucnecsucsecnnenne 619
81.1 Checking for Camera SUPPOTT.........ccuiueuiurecrrierieireeereeeeessee e sessessssessesessessnsees 619
81.2 Calling the Video Capture INtENt........c.cvueueuriricueirinicreiicieiricceetreeieseeiere st sessesesesens 619
81.3 Calling the Image Capture INtent.........cccocvieiiiiiiiiiiiiiiii s 620
81.4 Creating an Android Studio Video Recording Project..........cccveuvieereuevrcrnecrneceneenneeeneeeenes 621
81.5 Designing the User Interface Layout ..o eeseeeesesesseaesenene 621
81.6 Checking for the Camera ... es 622
81.7 Launching the Video Capture INeNt...........ccvveueeeurireeneunecrneereeieenese s nsesensessesens 622
81.8 Handling the Intent REtUIT ...c.c.cccueiiiiiiriicieiicciecieecictcct sttt se e 623
81.9 Testing the APPLICAtION........ccevucuiciieciiieiciecer ettt eeaeen 624
81.10 SUMMATY ...couiiiiiiiii bbb s 624
82. Making Runtime Permission Requests in ANdroid..........coccevueeuerecninseininsecninnucninnenennnenecnneneennene 625
82.1 Understanding Normal and Dangerous Permissions............ccveeureeeereuemerrecrreceseeenseeenseenenns 625
82.2 Creating the Permissions Example Project........c.cooceinceinincrcinniccncceneereseeeeseesecsenene 627
82.3 Checking for @ PermiSSIONc.oucueueuiueieeneciriicieieineeeieesescisesetesessesesesessessescssesesssaessessencsseaes 627
82.4 Requesting Permission at RUNtime........ccovininiiinniiiics 629
82.5 Providing a Rationale for the Permission Requestccoccuvieiviviniiicinicinicnicccciaens 630

Xix

Table of Contents

82.6 Testing the Permissions APP......coecereurererreernieeiieeieeseessesessesessesessesessessssessssessesessesessseseseens 632
82.7 SUIMMATY ..ottt 632
83. Android Audio Recording and Playback using MediaPlayer and MediaRecorderccceevueenennee
83.1 PlAyiNg AUGIOeeuiiiicirecieceeec et 633
83.2 Recording Audio and Video using the MediaRecorder Class.........c.cceuveecurnecurnnencernnnecnes 634
83.3 About the EXample PTOJECtcccvieuiueicuriciiciiicieieicis ettt sseassscsnens 635
83.4 Creating the AUAIOADPD PIrOJECt ...t 635
83.5 Designing the User INterfacecccvcuriniciininiceiiccrecetceetecteseesessiescseseseseseseaenes 635
83.6 Checking for Microphone Availability..........cccccoeuociviiniiiininiiicicniiciccceene 636
83.7 Performing the Activity InitialiZationccceeeuniriniirncinciricrcre e 637
83.8 Implementing the record Audio() Method..........cccceuvieueinniciiininiciccirccrcce e 638
83.9 Implementing the stopAudio() Method..........coveuiriiurcircincreeecce e 638
83.10 Implementing the playAudio() method...........ccoeiiciiciniciceeeeeee 639
83.11 Configuring and Requesting Permissionsccceeecueueinecreininceeunmnecreinicsenniecsenseesensnseenes 639
83.12 Testing the APPLICAtION.cceucurieeiieeieiecitctie ettt seae 642
83.13 SUMMIAAIY ..ottt s 642
84. Working with the Google Maps Android API in Android Studioccecevvvevervuenensncneinncnensnennnnnne
84.1 The Elements of the Google Maps Android APccccveurienienienineieseeneeeeeeeenene 643
84.2 Creating the Google Maps PTOJECt........cccrvieuiurinicreinicieiniecreiteecteiecteseseiessieecse e sesseaenes 644
84.3 Obtaining Your Developer SIgNature ..o 644
84.4 Adding the Apache HTTP Legacy Library Requirement............ccoeeeveueevcrrecrnccmnieeencenenenen. 645
84.5 Testing the APPLICAtION. ..ottt seaenes 645
84.6 Understanding Geocoding and Reverse Geocoding............ccccueuvcuviuniuniecicincineincnninnieniennnn. 646
84.7 Adding a Map t0 an APPLICAtIONc.evcueeuiciiieiiieererectree e seae 647
84.8 Requesting Current Location Permission..........cccecvvniriininininiiiicininnnccciineeeseennnene 648
84.9 Displaying the User’s Current LOCAtiONccccuecueiiiniinininiciciniiiiiciciecencsssessennnne 649
84.10 Changing the Map TYPe......c.cccueuircirieirieietieeeie e sse st sssseeas 650
84.11 Displaying Map Controls to the USer........ccccveeueinincuiininicrniiceirccienecesecseseeseseeseaenes 651
84.12 Handling Map Gesture INteraction............ceueueueieieuieniinienieieicnsisisisessesesssesssssssssssssenns 651

84.12.1 Map Zo0minNg GESTUIES.......c.cevriririiiiiicii s nns 651
84.12.2 Map Scrolling/Panning GEeSTUIESc..ueucurureereurireuereinicieieeteesesstesesessesesesseesessssescsesses 652
84.12.3 Map Tilt GESTUIES......vucvreecieeicirictricieieiseieteeeees ettt senaesnees 652
84.12.4 Map RoOtation GESTULES......c.ccevverreerereiirirereeiereiettriseeiesesetesesesreseeetseses e sesesssesessenenenes 652
84.13 Creating Map MarKeTS........cccccuviieueiriiciniieieiieicieeeieteieiesestese ettt ssesesesesssacnes 652
84.14 Controlling the Map Cameracccocuviuiuiininicieiiiiieieiesessesssssse s ssssssssesss s saenas 653
84.15 SUMMATIY ..ottt bbb 655
85. Printing with the Android Printing FrameworkK..........cccoevivviininniininninenninennenenneneinnennenennen.
85.1 The Android Printing ArchiteCturecccoveuvieeirenierecirciree e 657
85.2 The Print Service PIUGINScccvuvieuiirieciririceiiccieinecietsieecse ettt ssesesesessesenes 657
85.3 Google Cloud Print......c.ccccuiiiiiiiiiciciciciiiiiici s sasae 658
85.4 Printing t0 GOOGLE DITVE.......c.oveuiueiiieiciiciicieet e seae 658
85.58aVe aS PDF ..o s 659
85.6 Printing from Android DEvVICesccccviuriuiuirincinciniiiiiiicieiecisissesse e sesaenas 659
85.7 Options for Building Print Support into Android APpPS.........ccveeereeererrererneerreenseeeeseeeeennene 660
85.7.1 Image Printing ..ot 660
85.7.2 Creating and Printing HTML CONENtcuocuimiiriurieriiciciciiiiiiiesescisesessessesaesaens 661
85.7.3 Printing @ Web Page..........cccuviirciriccricceceeceeeeceese e nsesesaesnees 662
85.7.4 Printing a Custom DOCUMENToucviuiiiininiiiiiiiiicccecs e 663

Table of Contents

85.8 SUMMATY ..ottt 663

86. An Android HTML and Web Content Printing EXamplecc.cooccvverueiinrecninsecnenncnennncnsessecnsesnnene 665
86.1 Creating the HTML Printing Example Applicationc.ccococceuviviceeininecienicneirecneeccnennne 665
86.2 Printing Dynamic HTML Content...........ccccociiiiiniiiniiicccccnc s 665
86.3 Creating the Web Page Printing EXample........cccccoveurininccinicininiccniccreecreeeeereeseesenene 668
86.4 Removing the Floating Action BUttOnc.cccveeineeincincinecneceece e eesseaens 668
86.5 Designing the User Interface Layoutccccvvceuieunieeecurecinieiieieeieeeneesesseessesenesensesensens 668
86.6 Loading the Web Page into the WebView ... 669
86.7 Adding the Print Menu OPtion............cccuiininiiniiniiiiciccicccieiie s sssnes 670
860.8 SUMIMATY ..ot bbb bbb s 672

87. A Guide to Android Custom Document Printing..........ccceveeenveeninnieninnicninneninnenennneneeneneenen. 673
87.1 An Overview of Android Custom Document Printingcceccveeeveevrereencunecmneenneeenncennnes 673
87.1.1 Custom Print AdapLers........ccceuricueurinicieiriiieieiecieisieetetese ettt ssesesesseeacsees 673
87.2 Preparing the Custom Document Printing Project..........ccoocviivivnninncncnnicnicnens 674
87.3 Creating the Custom Print Adapter........cocueieinirincinceeeeeeeee s 675
87.4 Implementing the onLayout() Callback Method.........ccooceuriicunininiennecenccrccenecenne 676
87.5 Implementing the onWrite() Callback Methodc.cocuvecurecinicinieineeicecnecneeeeecenenes 679
87.6 Checking a Page is in RANGEccoveuiuriiiriciiciccccrceeeeeene s seeaees 681
87.7 Drawing the Content on the Page Canvascecvcerencerninccrnineceinicereeeseseeesesesseseseneene 682
87.8 Starting the Print JObccoiiiiiicc s 684
87.9 Testing the APPlICAtiON.......c.ovcuieuiueiiieecircireeeeee e eaees 685
87.10 SUIMMATY w..vviiniiiiiereeiit ettt s et sa bbbt sb bt sbsa bt sss s bbb s seas 685

88. An Introduction to Android App LinKs.......ccccceviriiiirinninninnniinninniiniiniinnieeennenesnesmeneeneee 687
88.1 An Overview of Android APp LinKSc.coeccueureeirinicininiccccinieccnccreeereeeeveseeeeseneae 687
88.2 App Link INtent Filters ...c.cocuvucuiciiiciiieiciricirecirc et eaesseaees 687
88.3 Handling App LinK INTENEScuvuemieriiieeeiiciricieeeecececeseeeesesense e naees 688
88.4 Associating the App with @ WeDSite.........occueuniiiirinciiccccrcccc e 688
88.5 SUMMATY ..ottt bbb 689

89. An Android Studio App Links TUtorialccccceviriverisenininininininnnnnninnnininsnsnessssnssssssssssssssssssssssssssees 691
89.1 AbOut the EXaMPLe ADPD .c.ociueiriiiiriricieirieeieirecieieee ettt st seens 691
89.2 The Database SChemacccuvvcuiciiceccce e eaees 691
89.3 Loading and Running the Project ... seeseeeesesessesesenene 692
89.4 Adding the URL MapPPing........cceueureueureurrreunecereeuneseisesessessescssesessesessesessesessessesessesessssesesesessssces 693
89.5 Adding the INtent FIIEr.......c.ocuiimiriiieircreceeeeeec e seeaees 696
89.6 Adding Intent Handling Code...........ceeuruiuiuriniiicininiciiricciniccesiecieeeecre e sseaesesene 696
89.7 Testing the APP LINK.....ccoviiiiiiciiiiciriicecc et 699
89.8 Associating an App Link with @ Web Siteccvveiiincinccceeceec s 700
89.9 SUIMIMATY ..ottt ettt s et s a bbb b b 701

90. A Guide to the Android Studio Profiler.............couviininiininsiininiininniininicninninnnieeeneeenensenens 703
90.1 Accessing the Android Profiler ... 703
90.2 Enabling Advanced Profiling..........coccveeuniueineueiernicnieneeneieenessicsesessesessesesesesseseesesesaessesenns 703
90.3 The Android Profiler ToOl WIndOW........ccocueuiueeerrieinicinictieeeecseessesesseseseseseseeseseeaeseesenns 704
90.4 The Sessions Panel..........ccciiiiiiiieiiiiicce e 705
90.5 The CPU PrOfIlercocuiiiiiiiiiciciciicie e 706
90.6 MEeMOTY PrOfIlErcucviiiiiiiiicccice et 709
90.7 NEtWOTK PTOFILET ..ottt 710

xxi

Table of Contents

90.8 ENErZY PIOfIlEr ...t 712
90.9 SUMMATY ..ottt bbbt 712
91. An Android Biometric Authentication Tutorial............ccoueeiiiininininininininineneceneneneeeeene
91.1 An Overview of Biometric Authentication..........c.ceueeuevveurecirecinienneeereeee e 713
91.2 Creating the Biometric Authentication Projectccccvvevcueinenccinncrcinneccinieceeneceeeeenes 713
91.3 Configuring Device Fingerprint Authenticationcceueucivcincinininicicincisccreieieinne 714
91.4 Adding the Biometric Permission to the Manifest File...........ccccouceunieninncncnicrnicnceene 714
91.5 Designing the User INterfacecccvecuririceinineceiiccinecetceceeicieeesessieecse e seseaenes 715
91.6 Adding a Toast Convenience Method..........ccueicieiiinininicicincnicccce e 715
91.7 Checking the Security SEttings........coceveuviirricinieinieircrecreeee e 716
91.8 Configuring the Authentication Callbacks..........ccoeuviveueirnicieininicinnicirccrccecceeenes 717
91.9 Adding the CancellationSignal..........cccccccviuiiiiiiiiciniiiiiiicc e 718
91.10 Starting the Biometric PIOMPLc.cvviurierrieiiieiieicicieciree e sseseens 718
91.11 TeStiNg the PIOJECt.....c.ovcueiiiciriicicirieciirctei ettt seaenes 719
91.12 SUIMMATY co.oviiiiiicncieiccse ettt a s a bbb b s s et 720
92. Creating, Testing and Uploading an Android App Bundle............cccevuevirrinerncnenscnerscnsennncnnennne
92.1 The Release Preparation PrOCESS.......c.ccocwcurecunieeeniieieerecerectneesresessesessessssessesessesesssesssesessessens 721
92.2 Android APP BUndIes........c.occucuiiiciiiiicrceccseeee et 721
92.3 Register for a Google Play Developer Console ACCOUNL........c.ccceuruveucuriricrcrrineceeireereneeneenes 722
92.4 Configuring the App in the CONSOle ..o e 723
92.5 Enabling Google Play APp SIGNINg........ccocoeuviemrierniireiereirieireeseeseseneseeseseesessseesseeessesesseseens 723
92.6 Creating @ Keystore File ..ottt seacnes 724
92.7 Creating the Android App Bundle...........cccveunieininnincincneereeeeceeeeeeeeesseeesseaeesesene 726
92.8 Generating Test APK FIlES ..ot seens 727
92.9 Uploading the App Bundle to the Google Play Developer Console..........c.ccoovecururecreunenencnee 728
92.10 Exploring the App Bundlec..ccieeiciniciniciecrcincireeee et ssesnene 728
92.11 Managing TEeSTEIS ... s 730
92.12 Uploading New App Bundle RevisSions.........cccccueurieueirinicreinincieiniccieineceiniecreseeseseeeaenes 731
92.13 Analyzing the App Bundle Fileccccccoiiiiiiiiiiiiiiiicccccccene 732
92.14 Enabling Google Play Signing for an EXisting APpcceceureerreemneremnerrecrneeneenneeeeeeeeenene 733
92.15 SUIMIMATY ...ecuiiiiiiiireriiiniteieeetit ettt sttt sttt b bt s s bbb b b e s st sasnne 734
93. An Overview of Android Dynamic Feature Modules............coceevuivruennirnucnsinnernsecnncnsennecsseensnees
93.1 An Overview of Dynamic Feature Modules..........c.ccooceurncurnnceinnincninceneceneceneeneenes 735
93.2 Dynamic Feature Module ATrChiteCturecoeeueeeencerincerecireeneerere e esesene 735
93.3 Creating a Dynamic Feature Moduleccoeuiriirciriciniccreeceeeeeceseee e 736
93.4 Converting an Existing Module for Dynamic Deliverycococcevevcrnnecnnecrenenceneneenes 738
93.5 Working with Dynamic Feature Modules............coceueururcurecurecrneeineieiernierneenseeenseeeeseeeeesnene 740
93.6 Handling Large Dynamic Feature Modules ... 741
93.7 SUIIIIMATY ...ouiiiiiireieictnit ettt ettt b et a bbbt s bbbt sbsnne 742
94. An Android Studio Dynamic Feature Tutorial...........cccocoveviininniininniininniininniinenniinennineinennene
94.1 Creating the DynamicFeature Projectcccvecueinincucininccreiniceincceneeseseeecseseesesenenenes 745
94.2 Adding Dynamic Feature Support to the Project ..., 745
94.3 Designing the Base Activity User INterfaceccoceveureveurecrreerneemnereeereeereeeseeneeeeeeeeesene 746
94.4 Adding the Dynamic Feature Module...........cccoveeuiininciiininicieniicccerccrece e 747
94.5 Reviewing the Dynamic Feature Module...........cccocoenininiiiicincininiiiciciccceeeiene 748
94.6 Adding the Dynamic Feature ACHVILY........coccuveeuriereiurincereeireereeereneneee e esesene 750
94.7 Implementing the launchIntent() Method.........ccccceveeinniicininnccnccrccrece e 751

