
Android Studio Flamingo
Essentials

Kotlin Edition
Title

Android Studio Flamingo Essentials – Kotlin Edition

ISBN-13: 978-1-951442-68-2

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0
Copyright

i

Contents
Table of Contents
1. Introduction ... 1

1.1 Downloading the Code Samples ... 1
1.2 Feedback ... 2
1.3 Errata... 2

2. Setting up an Android Studio Development Environment ... 3
2.1 System requirements ... 3
2.2 Downloading the Android Studio package ... 3
2.3 Installing Android Studio ... 4

2.3.1 Installation on Windows ... 4
2.3.2 Installation on macOS ... 4
2.3.3 Installation on Linux .. 5

2.4 The Android Studio setup wizard ... 5
2.5 Installing additional Android SDK packages .. 6
2.6 Installing the Android SDK Command-line Tools ... 9

2.6.1 Windows 8.1 ... 10
2.6.2 Windows 10 .. 10
2.6.3 Windows 11 .. 11
2.6.4 Linux .. 11
2.6.5 macOS .. 11

2.7 Android Studio memory management .. 11
2.8 Updating Android Studio and the SDK ... 12
2.9 Summary .. 12

3. Creating an Example Android App in Android Studio ... 13
3.1 About the Project .. 13
3.2 Creating a New Android Project ... 13
3.3 Creating an Activity .. 14
3.4 Defining the Project and SDK Settings .. 14
3.5 Modifying the Example Application ... 15
3.6 Modifying the User Interface .. 16
3.7 Reviewing the Layout and Resource Files .. 21
3.8 Adding Interaction .. 24
3.9 Summary .. 25

4. Creating an Android Virtual Device (AVD) in Android Studio ... 27
4.1 About Android Virtual Devices .. 27
4.2 Starting the Emulator .. 29
4.3 Running the Application in the AVD ... 30
4.4 Running on Multiple Devices .. 31
4.5 Stopping a Running Application ... 32
4.6 Supporting Dark Theme ... 32
4.7 Running the Emulator in a Separate Window ... 33
4.8 Enabling the Device Frame .. 35

Contents

ii

Table of Contents

4.9 Summary .. 36
5. Using and Configuring the Android Studio AVD Emulator .. 37

5.1 The Emulator Environment ... 37
5.2 Emulator Toolbar Options ... 37
5.3 Working in Zoom Mode .. 39
5.4 Resizing the Emulator Window... 39
5.5 Extended Control Options ... 39

5.5.1 Location ... 40
5.5.2 Displays .. 40
5.5.3 Cellular .. 40
5.5.4 Battery .. 40
5.5.5 Camera ... 40
5.5.6 Phone ... 40
5.5.7 Directional Pad ... 40
5.5.8 Microphone ... 40
5.5.9 Fingerprint .. 40
5.5.10 Virtual Sensors ... 41
5.5.11 Snapshots ... 41
5.5.12 Record and Playback ... 41
5.5.13 Google Play ... 41
5.5.14 Settings .. 41
5.5.15 Help .. 41

5.6 Working with Snapshots ... 41
5.7 Configuring Fingerprint Emulation ... 42
5.8 The Emulator in Tool Window Mode ... 43
5.9 Creating a Resizable Emulator ... 44
5.10 Summary .. 45

6. A Tour of the Android Studio User Interface .. 47
6.1 The Welcome Screen ... 47
6.2 The Main Window .. 48
6.3 The Tool Windows .. 49
6.4 Android Studio Keyboard Shortcuts .. 52
6.5 Switcher and Recent Files Navigation .. 53
6.6 Changing the Android Studio Theme .. 54
6.7 Summary .. 55

7. Testing Android Studio Apps on a Physical Android Device .. 57
7.1 An Overview of the Android Debug Bridge (ADB) ... 57
7.2 Enabling USB Debugging ADB on Android Devices ... 57

7.2.1 macOS ADB Configuration .. 58
7.2.2 Windows ADB Configuration .. 59
7.2.3 Linux adb Configuration ... 60

7.3 Resolving USB Connection Issues .. 60
7.4 Enabling Wireless Debugging on Android Devices ... 61
7.5 Testing the adb Connection ... 63
7.6 Device Mirroring ... 63
7.7 Summary .. 63

8. The Basics of the Android Studio Code Editor .. 65

iii

Table of Contents

8.1 The Android Studio Editor... 65
8.2 Splitting the Editor Window .. 67
8.3 Code Completion .. 68
8.4 Statement Completion .. 69
8.5 Parameter Information ... 70
8.6 Parameter Name Hints ... 70
8.7 Code Generation ... 70
8.8 Code Folding .. 71
8.9 Quick Documentation Lookup ... 72
8.10 Code Reformatting.. 73
8.11 Finding Sample Code ... 73
8.12 Live Templates ... 74
8.13 Summary .. 74

9. An Overview of the Android Architecture .. 75
9.1 The Android Software Stack .. 75
9.2 The Linux Kernel ... 76
9.3 Android Runtime – ART .. 76
9.4 Android Libraries .. 76

9.4.1 C/C++ Libraries ... 77
9.5 Application Framework .. 77
9.6 Applications ... 78
9.7 Summary .. 78

10. The Anatomy of an Android Application .. 79
10.1 Android Activities ... 79
10.2 Android Fragments ... 79
10.3 Android Intents ... 80
10.4 Broadcast Intents ... 80
10.5 Broadcast Receivers .. 80
10.6 Android Services ... 80
10.7 Content Providers ... 81
10.8 The Application Manifest ... 81
10.9 Application Resources .. 81
10.10 Application Context .. 81
10.11 Summary .. 81

11. An Introduction to Kotlin .. 83
11.1 What is Kotlin? .. 83
11.2 Kotlin and Java ... 83
11.3 Converting from Java to Kotlin ... 83
11.4 Kotlin and Android Studio .. 84
11.5 Experimenting with Kotlin .. 84
11.6 Semi-colons in Kotlin ... 85
11.7 Summary .. 85

12. Kotlin Data Types, Variables, and Nullability ... 87
12.1 Kotlin Data Types .. 87

12.1.1 Integer Data Types ... 88
12.1.2 Floating-Point Data Types ... 88
12.1.3 Boolean Data Type ... 88

iv

Table of Contents

12.1.4 Character Data Type .. 88
12.1.5 String Data Type ... 88
12.1.6 Escape Sequences ... 89

12.2 Mutable Variables .. 90
12.3 Immutable Variables ... 90
12.4 Declaring Mutable and Immutable Variables .. 90
12.5 Data Types are Objects ... 90
12.6 Type Annotations and Type Inference ... 91
12.7 Nullable Type ... 92
12.8 The Safe Call Operator ... 92
12.9 Not-Null Assertion .. 93
12.10 Nullable Types and the let Function ... 93
12.11 Late Initialization (lateinit) .. 94
12.12 The Elvis Operator .. 95
12.13 Type Casting and Type Checking ... 95
12.14 Summary .. 96

13. Kotlin Operators and Expressions ... 97
13.1 Expression Syntax in Kotlin ... 97
13.2 The Basic Assignment Operator .. 97
13.3 Kotlin Arithmetic Operators ... 97
13.4 Augmented Assignment Operators .. 98
13.5 Increment and Decrement Operators .. 98
13.6 Equality Operators .. 99
13.7 Boolean Logical Operators .. 99
13.8 Range Operator ... 100
13.9 Bitwise Operators .. 100

13.9.1 Bitwise Inversion .. 100
13.9.2 Bitwise AND ... 101
13.9.3 Bitwise OR ... 101
13.9.4 Bitwise XOR .. 101
13.9.5 Bitwise Left Shift ... 102
13.9.6 Bitwise Right Shift .. 102

13.10 Summary .. 103
14. Kotlin Control Flow ... 105

14.1 Looping Control flow ... 105
14.1.1 The Kotlin for-in Statement ... 105
14.1.2 The while Loop .. 106
14.1.3 The do ... while loop .. 107
14.1.4 Breaking from Loops ... 107
14.1.5 The continue Statement ... 108
14.1.6 Break and Continue Labels ... 108

14.2 Conditional Control Flow .. 109
14.2.1 Using the if Expressions ... 109
14.2.2 Using if ... else … Expressions .. 110
14.2.3 Using if ... else if ... Expressions ... 110
14.2.4 Using the when Statement ... 110

14.3 Summary .. 111
15. An Overview of Kotlin Functions and Lambdas ... 113

v

Table of Contents

15.1 What is a Function? .. 113
15.2 How to Declare a Kotlin Function .. 113
15.3 Calling a Kotlin Function ... 114
15.4 Single Expression Functions .. 114
15.5 Local Functions ... 114
15.6 Handling Return Values ... 115
15.7 Declaring Default Function Parameters ... 115
15.8 Variable Number of Function Parameters .. 115
15.9 Lambda Expressions ... 116
15.10 Higher-order Functions ... 117
15.11 Summary .. 118

16. The Basics of Object Oriented Programming in Kotlin .. 119
16.1 What is an Object? .. 119
16.2 What is a Class? ... 119
16.3 Declaring a Kotlin Class ... 119
16.4 Adding Properties to a Class.. 120
16.5 Defining Methods ... 120
16.6 Declaring and Initializing a Class Instance .. 120
16.7 Primary and Secondary Constructors .. 120
16.8 Initializer Blocks .. 123
16.9 Calling Methods and Accessing Properties ... 123
16.10 Custom Accessors ... 123
16.11 Nested and Inner Classes ... 124
16.12 Companion Objects .. 125
16.13 Summary .. 127

17. An Introduction to Kotlin Inheritance and Subclassing ... 129
17.1 Inheritance, Classes and Subclasses .. 129
17.2 Subclassing Syntax .. 129
17.3 A Kotlin Inheritance Example ... 130
17.4 Extending the Functionality of a Subclass ... 131
17.5 Overriding Inherited Methods .. 132
17.6 Adding a Custom Secondary Constructor... 133
17.7 Using the SavingsAccount Class ... 133
17.8 Summary .. 133

18. An Overview of Android View Binding ... 135
18.1 Find View by Id ... 135
18.2 View Binding .. 135
18.3 Converting the AndroidSample project ... 136
18.4 Enabling View Binding ... 136
18.5 Using View Binding .. 136
18.6 Choosing an Option ... 137
18.7 View Binding in the Book Examples .. 137
18.8 Migrating a Project to View Binding .. 138
18.9 Summary .. 138

