
Android Studio Dolphin
Essentials

Kotlin Edition
Title

Android Studio Dolphin Essentials – Kotlin Edition

ISBN-13: 978-1-951442-54-5

© 2022 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0
Copyright

i

Contents
Table of Contents
1. Introduction

1.1 Downloading the Code Samples
1.2 Feedback
1.3 Errata

2. Setting up an Android Studio Development Environment
2.1 System requirements
2.2 Downloading the Android Studio package
2.3 Installing Android Studio

2.3.1 Installation on Windows
2.3.2 Installation on macOS
2.3.3 Installation on Linux

2.4 The Android Studio setup wizard
2.5 Installing additional Android SDK packages
2.6 Making the Android SDK tools command-line accessible

2.6.1 Windows 8.1
2.6.2 Windows 10
2.6.3 Windows 11
2.6.4 Linux
2.6.5 macOS

2.7 Android Studio memory management
2.8 Updating Android Studio and the SDK
2.9 Summary

3. Creating an Example Android App in Android Studio
3.1 About the Project
3.2 Creating a New Android Project
3.3 Creating an Activity
3.4 Defining the Project and SDK Settings
3.5 Modifying the Example Application
3.6 Modifying the User Interface
3.7 Reviewing the Layout and Resource Files
3.8 Adding the Kotlin Extensions Plugin
3.9 Adding Interaction
3.10 Summary

4. Creating an Android Virtual Device (AVD) in Android Studio
4.1 About Android Virtual Devices
4.2 Starting the Emulator
4.3 Running the Application in the AVD
4.4 Running on Multiple Devices
4.5 Stopping a Running Application
4.6 Supporting Dark Theme
4.7 Running the Emulator in a Separate Window

Contents

ii

Table of Contents

4.8 Enabling the Device Frame
4.9 AVD Command-line Creation
4.10 Android Virtual Device Configuration Files
4.11 Moving and Renaming an Android Virtual Device
4.12 Summary

5. Using and Configuring the Android Studio AVD Emulator
5.1 The Emulator Environment
5.2 Emulator Toolbar Options
5.3 Working in Zoom Mode
5.4 Resizing the Emulator Window
5.5 Extended Control Options

5.5.1 Location
5.5.2 Displays
5.5.3 Cellular
5.5.4 Battery
5.5.5 Camera
5.5.6 Phone
5.5.7 Directional Pad
5.5.8 Microphone
5.5.9 Fingerprint
5.5.10 Virtual Sensors
5.5.11 Snapshots
5.5.12 Record and Playback
5.5.13 Google Play
5.5.14 Settings
5.5.15 Help

5.6 Working with Snapshots
5.7 Configuring Fingerprint Emulation
5.8 The Emulator in Tool Window Mode
5.9 Summary

6. A Tour of the Android Studio User Interface
6.1 The Welcome Screen
6.2 The Main Window
6.3 The Tool Windows
6.4 Android Studio Keyboard Shortcuts
6.5 Switcher and Recent Files Navigation
6.6 Changing the Android Studio Theme
6.7 Summary

7. Testing Android Studio Apps on a Physical Android Device
7.1 An Overview of the Android Debug Bridge (ADB)
7.2 Enabling USB Debugging ADB on Android Devices

7.2.1 macOS ADB Configuration
7.2.2 Windows ADB Configuration
7.2.3 Linux adb Configuration

7.3 Resolving USB Connection Issues
7.4 Enabling Wireless Debugging on Android Devices
7.5 Testing the adb Connection
7.6 Summary

iii

Table of Contents

8. The Basics of the Android Studio Code Editor
8.1 The Android Studio Editor
8.2 Splitting the Editor Window
8.3 Code Completion
8.4 Statement Completion
8.5 Parameter Information
8.6 Parameter Name Hints
8.7 Code Generation
8.8 Code Folding
8.9 Quick Documentation Lookup
8.10 Code Reformatting
8.11 Finding Sample Code
8.12 Live Templates
8.13 Summary

9. An Overview of the Android Architecture
9.1 The Android Software Stack
9.2 The Linux Kernel
9.3 Android Runtime – ART
9.4 Android Libraries

9.4.1 C/C++ Libraries
9.5 Application Framework
9.6 Applications
9.7 Summary

10. The Anatomy of an Android Application
10.1 Android Activities
10.2 Android Fragments
10.3 Android Intents
10.4 Broadcast Intents
10.5 Broadcast Receivers
10.6 Android Services
10.7 Content Providers
10.8 The Application Manifest
10.9 Application Resources
10.10 Application Context
10.11 Summary

11. An Introduction to Kotlin
11.1 What is Kotlin?
11.2 Kotlin and Java
11.3 Converting from Java to Kotlin
11.4 Kotlin and Android Studio
11.5 Experimenting with Kotlin
11.6 Semi-colons in Kotlin
11.7 Summary

12. Kotlin Data Types, Variables, and Nullability
12.1 Kotlin Data Types

12.1.1 Integer Data Types
12.1.2 Floating-Point Data Types

iv

Table of Contents

12.1.3 Boolean Data Type
12.1.4 Character Data Type
12.1.5 String Data Type
12.1.6 Escape Sequences

12.2 Mutable Variables
12.3 Immutable Variables
12.4 Declaring Mutable and Immutable Variables
12.5 Data Types are Objects
12.6 Type Annotations and Type Inference
12.7 Nullable Type
12.8 The Safe Call Operator
12.9 Not-Null Assertion
12.10 Nullable Types and the let Function
12.11 Late Initialization (lateinit)
12.12 The Elvis Operator
12.13 Type Casting and Type Checking
12.14 Summary

13. Kotlin Operators and Expressions
13.1 Expression Syntax in Kotlin
13.2 The Basic Assignment Operator
13.3 Kotlin Arithmetic Operators
13.4 Augmented Assignment Operators
13.5 Increment and Decrement Operators
13.6 Equality Operators
13.7 Boolean Logical Operators
13.8 Range Operator
13.9 Bitwise Operators

13.9.1 Bitwise Inversion
13.9.2 Bitwise AND
13.9.3 Bitwise OR
13.9.4 Bitwise XOR
13.9.5 Bitwise Left Shift
13.9.6 Bitwise Right Shift

13.10 Summary
14. Kotlin Control Flow

14.1 Looping Control flow
14.1.1 The Kotlin for-in Statement
14.1.2 The while Loop
14.1.3 The do ... while loop
14.1.4 Breaking from Loops
14.1.5 The continue Statement
14.1.6 Break and Continue Labels

14.2 Conditional Control Flow
14.2.1 Using the if Expressions
14.2.2 Using if ... else … Expressions
14.2.3 Using if ... else if ... Expressions
14.2.4 Using the when Statement

14.3 Summary

v

Table of Contents

15. An Overview of Kotlin Functions and Lambdas
15.1 What is a Function?
15.2 How to Declare a Kotlin Function
15.3 Calling a Kotlin Function
15.4 Single Expression Functions
15.5 Local Functions
15.6 Handling Return Values
15.7 Declaring Default Function Parameters
15.8 Variable Number of Function Parameters
15.9 Lambda Expressions
15.10 Higher-order Functions
15.11 Summary

16. The Basics of Object Oriented Programming in Kotlin
16.1 What is an Object?
16.2 What is a Class?
16.3 Declaring a Kotlin Class
16.4 Adding Properties to a Class
16.5 Defining Methods
16.6 Declaring and Initializing a Class Instance
16.7 Primary and Secondary Constructors
16.8 Initializer Blocks
16.9 Calling Methods and Accessing Properties
16.10 Custom Accessors
16.11 Nested and Inner Classes
16.12 Companion Objects
16.13 Summary

17. An Introduction to Kotlin Inheritance and Subclassing
17.1 Inheritance, Classes and Subclasses
17.2 Subclassing Syntax
17.3 A Kotlin Inheritance Example
17.4 Extending the Functionality of a Subclass
17.5 Overriding Inherited Methods
17.6 Adding a Custom Secondary Constructor
17.7 Using the SavingsAccount Class
17.8 Summary

18. An Overview of Android View Binding
18.1 Find View by Id and Synthetic Properties
18.2 View Binding
18.3 Converting the AndroidSample project
18.4 Enabling View Binding
18.5 Using View Binding
18.6 Choosing an Option
18.7 View Binding in the Book Examples
18.8 Migrating a Project to View Binding
18.9 Summary

19. Understanding Android Application and Activity Lifecycles
19.1 Android Applications and Resource Management

vi

Table of Contents

19.2 Android Process States
19.2.1 Foreground Process
19.2.2 Visible Process
19.2.3 Service Process
19.2.4 Background Process
19.2.5 Empty Process

19.3 Inter-Process Dependencies
19.4 The Activity Lifecycle
19.5 The Activity Stack
19.6 Activity States
19.7 Configuration Changes
19.8 Handling State Change
19.9 Summary

20. Handling Android Activity State Changes
20.1 New vs. Old Lifecycle Techniques
20.2 The Activity and Fragment Classes
20.3 Dynamic State vs. Persistent State
20.4 The Android Lifecycle Methods
20.5 Lifetimes
20.6 Foldable Devices and Multi-Resume
20.7 Disabling Configuration Change Restarts
20.8 Lifecycle Method Limitations
20.9 Summary

21. Android Activity State Changes by Example
21.1 Creating the State Change Example Project
21.2 Designing the User Interface
21.3 Overriding the Activity Lifecycle Methods
21.4 Filtering the Logcat Panel
21.5 Running the Application
21.6 Experimenting with the Activity
21.7 Summary

22. Saving and Restoring the State of an Android Activity
22.1 Saving Dynamic State
22.2 Default Saving of User Interface State
22.3 The Bundle Class
22.4 Saving the State
22.5 Restoring the State
22.6 Testing the Application
22.7 Summary

23. Understanding Android Views, View Groups and Layouts
23.1 Designing for Different Android Devices
23.2 Views and View Groups
23.3 Android Layout Managers
23.4 The View Hierarchy
23.5 Creating User Interfaces
23.6 Summary

24. A Guide to the Android Studio Layout Editor Tool

vii

Table of Contents

24.1 Basic vs. Empty Activity Templates
24.2 The Android Studio Layout Editor
24.3 Design Mode
24.4 The Palette
24.5 Design Mode and Layout Views
24.6 Night Mode
24.7 Code Mode
24.8 Split Mode
24.9 Setting Attributes
24.10 Transforms
24.11 Tools Visibility Toggles
24.12 Converting Views
24.13 Displaying Sample Data
24.14 Creating a Custom Device Definition
24.15 Changing the Current Device
24.16 Layout Validation (Multi Preview)
24.17 Summary

25. A Guide to the Android ConstraintLayout
25.1 How ConstraintLayout Works

25.1.1 Constraints
25.1.2 Margins
25.1.3 Opposing Constraints
25.1.4 Constraint Bias
25.1.5 Chains
25.1.6 Chain Styles

25.2 Baseline Alignment
25.3 Configuring Widget Dimensions
25.4 Guideline Helper
25.5 Group Helper
25.6 Barrier Helper
25.7 Flow Helper
25.8 Ratios
25.9 ConstraintLayout Advantages
25.10 ConstraintLayout Availability
25.11 Summary

26. A Guide to Using ConstraintLayout in Android Studio
26.1 Design and Layout Views
26.2 Autoconnect Mode
26.3 Inference Mode
26.4 Manipulating Constraints Manually
26.5 Adding Constraints in the Inspector
26.6 Viewing Constraints in the Attributes Window
26.7 Deleting Constraints
26.8 Adjusting Constraint Bias
26.9 Understanding ConstraintLayout Margins
26.10 The Importance of Opposing Constraints and Bias
26.11 Configuring Widget Dimensions
26.12 Design Time Tools Positioning

viii

Table of Contents

26.13 Adding Guidelines
26.14 Adding Barriers
26.15 Adding a Group
26.16 Working with the Flow Helper
26.17 Widget Group Alignment and Distribution
26.18 Converting other Layouts to ConstraintLayout
26.19 Summary

27. Working with ConstraintLayout Chains and Ratios in Android Studio
27.1 Creating a Chain
27.2 Changing the Chain Style
27.3 Spread Inside Chain Style
27.4 Packed Chain Style
27.5 Packed Chain Style with Bias
27.6 Weighted Chain
27.7 Working with Ratios
27.8 Summary

28. An Android Studio Layout Editor ConstraintLayout Tutorial
28.1 An Android Studio Layout Editor Tool Example
28.2 Creating a New Activity
28.3 Preparing the Layout Editor Environment
28.4 Adding the Widgets to the User Interface
28.5 Adding the Constraints
28.6 Testing the Layout
28.7 Using the Layout Inspector
28.8 Summary

29. Manual XML Layout Design in Android Studio
29.1 Manually Creating an XML Layout
29.2 Manual XML vs. Visual Layout Design
29.3 Summary

30. Managing Constraints using Constraint Sets
30.1 Kotlin Code vs. XML Layout Files
30.2 Creating Views
30.3 View Attributes
30.4 Constraint Sets

30.4.1 Establishing Connections
30.4.2 Applying Constraints to a Layout
30.4.3 Parent Constraint Connections
30.4.4 Sizing Constraints
30.4.5 Constraint Bias
30.4.6 Alignment Constraints
30.4.7 Copying and Applying Constraint Sets
30.4.8 ConstraintLayout Chains
30.4.9 Guidelines
30.4.10 Removing Constraints
30.4.11 Scaling
30.4.12 Rotation

30.5 Summary

ix

Table of Contents

31. An Android ConstraintSet Tutorial
31.1 Creating the Example Project in Android Studio
31.2 Adding Views to an Activity
31.3 Setting View Attributes
31.4 Creating View IDs
31.5 Configuring the Constraint Set
31.6 Adding the EditText View
31.7 Converting Density Independent Pixels (dp) to Pixels (px)
31.8 Summary

32. A Guide to using Apply Changes in Android Studio
32.1 Introducing Apply Changes
32.2 Understanding Apply Changes Options
32.3 Using Apply Changes
32.4 Configuring Apply Changes Fallback Settings
32.5 An Apply Changes Tutorial
32.6 Using Apply Code Changes
32.7 Using Apply Changes and Restart Activity
32.8 Using Run App
32.9 Summary

33. An Overview and Example of Android Event Handling
33.1 Understanding Android Events
33.2 Using the android:onClick Resource
33.3 Event Listeners and Callback Methods
33.4 An Event Handling Example
33.5 Designing the User Interface
33.6 The Event Listener and Callback Method
33.7 Consuming Events
33.8 Summary

34. Android Touch and Multi-touch Event Handling
34.1 Intercepting Touch Events
34.2 The MotionEvent Object
34.3 Understanding Touch Actions
34.4 Handling Multiple Touches
34.5 An Example Multi-Touch Application
34.6 Designing the Activity User Interface
34.7 Implementing the Touch Event Listener
34.8 Running the Example Application
34.9 Summary

35. Detecting Common Gestures Using the Android Gesture Detector Class
35.1 Implementing Common Gesture Detection
35.2 Creating an Example Gesture Detection Project
35.3 Implementing the Listener Class
35.4 Creating the GestureDetectorCompat Instance
35.5 Implementing the onTouchEvent() Method
35.6 Testing the Application
35.7 Summary

x

Table of Contents

36. Implementing Custom Gesture and Pinch Recognition on Android
36.1 The Android Gesture Builder Application
36.2 The GestureOverlayView Class
36.3 Detecting Gestures
36.4 Identifying Specific Gestures
36.5 Installing and Running the Gesture Builder Application
36.6 Creating a Gestures File
36.7 Creating the Example Project
36.8 Extracting the Gestures File from the SD Card
36.9 Adding the Gestures File to the Project
36.10 Designing the User Interface
36.11 Loading the Gestures File
36.12 Registering the Event Listener
36.13 Implementing the onGesturePerformed Method
36.14 Testing the Application
36.15 Configuring the GestureOverlayView
36.16 Intercepting Gestures
36.17 Detecting Pinch Gestures
36.18 A Pinch Gesture Example Project
36.19 Summary

37. An Introduction to Android Fragments
37.1 What is a Fragment?
37.2 Creating a Fragment
37.3 Adding a Fragment to an Activity using the Layout XML File
37.4 Adding and Managing Fragments in Code
37.5 Handling Fragment Events
37.6 Implementing Fragment Communication
37.7 Summary

38. Using Fragments in Android Studio - An Example
38.1 About the Example Fragment Application
38.2 Creating the Example Project
38.3 Creating the First Fragment Layout
38.4 Migrating a Fragment to View Binding
38.5 Adding the Second Fragment
38.6 Adding the Fragments to the Activity
38.7 Making the Toolbar Fragment Talk to the Activity
38.8 Making the Activity Talk to the Text Fragment
38.9 Testing the Application
38.10 Summary

39. Modern Android App Architecture with Jetpack
39.1 What is Android Jetpack?
39.2 The “Old” Architecture
39.3 Modern Android Architecture
39.4 The ViewModel Component
39.5 The LiveData Component
39.6 ViewModel Saved State
39.7 LiveData and Data Binding

xi

Table of Contents

39.8 Android Lifecycles
39.9 Repository Modules
39.10 Summary

40. An Android Jetpack ViewModel Tutorial
40.1 About the Project
40.2 Creating the ViewModel Example Project
40.3 Reviewing the Project

40.3.1 The Main Activity
40.3.2 The Content Fragment
40.3.3 The ViewModel

40.4 Designing the Fragment Layout
40.5 Implementing the View Model
40.6 Associating the Fragment with the View Model
40.7 Modifying the Fragment
40.8 Accessing the ViewModel Data
40.9 Testing the Project
40.10 Summary

41. An Android Jetpack LiveData Tutorial
41.1 LiveData - A Recap
41.2 Adding LiveData to the ViewModel
41.3 Implementing the Observer
41.4 Summary

42. An Overview of Android Jetpack Data Binding
42.1 An Overview of Data Binding
42.2 The Key Components of Data Binding

42.2.1 The Project Build Configuration
42.2.2 The Data Binding Layout File
42.2.3 The Layout File Data Element
42.2.4 The Binding Classes
42.2.5 Data Binding Variable Configuration
42.2.6 Binding Expressions (One-Way)
42.2.7 Binding Expressions (Two-Way)
42.2.8 Event and Listener Bindings

42.3 Summary
43. An Android Jetpack Data Binding Tutorial

43.1 Removing the Redundant Code
43.2 Enabling Data Binding
43.3 Adding the Layout Element
43.4 Adding the Data Element to Layout File
43.5 Working with the Binding Class
43.6 Assigning the ViewModel Instance to the Data Binding Variable
43.7 Adding Binding Expressions
43.8 Adding the Conversion Method
43.9 Adding a Listener Binding
43.10 Testing the App
43.11 Summary

44. An Android ViewModel Saved State Tutorial

xii

Table of Contents

44.1 Understanding ViewModel State Saving
44.2 Implementing ViewModel State Saving
44.3 Saving and Restoring State
44.4 Adding Saved State Support to the ViewModelDemo Project
44.5 Summary

45. Working with Android Lifecycle-Aware Components
45.1 Lifecycle Awareness
45.2 Lifecycle Owners
45.3 Lifecycle Observers
45.4 Lifecycle States and Events
45.5 Summary

46. An Android Jetpack Lifecycle Awareness Tutorial
46.1 Creating the Example Lifecycle Project
46.2 Creating a Lifecycle Observer
46.3 Adding the Observer
46.4 Testing the Observer
46.5 Creating a Lifecycle Owner
46.6 Testing the Custom Lifecycle Owner
46.7 Summary

47. An Overview of the Navigation Architecture Component
47.1 Understanding Navigation
47.2 Declaring a Navigation Host
47.3 The Navigation Graph
47.4 Accessing the Navigation Controller
47.5 Triggering a Navigation Action
47.6 Passing Arguments
47.7 Summary

48. An Android Jetpack Navigation Component Tutorial
48.1 Creating the NavigationDemo Project
48.2 Adding Navigation to the Build Configuration
48.3 Creating the Navigation Graph Resource File
48.4 Declaring a Navigation Host
48.5 Adding Navigation Destinations
48.6 Designing the Destination Fragment Layouts
48.7 Adding an Action to the Navigation Graph
48.8 Implement the OnFragmentInteractionListener
48.9 Adding View Binding Support to the Destination Fragments
48.10 Triggering the Action
48.11 Passing Data Using Safeargs
48.12 Summary

49. An Introduction to MotionLayout
49.1 An Overview of MotionLayout
49.2 MotionLayout
49.3 MotionScene
49.4 Configuring ConstraintSets
49.5 Custom Attributes

xiii

Table of Contents

49.6 Triggering an Animation
49.7 Arc Motion
49.8 Keyframes

49.8.1 Attribute Keyframes
49.8.2 Position Keyframes

49.9 Time Linearity
49.10 KeyTrigger
49.11 Cycle and Time Cycle Keyframes
49.12 Starting an Animation from Code
49.13 Summary

50. An Android MotionLayout Editor Tutorial
50.1 Creating the MotionLayoutDemo Project
50.2 ConstraintLayout to MotionLayout Conversion
50.3 Configuring Start and End Constraints
50.4 Previewing the MotionLayout Animation
50.5 Adding an OnClick Gesture
50.6 Adding an Attribute Keyframe to the Transition
50.7 Adding a CustomAttribute to a Transition
50.8 Adding Position Keyframes
50.9 Summary

51. A MotionLayout KeyCycle Tutorial
51.1 An Overview of Cycle Keyframes
51.2 Using the Cycle Editor
51.3 Creating the KeyCycleDemo Project
51.4 Configuring the Start and End Constraints
51.5 Creating the Cycles
51.6 Previewing the Animation
51.7 Adding the KeyFrameSet to the MotionScene
51.8 Summary

52. Working with the Floating Action Button and Snackbar
52.1 The Material Design
52.2 The Design Library
52.3 The Floating Action Button (FAB)
52.4 The Snackbar
52.5 Creating the Example Project
52.6 Reviewing the Project
52.7 Removing Navigation Features
52.8 Changing the Floating Action Button
52.9 Adding an Action to the Snackbar
52.10 Summary

53. Creating a Tabbed Interface using the TabLayout Component
53.1 An Introduction to the ViewPager2
53.2 An Overview of the TabLayout Component
53.3 Creating the TabLayoutDemo Project
53.4 Creating the First Fragment
53.5 Duplicating the Fragments
53.6 Adding the TabLayout and ViewPager2

xiv

Table of Contents

53.7 Creating the Pager Adapter
53.8 Performing the Initialization Tasks
53.9 Testing the Application
53.10 Customizing the TabLayout
53.11 Summary

54. Working with the RecyclerView and CardView Widgets
54.1 An Overview of the RecyclerView
54.2 An Overview of the CardView
54.3 Summary

55. An Android RecyclerView and CardView Tutorial
55.1 Creating the CardDemo Project
55.2 Modifying the Basic Activity Project
55.3 Designing the CardView Layout
55.4 Adding the RecyclerView
55.5 Adding the Image Files
55.6 Creating the RecyclerView Adapter
55.7 Initializing the RecyclerView Component
55.8 Testing the Application
55.9 Responding to Card Selections
55.10 Summary

56. Working with the AppBar and Collapsing Toolbar Layouts
56.1 The Anatomy of an AppBar
56.2 The Example Project
56.3 Coordinating the RecyclerView and Toolbar
56.4 Introducing the Collapsing Toolbar Layout
56.5 Changing the Title and Scrim Color
56.6 Summary

57. An Overview of Android Intents
57.1 An Overview of Intents
57.2 Explicit Intents
57.3 Returning Data from an Activity
57.4 Implicit Intents
57.5 Using Intent Filters
57.6 Automatic Link Verification
57.7 Manually Enabling Links
57.8 Checking Intent Availability
57.9 Summary

58. Android Explicit Intents – A Worked Example
58.1 Creating the Explicit Intent Example Application
58.2 Designing the User Interface Layout for MainActivity
58.3 Creating the Second Activity Class
58.4 Designing the User Interface Layout for SecondActivity
58.5 Reviewing the Application Manifest File
58.6 Creating the Intent
58.7 Extracting Intent Data
58.8 Launching SecondActivity as a Sub-Activity

xv

Table of Contents

58.9 Returning Data from a Sub-Activity
58.10 Testing the Application
58.11 Summary

59. Android Implicit Intents – A Worked Example
59.1 Creating the Android Studio Implicit Intent Example Project
59.2 Designing the User Interface
59.3 Creating the Implicit Intent
59.4 Adding a Second Matching Activity
59.5 Adding the Web View to the UI
59.6 Obtaining the Intent URL
59.7 Modifying the MyWebView Project Manifest File
59.8 Installing the MyWebView Package on a Device
59.9 Testing the Application
59.10 Manually Enabling the Link
59.11 Automatic Link Verification
59.12 Summary

60. Android Broadcast Intents and Broadcast Receivers
60.1 An Overview of Broadcast Intents
60.2 An Overview of Broadcast Receivers
60.3 Obtaining Results from a Broadcast
60.4 Sticky Broadcast Intents
60.5 The Broadcast Intent Example
60.6 Creating the Example Application
60.7 Creating and Sending the Broadcast Intent
60.8 Creating the Broadcast Receiver
60.9 Registering the Broadcast Receiver
60.10 Testing the Broadcast Example
60.11 Listening for System Broadcasts
60.12 Summary

61. An Introduction to Kotlin Coroutines
61.1 What are Coroutines?
61.2 Threads vs Coroutines
61.3 Coroutine Scope
61.4 Suspend Functions
61.5 Coroutine Dispatchers
61.6 Coroutine Builders
61.7 Jobs
61.8 Coroutines – Suspending and Resuming
61.9 Returning Results from a Coroutine
61.10 Using withContext
61.11 Coroutine Channel Communication
61.12 Summary

62. An Android Kotlin Coroutines Tutorial
62.1 Creating the Coroutine Example Application
62.2 Adding Coroutine Support to the Project
62.3 Designing the User Interface
62.4 Implementing the SeekBar

xvi

Table of Contents

62.5 Adding the Suspend Function
62.6 Implementing the launchCoroutines Method
62.7 Testing the App
62.8 Summary

63. An Overview of Android Services
63.1 Intent Service
63.2 Bound Service
63.3 The Anatomy of a Service
63.4 Controlling Destroyed Service Restart Options
63.5 Declaring a Service in the Manifest File
63.6 Starting a Service Running on System Startup
63.7 Summary

64. Android Local Bound Services – A Worked Example
64.1 Understanding Bound Services
64.2 Bound Service Interaction Options
64.3 A Local Bound Service Example
64.4 Adding a Bound Service to the Project
64.5 Implementing the Binder
64.6 Binding the Client to the Service
64.7 Completing the Example
64.8 Testing the Application
64.9 Summary