Xxii

Table of Contents

94.8 Uploading the App Bundle for TeSting.........ccoceueureeureernieenieeeerrieireeireereseneseeeseeseseeaessesenne 752
94.9 Implementing the installFeature() Methodc.cccveuiiininnirccceeeeeeeeenne 753
94.10 Adding the Update LiSteNner........occeuriieeurinicueiniicieiicieisieeeteisteeetseeeesetsesesesseesesessesesesesseaes 755
94.11 Handling Large Downloads.........ccccocviiiiiiniiniiniiiieiccisiciie s seseens 758
94.12 Using Deferred Installation ... saesessenns 760
94.13 Removing a Dynamic Modulecocccciiiiiniicniniieiniceccrcceeciesseee e 760
94.14 SUININATY ...oviviiuriiicieteiccse st b s b bbb bbbt s bt nasas 760
95. An Overview of Gradle in Android Studio..........coveveieiiiiniiiiiiiiiiiiiirircrerenenens 761

95.1 AN OVErview Of GIadle ..ottt et 761
95.2 Gradle and Android StUAIOc.ccccuieurieinieicicce e 761

95.2.1 Sensible Defaulscccciuiiiiiiiiniiiiiiiiiie e 761

95.2.2 DEPENAENCIES.....coovuieiiiciiiiciiricietr ettt 761

95.2.3 BUild VATIantsccooiueiiieieiciicieeceeciseteeseenee e s 762

95.2.4 Manifest ENIIEScccviiiiiiiiiiiiiciiiricecc s ssssesssesees 762

95.2.5 APK SIGNING.....ctiiiiiiiiiiitict s 762

95.2.6 PrOGUATA SUPPOTT....eviuietiiiicieiricietrieecieiseesetetseaeietstese e tsesese et bttt ettt seaesees 762
95.3 The Top-level Gradle Build File........c.coieuiiiiiiniiciiicicinicciiicececcieieeienece e sseeseseneaes 762
95.4 Module Level Gradle Build Files........covieuriiiuiiriieiniieicirieeieceeeseeieistseeeseeie e 764
95.5 Configuring Signing Settings in the Build File........cc.ocooviiniiinncnciccecceceene 766
95.6 Running Gradle Tasks from the Command-linecccccceveceurincenncnnnccnncceneceeeeees 767
95.7 SUINMIMATY ...ovviiiiciiiicieis ettt b s b bbbt s bt nasas 767

INAEX crtiiitititiiitttte bbb b bbb bbb s b e b s bR e b s R b e bbb e ans 769

xxiii

Chapter 1

1. Introduction

In 2018 Google introduced Android Jetpack to the developer community. Designed to make it quicker and
easier to develop modern and reliable Android apps, Jetpack consists of a set of tools, libraries and architectural
guidelines. The main elements of Android Jetpack consist of the Android Studio Integrated Development
Environment (IDE), the Android Architecture Components and the Modern App Architecture Guidelines, all
of which are covered in this latest edition of Android Studio Development Essentials.

Fully updated for Android Studio 3.4 and Android 9, the goal of this book is to teach the skills necessary to
develop Android based applications using the Kotlin programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an Android development
and testing environment followed by an introduction to programming in Kotlin including data types, flow
control, functions, lambdas and object-oriented programming.

An overview of Android Studio is included covering areas such as tool windows, the code editor and the Layout
Editor tool. An introduction to the architecture of Android is followed by an in-depth look at the design of
Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle
management, Room database access, app navigation, live data and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, camera
access and the playback and recording of both video and audio. This edition of the book also covers printing,
transitions and cloud-based file storage.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers and collapsing toolbars.

In addition to covering general Android development techniques, the book also includes Google Play specific
topics such as implementing maps using the Google Maps Android API, and submitting apps to the Google Play
Developer Console.

Other key features of Android Studio 3.4 and Android 9 are also covered in detail including the Layout Editor,
the ConstraintLayout and ConstraintSet classes, constraint chains and barriers, direct reply notifications and
multi-window support.

Chapters also cover advanced features of Android Studio such as App Links, Dynamic Delivery, the Android
Studio Profiler and Gradle build configuration.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac or Linux system and ideas for some apps to develop, you are
ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/as34kotlin/index.php

Introduction
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, select the Open an existing Android Studio project option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/as34kotlin.html

In the event that you find an error not listed in the errata, please let us know by emailing our technical support
team at feedback@ebookfrenzy.com. They are there to help you and will work to resolve any problems you may
encounter.

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves a number of steps consisting of installing the Android
Studio Integrated Development Environment (IDE) which also includes the Android Software Development Kit
(SDK), the Kotlin plug-in and Open]JDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS and Linux based systems.

2.1 System Requirements

Android application development may be performed on any of the following system types:
o Windows 7/8/10 (32-bit or 64-bit)

« macOS§ 10.10 or later (Intel based systems only)

« Linux systems with version 2.19 or later of GNU C Library (glibc)

o Minimum of 3GB of RAM (8GB is preferred)

« Approximately 4GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio Package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio version 3.4 which,
at the time writing is the current version.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for Android Studio 3.4
should provide the option to download the older version in the event that these differences become a problem.

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

Setting up an Android Studio Development Environment

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-ide-<version>-
windows.exe) in a Windows Explorer window and double-click on it to start the installation process, clicking
the Yes button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the task bar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the executable and selecting the Pin to Taskbar
menu option. Note that the executable is provided in 32-bit (studio) and 64-bit (studio64) executable versions. If
you are running a 32-bit system be sure to use the studio executable.

2.3.2 Installation on macOS

Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-ide-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1

To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The
Android Studio package will then be installed into the Applications folder of the system, a process which will
typically take a few minutes to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:

unzip /<path to package>/android-studio-ide-<version>-linux.zip
Note that the Android Studio bundle will be installed into a sub-directory named android-studio. Assuming,

therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:

./studio.sh

When running on a 64-bit Linux system, it will be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:

sudo apt-get install 1ibc6:1386 libncurses5:1386 libstdc++6:1386 1ib32z1 libbz2-
1.0:1386

On Red Hat and Fedora based 64-bit systems, use the following command:

sudo yum install z1ib.i686 ncurses-1ibs.i686 bzip2-1ibs.i686

2.4 The Android Studio Setup Wizard

The first time that Android Studio is launched after being installed, a dialog will appear providing the option to
import settings from a previous Android Studio version. If you have settings from a previous version and would
like to import them into the latest installation, select the appropriate option and location. Alternatively, indicate
that you do not need to import any previous settings and click on the OK button to proceed.

Next, the setup wizard may appear as shown in Figure 2-2 though this dialog does not appear on all platforms:

Figure 2-2
If the wizard appears, click on the Next button, choose the Standard installation option and click on Next once
again.

Android Studio will proceed to download and configure the latest Android SDK and some additional components
and packages. Once this process has completed, click on the Finish button in the Downloading Components
dialog at which point the Welcome to Android Studio screen should then appear:

Setting up an Android Studio Development Environment

Figure 2-3
2.5 Installing Additional Android SDK Packages

The steps performed so far have installed Java, the Android Studio IDE and the current set of default Android
SDK packages. Before proceeding, it is worth taking some time to verify which packages are installed and to
install any missing or updated packages.

This task can be performed using the Android SDK Settings screen, which may be launched from within the
Android Studio tool by selecting the Configure -> SDK Manager option from within the Android Studio welcome
dialog. Once invoked, the Android SDK screen of the default settings dialog will appear as shown in Figure 2-4:

Figure 2-4

Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are available for update, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-5:

Setting up an Android Studio Development Environment

Figure 2-5

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, a number of tools are also installed for building Android applications.
To view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-6:

Figure 2-6

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

e Android SDK Build-tools
e Android Emulator

Android SDK Platform-tools

Android SDK Tools

Google Play Services

Intel x86 Emulator Accelerator (HAXM installer)

ConstraintLayout for Android

Solver for ConstraintLayout

Setting up an Android Studio Development Environment
 Android Support Repository

» Google Repository

» Google USB Driver (Windows only)

In the event that any of the above packages are listed as Not Installed or requiring an update, simply select the
checkboxes next to those packages and click on the Apply button to initiate the installation process.

Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

2.6 Making the Android SDK Tools Command-line Accessible

Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. In order for the operating system on which you are
developing to be able to find these tools, it will be necessary to add them to the system’s PATH environment
variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):

<path to android sdk installation>/sdk/tools

<path to android sdk installation>/sdk/tools/bin

<path to android sdk installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-7:

Figure 2-7

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 7

1. Right-click on Computer in the desktop start menu and select Properties from the resulting menu.

2. In the properties panel, select the Advanced System Settings link and, in the resulting dialog, click on the
Environment Variables... button.

3. Inthe Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on Edit.... Locate the end of the current variable value string and append the path to the Android platform
tools to the end, using a semicolon to separate the path from the preceding values. For example, assuming
the Android SDK was installed into C:\Users\demo\AppData\Local\Android\sdk, the following would be

Setting up an Android Studio Development Environment

appended to the end of the current Path value:
;C:\Users\demo\AppData\Local\Android\sdk\platform-tools; C:\Users\demo\AppData\
Local\Android\sdk\tools; C:\Users\demo\AppData\Local\Android\sdk\tools\bin

4. Click on OK in each dialog box and close the system properties control panel.

Once the above steps are complete, verify that the path is correctly set by opening a Command Prompt window
(Start -> All Programs -> Accessories -> Command Prompt) and at the prompt enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the tools path setting by attempting to launch the AVD Manager command line tool (don't
worry if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager
In the event that a message similar to the following message appears for one or both of the commands, it is most
likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. Follow the steps outlined for Windows 7 starting from step 2 through to step 4.

Open the command prompt window (move the mouse to the bottom right-hand corner of the screen, select the
Search option and enter c¢md into the search box). Select Command Prompt from the search results.

Within the Command Prompt window, enter:
echo %Path%
The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that

the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command line options when executed.

Similarly, check the fools path setting by attempting to run the AVD Manager command line tool (don’t worry if
the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager

In the event that a message similar to the following message appears for one or both of the commands, it is most
likely that an incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

Setting up an Android Studio Development Environment

operable program or batch file.

2.6.3 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 7 starting from step 3.

2.6.4 Linux

On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin: /home/demo/android-studio/bin:SPATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

A number of techniques may be employed to modify the $PATH environment variable on macOS. Arguably
the cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to
$PATH. Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be
configured by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Updating Android Studio and the SDK

From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, click on the Configure -> Check for Update menu option within
the Android Studio welcome screen, or use the Help -> Check for Update menu option accessible from within
the Android Studio main window.

2.8 Summary

Prior to beginning the development of Android based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS and Linux.

10

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of a simple Android application project using Android Studio. Once the
project has been created, a later chapter will explore the use of the Android emulator environment to perform a
test run of the application.

3.1 About the Project

The project created in this chapter takes the form of a very simple currency conversion calculator (so simple,
in fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project
will also make use of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1

11

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
simply click on the Start a new Android Studio project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the option to create a Basic Activity on
the Phone and Tablet screen. The Basic Activity option creates a template user interface consisting of an app bar,
menu, content area and a single floating action button.

Figure 3-2
With the Basic Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:

com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may

use example.com for the purposes of testing, though this will need to be changed before an application can be
published:

com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

12

Creating an Example Android App in Android Studio

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the SDK that will be used in most of the
projects created in this book unless a necessary feature is only available in a more recent version. While Android
Studio allows older SDK versions to be selected, many of the security and privacy features built into Android
were only introduced after the API 25 SDK was released. To improve app security, Google announced that
starting in August 2018 the Google Play store will only accept new apps built using API 26 or newer. This same
restriction was also applied to updates of existing apps after October 2018.

Figure 3-3
Finally, change the Language menu to Kotlin and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application

At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4

The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which

13

Creating an Example Android App in Android Studio

information can be displayed. By default, this panel will be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

Figure 3-5

The example project created for us when we selected the option to create an activity consists of a user interface
containing a label that will read “Hello World!” when the application is executed.

The next step in this tutorial is to modify the user interface of our application so that it displays a larger text view
object with a different message to the one provided for us by Android Studio.

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. This layout file includes the app bar (also known as an
action bar) that appears across the top of the device screen (marked A in Figure 3-6) and the floating action
button (the email button marked B). In addition to these items, the activity_main.xml layout file contains a
reference to a second file containing the content layout (marked C):

Figure 3-6
By default, the content layout is contained within a file named content_main.xml and it is within this file that

14

Creating an Example Android App in Android Studio

changes to the layout of the activity are made. Using the Project tool window, locate this file as illustrated in
Figure 3-7:

Figure 3-7

Once located, double-click on the file to load it into the user interface Layout Editor tool which will appear in
the center panel of the Android Studio main window:

Figure 3-8

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon.