19. Understanding Android Application and Activity Lifecycles ... 139
19.1 Android Applications and Resource Management ... 139
19.2 Android Process States ... 139

vi

Table of Contents

19.2.1 Foreground Process ... 140
19.2.2 Visible Process .. 140
19.2.3 Service Process ... 140
19.2.4 Background Process ... 140
19.2.5 Empty Process .. 141

19.3 Inter-Process Dependencies ... 141
19.4 The Activity Lifecycle .. 141
19.5 The Activity Stack .. 141
19.6 Activity States .. 142
19.7 Configuration Changes .. 142
19.8 Handling State Change ... 143
19.9 Summary .. 143

20. Handling Android Activity State Changes... 145
20.1 New vs. Old Lifecycle Techniques ... 145
20.2 The Activity and Fragment Classes ... 145
20.3 Dynamic State vs. Persistent State ... 147
20.4 The Android Lifecycle Methods .. 147
20.5 Lifetimes ... 149
20.6 Foldable Devices and Multi-Resume .. 150
20.7 Disabling Configuration Change Restarts ... 150
20.8 Lifecycle Method Limitations .. 150
20.9 Summary .. 151

21. Android Activity State Changes by Example ... 153
21.1 Creating the State Change Example Project .. 153
21.2 Designing the User Interface ... 154
21.3 Overriding the Activity Lifecycle Methods ... 155
21.4 Filtering the Logcat Panel... 157
21.5 Running the Application .. 158
21.6 Experimenting with the Activity ... 159
21.7 Summary .. 160

22. Saving and Restoring the State of an Android Activity ... 161
22.1 Saving Dynamic State ... 161
22.2 Default Saving of User Interface State .. 161
22.3 The Bundle Class ... 162
22.4 Saving the State .. 163
22.5 Restoring the State .. 164
22.6 Testing the Application ... 164
22.7 Summary .. 164

23. Understanding Android Views, View Groups and Layouts .. 165
23.1 Designing for Different Android Devices .. 165
23.2 Views and View Groups ... 165
23.3 Android Layout Managers ... 165
23.4 The View Hierarchy .. 167
23.5 Creating User Interfaces ... 168
23.6 Summary .. 168

24. A Guide to the Android Studio Layout Editor Tool .. 169

vii

Table of Contents

24.1 Basic vs. Empty Views Activity Templates ... 169
24.2 The Android Studio Layout Editor ... 173
24.3 Design Mode .. 173
24.4 The Palette .. 174
24.5 Design Mode and Layout Views.. 175
24.6 Night Mode .. 176
24.7 Code Mode ... 176
24.8 Split Mode .. 176
24.9 Setting Attributes... 177
24.10 Transforms ... 178
24.11 Tools Visibility Toggles ... 179
24.12 Converting Views .. 181
24.13 Displaying Sample Data ... 182
24.14 Creating a Custom Device Definition ... 182
24.15 Changing the Current Device.. 183
24.16 Layout Validation .. 184
24.17 Summary .. 184

25. A Guide to the Android ConstraintLayout .. 185
25.1 How ConstraintLayout Works ... 185

25.1.1 Constraints .. 185
25.1.2 Margins .. 186
25.1.3 Opposing Constraints.. 186
25.1.4 Constraint Bias ... 187
25.1.5 Chains .. 188
25.1.6 Chain Styles ... 188

25.2 Baseline Alignment ... 189
25.3 Configuring Widget Dimensions .. 189
25.4 Guideline Helper ... 190
25.5 Group Helper ... 190
25.6 Barrier Helper .. 190
25.7 Flow Helper .. 192
25.8 Ratios .. 193
25.9 ConstraintLayout Advantages ... 193
25.10 ConstraintLayout Availability.. 194
25.11 Summary .. 194

26. A Guide to Using ConstraintLayout in Android Studio ... 195
26.1 Design and Layout Views ... 195
26.2 Autoconnect Mode ... 196
26.3 Inference Mode .. 197
26.4 Manipulating Constraints Manually ... 197
26.5 Adding Constraints in the Inspector .. 198
26.6 Viewing Constraints in the Attributes Window .. 199
26.7 Deleting Constraints ... 200
26.8 Adjusting Constraint Bias .. 200
26.9 Understanding ConstraintLayout Margins .. 201
26.10 The Importance of Opposing Constraints and Bias ... 202
26.11 Configuring Widget Dimensions .. 204
26.12 Design Time Tools Positioning ... 205

viii

Table of Contents

26.13 Adding Guidelines .. 206
26.14 Adding Barriers ... 208
26.15 Adding a Group ... 209
26.16 Working with the Flow Helper .. 210
26.17 Widget Group Alignment and Distribution .. 211
26.18 Converting other Layouts to ConstraintLayout .. 212
26.19 Summary ... 212

27. Working with ConstraintLayout Chains and Ratios in Android Studio .. 213
27.1 Creating a Chain.. 213
27.2 Changing the Chain Style .. 215
27.3 Spread Inside Chain Style... 215
27.4 Packed Chain Style .. 216
27.5 Packed Chain Style with Bias ... 216
27.6 Weighted Chain ... 216
27.7 Working with Ratios ... 217
27.8 Summary .. 219

28. An Android Studio Layout Editor ConstraintLayout Tutorial ... 221
28.1 An Android Studio Layout Editor Tool Example ... 221
28.2 Preparing the Layout Editor Environment .. 221
28.3 Adding the Widgets to the User Interface.. 222
28.4 Adding the Constraints .. 225
28.5 Testing the Layout ... 226
28.6 Using the Layout Inspector .. 227
28.7 Summary .. 228

29. Manual XML Layout Design in Android Studio ... 229
29.1 Manually Creating an XML Layout .. 229
29.2 Manual XML vs. Visual Layout Design .. 232
29.3 Summary .. 232

30. Managing Constraints using Constraint Sets .. 233
30.1 Kotlin Code vs. XML Layout Files .. 233
30.2 Creating Views ... 233
30.3 View Attributes .. 234
30.4 Constraint Sets ... 234

30.4.1 Establishing Connections.. 234
30.4.2 Applying Constraints to a Layout .. 234
30.4.3 Parent Constraint Connections .. 234
30.4.4 Sizing Constraints .. 235
30.4.5 Constraint Bias ... 235
30.4.6 Alignment Constraints .. 235
30.4.7 Copying and Applying Constraint Sets ... 235
30.4.8 ConstraintLayout Chains .. 235
30.4.9 Guidelines ... 236
30.4.10 Removing Constraints ... 236
30.4.11 Scaling.. 236
30.4.12 Rotation ... 237

30.5 Summary .. 237
31. An Android ConstraintSet Tutorial ... 239

ix

Table of Contents

31.1 Creating the Example Project in Android Studio ... 239
31.2 Adding Views to an Activity .. 239
31.3 Setting View Attributes ... 240
31.4 Creating View IDs ... 241
31.5 Configuring the Constraint Set ... 242
31.6 Adding the EditText View .. 243
31.7 Converting Density Independent Pixels (dp) to Pixels (px) .. 244
31.8 Summary .. 245

32. A Guide to using Apply Changes in Android Studio... 247
32.1 Introducing Apply Changes ... 247
32.2 Understanding Apply Changes Options .. 247
32.3 Using Apply Changes .. 248
32.4 Configuring Apply Changes Fallback Settings .. 249
32.5 An Apply Changes Tutorial.. 249
32.6 Using Apply Code Changes ... 249
32.7 Using Apply Changes and Restart Activity .. 250
32.8 Using Run App .. 250
32.9 Summary .. 250

33. An Overview and Example of Android Event Handling ... 251
33.1 Understanding Android Events... 251
33.2 Using the android:onClick Resource .. 251
33.3 Event Listeners and Callback Methods .. 252
33.4 An Event Handling Example ... 252
33.5 Designing the User Interface ... 253
33.6 The Event Listener and Callback Method .. 253
33.7 Consuming Events .. 255
33.8 Summary .. 256

34. Android Touch and Multi-touch Event Handling ... 257
34.1 Intercepting Touch Events ... 257
34.2 The MotionEvent Object .. 258
34.3 Understanding Touch Actions ... 258
34.4 Handling Multiple Touches ... 258
34.5 An Example Multi-Touch Application ... 259
34.6 Designing the Activity User Interface .. 259
34.7 Implementing the Touch Event Listener .. 259
34.8 Running the Example Application .. 262
34.9 Summary .. 262

35. Detecting Common Gestures Using the Android Gesture Detector Class ... 263
35.1 Implementing Common Gesture Detection .. 263
35.2 Creating an Example Gesture Detection Project .. 264
35.3 Implementing the Listener Class ... 264
35.4 Creating the GestureDetectorCompat Instance .. 266
35.5 Implementing the onTouchEvent() Method .. 266
35.6 Testing the Application ... 267
35.7 Summary .. 267

36. Implementing Custom Gesture and Pinch Recognition on Android ... 269

x

Table of Contents

36.1 The Android Gesture Builder Application ... 269
36.2 The GestureOverlayView Class ... 269
36.3 Detecting Gestures .. 269
36.4 Identifying Specific Gestures ... 269
36.5 Installing and Running the Gesture Builder Application .. 270
36.6 Creating a Gestures File ... 270
36.7 Creating the Example Project .. 270
36.8 Extracting the Gestures File from the SD Card .. 271
36.9 Adding the Gestures File to the Project ... 271
36.10 Designing the User Interface ... 271
36.11 Loading the Gestures File .. 272
36.12 Registering the Event Listener ... 273
36.13 Implementing the onGesturePerformed Method ... 273
36.14 Testing the Application... 274
36.15 Configuring the GestureOverlayView .. 274
36.16 Intercepting Gestures.. 275
36.17 Detecting Pinch Gestures ... 275
36.18 A Pinch Gesture Example Project ... 275
36.19 Summary .. 277

37. An Introduction to Android Fragments .. 279
37.1 What is a Fragment? ... 279
37.2 Creating a Fragment ... 279
37.3 Adding a Fragment to an Activity using the Layout XML File ... 280
37.4 Adding and Managing Fragments in Code ... 282
37.5 Handling Fragment Events .. 283
37.6 Implementing Fragment Communication... 283
37.7 Summary ... 285