65. Android Remote Bound Services – A Worked Example
65.1 Client to Remote Service Communication
65.2 Creating the Example Application
65.3 Designing the User Interface
65.4 Implementing the Remote Bound Service
65.5 Configuring a Remote Service in the Manifest File
65.6 Launching and Binding to the Remote Service
65.7 Sending a Message to the Remote Service
65.8 Summary

66. An Introduction to Kotlin Flow
66.1 Understanding Flows
66.2 Creating the Sample Project
66.3 Adding the Kotlin Lifecycle Library
66.4 Declaring a Flow
66.5 Emitting Flow Data
66.6 Collecting Flow Data
66.7 Adding a Flow Buffer
66.8 Transforming Data with Intermediaries
66.9 Terminal Flow Operators
66.10 Flow Flattening
66.11 Combining Multiple Flows
66.12 Hot and Cold Flows
66.13 StateFlow
66.14 SharedFlow
66.15 Summary

xvii

Table of Contents

67. An Android SharedFlow Tutorial
67.1 About the Project
67.2 Creating the SharedFlowDemo Project
67.3 Designing the User Interface Layout
67.4 Adding the List Row Layout
67.5 Adding the RecyclerView Adapter
67.6 Completing the ViewModel
67.7 Modifying the Main Fragment for View Binding
67.8 Collecting the Flow Values
67.9 Testing the SharedFlowDemo App
67.10 Handling Flows in the Background
67.11 Summary

68. An Android Notifications Tutorial
68.1 An Overview of Notifications
68.2 Creating the NotifyDemo Project
68.3 Designing the User Interface
68.4 Creating the Second Activity
68.5 Creating a Notification Channel
68.6 Creating and Issuing a Notification
68.7 Launching an Activity from a Notification
68.8 Adding Actions to a Notification
68.9 Bundled Notifications
68.10 Summary

69. An Android Direct Reply Notification Tutorial
69.1 Creating the DirectReply Project
69.2 Designing the User Interface
69.3 Creating the Notification Channel
69.4 Building the RemoteInput Object
69.5 Creating the PendingIntent
69.6 Creating the Reply Action
69.7 Receiving Direct Reply Input
69.8 Updating the Notification
69.9 Summary

70. An Overview of Android SQLite Databases
70.1 Understanding Database Tables
70.2 Introducing Database Schema
70.3 Columns and Data Types
70.4 Database Rows
70.5 Introducing Primary Keys
70.6 What is SQLite?
70.7 Structured Query Language (SQL)
70.8 Trying SQLite on an Android Virtual Device (AVD)
70.9 The Android Room Persistence Library
70.10 Summary

71. The Android Room Persistence Library
71.1 Revisiting Modern App Architecture
71.2 Key Elements of Room Database Persistence

xviii

Table of Contents

71.2.1 Repository
71.2.2 Room Database
71.2.3 Data Access Object (DAO)
71.2.4 Entities
71.2.5 SQLite Database

71.3 Understanding Entities
71.4 Data Access Objects
71.5 The Room Database
71.6 The Repository
71.7 In-Memory Databases
71.8 Database Inspector
71.9 Summary

72. An Android TableLayout and TableRow Tutorial
72.1 The TableLayout and TableRow Layout Views
72.2 Creating the Room Database Project
72.3 Converting to a LinearLayout
72.4 Adding the TableLayout to the User Interface
72.5 Configuring the TableRows
72.6 Adding the Button Bar to the Layout
72.7 Adding the RecyclerView
72.8 Adjusting the Layout Margins
72.9 Summary

73. An Android Room Database and Repository Tutorial
73.1 About the RoomDemo Project
73.2 Modifying the Build Configuration
73.3 Building the Entity
73.4 Creating the Data Access Object
73.5 Adding the Room Database
73.6 Adding the Repository
73.7 Modifying the ViewModel
73.8 Creating the Product Item Layout
73.9 Adding the RecyclerView Adapter
73.10 Preparing the Main Fragment
73.11 Adding the Button Listeners
73.12 Adding LiveData Observers
73.13 Initializing the RecyclerView
73.14 Testing the RoomDemo App
73.15 Using the Database Inspector
73.16 Summary

74. Video Playback on Android using the VideoView and MediaController Classes
74.1 Introducing the Android VideoView Class
74.2 Introducing the Android MediaController Class
74.3 Creating the Video Playback Example
74.4 Designing the VideoPlayer Layout
74.5 Downloading the Video File
74.6 Configuring the VideoView
74.7 Adding the MediaController to the Video View
74.8 Setting up the onPreparedListener

xix

Table of Contents

74.9 Summary
75. Android Picture-in-Picture Mode

75.1 Picture-in-Picture Features
75.2 Enabling Picture-in-Picture Mode
75.3 Configuring Picture-in-Picture Parameters
75.4 Entering Picture-in-Picture Mode
75.5 Detecting Picture-in-Picture Mode Changes
75.6 Adding Picture-in-Picture Actions
75.7 Summary

76. An Android Picture-in-Picture Tutorial
76.1 Adding Picture-in-Picture Support to the Manifest
76.2 Adding a Picture-in-Picture Button
76.3 Entering Picture-in-Picture Mode
76.4 Detecting Picture-in-Picture Mode Changes
76.5 Adding a Broadcast Receiver
76.6 Adding the PiP Action
76.7 Testing the Picture-in-Picture Action
76.8 Summary

77. Making Runtime Permission Requests in Android
77.1 Understanding Normal and Dangerous Permissions
77.2 Creating the Permissions Example Project
77.3 Checking for a Permission
77.4 Requesting Permission at Runtime
77.5 Providing a Rationale for the Permission Request
77.6 Testing the Permissions App
77.7 Summary

78. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
78.1 Playing Audio
78.2 Recording Audio and Video using the MediaRecorder Class
78.3 About the Example Project
78.4 Creating the AudioApp Project
78.5 Designing the User Interface
78.6 Checking for Microphone Availability
78.7 Initializing the Activity
78.8 Implementing the recordAudio() Method
78.9 Implementing the stopAudio() Method
78.10 Implementing the playAudio() method
78.11 Configuring and Requesting Permissions
78.12 Testing the Application
78.13 Summary

79. Printing with the Android Printing Framework
79.1 The Android Printing Architecture
79.2 The Print Service Plugins
79.3 Google Cloud Print
79.4 Printing to Google Drive
79.5 Save as PDF

xx

Table of Contents

79.6 Printing from Android Devices
79.7 Options for Building Print Support into Android Apps

79.7.1 Image Printing
79.7.2 Creating and Printing HTML Content
79.7.3 Printing a Web Page
79.7.4 Printing a Custom Document

79.8 Summary
80. An Android HTML and Web Content Printing Example

80.1 Creating the HTML Printing Example Application
80.2 Printing Dynamic HTML Content
80.3 Creating the Web Page Printing Example
80.4 Removing the Floating Action Button
80.5 Removing Navigation Features
80.6 Designing the User Interface Layout
80.7 Accessing the WebView from the Main Activity
80.8 Loading the Web Page into the WebView
80.9 Adding the Print Menu Option
80.10 Summary

81. A Guide to Android Custom Document Printing
81.1 An Overview of Android Custom Document Printing

81.1.1 Custom Print Adapters
81.2 Preparing the Custom Document Printing Project
81.3 Creating the Custom Print Adapter
81.4 Implementing the onLayout() Callback Method
81.5 Implementing the onWrite() Callback Method
81.6 Checking a Page is in Range
81.7 Drawing the Content on the Page Canvas
81.8 Starting the Print Job
81.9 Testing the Application
81.10 Summary

82. An Introduction to Android App Links
82.1 An Overview of Android App Links
82.2 App Link Intent Filters
82.3 Handling App Link Intents
82.4 Associating the App with a Website
82.5 Summary

83. An Android Studio App Links Tutorial
83.1 About the Example App
83.2 The Database Schema
83.3 Loading and Running the Project
83.4 Adding the URL Mapping
83.5 Adding the Intent Filter
83.6 Adding Intent Handling Code
83.7 Testing the App
83.8 Creating the Digital Asset Links File
83.9 Testing the App Link
83.10 Summary

xxi

Table of Contents

84. An Android Biometric Authentication Tutorial
84.1 An Overview of Biometric Authentication
84.2 Creating the Biometric Authentication Project
84.3 Configuring Device Fingerprint Authentication
84.4 Adding the Biometric Permission to the Manifest File
84.5 Designing the User Interface
84.6 Adding a Toast Convenience Method
84.7 Checking the Security Settings
84.8 Configuring the Authentication Callbacks
84.9 Adding the CancellationSignal
84.10 Starting the Biometric Prompt
84.11 Testing the Project
84.12 Summary

85. Creating, Testing and Uploading an Android App Bundle
85.1 The Release Preparation Process
85.2 Android App Bundles
85.3 Register for a Google Play Developer Console Account
85.4 Configuring the App in the Console
85.5 Enabling Google Play App Signing
85.6 Creating a Keystore File
85.7 Creating the Android App Bundle
85.8 Generating Test APK Files
85.9 Uploading the App Bundle to the Google Play Developer Console
85.10 Exploring the App Bundle
85.11 Managing Testers
85.12 Rolling the App Out for Testing
85.13 Uploading New App Bundle Revisions
85.14 Analyzing the App Bundle File
85.15 Summary

86. An Overview of Android In-App Billing
86.1 Preparing a Project for In-App Purchasing
86.2 Creating In-App Products and Subscriptions
86.3 Billing Client Initialization
86.4 Connecting to the Google Play Billing Library
86.5 Querying Available Products
86.6 Starting the Purchase Process
86.7 Completing the Purchase
86.8 Querying Previous Purchases
86.9 Summary

87. An Android In-App Purchasing Tutorial
87.1 About the In-App Purchasing Example Project
87.2 Creating the InAppPurchase Project
87.3 Adding Libraries to the Project
87.4 Designing the User Interface
87.5 Adding the App to the Google Play Store
87.6 Creating an In-App Product
87.7 Enabling License Testers

xxii

Table of Contents

87.8 Initializing the Billing Client
87.9 Querying the Product
87.10 Launching the Purchase Flow
87.11 Handling Purchase Updates
87.12 Consuming the Product
87.13 Restoring a Previous Purchase
87.14 Testing the App
87.15 Troubleshooting
87.16 Summary

88. An Overview of Android Dynamic Feature Modules
88.1 An Overview of Dynamic Feature Modules
88.2 Dynamic Feature Module Architecture
88.3 Creating a Dynamic Feature Module
88.4 Converting an Existing Module for Dynamic Delivery
88.5 Working with Dynamic Feature Modules
88.6 Handling Large Dynamic Feature Modules
88.7 Summary

89. An Android Studio Dynamic Feature Tutorial
89.1 Creating the DynamicFeature Project
89.2 Adding Dynamic Feature Support to the Project
89.3 Designing the Base Activity User Interface
89.4 Adding the Dynamic Feature Module
89.5 Reviewing the Dynamic Feature Module
89.6 Adding the Dynamic Feature Activity
89.7 Implementing the launchIntent() Method
89.8 Uploading the App Bundle for Testing
89.9 Implementing the installFeature() Method
89.10 Adding the Update Listener
89.11 Using Deferred Installation
89.12 Removing a Dynamic Module
89.13 Summary

90. Working with Material Design 3 Theming
90.1 Material Design 2 vs Material Design 3
90.2 Understanding Material Design Theming
90.3 Material Design 2 Theming
90.4 Material Design 3 Theming
90.5 Building a Custom Theme
90.6 Summary

91. A Material Design 3 Theming and Dynamic Color Tutorial
91.1 Creating the ThemeDemo Project
91.2 Preparing the Project
91.3 Designing the User Interface
91.4 Building a New Theme
91.5 Adding the Custom Colors to the Project
91.6 Merging the Custom Themes
91.7 Enabling Dynamic Color Support
91.8 Summary

xxiii

Table of Contents

92. Migrating from Material Design 2 to Material Design 3
92.1 Creating the ThemeMigration Project
92.2 Designing the User Interface
92.3 Migrating to Material Design 3
92.4 Building a New Theme
92.5 Adding the Theme to the Project
92.6 Summary

93. An Overview of Gradle in Android Studio
93.1 An Overview of Gradle
93.2 Gradle and Android Studio

93.2.1 Sensible Defaults
93.2.2 Dependencies
93.2.3 Build Variants
93.2.4 Manifest Entries
93.2.5 APK Signing
93.2.6 ProGuard Support

93.3 The Property and Settings Gradle Build File
93.4 The Top-level Gradle Build File
93.5 Module Level Gradle Build Files
93.6 Configuring Signing Settings in the Build File
93.7 Running Gradle Tasks from the Command-line
93.8 Summary

Index

1

Chapter 1

1. Introduction
Fully updated for Android Studio Dolphin, this book aims to teach you how to develop Android-based
applications using the Kotlin programming language.

This book begins with the basics and outlines the steps necessary to set up an Android development and
testing environment, followed by an introduction to programming in Kotlin including data types, control flow,
functions, lambdas, and object-oriented programming. Asynchronous programming using Kotlin coroutines
and flow is also covered in detail.

An overview of Android Studio is included covering areas such as tool windows, the code editor, and the Layout
Editor tool. An introduction to the architecture of Android is followed by an in-depth look at the design of
Android applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components including view models, lifecycle
management, Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This edition of the book also covers printing, transitions, and foldable device
support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio Dolphin and Android are also covered in detail including the Layout
Editor, the ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains,
barriers, and direct reply notifications.

Chapters also cover advanced features of Android Studio such as App Links, Dynamic Delivery, Gradle build
configuration, in-app billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/dolphinkotlin/index.php

The steps to load a project from the code samples into Android Studio are as follows:

1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

https://www.ebookfrenzy.com/retail/dolphinkotlin/index.php

2

Introduction

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/dolphinkotlin.html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com. They are there to help you and will work to resolve any problems you may encounter.

mailto:feedback%40ebookfrenzy.com?subject=
https://www.ebookfrenzy.com/errata/dolphinkotlin.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK),
the Kotlin plug-in and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

• Windows 8/10/11 64-bit

• macOS 10.14 or later running on Intel or Apple silicon

• Chrome OS device with Intel i5 or higher

• Linux systems with version 2.31 or later of the GNU C Library (glibc)

• Minimum of 8GB of RAM (see below)

• Approximately 8GB of available disk space

• 1280 x 800 minimum screen resolution

Although Android Studio will run on computers with 8GB of RAM, performance will be greatly improved on
systems containing more memory. This is particularly an issue if you plan to test your apps using the Android
Virtual Device emulator (AVD).

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Dolphin 2021.3.1
using the Android API 33 SDK (Tiramisu) which, at the time of writing, are the latest versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note
that there may be some minor differences between this book and the software. A web search for “Android
Studio Dolphin” should provide the option to download the older version if these differences become a problem.

https://developer.android.com/studio/index.html

4

Setting up an Android Studio Development Environment

Alternatively, visit the following web page to find Android Studio Dolphin 2021.3.1 in the archives:

https://developer.android.com/studio/archive

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1
To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

https://developer.android.com/studio/archive

5

Setting up an Android Studio Development Environment

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora-based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio setup wizard
If you are installing Android Studio for the first time the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the SDK Components Setup dialog (Figure 2-3). Within
this dialog, make sure that the Android SDK option is selected along with the latest API package before clicking
on the Next button:

6

Setting up an Android Studio Development Environment

Figure 2-3
After clicking Next, Android Studio will download and install the Android SDK and tools.

If you have previously installed an earlier version of Android Studio, the first time that this new version is
launched, a dialog may appear providing the option to import settings from a previous Android Studio version.
If you have settings from a previous version and would like to import them into the latest installation, select the
appropriate option and location. Alternatively, indicate that you do not need to import any previous settings and
click on the OK button to proceed.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

7

Setting up an Android Studio Development Environment

Figure 2-5
Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

8

Setting up an Android Studio Development Environment

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

• Android SDK Build-tools

• Android Emulator

• Android SDK Platform-tools

• Google Play Services

• Intel x86 Emulator Accelerator (HAXM installer)

• Google USB Driver (Windows only)

• Layout Inspector image server for API 31 and T

Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8
Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the
Apply button again.

9

Setting up an Android Studio Development Environment

2.6 Making the Android SDK tools command-line accessible
Most of the time, the underlying tools of the Android SDK will be accessed from within the Android Studio
environment. That being said, however, there will also be instances where it will be useful to be able to invoke
those tools from a command prompt or terminal window. For the operating system on which you are developing
to be able to find these tools, it will be necessary to add them to the system’s PATH environment variable.

Regardless of operating system, the PATH variable needs to be configured to include the following paths (where
<path_to_android_sdk_installation> represents the file system location into which the Android SDK was
installed):
<path_to_android_sdk_installation>/sdk/tools

<path_to_android_sdk_installation>/sdk/tools/bin

<path_to_android_sdk_installation>/sdk/platform-tools

The location of the SDK on your system can be identified by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel as highlighted in Figure 2-9:

Figure 2-9
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit… button. Using the New button in the edit dialog, add three new entries to the path. For
example, assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the
following entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

C:\Users\demo\AppData\Local\Android\Sdk\tools

C:\Users\demo\AppData\Local\Android\Sdk\tools\bin

4. Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that

10

Setting up an Android Studio Development Environment

the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/tools:/
home/demo/Android/sdk/tools/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/tools

/Users/demo/Library/Android/sdk/tools/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

11

Setting up an Android Studio Development Environment

2.7 Android Studio memory management
Android Studio is a large and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-10
To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->
Preferences... on macOS) menu option and, in the resulting dialog, select the Memory Settings option listed
under System Settings in the left-hand navigation panel as illustrated in Figure 2-11 below.

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

Figure 2-11

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

13

Chapter 3

3. Creating an Example Android App
in Android Studio
The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of an Android application project using Android Studio. Once the project
has been created, a later chapter will explore the use of the Android emulator environment to perform a test run
of the application.

3.1 About the Project
The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also make use of one of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project
The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
simply click on the New Project option to display the first screen of the New Project wizard.

14

Creating an Example Android App in Android Studio

3.3 Creating an Activity
The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the Phone and Tablet option from the
Templates panel followed by the option to create an Empty Activity. The Empty Activity option creates a template
user interface consisting of a single TextView object.

Figure 3-2
With the Empty Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:
com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for the purposes of testing, though this will need to be changed before an application can be
published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in
most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK

15

Creating an Example Android App in Android Studio

setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose button (highlighted in Figure 3-3) to see a full breakdown of the various Android versions still
in use:

Figure 3-3
Finally, change the Language menu to Kotlin and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application
At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4
The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

16

Creating an Example Android App in Android Studio

Figure 3-5

3.6 Modifying the User Interface
The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. Once located in the Project tool window, double-click on
the file to load it into the user interface Layout Editor tool which will appear in the center panel of the Android
Studio main window:

Figure 3-6
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon. Use the night button ()
to turn Night mode on and off.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category

17

Creating an Example Android App in Android Studio

consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7
As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, also check that the Layout Editor’s Autoconnect mode is enabled. This means that as
components are added to the layout, the Layout Editor will automatically add constraints to make sure the
components are correctly positioned for different screen sizes and device orientations (a topic that will be
covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar
and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure
3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

Figure 3-9
Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

18

Creating an Example Android App in Android Studio

Figure 3-10
The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-11:

Figure 3-11
The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12

19

Creating an Example Android App in Android Studio

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-13. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-13
When clicked, a panel (Figure 3-14) will appear describing the nature of the problems and offering some possible
corrective measures:

Figure 3-14
Currently, the only warning listed reads as follows:
Hardcoded string "Convert", should use @string resource

This I18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Click on the Fix button in the Issue Explanation panel to display the Extract Resource panel (Figure 3-15).
Within this panel, change the resource name field to convert_string and leave the resource value set to Convert
before clicking on the OK button.

20

Creating an Example Android App in Android Studio

Figure 3-15
The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-16:

Figure 3-16
Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-17
Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-18:

21

Creating an Example Android App in Android Studio

Figure 3-18

3.7 Reviewing the Layout and Resource Files
Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly to make user interface changes and, in some instances, this may actually be quicker
than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are three buttons as
highlighted in Figure 3-19 below:

Figure 3-19
By default, the editor will be in Design mode whereby just the visual representation of the layout is displayed.
The left-most button will switch to Code mode to display the XML for the layout, while the middle button enters
Split mode where both the layout and XML are displayed, as shown in Figure 3-20:

22

Creating an Example Android App in Android Studio

Figure 3-20
As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although varying in complexity and content, all
user interface layouts are structured in this hierarchical, XML based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:background="#ff2438" >
.

.

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the color of the layout changes in real-time to match the new setting in the XML file. Note also that a
small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Clicking
on the red square will display a color chooser allowing a different color to be selected:

23

Creating an Example Android App in Android Studio

Figure 3-21
Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:
<resources>

 <string name="app_name">AndroidSample</string>

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights and then press
Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and
take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource
back to the original “Convert” text and to add the following additional entry for a string resource that will be
referenced later in the app code:
<resources>

.

.

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

 <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor. To open this editor, right-
click on the app -> res -> values -> strings.xml file and select the Open editor menu option. This will display the
Translation Editor in the main panel of the Android Studio window:

24

Creating an Example Android App in Android Studio

Figure 3-22
This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.8 Adding the Kotlin Extensions Plugin
The next section will add some code to the project so that a currency conversion occurs when the button is
tapped and the result displayed to the user. Before adding this code, however, we first need to add a plugin to
the project build configuration which will make it easier for us to reference the user interface widgets from
within the Kotlin code. To do this, begin by opening the module level build.gradle file located in the project tool
window (app -> Gradle Scripts - > build.gradle (Module: AndroidSample.app)) as shown in Figure 3-23:

Figure 3-23
Once opened, modify the plugins section so that it reads as follows:
plugins {

 id 'com.android.application

 id 'org.jetbrains.kotlin.android'

 id 'kotlin-android-extensions'
}

Finally, click on the Sync Now link highlighted in below to commit the change and update the project:

25

Creating an Example Android App in Android Studio

Figure 3-24
The topic of accessing widgets from within code using this technique, together with some useful alternatives,
will be covered in the chapter entitled “An Overview of Android View Binding”.

3.9 Adding Interaction
The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

Figure 3-25
Note that the text field for the onClick property is now highlighted with a red border to warn us that the button
has been configured to call a method which does not yet exist. To address this, double-click on the MainActivity.kt
file in the Project tool window (app -> java -> <package name> -> MainActivity) to load it into the code editor
and add the code for the convertCurrency method to the class file so that it reads as follows, noting that it is also
necessary to import some additional Android packages:
package com.example.androidsample

import androidx.appcompat.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import kotlinx.android.synthetic.main.activity_main.*

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

26

Creating an Example Android App in Android Studio

 }

 fun convertCurrency(view: View) {

 if (dollarText.text.isNotEmpty()) {

 val dollarValue = dollarText.text.toString().toFloat()

 val euroValue = dollarValue * 0.85f

 textView.text = euroValue.toString()
 } else {
 textView.text = getString(R.string.no_value_string)
 }
 }
}

The method begins by checking the text property of the dollarText EditText view to make sure that it is not
empty (in other words that the user has entered a dollar value). If a value has not been entered, a “No Value”
string is displayed on the TextView using the string resource declared earlier in the chapter. If, on the other
hand, a dollar amount has been entered, it is converted into a floating point value and the equivalent euro value
calculated. This floating point value is then converted into a string and displayed on the TextView. If any of this
is unclear, rest assured that these concepts will be covered in greater detail in later chapters.

3.10 Summary
While not excessively complex, a number of steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to make sure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly in the case of string values, and briefly touched on the topic of layouts.
Next we looked at the underlying XML that is used to store the user interface designs of Android applications.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

39

Chapter 5

5. Using and Configuring the
Android Studio AVD Emulator
Before the next chapter explores testing on physical Android devices, this chapter will take some time to provide
an overview of the Android Studio AVD emulator and highlight many of the configuration features that are
available to customize the environment in both standalone and tool window modes.

5.1 The Emulator Environment
When launched in standalone mode, the emulator displays an initial splash screen during the loading process.
Once loaded, the main emulator window appears containing a representation of the chosen device type (in the
case of Figure 5-1 this is a Pixel 4 device):

Figure 5-1
Positioned along the right-hand edge of the window is the toolbar providing quick access to the emulator
controls and configuration options.

5.2 Emulator Toolbar Options
The emulator toolbar (Figure 5-2) provides access to a range of options relating to the appearance and behavior
of the emulator environment.

40

Using and Configuring the Android Studio AVD Emulator

Figure 5-2
Each button in the toolbar has associated with it a keyboard accelerator which can be identified either by
hovering the mouse pointer over the button and waiting for the tooltip to appear or via the help option of the
extended controls panel.

Though many of the options contained within the toolbar are self-explanatory, each option will be covered for
the sake of completeness:

• Exit / Minimize – The uppermost ‘x’ button in the toolbar exits the emulator session when selected while the
‘-’ option minimizes the entire window.

• Power – The Power button simulates the hardware power button on a physical Android device. Clicking and
releasing this button will lock the device and turn off the screen. Clicking and holding this button will initiate
the device “Power off ” request sequence.

• Volume Up / Down – Two buttons that control the audio volume of playback within the simulator environment.

• Rotate Left/Right – Rotates the emulated device between portrait and landscape orientations.

• Take Screenshot – Takes a screenshot of the content currently displayed on the device screen. The captured
image is stored at the location specified in the Settings screen of the extended controls panel as outlined later
in this chapter.

• Zoom Mode – This button toggles in and out of zoom mode, details of which will be covered later in this
chapter.

• Back – Performs the standard Android “Back” navigation to return to a previous screen.

• Home – Displays the device home screen.

• Overview – Simulates selection of the standard Android “Overview” navigation which displays the currently
running apps on the device.

41

Using and Configuring the Android Studio AVD Emulator

• Fold Device – Simulates the folding and unfolding of a foldable device. This option is only available if the
emulator is running a foldable device system image.

• Extended Controls – Displays the extended controls panel, allowing for the configuration of options
such as simulated location and telephony activity, battery strength, cellular network type, and fingerprint
identification.

5.3 Working in Zoom Mode
The zoom button located in the emulator toolbar switches in and out of zoom mode. When zoom mode is active
the toolbar button is depressed and the mouse pointer appears as a magnifying glass when hovering over the
device screen. Clicking the left mouse button will cause the display to zoom in relative to the selected point
on the screen, with repeated clicking increasing the zoom level. Conversely, clicking the right mouse button
decreases the zoom level. Toggling the zoom button off reverts the display to the default size.

Clicking and dragging while in zoom mode will define a rectangular area into which the view will zoom when
the mouse button is released.

While in zoom mode the visible area of the screen may be panned using the horizontal and vertical scrollbars
located within the emulator window.

5.4 Resizing the Emulator Window
The size of the emulator window (and the corresponding representation of the device) can be changed at any
time by clicking and dragging on any of the corners or sides of the window.