As can be seen in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be

noted, however, that not all user interface components are obviously visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual

15

Creating an Example Android App in Android Studio

user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
with a single child in the form of a TextView object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to make sure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
magnet icon. When disabled the magnet appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:

Figure 3-11

16

Creating an Example Android App in Android Studio

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-13:

Figure 3-13

The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
17

Creating an Example Android App in Android Studio

button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-15. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-15

When clicked, a panel (Figure 3-16) will appear describing the nature of the problems and offering some possible
corrective measures:

Figure 3-16

Currently, the only warning listed reads as follows:

Hardcoded string "Convert", should use @string resource

This I18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing

18

Creating an Example Android App in Android Studio

the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-17).
Within this panel, change the resource name field to convert_string and leave the resource value set to Convert
before clicking on the OK button.

Figure 3-17

It is also worth noting that the string could also have been assigned to a resource when it was entered into the
Attributes panel. This involves clicking on the narrow button to the right of the property field in the Attributes
panel and selecting the Add new resource -> New String Value... menu option from the resulting Resources
dialog. In practice, however, it is often quicker to simply set values directly into the Attributes panel fields for
any widgets in the layout, then work sequentially through the list in the warnings dialog to extract any necessary
resources when the layout is complete.

The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the widget palette, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-18:

19

Creating an Example Android App in Android Studio

Figure 3-18

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-19:

Figure 3-19
Change the id to dollarText before proceeding.

3.6 Reviewing the Layout and Resource Files

Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
content_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly in order to make user interface changes and, in some instances, this may actually be
quicker than using the Layout Editor tool. At the bottom of the Layout Editor panel are two tabs labeled Design

20

Creating an Example Android App in Android Studio

and Text respectively. To switch to the XML view simply select the Text tab as shown in Figure 3-20:

Figure 3-20

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the Button object. We can also see that the text property of the Button is set to our
convert_string resource. Although varying in complexity and content, all user interface layouts are structured in
this hierarchical, XML based way.

One of the more powerful features of Android Studio can be found to the right-hand side of the XML editing
panel. If the panel is not visible, display it by selecting the Preview button located along the right-hand edge of the
Android Studio window. This is the Preview panel and shows the current visual state of the layout. As changes
are made to the XML layout, these will be reflected in the preview panel. The layout may also be modified
visually from within the Preview panel with the changes appearing in the XML listing. To see this in action,
modify the XML layout to change the background color of the ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<android.support.constraint.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"

app:layout behavior="@string/appbar scrolling view behavior"
tools:context=".MainActivity"
tools:showIn="@layout/activity android sample"
android:background="#££2438" >

</android.support.constraint.ConstraintLayout>

Note that the color of the preview changes in real-time to match the new setting in the XML file. Note also that a

21

Creating an Example Android App in Android Studio

small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Change
the color value to #a0ff28 and note that both the small square in the margin and the preview change to green.

Finally, use the Project view to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:

<resources>
<string name="app name">AndroidSample</string>
<string name="action settings">Settings</string>
<string name="convert string">Convert</string>
<string name="dollars hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Text mode, click on the “@string/convert_string” property setting so that it highlights and then press Ctrl-B
on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and take you
to the line in that file where this resource is declared. Use this opportunity to revert the string resource back to
the original “Convert” text.

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open Translations Editor menu option. This will
display the Translation Editor in the main panel of the Android Studio window:

Figure 3-21

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.7 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

22

Creating an Example Android App in Android Studio

Figure 3-22

Note that the text field for the onClick property is now highlighted with a red border to warn us that the button
hasbeen configured to call a method which does not yet exist. To address this, double-click on the MainActivity.kt
file to load it into the code editor and add the code for the convertCurrency method to the class file so that it
reads as follows, noting that it is also necessary to import some additional Android packages:

package com.ebookfrenzy.androidsample

import android.os.Bundle

import com.google.android.material.snackbar.Snackbar
import android.support.v7.app.AppCompatActivity
import android.view.Menu

import android.view.Menultem

import android.view.View

import kotlinx.android.synthetic.main.activity main.*

import kotlinx.android.synthetic.main.content main.*

class MainActivity : AppCompatActivity () {

fun convertCurrency (view: View) ({
if (dollarText.text.isNotEmpty()) {
val dollarValue = dollarText.text.toString() .toFloat()

val euroValue = dollarValue * 0.85f

textView. text euroValue. toString()
} else {

textView. text = "No Value"

23

Creating an Example Android App in Android Studio
}

The method begins by checking the text property of the dollarText EditText view to make sure that it is not
empty (in other words that the user has entered a dollar value). If a value has not been entered, a “No Value”
string is displayed on the resultText view. If, on the other hand, a dollar amount has been entered, it is converted
into a floating point value and the equivalent euro value calculated. This floating point value is then converted
into a string and displayed on the resultText view. If any of this is unclear, rest assured that these concepts will
be covered in greater detail in later chapters.

The project is now complete and ready to run, a task that will be performed in the next chapter after an AVD
emulator session as been created for testing purposes.

3.8 Summary

While not excessively complex, a number of steps are involved in setting up an Android development
environment. Having performed those steps, it is worth working through a simple example to make sure the
environment is correctly installed and configured. In this chapter, we have created a simple application and then
used the Android Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the
importance of using resources wherever possible, particularly in the case of string values, and briefly touched
on the topic of layouts. Next we looked at the underlying XML that is used to store the user interface designs of
Android applications.

While it is useful to be able to preview a layout from within the Android Studio Layout Editor tool, there is no
substitute for testing an application by compiling and running it.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

24

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio

In the course of developing Android apps in Android Studio it will be necessary to compile and run an application
multiple times. An Android application may be tested by installing and running it either on a physical device or
in an Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created
and configured to match the specifications of a particular device model. The goal of this chapter, therefore, is
to work through the steps involved in creating such a virtual device using the Nexus 5X phone as a reference
example.

4.1 About Android Virtual Devices

AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity and the presence or otherwise of features such
as a camera, GPS navigation support or an accelerometer. As part of the standard Android Studio installation,
a number of emulator templates are installed allowing AVDs to be configured for a range of different devices.
Additional templates may be loaded or custom configurations created to match any physical Android device
by specifying properties such as processor type, memory capacity and the size and pixel density of the screen.
Check the online developer documentation for your device to find out if emulator definitions are available for
download and installation into the AVD environment.

When launched, an AVD will appear as a window containing an emulated Android device environment. Figure
4-1, for example, shows an AVD session configured to emulate the Google Nexus 5X model.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface.

Figure 4-1
25

Creating an Android Virtual Device (AVD) in Android Studio
4.2 Creating a New AVD

In order to test the behavior of an application in the absence of a physical device, it will be necessary to create an
AVD for a specific Android device configuration.

To create a new AVD, the first step is to launch the AVD Manager. This can be achieved from within the Android
Studio environment by selecting the Tools -> AVD Manager menu option from within the main window.

Once launched, the tool will appear as outlined in Figure 4-2 if existing AVD instances have been created:

Figure 4-2

To add an additional AVD, begin by clicking on the Create Virtual Device button in order to invoke the Virtual
Device Configuration dialog:

Figure 4-3
Within the dialog, perform the following steps to create a Nexus 5X compatible emulator:

1. From the Category panel, select the Phone option to display the list of available Android tablet AVD
templates.

26

Creating an Android Virtual Device (AVD) in Android Studio
2. Select the Nexus 5X device option and click Next.

3. On the System Image screen, select the latest version of Android (at time of writing this is API level 28,
Android 9.0 with Google Play) for the x86 ABI. Note that if the system image has not yet been installed a
Download link will be provided next to the Release Name. Click this link to download and install the system
image before selecting it. If the image you need is not listed, click on the x86 images and Other images tabs
to view alternative lists.

4. Click Next to proceed and enter a descriptive name (for example Nexus 5X API 28) into the name field or
simply accept the default name.

5. Click Finish to create the AVD.

6. With the AVD created, the AVD Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the AVD Manager, select the AVD from the list and click on the pencil icon in
the Actions column of the device row in the AVD Manager.

4.3 Starting the Emulator

To perform a test run of the newly created AVD emulator, simply select the emulator from the AVD Manager
and click on the launch button (the green triangle in the Actions column). The emulator will appear in a new
window and begin the startup process. The amount of time it takes for the emulator to start will depend on the
configuration of both the AVD and the system on which it is running.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the AVD Manager, select the new Nexus 5X entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen locate the Startup and orientation section and
change the orientation setting. Exit and restart the emulator session to see this change take effect. More details
on the emulator are covered in the next chapter (“Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.4 Running the Application in the AVD

With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, simply click on the run
button represented by a green triangle located in the Android Studio toolbar as shown in Figure 4-4 below, select
the Run -> Run app’ menu option or use the Ctrl-R keyboard shortcut:

Figure 4-4

By default, Android Studio will respond to the run request by displaying the Select Deployment Target dialog.
This provides the option to execute the application on an AVD instance that is already running, or to launch
a new AVD session specifically for this application. Figure 4-5 lists the previously created Nexus 5X AVD as
a running device as a result of the steps performed in the preceding section. With this device selected in the
dialog, click on OK to install and run the application on the emulator.

27

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-5

Once the application is installed and running, the user interface for the MainActivity class will appear within
the emulator:

Figure 4-6

In the event that the activity does not automatically launch, check to see if the launch icon has appeared among
the apps on the emulator. If it has, simply click on it to launch the application. Once the run process begins, the
Run and Logcat tool windows will become available. The Run tool window will display diagnostic information
as the application package is installed and launched. Figure 4-7 shows the Run tool window output from a
successful application launch:

Figure 4-7

28

Creating an Android Virtual Device (AVD) in Android Studio

If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured.

4.5 Run/Debug Configurations

A particular project can be configured such that a specific device or emulator is used automatically each time it
is run from within Android Studio. This avoids the necessity to make a selection from the device chooser each
time the application is executed. To review and modify the Run/Debug configuration, click on the button to
the left of the run button in the Android Studio toolbar and select the Edit Configurations... option from the
resulting menu:

Figure 4-8

In the Run/Debug Configurations dialog, the application may be configured to always use a preferred emulator
by selecting Emulator from the Target menu located in the Deployment Target Options section and selecting the
emulator from the drop down menu. Figure 4-9, for example, shows the AndroidSample application configured
to run by default on the previously created Nexus 5X emulator:

Figure 4-9

29

Creating an Android Virtual Device (AVD) in Android Studio

Be sure to switch the Target menu setting back to “Open Select Deployment Target Dialog” mode before moving
on to the next chapter of the book.
4.6 Stopping a Running Application

To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
4-10:

Figure 4-10

An app may also be terminated using the Logcat tool window. Begin by displaying the Logcat tool window using
the window bar button that becomes available when the app is running. Once the Logcat tool window appears,
select the androidsample app menu highlighted in Figure 4-11 below:

Figure 4-11

With the process selected, stop it by clicking on the red Terminate Application button in the toolbar to the left of
the process list indicated by the arrow in the above figure.

4.7 AVD Command-line Creation

As previously discussed, in addition to the graphical user interface it is also possible to create a new AVD directly
from the command-line. This is achieved using the avdmanager tool in conjunction with some command-line
options. Once initiated, the tool will prompt for additional information before creating the new AVD.

The avdmanager tool requires access to the Java Runtime Environment (JRE) in order to run. If, when attempting
run avdmanager, an error message appears indicating that the ‘java’ command cannot be found, the command
prompt or terminal window within which you are running the command can be configured to use the OpenJDK
environment bundled with Android Studio. Begin by identifying the location of the OpenJDK JRE as follows:

1. Launch Android Studio and open the AndroidSample project created earlier in the book.
2. Select the File -> Project Structure... menu option.

3. Copy the path contained within the /DK location field of the Project Structure dialog. This represents the
location of the JRE bundled with Android Studio.

On Windows, execute the following command within the command prompt window from which avdmanager is
to be run (where <path to jre> is replaced by the path copied from the Project Structure dialog above):

set JAVA HOME=<path to jre>

On macOS or Linux, execute the following command:
export JAVA HOME="<path to jre>"

30

Creating an Android Virtual Device (AVD) in Android Studio

If you expect to use the avdmanager tool frequently, follow the environment variable steps for your operating
system outlined in the chapter entitled “Setting up an Android Studio Development Environment” to configure
JAVA_HOME on a system-wide basis.

Assuming that the system has been configured such that the Android SDK tools directory is included in the
PATH environment variable, a list of available targets for the new AVD may be obtained by issuing the following
command in a terminal or command window:

avdmanager list targets

The resulting output from the above command will contain a list of Android SDK versions that are available on
the system. For example:

Available Android targets:

id: 1 or "android-28"
Name: Android API 28
Type: Platform
API level: 28
Revision: 3

id: 2 or "android-26"
Name: Android API 26
Type: Platform
API level: 26

Revision: 1

The avdmanager tool also allows new AVD instances to be created from the command line. For example, to
create a new AVD named Nexus9 using the target ID for the Android API level 26 device using the x86 ABI, the
following command may be used:

avdmanager create avd -n Nexus9 -k "system-images;android-26;google apis;x86"

The android tool will create the new AVD to the specifications required for a basic Android 8 device, also
providing the option to create a custom configuration to match the specification of a specific device if required.
Once a new AVD has been created from the command line, it may not show up in the Android Device Manager
tool until the Refresh button is clicked.

In addition to the creation of new AVDs, a number of other tasks may be performed from the command line.
For example, a list of currently available AVDs may be obtained using the list avd command line arguments:

avdmanager list avd

Available Android Virtual Devices:

Name: Pixel XL API 28 No Play
Device: pixel x1 (Google)

Path: /Users/neilsmyth/.android/avd/Pixel XL API 28 No Play.avd
Target: Google APIs (Google Inc.)

Based on: Android API 28 Tag/ABI: google apis/x86

Skin: pixel x1 silver

Sdcard: 512M

Similarly, to delete an existing AVD, simply use the delete option as follows:

31

Creating an Android Virtual Device (AVD) in Android Studio

avdmanager delete avd —n <avd name>

4.8 Android Virtual Device Configuration Files

By default, the files associated with an AVD are stored in the .android/avd sub-directory of the user’s home
directory, the structure of which is as follows (where <avd name> is replaced by the name assigned to the AVD):

<avd name>.avd/config.ini
<avd name>.avd/userdata.img

<avd name>.ini

The config.ini file contains the device configuration settings such as display dimensions and memory specified
during the AVD creation process. These settings may be changed directly within the configuration file and will
be adopted by the AVD when it is next invoked.

The <avd name>.ini file contains a reference to the target Android SDK and the path to the AVD files. Note that
a change to the image.sysdir value in the config.ini file will also need to be reflected in the target value of this file.

4.9 Moving and Renaming an Android Virtual Device

The current name or the location of the AVD files may be altered from the command line using the avdmanager
tool’'s move avd argument. For example, to rename an AVD named Nexus9 to Nexus9B, the following command
may be executed:

avdmanager move avd -n Nexus9 -r Nexus9B

To physically relocate the files associated with the AVD, the following command syntax should be used:

avdmanager move avd -n <avd name> -p <path to new location>

For example, to move an AVD from its current file system location to /tmp/Nexus9Test:

avdmanager move avd -n Nexus9 -p /tmp/Nexus9Test

Note that the destination directory must not already exist prior to executing the command to move an AVD.