38. Using Fragments in Android Studio - An Example ... 287
38.1 About the Example Fragment Application .. 287
38.2 Creating the Example Project .. 287
38.3 Creating the First Fragment Layout .. 287
38.4 Migrating a Fragment to View Binding ... 289
38.5 Adding the Second Fragment .. 290
38.6 Adding the Fragments to the Activity .. 291
38.7 Making the Toolbar Fragment Talk to the Activity .. 292
38.8 Making the Activity Talk to the Text Fragment .. 295
38.9 Testing the Application ... 296
38.10 Summary .. 296

39. Modern Android App Architecture with Jetpack .. 297
39.1 What is Android Jetpack? .. 297
39.2 The “Old” Architecture ... 297
39.3 Modern Android Architecture .. 297
39.4 The ViewModel Component ... 298
39.5 The LiveData Component .. 298
39.6 ViewModel Saved State... 299
39.7 LiveData and Data Binding .. 300
39.8 Android Lifecycles .. 300
39.9 Repository Modules .. 300

xi

Table of Contents

39.10 Summary .. 301
40. An Android ViewModel Tutorial ... 303

40.1 About the Project .. 303
40.2 Creating the ViewModel Example Project ... 303
40.3 Removing Unwanted Project Elements .. 303
40.4 Designing the Fragment Layout .. 304
40.5 Implementing the View Model .. 305
40.6 Associating the Fragment with the View Model ... 306
40.7 Modifying the Fragment .. 306
40.8 Accessing the ViewModel Data ... 307
40.9 Testing the Project ... 307
40.10 Summary .. 308

41. An Android Jetpack LiveData Tutorial .. 309
41.1 LiveData - A Recap ... 309
41.2 Adding LiveData to the ViewModel ... 309
41.3 Implementing the Observer ... 311
41.4 Summary .. 312

42. An Overview of Android Jetpack Data Binding .. 313
42.1 An Overview of Data Binding ... 313
42.2 The Key Components of Data Binding .. 313

42.2.1 The Project Build Configuration .. 313
42.2.2 The Data Binding Layout File ... 314
42.2.3 The Layout File Data Element .. 315
42.2.4 The Binding Classes ... 316
42.2.5 Data Binding Variable Configuration .. 316
42.2.6 Binding Expressions (One-Way) .. 317
42.2.7 Binding Expressions (Two-Way) .. 318
42.2.8 Event and Listener Bindings ... 318

42.3 Summary .. 319
43. An Android Jetpack Data Binding Tutorial ... 321

43.1 Removing the Redundant Code .. 321
43.2 Enabling Data Binding ... 322
43.3 Adding the Layout Element ... 323
43.4 Adding the Data Element to Layout File .. 324
43.5 Working with the Binding Class ... 324
43.6 Assigning the ViewModel Instance to the Data Binding Variable ... 326
43.7 Adding Binding Expressions ... 326
43.8 Adding the Conversion Method ... 327
43.9 Adding a Listener Binding ... 327
43.10 Testing the App .. 328
43.11 Summary .. 328

44. An Android ViewModel Saved State Tutorial .. 329
44.1 Understanding ViewModel State Saving .. 329
44.2 Implementing ViewModel State Saving ... 329
44.3 Saving and Restoring State ... 330
44.4 Adding Saved State Support to the ViewModelDemo Project .. 331

xii

Table of Contents

44.5 Summary .. 333
45. Working with Android Lifecycle-Aware Components .. 335

45.1 Lifecycle Awareness .. 335
45.2 Lifecycle Owners ... 335
45.3 Lifecycle Observers ... 336
45.4 Lifecycle States and Events ... 336
45.5 Summary .. 337

46. An Android Jetpack Lifecycle Awareness Tutorial .. 339
46.1 Creating the Example Lifecycle Project .. 339
46.2 Creating a Lifecycle Observer .. 339
46.3 Adding the Observer .. 340
46.4 Testing the Observer ... 341
46.5 Creating a Lifecycle Owner .. 341
46.6 Testing the Custom Lifecycle Owner .. 343
46.7 Summary .. 343

47. An Overview of the Navigation Architecture Component .. 345
47.1 Understanding Navigation ... 345
47.2 Declaring a Navigation Host .. 346
47.3 The Navigation Graph .. 348
47.4 Accessing the Navigation Controller .. 349
47.5 Triggering a Navigation Action ... 349
47.6 Passing Arguments .. 350
47.7 Summary .. 350

48. An Android Jetpack Navigation Component Tutorial .. 351
48.1 Creating the NavigationDemo Project ... 351
48.2 Adding Navigation to the Build Configuration... 351
48.3 Creating the Navigation Graph Resource File ... 352
48.4 Declaring a Navigation Host .. 353
48.5 Adding Navigation Destinations ... 354
48.6 Designing the Destination Fragment Layouts ... 356
48.7 Adding an Action to the Navigation Graph... 357
48.8 Implement the OnFragmentInteractionListener .. 359
48.9 Adding View Binding Support to the Destination Fragments .. 360
48.10 Triggering the Action ... 360
48.11 Passing Data Using Safeargs .. 361
48.12 Summary .. 364

49. An Introduction to MotionLayout ... 365
49.1 An Overview of MotionLayout ... 365
49.2 MotionLayout .. 365
49.3 MotionScene .. 365
49.4 Configuring ConstraintSets ... 366
49.5 Custom Attributes ... 367
49.6 Triggering an Animation .. 368
49.7 Arc Motion ... 370
49.8 Keyframes ... 370

49.8.1 Attribute Keyframes ... 370

xiii

Table of Contents

49.8.2 Position Keyframes .. 371
49.9 Time Linearity ... 374
49.10 KeyTrigger .. 374
49.11 Cycle and Time Cycle Keyframes ... 375
49.12 Starting an Animation from Code .. 375
49.13 Summary .. 376

50. An Android MotionLayout Editor Tutorial ... 377
50.1 Creating the MotionLayoutDemo Project ... 377
50.2 ConstraintLayout to MotionLayout Conversion .. 377
50.3 Configuring Start and End Constraints ... 379
50.4 Previewing the MotionLayout Animation ... 381
50.5 Adding an OnClick Gesture .. 382
50.6 Adding an Attribute Keyframe to the Transition .. 383
50.7 Adding a CustomAttribute to a Transition .. 386
50.8 Adding Position Keyframes ... 387
50.9 Summary .. 390

51. A MotionLayout KeyCycle Tutorial ... 391
51.1 An Overview of Cycle Keyframes ... 391
51.2 Using the Cycle Editor .. 395
51.3 Creating the KeyCycleDemo Project .. 396
51.4 Configuring the Start and End Constraints ... 396
51.5 Creating the Cycles ... 398
51.6 Previewing the Animation ... 400
51.7 Adding the KeyFrameSet to the MotionScene .. 400
51.8 Summary .. 402

52. Working with the Floating Action Button and Snackbar .. 403
52.1 The Material Design .. 403
52.2 The Design Library ... 403
52.3 The Floating Action Button (FAB) ... 403
52.4 The Snackbar .. 404
52.5 Creating the Example Project .. 405
52.6 Reviewing the Project ... 405
52.7 Removing Navigation Features.. 406
52.8 Changing the Floating Action Button .. 406
52.9 Adding an Action to the Snackbar .. 408
52.10 Summary .. 408

53. Creating a Tabbed Interface using the TabLayout Component .. 409
53.1 An Introduction to the ViewPager2 ... 409
53.2 An Overview of the TabLayout Component ... 409
53.3 Creating the TabLayoutDemo Project .. 410
53.4 Creating the First Fragment ... 410
53.5 Duplicating the Fragments... 412
53.6 Adding the TabLayout and ViewPager2 ... 413
53.7 Creating the Pager Adapter .. 414
53.8 Performing the Initialization Tasks ... 415
53.9 Testing the Application ... 417
53.10 Customizing the TabLayout ... 417

xiv

Table of Contents

53.11 Summary .. 418
54. Working with the RecyclerView and CardView Widgets .. 419

54.1 An Overview of the RecyclerView .. 419
54.2 An Overview of the CardView .. 421
54.3 Summary .. 422

55. An Android RecyclerView and CardView Tutorial ... 423
55.1 Creating the CardDemo Project.. 423
55.2 Modifying the Basic Views Activity Project .. 423
55.3 Designing the CardView Layout ... 424
55.4 Adding the RecyclerView ... 425
55.5 Adding the Image Files ... 425
55.6 Creating the RecyclerView Adapter .. 425
55.7 Initializing the RecyclerView Component ... 427
55.8 Testing the Application ... 428
55.9 Responding to Card Selections.. 429
55.10 Summary .. 430

56. Working with the AppBar and Collapsing Toolbar Layouts ... 431
56.1 The Anatomy of an AppBar ... 431
56.2 The Example Project ... 432
56.3 Coordinating the RecyclerView and Toolbar .. 432
56.4 Introducing the Collapsing Toolbar Layout .. 434
56.5 Changing the Title and Scrim Color .. 437
56.6 Summary .. 438

57. An Overview of Android Intents ... 439
57.1 An Overview of Intents .. 439
57.2 Explicit Intents ... 439
57.3 Returning Data from an Activity .. 440
57.4 Implicit Intents .. 441
57.5 Using Intent Filters .. 442
57.6 Automatic Link Verification .. 442
57.7 Manually Enabling Links ... 445
57.8 Checking Intent Availability .. 446
57.9 Summary .. 447

58. Android Explicit Intents – A Worked Example ... 449
58.1 Creating the Explicit Intent Example Application .. 449
58.2 Designing the User Interface Layout for MainActivity .. 449
58.3 Creating the Second Activity Class ... 450
58.4 Designing the User Interface Layout for SecondActivity .. 451
58.5 Reviewing the Application Manifest File ... 451
58.6 Creating the Intent .. 452
58.7 Extracting Intent Data .. 453
58.8 Launching SecondActivity as a Sub-Activity ... 454
58.9 Returning Data from a Sub-Activity... 455
58.10 Testing the Application... 455
58.11 Summary .. 455

59. Android Implicit Intents – A Worked Example .. 457

xv

Table of Contents

59.1 Creating the Android Studio Implicit Intent Example Project ... 457
59.2 Designing the User Interface ... 457
59.3 Creating the Implicit Intent ... 458
59.4 Adding a Second Matching Activity ... 459
59.5 Adding the Web View to the UI .. 459
59.6 Obtaining the Intent URL .. 460
59.7 Modifying the MyWebView Project Manifest File ... 461
59.8 Installing the MyWebView Package on a Device .. 462
59.9 Testing the Application ... 463
59.10 Manually Enabling the Link .. 463
59.11 Automatic Link Verification .. 465
59.12 Summary .. 467