5.5 Extended Control Options
The extended controls toolbar button displays the panel illustrated in Figure 5-3. By default, the location settings
will be displayed. Selecting a different category from the left-hand panel will display the corresponding group
of controls:

Figure 5-3

42

Using and Configuring the Android Studio AVD Emulator

5.5.1 Location
The location controls allow simulated location information to be sent to the emulator in the form of decimal or
sexigesimal coordinates. Location information can take the form of a single location, or a sequence of points
representing movement of the device, the latter being provided via a file in either GPS Exchange (GPX) or
Keyhole Markup Language (KML) format. Alternatively, the integrated Google Maps panel may be used to
visually select single points or travel routes.

5.5.2 Displays
In addition to the main display shown within the emulator screen, the Displays option allows additional displays
to be added running within the same Android instance. This can be useful for testing apps for dual-screen
devices such as the Microsoft Surface Duo. These additional screens can be configured to be any required size
and appear within the same emulator window as the main screen.

5.5.3 Cellular
The type of cellular connection being simulated can be changed within the cellular settings screen. Options are
available to simulate different network types (CSM, EDGE, HSDPA, etc) in addition to a range of voice and data
scenarios such as roaming and denied access.

5.5.4 Battery
A variety of battery state and charging conditions can be simulated on this panel of the extended controls screen,
including battery charge level, battery health, and whether the AC charger is currently connected.

5.5.5 Camera
The emulator simulates a 3D scene when the camera is active. This takes the form of the interior of a virtual
building through which you can navigate by holding down the Option key (Alt on Windows) while using the
mouse pointer and keyboard keys when recording video or before taking a photo within the emulator. This
extended configuration option allows different images to be uploaded for display within the virtual environment.

5.5.6 Phone
The phone extended controls provide two very simple but useful simulations within the emulator. The first
option allows for the simulation of an incoming call from a designated phone number. This can be of particular
use when testing how an app handles high-level interrupts of this nature.

The second option allows the receipt of text messages to be simulated within the emulator session. As in the real
world, these messages appear within the Message app and trigger the standard notifications within the emulator.

5.5.7 Directional Pad
A directional pad (D-Pad) is an additional set of controls either built into an Android device or connected
externally (such as a game controller) that provides directional controls (left, right, up, down). The directional
pad settings allow D-Pad interaction to be simulated within the emulator.

5.5.8 Microphone
The microphone settings allow the microphone to be enabled and virtual headset and microphone connections
to be simulated. A button is also provided to launch the Voice Assistant on the emulator.

5.5.9 Fingerprint
Many Android devices are now supplied with built-in fingerprint detection hardware. The AVD emulator makes
it possible to test fingerprint authentication without the need to test apps on a physical device containing a
fingerprint sensor. Details on how to configure fingerprint testing within the emulator will be covered in detail
later in this chapter.

43

Using and Configuring the Android Studio AVD Emulator

5.5.10 Virtual Sensors
The virtual sensors option allows the accelerometer and magnetometer to be simulated to emulate the effects
of the physical motion of a device such as rotation, movement, and tilting through yaw, pitch and roll settings.

5.5.11 Snapshots
Snapshots contain the state of the currently running AVD session to be saved and rapidly restored making it easy
to return the emulator to an exact state. Snapshots are covered in later in this chapter.

5.5.12 Record and Playback
Allows the emulator screen and audio to be recorded and saved in either WebM or animated GIF format.

5.5.13 Google Play
If the emulator is running a version of Android with Google Play Services installed, this option displays the
current Google Play version and provides the option to update the emulator to the latest version.

5.5.14 Settings
The settings panel provides a small group of configuration options. Use this panel to choose a darker theme for
the toolbar and extended controls panel, specify a file system location into which screenshots are to be saved,
configure OpenGL support levels, and configure the emulator window to appear on top of other windows on
the desktop.

5.5.15 Help
The Help screen contains three sub-panels containing a list of keyboard shortcuts, links to access the emulator
online documentation, file bugs and send feedback, and emulator version information.

5.6 Working with Snapshots
When an emulator starts for the very first time it performs a cold boot much like a physical Android device when
it is powered on. This cold boot process can take some time to complete as the operating system loads and all the
background processes are started. To avoid the necessity of going through this process every time the emulator
is started, the system is configured to automatically save a snapshot (referred to as a quick-boot snapshot) of the
emulator’s current state each time it exits. The next time the emulator is launched, the quick-boot snapshot is
loaded into memory and execution resumes from where it left off previously, allowing the emulator to restart in
a fraction of the time needed for a cold boot to complete.

The Snapshots screen of the extended controls panel can be used to store additional snapshots at any point
during the execution of the emulator. This saves the exact state of the entire emulator allowing the emulator to be
restored to the exact point in time that the snapshot was taken. From within the screen, snapshots can be taken
using the Take Snapshot button (marked A in Figure 5-4). To restore an existing snapshot, select it from the list
(B) and click the run button (C) located at the bottom of the screen. Options are also provided to edit (D) the
snapshot name and description and to delete (E) the currently selected snapshot:

44

Using and Configuring the Android Studio AVD Emulator

Figure 5-4
The Settings option (F) provides the option to configure the automatic saving of quick-boot snapshots (by
default the emulator will ask whether to save the quick boot snapshot each time the emulator exits) and to
reload the most recent snapshot. To force an emulator session to perform a cold boot instead of using a previous
quick-boot snapshot, open the AVD Manager (Tools -> AVD Manager), click on the down arrow in the Actions
column for the emulator and select the Cold Boot Now menu option.

Figure 5-5

5.7 Configuring Fingerprint Emulation
The emulator allows up to 10 simulated fingerprints to be configured and used to test fingerprint authentication
within Android apps. To configure simulated fingerprints begin by launching the emulator, opening the Settings
app, and selecting the Security & Location option.

Within the Security settings screen, select the Use fingerprint option. On the resulting information screen click
on the Next button to proceed to the Fingerprint setup screen. Before fingerprint security can be enabled a
backup screen unlocking method (such as a PIN) must be configured. Click on the Fingerprint + PIN button
and, when prompted, choose not to require the PIN on device startup. Enter and confirm a suitable PIN and
complete the PIN entry process by accepting the default notifications option.

Proceed through the remaining screens until the Settings app requests a fingerprint on the sensor. At this point
display the extended controls dialog, select the Fingerprint category in the left-hand panel and make sure that

45

Using and Configuring the Android Studio AVD Emulator

Finger 1 is selected in the main settings panel:

Figure 5-6
Click on the Touch the Sensor button to simulate Finger 1 touching the fingerprint sensor. The emulator will
report the successful addition of the fingerprint:

Figure 5-7
To add additional fingerprints click on the Add Another button and select another finger from the extended
controls panel menu before clicking on the Touch the Sensor button once again.

5.8 The Emulator in Tool Window Mode
As outlined in the previous chapter (“Creating an Android Virtual Device (AVD) in Android Studio”), Android
Studio can be configured to launch the emulator as an embedded tool window so that it does not appear in a
separate window. When running in this mode, the same controls available in standalone mode are provided in
the toolbar as shown in Figure 5-8:

46

Using and Configuring the Android Studio AVD Emulator

Figure 5-8
From left to right, these buttons perform the following tasks (details of which match those for standalone mode):

• Power

• Volume Up

• Volume Down

• Rotate Left

• Rotate Right

• Back

• Home

• Overview

• Screenshot

• Snapshots

• Extended Controls

5.9 Summary
Android Studio contains an Android Virtual Device emulator environment designed to make it easier to test
applications without the need to run on a physical Android device. This chapter has provided a brief tour of the
emulator and highlighted key features that are available to configure and customize the environment to simulate
different testing conditions.

65

Chapter 8

8. The Basics of the Android Studio
Code Editor
Developing applications for Android involves a considerable amount of programming work which, by definition,
involves typing, reviewing and modifying lines of code. It should come as no surprise that the majority of a
developer’s time spent using Android Studio will typically involve editing code within the editor window.

The modern code editor needs to go far beyond the original basics of typing, deleting, cutting and pasting.
Today the usefulness of a code editor is generally gauged by factors such as the amount by which it reduces the
typing required by the programmer, ease of navigation through large source code files and the editor’s ability to
detect and highlight programming errors in real-time as the code is being written. As will become evident in this
chapter, these are just a few of the areas in which the Android Studio editor excels.

While not an exhaustive overview of the features of the Android Studio editor, this chapter aims to provide a
guide to the key features of the tool. Experienced programmers will find that some of these features are common
to most code editors available today, while a number are unique to this particular editing environment.

8.1 The Android Studio Editor
The Android Studio editor appears in the center of the main window when a Java, Kotlin, XML or other text
based file is selected for editing. Figure 8-1, for example, shows a typical editor session with a Kotlin source code
file loaded:

Figure 8-1

66

The Basics of the Android Studio Code Editor

The elements that comprise the editor window can be summarized as follows:

A – Document Tabs – Android Studio is capable of holding multiple files open for editing at any one time. As
each file is opened, it is assigned a document tab displaying the file name in the tab bar located along the top
edge of the editor window. A small drop-down menu will appear in the far right-hand corner of the tab bar when
there is insufficient room to display all of the tabs. Clicking on this menu will drop down a list of additional open
files. A wavy red line underneath a file name in a tab indicates that the code in the file contains one or more
errors that need to be addressed before the project can be compiled and run.

Switching between files is simply a matter of clicking on the corresponding tab or using the Alt-Left and Alt-
Right keyboard shortcuts. Navigation between files may also be performed using the Switcher mechanism
(accessible via the Ctrl-Tab keyboard shortcut).

To detach an editor panel from the Android Studio main window so that it appears in a separate window, click
on the tab and drag it to an area on the desktop outside of the main window. To return the editor to the main
window, click on the file tab in the separated editor window and drag and drop it onto the original editor tab
bar in the main window.

B – The Editor Gutter Area - The gutter area is used by the editor to display informational icons and controls.
Some typical items, among others, which appear in this gutter area are debugging breakpoint markers, controls
to fold and unfold blocks of code, bookmarks, change markers and line numbers. Line numbers are switched
on by default but may be disabled by right-clicking in the gutter and selecting the Show Line Numbers menu
option.

C – Code Structure Location - This bar at the top of the editor displays the current position of the cursor as
it relates to the overall structure of the code. In the following figure, for example, the bar indicates that the
convertCurrency method is currently being edited, and that this method is contained within the MainActivity
class.

Figure 8-2
Double-clicking an element within the bar will move the cursor to the corresponding location within the
code file. For example, double-clicking on the convertCurrency entry will move the cursor to the top of the
convertCurrency method within the source code. Similarly clicking on the MainActivity entry will drop down a
list of available code navigation points for selection:

Figure 8-3
D – The Editor Area – This is the main area where the code is displayed, entered and edited by the user. Later
sections of this chapter will cover the key features of the editing area in detail.

E – The Validation and Marker Sidebar – Android Studio incorporates a feature referred to as “on-the-fly code
analysis”. What this essentially means is that as you are typing code, the editor is analyzing the code to check for
warnings and syntax errors. The indicators at the top of the validation sidebar will update in real-time to indicate
the number of errors and warnings found as code is added. Clicking on this indicator will display a popup
containing a summary of the issues found with the code in the editor as illustrated in Figure 8-4:

67

The Basics of the Android Studio Code Editor

Figure 8-4
The up and down arrows may be used to move between the error locations within the code. A green check mark
indicates that no warnings or errors have been detected.

The sidebar also displays markers at the locations where issues have been detected using the same color coding.
Hovering the mouse pointer over a marker when the line of code is visible in the editor area will display a popup
containing a description of the issue:

Figure 8-5
Hovering the mouse pointer over a marker for a line of code which is currently scrolled out of the viewing area
of the editor will display a “lens” overlay containing the block of code where the problem is located (Figure 8-6)
allowing it to be viewed without the necessity to scroll to that location in the editor:

Figure 8-6
It is also worth noting that the lens overlay is not limited to warnings and errors in the sidebar. Hovering over
any part of the sidebar will result in a lens appearing containing the code present at that location within the
source file.

F – The Status Bar – Though the status bar is actually part of the main window, as opposed to the editor, it does
contain some information about the currently active editing session. This information includes the current
position of the cursor in terms of lines and characters and the encoding format of the file (UTF-8, ASCII etc.).
Clicking on these values in the status bar allows the corresponding setting to be changed. Clicking on the line
number, for example, displays the Go to Line dialog.

Having provided an overview of the elements that comprise the Android Studio editor, the remainder of this
chapter will explore the key features of the editing environment in more detail.

8.2 Splitting the Editor Window
By default, the editor will display a single panel showing the content of the currently selected file. A particularly
useful feature when working simultaneously with multiple source code files is the ability to split the editor into
multiple panes. To split the editor, right-click on a file tab within the editor window and select either the Split
Vertically or Split Horizontally menu option. Figure 8-7, for example, shows the splitter in action with the editor

68

The Basics of the Android Studio Code Editor

split into three panels:

Figure 8-7
The orientation of a split panel may be changed at any time by right-clicking on the corresponding tab and
selecting the Change Splitter Orientation menu option. Repeat these steps to unsplit a single panel, this time
selecting the Unsplit option from the menu. All of the split panels may be removed by right-clicking on any tab
and selecting the Unsplit All menu option.

Window splitting may be used to display different files, or to provide multiple windows onto the same file,
allowing different areas of the same file to be viewed and edited concurrently.

8.3 Code Completion
The Android Studio editor has a considerable amount of built-in knowledge of Kotlin programming syntax and
the classes and methods that make up the Android SDK, as well as knowledge of your own code base. As code is
typed, the editor scans what is being typed and, where appropriate, makes suggestions with regard to what might
be needed to complete a statement or reference. When a completion suggestion is detected by the editor, a panel
will appear containing a list of suggestions. In Figure 8-8, for example, the editor is suggesting possibilities for
the beginning of a String declaration:

Figure 8-8
If none of the auto completion suggestions are correct, simply keep typing and the editor will continue to refine
the suggestions where appropriate. To accept the top most suggestion, simply press the Enter or Tab key on the
keyboard. To select a different suggestion, use the arrow keys to move up and down the list, once again using the

69

The Basics of the Android Studio Code Editor

Enter or Tab key to select the highlighted item.

Completion suggestions can be manually invoked using the Ctrl-Space keyboard sequence. This can be useful
when changing a word or declaration in the editor. When the cursor is positioned over a word in the editor, that
word will automatically highlight. Pressing Ctrl-Space will display a list of alternate suggestions. To replace the
current word with the currently highlighted item in the suggestion list, simply press the Tab key.

In addition to the real-time auto completion feature, the Android Studio editor also offers a system referred to
as Smart Completion. Smart completion is invoked using the Shift-Ctrl-Space keyboard sequence and, when
selected, will provide more detailed suggestions based on the current context of the code. Pressing the Shift-
Ctrl-Space shortcut sequence a second time will provide more suggestions from a wider range of possibilities.

Code completion can be a matter of personal preference for many programmers. In recognition of this fact,
Android Studio provides a high level of control over the auto completion settings. These can be viewed and
modified by selecting the File -> Settings… menu option (or Android Studio -> Preferences… on macOS) and
choosing Editor -> General -> Code Completion from the settings panel as shown in Figure 8-9:

Figure 8-9

8.4 Statement Completion
Another form of auto completion provided by the Android Studio editor is statement completion. This can
be used to automatically fill out the parentheses and braces for items such as methods and loop statements.
Statement completion is invoked using the Shift-Ctrl-Enter (Shift-Cmd-Enter on macOS) keyboard sequence.
Consider for example the following code:
fun myMethod()

Having typed this code into the editor, triggering statement completion will cause the editor to automatically
add the braces to the method:
fun myMethod() {

}

70

The Basics of the Android Studio Code Editor

8.5 Parameter Information
It is also possible to ask the editor to provide information about the argument parameters accepted by a method.
With the cursor positioned between the brackets of a method call, the Ctrl-P (Cmd-P on macOS) keyboard
sequence will display the parameters known to be accepted by that method, with the most likely suggestion
highlighted in bold:

Figure 8-10

8.6 Parameter Name Hints
The code editor may be configured to display parameter name hints within method calls. Figure 8-11, for
example, highlights the parameter name hints within the calls to the make() and setAction() methods of the
Snackbar class:

Figure 8-11
The settings for this mode may be configured by selecting the File -> Settings menu (Android Studio -> Preferences
on macOS) option followed by Editor -> Inlay Hints -> Kotlin in the left-hand panel. On the resulting screen,
select the Parameter Hints item from the list and enable or disable the Show parameter hints option. To adjust
the hint settings, click on the Exclude list... link and make any necessary adjustments.

8.7 Code Generation
In addition to completing code as it is typed the editor can, under certain conditions, also generate code for you.
The list of available code generation options shown in Figure 8-12 can be accessed using the Alt-Insert (Cmd-N
on macOS) keyboard shortcut when the cursor is at the location in the file where the code is to be generated.

Figure 8-12
For the purposes of an example, consider a situation where we want to be notified when an Activity in our
project is about to be destroyed by the operating system. As will be outlined in a later chapter of this book, this
can be achieved by overriding the onStop() lifecycle method of the Activity superclass. To have Android Studio

71

The Basics of the Android Studio Code Editor

generate a stub method for this, simply select the Override Methods… option from the code generation list and
select the onStop() method from the resulting list of available methods:

Figure 8-13
Having selected the method to override, clicking on OK will generate the stub method at the current cursor
location in the Kotlin source file as follows:
override fun onStop() {

 super.onStop()

}

8.8 Code Folding
Once a source code file reaches a certain size, even the most carefully formatted and well organized code can
become overwhelming and difficult to navigate. Android Studio takes the view that it is not always necessary to
have the content of every code block visible at all times. Code navigation can be made easier through the use of
the code folding feature of the Android Studio editor. Code folding is controlled using markers appearing in the
editor gutter at the beginning and end of each block of code in a source file. Figure 8-14, for example, highlights
the start and end markers for a method declaration which is not currently folded:

Figure 8-14
Clicking on either of these markers will fold the statement such that only the signature line is visible as shown
in Figure 8-15:

72

The Basics of the Android Studio Code Editor

Figure 8-15
To unfold a collapsed section of code, simply click on the ‘+’ marker in the editor gutter. To see the hidden code
without unfolding it, hover the mouse pointer over the “{…}” indicator as shown in Figure 8-16. The editor will
then display the lens overlay containing the folded code block:

Figure 8-16
All of the code blocks in a file may be folded or unfolded using the Ctrl-Shift-Plus and Ctrl-Shift-Minus keyboard
sequences.

By default, the Android Studio editor will automatically fold some code when a source file is opened. To configure
the conditions under which this happens, select File -> Settings… (Android Studio -> Preferences… on macOS)
and choose the Editor -> General -> Code Folding entry in the resulting settings panel (Figure 8-17):

Figure 8-17

8.9 Quick Documentation Lookup
Context sensitive Kotlin and Android documentation can be accessed by placing the cursor over the declaration
for which documentation is required and pressing the Ctrl-Q keyboard shortcut (Ctrl-J on macOS). This will
display a popup containing the relevant reference documentation for the item. Figure 8-18, for example, shows
the documentation for the Android Menu class.

73

The Basics of the Android Studio Code Editor

Figure 8-18
Once displayed, the documentation popup can be moved around the screen as needed.

8.10 Code Reformatting
In general, the Android Studio editor will automatically format code in terms of indenting, spacing and nesting
of statements and code blocks as they are added. In situations where lines of code need to be reformatted (a
common occurrence, for example, when cutting and pasting sample code from a website), the editor provides a
source code reformatting feature which, when selected, will automatically reformat code to match the prevailing
code style.

To reformat source code, press the Ctrl-Alt-L (Cmd-Opt-L on macOS) keyboard shortcut sequence. To display
the Reformat Code dialog (Figure 8-19) use the Ctrl-Alt-Shift-L (Cmd-Opt-Shift-L on macOS). This dialog
provides the option to reformat only the currently selected code, the entire source file currently active in the
editor or only code that has changed as the result of a source code control update.

Figure 8-19
The full range of code style preferences can be changed from within the project settings dialog. Select the File
-> Settings menu option (Android Studio -> Preferences… on macOS) and choose Code Style in the left-hand
panel to access a list of supported programming and markup languages. Selecting a language will provide access
to a vast array of formatting style options, all of which may be modified from the Android Studio default to
match your preferred code style. To configure the settings for the Rearrange code option in the above dialog, for
example, unfold the Code Style section, select Kotlin and, from the Kotlin settings, select the Arrangement tab.

8.11 Finding Sample Code
The Android Studio editor provides a way to access sample code relating to the currently highlighted entry
within the code listing. This feature can be useful for learning how a particular Android class or method is used.
To find sample code, highlight a method or class name in the editor, right-click on it and select the Find Sample
Code menu option. The Find Sample Code panel (Figure 8-20) will appear beneath the editor with a list of
matching samples. Selecting a sample from the list will load the corresponding code into the right-hand panel:

74

The Basics of the Android Studio Code Editor

Figure 8-20

8.12 Live Templates
As you write Android code you will find that there are common constructs that are used frequently. For example,
a common requirement is to display a popup message to the user using the Android Toast class. Live templates
are a collection of common code constructs that can be entered into the editor by typing the initial characters
followed by a special key (set to the Tab key by default) to insert template code. To experience this in action, type
toast in the code editor followed by the Tab key and Android Studio will insert the following code at the cursor
position ready for editing:
Toast.makeText(, "", Toast.LENGTH_SHORT).show()

To list and edit existing templates, change the special key, or add your own templates, open the Preferences
dialog and select Live Templates from the Editor section of the left-hand navigation panel:

Figure 8-21
Add, remove, duplicate or reset templates using the buttons marked A in Figure 8-21 above. To modify a
template, select it from the list (B) and change the settings in the panel marked C.

8.13 Summary
The Android Studio editor goes to great length to reduce the amount of typing needed to write code and to
make that code easier to read and navigate. In this chapter we have covered a number of the key editor features
including code completion, code generation, editor window splitting, code folding, reformatting, documentation
lookup and live templates.

83

Chapter 11

11. An Introduction to Kotlin
Android development is performed primarily using Android Studio which is, in turn, based on the IntelliJ IDEA
development environment created by a company named JetBrains. Prior to the release of Android Studio 3.0,
all Android apps were written using Android Studio and the Java programming language (with some occasional
C++ code when needed).

Since the introduction of Android Studio 3.0, however, developers now have the option of creating Android apps
using another programming language called Kotlin. Although detailed coverage of all features of this language
is beyond the scope of this book (entire books can and have been written covering solely Kotlin), the objective
of this and the following six chapters is to provide enough information to begin programming in Kotlin and
quickly get up to speed developing Android apps using this programming language.

11.1 What is Kotlin?
Named after an island located in the Baltic Sea, Kotlin is a programming language created by JetBrains and
follows Java in the tradition of naming programming languages after islands. Kotlin code is intended to be easier
to understand and write and also safer than many other programming languages. The language, compiler and
related tools are all open source and available for free under the Apache 2 license.

The primary goals of the Kotlin language are to make code both concise and safe. Code is generally considered
concise when it can be easily read and understood. Conciseness also plays a role when writing code, allowing
code to be written more quickly and with greater efficiency. In terms of safety, Kotlin includes a number of
features that improve the chances that potential problems will be identified when the code is being written
instead of causing runtime crashes.

A third objective in the design and implementation of Kotlin involves interoperability with Java.

11.2 Kotlin and Java
Originally introduced by Sun Microsystems in 1995 Java is still by far the most popular programming language
in use today. Until the introduction of Kotlin, it is quite likely that every Android app available on the market
was written in Java. Since acquiring the Android operating system, Google has invested heavily in tuning and
optimizing compilation and runtime environments for running Java-based code on Android devices.

Rather than try to re-invent the wheel, Kotlin is designed to both integrate with and work alongside Java. When
Kotlin code is compiled it generates the same bytecode as that generated by the Java compiler enabling projects
to be built using a combination of Java and Kotlin code. This compatibility also allows existing Java frameworks
and libraries to be used seamlessly from within Kotlin code and also for Kotlin code to be called from within
Java.

Kotlin’s creators also acknowledged that while there were ways to improve on existing languages, there are many
features of Java that did not need to be changed. Consequently, those familiar with programming in Java will
find many of these skills to be transferable to Kotlin-based development. Programmers with Swift programming
experience will also find much that is familiar when learning Kotlin.

11.3 Converting from Java to Kotlin
Given the high level of interoperability between Kotlin and Java it is not essential to convert existing Java code
to Kotlin since these two languages will comfortably co-exist within the same project. That being said, Java code

84

An Introduction to Kotlin

can be converted to Kotlin from within Android Studio using a built-in Java to Kotlin converter. To convert an
entire Java source file to Kotlin, load the file into the Android Studio code editor and select the Code -> Convert
Java File to Kotlin File menu option. Alternatively, blocks of Java code may be converted to Kotlin by cutting the
code and pasting it into an existing Kotlin file within the Android Studio code editor. Note when performing
Java to Kotlin conversions that the Java code will not always convert to the best possible Kotlin code and that
time should be taken to review and tidy up the code after conversion.

11.4 Kotlin and Android Studio
Support for Kotlin is provided within Android Studio via the Kotlin Plug-in which is integrated by default into
Android Studio 3.0 or later.

11.5 Experimenting with Kotlin
When learning a new programming language, it is often useful to be able to enter and execute snippets of code.
One of the best ways to do this with Kotlin is to use the Kotlin Playground (Figure 11-1) located at https://play.
kotlinlang.org:

Figure 11-1
In addition to providing an environment in which Kotlin code may be quickly entered and executed, the
playground also includes a set of examples and tutorials demonstrating key Kotlin features in action.

Try out some Kotlin code by opening a browser window, navigating to the playground and entering the following
into the main code panel:
fun main(args: Array<String>) {

 println("Welcome to Kotlin")

 for (i in 1..8) {

 println("i = $i")

 }

https://play.kotlinlang.org/
https://play.kotlinlang.org/

85

An Introduction to Kotlin

}

After entering the code, click on the Run button and note the output in the console panel:

Figure 11-2

11.6 Semi-colons in Kotlin
Unlike programming languages such as Java and C++, Kotlin does not require semi-colons at the end of each
statement or expression line. The following, therefore, is valid Kotlin code:
val mynumber = 10

println(mynumber)

Semi-colons are only required when multiple statements appear on the same line:
val mynumber = 10; println(mynumber)

11.7 Summary
For the first time since the Android operating system was introduced, developers now have an alternative to
writing apps in Java code. Kotlin is a programming language developed by JetBrains, the company that created
the development environment on which Android Studio is based. Kotlin is intended to make code safer and
easier to understand and write. Kotlin is also highly compatible with Java, allowing Java and Kotlin code to
co-exist within the same projects. This interoperability ensures that most of the standard Java and Java-based
Android libraries and frameworks are available for use when developing using Kotlin.

Kotlin support for Android Studio is provided via a plug-in bundled with Android Studio 3.0 or later. This plug-
in also provides a converter to translate Java code to Kotlin.