4.10 Summary

A typical application development process follows a cycle of coding, compiling and running in a test environment.
Android applications may be tested on either a physical Android device or using an Android Virtual Device
(AVD) emulator. AVDs are created and managed using the Android AVD Manager tool which may be used
either as a command line tool or using a graphical user interface. When creating an AVD to simulate a specific
Android device model it is important that the virtual device be configured with a hardware specification that
matches that of the physical device.

32

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator

The Android Virtual Device (AVD) emulator environment bundled with Android Studio 1.x was an
uncharacteristically weak point in an otherwise reputable application development environment. Regarded by
many developers as slow, inflexible and unreliable, the emulator was long overdue for an overhaul. Fortunately,
Android Studio 2 introduced an enhanced emulator environment providing significant improvements in terms
of configuration flexibility and overall performance and further enhancements have been made in subsequent
releases.

Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
available to customize the environment.

5.1 The Emulator Environment

When launched, the emulator displays an initial splash screen during the loading process. Once loaded, the
main emulator window appears containing a representation of the chosen device type (in the case of Figure 5-1
this is a Nexus 5X device):

Figure 5-1

Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.

5.2 The Emulator Toolbar Options

The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

33

Using and Configuring the Android Studio AVD Emulator

Figure 5-2

Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear, or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

« Exit/ Minimize - The uppermost X’ button in the toolbar exits the emulator session when selected while the
‘-’ option minimizes the entire window.

» Power - The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power oft” request sequence.

 Volume Up/ Down - Two buttons that control the audio volume of playback within the simulator environment.
« Rotate Left/Right — Rotates the emulated device between portrait and landscape orientations.

« Screenshot — Takes a screenshot of the content currently displayed on the device screen. The captured image
is stored at the location specified in the Settings screen of the extended controls panel as outlined later in this
chapter.

o Zoom Mode - This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

 Back - Simulates selection of the standard Android “Back” button. As with the Home and Overview buttons
outlined below, the same results can be achieved by selecting the actual buttons on the emulator screen.

« Home - Simulates selection of the standard Android “Home” button.

» Overview - Simulates selection of the standard Android “Overview” button which displays the currently
running apps on the device.

34

Using and Configuring the Android Studio AVD Emulator

« Extended Controls — Displays the extended controls panel, allowing for the configuration of options such as
simulated location and telephony activity, battery strength, cellular network type and fingerprint identification.

5.3 Working in Zoom Mode

The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

5.4 Resizing the Emulator Window

The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options

The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3
5.5.1 Location

The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format.

A single location is transmitted to the emulator when the Send button is clicked. The transmission of GPS data
points begins once the “play” button located beneath the data table is selected. The speed at which the GPS data
points are fed to the emulator can be controlled using the speed menu adjacent to the play button.

35

Using and Configuring the Android Studio AVD Emulator
5.5.2 Cellular

The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

5.5.3 Camera

The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.4 Battery

A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health and whether the AC charger is currently connected.

5.5.5 Phone

The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing the way in which an app handles high level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.6 Directional Pad

A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.7 Microphone

The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.8 Fingerprint

Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

5.5.9 Virtual Sensors

The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement and tilting through yaw, pitch and roll settings.

5.5.10 Snapshots

Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in detail later in this chapter.

5.5.11 Screen Record

Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

36

Using and Configuring the Android Studio AVD Emulator
5.5.12 Settings

The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and to configure the emulator window to appear on top of other windows on
the desktop.

5.5.13 Help

The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots

When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

Figure 5-4

The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by
default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to
reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous
quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager), click on the down arrow in the actions
column for the emulator and select the Cold Boot Now menu option.

37

Using and Configuring the Android Studio AVD Emulator

Figure 5-5

5.7 Drag and Drop Support

An Android application is packaged into an APK file when it is built. When Android Studio built and ran the
AndroidSample app created earlier in this book, for example, the application was compiled and packaged into
an APK file. That APK file was then transferred to the emulator and launched.

The Android Studio emulator also supports installation of apps by dragging and dropping the corresponding
APK file onto the emulator window. To experience this in action, start the emulator, open Settings and select the
Apps & notifications option followed by the App Info option on the subsequent screen. Within the list of installed
apps, locate and select the AndroidSample app and, in the app detail screen, uninstall the app from the emulator.

Open the file system navigation tool for your operating system (e.g. Windows Explorer for Windows or Finder
for macOS) and navigate to the folder containing the AndroidSample project. Within this folder locate the app/
build/outputs/apk/debug subfolder which should contain an APK file named app-debug.apk. Drag this file and
drop it onto the emulator window. The dialog shown in (Figure 5-6) will subsequently appear as the APK file is
installed.

Figure 5-6
Once the APK file installation has completed, locate the app on the device and click on it to launch it.

In addition to APK files, any other type of file such as image, video or data files can be installed onto the
emulator using this drag and drop feature. Such files are added to the SD card storage area of the emulator where
they may subsequently be accessed from within app code.

5.8 Configuring Fingerprint Emulation

The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app and selecting the Security & Location option.

38

Using and Configuring the Android Studio AVD Emulator

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a
backup screen unlocking method (such as a PIN number) must be configured. Click on the Fingerprint + PIN
button and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN
number and complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that
Finger 1 is selected in the main settings panel:

Figure 5-7

Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will
report the successful addition of the fingerprint:

Figure 5-8

To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch the Sensor button once again. The topic of building
fingerprint authentication into an Android app is covered in detail in the chapter entitled “An Android Biometric
Authentication Tutorial”.

39

Using and Configuring the Android Studio AVD Emulator

5.9 Summary

Android Studio 3.4 contains a new and improved Android Virtual Device emulator environment designed
to make it easier to test applications without the need to run on a physical Android device. This chapter has
provided a brief tour of the emulator and highlighted key features that are available to configure and customize
the environment to simulate different testing conditions

40

Chapter 6

6. A Tour of the Android Studio User
Interface

While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen

The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will by-pass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1

In addition to a list of recent projects, the Quick Start menu provides a range of options for performing tasks
such as opening, creating and importing projects along with access to projects currently under version control.
In addition, the Configure menu at the bottom of the window provides access to the SDK Manager along with a
vast array of settings and configuration options. A review of these options will quickly reveal that there is almost
no aspect of Android Studio that cannot be configured and tailored to your specific needs.

The Configure menu also includes an option to check if updates to Android Studio are available for download.

41

A Tour of the Android Studio User Interface

6.2 The Main Window

When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-2.

Figure 6-2
The various elements of the main window can be summarized as follows:
A - Menu Bar - Contains a range of menus for performing tasks within the Android Studio environment.

B - Toolbar - A selection of shortcuts to frequently performed actions. The toolbar buttons provide quicker
access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and
selecting the Customize Menus and Toolbars... menu option.

C - Navigation Bar - The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the subfolders
and files at that location ready for selection. This provides an alternative to the Project tool window.

D - Editor Window - The editor window displays the content of the file on which the developer is currently
working. What gets displayed in this location, however, is subject to context. When editing code, for example,
the code editor will appear. When working on a user interface layout file, on the other hand, the user interface
Layout Editor tool will appear. When multiple files are open, each file is represented by a tab located along the
top edge of the editor as shown in Figure 6-3.

42

A Tour of the Android Studio User Interface

Figure 6-3

E - Status Bar - The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will provide a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F - Project Tool Window - The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project
in a number of different ways. The default setting is the Android view which is the mode primarily used in the
remainder of this book.

The project tool window is just one of a number of tool windows available within the Android Studio environment.

6.3 The Tool Windows

In addition to the project view tool window, Android Studio also includes a number of other windows which,
when enabled, are displayed along the bottom and sides of the main window. The tool window quick access
menu can be accessed by hovering the mouse pointer over the button located in the far left-hand corner of the
status bar (Figure 6-4) without clicking the mouse button.

Figure 6-4

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right and bottom edges of the main window (as indicated by the arrows in

43

A Tour of the Android Studio User Interface

Figure 6-5) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 6-5

Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window tool bars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-6 shows the settings menu for the project view tool window.
Options are available, for example, to undock a window and to allow it to float outside of the boundaries of the
Android Studio main window and to move and resize the tool panel.

Figure 6-6

44

A Tour of the Android Studio User Interface

All of the windows also include a far right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s tool bar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

Project — The project view provides an overview of the file structure that makes up the project allowing for quick
navigation between files. Generally, double-clicking on a file in the project view will cause that file to be loaded
into the appropriate editing tool.

Structure — The structure tool provides a high level view of the structure of the source file currently displayed in
the editor. This information includes a list of items such as classes, methods and variables in the file. Selecting an
item from the structure list will take you to that location in the source file in the editor window.

Layout Captures — Provides access to all of the layout hierarchy snapshots previously captured using the Layout
Inspector tool (Tools -> Layout Inspector).

Favorites — A variety of project items can be added to the favorites list. Right-clicking on a file in the project
view, for example, provides access to an Add to Favorites menu option. Similarly, a method in a source file can
be added as a favorite by right-clicking on it in the Structure tool window. Anything added to a Favorites list can
be accessed through this Favorites tool window.

Build Variants - The build variants tool window provides a quick way to configure different build targets for the
current application project (for example different builds for debugging and release versions of the application, or
multiple builds to target different device categories).

TODO - As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look for
comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting the
File -> Settings... menu option (Android Studio -> Preferences... on macOS) and navigating to the TODO page
listed under Editor.

Logcat — The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

Terminal - Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

Build - The build tool windows displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

Run - The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing to
install and run on a device or emulator, this window will typically provide diagnostic information relating to
the problem.

Event Log - The event log window displays messages relating to events and activities performed within Android
Studio. The successful build of a project, for example, or the fact that an application is now running will be
reported within this tool window.

Gradle - The Gradle tool window provides a view onto the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project into

45

A Tour of the Android Studio User Interface

an executable application. Right-click on a top level Gradle task and select the Open Gradle Config menu option
to load the Gradle build file for the current project into the editor. Gradle will be covered in greater detail later
in this book.

Profiler - The Android Profiler tool window provides realtime monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

Device File Explorer - The Device File Explorer tool window provides direct access to the filesystem of the
currently connected Android device or emulator allowing the filesystem to be browsed and files copied to the
local filesystem.

Resource Manager - A tool for adding and managing resources and assets such as images, colors and layout files
contained with the project.

6.4 Android Studio Keyboard Shortcuts

Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option.

6.5 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-7).

Figure 6-7

Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options, while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure 6-8).
This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse
pointer can be used to select an option or, alternatively, the keyboard arrow keys used to scroll through the file
name and tool window options. Pressing the Enter key will select the currently highlighted item.

46

A Tour of the Android Studio User Interface

Figure 6-8
6.6 Changing the Android Studio Theme

The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option, or via the File -> Settings... menu option (Android Studio -> Preferences... on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance option in the left-hand panel and then change the
setting of the Theme menu before clicking on the Apply button. The themes available will depend on the platform
but usually include options such as Light, IntelliJ, Windows, High Contrast and Darcula. Figure 6-9 shows an
example of the main window with the Darcula theme selected:

Figure 6-9

6.7 Summary

The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar, or via the
optional tool window bars.

There are very few actions within Android Studio which cannot be triggered via a keyboard shortcut. A keymap
of default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

47

Chapter 7

7. Testing Android Studio Apps on a
Physical Android Device

While much can be achieved by testing applications using an Android Virtual Device (AVD), there is no
substitute for performing real world application testing on a physical Android device and there are a number of
Android features that are only available on physical Android devices.

Communication with both AVD instances and connected Android devices is handled by the Android Debug
Bridge (ADB). In this chapter we will work through the steps to configure the adb environment to enable
application testing on a physical Android device with macOS, Windows and Linux based systems.

7.1 An Overview of the Android Debug Bridge (ADB)

The primary purpose of the ADB is to facilitate interaction between a development system, in this case Android
Studio, and both AVD emulators and physical Android devices for the purposes of running and debugging
applications.

The ADB consists of a client, a server process running in the background on the development system and a
daemon background process running in either AVDs or real Android devices such as phones and tablets.

The ADB client can take a variety of forms. For example, a client is provided in the form of a command-line
tool named adb located in the Android SDK platform-tools sub-directory. Similarly, Android Studio also has a
built-in client.

A variety of tasks may be performed using the adb command-line tool. For example, a listing of currently active
virtual or physical devices may be obtained using the devices command-line argument. The following command
output indicates the presence of an AVD on the system but no physical devices:

$ adb devices

List of devices attached

emulator-5554 device

7.2 Enabling ADB on Android based Devices

Before ADB can connect to an Android device, that device must first be configured to allow the connection. On
phone and tablet devices running Android 6.0 or later, the steps to achieve this are as follows:

1. Open the Settings app on the device and select the About tablet or About phone option (on newer versions
of Android this can be found on the System page of the Settings app).

2. On the About screen, scroll down to the Build number field (Figure 7-1) and tap on it seven times until a
message appears indicating that developer mode has been enabled. If the build number is not displayed,
unfold the Advanced section of the list.

49

Testing Android Studio Apps on a Physical Android Device

Figure 7-1

3. Return to the main Settings screen and note the appearance of a new option titled Developer options. Select
this option and locate the setting on the developer screen entitled USB debugging. Enable the switch next
to this item as illustrated in Figure 7-2:

Figure 7-2

4. Swipe downward from the top of the screen to display the notifications panel (Figure 7-3) and note that the
device is currently connected for debugging.

Figure 7-3

At this point, the device is now configured to accept debugging connections from adb on the development
system. All that remains is to configure the development system to detect the device when it is attached. While
this is a relatively straightforward process, the steps involved differ depending on whether the development
system is running Windows, macOS or Linux. Note that the following steps assume that the Android SDK
platform-tools directory is included in the operating system PATH environment variable as described in the
chapter entitled “Setting up an Android Studio Development Environment”.

7.2.1 macOS ADB Configuration

In order to configure the ADB environment on a macOS system, connect the device to the computer system
using a USB cable, open a terminal window and execute the following command to restart the adb server:

$ adb kill-server

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

Once the server is successfully running, execute the following command to verify that the device has been
detected:

$ adb devices
List of devices attached
74CE000600000001 offline

If the device is listed as offline, go to the Android device and check for the presence of the dialog shown in Figure

50

Testing Android Studio Apps on a Physical Android Device

7-4 seeking permission to Allow USB debugging. Enable the checkbox next to the option that reads Always allow
from this computer, before clicking on OK. Repeating the adb devices command should now list the device as
being available:

List of devices attached

015d41d4454b£f80c device

In the event that the device is not listed, try logging out and then back in to the macOS desktop and, if the
problem persists, rebooting the system.