60. Android Broadcast Intents and Broadcast Receivers .. 469
60.1 An Overview of Broadcast Intents .. 469
60.2 An Overview of Broadcast Receivers ... 470
60.3 Obtaining Results from a Broadcast ... 471
60.4 Sticky Broadcast Intents ... 471
60.5 The Broadcast Intent Example ... 472
60.6 Creating the Example Application .. 472
60.7 Creating and Sending the Broadcast Intent ... 472
60.8 Creating the Broadcast Receiver ... 473
60.9 Registering the Broadcast Receiver ... 474
60.10 Testing the Broadcast Example ... 475
60.11 Listening for System Broadcasts .. 475
60.12 Summary .. 476

61. An Introduction to Kotlin Coroutines ... 477
61.1 What are Coroutines? ... 477
61.2 Threads vs Coroutines .. 477
61.3 Coroutine Scope .. 478
61.4 Suspend Functions .. 478
61.5 Coroutine Dispatchers .. 478
61.6 Coroutine Builders .. 479
61.7 Jobs .. 479
61.8 Coroutines – Suspending and Resuming ... 480
61.9 Returning Results from a Coroutine .. 481
61.10 Using withContext .. 481
61.11 Coroutine Channel Communication ... 483
61.12 Summary .. 484

62. An Android Kotlin Coroutines Tutorial .. 485
62.1 Creating the Coroutine Example Application ... 485
62.2 Adding Coroutine Support to the Project .. 485
62.3 Designing the User Interface ... 485
62.4 Implementing the SeekBar ... 487
62.5 Adding the Suspend Function ... 487
62.6 Implementing the launchCoroutines Method... 488
62.7 Testing the App .. 489
62.8 Summary .. 489

xvi

Table of Contents

63. An Overview of Android Services .. 491
63.1 Intent Service ... 491
63.2 Bound Service .. 491
63.3 The Anatomy of a Service .. 492
63.4 Controlling Destroyed Service Restart Options.. 492
63.5 Declaring a Service in the Manifest File ... 492
63.6 Starting a Service Running on System Startup .. 494
63.7 Summary .. 494

64. Android Local Bound Services – A Worked Example ... 495
64.1 Understanding Bound Services ... 495
64.2 Bound Service Interaction Options .. 495
64.3 A Local Bound Service Example ... 495
64.4 Adding a Bound Service to the Project .. 496
64.5 Implementing the Binder ... 496
64.6 Binding the Client to the Service .. 498
64.7 Completing the Example .. 499
64.8 Testing the Application ... 500
64.9 Summary .. 501

65. Android Remote Bound Services – A Worked Example ... 503
65.1 Client to Remote Service Communication .. 503
65.2 Creating the Example Application .. 503
65.3 Designing the User Interface ... 503
65.4 Implementing the Remote Bound Service ... 504
65.5 Configuring a Remote Service in the Manifest File .. 505
65.6 Launching and Binding to the Remote Service ... 505
65.7 Sending a Message to the Remote Service ... 507
65.8 Summary .. 507

66. An Introduction to Kotlin Flow ... 509
66.1 Understanding Flows .. 509
66.2 Creating the Sample Project .. 509
66.3 Adding the Kotlin Lifecycle Library ... 510
66.4 Declaring a Flow .. 510
66.5 Emitting Flow Data ... 511
66.6 Collecting Flow Data .. 511
66.7 Adding a Flow Buffer .. 512
66.8 Transforming Data with Intermediaries .. 514
66.9 Terminal Flow Operators ... 515
66.10 Flow Flattening .. 516
66.11 Combining Multiple Flows .. 517
66.12 Hot and Cold Flows .. 518
66.13 StateFlow .. 519
66.14 SharedFlow ... 520
66.15 Summary .. 521

67. An Android SharedFlow Tutorial .. 523
67.1 About the Project .. 523
67.2 Creating the SharedFlowDemo Project .. 523
67.3 Designing the User Interface Layout .. 523

xvii

Table of Contents

67.4 Adding the List Row Layout .. 523
67.5 Adding the RecyclerView Adapter .. 524
67.6 Adding the ViewModel .. 525
67.7 Configuring the ViewModelProvider ... 526
67.8 Collecting the Flow Values ... 527
67.9 Testing the SharedFlowDemo App ... 528
67.10 Handling Flows in the Background .. 528
67.11 Summary .. 531

68. An Overview of Android SQLite Databases .. 533
68.1 Understanding Database Tables .. 533
68.2 Introducing Database Schema .. 533
68.3 Columns and Data Types .. 533
68.4 Database Rows .. 534
68.5 Introducing Primary Keys ... 534
68.6 What is SQLite? ... 534
68.7 Structured Query Language (SQL) ... 534
68.8 Trying SQLite on an Android Virtual Device (AVD) .. 535
68.9 The Android Room Persistence Library ... 537
68.10 Summary .. 537

69. The Android Room Persistence Library .. 539
69.1 Revisiting Modern App Architecture ... 539
69.2 Key Elements of Room Database Persistence .. 539

69.2.1 Repository ... 540
69.2.2 Room Database .. 540
69.2.3 Data Access Object (DAO) ... 540
69.2.4 Entities ... 540
69.2.5 SQLite Database ... 540

69.3 Understanding Entities ... 541
69.4 Data Access Objects .. 543
69.5 The Room Database .. 544
69.6 The Repository ... 545
69.7 In-Memory Databases .. 546
69.8 Database Inspector .. 546
69.9 Summary .. 547

70. An Android TableLayout and TableRow Tutorial ... 549
70.1 The TableLayout and TableRow Layout Views .. 549
70.2 Creating the Room Database Project ... 550
70.3 Converting to a LinearLayout.. 550
70.4 Adding the TableLayout to the User Interface... 551
70.5 Configuring the TableRows ... 552
70.6 Adding the Button Bar to the Layout ... 553
70.7 Adding the RecyclerView ... 554
70.8 Adjusting the Layout Margins ... 555
70.9 Summary .. 555

71. An Android Room Database and Repository Tutorial .. 557
71.1 About the RoomDemo Project .. 557
71.2 Modifying the Build Configuration .. 557

xviii

Table of Contents

71.3 Building the Entity .. 557
71.4 Creating the Data Access Object ... 559
71.5 Adding the Room Database ... 560
71.6 Adding the Repository ... 561
71.7 Adding the ViewModel .. 564
71.8 Creating the Product Item Layout .. 565
71.9 Adding the RecyclerView Adapter .. 565
71.10 Preparing the Main Activity .. 566
71.11 Adding the Button Listeners .. 567
71.12 Adding LiveData Observers .. 568
71.13 Initializing the RecyclerView ... 569
71.14 Testing the RoomDemo App ... 569
71.15 Using the Database Inspector .. 570
71.16 Summary .. 570

72. Video Playback on Android using the VideoView and MediaController Classes 571
72.1 Introducing the Android VideoView Class ... 571
72.2 Introducing the Android MediaController Class ... 572
72.3 Creating the Video Playback Example ... 572
72.4 Designing the VideoPlayer Layout ... 572
72.5 Downloading the Video File .. 573
72.6 Configuring the VideoView ... 573
72.7 Adding the MediaController to the Video View ... 575
72.8 Setting up the onPreparedListener ... 575
72.9 Summary .. 576

73. Android Picture-in-Picture Mode .. 577
73.1 Picture-in-Picture Features .. 577
73.2 Enabling Picture-in-Picture Mode .. 578
73.3 Configuring Picture-in-Picture Parameters .. 578
73.4 Entering Picture-in-Picture Mode .. 579
73.5 Detecting Picture-in-Picture Mode Changes .. 579
73.6 Adding Picture-in-Picture Actions ... 579
73.7 Summary .. 580

74. An Android Picture-in-Picture Tutorial .. 581
74.1 Adding Picture-in-Picture Support to the Manifest ... 581
74.2 Adding a Picture-in-Picture Button ... 581
74.3 Entering Picture-in-Picture Mode .. 581
74.4 Detecting Picture-in-Picture Mode Changes .. 583
74.5 Adding a Broadcast Receiver ... 584
74.6 Adding the PiP Action .. 585
74.7 Testing the Picture-in-Picture Action .. 587
74.8 Summary .. 588

75. Making Runtime Permission Requests in Android ... 589
75.1 Understanding Normal and Dangerous Permissions ... 589
75.2 Creating the Permissions Example Project .. 591
75.3 Checking for a Permission ... 591
75.4 Requesting Permission at Runtime ... 593
75.5 Providing a Rationale for the Permission Request ... 594

xix

Table of Contents

75.6 Testing the Permissions App .. 595
75.7 Summary .. 596

76. Android Audio Recording and Playback using MediaPlayer and MediaRecorder 597
76.1 Playing Audio .. 597
76.2 Recording Audio and Video using the MediaRecorder Class ... 598
76.3 About the Example Project .. 599
76.4 Creating the AudioApp Project ... 599
76.5 Designing the User Interface ... 599
76.6 Checking for Microphone Availability ... 600
76.7 Initializing the Activity ... 601
76.8 Implementing the recordAudio() Method ... 602
76.9 Implementing the stopAudio() Method ... 602
76.10 Implementing the playAudio() method ... 603
76.11 Configuring and Requesting Permissions ... 603
76.12 Testing the Application... 605
76.13 Summary .. 605

77. An Android Notifications Tutorial .. 607
77.1 An Overview of Notifications .. 607
77.2 Creating the NotifyDemo Project ... 609
77.3 Designing the User Interface ... 609
77.4 Creating the Second Activity ... 609
77.5 Creating a Notification Channel ... 610
77.6 Requesting Notification Permission ... 611
77.7 Creating and Issuing a Notification .. 614
77.8 Launching an Activity from a Notification .. 616
77.9 Adding Actions to a Notification .. 618
77.10 Bundled Notifications ... 618
77.11 Summary .. 620

78. An Android Direct Reply Notification Tutorial .. 621
78.1 Creating the DirectReply Project .. 621
78.2 Designing the User Interface ... 621
78.3 Requesting Notification Permission ... 622
78.4 Creating the Notification Channel .. 623
78.5 Building the RemoteInput Object ... 624
78.6 Creating the PendingIntent .. 625
78.7 Creating the Reply Action .. 626
78.8 Receiving Direct Reply Input ... 627
78.9 Updating the Notification .. 628
78.10 Summary .. 629