When learning Kotlin, the online playground provides a useful environment for quickly trying out Kotlin code.

113

Chapter 15

15. An Overview of Kotlin Functions
and Lambdas
Kotlin functions and lambdas are a vital part of writing well-structured and efficient code and provide a way to
organize programs while avoiding code repetition. In this chapter we will look at how functions and lambdas
are declared and used within Kotlin.

15.1 What is a Function?
A function is a named block of code that can be called upon to perform a specific task. It can be provided data
on which to perform the task and is capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Kotlin program, the code to perform the arithmetic
can be placed in a function. The function can be programmed to accept the values on which the arithmetic
is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the
program code where the calculation is required the function is simply called, parameter values passed through
as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however,
a subtle difference. The values that a function is able to accept when it is called are referred to as parameters. At
the point that the function is actually called and passed those values, however, they are referred to as arguments.

15.2 How to Declare a Kotlin Function
A Kotlin function is declared using the following syntax:
fun <function name> (<para name>: <para type>, <para name>: <para type>, ...):
<return type> {

 // Function code

}

This combination of function name, parameters and return type are referred to as the function signature or type.
Explanations of the various fields of the function declaration are as follows:

• fun – The prefix keyword used to notify the Kotlin compiler that this is a function.

• <function name> - The name assigned to the function. This is the name by which the function will be
referenced when it is called from within the application code.

• <para name> - The name by which the parameter is to be referenced in the function code.

• <para type> - The type of the corresponding parameter.

• <return type> - The data type of the result returned by the function. If the function does not return a result
then no return type is specified.

• Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result and simply displays a message:
fun sayHello() {

114

An Overview of Kotlin Functions and Lambdas

 println("Hello")

}

The following sample function, on the other hand, takes an integer and a string as parameters and returns a
string result:
fun buildMessageFor(name: String, count: Int): String {

 return("$name, you are customer number $count")

}

15.3 Calling a Kotlin Function
Once declared, functions are called using the following syntax:
<function name> (<arg1>, <arg2>, ...)

Each argument passed through to a function must match the parameters the function is configured to accept.
For example, to call a function named sayHello that takes no parameters and returns no value, we would write
the following code:
sayHello()

In the case of a message that accepts parameters, the function could be called as follows:
buildMessageFor("John", 10)

15.4 Single Expression Functions
When a function contains a single expression, it is not necessary to include the braces around the expression.
All that is required is an equals sign (=) after the function declaration followed by the expression. The following
function contains a single expression declared in the usual way:
fun multiply(x: Int, y: Int): Int {

 return x * y

}

Below is the same function expressed as a single line expression:
fun multiply(x: Int, y: Int): Int = x * y

When using single line expressions, the return type may be omitted in situations where the compiler is able to
infer the type returned by the expression making for even more compact code:
fun multiply(x: Int, y: Int) = x * y

15.5 Local Functions
A local function is a function that is embedded within another function. In addition, a local function has access
to all of the variables contained within the enclosing function:
fun main(args: Array<String>) {

 val name = "John"

 val count = 5

 fun displayString() {
 for (index in 0..count) {
 println(name)
 }
 }

115

An Overview of Kotlin Functions and Lambdas

 displayString()

}

15.6 Handling Return Values
To call a function named buildMessage that takes two parameters and returns a result, on the other hand, we
might write the following code:
val message = buildMessageFor("John", 10)

To improve code readability, the parameter names may also be specified when making the function call:
val message = buildMessageFor(name = "John", count = 10)

In the above examples, we have created a new variable called message and then used the assignment operator (=)
to store the result returned by the function.

15.7 Declaring Default Function Parameters
Kotlin provides the ability to designate a default parameter value to be used in the event that the value is not
provided as an argument when the function is called. This simply involves assigning the default value to the
parameter when the function is declared.

To see default parameters in action the buildMessageFor function will be modified so that the string “Customer”
is used as a default in the event that a customer name is not passed through as an argument. Similarly, the count
parameter is declared with a default value of 0:
fun buildMessageFor(name: String = "Customer", count: Int = 0): String {
 return("$name, you are customer number $count")

}

When parameter names are used when making the function call, any parameters for which defaults have been
specified may be omitted. The following function call, for example, omits the customer name argument but still
compiles because the parameter name has been specified for the second argument:
val message = buildMessageFor(count = 10)

If parameter names are not used within the function call, however, only the trailing arguments may be omitted:
val message = buildMessageFor("John") // Valid

val message = buildMessageFor(10) // Invalid

15.8 Variable Number of Function Parameters
It is not always possible to know in advance the number of parameters a function will need to accept when it is
called within application code. Kotlin handles this possibility through the use of the vararg keyword to indicate
that the function accepts an arbitrary number of parameters of a specified data type. Within the body of the
function, the parameters are made available in the form of an array object. The following function, for example,
takes as parameters a variable number of String values and then outputs them to the console panel:
fun displayStrings(vararg strings: String)

{

 for (string in strings) {

 println(string)

 }

}

displayStrings("one", "two", "three", "four")

116

An Overview of Kotlin Functions and Lambdas

Kotlin does not permit multiple vararg parameters within a function and any single parameters supported by
the function must be declared before the vararg declaration:
fun displayStrings(name: String, vararg strings: String)

{

 for (string in strings) {

 println(string)

 }

}

15.9 Lambda Expressions
Having covered the basics of functions in Kotlin it is now time to look at the concept of lambda expressions.
Essentially, lambdas are self-contained blocks of code. The following code, for example, declares a lambda,
assigns it to a variable named sayHello and then calls the function via the lambda reference:
val sayHello = { println("Hello") }

sayHello()

Lambda expressions may also be configured to accept parameters and return results. The syntax for this is as
follows:
{<para name>: <para type>, <para name> <para type>, ... ->

 // Lambda expression here

}

The following lambda expression, for example, accepts two integer parameters and returns an integer result:
val multiply = { val1: Int, val2: Int -> val1 * val2 }

val result = multiply(10, 20)

Note that the above lambda examples have assigned the lambda code block to a variable. This is also possible
when working with functions. Of course, the following syntax will execute the function and assign the result of
that execution to a variable, instead of assigning the function itself to the variable:
val myvar = myfunction()

To assign a function reference to a variable, simply remove the parentheses and prefix the function name with
double colons (::) as follows. The function may then be called simply by referencing the variable name:
val mavar = ::myfunction

myvar()

A lambda block may be executed directly by placing parentheses at the end of the expression including any
arguments. The following lambda directly executes the multiplication lambda expression multiplying 10 by 20.
val result = { val1: Int, val2: Int -> val1 * val2 }(10, 20)

The last expression within a lambda serves as the expressions return value (hence the value of 200 being assigned
to the result variable in the above multiplication examples). In fact, unlike functions, lambdas do not support
the return statement. In the absence of an expression that returns a result (such as an arithmetic or comparison
expression), simply declaring the value as the last item in the lambda will cause that value to be returned. The
following lambda returns the Boolean true value after printing a message:
val result = { println("Hello"); true }()

Similarly, the following lambda simply returns a string literal:
val nextmessage = { println("Hello"); "Goodbye" }()

117

An Overview of Kotlin Functions and Lambdas

A particularly useful feature of lambdas and the ability to create function references is that they can be both
passed to functions as arguments and returned as results. This concept, however, requires an understanding of
function types and higher-order functions.

15.10 Higher-order Functions
On the surface, lambdas and function references do not seem to be particularly compelling features. The
possibilities that these features offer become more apparent, however, when we consider that lambdas and
function references have the same capabilities of many other data types. In particular, these may be passed
through as arguments to another function, or even returned as a result from a function.

A function that is capable of receiving a function or lambda as an argument, or returning one as a result is
referred to as a higher-order function.

Before we look at what is, essentially, the ability to plug one function into another, it is first necessary to explore
the concept of function types. The type of a function is dictated by a combination of the parameters it accepts and
the type of result it returns. A function which accepts an Int and a Double as parameters and returns a String
result for example is considered to have the following function type:
(Int, Double) -> String

In order to accept a function as a parameter, the receiving function simply declares the type of the function it is
able to accept.

For the purposes of an example, we will begin by declaring two unit conversion functions:
fun inchesToFeet (inches: Double): Double {

 return inches * 0.0833333

}

fun inchesToYards (inches: Double): Double {

 return inches * 0.0277778

}

The example now needs an additional function, the purpose of which is to perform a unit conversion and print
the result in the console panel. This function needs to be as general purpose as possible, capable of performing
a variety of different measurement unit conversions. In order to demonstrate functions as parameters, this
new function will take as a parameter a function type that matches both the inchesToFeet and inchesToYards
functions together with a value to be converted. Since the type of these functions is equivalent to (Double) ->
Double, our general purpose function can be written as follows:
fun outputConversion(converterFunc: (Double) -> Double, value: Double) {

 val result = converterFunc(value)

 println("Result of conversion is $result")

}

When the outputConversion function is called, it will need to be passed a function matching the declared type.
That function will be called to perform the conversion and the result displayed in the console panel. This means
that the same function can be called to convert inches to both feet and yards, simply by “plugging in” the
appropriate converter function as a parameter, keeping in mind that it is the function reference that is being
passed as an argument:
outputConversion(::inchesToFeet, 22.45)

outputConversion(::inchesToYards, 22.45)

Functions can also be returned as a data type simply by declaring the type of the function as the return type.

118

An Overview of Kotlin Functions and Lambdas

The following function is configured to return either our inchesToFeet or inchesToYards function type (in other
words a function which accepts and returns a Double value) based on the value of a Boolean parameter:
fun decideFunction(feet: Boolean): (Double) -> Double

{

 if (feet) {

 return ::inchesToFeet

 } else {

 return ::inchesToYards

 }

}

When called, the function will return a function reference which can then be used to perform the conversion:
val converter = decideFunction(true)

val result = converter(22.4)

println(result)

15.11 Summary
Functions and lambda expressions are self-contained blocks of code that can be called upon to perform a
specific task and provide a mechanism for structuring code and promoting reuse. This chapter has introduced
the basic concepts of function and lambda declaration and implementation in addition to the use of higher-
order functions that allow lambdas and functions to be passed as arguments and returned as results.

141

Chapter 19

19. Understanding Android
Application and Activity Lifecycles
In earlier chapters we have learned that Android applications run within processes and that they are comprised
of multiple components in the form of activities, services and broadcast receivers. The goal of this chapter is to
expand on this knowledge by looking at the lifecycle of applications and activities within the Android runtime
system.

Regardless of the fanfare about how much memory and computing power resides in the mobile devices of
today compared to the desktop systems of yesterday, it is important to keep in mind that these devices are
still considered to be “resource constrained” by the standards of modern desktop and laptop based systems,
particularly in terms of memory. As such, a key responsibility of the Android system is to ensure that these
limited resources are managed effectively and that both the operating system and the applications running on
it remain responsive to the user at all times. To achieve this, Android is given full control over the lifecycle and
state of both the processes in which the applications run, and the individual components that comprise those
applications.

An important factor in developing Android applications, therefore, is to gain an understanding of both the
application and activity lifecycle management models of Android, and the ways in which an application can
react to the state changes that are likely to be imposed upon it during its execution lifetime.

19.1 Android Applications and Resource Management
Each running Android application is viewed by the operating system as a separate process. If the system identifies
that resources on the device are reaching capacity it will take steps to terminate processes to free up memory.

When making a determination as to which process to terminate to free up memory, the system takes into
consideration both the priority and state of all currently running processes, combining these factors to create
what is referred to by Google as an importance hierarchy. Processes are then terminated starting with the lowest
priority and working up the hierarchy until sufficient resources have been liberated for the system to function.

19.2 Android Process States
Processes host applications and applications are made up of components. Within an Android system, the current
state of a process is defined by the highest-ranking active component within the application that it hosts. As
outlined in Figure 19-1, a process can be in one of the following five states at any given time:

142

Understanding Android Application and Activity Lifecycles

Figure 19-1
19.2.1 Foreground Process
These processes are assigned the highest level of priority. At any one time, there are unlikely to be more than one
or two foreground processes active and these are usually the last to be terminated by the system. A process must
meet one or more of the following criteria to qualify for foreground status:

• Hosts an activity with which the user is currently interacting.

• Hosts a Service connected to the activity with which the user is interacting.

• Hosts a Service that has indicated, via a call to startForeground(), that termination would be disruptive to the
user experience.

• Hosts a Service executing either its onCreate(), onResume() or onStart() callbacks.

• Hosts a Broadcast Receiver that is currently executing its onReceive() method.

19.2.2 Visible Process
A process containing an activity that is visible to the user but is not the activity with which the user is interacting
is classified as a “visible process”. This is typically the case when an activity in the process is visible to the user,
but another activity, such as a partial screen or dialog, is in the foreground. A process is also eligible for visible
status if it hosts a Service that is, itself, bound to a visible or foreground activity.

19.2.3 Service Process
Processes that contain a Service that has already been started and is currently executing.

19.2.4 Background Process
A process that contains one or more activities that are not currently visible to the user, and does not host a
Service that qualifies for Service Process status. Processes that fall into this category are at high risk of termination
if additional memory needs to be freed for higher priority processes. Android maintains a dynamic list of
background processes, terminating processes in chronological order such that processes that were the least
recently in the foreground are killed first.

143

Understanding Android Application and Activity Lifecycles

19.2.5 Empty Process
Empty processes no longer contain any active applications and are held in memory ready to serve as hosts for
newly launched applications. This is somewhat analogous to keeping the doors open and the engine running on
a bus in anticipation of passengers arriving. Such processes are, obviously, considered the lowest priority and are
the first to be killed to free up resources.

19.3 Inter-Process Dependencies
The situation with regard to determining the highest priority process is slightly more complex than outlined in
the preceding section for the simple reason that processes can often be inter-dependent. As such, when making
a determination as to the priority of a process, the Android system will also take into consideration whether the
process is in some way serving another process of higher priority (for example, a service process acting as the
content provider for a foreground process). As a basic rule, the Android documentation states that a process can
never be ranked lower than another process that it is currently serving.

19.4 The Activity Lifecycle
As we have previously determined, the state of an Android process is determined largely by the status of the
activities and components that make up the application that it hosts. It is important to understand, therefore,
that these activities also transition through different states during the execution lifetime of an application. The
current state of an activity is determined, in part, by its position in something called the Activity Stack.

19.5 The Activity Stack
For each application that is running on an Android device, the runtime system maintains an Activity Stack.
When an application is launched, the first of the application’s activities to be started is placed onto the stack.
When a second activity is started, it is placed on the top of the stack and the previous activity is pushed down.
The activity at the top of the stack is referred to as the active (or running) activity. When the active activity exits,
it is popped off the stack by the runtime and the activity located immediately beneath it in the stack becomes
the current active activity. The activity at the top of the stack might, for example, simply exit because the task
for which it is responsible has been completed. Alternatively, the user may have selected a “Back” button on the
screen to return to the previous activity, causing the current activity to be popped off the stack by the runtime
system and therefore destroyed. A visual representation of the Android Activity Stack is illustrated in Figure
19-2.

As shown in the diagram, new activities are pushed on to the top of the stack when they are started. The current
active activity is located at the top of the stack until it is either pushed down the stack by a new activity, or
popped off the stack when it exits or the user navigates to the previous activity. If resources become constrained,
the runtime will kill activities, starting with those at the bottom of the stack.

The Activity Stack is what is referred to in programming terminology as a Last-In-First-Out (LIFO) stack in that
the last item to be pushed onto the stack is the first to be popped off.

144

Understanding Android Application and Activity Lifecycles

Figure 19-2

19.6 Activity States
An activity can be in one of a number of different states during the course of its execution within an application:

· Active / Running – The activity is at the top of the Activity Stack, is the foreground task visible on the
device screen, has focus and is currently interacting with the user. This is the least likely activity to be
terminated in the event of a resource shortage.

· Paused – The activity is visible to the user but does not currently have focus (typically because this activity
is partially obscured by the current active activity). Paused activities are held in memory, remain attached
to the window manager, retain all state information and can quickly be restored to active status when
moved to the top of the Activity Stack.

· Stopped – The activity is currently not visible to the user (in other words it is totally obscured on the
device display by other activities). As with paused activities, it retains all state and member information,
but is at higher risk of termination in low memory situations.

· Killed – The activity has been terminated by the runtime system in order to free up memory and is no
longer present on the Activity Stack. Such activities must be restarted if required by the application.

19.7 Configuration Changes
So far in this chapter, we have looked at two of the causes for the change in state of an Android activity, namely the
movement of an activity between the foreground and background, and termination of an activity by the runtime
system to free up memory. In fact, there is a third scenario in which the state of an activity can dramatically
change and this involves a change to the device configuration.

145

Understanding Android Application and Activity Lifecycles

By default, any configuration change that impacts the appearance of an activity (such as rotating the orientation
of the device between portrait and landscape, or changing a system font setting) will cause the activity to be
destroyed and recreated. The reasoning behind this is that such changes affect resources such as the layout of
the user interface and simply destroying and recreating impacted activities is the quickest way for an activity to
respond to the configuration change. It is, however, possible to configure an activity so that it is not restarted by
the system in response to specific configuration changes.

19.8 Handling State Change
If nothing else, it should be clear from this chapter that an application and, by definition, the components
contained therein will transition through many states during the course of its lifespan. Of particular importance
is the fact that these state changes (up to and including complete termination) are imposed upon the application
by the Android runtime subject to the actions of the user and the availability of resources on the device.

In practice, however, these state changes are not imposed entirely without notice and an application will, in most
circumstances, be notified by the runtime system of the changes and given the opportunity to react accordingly.
This will typically involve saving or restoring both internal data structures and user interface state, thereby
allowing the user to switch seamlessly between applications and providing at least the appearance of multiple,
concurrently running applications.

Android provides two ways to handle the changes to the lifecycle states of the objects within in app. One
approach involves responding to state change method calls from the operating system and is covered in detail in
the next chapter entitled “Handling Android Activity State Changes”.

A new approach, and one that is recommended by Google, involves the lifecycle classes included with the
Jetpack Android Architecture components, introduced in “Modern Android App Architecture with Jetpack” and
explained in more detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

19.9 Summary
Mobile devices are typically considered to be resource constrained, particularly in terms of on-board memory
capacity. Consequently, a prime responsibility of the Android operating system is to ensure that applications,
and the operating system in general, remain responsive to the user.

Applications are hosted on Android within processes. Each application, in turn, is made up of components in
the form of activities and Services.

The Android runtime system has the power to terminate both processes and individual activities to free up
memory. Process state is taken into consideration by the runtime system when deciding whether a process is a
suitable candidate for termination. The state of a process is largely dependent upon the status of the activities
hosted by that process.

The key message of this chapter is that an application moves through a variety of states during its execution
lifespan and has very little control over its destiny within the Android runtime environment. Those processes and
activities that are not directly interacting with the user run a higher risk of termination by the runtime system.
An essential element of Android application development, therefore, involves the ability of an application to
respond to state change notifications from the operating system.

199

Chapter 26

26. A Guide to Using
ConstraintLayout in Android Studio
As mentioned more than once in previous chapters, Google has made significant changes to the Android
Studio Layout Editor tool, many of which were made solely to support user interface layout design using
ConstraintLayout. Now that the basic concepts of ConstraintLayout have been outlined in the previous chapter,
this chapter will explore these concepts in more detail while also outlining the ways in which the Layout Editor
tool allows ConstraintLayout-based user interfaces to be designed and implemented.

26.1 Design and Layout Views
The chapter entitled “A Guide to the Android Studio Layout Editor Tool” explained that the Android Studio
Layout Editor tool provides two ways to view the user interface layout of an activity in the form of Design and
Layout (also known as blueprint) views. These views of the layout may be displayed individually or, as in Figure
26-1, side-by-side:

Figure 26-1
The Design view (positioned on the left in the above figure) presents a “what you see is what you get”
representation of the layout, wherein the layout appears as it will within the running app. The Layout view,
on the other hand, displays a blueprint style of view where the widgets are represented by shaded outlines. As
can be seen in Figure 26-1 above, Layout view also displays the constraint connections (in this case opposing
constraints used to center a button within the layout). These constraints are also overlaid onto the Design view
when a specific widget in the layout is selected or when the mouse pointer hovers over the design area as
illustrated in Figure 26-2:

200

A Guide to Using ConstraintLayout in Android Studio

Figure 26-2
The appearance of constraint connections in both views can be changed using the View Options menu shown
in Figure 26-3:

Figure 26-3
In addition to the two modes of displaying the user interface layout, the Layout Editor tool also provides three
different ways of establishing the constraints required for a specific layout design.

26.2 Autoconnect Mode
Autoconnect, as the name suggests, automatically establishes constraint connections as items are added to the
layout. Autoconnect mode may be enabled and disabled using the toolbar button indicated in Figure 26-4:

Figure 26-4

201

A Guide to Using ConstraintLayout in Android Studio

Autoconnect mode uses algorithms to decide the best constraints to establish based on the position of the
widget and the widget’s proximity to both the sides of the parent layout and other elements in the layout. If any
of the automatic constraint connections fail to provide the desired behavior, these may be changed manually as
outlined later in this chapter.

26.3 Inference Mode
Inference mode uses a heuristic approach involving algorithms and probabilities to automatically implement
constraint connections after widgets have already been added to the layout. This mode is usually used when
the Autoconnect feature has been turned off and objects have been added to the layout without any constraint
connections. This allows the layout to be designed simply by dragging and dropping objects from the palette
onto the layout canvas and making size and positioning changes until the layout appears as required. In essence
this involves “painting” the layout without worrying about constraints. Inference mode may also be used at any
time during the design process to fill in missing constraints within a layout.

Constraints are automatically added to a layout when the Infer constraints button (Figure 26-5) is clicked:

Figure 26-5
As with Autoconnect mode, there is always the possibility that the Layout Editor tool will infer incorrect
constraints, though these may be modified and corrected manually.

26.4 Manipulating Constraints Manually
The third option for implementing constraint connections is to do so manually. When doing so, it will be helpful
to understand the various handles that appear around a widget within the Layout Editor tool. Consider, for
example, the widget shown in Figure 26-6:

Figure 26-6
Clearly the spring-like lines (A) represent established constraint connections leading from the sides of the widget

202

A Guide to Using ConstraintLayout in Android Studio

to the targets. The small square markers (B) in each corner of the object are resize handles which, when clicked
and dragged, serve to resize the widget. The small circle handles (C) located on each side of the widget are the
side constraint anchors. To create a constraint connection, click on the handle and drag the resulting line to the
element to which the constraint is to be connected (such as a guideline or the side of either the parent layout or
another widget) as outlined in Figure 26-7. When connecting to the side of another widget, simply drag the line
to the side constraint handle of that widget and release the line when the widget and handle highlight.

Figure 26-7
If the constraint line is dragged to a widget and released, but not attached to a constraint handle, the layout
editor will display a menu containing a list of the sides to which the constraint may be attached. In Figure 26-8,
for example, the constraint can be attached to the top or bottom edge of the destination button widget:

Figure 26-8
An additional marker indicates the anchor point for baseline constraints whereby the content within the widget
(as opposed to outside edges) is used as the alignment point. To display this marker, simply right-click on the
widget and select the Show Baseline menu option. To establish a constraint connection from a baseline constraint
handle, simply hover the mouse pointer over the handle until it highlights before clicking and dragging to the
target (such as the baseline anchor of another widget as shown in Figure 26-9).

Figure 26-9
To hide the baseline anchors, right click on the widget a second time and select the Hide Baseline menu option.

26.5 Adding Constraints in the Inspector
Constraints may also be added to a view within the Android Studio Layout Editor tool using the Inspector panel
located in the Attributes tool window as shown in Figure 26-10. The square in the center represents the currently
selected view and the areas around the square the constraints, if any, applied to the corresponding sides of the
view:

203

A Guide to Using ConstraintLayout in Android Studio

Figure 26-10
The absence of a constraint on a side of the view is represented by a dotted line leading to a blue circle containing
a plus sign (as is the case with the bottom edge of the view in the above figure). To add a constraint, simply
click on this blue circle and the layout editor will add a constraint connected to what it considers to be the most
appropriate target within the layout.

26.6 Viewing Constraints in the Attributes Window
A list of constraints configured on the currently select widget can be viewing by displaying the Constraints
section of the Attributes tool window as shown in Figure 26-11 below:

Figure 26-11
Clicking on a constraint in the list will select that constraint within the design layout.

204

A Guide to Using ConstraintLayout in Android Studio

26.7 Deleting Constraints
To delete an individual constraint, simply select the constraint either within the design layout or the Attributes
tool window so that it highlights (in Figure 26-12, for example, the right-most constraint has been selected) and
tap the keyboard delete key. The constraint will then be removed from the layout.

Figure 26-12
Another option is to hover the mouse pointer over the constraint anchor while holding down the Ctrl (Cmd on
macOS) key and clicking on the anchor after it turns red:

Figure 26-13
Alternatively, remove all of the constraints on a widget by right-clicking on it selecting the Clear Constraints of
Selection menu option.

To remove all of the constraints from every widget in a layout, use the toolbar button highlighted in Figure 26-
14:

Figure 26-14

26.8 Adjusting Constraint Bias
In the previous chapter, the concept of using bias settings to favor one opposing constraint over another was
outlined. Bias within the Android Studio Layout Editor tool is adjusted using the Inspector located in the
Attributes tool window and shown in Figure 26-15. The two sliders indicated by the arrows in the figure are
used to control the bias of the vertical and horizontal opposing constraints of the currently selected widget.

Figure 26-15

205

A Guide to Using ConstraintLayout in Android Studio

26.9 Understanding ConstraintLayout Margins
Constraints can be used in conjunction with margins to implement fixed gaps between a widget and another
element (such as another widget, a guideline or the side of the parent layout). Consider, for example, the
horizontal constraints applied to the Button object in Figure 26-16:

Figure 26-16
As currently configured, horizontal constraints run to the left and right edges of the parent ConstraintLayout.
As such, the widget has opposing horizontal constraints indicating that the ConstraintLayout layout engine
has some discretion in terms of the actual positioning of the widget at runtime. This allows the layout some
flexibility to accommodate different screen sizes and device orientation. The horizontal bias setting is also able to
control the position of the widget right up to the right-hand side of the layout. Figure 26-17, for example, shows
the same button with 100% horizontal bias applied:

Figure 26-17
ConstraintLayout margins can appear at the end of constraint connections and represent a fixed gap into which
the widget cannot be moved even when adjusting bias or in response to layout changes elsewhere in the activity.
In Figure 26-18, the right-hand constraint now includes a 50dp margin into which the widget cannot be moved
even though the bias is still set at 100%.

Figure 26-18
Existing margin values on a widget can be modified from within the Inspector. As can be seen in Figure 26-19,
a drop-down menu is being used to change the right-hand margin on the currently selected widget to 16dp.
Alternatively, clicking on the current value also allows a number to be typed into the field.