7.2.2 Windows ADB Configuration

The first step in configuring a Windows based development system to connect to an Android device using ADB
is to install the appropriate USB drivers on the system. The USB drivers to install will depend on the model of
Android Device. If you have a Google Nexus device, then it will be necessary to install and configure the Google
USB Driver package on your Windows system. Detailed steps to achieve this are outlined on the following web

page:
https://developer.android.com/sdk/win-usb.html
For Android devices not supported by the Google USB driver, it will be necessary to download the drivers

provided by the device manufacturer. A listing of drivers together with download and installation information
can be obtained online at:

https://developer.android.com/tools/extras/oem-usb.html

With the drivers installed and the device now being recognized as the correct device type, open a Command
Prompt window and execute the following command:

adb devices

This command should output information about the connected device similar to the following:
List of devices attached

HT4CTJT01906 offline

If the device is listed as offline or unauthorized, go to the device display and check for the dialog shown in Figure
7-4 seeking permission to Allow USB debugging.

Figure 7-4

Enable the checkbox next to the option that reads Always allow from this computer, before clicking on OK.
Repeating the adb devices command should now list the device as being ready:
List of devices attached

HT4CTJT01906 device

In the event that the device is not listed, execute the following commands to restart the ADB server:

51

Testing Android Studio Apps on a Physical Android Device

adb kill-server

adb start-server

If the device is still not listed, try executing the following command:

android update adb
Note that it may also be necessary to reboot the system.

7.2.3 Linux adb Configuration

For the purposes of this chapter, we will once again use Ubuntu Linux as a reference example in terms of
configuring adb on Linux to connect to a physical Android device for application testing.

Physical device testing on Ubuntu Linux requires the installation of a package named android-tools-adb which,
in turn, requires that the Android Studio user be a member of the plugdev group. This is the default for user
accounts on most Ubuntu versions and can be verified by running the id command. If the plugdev group is not
listed, run the following command to add your account to the group:

sudo usermod -aG plugdev S$SLOGNAME

After the group membership requirement has been met, the android-tools-adb package can be installed by
executing the following command:

sudo apt-get install android-tools-adb

Once the above changes have been made, reboot the Ubuntu system. Once the system has restarted, open a
Terminal window, start the adb server and check the list of attached devices:

$ adb start-server

* daemon not running. starting it now on port 5037 *

* daemon started successfully *

$ adb devices

List of devices attached

015d41d4454b£f80c offline

If the device is listed as offline or unauthorized, go to the Android device and check for the dialog shown in
Figure 7-4 seeking permission to Allow USB debugging.

7.3 Testing the adb Connection

Assuming that the adb configuration has been successful on your chosen development platform, the next step is
to try running the test application created in the chapter entitled “Creating an Example Android App in Android
Studio” on the device.

Launch Android Studio, open the AndroidSample project and, once the project has loaded, click on the run
button located in the Android Studio toolbar (Figure 7-5).

Figure 7-5

Assuming that the project has not previously been configured to run automatically in an emulator environment,
the deployment target selection dialog will appear with the connected Android device listed as a currently
running device. Figure 7-6, for example, lists a Nexus 9 device as a suitable target for installing and executing
the application.

52

Testing Android Studio Apps on a Physical Android Device

Figure 7-6

To make this the default device for testing, enable the Use same device for future launches option. With the
device selected, click on the OK button to install and run the application on the device. As with the emulator
environment, diagnostic output relating to the installation and launch of the application on the device will be
logged in the Run tool window.

7.4 Summary

While the Android Virtual Device emulator provides an excellent testing environment, it is important to keep
in mind that there is no real substitute for making sure an application functions correctly on a physical Android
device. This, after all, is where the application will be used in the real world.

By default, however, the Android Studio environment is not configured to detect Android devices as a target
testing device. It is necessary, therefore, to perform some steps in order to be able to load applications directly
onto an Android device from within the Android Studio development environment. The exact steps to achieve
this goal differ depending on the development platform being used. In this chapter, we have covered those steps
for Linux, macOS and Windows based platforms.

53

Chapter 8

8. The Basics of the Android Studio
Code Editor

Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor

The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Kotlin source code
file loaded:

Figure 8-1
55

The Basics of the Android Studio Code Editor
The elements that comprise the editor window can be summarized as follows:

A — Document Tabs - Android Studio is capable of holding multiple files open for editing at any one time.
As each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top
edge of the editor window. A small dropdown menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-Right
keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism (accessible
via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B — The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched on
by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu option.

C - The Status Bar - Though the status bar is actually part of the main window, as opposed to the editor, it
does contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line dialog.

D — The Editor Area - This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E — The Validation and Marker Sidebar - Android Studio incorporates a feature referred to as “on-the-
fly code analysis” What this essentially means is that as you are typing code, the editor is analyzing the code to
check for warnings and syntax errors. The indicator at the top of the validation sidebar will change from a green
check mark (no warnings or errors detected) to a yellow square (warnings detected) or red alert icon (errors
have been detected). Clicking on this indicator will display a popup containing a summary of the issues found
with the code in the editor as illustrated in Figure 8-2:

Figure 8-2

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup

56

The Basics of the Android Studio Code Editor

containing a description of the issue (Figure 8-3):

Figure 8-3

Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area
of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-4)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-4

It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over
any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window

By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into
multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 8-5, for example, shows the splitter in action with the editor
split into three panels:

Figure 8-5
57

The Basics of the Android Studio Code Editor

The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion

The Android Studio editor has a considerable amount of built-in knowledge of Kotlinprogramming syntax and
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-6, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-6

If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the
keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the
Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred
to as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-Ctrl-
Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings... menu option (or Android Studio -> Preferences... on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-7:

58

The Basics of the Android Studio Code Editor

Figure 8-7

8.4 Statement Completion

Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:

myMethod ()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:

myMethod () {

}
8.5 Parameter Information

It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard

sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-8

59

The Basics of the Android Studio Code Editor

8.6 Parameter Name Hints

The code editor may be configured to display parameter name hints within method calls. Figure 8-9, for example,
highlights the parameter name hints within the calls to the make() and setAction() methods of the Snackbar class:

Figure 8-9

The settings for this mode may be configured by selecting the File -> Settings (Android Studio -> Preferences
on macOS) menu option followed by Editor -> Appearance in the left-hand panel. On the Appearance screen,
enable or disable the Show parameter name hints option. To adjust the hint settings, click on the Configure...
button, select the programming language and make any necessary adjustments.

8.7 Code Generation

In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-10 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-10

For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio
generate a stub method for this, simply select the Override Methods... option from the code generation list and
select the onStop() method from the resulting list of available methods:

60

The Basics of the Android Studio Code Editor

Figure 8-11

Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Kotlin source file as follows:

8.8 Code Folding

Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-12, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-12

Clicking on either of these markers will fold the statement such that only the signature line is visible as shown
in Figure 8-13:

61

The Basics of the Android Studio Code Editor

Figure 8-13

To unfold a collapsed section of code, simply click on the ‘+’ marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{...}” indicator as shown in Figure 8-14. The editor will
then display the lens overlay containing the folded code block:

Figure 8-14

All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings... (Android Studio -> Preferences... on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-15):

Figure 8-15

8.9 Quick Documentation Lookup

Context sensitive Kotlin and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will
display a popup containing the relevant reference documentation for the item. Figure 8-16, for example, shows
the documentation for the Android Snackbar class.

62

The Basics of the Android Studio Code Editor

Figure 8-16

Once displayed, the documentation popup can be moved around the screen as needed. Clicking on the push pin
icon located in the right-hand corner of the popup title bar will ensure that the popup remains visible once focus
moves back to the editor, leaving the documentation visible as a reference while typing code.

8.10 Code Reformatting

In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a web site), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display
the Reformat Code dialog (Figure 8-17) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire source file currently active in the
editor or only code that has changed as the result of a source code control update.

Figure 8-17

The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences... on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog, for
example, unfold the Code Style section, select Kotlin and, from the Kotlin settings, select the Arrangement tab.

8.11 Finding Sample Code

The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample
Code menu option. The Find Sample Code panel (Figure 8-18) will appear beneath the editor with a list of

63

The Basics of the Android Studio Code Editor

matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

Figure 8-18

8.12 Summary

The Android Studio editor goes to great length to reduce the amount of typing needed to write code and
to make that code easier to read and navigate. In this chapter we have covered a number of the key editor
features including code completion, code generation, editor window splitting, code folding, reformatting and

documentation lookup.

64

Chapter 9

9. An Overview of the Android
Architecture

So far in this book, steps have been taken to set up an environment suitable for the development of Android
applications using Android Studio. An initial step has also been taken into the process of application development
through the creation of a simple Android Studio application project.

Before delving further into the practical matters of Android application development, however, it is important
to gain an understanding of some of the more abstract concepts of both the Android SDK and Android
development in general. Gaining a clear understanding of these concepts now will provide a sound foundation
on which to build further knowledge.

Starting with an overview of the Android architecture in this chapter, and continuing in the next few chapters of
this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack

Android is structured in the form of a software stack comprising applications, an operating system, run-time
environment, middleware, services and libraries. This architecture can, perhaps, best be represented visually
as outlined in Figure 9-1. Each layer of the stack, and the corresponding elements within each layer, are tightly
integrated and carefully tuned to provide the optimal application development and execution environment
for mobile devices. The remainder of this chapter will work through the different layers of the Android stack,
starting at the bottom with the Linux Kernel.

Figure 9-1

65

An Overview of the Android Architecture

9.2 The Linux Kernel

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between
the device hardware and the upper layers of the Android software stack. Based on Linux version 2.6, the
kernel provides preemptive multitasking, low-level core system services such as memory, process and power
management in addition to providing a network stack and device drivers for hardware such as the device display,
Wi-Fi and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds and was combined with a set of tools, utilities
and compilers developed by Richard Stallman at the Free Software Foundation to create a full operating system
referred to as GNU/Linux. Various Linux distributions have been derived from these basic underpinnings such
as Ubuntu and Red Hat Enterprise Linux.

It is important to note, however, that Android uses only the Linux kernel. That said, it is worth noting that the
Linux kernel was originally developed for use in traditional computers in the form of desktops and servers. In
fact, Linux is now most widely deployed in mission critical enterprise server environments. It is a testament to
both the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find
this software at the heart of the Android software stack.

9.3 Android Runtime — ART

When an Android app is built within Android Studio it is compiled into an intermediate bytecode format
(referred to as DEX format). When the application is subsequently loaded onto the device, the Android Runtime
(ART) uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the
native instructions required by the device processor. This format is known as Executable and Linkable Format
(ELF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster
application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries

In addition to a set of standard Java development libraries (providing support for such general purpose tasks as
string handling, networking and file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples
of libraries in this category include the application framework libraries in addition to those that facilitate user
interface building, graphics drawing and database access.

A summary of some key core Android libraries available to the Android developer is as follows:
« android.app - Provides access to the application model and is the cornerstone of all Android applications.

« android.content - Facilitates content access, publishing and messaging between applications and application
components.

 android.database — Used to access data published by content providers and includes SQLite database
management classes.

o android.graphics - A low-level 2D graphics drawing API including colors, points, filters, rectangles and
canvases.

« android.hardware - Presents an API providing access to hardware such as the accelerometer and light sensor.

66

An Overview of the Android Architecture
« android.opengl - A Java interface to the OpenGL ES 3D graphics rendering APL

« android.os - Provides applications with access to standard operating system services including messages,
system services and inter-process communication.

« android.media - Provides classes to enable playback of audio and video.

« android.net — A set of APIs providing access to the network stack. Includes android.net.wifi, which provides
access to the device’s wireless stack.

« android.print - Includes a set of classes that enable content to be sent to configured printers from within
Android applications.

« android.provider — A set of convenience classes that provide access to standard Android content provider
databases such as those maintained by the calendar and contact applications.

« android.text - Used to render and manipulate text on a device display.

o android.util - A set of utility classes for performing tasks such as string and number conversion, XML
handling and date and time manipulation.

« android.view - The fundamental building blocks of application user interfaces.

« android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views,
layout managers, radio buttons etc.

« android.webkit — A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++ based libraries contained in this layer of the Android software stack.

9.4.1 C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary
APIs for developers writing Android applications. It is important to note, however, that the core libraries do
not perform much of the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++ based
libraries. When making calls, for example, to the android.opengl library to draw 3D graphics on the device
display, the library actually ultimately makes calls to the OpenGL ES C++ library which, in turn, works with the
underlying Linux kernel to perform the drawing tasks.

C/C++ libraries are included to fulfill a wide and diverse range of functions including 2D and 3D graphics
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback,
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java based
Android core library APIs. In the event that direct access to these libraries is needed, this can be achieved using
the Android Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or
Kotlin programming languages (such as C and C++) from within Java code using the Java Native Interface (JNI).

9.5 Application Framework

The Application Framework is a set of services that collectively form the environment in which Android
applications run and are managed. This framework implements the concept that Android applications are
constructed from reusable, interchangeable and replaceable components. This concept is taken a step further in
that an application is also able to publish its capabilities along with any corresponding data so that they can be

67

An Overview of the Android Architecture

found and reused by other applications.

The Android framework includes the following key services:

« Activity Manager — Controls all aspects of the application lifecycle and activity stack.

o Content Providers - Allows applications to publish and share data with other applications.

» Resource Manager - Provides access to non-code embedded resources such as strings, color settings and user
interface layouts.

« Notifications Manager — Allows applications to display alerts and notifications to the user.
 View System - An extensible set of views used to create application user interfaces.

 Package Manager - The system by which applications are able to find out information about other applications
currently installed on the device.

« Telephony Manager — Provides information to the application about the telephony services available on the
device such as status and subscriber information.

» Location Manager - Provides access to the location services allowing an application to receive updates about
location changes.

9.6 Applications

Located at the top of the Android software stack are the applications. These comprise both the native applications
provided with the particular Android implementation (for example web browser and email applications) and
the third party applications installed by the user after purchasing the device.

9.7 Summary

A good Android development knowledge foundation requires an understanding of the overall architecture of
Android. Android is implemented in the form of a software stack architecture consisting of a Linux kernel,
a runtime environment and corresponding libraries, an application framework and a set of applications.
Applications are predominantly written in Java or Kotlin and compiled down to bytecode format within the
Android Studio build environment. When the application is subsequently installed on a device, this bytecode
is compiled down by the Android Runtime (ART) to the native format used by the CPU. The key goals of the
Android architecture are performance and efficiency, both in application execution and in the implementation
of reuse in application design.

68

Chapter 10

10. The Anatomy of an Android
Application

Regardless of your prior programming experiences, be it Windows, macOS, Linux or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

The objective of this chapter, therefore, is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail both the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities

Those familiar with object-oriented programming languages such as Java, Kotlin, C++ or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. Since Android applications are written in Java and Kotlin, this
is still very much the case. Android, however, also takes the concept of re-usable components to a higher level.