79. Working with the Google Maps Android API in Android Studio .. 631
79.1 The Elements of the Google Maps Android API .. 631
79.2 Creating the Google Maps Project .. 632
79.3 Creating a Google Cloud Billing Account ... 632
79.4 Creating a New Google Cloud Project ... 633
79.5 Enabling the Google Maps SDK .. 634
79.6 Generating a Google Maps API Key ... 635
79.7 Adding the API Key to the Android Studio Project ... 636

xx

Table of Contents

79.8 Testing the Application ... 637
79.9 Understanding Geocoding and Reverse Geocoding .. 637
79.10 Adding a Map to an Application ... 638
79.11 Requesting Current Location Permission .. 639
79.12 Displaying the User’s Current Location ... 640
79.13 Changing the Map Type ... 641
79.14 Displaying Map Controls to the User ... 642
79.15 Handling Map Gesture Interaction ... 643

79.15.1 Map Zooming Gestures ... 643
79.15.2 Map Scrolling/Panning Gestures ... 643
79.15.3 Map Tilt Gestures ... 643
79.15.4 Map Rotation Gestures .. 644

79.16 Creating Map Markers .. 644
79.17 Controlling the Map Camera .. 645
79.18 Summary .. 646

80. Printing with the Android Printing Framework ... 647
80.1 The Android Printing Architecture .. 647
80.2 The Print Service Plugins ... 647
80.3 Google Cloud Print ... 648
80.4 Printing to Google Drive .. 648
80.5 Save as PDF .. 649
80.6 Printing from Android Devices .. 649
80.7 Options for Building Print Support into Android Apps .. 650

80.7.1 Image Printing .. 650
80.7.2 Creating and Printing HTML Content ... 651
80.7.3 Printing a Web Page ... 652
80.7.4 Printing a Custom Document .. 653

80.8 Summary .. 653
81. An Android HTML and Web Content Printing Example ... 655

81.1 Creating the HTML Printing Example Application ... 655
81.2 Printing Dynamic HTML Content ... 655
81.3 Creating the Web Page Printing Example .. 658
81.4 Removing the Floating Action Button ... 658
81.5 Removing Navigation Features.. 658
81.6 Designing the User Interface Layout .. 659
81.7 Accessing the WebView from the Main Activity .. 660
81.8 Loading the Web Page into the WebView .. 660
81.9 Adding the Print Menu Option ... 661
81.10 Summary .. 663

82. A Guide to Android Custom Document Printing ... 665
82.1 An Overview of Android Custom Document Printing ... 665

82.1.1 Custom Print Adapters .. 665
82.2 Preparing the Custom Document Printing Project .. 666
82.3 Creating the Custom Print Adapter .. 667
82.4 Implementing the onLayout() Callback Method .. 668
82.5 Implementing the onWrite() Callback Method .. 671
82.6 Checking a Page is in Range .. 673
82.7 Drawing the Content on the Page Canvas ... 674

xxi

Table of Contents

82.8 Starting the Print Job .. 676
82.9 Testing the Application ... 677
82.10 Summary .. 677

83. An Introduction to Android App Links ... 679
83.1 An Overview of Android App Links .. 679
83.2 App Link Intent Filters ... 679
83.3 Handling App Link Intents .. 680
83.4 Associating the App with a Website.. 680
83.5 Summary .. 681

84. An Android Studio App Links Tutorial ... 683
84.1 About the Example App ... 683
84.2 The Database Schema ... 683
84.3 Loading and Running the Project ... 684
84.4 Adding the URL Mapping .. 685
84.5 Adding the Intent Filter .. 688
84.6 Adding Intent Handling Code ... 688
84.7 Testing the App .. 691
84.8 Creating the Digital Asset Links File .. 691
84.9 Testing the App Link ... 692
84.10 Summary .. 692

85. An Android Biometric Authentication Tutorial.. 693
85.1 An Overview of Biometric Authentication .. 693
85.2 Creating the Biometric Authentication Project .. 693
85.3 Configuring Device Fingerprint Authentication .. 694
85.4 Adding the Biometric Permission to the Manifest File .. 694
85.5 Designing the User Interface ... 695
85.6 Adding a Toast Convenience Method .. 695
85.7 Checking the Security Settings .. 696
85.8 Configuring the Authentication Callbacks .. 697
85.9 Adding the CancellationSignal .. 698
85.10 Starting the Biometric Prompt .. 698
85.11 Testing the Project ... 699
85.12 Summary .. 700

86. Creating, Testing and Uploading an Android App Bundle ... 701
86.1 The Release Preparation Process ... 701
86.2 Android App Bundles ... 701
86.3 Register for a Google Play Developer Console Account .. 702
86.4 Configuring the App in the Console .. 703
86.5 Enabling Google Play App Signing ... 704
86.6 Creating a Keystore File ... 704
86.7 Creating the Android App Bundle .. 706
86.8 Generating Test APK Files ... 707
86.9 Uploading the App Bundle to the Google Play Developer Console 708
86.10 Exploring the App Bundle ... 709
86.11 Managing Testers .. 710
86.12 Rolling the App Out for Testing .. 710
86.13 Uploading New App Bundle Revisions .. 711

xxii

Table of Contents

86.14 Analyzing the App Bundle File ... 712
86.15 Summary .. 713

87. An Overview of Android In-App Billing ... 715
87.1 Preparing a Project for In-App Purchasing ... 715
87.2 Creating In-App Products and Subscriptions ... 715
87.3 Billing Client Initialization... 716
87.4 Connecting to the Google Play Billing Library ... 717
87.5 Querying Available Products ... 717
87.6 Starting the Purchase Process .. 718
87.7 Completing the Purchase ... 718
87.8 Querying Previous Purchases .. 719
87.9 Summary .. 720

88. An Android In-App Purchasing Tutorial .. 721
88.1 About the In-App Purchasing Example Project .. 721
88.2 Creating the InAppPurchase Project .. 721
88.3 Adding Libraries to the Project ... 721
88.4 Designing the User Interface ... 722
88.5 Adding the App to the Google Play Store .. 722
88.6 Creating an In-App Product .. 723
88.7 Enabling License Testers .. 723
88.8 Initializing the Billing Client ... 724
88.9 Querying the Product ... 726
88.10 Launching the Purchase Flow ... 727
88.11 Handling Purchase Updates .. 727
88.12 Consuming the Product ... 728
88.13 Restoring a Previous Purchase .. 729
88.14 Testing the App .. 730
88.15 Troubleshooting .. 731
88.16 Summary .. 732

89. An Overview of Android Dynamic Feature Modules .. 733
89.1 An Overview of Dynamic Feature Modules .. 733
89.2 Dynamic Feature Module Architecture ... 733
89.3 Creating a Dynamic Feature Module ... 734
89.4 Converting an Existing Module for Dynamic Delivery ... 736
89.5 Working with Dynamic Feature Modules .. 739
89.6 Handling Large Dynamic Feature Modules .. 740
89.7 Summary .. 741

90. An Android Studio Dynamic Feature Tutorial .. 743
90.1 Creating the DynamicFeature Project .. 743
90.2 Adding Dynamic Feature Support to the Project ... 743
90.3 Designing the Base Activity User Interface ... 744
90.4 Adding the Dynamic Feature Module .. 745
90.5 Reviewing the Dynamic Feature Module... 746
90.6 Adding the Dynamic Feature Activity .. 747
90.7 Implementing the launchIntent() Method... 750
90.8 Uploading the App Bundle for Testing ... 751
90.9 Implementing the installFeature() Method ... 752

xxiii

Table of Contents

90.10 Adding the Update Listener ... 753
90.11 Using Deferred Installation ... 756
90.12 Removing a Dynamic Module .. 757
90.13 Summary .. 757

91. Working with Material Design 3 Theming .. 759
91.1 Material Design 2 vs Material Design 3 ... 759
91.2 Understanding Material Design Theming ... 759
91.3 Material Design 3 Theming ... 759
91.4 Building a Custom Theme.. 761
91.5 Summary .. 762

92. A Material Design 3 Theming and Dynamic Color Tutorial ... 763
92.1 Creating the ThemeDemo Project .. 763
92.2 Designing the User Interface ... 763
92.3 Building a New Theme ... 765
92.4 Adding the Theme to the Project .. 766
92.5 Enabling Dynamic Color Support .. 767
92.6 Summary .. 768

93. An Overview of Gradle in Android Studio .. 769
93.1 An Overview of Gradle .. 769
93.2 Gradle and Android Studio ... 769

93.2.1 Sensible Defaults .. 769
93.2.2 Dependencies.. 769
93.2.3 Build Variants ... 770
93.2.4 Manifest Entries ... 770
93.2.5 APK Signing .. 770
93.2.6 ProGuard Support .. 770

93.3 The Property and Settings Gradle Build File ... 770
93.4 The Top-level Gradle Build File ... 771
93.5 Module Level Gradle Build Files ... 772
93.6 Configuring Signing Settings in the Build File .. 774
93.7 Running Gradle Tasks from the Command-line .. 775
93.8 Summary .. 776

Index ... 777

1

Chapter 1

1. Introduction
Fully updated for Android Studio Flamingo, this book aims to teach you how to develop Android-based
applications using the Kotlin programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an introduction to programming in Kotlin, including data types, control flow, functions, lambdas,
and object-oriented programming. Asynchronous programming using Kotlin coroutines and flow is also
covered in detail.

An overview of Android Studio covers areas such as tool windows, the code editor, and the Layout Editor
tool. An introduction to the architecture of Android is followed by an in-depth look at the design of Android
applications and user interfaces using the Android Studio environment.

Chapters are also included covering the Android Architecture Components, including view models, lifecycle
management, Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Dynamic Delivery, Gradle build
configuration, in-app billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples
The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/flamingokotlin/index.php

The steps to load a project from the code samples into Android Studio are as follows:

1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

https://www.ebookfrenzy.com/retail/flamingokotlin/index.php

2

Introduction

1.2 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/flamingokotlin.html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com. They are there to help you and will work to resolve any problems you may encounter.

mailto:feedback%40ebookfrenzy.com?subject=
https://www.ebookfrenzy.com/errata/flamingokotlin.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

3

Chapter 2

2. Setting up an Android Studio
Development Environment
Before any work can begin on the development of an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE) which also includes the Android Software Development Kit (SDK),
the Kotlin plug-in and OpenJDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements
Android application development may be performed on any of the following system types:

• Windows 8/10/11 64-bit

• macOS 10.14 or later running on Intel or Apple silicon

• Chrome OS device with Intel i5 or higher

• Linux systems with version 2.31 or later of the GNU C Library (glibc)

• Minimum of 8GB of RAM

• Approximately 8GB of available disk space

• 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package
Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Flamingo 2022.2.1
using the Android API 33 SDK (Tiramisu) which, at the time of writing, are the latest versions.