206

A Guide to Using ConstraintLayout in Android Studio

Figure 26-19
The default margin for new constraints can be changed at any time using the option in the toolbar highlighted
in Figure 26-20:

Figure 26-20

26.10 The Importance of Opposing Constraints and Bias
As discussed in the previous chapter, opposing constraints, margins and bias form the cornerstone of responsive
layout design in Android when using the ConstraintLayout. When a widget is constrained without opposing
constraint connections, those constraints are essentially margin constraints. This is indicated visually within
the Layout Editor tool by solid straight lines accompanied by margin measurements as shown in Figure 26-21.

Figure 26-21

207

A Guide to Using ConstraintLayout in Android Studio

The above constraints essentially fix the widget at that position. The result of this is that if the device is rotated
to landscape orientation, the widget will no longer be visible since the vertical constraint pushes it beyond the
top edge of the device screen (as is the case in Figure 26-22). A similar problem will arise if the app is run on a
device with a smaller screen than that used during the design process.

Figure 26-22
When opposing constraints are implemented, the constraint connection is represented by the spring-like jagged
line (the spring metaphor is intended to indicate that the position of the widget is not fixed to absolute X and Y
coordinates):

Figure 26-23
In the above layout, vertical and horizontal bias settings have been configured such that the widget will always
be positioned 90% of the distance from the bottom and 35% from the left-hand edge of the parent layout. When

208

A Guide to Using ConstraintLayout in Android Studio

rotated, therefore, the widget is still visible and positioned in the same location relative to the dimensions of the
screen:

Figure 26-24
When designing a responsive and adaptable user interface layout, it is important to take into consideration
both bias and opposing constraints when manually designing a user interface layout and making corrections to
automatically created constraints.

26.11 Configuring Widget Dimensions
The inner dimensions of a widget within a ConstraintLayout can also be configured using the Inspector. As
outlined in the previous chapter, widget dimensions can be set to wrap content, fixed or match constraint
modes. The prevailing settings for each dimension on the currently selected widget are shown within the square
representing the widget in the Inspector as illustrated in Figure 26-25:

Figure 26-25
In the above figure, both the horizontal and vertical dimensions are set to wrap content mode (indicated by the
inward pointing chevrons). The inspector uses the following visual indicators to represent the three dimension
modes:

Fixed Size

Match Constraint

209

A Guide to Using ConstraintLayout in Android Studio

Wrap Content

Table 26-1
To change the current setting, simply click on the indicator to cycle through the three different settings. When
the dimension of a view within the layout editor is set to match constraint mode, the corresponding sides of the
view are drawn with the spring-like line instead of the usual straight lines. In Figure 26-26, for example, only the
width of the view has been set to match constraint:

Figure 26-26
In addition, the size of a widget can be expanded either horizontally or vertically to the maximum amount allowed
by the constraints and other widgets in the layout using the Expand horizontally and Expand vertically options.
These are accessible by right clicking on a widget within the layout and selecting the Organize option from the
resulting menu (Figure 26-27). When used, the currently selected widget will increase in size horizontally or
vertically to fill the available space around it.

Figure 26-27

26.12 Design Time Tools Positioning
The chapter entitled “A Guide to the Android Studio Layout Editor Tool” introduced the concept of the tools
namespace and explained how it can be used to set visibility attributes which only take effect within the layout
editor. Behind the scenes, Android Studio also uses tools attributes to hold widgets in position when they are
placed on the layout without constraints. Imagine, for example, a Button placed onto the layout while autoconnect
mode is disabled. While the widget will appear to be in the correct position within the preview canvas, when the
app is run it will appear in the top left-hand corner of the screen. This is because the widget has no constraints
to tell the ConstraintLayout parent where to position it.

The reason that the widget appears to be in the correct location in the layout editor is because Android Studio
has set absolute X and Y positioning tools attributes to keep it in the correct location until constraints can be
added. Within the XML layout file, this might read as follows:

210

A Guide to Using ConstraintLayout in Android Studio

<Button

 android:id="@+id/button4"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="Button"

 tools:layout_editor_absoluteX="111dp"
 tools:layout_editor_absoluteY="88dp" />

Once adequate constraints have been added to the widget, these tools attributes will be removed by the layout
editor. A useful technique to quickly identify which widgets lack constraints without waiting until the app runs
is to click on the button highlighted in Figure 26-28 to toggle tools position visibility. Any widgets that jump to
the top left-hand corner are not fully constrained and are being held in place by temporary tools absolute X and
Y positioning attributes.

Figure 26-28

26.13 Adding Guidelines
Guidelines provide additional elements to which constraints may be anchored. Guidelines are added by right-
clicking on the layout and selecting either the Vertical Guideline or Horizontal Guideline menu option or using
the toolbar menu options as shown in Figure 26-29:

Figure 26-29
Alternatively, horizontal and vertical Guidelines may be dragged from the Helpers section of the Palette and
dropped either onto the layout canvas or Component Tree panel:

211

A Guide to Using ConstraintLayout in Android Studio

Figure 26-30
Once added, a guideline will appear as a dashed line in the layout and may be moved simply by clicking and
dragging the line. To establish a constraint connection to a guideline, click in the constraint handler of a widget
and drag to the guideline before releasing. In Figure 26-31, the left sides of two Buttons are connected by
constraints to a vertical guideline.

The position of a vertical guideline can be specified as an absolute distance from either the left or the right of
the parent layout (or the top or bottom for a horizontal guideline). The vertical guideline in the above figure, for
example, is positioned 96dp from the left-hand edge of the parent.

Figure 26-31
Alternatively, the guideline may be positioned as a percentage of the overall width or height of the parent layout.
To switch between these three modes, select the guideline and click on the circle at the top or start of the
guideline (depending on whether the guideline is vertical or horizontal). Figure 26-32, for example, shows a
guideline positioned based on percentage:

212

A Guide to Using ConstraintLayout in Android Studio

Figure 26-32

26.14 Adding Barriers
Barriers are added by right-clicking on the layout and selecting either the Vertical Barrier or Horizontal Barrier
option from the Add helpers... menu, or using the toolbar menu options as shown previously in Figure 26-29.
Alternatively, locate the Barrier types in the Helpers section of the Palette and drag and drop them either onto
the layout canvas or Component Tree panel.

Once a barrier has been added to the layout, it will appear as an entry in the Component Tree panel:

Figure 26-33
To add views as reference views (in other words, the views that control the position of the barrier), simply drag
the widgets from within the Component Tree onto the barrier entry. In Figure 26-34, for example, widgets
named textView1 and textView2 have been assigned as the reference widgets for barrier1:

Figure 26-34
After the reference views have been added, the barrier needs to be configured to specify the direction of the
barrier in relation those views. This is the barrier direction setting and is defined within the Attributes tool
window when the barrier is selected in the Component Tree panel:

213

A Guide to Using ConstraintLayout in Android Studio

Figure 26-35
The following figure shows a layout containing a barrier declared with textView1 and textView2 acting as the
reference views and textview3 as the constrained view. Since the barrier is pushing from the end of the reference
views towards the constrained view, the barrier direction has been set to end:

Figure 26-36

26.15 Adding a Group
To add a Group to a layout, right-click on the layout and select the Group option from the Add helpers.. menu,
or use the toolbar menu options as shown previously in Figure 26-29. Alternatively, locate the Group item in
the Helpers section of the Palette and drag and drop it either onto the layout canvas or Component Tree panel.

To add widgets to the group, select them in the Component Tree and drag and drop them onto the Group entry.
Figure 26-37 for example, shows three selected widgets being added to a group:

Figure 26-37
Any widgets referenced by the group will appear italicized beneath the group entry in the Component Tree as

214

A Guide to Using ConstraintLayout in Android Studio

shown in Figure 26-38. To remove a widget from the group, simply select it and tap the keyboard delete key:

Figure 26-38
Once widgets have been assigned to the group, use the Constraints section of the Attributes tool window to
modify the visibility setting:

Figure 26-39

26.16 Working with the Flow Helper
Flow helpers may be added using either the menu or Palette as outlined previously for the other helpers. As with
the Group helper (Figure 26-37), widgets are added to a Flow instance by dragging them within the Component
Tree onto the Flow entry. Having added a Flow helper and assigned widgets to it, select it in the Component
Tree and use the Common Attributes section of the Attribute tool window to configure the flow layout behavior:

Figure 26-40

215

A Guide to Using ConstraintLayout in Android Studio

26.17 Widget Group Alignment and Distribution
The Android Studio Layout Editor tool provides a range of alignment and distribution actions that can be
performed when two or more widgets are selected in the layout. Simply shift-click on each of the widgets to be
included in the action, right-click on the layout and make a selection from the many options displayed in the
Align menu:

Figure 26-41
As shown in Figure 26-42 below, these options are also accessible via the Align button located in the Layout
Editor toolbar:

Figure 26-42
Similarly, the Pack menu (Figure 26-43) can be used to collectively reposition the selected widgets so that they
are packed tightly together either vertically or horizontally. It achieves this by changing the absolute x and y
coordinates of the widgets but does not apply any constraints. The two distribution options in the Pack menu,
on the other hand, move the selected widgets so that they are spaced evenly apart in either vertical or horizontal
axis and applies constraints between the views to maintain this spacing.

216

A Guide to Using ConstraintLayout in Android Studio

Figure 26-43

26.18 Converting other Layouts to ConstraintLayout
For existing user interface layouts that make use of one or more of the other Android layout classes (such as
RelativeLayout or LinearLayout), the Layout Editor tool provides an option to convert the user interface to use
the ConstraintLayout.

When the Layout Editor tool is open and in Design mode, the Component Tree panel is displayed beneath the
Palette. To convert a layout to ConstraintLayout, locate it within the Component Tree, right-click on it and select
the Convert <current layout> to Constraint Layout menu option:

Figure 26-44
When this menu option is selected, Android Studio will convert the selected layout to a ConstraintLayout and
use inference to establish constraints designed to match the layout behavior of the original layout type.

26.19 Summary
A redesigned Layout Editor tool combined with ConstraintLayout makes designing complex user interface
layouts with Android Studio a relatively fast and intuitive process. This chapter has covered the concepts of
constraints, margins and bias in more detail while also exploring the ways in which ConstraintLayout-based
design has been integrated into the Layout Editor tool.

257

Chapter 33

33. An Overview and Example of
Android Event Handling
Much has been covered in the previous chapters relating to the design of user interfaces for Android applications.
An area that has yet to be covered, however, involves the way in which a user’s interaction with the user interface
triggers the underlying activity to perform a task. In other words, we know from the previous chapters how to
create a user interface containing a button view, but not how to make something happen within the application
when it is touched by the user.

The primary objective of this chapter, therefore, is to provide an overview of event handling in Android
applications together with an Android Studio based example project.

33.1 Understanding Android Events
Events in Android can take a variety of different forms, but are usually generated in response to an external
action. The most common form of events, particularly for devices such as tablets and smartphones, involve some
form of interaction with the touch screen. Such events fall into the category of input events.

The Android framework maintains an event queue into which events are placed as they occur. Events are then
removed from the queue on a first-in, first-out (FIFO) basis. In the case of an input event such as a touch on the
screen, the event is passed to the view positioned at the location on the screen where the touch took place. In
addition to the event notification, the view is also passed a range of information (depending on the event type)
about the nature of the event such as the coordinates of the point of contact between the user’s fingertip and the
screen.

To be able to handle the event that it has been passed, the view must have in place an event listener. The Android
View class, from which all user interface components are derived, contains a range of event listener interfaces,
each of which contains an abstract declaration for a callback method. To be able to respond to an event of a
particular type, a view must register the appropriate event listener and implement the corresponding callback.
For example, if a button is to respond to a click event (the equivalent to the user touching and releasing the
button view as though clicking on a physical button) it must both register the View.onClickListener event listener
(via a call to the target view’s setOnClickListener() method) and implement the corresponding onClick() callback
method. If a “click” event is detected on the screen at the location of the button view, the Android framework will
call the onClick() method of that view when that event is removed from the event queue. It is, of course, within
the implementation of the onClick() callback method that any tasks should be performed or other methods
called in response to the button click.

33.2 Using the android:onClick Resource
Before exploring event listeners in more detail it is worth noting that a shortcut is available when all that is
required is for a callback method to be called when a user “clicks” on a button view in the user interface. Consider
a user interface layout containing a button view named button1 with the requirement that when the user touches
the button, a method called buttonClick() declared in the activity class is called. All that is required to implement
this behavior is to write the buttonClick() method (which takes as an argument a reference to the view that
triggered the click event) and add a single line to the declaration of the button view in the XML file. For example:
<Button

258

An Overview and Example of Android Event Handling

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:onClick="buttonClick"
 android:text="Click me" />

This provides a simple way to capture click events. It does not, however, provide the range of options offered by
event handlers, which are the topic of the rest of this chapter. As will be outlined in later chapters, the onClick
property also has limitations in layouts involving fragments. When working within Android Studio Layout
Editor, the onClick property can be found and configured in the Attributes panel when a suitable view type is
selected in the device screen layout.

33.3 Event Listeners and Callback Methods
In the example activity outlined later in this chapter the steps involved in registering an event listener and
implementing the callback method will be covered in detail. Before doing so, however, it is worth taking some
time to outline the event listeners that are available in the Android framework and the callback methods
associated with each one.

• onClickListener – Used to detect click style events whereby the user touches and then releases an area of the
device display occupied by a view. Corresponds to the onClick() callback method which is passed a reference
to the view that received the event as an argument.

• onLongClickListener – Used to detect when the user maintains the touch over a view for an extended period.
Corresponds to the onLongClick() callback method which is passed as an argument the view that received the
event.

• onTouchListener – Used to detect any form of contact with the touch screen including individual or multiple
touches and gesture motions. Corresponding with the onTouch() callback, this topic will be covered in greater
detail in the chapter entitled “Android Touch and Multi-touch Event Handling”. The callback method is passed
as arguments the view that received the event and a MotionEvent object.

• onCreateContextMenuListener – Listens for the creation of a context menu as the result of a long click.
Corresponds to the onCreateContextMenu() callback method. The callback is passed the menu, the view that
received the event and a menu context object.

• onFocusChangeListener – Detects when focus moves away from the current view as the result of interaction
with a track-ball or navigation key. Corresponds to the onFocusChange() callback method which is passed the
view that received the event and a Boolean value to indicate whether focus was gained or lost.

• onKeyListener – Used to detect when a key on a device is pressed while a view has focus. Corresponds to
the onKey() callback method. Passed as arguments are the view that received the event, the KeyCode of the
physical key that was pressed and a KeyEvent object.

33.4 An Event Handling Example
In the remainder of this chapter, we will work through the creation of an Android Studio project designed to
demonstrate the implementation of an event listener and corresponding callback method to detect when the
user has clicked on a button. The code within the callback method will update a text view to indicate that the
event has been processed.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Activity template before clicking on the Next button.

Enter EventExample into the Name field and specify com.ebookfrenzy.eventexample as the package name. Before

259

An Overview and Example of Android Event Handling

clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin. Using the steps outlined in section 18.8 Migrating a Project to View Binding, convert
the project to use view binding.

33.5 Designing the User Interface
The user interface layout for the MainActivity class in this example is to consist of a ConstraintLayout, a Button
and a TextView as illustrated in Figure 33-1.

Figure 33-1
Locate and select the activity_main.xml file created by Android Studio (located in the Project tool window under
app -> res -> layouts) and double-click on it to load it into the Layout Editor tool.

Make sure that Autoconnect is enabled, then drag a Button widget from the palette and move it so that it is
positioned in the horizontal center of the layout and beneath the existing TextView widget. When correctly
positioned, drop the widget into place so that appropriate constraints are added by the autoconnect system.

Select the “Hello World!” TextView widget and use the Attributes panel to set the ID to statusText. Repeat this
step to change the ID of the Button widget to myButton.

Add any missing constraints by clicking on the Infer Constraints button in the layout editor toolbar.

With the Button widget selected, use the Attributes panel to set the text property to Press Me. Using the yellow
warning button located in the top right-hand corner of the Layout Editor (Figure 33-2), display the warnings list
and click on the Fix button to extract the text string on the button to a resource named press_me:

Figure 33-2

260

An Overview and Example of Android Event Handling

With the user interface layout now completed, the next step is to register the event listener and callback method.

33.6 The Event Listener and Callback Method
For the purposes of this example, an onClickListener needs to be registered for the myButton view. This is achieved
by making a call to the setOnClickListener() method of the button view, passing through a new onClickListener
object as an argument and implementing the onClick() callback method. Since this is a task that only needs to
be performed when the activity is created, a good location is the onCreate() method of the MainActivity class.

If the MainActivity.kt file is already open within an editor session, select it by clicking on the tab in the editor
panel. Alternatively locate it within the Project tool window by navigating to (app -> java -> com -> ebookfrenzy
-> eventexample -> MainActivity) and double-click on it to load it into the code editor. Once loaded, locate the
template onCreate() method and modify it to obtain a reference to the button view, register the event listener and
implement the onClick() callback method:
package com.ebookfrenzy.eventexample

import androidx.appcompat.app.AppCompatActivity

import android.os.Bundle

import android.view.View

import com.ebookfrenzy.eventexample.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)

 binding.myButton.setOnClickListener(object : View.OnClickListener {
 override fun onClick(v: View?) {

 }
 })
 }

}

The above code has now registered the event listener on the button and implemented the onClick() method. In
fact, the code to configure the listener can be made more efficient by using a lambda as follows:
override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)

 binding.myButton.setOnClickListener(object : View.OnClickListener {

 override fun onClick(v: View?) {

261

An Overview and Example of Android Event Handling

 }

 })

 binding.myButton.setOnClickListener {
 }
}

If the application were to be run at this point, however, there would be no indication that the event listener
installed on the button was working since there is, as yet, no code implemented within the body of the lambda.
The goal for the example is to have a message appear on the TextView when the button is clicked, so some
further code changes need to be made:
override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

.

.

 binding.myButton.setOnClickListener {

 binding.statusText.text = "Button clicked"
 }

}

Complete this phase of the tutorial by compiling and running the application on either an AVD emulator or
physical Android device. On touching and releasing the button view (otherwise known as “clicking”) the text
view should change to display the “Button clicked” text.

33.7 Consuming Events
The detection of standard clicks (as opposed to long clicks) on views is a very simple case of event handling. The
example will now be extended to include the detection of long click events which occur when the user clicks and
holds a view on the screen and, in doing so, cover the topic of event consumption.

Consider the code for the onClick listener code in the above section of this chapter. The lambda code assigned
to the listener does not return any value and is not required to do so.

The code assigned to the onLongClickListener, on the other hand, is required to return a Boolean value to the
Android framework. The purpose of this return value is to indicate to the Android runtime whether or not the
callback has consumed the event. If the callback returns a true value, the event is discarded by the framework.
If, on the other hand, the callback returns a false value the Android framework will consider the event still to be
active and will consequently pass it along to the next matching event listener that is registered on the same view.

As with many programming concepts this is, perhaps, best demonstrated with an example. The first step is to
add an event listener for long clicks to the button view in the example activity:
override fun onCreate(savedInstanceState: Bundle?) {

.

.

 binding.myButton.setOnClickListener {

 binding.statusText.text = "Button clicked"

 }

 binding.myButton.setOnLongClickListener {

262

An Overview and Example of Android Event Handling

 binding.statusText.text = "Long button click"
 true
 }
}

Clearly, when a long click is detected, the lambda code will display “Long button click” on the text view. Note,
however, that the callback method also returns a value of true to indicate that it has consumed the event. Run
the application and press and hold the Button view until the “Long button click” text appears in the text view. On
releasing the button, the text view continues to display the “Long button click” text indicating that the onClick
listener code was not called.

Next, modify the code so that the onLongClick listener now returns a false value:
binding.myButton.setOnLongClickListener {

 statusText.text = "Long button click"

 false
}

Once again, compile and run the application and perform a long click on the button until the long click message
appears. Upon releasing the button this time, however, note that the onClick listener is also triggered and the text
changes to “Button clicked”. This is because the false value returned by the onLongClick listener code indicated to
the Android framework that the event was not consumed by the method and was eligible to be passed on to the
next registered listener on the view. In this case, the runtime ascertained that the onClickListener on the button
was also interested in events of this type and subsequently called the onClick listener code.

33.8 Summary
A user interface is of little practical use if the views it contains do not do anything in response to user interaction.
Android bridges the gap between the user interface and the back end code of the application through the
concepts of event listeners and callback methods. The Android View class defines a set of event listeners, which
can be registered on view objects. Each event listener also has associated with it a callback method.

When an event takes place on a view in a user interface, that event is placed into an event queue and handled
on a first in, first out basis by the Android runtime. If the view on which the event took place has registered a
listener that matches the type of event, the corresponding callback method or lambda expression is called. This
code then performs any tasks required by the activity before returning. Some callback methods are required to
return a Boolean value to indicate whether the event needs to be passed on to any other event listeners registered
on the view or discarded by the system.

Having covered the basics of event handling, the next chapter will explore in some depth the topic of touch
events with a particular emphasis on handling multiple touches.

303

Chapter 39

39. Modern Android App
Architecture with Jetpack
Until recently, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components
which, in turn, became part of Android Jetpack when it was released in 2018.

The purpose of this chapter is to provide an overview of the concepts of Jetpack, Android app architecture
recommendations and some of the key architecture components. Once the basics have been covered, these
topics will be covered in more detail and demonstrated through practical examples in later chapters.

39.1 What is Android Jetpack?
Android Jetpack consists of Android Studio, the Android Architecture Components and Android Support
Library together with a set of guidelines that recommend how an Android App should be structured. The
Android Architecture Components are designed to make it quicker and easier both to perform common tasks
when developing Android apps while also conforming to the key principle of the architectural guidelines.

While all of the Android Architecture Components will be covered in this book, the objective of this chapter
is to introduce the key architectural guidelines together with the ViewModel, LiveData, Lifecycle components
while also introducing Data Binding and the use of Repositories.

Before moving on, it is important to understand the Jetpack approach to app development is not mandatory.
While highlighting some of the shortcoming of other techniques that have gained popularity of the years, Google
stopped short of completely condemning those approaches to app development. Google appears to be taking the
position that while there is no right or wrong way to develop an app, there is a recommended way.

39.2 The “Old” Architecture
In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity which contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Up until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app) with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

39.3 Modern Android Architecture
At the most basic level, Google now advocates single activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept Google refers to as “separation of concerns”). One of the keys to this

304

Modern Android App Architecture with Jetpack

approach is the ViewModel component.

39.4 The ViewModel Component
The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the code
responsible for actually displaying and managing the user interface and interacting with the operating system.
When designed in this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data needed by those controllers.

In effect, the ViewModel only knows about the data model and corresponding logic. It knows nothing about
the user interface and makes no attempt to directly access or respond to events relating to views within the user
interface. When a UI controller needs data to display, it simply asks the ViewModel to provide it. Similarly,
when the user enters data into a view within the user interface, the UI controller passes it to the ViewModel for
handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of
how many times a UI controller is recreated during the lifecycle of an app, the ViewModel instances remain in
memory thereby maintaining data consistency. A ViewModel used by an activity, for example, will remain in
memory until the activity completely finishes which, in the single activity app, is not until the app exits.

Figure 39-1

39.5 The LiveData Component
Consider an app that displays real-time data such as the current price of a financial stock. The app would probably
use some form of stock price web service to continuously update the data model within the ViewModel with
the latest information. Obviously, this real-time data is of little use unless it is displayed to the user in a timely
manner. There are only two ways that the UI controller can ensure that the latest data is displayed in the user
interface. One option is for the controller to continuously check with the ViewModel to find out if the data has
changed since it was last displayed. The problem with this approach, however, is that it is inefficient. To maintain
the real-time nature of the data feed, the UI controller would have to run on a loop, continuously checking for
the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable . In basic terms, an observable object has the ability to notify other objects
when changes to its data occur thereby solving the problem of making sure that the user interface always matches
the data within the ViewModel

305

Modern Android App Architecture with Jetpack

This means, for example, that a UI controller that is interested a ViewModel value can set up an observer which
will, in turn, be notified when that value changes. In our hypothetical application, for example, the stock price
would be wrapped in a LiveData object within the ViewModel and the UI controller would assign an observer
to the value, declaring a method to be called when the value changes. This method will, when triggered by data
change, read the updated value from the ViewModel and use it to update the user interface.

Figure 39-2
A LiveData instance may also be declared as being mutable, allowing the observing entity to update the
underlying value held within the LiveData object. The user might, for example, enter a value in the user interface
that needs to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into
the background), the LiveData object will stop sending events to the observer. If the activity has just started or
resumes after being paused, the LiveData object will send a LiveData event to the observer so that the activity
has the most up to date value. Similarly, the LiveData instance will know when the activity is destroyed and
remove the observer to free up resources.

So far, we’ve only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

39.6 ViewModel Saved State
Android allows the user to place an active app into the background and return to it later after performing other
tasks on the device (including running other apps). When a device runs low on resources, the operating system
will rectify this by terminating background app processes, starting with the least recently used app. When the
user returns to the terminated background app, however, it should appear in the same state as when it was placed
in the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel,
this can be implemented by making use of the ViewModel Saved State module. This module allows values to be
stored in the app’s saved state and restored in the event of a system initiated process termination, a topic which
will be covered later in the chapter entitled “An Android ViewModel Saved State Tutorial”.

306

Modern Android App Architecture with Jetpack

39.7 LiveData and Data Binding
Android Jetpack includes the Data Binding Library which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written both to obtain references to the EditText and TextView views and to set and get the text properties
to reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 39-3
Data binding will be covered in greater detail starting with the chapter entitled “An Overview of Android Jetpack
Data Binding”.

39.8 Android Lifecycles
The duration from when an Android component is created to the point that it is destroyed is referred to as
the lifecycle. During this lifecycle, the component will change between different lifecycle states, usually under
the control of the operating system and in response to user actions. An activity, for example, will begin in the
initialized state before transitioning to the created state. Once the activity is running it will switch to the started
state from which it will cycle through various states including created, started, resumed and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives notification when the lifecycle state of another object
changes. This is the technique used behind the scenes by the ViewModel component to identify when an
observer has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components and may also be built into any other classes using a set lifecycle components included with the
architecture components.

Objects that are able to detect and react to lifecycle state changes in other objects are said to be lifecycle-aware,
while objects that provide access to their lifecycle state are called lifecycle-owners. Lifecycles will be covered in
greater detail in the chapter entitled “Working with Android Lifecycle-Aware Components”.

39.9 Repository Modules
If a ViewModel obtains data from one or more external sources (such as databases or web services) it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality in with the ViewModel,

307

Modern Android App Architecture with Jetpack

Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component, but rather a Java class created by the app developer
that is responsible for interfacing with the various data sources. The class then provides an interface to the
ViewModel allowing that data to be stored in the model.