Android applications are created by bringing together one or more components known as Activities. An activity
is a single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointments application might, for example, have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where new appointments may be entered by the user.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application, for example, might contain an activity specifically for composing
and sending an email message. A developer might be writing an application that also has a requirement to send
an email message. Rather than develop an email composition activity specifically for the new application, the
developer can simply use the activity from the existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may make use of the activity in unanticipated ways)
and one activity cannot directly call methods or access instance data of another activity. This, instead, is achieved
using Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be specifically started as a sub-activity of the originating activity.

10.2 Android Fragments

An activity, as described above, typically represents a single user interface screen within an app. One option is
to construct the activity using a single user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each of these sections is referred to as a
fragment, each of which consists of part of the user interface layout and a matching class file (declared as a
subclass of the Android Fragment class). In this scenario, an activity simply becomes a container into which one
or more fragments are embedded.

69

The Anatomy of an Android Application

In fact, fragments provide an efficient alternative to having each user interface screen represented by a
separate activity. Instead, an app can consist of a single activity that switches between different fragments, each
representing a different app screen.

10.3 Android Intents

Intents are the mechanism by which one activity is able to launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents

Another type of Intent, the Broadcast Intent, is a system wide intent that is sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status such as the completion of system start up, connection of an external
power source to the device or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time, or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers

Broadcast Receivers are the mechanism by which applications are able to respond to Broadcast Intents. A
Broadcast Receiver must be registered by an application and configured with an Intent Filter to indicate the
types of broadcast in which it is interested. When a matching intent is broadcast, the receiver will be invoked
by the Android runtime regardless of whether the application that registered the receiver is currently running.
The receiver then has 5 seconds in which to complete any tasks required of it (such as launching a Service,
making data updates or issuing a notification to the user) before returning. Broadcast Receivers operate in the
background and do not have a user interface.

10.6 Android Services

Android Services are processes that run in the background and do not have a user interface. They can be started
and subsequently managed from activities, Broadcast Receivers or other Services. Android Services are ideal
for situations where an application needs to continue performing tasks but does not necessarily need a user
interface to be visible to the user. Although Services lack a user interface, they can still notify the user of events
using notifications and toasts (small notification messages that appear on the screen without interrupting the
currently visible activity) and are also able to issue Intents.

Services are given a higher priority by the Android runtime than many other processes and will only be
terminated as a last resort by the system in order to free up resources. In the event that the runtime does need
to kill a Service, however, it will be automatically restarted as soon as adequate resources once again become
available. A Service can reduce the risk of termination by declaring itself as needing to run in the foreground. This
is achieved by making a call to startForeground(). This is only recommended for situations where termination
would be detrimental to the user experience (for example, if the user is listening to audio being streamed by the
Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming

70

The Anatomy of an Android Application

of audio that should continue when the application is no longer active, or a stock market tracking application
that needs to notify the user when a share hits a specified price.

10.7 Content Providers

Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data through the implementation of a Content Provider
including the ability to add, remove and query the data (subject to permissions). Access to the data is provided
via a Universal Resource Identifier (URI) defined by the Content Provider. Data can be shared in the form of a
file or an entire SQLite database.

The native Android applications include a number of standard Content Providers allowing applications to access
data such as contacts and media files. The Content Providers currently available on an Android system may be
located using a Content Resolver.

10.8 The Application Manifest

The glue that pulls together the various elements that comprise an application is the Application Manifest file.
It is within this XML based file that the application outlines the activities, services, broadcast receivers, data
providers and permissions that make up the complete application.

10.9 Application Resources

In addition to the manifest file and the Dex files that contain the byte code, an Android application package will
also typically contain a collection of resource files. These files contain resources such as the strings, images, fonts
and colors that appear in the user interface together with the XML representation of the user interface layouts.
By default, these files are stored in the /res sub-directory of the application project’s hierarchy.

10.10 Application Context

When an application is compiled, a class named R is created that contains references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and make changes to the application’s environment at runtime.

10.11 Summary

A number of different elements can be brought together in order to create an Android application. In this
chapter, we have provided a high-level overview of Activities, Fragments, Services, Intents and Broadcast
Receivers together with an overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted through the creation of individual, standalone modules of
functionality in the form of activities and intents, while data sharing between applications is achieved by the
implementation of content providers.

While activities are focused on areas where the user interacts with the application (an activity essentially
equating to a single user interface screen and often made up of one or more fragments), background processing
is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is most likely new to the average developer. Rest assured, however,
that extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a
solid knowledge foundation on which to build your own applications.

71

Chapter 11

11. An Introduction to Kotlin

Android development is performed primarily using Android Studio which is, in turn, based on the Intelli] IDEA
development environment created by a company named JetBrains. Prior to the release of Android Studio 3.0,
all Android apps were written using Android Studio and the Java programming language (with some occasional
C++ code when needed).

Since the introduction of Android Studio 3.0, however, developers now have the option of creating Android apps
using another programming language called Kotlin. Although detailed coverage of all features of this language
is beyond the scope of this book (entire books can and have been written covering solely Kotlin), the objective
of this and the following six chapters is to provide enough information to begin programming in Kotlin and
quickly get up to speed developing Android apps using this programming language.

11.1 What is Kotlin?

Named after an island located in the Baltic Sea, Kotlin is a programming language created by JetBrains and
follows Java in the tradition of naming programming languages after islands. Kotlin code is intended to be easier
to understand and write and also safer than many other programming languages. The language, compiler and
related tools are all open source and available for free under the Apache 2 license.

The primary goals of the Kotlin language are to make code both concise and safe. Code is generally considered
concise when it can be easily read and understood. Conciseness also plays a role when writing code, allowing
code to be written more quickly and with greater efficiency. In terms of safety, Kotlin includes a number of
features that improve the chances that potential problems will be identified when the code is being written
instead of causing runtime crashes.

A third objective in the design and implementation of Kotlin involves interoperability with Java.

11.2 Kotlin and Java

Originally introduced by Sun Microsystems in 1995 Java is still by far the most popular programming language
in use today. Until the introduction of Kotlin, it is quite likely that every Android app available on the market
was written in Java. Since acquiring the Android operating system, Google has invested heavily in tuning and
optimizing compilation and runtime environments for running Java-based code on Android devices.

Rather than try to re-invent the wheel, Kotlin is design to both integrate with and work alongside Java. When
Kotlin code is compiled it generates the same bytecode as that generated by the Java compiler enabling projects
to be built using a combination of Java and Kotlin code. This compatibility also allows existing Java frameworks
and libraries to be used seamlessly from within Kotlin code and also for Kotlin code to be called from within
Java.

Kotlins creators also acknowledged that while there were ways to improve on existing languages, there are many
features of Java that did not need to be changed. Consequently, those familiar with programming in Java will
find many of these skills to be transferable to Kotlin-based development. Programmers with Swift programming
experience will also find much that is familiar when learning Kotlin.

11.3 Converting from Java to Kotlin

Given the high level of interoperability between Kotlin and Java it is not essential to convert existing Java code
to Kotlin since these two languages will comfortably co-exist within the same project. That being said, Java code
73

An Introduction to Kotlin

can be converted to Kotlin from within Android Studio using a built-in Java to Kotlin converter. To convert an
entire Java source file to Kotlin, load the file into the Android Studio code editor and select the Code -> Convert
Java File to Kotlin File menu option. Alternatively, blocks of Java code may be converted to Kotlin by cutting the
code and pasting it into an existing Kotlin file within the Android Studio code editor. Note when performing
Java to Kotlin conversions that the Java code will not always convert to the best possible Kotlin code and that
time should be taken to review and tidy up the code after conversion.

11.4 Kotlin and Android Studio

Support for Kotlin is provided within Android Studio via the Kotlin Plug-in which is integrated by default into
Android Studio 3.0 or later.

11.5 Experimenting with Kotlin

When learning a new programming language, it is often useful to be able to enter and execute snippets of code.
One of the best ways to do this with Kotlin is to use the online playground (Figure 11-1) located at https://try.
kotl.in. In addition to providing an environment in which Kotlin code may be quickly entered and executed, the
online playground also includes a set of examples demonstrating key Kotlin features in action.

The panel on the left-hand side (marked A in Figure 11-1) contains a list of coding examples together with any
examples you create. Code is typed into the main panel (B) and executed by clicking the Run button (C). Any
output from the code execution appears in the console panel (D). Arguments may be passed through to the
main function by entering them into the field marked E.

Figure 11-1

Try out some Kotlin code by opening a browser window, navigating to the online playground and entering the
following into the main code panel:

74

An Introduction to Kotlin

fun main(args: Array<String>) {
println ("Welcome to Kotlin")

for (1 in 1..8) {
println("i = $i")

}

After entering the code, click on the Run button and note the output in the console panel:

Figure 11-2

The online playground may also be used to find the Kotlin equivalent for fragments of Java code. Simply enter
(or cut and paste) the Java code into the main panel and click on the Convert from Java button (marked E).

11.6 Semi-colons in Kotlin

Unlike programming languages such as Java and C++, Kotlin does not require semi-colons at the end of each
statement or expression line. The following, therefore, is valid Kotlin code:

val mynumber = 10
println (mynumber)
Semi-colons are only required when multiple statements appear on the same line:

val mynumber = 10; println (mynumber)

11.7 Summary

For the first time since the Android operating system was introduced, developers now have an alternative to
writing apps in Java code. Kotlin is a programming language developed by JetBrains, the company that created
the development environment on which Android Studio is based. Kotlin is intended to make code safer and
easier to understand and write. Kotlin is also highly compatible with Java, allowing Java and Kotlin code to
co-exist within the same projects. This interoperability ensures that most of the standard Java and Java-based
Android libraries and frameworks are available for use when developing using Kotlin.

Kotlin support for Android Studio is provided via a plug-in bundled with Android Studio 3.0 or later. This plug-
in also provides a converter to translate Java code to Kotlin.

When learning Kotlin, the online playground provides a useful environment for quickly trying out Kotlin code.

75

Chapter 12

12. Kotlin Data Types, Variables and
Nullability

Both this and the following few chapters are intended to introduce the basics of the Kotlin programming
language. This chapter will focus on the various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, type casting and Kotlin’s handling of null values.

As outlined in the previous chapter, entitled “An Introduction to Kotlin” a useful way to experiment with the
language is to use the Kotlin online playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://try.kotl.in and use the playground to try out the code in both this and the
other Kotlin introductory chapters that follow.

12.1 Kotlin Data Types

When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on
disk drives and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each
1 or 0 is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte.
When people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can
be handled simultaneously by the CPU bus. A 64-bit CPU, for example, is able to handle data in 64-bit blocks,
resulting in faster performance than a 32-bit based system.

Humans, of course, don't think in binary. We work with decimal numbers, letters and words. In order for a
human to easily (‘easily’ being a relative term in this context) program a computer, some middle ground between
human and computer thinking is needed. This is where programming languages such as Kotlin come into
play. Programming languages allow humans to express instructions to a computer in terms and structures we
understand, and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Kotlin define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Kotlin program we could do so with syntax similar to the following:

val mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:

1010

Similarly, we can express a letter, the visual representation of a digit (‘0" through to ‘9’) or punctuation mark
(referred to in computer terminology as characters) using the following syntax:

val myletter = 'c

Once again, this is understandable by a human programmer, but gets compiled down to a binary sequence
for the CPU to understand. In this case, the letter ¢’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to human readable characters). When

77

Kotlin Data Types,Variables and Nullability

converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Kotlin.

12.1.1 Integer Data Types
Kotlin integer data types are used to store whole numbers (in other words a number with no decimal places). All

integers in Kotlin are signed (in other words capable of storing positive, negative and zero values).

Kotlin provides support for 8, 16, 32 and 64 bit integers (represented by the Byte, Short, Int and Long types
respectively).

12.1.2 Floating Point Data Types

The Kotlin floating point data types are able to store values containing decimal places. For example, 4353.1223
would be stored in a floating point data type. Kotlin provides two floating point data types in the form of Float
and Double. Which type to use depends on the size of value to be stored and the level of precision required. The
Double type can be used to store up to 64-bit floating point numbers. The Float data type, on the other hand, is
limited to 32-bit floating point numbers.

12.1.3 Boolean Data Type

Kotlin, like other languages, includes a data type for the purpose of handling true or false (1 or 0) conditions.
Two Boolean constant values (true and false) are provided by Kotlin specifically for working with Boolean data

types.
12.1.4 Character Data Type

The Kotlin Char data type is used to store a single character of rendered text such as a letter, numerical digit,
punctuation mark or symbol. Internally characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points that are combined to represent a single
visible character.

The following lines assign a variety of different characters to Character type variables:

val myCharl = 'f'
val myChar2 = ':'
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The following example assigns the X’ character
to a variable using Unicode:

val myChar4 = '\u0058"

Note the use of single quotes when assigning a character to a variable. This indicates to Kotlin that this is a Char
data type as opposed to double quotes which indicate a String data type.

12.1.5 String Data Type

The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated and modified. Double quotes are used to surround single line strings
during assignment, for example:

val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes

78

Kotlin Data Types,Variables and Nullability

val message = """You have 10 new messages,
5 old messages

and 6 spam messages."""
The leading spaces on each line of a multi-line string can be removed by making a call to the trimMargin()
function of the String data type:

val message = """You have 10 new messages,
5 old messages
and 6 spam messages.""".trimMargin()

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before outputting it to the console:

val username = "John"
val inboxCount = 25
val maxcount = 100

val message = "Susername has $inboxCount message. Message capacity remaining is
S{maxcount - inboxCount}"

println (message)

When executed, the code will output the following message:
John has 25 messages. Message capacity remaining is 75 messages.
12.1.6 Escape Sequences

In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape characters) available for specifying items such as a new line, tab or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:

var backslash = "\\'

The complete list of special characters supported by Kotlin is as follows:
« \n - New line

« \r - Carriage return

o \t - Horizontal tab

« \\ - Backslash

« \” - Double quote (used when placing a double quote into a string declaration)

\" - Single quote (used when placing a single quote into a string declaration)

\$ - Used when a character sequence containing a $ is misinterpreted as a variable in a string template.

« \unnnn - Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the

79

Kotlin Data Types,Variables and Nullability

Unicode character.

12.2 Mutable Variables

Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable
may then be used in the Kotlin code to access the value assigned to that variable. This access can involve either
reading the value of the variable or, in the case of mutable variables, changing the value.

12.3 Immutable Variables

Often referred to as a constant, an immutable variable is similar to a mutable variable in that it provides a named
location in memory to store a data value. Immutable variables differ in one significant way in that once a value
has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value which is used repeatedly throughout the application
code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be clear to someone reading your Kotlin
code why you used the value 5 in an expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable values also have the advantage that if the
programmer needs to change a widely used value, it only needs to be changed once in the constant declaration
and not each time it is referenced.

12.4 Declaring Mutable and Immutable Variables

Mutable variables are declared using the var keyword and may be initialized with a value at creation time. For
example:

var userCount = 10
If the variable is declared without an initial value, the type of the variable must also be declared (a topic which will

be covered in more detail in the next section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:

var userCount: Int

userCount = 42

Immutable variables are declared using the val keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring the variable without initializing it:

val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in preference to mutable variables
whenever possible.