Android Studio is, however, subject to frequent updates so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio it is important to note that
there may be some minor differences between this book and the software. A web search for “Android Studio
Flamingo” should provide the option to download the older version if these differences become a problem.
Alternatively, visit the following web page to find Android Studio Flamingo 2022.2.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

4

Setting up an Android Studio Development Environment

2.3 Installing Android Studio
Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is being performed.

2.3.1 Installation on Windows
Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation
to meet your requirements in terms of the file system location into which Android Studio should be installed
and whether or not it should be made available to other users of the system. When prompted to select the
components to install, make sure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click on the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11 this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS
Android Studio for macOS is downloaded in the form of a disk image (.dmg) file. Once the android-studio-
<version>-mac.dmg file has been downloaded, locate it in a Finder window and double-click on it to open it as
shown in Figure 2-1:

Figure 2-1
To install the package, simply drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

5

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux
Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed and execute the following command:
unzip /<path to package>/android-studio-ide-<version>-linux.zip

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Assuming,
therefore, that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory
and execute the following command:
./studio.sh

When running on a 64-bit Linux system, it may be necessary to install some 32-bit support libraries before
Android Studio will run. On Ubuntu these libraries can be installed using the following command:
sudo apt-get install libc6:i386 libncurses5:i386 libstdc++6:i386 lib32z1 libbz2-
1.0:i386

On Red Hat and Fedora-based 64-bit systems, use the following command:
sudo yum install zlib.i686 ncurses-libs.i686 bzip2-libs.i686

2.4 The Android Studio setup wizard
If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click on
the OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2
If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

6

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click on the
Finish button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen UI theme:

Figure 2-4

2.5 Installing additional Android SDK packages
The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

7

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Preferences
dialog will appear as shown in Figure 2-5:

Figure 2-5
Immediately after installing Android Studio for the first time it is likely that only the latest released version of
the Android SDK has been installed. To install older versions of the Android SDK simply select the checkboxes
corresponding to the versions and click on the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo). This
is to ensure that the apps run on a wide range of Android devices. Within the list of SDK versions, enable the
checkbox next to Android 8.0 (Oreo) and click on the Apply button. In the resulting confirmation dialog click
on the OK button to install the SDK. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

Figure 2-6
The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click on the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To

8

Setting up an Android Studio Development Environment

view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7
Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

• Android SDK Build-tools

• Android Emulator

• Android SDK Platform-tools

• Google Play Services

• Intel x86 Emulator Accelerator (HAXM installer)*

• Google USB Driver (Windows only)

• Layout Inspector image server for API 31 and T
*Note the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based Macs.

If any of the above packages are listed as Not Installed or requiring an update, simply select the checkboxes
next to those packages and click on the Apply button to initiate the installation process. If the HAXM emulator
settings dialog appears, select the recommended memory allocation:

Figure 2-8
Once the installation is complete, review the package list and make sure that the selected packages are now listed
as Installed in the Status column. If any are listed as Not installed, make sure they are selected and click on the

9

Setting up an Android Studio Development Environment

Apply button again.

2.6 Installing the Android SDK Command-line Tools
Android Studio includes a set of tools that allow some tasks to be performed from your operating system
command line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab and
enable the Show Package Details option in the bottom left-hand corner of the window. Next, scroll down the
list of packages and, when the Android SDK Command-line Tools (latest) package comes into view, enable it as
shown in Figure 2-9:

Figure 2-9

After you have selected the command-line tools package, click on Apply followed by OK to complete the
installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):
<path_to_android_sdk_installation>/sdk/cmdline-tools/latest/bin

<path_to_android_sdk_installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

10

Setting up an Android Studio Development Environment

Figure 2-10
Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1
1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from

the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of icons
select the one labeled System.

3. In the Environment Variables dialog, locate the Path variable in the System variables list, select it and click
on the Edit… button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin

C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click on OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:
echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:
adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):
avdmanager

If a message similar to the following message appears for one or both of the commands, it is most likely that an
incorrect path was appended to the Path environment variable:
'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10
Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

11

Setting up an Android Studio Development Environment

2.6.3 Windows 11
Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click on the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux
On Linux, this configuration can typically be achieved by adding a command to the .bashrc file in your home
directory (specifics may differ depending on the particular Linux distribution in use). Assuming that the
Android SDK bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file
would read as follows:
export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS
Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:
/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin

/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory it will be necessary to use the sudo command when creating the file.
For example:
sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management
Android Studio is a large and complex software application that consists of many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

Figure 2-11
To view and modify the current memory configuration, select the File -> Settings... (Android Studio ->

12

Setting up an Android Studio Development Environment

Preferences... on macOS) menu option and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12
When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the currently
loaded project. On the other hand, when a project is built and run from within Android Studio, a number of
background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option.

2.8 Updating Android Studio and the SDK
From time to time new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

2.9 Summary
Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). In this chapter, we have covered the steps necessary to install these packages on
Windows, macOS, and Linux.

13

Chapter 3

3. Creating an Example Android App
in Android Studio
The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
the development of Android applications using the Android Studio IDE. Before moving on to slightly more
advanced topics, now is a good time to validate that all of the required development packages are installed and
functioning correctly. The best way to achieve this goal is to create an Android application and compile and run
it. This chapter will cover the creation of an Android application project using Android Studio. Once the project
has been created, a later chapter will explore the use of the Android emulator environment to perform a test run
of the application.

3.1 About the Project
The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also make use of one of the most basic of Android Studio project templates. This simplicity allows us to introduce
some of the key aspects of Android app development without overwhelming the beginner by trying to introduce
too many concepts, such as the recommended app architecture and Android architecture components, at once.
When following the tutorial in this chapter, rest assured that all of the techniques and code used in this initial
example project will be covered in much greater detail in later chapters.

3.2 Creating a New Android Project
The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
Once this window appears, Android Studio is ready for a new project to be created. To create the new project,

14

Creating an Example Android App in Android Studio

simply click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity
The first step is to define the type of initial activity that is to be created for the application. Options are available
to create projects for Phone and Tablet, Wear OS, TV, Android Audio or Android Things. A range of different
activity types is available when developing Android applications, many of which will be covered extensively in
later chapters. For the purposes of this example, however, simply select the Phone and Tablet option from the
Templates panel followed by the option to create an Empty Views Activity. The Empty Views Activity option
creates a template user interface consisting of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings
In the project configuration window (), set the Name field to AndroidSample. The application name is the name
by which the application will be referenced and identified within Android Studio and is also the name that
would be used if the completed application were to go on sale in the Google Play store.

The Package name is used to uniquely identify the application within the Android application ecosystem.
Although this can be set to any string that uniquely identifies your app, it is traditionally based on the reversed
URL of your domain name followed by the name of the application. For example, if your domain is www.
mycompany.com, and the application has been named AndroidSample, then the package name might be specified
as follows:
com.mycompany.androidsample

If you do not have a domain name you can enter any other string into the Company Domain field, or you may
use example.com for the purposes of testing, though this will need to be changed before an application can be
published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your
home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26: Android 8.0 (Oreo). This is the minimum SDK that will be used in

15

Creating an Example Android App in Android Studio

most of the projects created in this book unless a necessary feature is only available in a more recent version. The
objective here is to build an app using the latest Android SDK, while also retaining compatibility with devices
running older versions of Android (in this case as far back as Android 8.0). The text beneath the Minimum SDK
setting will outline the percentage of Android devices currently in use on which the app will run. Click on the
Help me choose button (highlighted in Figure 3-3) to see a full breakdown of the various Android versions still
in use:

Figure 3-3
Finally, change the Language menu to Kotlin and click on Finish to initiate the project creation process.

3.5 Modifying the Example Application
At this point, Android Studio has created a minimal example application project and opened the main window.

Figure 3-4
The newly created project and references to associated files are listed in the Project tool window located on
the left-hand side of the main project window. The Project tool window has a number of modes in which
information can be displayed. By default, this panel should be in Android mode. This setting is controlled by the
menu at the top of the panel as highlighted in Figure 3-5. If the panel is not currently in Android mode, use the
menu to switch mode:

16

Creating an Example Android App in Android Studio

Figure 3-5

3.6 Modifying the User Interface
The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the project file hierarchy. Once located in the Project tool window, double-click on
the file to load it into the user interface Layout Editor tool which will appear in the center panel of the Android
Studio main window:

Figure 3-6
In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A wide range of other
device options are available for selection by clicking on this menu.

To change the orientation of the device representation between landscape and portrait simply use the drop down
menu immediately to the left of the device selection menu showing the icon. Use the night mode button (

) to turn Night mode on and off.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user interface
components that may be used to construct a user interface, such as buttons, labels and text fields. It should be
noted, however, that not all user interface components are obviously visible to the user. One such category

17

Creating an Example Android App in Android Studio

consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-7:

Figure 3-7
As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, also check that the Layout Editor’s Autoconnect mode is enabled. This means that as
components are added to the layout, the Layout Editor will automatically add constraints to make sure the
components are correctly positioned for different screen sizes and device orientations (a topic that will be
covered in much greater detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar
and is represented by a magnet icon. When disabled the magnet appears with a diagonal line through it (Figure
3-8). If necessary, re-enable Autoconnect mode by clicking on this button.