Figure 39-4

39.10 Summary
Until recently, Google has tended not to recommend any particular approach to structuring an Android app. That
has now changed with the introduction of Android Jetpack which consists of a set of tools, components, libraries
and architecture guidelines. Google now recommends that an app project be divided into separate modules,
each being responsible for a particular area of functionality otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components which have been designed specifically to
make it easier to develop apps that conform to the recommended guidelines. This chapter has introduced the
ViewModel, LiveData and Lifecycle components. These will be covered in more detail starting with the next
chapter. Other architecture components not mentioned in this chapter will be covered later in the book.

329

Chapter 43

43. An Android Jetpack Data Binding
Tutorial
So far in this book we have covered the basic concepts of modern Android app architecture and looked in more
detail at the ViewModel and LiveData components. The concept of data binding was also covered in the previous
chapter and will now be used in this chapter to further modify the ViewModelDemo app.

43.1 Removing the Redundant Code
If you have not already done so, copy the ViewModelDemo project folder and save it as ViewModelDemo_
LiveData so that it can be used again in the next chapter. Once copied, open the original ViewModelDemo
project ready to implement data binding.

Before implementing data binding within the ViewModelDemo app, the power of data binding will be
demonstrated by deleting all of the code within the project that will no longer be needed by the end of this
chapter.

Launch Android Studio, open the ViewModelDemo project, edit the MainFragment.kt file and modify the code
as follows:
package com.ebookfrenzy.viewmodeldemo.ui.main

.

.

import androidx.lifecycle.Observer

class MainFragment : Fragment() {

.

.

 override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 super.onViewCreated(view, savedInstanceState)

 val resultObserver = Observer<Float> {

 result -> binding.resultText.text = result.toString()

 }

 viewModel.getResult().observe(viewLifecycleOwner, resultObserver)

 binding.convertButton.setOnClickListener {

 if (binding.dollarText.text.isNotEmpty()) {

 viewModel.setAmount(binding.dollarText.text.toString())

 } else {

 binding.resultText.text = "No Value"

 }

330

An Android Jetpack Data Binding Tutorial

 }

 }

}

Next, edit the MainViewModel.kt file and continue deleting code as follows (note also the conversion of the
dollarText variable to LiveData):
package com.ebookfrenzy.viewmodeldemo.ui.main

import androidx.lifecycle.ViewModel

import androidx.lifecycle.MutableLiveData

class MainViewModel : ViewModel() {

 private val rate = 0.74f

 private var dollarText = ""

 var dollarValue: MutableLiveData<String> = MutableLiveData()
 private var result: MutableLiveData<Float> = MutableLiveData()

 fun setAmount(value: String) {

 this.dollarText = value

 result.setValue(value.toFloat() * rate)

 }

 fun getResult(): MutableLiveData<Float> {

 return result

 }

}

Though we‘ll be adding a few additional lines of code in the course of implementing data binding, clearly data
binding has significantly reduced the amount of code that needed to be written.

43.2 Enabling Data Binding
The first step in using data binding is to enable it within the Android Studio project. This involves adding a new
property to the Gradle Scripts -> build.gradle (Module: ViewModelDemo.app) file.

Within the build.gradle file, add the element shown below to enable data binding within the project and to apply
the Kotlin kapt plugin. This plugin is required to process the data binding annotations that will be added to the
fragment XML layout file later in the chapter:
plugins {

 id 'com.android.application'

 id 'org.jetbrains.kotlin.android'

 id 'kotlin-kapt'
}

android {

 buildFeatures {

331

An Android Jetpack Data Binding Tutorial

 viewBinding true

 dataBinding true
 }

.

.

}

Once the entry has been added, a bar will appear across the top of the editor screen containing a Sync Now link.
Click this to resynchronize the project with the new build configuration settings.

43.3 Adding the Layout Element
As described in “An Overview of Android Jetpack Data Binding”, to be able to use data binding, the layout
hierarchy must have a layout component as the root view. This requires that the following changes be made
to the fragment_main.xml layout file (app -> res -> layout -> fragment_main.xml). Open this file in the layout
editor tool, switch to Code mode and make these changes:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:android="http://schemas.android.com/apk/res/android">

 <androidx.constraintlayout.widget.ConstraintLayout
 xmlns:android="http://schemas.android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

 </androidx.constraintlayout.widget.ConstraintLayout>

</layout>

Once these changes have been made, switch back to Design mode and note that the new root view, though
invisible in the layout canvas, is now listed in the component tree as shown in Figure 43-1:

Figure 43-1

Build and run the app to verify that the addition of the layout element has not changed the user interface
appearance in any way.

332

An Android Jetpack Data Binding Tutorial

43.4 Adding the Data Element to Layout File
The next step in converting the layout file to a data binding layout file is to add the data element. For this
example, the layout will be bound to MainViewModel so edit the fragment_main.xml file to add the data element
as follows:
<?xml version="1.0" encoding="utf-8"?>

<layout xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 xmlns:android="http://schemas.android.com/apk/res/android">

 <data>
 <variable
 name="myViewModel"
 type="com.ebookfrenzy.viewmodeldemo.ui.main.MainViewModel" />
 </data>

 <androidx.constraintlayout.widget.ConstraintLayout

 android:id="@+id/main"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".ui.main.MainFragment">

.

.

</layout>

Build and run the app once again to make sure that these changes take effect.

43.5 Working with the Binding Class
The next step is to modify the code within the MainFragment.kt file to inflate the data binding. This is best
achieved by rewriting the onCreateView() method:
.

.

import androidx.databinding.DataBindingUtil

import com.ebookfrenzy.viewmodeldemo.R
.

.

class MainFragment : Fragment() {

 private var _binding: FragmentMainBinding? = null

 private val binding get() = _binding!!

 companion object {

 fun newInstance() = MainFragment()

 }

333

An Android Jetpack Data Binding Tutorial

 private lateinit var viewModel: MainViewModel

 lateinit var binding: FragmentMainBinding

 override fun onCreateView(inflater: LayoutInflater, container: ViewGroup?,

 savedInstanceState: Bundle?): View {

 _binding = FragmentMainBinding.inflate(inflater, container, false)

 binding = DataBindingUtil.inflate(
 inflater, R.layout.fragment_main, container, false)

 binding.setLifecycleOwner(this)
 return binding.root

 }

 override fun onDestroyView() {

 super.onDestroyView()

 _binding = null

 }

.

.

The old code simply inflated the fragment_main.xml layout file (in other words created the layout containing all
of the view objects) and returned a reference to the root view (the top level layout container). The Data Binding
Library contains a utility class which provides a special inflation method which, in addition to constructing the
UI, also initializes and returns an instance of the layout‘s data binding class. The new code calls this method and
stores a reference to the binding class instance in a variable:
binding = DataBindingUtil.inflate(

 inflater, R.layout.fragment_main, container, false)

The binding object will only need to remain in memory for as long as the fragment is present. To ensure that the
instance is destroyed when the fragment goes away, the current fragment is declared as the lifecycle owner for
the binding object.
binding.setLifecycleOwner(this)

return binding.getRoot()

43.6 Assigning the ViewModel Instance to the Data Binding Variable
At this point, the data binding knows that it will be binding to an instance of a class of type MainViewModel but
has not yet been connected to an actual MainViewModel object. This requires the additional step of assigning
the MainViewModel instance used within the app to the viewModel variable declared in the layout file. Add this
code to the onViewCreated() method in the MainFragment.kt file as follows:
.

.

import com.ebookfrenzy.viewmodeldemo.BR.myViewModel
.

.

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 super.onViewCreated(view, savedInstanceState)

334

An Android Jetpack Data Binding Tutorial

 binding.setVariable(myViewModel, viewModel)
}

.

.

If Android Studio reports myViewModel as undefined, rebuild the project using the Build -> Make Project menu
option to force the class to be generated. With these changes made, the next step is to begin inserting some
binding expressions into the view elements of the data binding layout file.

43.7 Adding Binding Expressions
The first binding expression will bind the resultText TextView to the result value within the model view. Edit the
fragment_main.xml file, locate the resultText element and modify the text property so that the element reads as
follows:
<TextView

 android:id="@+id/resultText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:text="MainFragment"

 android:text='@{safeUnbox(myViewModel.result) == 0.0 ? "Enter value" :
String.valueOf(safeUnbox(myViewModel.result)) + " euros"}'
 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

The expression begins by checking if the result value is currently zero and, if it is, displays a message instructing
the user to enter a value. If the result is not zero, however, the value is converted to a string and concatenated
with the word “euros” before being displayed to the user.

The result value only requires a one-way binding in that the layout does not ever need to update the value stored
in the ViewModel. The dollarValue EditText view, on the other hand, needs to use two-way binding so that
the data model can be updated with the latest value entered by the user, and to allow the current value to be
redisplayed in the view in the event of a lifecycle event such as that triggered by a device rotation. The dollarText
element should now be declared as follows:
<EditText

 android:id="@+id/dollarText"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="96dp"

 android:ems="10"

 android:importantForAutofill="no"

 android:inputType="numberDecimal"

 android:text="@={myViewModel.dollarValue}"
 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintHorizontal_bias="0.502"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

Now that these initial binding expressions have been added a method now needs to be written to perform the

335

An Android Jetpack Data Binding Tutorial

conversion when the user clicks on the Button widget.

43.8 Adding the Conversion Method
When the Convert button is clicked, it is going to call a method on the ViewModel to perform the conversion
calculation and place the euro value in the result LiveData variable. Add this method now within the
MainViewModel.kt file:
.

.

class MainViewModel : ViewModel() {

 private val rate = 0.74f

 var dollarValue: MutableLiveData<String> = MutableLiveData()

 var result: MutableLiveData<Float> = MutableLiveData()

 fun convertValue() {
 dollarValue.let {
 if (!it.value.equals("")) {
 result.value = it.value?.toFloat()?.times(rate)
 } else {
 result.value = 0f
 }
 }
 }
}

Note that in the absence of a valid dollar value, a zero value is assigned to the result LiveData variable. This
ensures that the binding expression assigned to the resultText TextView displays the “Enter value” message if no
value has been entered by the user.

43.9 Adding a Listener Binding
The final step before testing the project is to add a listener binding expression to the Button element within the
layout file to call the convertValue() method when the button is clicked. Edit the fragment_main.xml file in Code
mode once again, locate the convertButton element and add an onClick entry as follows:
<Button

 android:id="@+id/convertButton"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginTop="77dp"

 android:onClick="@{() -> myViewModel.convertValue()}"
 android:text="Convert"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toBottomOf="@+id/resultText" />

43.10 Testing the App
Compile and run the app and test that entering a value into the dollar field and clicking on the Convert button
displays the correct result on the TextView (together with the “euros” suffix) and that the “Enter value” prompt

336

An Android Jetpack Data Binding Tutorial

appears if a conversion is attempted while the dollar field is empty. Also, verify that information displayed in the
user interface is retained through a device rotation.

43.11 Summary
The primary goal of this chapter has been to work through the steps involved in setting up a project to use data
binding and to demonstrate the use of one-way, two-way and listener binding expressions. The chapter also
provided a practical example of how much code writing is saved by using data binding in conjunction with
LiveData to connect the user interface views with the back-end data and logic of the app.