12.5 Data Types are Objects

All of the above data types are actually objects, each of which provides a range of functions and properties that
may be used to perform a variety of different type specific tasks. These functions and properties are accessed
using so-called dot notation. Dot notation involves accessing a function or property of an object by specifying
the variable name followed by a dot followed in turn by the name of the property to be accessed or function to
be called.

A string variable, for example, can be converted to uppercase via a call to the toUpperCase() function of the
String class:

80

Kotlin Data Types,Variables and Nullability

val myString = "The quick brown fox"

val uppercase = myString.toUpperCase ()

Similarly, the length of a string is available by accessing the length property:
val length = myString.length

Functions are also available within the String class to perform tasks such as comparisons and checking for the
presence of a specific word. The following code, for example, will return a true Boolean value since the word
“fox” appears within the string assigned to the myString variable:

val result = myString.contains ("fox")

All of the number data types include functions for performing tasks such as converting from one data type to
another such as converting an Int to a Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the Kotlin data type classes is beyond the
scope of this book (there are hundreds). An exhaustive list for all data types can, however, be found within the
Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/
12.6 Type Annotations and Type Inference

Kotlin is categorized as a statically typed programming language. This essentially means that once the data
type of a variable has been identified, that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed programming languages where a variable,
once declared, can subsequently be used to store other data types.

There are two ways in which the type of a variable will be identified. One approach is to use a type annotation at
the point the variable is declared in the code. This is achieved by placing a colon after the variable name followed
by the type declaration. The following line of code, for example, declares a variable named userCount as being
of type Int:

val userCount: Int = 10
In the absence of a type annotation in a declaration, the Kotlin compiler uses a technique referred to as type
inference to identify the type of the variable. When relying on type inference, the compiler looks to see what type

of value is being assigned to the variable at the point that it is initialized and uses that as the type. Consider, for
example, the following variable declarations:

var signalStrength = 2.231

val companyName = "My Company"

During compilation of the above lines of code, Kotlin will infer that the signalStrength variable is of type Double
(type inference in Kotlin defaults to Double for all floating point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:

val iosBookType = false

val bookTitle: String

81

Kotlin Data Types,Variables and Nullability

if (iosBookType) {

bookTitle = "iOS App Development Essentials"
} else {

bookTitle = "Android Studio Development Essentials"
}
12.7 Nullable Type

Kotlin nullable types are a concept that does not exist in most other programming languages (with the exception
of the optional type in Swift). The purpose of nullable types is to provide a safe and consistent approach to
handling situations where a variable may have a null value assigned to it. In other words, the objective is to avoid
the common problem of code crashing with the null pointer exception errors that occur when code encounters
a null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it. Consider, for example, the following code:

val username: String = null

An attempt to compile the above code will result in a compilation error similar to the following:

Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be specifically declared as a nullable type by
placing a question mark (?) after the type declaration:

val username: String? = null

The username variable can now have a null value assigned to it without triggering a compiler error. Once a
variable has been declared as nullable, a range of restrictions are then imposed on that variable by the compiler

to prevent it being used in situations where it might cause a null pointer exception to occur. A nullable variable,
cannot, for example, be assigned to a variable of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the compiler:

Error: Type mismatch: inferred type is String? but String was expected

The only way that the assignment will be permitted is if some code is added to check that the value assigned to
the nullable variable is non-null:

val username: String? = null
if (username != null) {
val firstname: String = username

}

In the above case, the assignment will only take place if the username variable references a non-null value.

12.8 The Safe Call Operator

A nullable variable also cannot be used to call a function or to access a property in the usual way. Earlier in this
chapter the toUpperCase() function was called on a String object. Given the possibility that this could cause a
function to be called on a null reference, the following code will be disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase ()

82

Kotlin Data Types,Variables and Nullability

The exact error message generated by the compiler in this situation reads as follows:

Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable
receiver of type String?

In this instance, the compiler is essentially refusing to allow the function call to be made because no attempt
has been made to verify that the variable is non-null. One way around this is to add some code to verify that
something other than null value has been assigned to the variable prior to making the function call:
if (username != null) {

val uppercase = username.toUpperCase ()
}
A much more efficient way to achieve this same verification, however, is to call the function using the safe call
operator (represented by ?.) as follows:

val uppercase = username?.toUpperCase ()

In the above example, if the username variable is null, the toUpperCase() function will not be called and execution
will proceed at the next line of code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be used when accessing properties:

val uppercase = username?.length

12.9 Not-Null Assertion

The not-null assertion removes all of the compiler restrictions from a nullable type, allowing it to be used in
the same ways as a non-null type, even if it has been assigned a null value. This assertion is implemented using
double exclamation marks after the variable name, for example:

val username: String? = null

val length = username!!.length

The above code will now compile, but will crash with the following exception at runtime since an attempt is
being made to call a function on a non existent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid. Use of the not-null assertion is
generally discouraged and should only be used in situations where you are certain that the value will not be null.

12.10 Nullable Types and the let Function

Earlier in this chapter we looked at how the safe call operator can be used when making a call to a function
belonging to a nullable type. This technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem occurs when passing a nullable type as an
argument to a function which is expecting a non-null parameter. As an example, consider the times() function
of the Int data type. When called on an Int object and passed another integer value as an argument, the function
multiplies the two values and returns the result. When the following code is executed, for example, the value of
200 will be displayed within the console:

val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times (secondNumber)
print (result)

The above example works because the secondNumber variable is a non-null type. A problem, however, occurs if
83

Kotlin Data Types,Variables and Nullability

the secondNumber variable is declared as being of nullable type:

val firstNumber = 10

val secondNumber: Int? = 20

val result = firstNumber.times (secondNumber)

print (result)

Now the compilation will fail with the following error message because a nullable type is being passed to a
function that is expecting a non-null parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to simply write an if statement to verify that the value assigned to the
variable is non-null before making the call to the function:

val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber != null) {
val result = firstNumber.times (secondNumber)
print (result)

}

A more convenient approach to addressing the issue, however, involves use of the lef function. When called on a
nullable type object, the let function converts the nullable type to a non-null variable named it which may then
be referenced within a lambda statement.
secondNumber?.let {

val result = firstNumber.times (it)

print (result)

}

Note the use of the safe call operator when calling the let function on secondVariable in the above example. This
ensures that the function is only called when the variable is assigned a non-null value.

12.11 The Elvis Operator

The Kotlin Elvis operator can be used in conjunction with nullable types to define a default value that is to be
returned in the event that a value or expression result is null. The Elvis operator (?:) is used to separate two
expressions. If the expression on the left does not resolve to a null value that value is returned, otherwise the
result of the rightmost expression is returned. This can be thought of as a quick alternative to writing an if-else
statement to check for a null value. Consider the following code:
if (myString != null) {

return myString
} else {

return "String is null"

}

The same result can be achieved with less coding using the Elvis operator as follows:

return myString ?: "String is null"

84

Kotlin Data Types,Variables and Nullability

12.12 Type Casting and Type Checking

When compiling Kotlin code, the compiler can typically infer the type of an object. Situations will occur,
however, where the compiler is unable to identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this situation it may be necessary to let
the compiler know the type of object that your code is expecting or to write code that checks whether the object
is of a particular type.

Letting the compiler know the type of object that is expected is known as type casting and is achieved within
Kotlin code using the as cast operator. The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a KeyguardManager object:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as KeyguardManager
The Kotlin language includes both safe and unsafe cast operators. The above cast is an unsafe cast and will

cause the app to throw an exception if the cast cannot be performed. A safe cast, on the other hand, uses the as?
operator and returns null if the cast cannot be performed:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as? KeyguardManager

A type check can be performed to verify that an object conforms to a specific type using the is operator, for
example:

if (keyMgr is KeyguardManager) {

// It is a KeyguardManager object
}

12.13 Summary

This chapter has begun the introduction to Kotlin by exploring data types together with an overview of how to
declare variables. The chapter has also introduced concepts such as nullable types, type casting and type checking
and the Elvis operator, each of which is an integral part of Kotlin programming and designed specifically to
make code writing less prone to error.

85

Chapter 13

13. Kotlin Operators and Expressions

So far we have looked at using variables and constants in Kotlin and also described the different data types.
Being able to create variables is only part of the story however. The next step is to learn how to use these variables
in Kotlin code. The primary method for working with data is in the form of expressions.

13.1 Expression Syntax in Kotlin

The most basic expression consists of an operator, two operands and an assignment. The following is an example
of an expression:

val myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=)
subsequently assigns the result of the addition to a variable named myresult. The operands could just have easily
been variables (or a mixture of values and variables) instead of the actual numerical values used in the example.

In the remainder of this chapter we will look at the basic types of operators available in Kotlin.

13.2 The Basic Assignment Operator

We have already looked at the most basic of assignment operators, the = operator. This assignment operator
simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands.
The left-hand operand is the variable to which a value is to be assigned and the right-hand operand is the value
to be assigned. The right-hand operand is, more often than not, an expression which performs some type of
arithmetic or logical evaluation or a call to a function, the result of which will be assigned to the variable. The

following examples are all valid uses of the assignment operator:
var Int // Declare a mutable Int variable

X
val y = 10 // Declare and initialize an immutable Int variable

10 // Assign a value to x

x + y // Assign the result of x + y to x
x = vy // Assign the value of y to x

13.3 Kotlin Arithmetic Operators

Kotlin provides a range of operators for the purpose of creating mathematical expressions. These operators
primarily fall into the category of binary operators in that they take two operands. The exception is the unary
negative operator (-) which serves to indicate that a value is negative rather than positive. This contrasts with
the subtraction operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Kotlin arithmetic operators:

Operator Description
-(unary) Negates the value of a variable or expression
* Multiplication

87

Kotlin Operators and Expressions

/ Division

+ Addition

- Subtraction

% Remainder/Modulo

Table 13-1
Note that multiple operators may be used in a single expression.

For example:
x =y * 10 +z -5/ 4

13.4 Augmented Assignment Operators

In an earlier section we looked at the basic assignment operator (=). Kotlin provides a number of operators
designed to combine an assignment with a mathematical or logical operation. These are primarily of use when
performing an evaluation where the result is to be stored in one of the operands. For example, one might write
an expression as follows:

X =Xty

The above expression adds the value contained in variable x to the value contained in variable y and stores the
result in variable x. This can be simplified using the addition augmented assignment operator:

X +t=y
The above expression performs exactly the same task as x = x + y but saves the programmer some typing.

Numerous augmented assignment operators are available in Kotlin. The most frequently used of which are
outlined in the following table:

Operator Description

X+=y Add x to y and place result in x

X-=y Subtract y from x and place result in x

x*=y Multiply x by y and place result in x

X/=y Divide x by y and place result in x

X %=y Perform Modulo on x and y and place result in x

Table 13-1

13.5 Increment and Decrement Operators

Another useful shortcut can be achieved using the Kotlin increment and decrement operators (also referred to
as unary operators because they operate on a single operand). Consider the code fragment below:

x + 1 // Increase value of variable x by 1

x = x - 1 // Decrease value of variable x by 1

These expressions increment and decrement the value of x by 1. Instead of using this approach, however, it is
quicker to use the ++ and -- operators. The following examples perform exactly the same tasks as the examples
above:

x++ // Increment x by 1

x-- // Decrement x by 1
These operators can be placed either before or after the variable name. If the operator is placed before the

88

Kotlin Operators and Expressions

variable name, the increment or decrement operation is performed before any other operations are performed
on the variable. For example, in the following code, x is incremented before it is assigned to y, leaving y with a
value of 10:
var x = 9

val y = ++x

In the next example, however, the value of x (9) is assigned to variable y before the decrement is performed. After
the expression is evaluated the value of y will be 9 and the value of x will be 8.

9

val y = x—--

var X

13.6 Equality Operators

Kotlin also includes a set of logical operators useful for performing comparisons. These operators all return a
Boolean result depending on the result of the comparison. These operators are binary operators in that they work
with two operands.

Equality operators are most frequently used in constructing program flow control logic. For example
an if statement may be constructed based on whether one value matches another:

if x ==y {
// Perform task
}
The result of a comparison may also be stored in a Boolean variable. For example, the following code will result
in a true value being stored in the variable result:

var result: Bool
val x = 10
val y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full
set of Kotlin comparison operators:

Operator Description

X==y Returns true if x is equal to y

X>y Returns true if x is greater than y

X>=y Returns true if x is greater than or equal to y
X<y Returns true if x is less than y

X<=y Returns true if x is less than or equal to y
xl=y Returns true if x is not equal to y

Table 13-1

13.7 Boolean Logical Operators

Kotlin also provides a set of so called logical operators designed to return Boolean true or false values. These
operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!),
AND (&&) and OR (||).

The NOT (!) operator simply inverts the current value of a Boolean variable, or the result of an expression. For

89

Kotlin Operators and Expressions

example, if a variable named flag is currently true, prefixing the variable with a ‘I’ character will invert the value
to false:

val flag = true // variable is true

val secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true, otherwise it returns false. For
example, the following code evaluates to true because at least one of the expressions either side of the OR
operator is true:

if ((10 < 20) |1 (20 < 10)) |
print ("Expression is true")
}
The AND (&&) operator returns true only if both operands evaluate to be true. The following example will
return false because only one of the two operand expressions evaluates to true:
if ((10 < 20) && (20 < 10)) {

print ("Expression is true")

}
13.8 Range Operator

Kotlin includes a useful operator that allows a range of values to be declared. As will be seen in later chapters,
this operator is invaluable when working with looping in program logic.

The syntax for the range operator is as follows:
X..y

This operator represents the range of numbers starting at x and ending at y where both x and y are included
within the range (referred to as a closed range). The range operator 5..8, for example, specifies the numbers 5,
6,7 and 8.

13.9 Bitwise Operators

As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros,
each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Kotlin
provides a range of bit operators.

Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C and Java will find
nothing new in this area of the Kotlin language syntax. For those unfamiliar with binary numbers, now may be a
good time to seek out reference materials on the subject in order to understand how ones and zeros are formed
into bytes to form numbers. Other authors have done a much better job of describing the subject than we can
do within the scope of this book.