Figure 3-8
The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-9, for example, the Button view is currently selected within the Buttons category:

Figure 3-9
Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

18

Creating an Example Android App in Android Studio

Figure 3-10
The next step is to change the text that is currently displayed by the Button component. The panel located to
the right of the design area is the Attributes panel. This panel displays the attributes assigned to the currently
selected component in the layout. Within this panel, locate the text property in the Common Attributes section
and change the current value from “Button” to “Convert” as shown in Figure 3-11:

Figure 3-11
The second text property with a wrench next to it allows a text property to be set which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing the way in which a visual component
and the layout will behave with different settings without having to run the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer constraints
button (Figure 3-12) to add any missing constraints to the layout:

Figure 3-12

19

Creating an Example Android App in Android Studio

At this point it is important to explain the warning button located in the top right-hand corner of the Layout
Editor tool as indicated in Figure 3-13. Obviously, this is indicating potential problems with the layout. For
details on any problems, click on the button:

Figure 3-13
When clicked, the Problems tool window (Figure 3-14) will appear, describing the nature of the problems:

Figure 3-14
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected
within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:
Hardcoded string "Convert", should use @string resource

The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message is informing us that a potential issue exists with regard to the future internationalization of
the project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an
“N” and has 18 letters in between). The warning is reminding us that when developing Android applications,
attributes and values such as text strings should be stored in the form of resources wherever possible. Doing so
enables changes to the appearance of the application to be made by modifying resource files instead of changing
the application source code. This can be especially valuable when translating a user interface to a different
spoken language. If all of the text in a user interface is contained in a single resource file, for example, that file can
be given to a translator who will then perform the translation work and return the translated file for inclusion in
the application. This enables multiple languages to be targeted without the necessity for any source code changes
to be made. In this instance, we are going to create a new resource named convert_string and assign to it the
string “Convert”.

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-15:

20

Creating an Example Android App in Android Studio

Figure 3-15
After this option has been selected, the Extract Resource panel (Figure 3-16) will appear. Within this panel,
change the resource name field to convert_string and leave the resource value set to Convert before clicking on
the OK button.

Figure 3-16
The next widget to be added is an EditText widget into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars”. Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout as shown in Figure 3-17:

Figure 3-17
Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

21

Creating an Example Android App in Android Studio

Figure 3-18
Repeat the steps to set the id of the TextView widget to textView.

Add any missing layout constraints by clicking on the Infer constraints button. At this point the layout should
resemble that shown in Figure 3-19:

Figure 3-19

3.7 Reviewing the Layout and Resource Files
Before moving on to the next step, we are going to look at some of the internal aspects of user interface design
and resource handling. In the previous section, we made some changes to the user interface by modifying the
activity_main.xml file using the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a
user-friendly way to edit the underlying XML content of the file. In practice, there is no reason why you cannot
modify the XML directly to make user interface changes and, in some instances, this may actually be quicker
than using the Layout Editor tool. In the top right-hand corner of the Layout Editor panel are three buttons as
highlighted in Figure 3-20 below:

22

Creating an Example Android App in Android Studio

Figure 3-20
By default, the editor will be in Design mode whereby just the visual representation of the layout is displayed.
The left-most button will switch to Code mode to display the XML for the layout, while the middle button enters
Split mode where both the layout and XML are displayed, as shown in Figure 3-21:

Figure 3-21
As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although varying in complexity and content, all
user interface layouts are structured in this hierarchical, XML based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:
<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

 xmlns:app="http://schemas.android.com/apk/res-auto"

 xmlns:tools="http://schemas.android.com/tools"

 android:layout_width="match_parent"

 android:layout_height="match_parent"

 tools:context=".MainActivity"

 android:background="#ff2438" >
.

.

</androidx.constraintlayout.widget.ConstraintLayout>

23

Creating an Example Android App in Android Studio

Note that the color of the layout changes in real-time to match the new setting in the XML file. Note also that a
small red square appears in the left-hand margin (also referred to as the gutter) of the XML editor next to the line
containing the color setting. This is a visual cue to the fact that the color red has been set on a property. Clicking
on the red square will display a color chooser allowing a different color to be selected:

Figure 3-22
Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently the XML should read as follows:
<resources>

 <string name="app_name">AndroidSample</string>

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

</resources>

As a demonstration of resources in action, change the string value currently assigned to the convert_string
resource to “Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file
in the editor panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor tool
in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights and then press
Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml file and
take you to the line in that file where this resource is declared. Use this opportunity to revert the string resource
back to the original “Convert” text and to add the following additional entry for a string resource that will be
referenced later in the app code:
<resources>

.

.

 <string name="convert_string">Convert</string>

 <string name="dollars_hint">dollars</string>

 <string name="no_value_string">No Value</string>
</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:

24

Creating an Example Android App in Android Studio

Figure 3-23
This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.8 Adding Interaction
The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can be
implemented in a number of different ways and is covered in detail in a later chapter entitled “An Overview and
Example of Android Event Handling”. Return the layout editor to Design mode, select the Button widget in the
layout editor, refer to the Attributes tool window and specify a method named convertCurrency as shown below:

Figure 3-24
Note that the text field for the onClick property is now highlighted with a red border to warn us that the button
has been configured to call a method which does not yet exist. To address this, double-click on the MainActivity.kt
file in the Project tool window (app -> java -> <package name> -> MainActivity) to load it into the code editor
and add the code for the convertCurrency method to the class file so that it reads as follows, noting that it is also
necessary to import some additional Android packages:
package com.example.androidsample

import androidx.appcompat.app.AppCompatActivity

import android.os.Bundle

import android.view.View
import android.widget.EditText
import android.widget.TextView

25

Creating an Example Android App in Android Studio

class MainActivity : AppCompatActivity() {

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 setContentView(R.layout.activity_main)

 }

 fun convertCurrency(view: View) {

 val dollarText: EditText = findViewById(R.id.dollarText)
 val textView: TextView = findViewById(R.id.textView)

 if (dollarText.text.isNotEmpty()) {

 val dollarValue = dollarText.text.toString().toFloat()

 val euroValue = dollarValue * 0.85f

 textView.text = euroValue.toString()
 } else {
 textView.text = getString(R.string.no_value_string)
 }
 }
}

The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewById, passing through the id assigned within the layout file. A check is then made to ensure that
the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating point
value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewId and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.9 Summary
While not excessively complex, a number of steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to make sure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly in the case of string values, and briefly touched on the topic of layouts.
Next we looked at the underlying XML that is used to store the user interface designs of Android applications.

Finally, an onClick event was added to a Button connected to a method that was implemented to extract the user
input from the EditText component, convert from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

27

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio
Although the Android Studio Preview panel allows us to see the layout we are designing and test basic
functionality using interactive mode, it be will necessary to compile and run an entire app to fully test that it
works. An Android application may be tested by installing and running it either on a physical device or in an
Android Virtual Device (AVD) emulator environment. Before an AVD can be used, it must first be created and
configured to match the specifications of a particular device model. In this chapter, we will work through the
creation of such a virtual device using the Pixel 4 phone as a reference example.

4.1 About Android Virtual Devices
AVDs are essentially emulators that allow Android applications to be tested without the necessity to install the
application on a physical Android-based device. An AVD may be configured to emulate a variety of hardware
features including options such as screen size, memory capacity, and the presence or otherwise of features such
as a camera, GPS navigation support, or an accelerometer. As part of the standard Android Studio installation,
several emulator templates are installed allowing AVDs to be configured for a range of different devices. Custom
configurations may be created to match any physical Android device by specifying properties such as processor
type, memory capacity, and the size and pixel density of the screen.

An AVD session can appear either as a separate window or embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used either in
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step
is to launch the AVD Manager. This can be achieved from within the Android Studio environment by selecting
the Tools -> Device Manager menu option from within the main window.

Once launched, the manager will appear as a tool window as shown in Figure 4-1:

Figure 4-1
If you installed Android Studio for the first time on a computer (as opposed to upgrading an existing Android

28

Creating an Android Virtual Device (AVD) in Android Studio

Studio installation), the installer might have created an initial AVD instance ready for use, as shown in Figure
4-2:

Figure 4-2
If this AVD is present on your system, you can use it to test apps. If no AVD was created, or you would like to
create AVDs for different device types, follow the steps in the rest of this chapter.

To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device
button to open the Virtual Device Configuration dialog:

Figure 4-3
Within the dialog, perform the following steps to create a Pixel 4 compatible emulator:

1. From the Category panel, select the Phone option to display the list of available Android phone AVD
templates.

2. Select the Pixel 4 device option and click Next.

3. On the System Image screen, select the latest version of Android. Note that if the system image has not yet
been installed a Download link will be provided next to the Release Name. Click this link to download and
install the system image before selecting it. If the image you need is not listed, click on the x86 Images (or
ARM images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

29

Creating an Android Virtual Device (AVD) in Android Studio

4. Click Next to proceed and enter a descriptive name (for example Pixel 4 API 33) into the name field or
simply accept the default name.

5. Click Finish to create the AVD.

6. With the AVD created, the Device Manager may now be closed. If future modifications to the AVD are
necessary, simply re-open the Device Manager, select the AVD from the list, and click on the pencil icon in
the Actions column to edit the settings.

4.2 Starting the Emulator
To perform a test run of the newly created AVD emulator, simply select the emulator from the Device Manager
and click on the launch button (the triangle in the Actions column). The emulator will appear embedded into
the main Android Studio window and begin the startup process. The amount of time it takes for the emulator to
start will depend on the configuration of both the AVD and the system on which it is running:

Figure 4-4
To hide and show the emulator tool window, click on the Running Devices tool window button (marked A
above). Click on the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can
accommodate multiple emulator sessions, with each session represented by a tab. Figure 4-5, for example, shows
a tool window with two emulator sessions:

Figure 4-5
To switch between sessions, simply click on the corresponding tab.

30

Creating an Android Virtual Device (AVD) in Android Studio

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the Device Manager, select the new Pixel 4 entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change
the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the
emulator are covered in the next chapter “Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.3 Running the Application in the AVD
With an AVD emulator configured, the example AndroidSample application created in the earlier chapter now
can be compiled and run. With the AndroidSample project loaded into Android Studio, make sure that the
newly created Pixel 4 AVD is displayed in the device menu (marked A in Figure 4-6 below), then either click on
the run button represented by a green triangle (B), select the Run -> Run ‘app’ menu option or use the Ctrl-R
keyboard shortcut:

Figure 4-6
The device menu (A) may be used to select a different AVD instance or physical device as the run target, and
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 4-7
Once the application is installed and running, the user interface for the first fragment will appear within the
emulator (a fragment is a reusable section of an Android project typically consisting of a user interface layout and
some code, a topic which will be covered later in the chapter entitled “An Introduction to Android Fragments”):

31

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-8
If the activity does not automatically launch, check to see if the launch icon has appeared among the apps on the
emulator. If it has, simply click on it to launch the application. Once the run process begins, the Run tool window
will become available. The Run tool window will display diagnostic information as the application package is
installed and launched. Figure 4-9 shows the Run tool window output from a typical successful application
launch:

Figure 4-9
If problems are encountered during the launch process, the Run tool window will provide information that will
hopefully help to isolate the cause of the problem.