775

Index

Index

Symbols
?. 93

<application> 500

<fragment> 287

<fragment> element 287

<receiver> 478

<service> 500, 506, 513

 Code Reformatting 73

:: operator 95

.well-known folder 451, 474, 670

A
AbsoluteLayout 168

ACCESS_COARSE_LOCATION permission 620

ACCESS_FINE_LOCATION permission 620

acknowledgePurchase() method 709

ACTION_DOWN 264

ACTION_MOVE 264

ACTION_POINTER_DOWN 264

ACTION_POINTER_UP 264

ACTION_UP 264

ACTION_VIEW 469

Active / Running state 144

Activity 79, 147

adding to a project 225

adding views in Java code 245

class 147

creation 14

Entire Lifetime 151

Foreground Lifetime 151

lifecycle methods 149

lifecycles 141

returning data from 448

state change example 155

state changes 147

states 144

Visible Lifetime 151

ActivityCompat class 625

Activity Lifecycle 143

Activity Manager 78

ActivityResultLauncher 449

Activity Stack 143

Actual screen pixels 236

adb

command-line tool 57

connection testing 63

device pairing 61

enabling on Android devices 57

Linux configuration 60

list devices 57

macOS configuration 58

overview 57

restart server 58

testing connection 63

WiFi debugging 61

Windows configuration 59

Wireless debugging 61

Wireless pairing 61

addCategory() method 477

addView() method 240

ADD_VOICEMAIL permission 620

android

command-line tool 35

exported 501

gestureColor 280

layout_behavior property 441

onClick 289

process 501, 513

uncertainGestureColor 280

Android

Activity 79

architecture 75

events 257

intents 80

776

Index

onClick Resource 257

runtime 76

SDK Packages 6

android.app 76

Android Architecture Components 303

android.content 76

android.content.Intent 447

android.database 76

Android Debug Bridge. See ADB

Android Design Support Library 411

Android Development

System Requirements 3

Android Devices

designing for different 167

android.graphics 76

android.hardware 76

android.intent.action 483

android.intent.action.BOOT_COMPLETED 502

android.intent.action.MAIN 469

android.intent.category.LAUNCHER 469

Android Libraries 76

AndroidManifest.xml file 226

android.media 77

Android Monitor tool window 31

Android Native Development Kit 77

android.net 77

android.opengl 77

android.os 77

android.permission.RECORD_AUDIO 629

android.print 77

Android Project

create new 13

android.provider 77

Android SDK Location

identifying 9

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 10

macOS 10

Windows 7 9

Windows 8 9

Android Software Stack 75

Android Studio

changing theme 54

downloading 3

Editor Window 49

installation 4

Linux installation 5

macOS installation 4

Main Window 48

Menu Bar 48

Navigation Bar 48

Project tool window 49

setup wizard 5

Status Bar 49

Toolbar 48

Tool window bars 50

tool windows 49

updating 11

Welcome Screen 47

Windows installation 4

android.text 77

android.util 77

android.view 77

android.view.View 170

android.view.ViewGroup 167, 170

Android Virtual Device. See AVD

overview 27

Android Virtual Device Manager 27

android.webkit 77

android.widget 77

AndroidX libraries 768

APK analyzer 702

APK file 696

split 724

APK File

analyzing 702

APK Signing 768

APK Wizard dialog 694

App Architecture

modern 303

777

Index
AppBar

anatomy of 439

appbar_scrolling_view_behavior 441

App Bundles 691

creating 696

overview 691

revisions 701

uploading 698

AppCompatActivity class 148

App Inspector 51

Application

stopping 31

Application Context 81

Application Framework 77

Application Manifest 81

Application Resources 81

App Link

Adding Intent Filter 678

Assistant 673

Digital Asset Links file 670, 451

Intent Filter Handling 678

Intent Filters 669

Intent Handling 670

Testing 682

tutorial 673

URL Mapping 675

App Link Assistant 673

App Links 669

auto verification 450

autoVerify 451

manually enabling 453

overview 669

Apply Changes 253

Apply Changes and Restart Activity 253

Apply Code Changes 253

fallback settings 255

options 253

Run App 253

tutorial 255

applyToActivitiesIfAvailable() method 759

Architecture Components 303

ART 76

as 95

as? 95

asFlow() builder 518

assetlinks.json , 670, 451

asSharedFlow() 528

asStateFlow() 527

async 487

Attribute Keyframes 378

Audio

supported formats 627

Audio Playback 627

Audio Recording 627

Autoconnect Mode 200

Automatic Link Verification 450, 473

autoVerify 451, 678

AVD

command-line creation 27, 35

configuration files 37

creation 27

device frame 34

launch in tool window 34

overview 27

renaming 37

running an application 29

standalone 33

starting 28

Startup size and orientation 29

B
Background Process 142

Barriers 194

adding 212

constrained views 194

Base APK file 724

Baseline Alignment 193

beginTransaction() method 288

BillingClient 710

acknowledgePurchase() method 709

consumeAsync() method 709

getPurchaseState() method 708

initialization 706, 714

launchBillingFlow() method 708

778

Index

queryProductDetailsAsync() method 707

queryPurchasesAsync() method 710

startConnection() method 707

BillingResult 721

getDebugMessage() 721

Binding Expressions 325

one-way 325

two-way 326

BIND_JOB_SERVICE permission 501

bindService() method 499, 503, 507

Biometric Authentication 683

callbacks 687

overview 683

tutorial 683

Biometric Prompt 688

Bitwise AND 101

Bitwise Inversion 100

Bitwise Left Shift 102

Bitwise OR 101

Bitwise Right Shift 102

Bitwise XOR 101

black activity 14

Blank template 171

Blueprint view 199

BODY_SENSORS permission 620

Boolean 88

Bound Service 499, 503

adding to a project 504

Implementing the Binder 504

Interaction options 503

BoundService class 505

Broadcast Intent 477

example 480

overview 80, 477

sending 480

Sticky 479

Broadcast Receiver 477

adding to manifest file 482

creation 481

overview 80, 478

BroadcastReceiver class 478

BroadcastReceiver superclass 481

buffer() operator 521

Build tool window 51

Build Variants 51, 768

tool window 51

Bundle class 164

Bundled Notifications 550

C
Calendar permissions 620

CALL_PHONE permission 620

CAMERA permission 620

Camera permissions 620

cancelAndJoin() 488

cancelChildren() 487

CancellationSignal 688

Canvas class 664

CardView

example 431

layout file 429

responding to selection of 437

CardView class 429

C/C++ Libraries 77

Chain bias 220

chain head 192

chains 192

Chains

creation of 217

Chain style

changing 219

chain styles 192

Char 88

CharSequence 165

CheckBox 167

checkSelfPermission() method 624

Code completion 68

Code Editor

basics 65

Code completion 68

Code Generation 70

Code Reformatting 73

Document Tabs 66

Editing area 66

779

Index
Gutter Area 66

Live Templates 74

Splitting 67

Statement Completion 69

Status Bar 67

Code Generation 70

code samples

download 1

Cold flows 526

CollapsingToolbarLayout

example 442

introduction 442

parallax mode 442

pin mode 442

setting scrim color 445

setting title 445

with image 442

collectLatest() operator 520

collect() operator 519

Color class 665

COLOR_MODE_COLOR 640, 660

COLOR_MODE_MONOCHROME 640, 660

com.android.application 727

com.android.dynamic-feature 727

combine() operator 525

Common Gestures 269

detection 269

Communicating Sequential Processes 485

Companion Objects 125

Component tree 17

Configuration APK file 724

conflate() operator 520

Constraint Bias 191

adjusting 204

ConstraintLayout

advantages of 197

Availability 198

Barriers 194

Baseline Alignment 193

chain bias 220

chain head 192

chains 192

chain styles 192

Constraint Bias 191

Constraints 189

conversion to 216

convert to MotionLayout 385

deleting constraints 204

guidelines 210

Guidelines 194

manual constraint manipulation 201

Margins 190, 205

Opposing Constraints 190, 206

overview of 189

Packed chain 193, 220

ratios 197, 221

Spread chain 192

Spread inside 219

Spread inside chain 192

tutorial 225

using in Android Studio 199

Weighted chain 192, 220

Widget Dimensions 193, 208

Widget Group Alignment 215

ConstraintLayout chains

creation of 217

in layout editor 217

ConstraintLayout Chain style

changing 219

Constraints

deleting 204

ConstraintSet

addToHorizontalChain() method 242

addToVerticalChain() method 242

alignment constraints 241

apply to layout 240

applyTo() method 240

centerHorizontally() method 241

centerVertically() method 241

chains 241

clear() method 242

clone() method 241

connect() method 240

connect to parent 240

780

Index

constraint bias 241

copying constraints 241

create 240

create connection 240

createHorizontalChain() method 241

createVerticalChain() method 241

guidelines 242

removeFromHorizontalChain() method 242

removeFromVerticalChain() method 242

removing constraints 242

rotation 243

scaling 242

setGuidelineBegin() method 242

setGuidelineEnd() method 242

setGuidelinePercent() method 242

setHorizonalBias() method 241

setRotationX() method 243

setRotationY() method 243

setScaleX() method 242

setScaleY() method 242

setTransformPivot() method 243

setTransformPivotX() method 243

setTransformPivotY() method 243

setVerticalBias() method 241

sizing constraints 241

tutorial 245

view IDs 247

ConstraintSet class 239, 240

ConstraintSet.PARENT_ID 240

Constraint Sets 240

ConstraintSets

configuring 374

consumeAsync() method 709

ConsumeParams 719

Contacts permissions 620

container view 167

Content Provider 78

overview 81

Context class 81

CoordinatorLayout 168, 439, 441

Coroutine Builders 487

async 487

coroutineScope 487

launch 487

runBlocking 487

supervisorScope 487

withContext 487

Coroutine Dispatchers 486

Coroutines 485, 517

adding libraries 493

channel communication 491

GlobalScope 486

returning results 489

Suspend Functions 486

suspending 488

tutorial 493

ViewModelScope 486

vs. Threads 485

coroutineScope 487

Coroutine Scope 486

createPrintDocumentAdapter() method 655

Custom Accessors 123

Custom Attribute 375

Custom Document Printing 643, 655

Custom Gesture

recognition 275

Custom Print Adapter

implementation 657

Custom Print Adapters 655

Custom Theme

building 752

Cycle Editor 403

Cycle Keyframe 383

Cycle Keyframes

overview 399

D
dangerous permissions 619

list of 620

Dark Theme 32

enable on device 32

Data Access Object (DAO) 568

Database Inspector 574, 598

live updates 598

781

Index
SQL query 598

Database Rows 562

Database Schema 561

Database Tables 561

Data binding

binding expressions 325

Data Binding 306

binding classes 324

enabling 330

event and listener binding 326

key components 321

overview 321

tutorial 329

variables 324

with LiveData 306

DDMS 31

Debugging

enabling on device 57

debug.keystore file 451, 473

Default Function Parameters 115

DefaultLifecycleObserver 344, 347

deltaRelative 379

Density-independent pixels 235

Density Independent Pixels

converting to pixels 250

Device Definition

custom 184

Device File Explorer 51

device frame 34

Device Manager 51

device pairing 61

Digital Asset Links file 451, 670, 451

Direct Reply Input 558

Direct Reply Notification 553

Dispatchers.Default 487

Dispatchers.IO 487

Dispatchers.Main 486

dp 235

DROP_LATEST 528

DROP_OLDEST 528

Dynamic Colors

applyToActivitiesIfAvailable() method 759

enabling 758

enabling in Android 758

Dynamic Delivery 726

Dynamic Feature APK 724

Dynamic Feature Module

architecture 723

overview 723

removal 747

tutorial 733

Dynamic Feature Modules

deferred installation 729

handling of large 730

Dynamic Feature Support

adding to project 733

Dynamic State 149

saving 163

E
Elvis Operator 95

Empty Process 143

Empty template 171

Emulator 51

battery 42

cellular configuration 42

configuring fingerprints 44

directional pad 42

extended control options 41

Extended controls 41

fingerprint 42

location configuration 42

phone settings 42

resize 41

rotate 40

Screen Record 43

Snapshots 43

starting 28

take screenshot 40

toolbar 39

toolbar options 39

tool window mode 45

Virtual Sensors 43

zoom 40

782

Index

enablePendingPurchases() method 709

enabling ADB support 57

Escape Sequences 89

ettings.gradle file 768

Event Handling 257

example 258

Event Listener 260

Event Listeners 258

Event Log 51

Events

consuming 261

explicit

intent 80

explicit intent 447

Explicit Intent 447

Extended Control

options 41

F
Favorites

tool window 51

Files

switching between 66

filter() operator 522

findPointerIndex() method 264

findViewById() 135

Fingerprint

emulation 44

Fingerprint authentication

device configuration 684

permission 684

steps to implement 683

Fingerprint Authentication

overview 683

tutorial 683

FLAG_INCLUDE_STOPPED_PACKAGES 477

flatMapConcat() operator 525

flatMapMerge() operator 525

flexible space area 439

Float 88

floating action button 14, 172, 411

changing appearance of 414

margins 412

overview of 411

removing 173

sizes 412

Flow 517

asFlow() builder 518

asSharedFlow() 528

asStateFlow() 527

backgroudn handling 537

buffering 520

buffer() operator 521

builder 518

cold 526

collect() 519

collecting data 519

collectLatest() operator 520

combine() operator 525

conflate() operator 520

declaring 518

emit() 519

emitting data 519

filter() operator 522

flatMapConcat() operator 525

flatMapMerge() operator 525

flattening 524

flowOf() builder 518

flow of flows 524

fold() operator 524

hot 526

intermediate operators 522

library requirements 518

map() operator 522

MutableSharedFlow 528

MutableStateFlow 527

onEach() operator 526

reduce() operator 523, 524

repeatOnLifecycle 538

SharedFlow 528

single() operator 520

StateFlow 527

terminal flow operators 523

transform() operator 523

783

Index
try/finally 520

zip() operator 525

flow builder 518

flowOf() builder 518

flow of flows 524

Flow operators 522

Flows

combining 525

Introduction to 517

Foldable Devices 152

multi-resume 152

Foreground Process 142

Fragment

creation 285

event handling 289

XML file 285, 286

FragmentActivity class 148

Fragment Communication 289

FragmentPagerAdapter class 423

Fragments 285

adding in code 288

duplicating 420

example 293

overview 285

FrameLayout 168

Function Parameters

variable number of 115

Functions 113

G
Gesture Builder Application 275

building and running 276

Gesture Detector class 269

GestureDetectorCompat 272

instance creation 272

GestureDetectorCompat class 269

GestureDetector.OnDoubleTapListener 269, 270

GestureDetector.OnGestureListener 270

GestureLibrary 275

GestureLibrary class 275

GestureOverlayView 275

configuring color 280

configuring multiple strokes 280

GestureOverlayView class 275

GesturePerformedListener 275

Gestures

interception of 281

Gestures File

creation 276

extract from SD card 276

loading into application 278

GET_ACCOUNTS permission 620

getAction() method 483

getDebugMessage() 721

getId() method 240

getIntent() method 448

getPointerCount() method 264

getPointerId() method 264

getPurchaseState() method 708

getService() method 507

GlobalScope 486

GNU/Linux 76

Google Cloud Print 638

Google Drive

printing to 638

Google Play Billing Library 705

Google Play Console 712

Creating an in-app product 712

License Testers 713

Google Play Developer Console 692

Gradle

APK signing settings 772

Build Variants 768

command line tasks 773

dependencies 767

Manifest Entries 768

overview 767

sensible defaults 767

tool window 51

Gradle Build File

top level 769

Gradle Build Files

module level 770

gradle.properties file 768

784

Index

GridLayout 168

GridLayoutManager 427

H
Handler class 512

Higher-order Functions 117

Hot flows 526

HP Print Services Plugin 637

HTML printing 641

HTML Printing

example 645

I
IBinder 499, 505

IBinder object 503, 511, 512

Image Printing 640

Immutable Variables 90

implicit

intent 80

implicit intent 447

Implicit Intent 449

Implicit Intents

example 465

in 235

INAPP 710

In-App Products 705

In-App Purchasing 711

acknowledgePurchase() method 709

BillingClient 706

BillingResult 721

consumeAsync() method 709

ConsumeParams 719

Consuming purchases 718

enablePendingPurchases() method 709

getPurchaseState() method 708

Google Play Billing Library 705

launchBillingFlow() method 708

Libraries 711

newBuilder() method 706

onBillingServiceDisconnected() callback 715

onBillingServiceDisconnected() method 707

onBillingSetupFinished() listener 715

onProductDetailsResponse() callback 716

Overview 705

ProductDetail 708

ProductDetails 716

products 705

ProductType 710

Purchase Flow 717

PurchaseResponseListener 710

PurchasesUpdatedListener 708

PurchaseUpdatedListener 717

purchase updates 717

queryProductDetailsAsync() 716

queryProductDetailsAsync() method 707

queryPurchasesAsync() 719

queryPurchasesAsync() method 710

runOnUiThread() 717

startConnection() method 707

subscriptions 705

tutorial 711

Initializer Blocks 123

In-Memory Database 574

Inner Classes 124

Instant Dynamic Feature Module 724

IntelliJ IDEA 83

Intent 80

explicit 80

implicit 80

Intent Availability

checking for 454

intent filters 447

Intent Filters 450

App Link 669

intent resolution 450

Intents 447

ActivityResultLauncher 449

overview 447

registerForActivityResult() 449, 462

Intent Service 499

IntentService class 499, 502

Intent URL 468

intermediate flow operators 522

is 95

785

Index
isInitialized property 95

J
Java

convert to Kotlin 83

Java Native Interface 77

JetBrains 83

Jetpack 303

overview 303

JobIntentService 499

BIND_JOB_SERVICE permission 501

onHandleWork() method 499

join() 488

K
KeyAttribute 378

Keyboard Shortcuts 52

KeyCycle 383, 399

Cycle Editor 403

tutorial 399

Keyframe 391

Keyframes 378

KeyFrameSet 408

KeyPosition 379

deltaRelative 379

parentRelative 379

pathRelative 380

Keystore File

creation 694

KeyTimeCycle 383, 399

keytool 451

KeyTrigger 382

Killed state 144

Kotlin

accessing class properties 123

and Java 83

arithmetic operators 97

assignment operator 97

augmented assignment operators 98

bitwise operators 100

Boolean 88

break 108

breaking from loops 107

calling class methods 123

Char 88

class declaration 119

class initialization 120

class properties 120

Companion Objects 125

conditional control flow 109

continue labels 108

continue statement 108

control flow 105

convert from Java 83

Custom Accessors 123

data types 87

decrement operator 98

Default Function Parameters 115

defining class methods 120

do ... while loop 107

Elvis Operator 95

equality operators 99

Escape Sequences 89

expression syntax 97

Float 88

Flow 517

for-in statement 105

function calling 114

Functions 113

Higher-order Functions 117

if ... else ... expressions 110

if expressions 109

Immutable Variables 90

increment operator 98

inheritance 129

Initializer Blocks 123

Inner Classes 124

introduction 83

Lambda Expressions 116

let Function 93

Local Functions 114

logical operators 99

looping 105

Mutable Variables 90

786

Index

Not-Null Assertion 93

Nullable Type 92

Overriding inherited methods 132

playground 84

Primary Constructor 120

properties 123

range operator 100

Safe Call Operator 92

Secondary Constructors 120

Single Expression Functions 114

String 88

subclassing 129

Type Annotations 91

Type Casting 95

Type Checking 95

Type Inference 91

variable parameters 115

when statement 110

while loop 106

L
Lambda Expressions 116

lateinit 94

Late Initialization 94

launch 487

launchBillingFlow() method 708

launcher activity 226

layout_collapseMode

parallax 444

pin 444

layout_constraintDimentionRatio 222

layout_constraintHorizontal_bias 220

layout_constraintVertical_bias 220

layout editor

ConstraintLayout chains 217

Layout Editor 16, 225

Autoconnect Mode 200

code mode 178

Component Tree 175

design mode 175

device screen 175

example project 225

Inference Mode 201

palette 175

properties panel 176

Sample Data 184

Setting Properties 179

toolbar 176

user interface design 227

view conversion 183

Layout Editor Tool

changing orientation 16

overview 175

Layout Inspector 52

Layout Managers 167

LayoutResultCallback object 661

Layouts 167

layout_scrollFlags

enterAlwaysCollapsed mode 441

enterAlways mode 441

exitUntilCollapsed mode 441

scroll mode 441

Layout Validation 186

let Function 93

libc 77

License Testers 713

Lifecycle

awareness 343

components 306

observers 344

owners 343

states and events 344

tutorial 347

Lifecycle-Aware Components 343

Lifecycle library 518

Lifecycle Methods 149

Lifecycle Observer 347

creating a 347

Lifecycle Owner

creating a 349

Lifecycles

modern 306

Lifecycle.State.CREATED 538

Lifecycle.State.DESTROYED 538

787

Index
Lifecycle.State.INITIALIZED 538

Lifecycle.State.RESUMED 538

Lifecycle.State.STARTED 538

LinearLayout 168

LinearLayoutManager 427

LinearLayoutManager layout 435

Linux Kernel 76

list devices 57

LiveData 304, 317

adding to ViewModel 317

observer 319

tutorial 317

Live Templates 74

Local Bound Service 503

example 503

Local Functions 114

Location Manager 78

Location permission 620

Logcat

tool window 52

LogCat

enabling 158

M
MANAGE_EXTERNAL_STORAGE 621

adb enabling 621

testing 621

Manifest File

permissions 469

map() operator 522

match_parent properties 235

Material design 411

Material Design 2 749

Material Design 2 Theming 749

Material Design 3 749

Material Design 3 Theming 751

Material Theme Builder 752

Material You 752

measureTimeMillis() function 521

MediaController

adding to VideoView instance 605

MediaController class 602

methods 602

MediaPlayer class 627

methods 627

MediaRecorder class 627

methods 628

recording audio 628

Messenger object 512

Microphone

checking for availability 630

Microphone permissions 620

mm 235

MotionEvent 263, 264, 283

getActionMasked() 264

MotionLayout 373

arc motion 378

Attribute Keyframes 378

ConstraintSets 374

Custom Attribute 394

Custom Attributes 375

Cycle Editor 403

Cycle Keyframes 383

Editor 385

KeyAttribute 378

KeyCycle 399

Keyframes 378

KeyFrameSet 408

KeyPosition 379

KeyTimeCycle 399

KeyTrigger 382

OnClick 377, 390

OnSwipe 377

overview 373

Position Keyframes 379

previewing animation 389

starting animation 376

Trigger Keyframe 382

Tutorial 385

MotionScene

ConstraintSets 374

Custom Attributes 375

file 374

overview 373

788

Index

transition 374

multiple devices

testing app on 31

Multiple Touches

handling 264

multi-resume 152

Multi-Touch

example 265

Multi-touch Event Handling 263

multi-window support 152

MutableSharedFlow 528

MutableStateFlow 527

Mutable Variables 90

N
Navigation 353

adding destinations 362

overview 353

pass data with safeargs 369

passing arguments 358

safeargs 358

stack 353

tutorial 359

Navigation Action

triggering 357

Navigation Architecture Component 353

Navigation Component

tutorial 359

Navigation Controller

accessing 357

Navigation Graph 356, 360

adding actions 365

creating a 360

Navigation Host 354

declaring 361

newBuilder() method 706

normal permissions 619

Notification

adding actions 550

direct reply 553

Direct Reply Input 558

issuing a basic 546

launch activity from a 548

PendingIntent 555

Reply Action 556

updating direct reply 558

Notifications 541

bundled 550

overview 541

Notifications Manager 78

Not-Null Assertion 93

Nullable Type 92

O
Observer

implementing a LiveData 319

onAttach() method 290

onBillingServiceDisconnected() callback 715

onBillingServiceDisconnected() method 707

onBillingSetupFinished() listener 715

onBind() method 500, 503, 511

onBindViewHolder() method 435

OnClick 377

onClickListener 258, 260, 262

onClick() method 257

onCreateContextMenuListener 258

onCreate() method 142, 149, 500

onCreateView() method 150

on-demand modules 723

onDestroy() method 150, 500

onDoubleTap() method 269

onDown() method 269

onEach() operator 526

onFling() method 269

onFocusChangeListener 258

OnFragmentInteractionListener

implementation 366

onGesturePerformed() method 275

onHandleWork() method 499, 500

onKeyListener 258

onLayoutFailed() method 661

onLayoutFinished() method 661

onLongClickListener 258, 261

onLongPress() method 269

789

Index
onPageFinished() callback 646

onPause() method 150

onProductDetailsResponse() callback 716

onReceive() method 142, 478, 479, 481

onRequestPermissionsResult() method 623, 634

onRestart() method 150

onRestoreInstanceState() method 150

onResume() method 142, 150

onSaveInstanceState() method 150

onScaleBegin() method 281

onScaleEnd() method 281

onScale() method 281

onScroll() method 269

OnSeekBarChangeListener 300

onServiceConnected() method 503, 506, 513

onServiceDisconnected() method 503, 506, 513

onShowPress() method 269

onSingleTapUp() method 269

onStartCommand() method 500

onStart() method 150

onStop() method 150

onTouchEvent() method 269, 281

onTouchListener 258, 263

onTouch() method 263, 264

onViewCreated() method 150

onViewStatusRestored() method 150

OpenJDK 3

P
Package Explorer 15

Package Manager 78

PackageManager class 630

PackageManager.FEATURE_MICROPHONE 630

PackageManager.PERMISSION_DENIED 621

PackageManager.PERMISSION_GRANTED 621

Package Name 14

Packed chain 193, 220

PageRange 662, 663

Paint class 665

parentRelative 379

parent view 169

pathRelative 380

Paused state 144

PdfDocument 643

PdfDocument.Page 655, 662

PendingIntent class 555

Permission

checking for 621

permissions

dangerous 619

normal 619

Persistent State 149

Phone permissions 620

Pinch Gesture

detection 281

example 281

Pinch Gesture Recognition 275

Play Core Library 729, 733

Position Keyframes 379

Primary Constructor 120

PrintAttributes 660

PrintDocumentAdapter 643, 655

PrintDocumentInfo 660

Printing

color 640

monochrome 640

Printing framework

architecture 637

Printing Framework 637

Print Job

starting 666

Print Manager 637

PrintManager service 647

Problems

tool window 52

PROCESS_OUTGOING_CALLS permission 620

Process States 141

ProductDetail 708

ProductDetails 716

ProductType 710

Profiler

tool window 52

ProgressBar 167

proguard-rules.pro file 772

790

Index

ProGuard Support 768

Project

tool window 52

Project Name 14

Project tool window 15, 52

pt 235

PurchaseResponseListener 710

PurchasesUpdatedListener 708

PurchaseUpdatedListener 717

putExtra() method 447, 477

px 236

Q
queryProductDetailsAsync() 716

queryProductDetailsAsync() method 707

queryPurchaseHistoryAsync() method 710

queryPurchasesAsync() 719

queryPurchasesAsync() method 710

Quick Documentation 72

R
RadioButton 167

Range Operator 100

ratios 221

READ_CALENDAR permission 620

READ_CALL_LOG permission 620

READ_CONTACTS permission 620

READ_EXTERNAL_STORAGE permission 621

READ_PHONE_STATE permission 620

READ_SMS permission 620

RECEIVE_MMS permission 620

RECEIVE_SMS permission 620

RECEIVE_WAP_PUSH permission 620

Recent Files Navigation 53

RECORD_AUDIO permission 620

Recording Audio

permission 629

RecyclerView 427

adding to layout file 428

example 431

GridLayoutManager 427

initializing 435

LinearLayoutManager 427

StaggeredGridLayoutManager 427

RecyclerView Adapter

creation of 433

RecyclerView.Adapter 428, 433

getItemCount() method 428

onBindViewHolder() method 428

onCreateViewHolder() method 428

RecyclerView.ViewHolder

getAdapterPosition() method 438

reduce() operator 523, 524

registerForActivityResult() 449

registerForActivityResult() method 448, 462

registerReceiver() method 479

RelativeLayout 168

release mode 691

Release Preparation 691

Remote Bound Service 511

client communication 511

implementation 512

manifest file declaration 513

RemoteInput.Builder() method 555

RemoteInput Object 555

Remote Service

launching and binding 513

sending a message 515

repeatOnLifecycle 538

Repository

tutorial 585

Repository Modules 306

requestPermissions() method 623

Resource

string creation 19

Resource File 21

Resource Management 141

Resource Manager 52, 78

result receiver 479

Room

Data Access Object (DAO) 568

entities 568, 569

In-Memory Database 574

Repository 568

791

Index
Room Database 568

tutorial 585

Room Database Persistence 567

Room Persistence Library 565, 567

root element 167

root view 169

Run

tool window 52

runBlocking 487

runOnUiThread() 717

Runtime Permission Requests 619

S
safeargs 358, 369

Safe Call Operator 92

Sample Data 184

Saved State 305, 337

library dependencies 339

SavedStateHandle 338

contains() method 339

keys() method 339

remove() method 339

Saved State module 337

SavedStateViewModelFactory 338

ScaleGestureDetector class 281

Scale-independent 236

SDK Packages 6

Secondary Constructors 120

Secure Sockets Layer (SSL) 77

SeekBar 293

sendBroadcast() method 477, 479

sendOrderedBroadcast() method 477, 479

SEND_SMS permission 620

sendStickyBroadcast() method 477

Sensor permissions 620

Service

anatomy 500

launch at system start 502

manifest file entry 500

overview 80

run in separate process 501

ServiceConnection class 513

Service Process 142

Service Restart Options 500

setAudioEncoder() method 628

setAudioSource() method 628

setBackgroundColor() 240

setContentView() method 239, 245

setId() method 240

setOnClickListener() method 257, 260

setOnDoubleTapListener() method 269, 272

setOutputFile() method 628

setOutputFormat() method 628

setResult() method 449

setText() method 166

setTransition() 383

setVideoSource() method 628

SHA-256 certificate fingerprint 451

SharedFlow 528, 531

backgroudn handling 537

DROP_LATEST 528

DROP_OLDEST 528

in ViewModel 533

repeatOnLifecycle 538

SUSPEND 529

tutorial 531

shouldOverrideUrlLoading() method 646

shouldShowRequestPermissionRationale() method 625

SimpleOnScaleGestureListener 281

SimpleOnScaleGestureListener class 283

single() operator 520

SMS permissions 620

Snackbar 411, 412, 413

overview of 412

Snapshots

emulator 43

sp 236

Space class 168

split APK files 724

SplitCompatApplication 728

SplitInstallManager 729

Spread chain 192

Spread inside 219

Spread inside chain 192

792

Index

SQL 562

SQLite 561

AVD command-line use 563

Columns and Data Types 561

overview 562

Primary keys 562

StaggeredGridLayoutManager 427

startActivity() method 447

startConnection() method 707

startForeground() method 142

START_NOT_STICKY 500

START_REDELIVER_INTENT 500

START_STICKY 500

State

restoring 166

State Change

handling 145

StateFlow 527

Statement Completion 69

status bar 439

Sticky Broadcast Intents 479

Stopped state 144

Storage permissions 621

String 88

strings.xml file 23

Structure

tool window 52

Structured Query Language 562

Structure tool window 52

SUBS 710

subscriptions 705

supervisorScope 487

SUSPEND 529

Suspend Functions 486

Switcher 53

synthetic properties 135

System Broadcasts 483

system requirements 3

T
tab bar 439

TabLayout 417

adding to layout 421

app

tabGravity property 426

tabMode property 426

example 418

fixed mode 425

getCount() method 417

getItem() method 417

overview 417

scrollable mode 425

TableLayout 168, 577

TableRow 577

Telephony Manager 78

Templates

blank vs. empty 171

Terminal

tool window 52

terminal flow operators 523

Theme

building a custom 752

Theming 749

Material Theme Builder 752

tutorial 755, 761

Time Cycle Keyframes 383

TODO

tool window 52

toolbar 439

ToolbarListener 290

tools

layout 287

Tool window bars 50

Tool windows 49

Touch Actions 264

Touch Event Listener

implementation 265

Touch Events

intercepting 263

Touch handling 263

transform() operator 523

try/finally 520

Type Annotations 91

Type Casting 95

793

Index
Type Checking 95

Type Inference 91

U
unbindService() method 499

unregisterReceiver() method 479

URL Mapping 675

USB connection issues

resolving 60

USE_BIOMETRIC 684

user interface state 149

USE_SIP permission 620

V
Video Playback 601

VideoView class 601

methods 601

supported formats 601

view bindings 135

enabling 136

using 137

View class

setting properties 246

view conversion 183

ViewGroup 167

View Groups 167

View Hierarchy 169

ViewHolder class 428

sample implementation 434

ViewModel

adding LiveData 317

data access 314

fragment association 313

overview 304

saved state 337

Saved State 305, 337

tutorial 309

ViewModelProvider 313

ViewModel Saved State 337

ViewModelScope 486

ViewPager 417, 422

adapter 422

adding to layout 421

example 418

Views 167

Java creation 239

View System 78

Virtual Device Configuration dialog 28

Virtual Sensors 43

Visible Process 142

W
WebViewClient 641, 646

WebView view 467

Weighted chain 192, 220

Welcome screen 47

while Loop 106

Widget Dimensions 193

Widget Group Alignment 215

Widgets palette 228

WiFi debugging 61

Wireless debugging 61

Wireless pairing 61

withContext 487, 489

wrap_content properties 237

WRITE_CALENDAR permission 620

WRITE_CALL_LOG permission 620

WRITE_CONTACTS permission 620

WRITE_EXTERNAL_STORAGE permission 621

X
XML Layout File

manual creation 235

vs. Java Code 239

Z
zip() operator 525

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Making the Android SDK tools command-line accessible
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding the Kotlin Extensions Plugin
	3.9 Adding Interaction
	3.10 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Enabling the Device Frame
	4.9 AVD Command-line Creation
	4.10 Android Virtual Device Configuration Files
	4.11 Moving and Renaming an Android Virtual Device
	4.12 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables, and Nullability
	12.1 Kotlin Data Types
	12.1.1 Integer Data Types
	12.1.2 Floating-Point Data Types
	12.1.3 Boolean Data Type
	12.1.4 Character Data Type
	12.1.5 String Data Type
	12.1.6 Escape Sequences

	12.2 Mutable Variables
	12.3 Immutable Variables
	12.4 Declaring Mutable and Immutable Variables
	12.5 Data Types are Objects
	12.6 Type Annotations and Type Inference
	12.7 Nullable Type
	12.8 The Safe Call Operator
	12.9 Not-Null Assertion
	12.10 Nullable Types and the let Function
	12.11 Late Initialization (lateinit)
	12.12 The Elvis Operator
	12.13 Type Casting and Type Checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression Syntax in Kotlin
	13.2 The Basic Assignment Operator
	13.3 Kotlin Arithmetic Operators
	13.4 Augmented Assignment Operators
	13.5 Increment and Decrement Operators
	13.6 Equality Operators
	13.7 Boolean Logical Operators
	13.8 Range Operator
	13.9 Bitwise Operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise Left Shift
	13.9.6 Bitwise Right Shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping Control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while Loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue Statement
	14.1.6 Break and Continue Labels

	14.2 Conditional Control Flow
	14.2.1 Using the if Expressions
	14.2.2 Using if ... else … Expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when Statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a Function?
	15.2 How to Declare a Kotlin Function
	15.3 Calling a Kotlin Function
	15.4 Single Expression Functions
	15.5 Local Functions
	15.6 Handling Return Values
	15.7 Declaring Default Function Parameters
	15.8 Variable Number of Function Parameters
	15.9 Lambda Expressions
	15.10 Higher-order Functions
	15.11 Summary

	16. The Basics of Object Oriented Programming in Kotlin
	16.1 What is an Object?
	16.2 What is a Class?
	16.3 Declaring a Kotlin Class
	16.4 Adding Properties to a Class
	16.5 Defining Methods
	16.6 Declaring and Initializing a Class Instance
	16.7 Primary and Secondary Constructors
	16.8 Initializer Blocks
	16.9 Calling Methods and Accessing Properties
	16.10 Custom Accessors
	16.11 Nested and Inner Classes
	16.12 Companion Objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, Classes and Subclasses
	17.2 Subclassing Syntax
	17.3 A Kotlin Inheritance Example
	17.4 Extending the Functionality of a Subclass
	17.5 Overriding Inherited Methods
	17.6 Adding a Custom Secondary Constructor
	17.7 Using the SavingsAccount Class
	17.8 Summary

	18. An Overview of Android View Binding
	18.1 Find View by Id and Synthetic Properties
	18.2 View Binding
	18.3 Converting the AndroidSample project
	18.4 Enabling View Binding
	18.5 Using View Binding
	18.6 Choosing an Option
	18.7 View Binding in the Book Examples
	18.8 Migrating a Project to View Binding
	18.9 Summary

	19. Understanding Android Application and Activity Lifecycles
	19.1 Android Applications and Resource Management
	19.2 Android Process States
	19.2.1 Foreground Process
	19.2.2 Visible Process
	19.2.3 Service Process
	19.2.4 Background Process
	19.2.5 Empty Process

	19.3 Inter-Process Dependencies
	19.4 The Activity Lifecycle
	19.5 The Activity Stack
	19.6 Activity States
	19.7 Configuration Changes
	19.8 Handling State Change
	19.9 Summary

	20. Handling Android Activity State Changes
	20.1 New vs. Old Lifecycle Techniques
	20.2 The Activity and Fragment Classes
	20.3 Dynamic State vs. Persistent State
	20.4 The Android Lifecycle Methods
	20.5 Lifetimes
	20.6 Foldable Devices and Multi-Resume
	20.7 Disabling Configuration Change Restarts
	20.8 Lifecycle Method Limitations
	20.9 Summary

	21. Android Activity State Changes by Example
	21.1 Creating the State Change Example Project
	21.2 Designing the User Interface
	21.3 Overriding the Activity Lifecycle Methods
	21.4 Filtering the Logcat Panel
	21.5 Running the Application
	21.6 Experimenting with the Activity
	21.7 Summary

	22. Saving and Restoring the State of an Android Activity
	22.1 Saving Dynamic State
	22.2 Default Saving of User Interface State
	22.3 The Bundle Class
	22.4 Saving the State
	22.5 Restoring the State
	22.6 Testing the Application
	22.7 Summary

	23. Understanding Android Views, View Groups and Layouts
	23.1 Designing for Different Android Devices
	23.2 Views and View Groups
	23.3 Android Layout Managers
	23.4 The View Hierarchy
	23.5 Creating User Interfaces
	23.6 Summary

	24. A Guide to the Android Studio Layout Editor Tool
	24.1 Basic vs. Empty Activity Templates
	24.2 The Android Studio Layout Editor
	24.3 Design Mode
	24.4 The Palette
	24.5 Design Mode and Layout Views
	24.6 Night Mode
	24.7 Code Mode
	24.8 Split Mode
	24.9 Setting Attributes
	24.10 Transforms
	24.11 Tools Visibility Toggles
	24.12 Converting Views
	24.13 Displaying Sample Data
	24.14 Creating a Custom Device Definition
	24.15 Changing the Current Device
	24.16 Layout Validation (Multi Preview)
	24.17 Summary

	25. A Guide to the Android ConstraintLayout
	25.1 How ConstraintLayout Works
	25.1.1 Constraints
	25.1.2 Margins
	25.1.3 Opposing Constraints
	25.1.4 Constraint Bias
	25.1.5 Chains
	25.1.6 Chain Styles

	25.2 Baseline Alignment
	25.3 Configuring Widget Dimensions
	25.4 Guideline Helper
	25.5 Group Helper
	25.6 Barrier Helper
	25.7 Flow Helper
	25.8 Ratios
	25.9 ConstraintLayout Advantages
	25.10 ConstraintLayout Availability
	25.11 Summary

	26. A Guide to Using ConstraintLayout in Android Studio
	26.1 Design and Layout Views
	26.2 Autoconnect Mode
	26.3 Inference Mode
	26.4 Manipulating Constraints Manually
	26.5 Adding Constraints in the Inspector
	26.6 Viewing Constraints in the Attributes Window
	26.7 Deleting Constraints
	26.8 Adjusting Constraint Bias
	26.9 Understanding ConstraintLayout Margins
	26.10 The Importance of Opposing Constraints and Bias
	26.11 Configuring Widget Dimensions
	26.12 Design Time Tools Positioning
	26.13 Adding Guidelines
	26.14 Adding Barriers
	26.15 Adding a Group
	26.16 Working with the Flow Helper
	26.17 Widget Group Alignment and Distribution
	26.18 Converting other Layouts to ConstraintLayout
	26.19 Summary

	27. Working with ConstraintLayout Chains and Ratios in Android Studio
	27.1 Creating a Chain
	27.2 Changing the Chain Style
	27.3 Spread Inside Chain Style
	27.4 Packed Chain Style
	27.5 Packed Chain Style with Bias
	27.6 Weighted Chain
	27.7 Working with Ratios
	27.8 Summary

	28. An Android Studio Layout Editor ConstraintLayout Tutorial
	28.1 An Android Studio Layout Editor Tool Example
	28.2 Creating a New Activity
	28.3 Preparing the Layout Editor Environment
	28.4 Adding the Widgets to the User Interface
	28.5 Adding the Constraints
	28.6 Testing the Layout
	28.7 Using the Layout Inspector
	28.8 Summary

	29. Manual XML Layout Design in Android Studio
	29.1 Manually Creating an XML Layout
	29.2 Manual XML vs. Visual Layout Design
	29.3 Summary

	30. Managing Constraints using Constraint Sets
	30.1 Kotlin Code vs. XML Layout Files
	30.2 Creating Views
	30.3 View Attributes
	30.4 Constraint Sets
	30.4.1 Establishing Connections
	30.4.2 Applying Constraints to a Layout
	30.4.3 Parent Constraint Connections
	30.4.4 Sizing Constraints
	30.4.5 Constraint Bias
	30.4.6 Alignment Constraints
	30.4.7 Copying and Applying Constraint Sets
	30.4.8 ConstraintLayout Chains
	30.4.9 Guidelines
	30.4.10 Removing Constraints
	30.4.11 Scaling
	30.4.12 Rotation

	30.5 Summary

	31. An Android ConstraintSet Tutorial
	31.1 Creating the Example Project in Android Studio
	31.2 Adding Views to an Activity
	31.3 Setting View Attributes
	31.4 Creating View IDs
	31.5 Configuring the Constraint Set
	31.6 Adding the EditText View
	31.7 Converting Density Independent Pixels (dp) to Pixels (px)
	31.8 Summary