For the purposes of this exercise we will be working with the binary representation of two numbers. First, the
decimal number 171 is represented in binary as:

10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to look at the Kotlin bitwise operators:

90

Kotlin Operators and Expressions

13.9.1 Bitwise Inversion

The Bitwise inversion (also referred to as NOT) is performed using the inv() operation and has the effect of
inverting all of the bits in a number. In other words, all the zeros become ones and all the ones become zeros.
Taking our example 3 number, a Bitwise NOT operation has the following result:

00000011 NOT

11111100

The following Kotlin code, therefore, results in a value of -4:
val y = 3

val z = y.inv ()

print ("Result is $z")

13.9.2 Bitwise AND

The Bitwise AND is performed using the and() operation. It makes a bit by bit comparison of two numbers. Any
corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing in
the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result.
Taking our two example numbers, this would appear as follows:

10101011 AND

00000011

00000011

As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in
Kotlin code, therefore, we should find that the result is 3 (00000011):

val x = 171

val y = 3

val z = x.and(y)

print ("Result is $z")

13.9.3 Bitwise OR

The bitwise OR also performs a bit by bit comparison of two binary sequences. Unlike the AND operation, the
OR places a 1 in the result if there is a 1 in the first or second operand. Using our example numbers, the result
will be as follows:

10101011 OR

00000011

10101011

If we perform this operation in Kotlin using the or() operation the result will be 171:

val x = 171
val y = 3
val z = x.or(y)

print ("Result is $z")

91

Kotlin Operators and Expressions

13.9.4 Bitwise XOR

The bitwise XOR (commonly referred to as exclusive OR and performed using the xor() operation) performs a
similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions
in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For
example:

10101011 XOR

00000011

10101000
The result in this case is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some
Kotlin code:

val x = 171
val y = 3

val z = x.xor (y)

print ("Result is $z")

When executed, we get the following output from print:
Result is 168

13.9.5 Bitwise Left Shift

The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an
integer one position to the left has the effect of doubling the value.

As the bits are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that
once the left most (high order) bits are shifted beyond the size of the variable containing the value, those high
order bits are discarded:

10101011 Left Shift one bit

101010110
In Kotlin the bitwise left shift operator is performed using the shi() operation, passing through the number of bit
positions to be shifted. For example, to shift left by 1 bit:

val x = 171
val z = x.shl (1)

print ("Result is $z")

When compiled and executed, the above code will display a message stating that the result is 342 which, when
converted to binary, equates to 101010110.

13.9.6 Bitwise Right Shift

A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite
direction. Shifting an integer one position to the right has the effect of halving the value.

Note that since we are shifting to the right there is no opportunity to retain the lower most bits regardless of the
data type used to contain the result. As a result the low order bits are discarded. Whether or not the vacated high
order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive and
negative numbers is set or not.

92

Kotlin Operators and Expressions

10101011 Right Shift one bit

01010101

The bitwise right shift is performed using the shr() operation passing through the shift count:

val x = 171
val z = x.shr (1)

print ("Result is $z")

When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

13.10 Summary

Operators and expressions provide the underlying mechanism by which variables and constants are manipulated
and evaluated within Kotlin code. This can take the simplest of forms whereby two numbers are added using the
addition operator in an expression and the result stored in a variable using the assignment operator. Operators
fall into a range of categories, details of which have been covered in this chapter.

93

Chapter 14

14. Kotlin Flow Control

Regardless of the programming language used, application development is largely an exercise in applying logic,
and much of the art of programming involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed, how many times it is executed and, conversely, which code
gets by-passed when the program is executing. This is often referred to as flow control since it controls the
flow of program execution. Flow control typically falls into the categories of looping control (how often code is
executed) and conditional flow control (whether or not code is executed). This chapter is intended to provide an
introductory overview of both types of flow control in Kotlin.

14.1 Looping Flow Control

This chapter will begin by looking at flow control in the form of loops. Loops are essentially sequences of Kotlin
statements which are to be executed repeatedly until a specified condition is met. The first looping statement we
will explore is the for loop.

14.1.1 The Kotlin for-in Statement

The for-in loop is used to iterate over a sequence of items contained in a collection or number range.

The syntax of the for-in loop is as follows:
for variable name in collection or range {

// code to be executed

}

In this syntax, variable name is the name to be used for a variable that will contain the current item from the
collection or range through which the loop is iterating. The code in the body of the loop will typically use this
name as a reference to the current item in the loop cycle. The collection or range references the item through
which the loop is iterating. This could, for example, be an array of string values, a range operator or even a string
of characters.

Consider, for example, the following for-in loop construct:
for (index in 1..5) {

println ("Value of index is $index")

}

The loop begins by stating that the current item is to be assigned to a constant named index. The statement then
declares a closed range operator to indicate that the for loop is to iterate through a range of numbers, starting at
1 and ending at 5. The body of the loop simply prints out a message to the console indicating the current value
assigned to the index constant, resulting in the following output:

Value of index is
Value of index is
Value of index is

Value of index is

g w N

Value of index is

The for-in loop is of particular benefit when working with collections such as arrays. In fact, the for-in loop can
be used to iterate through any object that contains more than one item. The following loop, for example, outputs

95

Kotlin Flow Control

each of the characters in the specified string:

for (index in "Hello") {

println ("Value of index is $index")

}

The operation of a for-in loop may be configured using the downTo and until functions. The downTo function
causes the for loop to work backwards through the specified collection until the specified number is reached.
The following for loop counts backwards from 100 until the number 90 is reached:

for (index in 100 downTo 90) {
print ("$index.. ")

}

When executed, the above loop will generate the following output:
100.. 99.. 98.. 97.. 96.. 95.. 94.. 93.. 92.. 91.. 90..
The until function operates in much the same way with the exception that counting starts from the bottom of

the collection range and works up until (but not including) the specified end point (a concept referred to as a
half closed range):

for (index in 1 until 10) {
print ("$index.. ")
}
The output from the above code will range from the start value of 1 through to 9:
1..2.. 3..4.. 5.. 6.. 7.. 8.. 9..

The increment used on each iteration through the loop may also be defined using the step function as follows:
for (index in 0 until 100 step 10) {
print ("$index.. ")
}
The above code will result in the following console output:
0.. 10.. 20.. 30.. 40.. 50.. 60.. 70.. 80.. 90..

14.1.2 The while Loop

The Kotlin for loop described previously works well when it is known in advance how many times a particular
task needs to be repeated in a program. There will, however, be instances where code needs to be repeated until
a certain condition is met, with no way of knowing in advance how many repetitions are going to be needed to
meet that criteria. To address this need, Kotlin includes the while loop.

Essentially, the while loop repeats a set of tasks while a specified condition is met. The while loop syntax is

defined as follows:

while condition {
// Kotlin statements go here

}

In the above syntax, condition is an expression that will return either true or false and the // Kotlin statements go
here comment represents the code to be executed while the condition expression is true. For example:

var myCount = 0
while (myCount < 100) {

96

Kotlin Flow Control

myCount++
println (myCount)
}

In the above example, the while expression will evaluate whether the myCount variable is less than 100. If it is
already greater than 100, the code in the braces is skipped and the loop exits without performing any tasks.

If, on the other hand, myCount is not greater than 100 the code in the braces is executed and the loop returns to
the while statement and repeats the evaluation of myCount. This process repeats until the value of myCount is
greater than 100, at which point the loop exits.

14.1.3 The do ... while loop

It is often helpful to think of the do ... while loop as an inverted while loop. The while loop evaluates an expression
before executing the code contained in the body of the loop. If the expression evaluates to false on the first check
then the code is not executed. The do ... while loop, on the other hand, is provided for situations where you know
that the code contained in the body of the loop will always need to be executed at least once. For example, you
may want to keep stepping through the items in an array until a specific item is found. You know that you have
to at least check the first item in the array to have any hope of finding the entry you need. The syntax for the do
... while loop is as follows:

do {

// Kotlin statements here

} while conditional expression

In the do ... while example below the loop will continue until the value of a variable named i equals 0:

var i = 10

do {
1—--
println (i)
} while (i > 0)
14.1.4 Breaking from Loops

Having created a loop, it is possible that under certain conditions you might want to break out of the loop before
the completion criteria have been met (particularly if you have created an infinite loop). One such example
might involve continually checking for activity on a network socket. Once activity has been detected it will most
likely be necessary to break out of the monitoring loop and perform some other task.

For the purpose of breaking out of a loop, Kotlin provides the break statement which breaks out of the current
loop and resumes execution at the code directly after the loop. For example:

var j = 10

for (i in 0..100)
{
j += 3

if (3 > 100) {
break

97

Kotlin Flow Control
println("j = $3")
}

In the above example the loop will continue to execute until the value of j exceeds 100 at which point the loop
will exit and execution will continue with the next line of code after the loop.

14.1.5 The continue Statement

The continue statement causes all remaining code statements in a loop to be skipped, and execution to be
returned to the top of the loop. In the following example, the println function is only called when the value of
variable 7 is an even number:

var 1 =1

while (i < 20)
{

1 +=1

if (1 % 2 != 0) {
continue

}

println("i = $i")

}

The continue statement in the above example will cause the println call to be skipped unless the value of i can be
divided by 2 with no remainder. If the continue statement is triggered, execution will skip to the top of the while
loop and the statements in the body of the loop will be repeated (until the value of i exceeds 19).

14.1.6 Break and Continue Labels

Kotlin expressions may be assigned a label by preceding the expression with a label name followed by the @ sign.
This label may then be referenced when using break and continue statements to designate where execution is to
resume. This is particularly useful when breaking out of nested loops. The following code contains a for loop
nested within another for loop. The inner loop contains a break statement which is executed when the value of

j reaches 10:
for (i in 1..100) {

println ("Outer loop i = $i")

for (j in 1..100) {
println ("Inner loop j = $3™)
if (j == 10) break

}

As currently implemented, the break statement will exit the inner for loop but execution will resume at the top
of the outer for loop. Suppose, however, that the break statement is required to also exit the outer loop. This can
be achieved by assigning a label to the outer loop and referencing that label with the break statement as follows:

outerloop@ for (i in 1..100) {

98

Kotlin Flow Control

println ("Outer loop 1 = $i")

for (j in 1..100) {
println("Inner loop J = $3")
if (3 == 10) break@outerloop

}

Now when the value assigned to variable j reaches 10 the break statement will break out of both loops and
resume execution at the line of code immediately following the outer loop.

14.2 Conditional Flow Control

In the previous chapter we looked at how to use logical expressions in Kotlin to determine whether something
is true or false. Since programming is largely an exercise in applying logic, much of the art of programming
involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets
executed and, conversely, which code gets by-passed when the program is executing.

14.2.1 Using the if Expressions

The if expression is perhaps the most basic of flow control options available to the Kotlin programmer.
Programmers who are familiar with C, Swift, C++ or Java will immediately be comfortable using Kotlin if
statements, although there are some subtle differences.

The basic syntax of the Kotlin if expression is as follows:
if (boolean expression) {

// Kotlin code to be performed when expression evaluates to true

}

Unlike some other programming languages, it is important to note that the braces are optional in Kotlin if only
one line of code is associated with the if expression. In fact, in this scenario, the statement is often placed on the
same line as the if expression.

Essentially if the Boolean expression evaluates to true then the code in the body of the statement is executed. If,
on the other hand, the expression evaluates to false the code in the body of the statement is skipped.

For example, if a decision needs to be made depending on whether one value is greater than another, we would
write code similar to the following:

val x = 10

if (x > 9) println("x is greater than 9!")

Clearly, x is indeed greater than 9 causing the message to appear in the console panel.

At this point it is important to notice that we have been referring to the if expression instead of the if statement.
The reason for this is that unlike the if statement in other programming languages, the Kotlin if returns a result.
This allows if constructs to be used within expressions. As an example, a typical if expression to identify the
largest of two numbers and assign the result to a variable might read as follows:
if (x > vy)

largest = x
else

99

Kotlin Flow Control
largest =y

The same result can be achieved using the if statement within an expression using the following syntax:

variable = if (condition) return val 1 else return val 2

The original example can, therefore be re-written as follows:

val largest = if (x > y) x else y

The technique is not limited to returning the values contained within the condition. The following example is
also a valid use of if in an expression, in this case assigning a string value to the variable:

val largest = if (x > y) "x is greatest" else "y is greatest"”

println(largest)

For those familiar with programming languages such as Java, this feature allows code constructs similar to
ternary statements to be implemented in Kotlin.

14.2.2 Using if ... else ... Expressions
The next variation of the if expression allows us to also specify some code to perform if the expression in the if
expression evaluates to false. The syntax for this construct is as follows:
if (boolean expression) {
// Code to be executed if expression is true
} else {
// Code to be executed if expression is false

}

The braces are, once again, optional if only one line of code is to be executed.

Using the above syntax, we can now extend our previous example to display a different message if the comparison
expression evaluates to be false:

val x = 10

if (x > 9) println("x is greater than 9!")

else println("x is less than 9!")
In this case, the second println statement will execute if the value of x was less than 9.

14.2.3 Using if ... else if ... Expressions

So far we have looked at if statements which make decisions based on the result of a single logical expression.
Sometimes it becomes necessary to make decisions based on a number of different criteria. For this purpose, we
can use the if ... else if ... construct, an example of which is as follows:

var x = 9

if (x == 10) println("x is 10")
else if (x == 9) println("x is 9")
else if (x == 8) println("x is 8")
else println("x is less than 8")

}
14.2.4 Using the when Statement

The Kotlin when statement provides a cleaner alternative to the if ... else if ... construct and uses the following
syntax:

100

Kotlin Flow Control

when (value) {
matchl -> // code to be executed on match

match2 -> // code to be executed on match

else -> // default code to executed if no match

}
Using this syntax, the previous if ... else if ... construct can be rewritten to use the when statement:
when (x) {

10 -> println ("x is 10")

9 -> println("x is 9")

8 -> println("x is 8")

else -> println("x is less than 8")
}

The when statement is similar to the switch statement found in many other programming languages.

14.3 Summary

The term flow control is used to describe the logic that dictates the execution path that is taken through the
source code of an application as it runs. This chapter has looked at the two types of flow control provided by
Kotlin (looping and conditional) and explored the various Kotlin constructs that are available to implement

both forms of flow control logic.

101

Chapter 15

15. An Overview of Kotlin Functions
and Lambdas

Kotlin functions and lambdas are a vital part of writing well-structured and efficient code and provide a way to
organize programs while avoiding code repetition. In this chapter we will look at how functions and lambdas
are declared and used within Kotlin.

15.1 What is a Function?

A function is a named block of code that can be called upon to perform a specific task. It can be provided data
on which to perform the task and is capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Kotlin program, the code to perform the arithmetic
can be placed in a function. The function can be programmed to accept the values on which the arithmetic
is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the
program code where the calculation is required the function is simply called, parameter values passed through
as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however,
a subtle difference. The values that a function is able to accept when it is called are referred to as parameters. At
the point that the function is actually called and passed those values, however, they are referred to as arguments.
15.2 How to Declare a Kotlin Function

A Kotlin function is declared using the following syntax:

fun <function name> (<para name>: <para type>, <para name>: <para type>, ...):
<return type> {

// Function code

}

This combination of function name, parameters and return type are referred to as the function signature or type.
Explanations of the various fields of the function declaration are as follows:

o fun - The prefix keyword used to notify the Kotlin compiler that this is a function.

o <function name> - The name assigned to the function. This is the name by which the function will be
referenced when it is called from within the application code.

o <para name> - The name by which the parameter is to be referenced in the function code.
o <para type> - The type of the corresponding parameter.

o <return type> - The data type of the result returned by the function. If the function does not return a result
then no return type is specified.

o Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result and simply displays a message:
fun sayHello () {
103