	32. A Guide to using Apply Changes in Android Studio
	32.1 Introducing Apply Changes
	32.2 Understanding Apply Changes Options
	32.3 Using Apply Changes
	32.4 Configuring Apply Changes Fallback Settings
	32.5 An Apply Changes Tutorial
	32.6 Using Apply Code Changes
	32.7 Using Apply Changes and Restart Activity
	32.8 Using Run App
	32.9 Summary

	33. An Overview and Example of Android Event Handling
	33.1 Understanding Android Events
	33.2 Using the android:onClick Resource
	33.3 Event Listeners and Callback Methods
	33.4 An Event Handling Example
	33.5 Designing the User Interface
	33.6 The Event Listener and Callback Method
	33.7 Consuming Events
	33.8 Summary

	34. Android Touch and Multi-touch Event Handling
	34.1 Intercepting Touch Events
	34.2 The MotionEvent Object
	34.3 Understanding Touch Actions
	34.4 Handling Multiple Touches
	34.5 An Example Multi-Touch Application
	34.6 Designing the Activity User Interface
	34.7 Implementing the Touch Event Listener
	34.8 Running the Example Application
	34.9 Summary

	35. Detecting Common Gestures Using the Android Gesture Detector Class
	35.1 Implementing Common Gesture Detection
	35.2 Creating an Example Gesture Detection Project
	35.3 Implementing the Listener Class
	35.4 Creating the GestureDetectorCompat Instance
	35.5 Implementing the onTouchEvent() Method
	35.6 Testing the Application
	35.7 Summary

	36. Implementing Custom Gesture and Pinch Recognition on Android
	36.1 The Android Gesture Builder Application
	36.2 The GestureOverlayView Class
	36.3 Detecting Gestures
	36.4 Identifying Specific Gestures
	36.5 Installing and Running the Gesture Builder Application
	36.6 Creating a Gestures File
	36.7 Creating the Example Project
	36.8 Extracting the Gestures File from the SD Card
	36.9 Adding the Gestures File to the Project
	36.10 Designing the User Interface
	36.11 Loading the Gestures File
	36.12 Registering the Event Listener
	36.13 Implementing the onGesturePerformed Method
	36.14 Testing the Application
	36.15 Configuring the GestureOverlayView
	36.16 Intercepting Gestures
	36.17 Detecting Pinch Gestures
	36.18 A Pinch Gesture Example Project
	36.19 Summary

	37. An Introduction to Android Fragments
	37.1 What is a Fragment?
	37.2 Creating a Fragment
	37.3 Adding a Fragment to an Activity using the Layout XML File
	37.4 Adding and Managing Fragments in Code
	37.5 Handling Fragment Events
	37.6 Implementing Fragment Communication
	37.7 Summary

	38. Using Fragments in Android Studio - An Example
	38.1 About the Example Fragment Application
	38.2 Creating the Example Project
	38.3 Creating the First Fragment Layout
	38.4 Migrating a Fragment to View Binding
	38.5 Adding the Second Fragment
	38.6 Adding the Fragments to the Activity
	38.7 Making the Toolbar Fragment Talk to the Activity
	38.8 Making the Activity Talk to the Text Fragment
	38.9 Testing the Application
	38.10 Summary

	39. Modern Android App Architecture with Jetpack
	39.1 What is Android Jetpack?
	39.2 The “Old” Architecture
	39.3 Modern Android Architecture
	39.4 The ViewModel Component
	39.5 The LiveData Component
	39.6 ViewModel Saved State
	39.7 LiveData and Data Binding
	39.8 Android Lifecycles
	39.9 Repository Modules
	39.10 Summary

	40. An Android Jetpack ViewModel Tutorial
	40.1 About the Project
	40.2 Creating the ViewModel Example Project
	40.3 Reviewing the Project
	40.3.1 The Main Activity
	40.3.2 The Content Fragment
	40.3.3 The ViewModel

	40.4 Designing the Fragment Layout
	40.5 Implementing the View Model
	40.6 Associating the Fragment with the View Model
	40.7 Modifying the Fragment
	40.8 Accessing the ViewModel Data
	40.9 Testing the Project
	40.10 Summary

	41. An Android Jetpack LiveData Tutorial
	41.1 LiveData - A Recap
	41.2 Adding LiveData to the ViewModel
	41.3 Implementing the Observer
	41.4 Summary

	42. An Overview of Android Jetpack Data Binding
	42.1 An Overview of Data Binding
	42.2 The Key Components of Data Binding
	42.2.1 The Project Build Configuration
	42.2.2 The Data Binding Layout File
	42.2.3 The Layout File Data Element
	42.2.4 The Binding Classes
	42.2.5 Data Binding Variable Configuration
	42.2.6 Binding Expressions (One-Way)
	42.2.7 Binding Expressions (Two-Way)
	42.2.8 Event and Listener Bindings

	42.3 Summary

	43. An Android Jetpack Data Binding Tutorial
	43.1 Removing the Redundant Code
	43.2 Enabling Data Binding
	43.3 Adding the Layout Element
	43.4 Adding the Data Element to Layout File
	43.5 Working with the Binding Class
	43.6 Assigning the ViewModel Instance to the Data Binding Variable
	43.7 Adding Binding Expressions
	43.8 Adding the Conversion Method
	43.9 Adding a Listener Binding
	43.10 Testing the App
	43.11 Summary

	44. An Android ViewModel Saved State Tutorial
	44.1 Understanding ViewModel State Saving
	44.2 Implementing ViewModel State Saving
	44.3 Saving and Restoring State
	44.4 Adding Saved State Support to the ViewModelDemo Project
	44.5 Summary

	45. Working with Android Lifecycle-Aware Components
	45.1 Lifecycle Awareness
	45.2 Lifecycle Owners
	45.3 Lifecycle Observers
	45.4 Lifecycle States and Events
	45.5 Summary

	46. An Android Jetpack Lifecycle Awareness Tutorial
	46.1 Creating the Example Lifecycle Project
	46.2 Creating a Lifecycle Observer
	46.3 Adding the Observer
	46.4 Testing the Observer
	46.5 Creating a Lifecycle Owner
	46.6 Testing the Custom Lifecycle Owner
	46.7 Summary

	47. An Overview of the Navigation Architecture Component
	47.1 Understanding Navigation
	47.2 Declaring a Navigation Host
	47.3 The Navigation Graph
	47.4 Accessing the Navigation Controller
	47.5 Triggering a Navigation Action
	47.6 Passing Arguments
	47.7 Summary

	48. An Android Jetpack Navigation Component Tutorial
	48.1 Creating the NavigationDemo Project
	48.2 Adding Navigation to the Build Configuration
	48.3 Creating the Navigation Graph Resource File
	48.4 Declaring a Navigation Host
	48.5 Adding Navigation Destinations
	48.6 Designing the Destination Fragment Layouts
	48.7 Adding an Action to the Navigation Graph
	48.8 Implement the OnFragmentInteractionListener
	48.9 Adding View Binding Support to the Destination Fragments
	48.10 Triggering the Action
	48.11 Passing Data Using Safeargs
	48.12 Summary

	49. An Introduction to MotionLayout
	49.1 An Overview of MotionLayout
	49.2 MotionLayout
	49.3 MotionScene
	49.4 Configuring ConstraintSets
	49.5 Custom Attributes
	49.6 Triggering an Animation
	49.7 Arc Motion
	49.8 Keyframes
	49.8.1 Attribute Keyframes
	49.8.2 Position Keyframes

	49.9 Time Linearity
	49.10 KeyTrigger
	49.11 Cycle and Time Cycle Keyframes
	49.12 Starting an Animation from Code
	49.13 Summary

	50. An Android MotionLayout Editor Tutorial
	50.1 Creating the MotionLayoutDemo Project
	50.2 ConstraintLayout to MotionLayout Conversion
	50.3 Configuring Start and End Constraints
	50.4 Previewing the MotionLayout Animation
	50.5 Adding an OnClick Gesture
	50.6 Adding an Attribute Keyframe to the Transition
	50.7 Adding a CustomAttribute to a Transition
	50.8 Adding Position Keyframes
	50.9 Summary

	51. A MotionLayout KeyCycle Tutorial
	51.1 An Overview of Cycle Keyframes
	51.2 Using the Cycle Editor
	51.3 Creating the KeyCycleDemo Project
	51.4 Configuring the Start and End Constraints
	51.5 Creating the Cycles
	51.6 Previewing the Animation
	51.7 Adding the KeyFrameSet to the MotionScene
	51.8 Summary

	52. Working with the Floating Action Button and Snackbar
	52.1 The Material Design
	52.2 The Design Library
	52.3 The Floating Action Button (FAB)
	52.4 The Snackbar
	52.5 Creating the Example Project
	52.6 Reviewing the Project
	52.7 Removing Navigation Features
	52.8 Changing the Floating Action Button
	52.9 Adding an Action to the Snackbar
	52.10 Summary

	53. Creating a Tabbed Interface using the TabLayout Component
	53.1 An Introduction to the ViewPager2
	53.2 An Overview of the TabLayout Component
	53.3 Creating the TabLayoutDemo Project
	53.4 Creating the First Fragment
	53.5 Duplicating the Fragments
	53.6 Adding the TabLayout and ViewPager2
	53.7 Creating the Pager Adapter
	53.8 Performing the Initialization Tasks
	53.9 Testing the Application
	53.10 Customizing the TabLayout
	53.11 Summary

	54. Working with the RecyclerView and CardView Widgets
	54.1 An Overview of the RecyclerView
	54.2 An Overview of the CardView
	54.3 Summary

	55. An Android RecyclerView and CardView Tutorial
	55.1 Creating the CardDemo Project
	55.2 Modifying the Basic Activity Project
	55.3 Designing the CardView Layout
	55.4 Adding the RecyclerView
	55.5 Adding the Image Files
	55.6 Creating the RecyclerView Adapter
	55.7 Initializing the RecyclerView Component
	55.8 Testing the Application
	55.9 Responding to Card Selections
	55.10 Summary

	56. Working with the AppBar and Collapsing Toolbar Layouts
	56.1 The Anatomy of an AppBar
	56.2 The Example Project
	56.3 Coordinating the RecyclerView and Toolbar
	56.4 Introducing the Collapsing Toolbar Layout
	56.5 Changing the Title and Scrim Color
	56.6 Summary

	57. An Overview of Android Intents
	57.1 An Overview of Intents
	57.2 Explicit Intents
	57.3 Returning Data from an Activity
	57.4 Implicit Intents
	57.5 Using Intent Filters
	57.6 Automatic Link Verification
	57.7 Manually Enabling Links
	57.8 Checking Intent Availability
	57.9 Summary

	58. Android Explicit Intents – A Worked Example
	58.1 Creating the Explicit Intent Example Application
	58.2 Designing the User Interface Layout for MainActivity
	58.3 Creating the Second Activity Class
	58.4 Designing the User Interface Layout for SecondActivity
	58.5 Reviewing the Application Manifest File
	58.6 Creating the Intent
	58.7 Extracting Intent Data
	58.8 Launching SecondActivity as a Sub-Activity
	58.9 Returning Data from a Sub-Activity
	58.10 Testing the Application
	58.11 Summary

	59. Android Implicit Intents – A Worked Example
	59.1 Creating the Android Studio Implicit Intent Example Project
	59.2 Designing the User Interface
	59.3 Creating the Implicit Intent
	59.4 Adding a Second Matching Activity
	59.5 Adding the Web View to the UI
	59.6 Obtaining the Intent URL
	59.7 Modifying the MyWebView Project Manifest File
	59.8 Installing the MyWebView Package on a Device
	59.9 Testing the Application
	59.10 Manually Enabling the Link
	59.11 Automatic Link Verification
	59.12 Summary

	60. Android Broadcast Intents and Broadcast Receivers
	60.1 An Overview of Broadcast Intents
	60.2 An Overview of Broadcast Receivers
	60.3 Obtaining Results from a Broadcast
	60.4 Sticky Broadcast Intents
	60.5 The Broadcast Intent Example
	60.6 Creating the Example Application
	60.7 Creating and Sending the Broadcast Intent
	60.8 Creating the Broadcast Receiver
	60.9 Registering the Broadcast Receiver
	60.10 Testing the Broadcast Example
	60.11 Listening for System Broadcasts
	60.12 Summary

	61. An Introduction to Kotlin Coroutines
	61.1 What are Coroutines?
	61.2 Threads vs Coroutines
	61.3 Coroutine Scope
	61.4 Suspend Functions
	61.5 Coroutine Dispatchers
	61.6 Coroutine Builders
	61.7 Jobs
	61.8 Coroutines – Suspending and Resuming
	61.9 Returning Results from a Coroutine
	61.10 Using withContext
	61.11 Coroutine Channel Communication
	61.12 Summary

	62. An Android Kotlin Coroutines Tutorial
	62.1 Creating the Coroutine Example Application
	62.2 Adding Coroutine Support to the Project
	62.3 Designing the User Interface
	62.4 Implementing the SeekBar
	62.5 Adding the Suspend Function
	62.6 Implementing the launchCoroutines Method
	62.7 Testing the App
	62.8 Summary

	63. An Overview of Android Services
	63.1 Intent Service
	63.2 Bound Service
	63.3 The Anatomy of a Service
	63.4 Controlling Destroyed Service Restart Options
	63.5 Declaring a Service in the Manifest File
	63.6 Starting a Service Running on System Startup
	63.7 Summary

	64. Android Local Bound Services – A Worked Example
	64.1 Understanding Bound Services
	64.2 Bound Service Interaction Options
	64.3 A Local Bound Service Example
	64.4 Adding a Bound Service to the Project
	64.5 Implementing the Binder
	64.6 Binding the Client to the Service
	64.7 Completing the Example
	64.8 Testing the Application
	64.9 Summary

	65. Android Remote Bound Services – A Worked Example
	65.1 Client to Remote Service Communication
	65.2 Creating the Example Application
	65.3 Designing the User Interface
	65.4 Implementing the Remote Bound Service
	65.5 Configuring a Remote Service in the Manifest File
	65.6 Launching and Binding to the Remote Service
	65.7 Sending a Message to the Remote Service
	65.8 Summary

	66. An Introduction to Kotlin Flow
	66.1 Understanding Flows
	66.2 Creating the Sample Project
	66.3 Adding the Kotlin Lifecycle Library
	66.4 Declaring a Flow
	66.5 Emitting Flow Data
	66.6 Collecting Flow Data
	66.7 Adding a Flow Buffer
	66.8 Transforming Data with Intermediaries
	66.9 Terminal Flow Operators
	66.10 Flow Flattening
	66.11 Combining Multiple Flows
	66.12 Hot and Cold Flows
	66.13 StateFlow
	66.14 SharedFlow
	66.15 Summary

	67. An Android SharedFlow Tutorial
	67.1 About the Project
	67.2 Creating the SharedFlowDemo Project
	67.3 Designing the User Interface Layout
	67.4 Adding the List Row Layout
	67.5 Adding the RecyclerView Adapter
	67.6 Completing the ViewModel
	67.7 Modifying the Main Fragment for View Binding
	67.8 Collecting the Flow Values
	67.9 Testing the SharedFlowDemo App
	67.10 Handling Flows in the Background
	67.11 Summary

	68. An Android Notifications Tutorial
	68.1 An Overview of Notifications
	68.2 Creating the NotifyDemo Project
	68.3 Designing the User Interface
	68.4 Creating the Second Activity
	68.5 Creating a Notification Channel
	68.6 Creating and Issuing a Notification
	68.7 Launching an Activity from a Notification
	68.8 Adding Actions to a Notification
	68.9 Bundled Notifications
	68.10 Summary

	69. An Android Direct Reply Notification Tutorial
	69.1 Creating the DirectReply Project
	69.2 Designing the User Interface
	69.3 Creating the Notification Channel
	69.4 Building the RemoteInput Object
	69.5 Creating the PendingIntent
	69.6 Creating the Reply Action
	69.7 Receiving Direct Reply Input
	69.8 Updating the Notification
	69.9 Summary

	70. An Overview of Android SQLite Databases
	70.1 Understanding Database Tables
	70.2 Introducing Database Schema
	70.3 Columns and Data Types
	70.4 Database Rows
	70.5 Introducing Primary Keys
	70.6 What is SQLite?
	70.7 Structured Query Language (SQL)
	70.8 Trying SQLite on an Android Virtual Device (AVD)
	70.9 The Android Room Persistence Library
	70.10 Summary

	71. The Android Room Persistence Library
	71.1 Revisiting Modern App Architecture
	71.2 Key Elements of Room Database Persistence
	71.2.1 Repository
	71.2.2 Room Database
	71.2.3 Data Access Object (DAO)
	71.2.4 Entities
	71.2.5 SQLite Database

	71.3 Understanding Entities
	71.4 Data Access Objects
	71.5 The Room Database
	71.6 The Repository
	71.7 In-Memory Databases
	71.8 Database Inspector
	71.9 Summary

	72. An Android TableLayout and TableRow Tutorial
	72.1 The TableLayout and TableRow Layout Views
	72.2 Creating the Room Database Project
	72.3 Converting to a LinearLayout
	72.4 Adding the TableLayout to the User Interface
	72.5 Configuring the TableRows
	72.6 Adding the Button Bar to the Layout
	72.7 Adding the RecyclerView
	72.8 Adjusting the Layout Margins
	72.9 Summary

	73. An Android Room Database and Repository Tutorial
	73.1 About the RoomDemo Project
	73.2 Modifying the Build Configuration
	73.3 Building the Entity
	73.4 Creating the Data Access Object
	73.5 Adding the Room Database
	73.6 Adding the Repository
	73.7 Modifying the ViewModel
	73.8 Creating the Product Item Layout
	73.9 Adding the RecyclerView Adapter
	73.10 Preparing the Main Fragment
	73.11 Adding the Button Listeners
	73.12 Adding LiveData Observers
	73.13 Initializing the RecyclerView
	73.14 Testing the RoomDemo App
	73.15 Using the Database Inspector
	73.16 Summary

	74. Video Playback on Android using the VideoView and MediaController Classes
	74.1 Introducing the Android VideoView Class
	74.2 Introducing the Android MediaController Class
	74.3 Creating the Video Playback Example
	74.4 Designing the VideoPlayer Layout
	74.5 Downloading the Video File
	74.6 Configuring the VideoView
	74.7 Adding the MediaController to the Video View
	74.8 Setting up the onPreparedListener
	74.9 Summary

	75. Android Picture-in-Picture Mode
	75.1 Picture-in-Picture Features
	75.2 Enabling Picture-in-Picture Mode
	75.3 Configuring Picture-in-Picture Parameters
	75.4 Entering Picture-in-Picture Mode
	75.5 Detecting Picture-in-Picture Mode Changes
	75.6 Adding Picture-in-Picture Actions
	75.7 Summary

	76. An Android Picture-in-Picture Tutorial
	76.1 Adding Picture-in-Picture Support to the Manifest
	76.2 Adding a Picture-in-Picture Button
	76.3 Entering Picture-in-Picture Mode
	76.4 Detecting Picture-in-Picture Mode Changes
	76.5 Adding a Broadcast Receiver
	76.6 Adding the PiP Action
	76.7 Testing the Picture-in-Picture Action
	76.8 Summary

	77. Making Runtime Permission Requests in Android
	77.1 Understanding Normal and Dangerous Permissions
	77.2 Creating the Permissions Example Project
	77.3 Checking for a Permission
	77.4 Requesting Permission at Runtime
	77.5 Providing a Rationale for the Permission Request
	77.6 Testing the Permissions App
	77.7 Summary

	78. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	78.1 Playing Audio
	78.2 Recording Audio and Video using the MediaRecorder Class
	78.3 About the Example Project
	78.4 Creating the AudioApp Project
	78.5 Designing the User Interface
	78.6 Checking for Microphone Availability
	78.7 Initializing the Activity
	78.8 Implementing the recordAudio() Method
	78.9 Implementing the stopAudio() Method
	78.10 Implementing the playAudio() method
	78.11 Configuring and Requesting Permissions
	78.12 Testing the Application
	78.13 Summary

	79. Printing with the Android Printing Framework
	79.1 The Android Printing Architecture
	79.2 The Print Service Plugins
	79.3 Google Cloud Print
	79.4 Printing to Google Drive
	79.5 Save as PDF
	79.6 Printing from Android Devices
	79.7 Options for Building Print Support into Android Apps
	79.7.1 Image Printing
	79.7.2 Creating and Printing HTML Content
	79.7.3 Printing a Web Page
	79.7.4 Printing a Custom Document

	79.8 Summary

	80. An Android HTML and Web Content Printing Example
	80.1 Creating the HTML Printing Example Application
	80.2 Printing Dynamic HTML Content
	80.3 Creating the Web Page Printing Example
	80.4 Removing the Floating Action Button
	80.5 Removing Navigation Features
	80.6 Designing the User Interface Layout
	80.7 Accessing the WebView from the Main Activity
	80.8 Loading the Web Page into the WebView
	80.9 Adding the Print Menu Option
	80.10 Summary

	81. A Guide to Android Custom Document Printing
	81.1 An Overview of Android Custom Document Printing
	81.1.1 Custom Print Adapters

	81.2 Preparing the Custom Document Printing Project
	81.3 Creating the Custom Print Adapter
	81.4 Implementing the onLayout() Callback Method
	81.5 Implementing the onWrite() Callback Method
	81.6 Checking a Page is in Range
	81.7 Drawing the Content on the Page Canvas
	81.8 Starting the Print Job
	81.9 Testing the Application
	81.10 Summary

	82. An Introduction to Android App Links
	82.1 An Overview of Android App Links
	82.2 App Link Intent Filters
	82.3 Handling App Link Intents
	82.4 Associating the App with a Website
	82.5 Summary

	83. An Android Studio App Links Tutorial
	83.1 About the Example App
	83.2 The Database Schema
	83.3 Loading and Running the Project
	83.4 Adding the URL Mapping
	83.5 Adding the Intent Filter
	83.6 Adding Intent Handling Code
	83.7 Testing the App
	83.8 Creating the Digital Asset Links File
	83.9 Testing the App Link
	83.10 Summary

	84. An Android Biometric Authentication Tutorial
	84.1 An Overview of Biometric Authentication
	84.2 Creating the Biometric Authentication Project
	84.3 Configuring Device Fingerprint Authentication
	84.4 Adding the Biometric Permission to the Manifest File
	84.5 Designing the User Interface
	84.6 Adding a Toast Convenience Method
	84.7 Checking the Security Settings
	84.8 Configuring the Authentication Callbacks
	84.9 Adding the CancellationSignal
	84.10 Starting the Biometric Prompt
	84.11 Testing the Project
	84.12 Summary

	85. Creating, Testing and Uploading an Android App Bundle
	85.1 The Release Preparation Process
	85.2 Android App Bundles
	85.3 Register for a Google Play Developer Console Account
	85.4 Configuring the App in the Console
	85.5 Enabling Google Play App Signing
	85.6 Creating a Keystore File
	85.7 Creating the Android App Bundle
	85.8 Generating Test APK Files
	85.9 Uploading the App Bundle to the Google Play Developer Console
	85.10 Exploring the App Bundle
	85.11 Managing Testers
	85.12 Rolling the App Out for Testing
	85.13 Uploading New App Bundle Revisions
	85.14 Analyzing the App Bundle File
	85.15 Summary

	86. An Overview of Android In-App Billing
	86.1 Preparing a Project for In-App Purchasing
	86.2 Creating In-App Products and Subscriptions
	86.3 Billing Client Initialization
	86.4 Connecting to the Google Play Billing Library
	86.5 Querying Available Products
	86.6 Starting the Purchase Process
	86.7 Completing the Purchase
	86.8 Querying Previous Purchases
	86.9 Summary

	87. An Android In-App Purchasing Tutorial
	87.1 About the In-App Purchasing Example Project
	87.2 Creating the InAppPurchase Project
	87.3 Adding Libraries to the Project
	87.4 Designing the User Interface
	87.5 Adding the App to the Google Play Store
	87.6 Creating an In-App Product
	87.7 Enabling License Testers
	87.8 Initializing the Billing Client
	87.9 Querying the Product
	87.10 Launching the Purchase Flow
	87.11 Handling Purchase Updates
	87.12 Consuming the Product
	87.13 Restoring a Previous Purchase
	87.14 Testing the App
	87.15 Troubleshooting
	87.16 Summary

	88. An Overview of Android Dynamic Feature Modules
	88.1 An Overview of Dynamic Feature Modules
	88.2 Dynamic Feature Module Architecture
	88.3 Creating a Dynamic Feature Module
	88.4 Converting an Existing Module for Dynamic Delivery
	88.5 Working with Dynamic Feature Modules
	88.6 Handling Large Dynamic Feature Modules
	88.7 Summary

	89. An Android Studio Dynamic Feature Tutorial
	89.1 Creating the DynamicFeature Project
	89.2 Adding Dynamic Feature Support to the Project
	89.3 Designing the Base Activity User Interface
	89.4 Adding the Dynamic Feature Module
	89.5 Reviewing the Dynamic Feature Module
	89.6 Adding the Dynamic Feature Activity
	89.7 Implementing the launchIntent() Method
	89.8 Uploading the App Bundle for Testing
	89.9 Implementing the installFeature() Method
	89.10 Adding the Update Listener
	89.11 Using Deferred Installation
	89.12 Removing a Dynamic Module
	89.13 Summary

	90. Working with Material Design 3 Theming
	90.1 Material Design 2 vs Material Design 3
	90.2 Understanding Material Design Theming
	90.3 Material Design 2 Theming
	90.4 Material Design 3 Theming
	90.5 Building a Custom Theme
	90.6 Summary

	91. A Material Design 3 Theming and Dynamic Color Tutorial
	91.1 Creating the ThemeDemo Project
	91.2 Preparing the Project
	91.3 Designing the User Interface
	91.4 Building a New Theme
	91.5 Adding the Custom Colors to the Project
	91.6 Merging the Custom Themes
	91.7 Enabling Dynamic Color Support
	91.8 Summary

	92. Migrating from Material Design 2 to Material Design 3
	92.1 Creating the ThemeMigration Project
	92.2 Designing the User Interface
	92.3 Migrating to Material Design 3
	92.4 Building a New Theme
	92.5 Adding the Theme to the Project
	92.6 Summary

	93. An Overview of Gradle in Android Studio
	93.1 An Overview of Gradle
	93.2 Gradle and Android Studio
	93.2.1 Sensible Defaults
	93.2.2 Dependencies
	93.2.3 Build Variants
	93.2.4 Manifest Entries
	93.2.5 APK Signing
	93.2.6 ProGuard Support

	93.3 The Property and Settings Gradle Build File
	93.4 The Top-level Gradle Build File
	93.5 Module Level Gradle Build Files
	93.6 Configuring Signing Settings in the Build File
	93.7 Running Gradle Tasks from the Command-line
	93.8 Summary

	Index