Assuming that the application loads into the emulator and runs as expected, we have safely verified that the
Android development environment is correctly installed and configured. With the app now running, try
performing a currency conversion to verify that the app works as intended.

4.4 Running on Multiple Devices
The run menu shown in Figure 4-7 above includes an option to run the app on multiple emulators and devices
in parallel. When selected, this option displays the dialog shown in Figure 4-10 providing a list of both the AVDs
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or
devices to be targeted before clicking on the Run button:

32

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-10
After the Run button is clicked, Android Studio will launch the app on the selected emulators and devices.

4.5 Stopping a Running Application
To stop a running application, simply click on the stop button located in the main toolbar as shown in Figure
4-11:

Figure 4-11
An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running. Once the Run tool window appears, click
the stop button highlighted in Figure 4-12 below:

Figure 4-12

4.6 Supporting Dark Theme
Android 10 introduced the much-awaited dark theme, support for which is enabled by default in Android
Studio app projects. To test dark theme in the AVD emulator, open the Settings app within the running Android
instance in the emulator. Within the Settings app, choose the Display category and enable the Dark theme option
as shown in Figure 4-13 so that the screen background turns black:

33

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-13
With dark theme enabled, run the AndroidSample app and note that it appears using a dark theme including a
black background and a purple background color on the button as shown in Figure 4-14:

Figure 4-14
Return to the Settings app and turn off Dark theme mode before continuing.

4.7 Running the Emulator in a Separate Window
So far in this chapter, we have only used the emulator as a tool window embedded within the main Android
Studio window. To run the emulator in a separate window, select the File -> Settings... menu option (Android
Studio -> Preferences... on macOS), navigate to Tools -> Emulator in the left-hand navigation panel of the
preferences dialog, and disable the Launch in a tool window option:

34

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-15
With the option disabled, click the Apply button followed by OK to commit the change, then exit the current
emulator session by clicking on the close button on the tab marked B in Figure 4-4 above.

Run the sample app once again, at which point the emulator will appear as a separate window as shown below:

Figure 4-16
The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before
committing to standalone mode, however, keep in mind that the emulator tool window may also be detached
from the main Android Studio window by clicking on the settings button (represented by the gear icon) in the
tool emulator toolbar and selecting the View Mode -> Float menu option:

35

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-17

4.8 Enabling the Device Frame
The emulator can be configured to appear with (Figure 4-18) or without the device frame (Figure 4-16).

Figure 4-18
To change the setting, open the Device Manager, select the AVD from the list, and click on the pencil icon in the
Actions column to edit the settings. In the settings screen, locate and change the Enable Device Frame option:

36

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-19

4.9 Summary
A typical application development process follows a cycle of coding, compiling, and running in a test
environment. Android applications may be tested on either a physical Android device or using an Android
Virtual Device (AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool
which may be used either as a command-line tool or via a graphical user interface. When creating an AVD to
simulate a specific Android device model, the virtual device should be configured with a hardware specification
matching that of the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android
Studio user interface.

47

Chapter 6

6. A Tour of the Android Studio User
Interface
While it is tempting to plunge into running the example application created in the previous chapter, doing so
involves using aspects of the Android Studio user interface which are best described in advance.

Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to use.
That being said, taking the time now to gain familiarity with the layout and organization of the Android Studio
user interface will considerably shorten the learning curve in later chapters of the book. With this in mind, this
chapter will provide an initial overview of the various areas and components that make up the Android Studio
environment.

6.1 The Welcome Screen
The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will bypass the welcome screen next time it
is launched, automatically opening the previously active project.

Figure 6-1
In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening
and creating projects along with access to projects currently under version control. In addition, the Customize
screen provides options to change the theme and font settings used by both the IDE and the editor. Android
Studio plugins may be viewed, installed, and managed using the Plugins option.

48

A Tour of the Android Studio User Interface

Additional options are available by clicking on the menu button as shown in Figure 6-2:

Figure 6-2

6.2 The Main Window
When a new project is created, or an existing one opened, the Android Studio main window will appear. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on which tools and panels were displayed the last time the project was open,
but will typically resemble that of Figure 6-3.

Figure 6-3
The various elements of the main window can be summarized as follows:

A – Menu Bar – Contains a range of menus for performing tasks within the Android Studio environment.

B – Toolbar – A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick access
to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and selecting
the Customize Menus and Toolbars… menu option. If the toolbar is not visible, it can be displayed using the View
-> Appearance -> Toolbar menu option.

C – Navigation Bar – The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class. Select a method from the list to be taken to the corresponding location within the
code editor. Hide and display this bar using the View -> Appearance -> Navigation Bar menu option.

49

A Tour of the Android Studio User Interface

D – Editor Window – The editor window displays the content of the file on which the developer is currently
working. When multiple files are open, each file is represented by a tab located along the top edge of the editor
as shown in Figure 6-4:

Figure 6-4
E – Status Bar – The status bar displays informational messages about the project and the activities of Android
Studio together with the tools menu button located in the far left corner. Hovering over items in the status bar
will display a description of that field. Many fields are interactive, allowing the user to click to perform tasks or
obtain more detailed status information.

F – Project Tool Window – The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in
several different ways. The default setting is the Android view which is the mode primarily used in the remainder
of this book.

The project tool window is just one of many tool windows available within the Android Studio environment.

6.3 The Tool Windows
In addition to the project view tool window, Android Studio also includes many other windows which, when
enabled, are displayed along the bottom and sides of the main window. The tool window quick access menu can
be displayed by hovering the mouse pointer over the button located in the far left-hand corner of the status bar
(Figure 6-5) without clicking the mouse button.

Figure 6-5

50

A Tour of the Android Studio User Interface

Selecting an item from the quick access menu will cause the corresponding tool window to appear within the
main window.

Alternatively, a set of tool window bars can be displayed by clicking on the quick access menu icon in the status
bar. These bars appear along the left, right, and bottom edges of the main window (as indicated by the arrows in
Figure 6-6) and contain buttons for showing and hiding each of the tool windows. When the tool window bars
are displayed, a second click on the button in the status bar will hide them.

Figure 6-6
Clicking on a button will display the corresponding tool window while a second click will hide the window.
Buttons prefixed with a number (for example 1: Project) indicate that the tool window may also be displayed
by pressing the Alt key on the keyboard (or the Command key for macOS) together with the corresponding
number.

The location of a button in a tool window bar indicates the side of the window against which the window
will appear when displayed. These positions can be changed by clicking and dragging the buttons to different
locations in other window toolbars.

Each tool window has its own toolbar along the top edge. The buttons within these toolbars vary from one tool
to the next, though all tool windows contain a settings option, represented by the cog icon, which allows various
aspects of the window to be changed. Figure 6-7 shows the settings menu for the Project tool window. Options
are available, for example, to undock a window and to allow it to float outside of the boundaries of the Android
Studio main window, and to move and resize the tool panel.

51

A Tour of the Android Studio User Interface

Figure 6-7
All of the windows also include a far-right button on the toolbar providing an additional way to hide the tool
window from view. A search of the items within a tool window can be performed simply by giving that window
focus by clicking in it and then typing the search term (for example the name of a file in the Project tool window).
A search box will appear in the window’s toolbar and items matching the search highlighted.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

• App Inspection - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while the app is running. The Background Task
Inspector allows background worker tasks created using WorkManager to be monitored and managed.

• Build - The build tool window displays information about the build process while a project is being compiled
and packaged and displays details of any errors encountered.

• Build Variants – The build variants tool window provides a quick way to configure different build targets
for the current application project (for example different builds for debugging and release versions of the
application, or multiple builds to target different device categories).

• Device File Explorer – Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator allowing the
filesystem to be browsed and files copied to the local filesystem.

• Device Manager - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

• Emulator - Contains the AVD emulator if the option has been enabled to run the emulator in a tool window
as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

• Bookmarks – The Bookmarks tool window provides quick access to bookmarked files and code lines. For
example, right-clicking on a file in the project view allows access to an Add to Bookmarks menu option.
Similarly, you can bookmark a line of code in a source file by moving the cursor to that line and pressing the
F11 key (F3 on macOS). All bookmarked items can be accessed through this tool window.

• Gradle – The Gradle tool window provides a view of the Gradle tasks that make up the project build
configuration. The window lists the tasks that are involved in compiling the various elements of the project
into an executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu
option to load the Gradle build file for the current project into the editor. Gradle will be covered in greater
detail later in this book.

52

A Tour of the Android Studio User Interface

• Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

• Logcat – The Logcat tool window provides access to the monitoring log output from a running application in
addition to options for taking screenshots and videos of the application and stopping and restarting a process.

• Problems - A central location in which to view all of the current errors or warnings within the project.
Double-clicking on an item in the problem list will take you to the problem file and location.

• Profiler – The Android Profiler tool window provides real-time monitoring and analysis tools for identifying
performance issues within running apps, including CPU, memory and network usage. This option becomes
available when an app is currently running.

• Project – The project view provides an overview of the file structure that makes up the project allowing for
quick navigation between files. Generally, double-clicking on a file in the project view will cause that file to be
loaded into the appropriate editing tool.

• Resource Manager - A tool for adding and managing resources and assets such as images, colors, and layout
files contained with the project.

• Run – The run tool window becomes available when an application is currently running and provides a view
of the results of the run together with options to stop or restart a running process. If an application is failing
to install and run on a device or emulator, this window will typically provide diagnostic information relating
to the problem.

• Structure – The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.
Selecting an item from the structure list will take you to that location in the source file in the editor window.

• Terminal – Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems this takes the
form of a Terminal prompt.

• TODO – As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look
for comments that match specified TODO patterns. These patterns can be reviewed and changed by selecting
the File -> Settings… menu option (Android Studio -> Preferences… on macOS) and navigating to the TODO
page listed under Editor.

• Version Control - This tool window is used when the project files are under source code version control,
allowing access to Git repositories and code change history.

6.4 Android Studio Keyboard Shortcuts
Android Studio includes an abundance of keyboard shortcuts designed to save time when performing common
tasks. A full keyboard shortcut keymap listing can be viewed and printed from within the Android Studio
project window by selecting the Help -> Keymap Reference menu option. You may also list and modify the
keyboard shortcuts by selecting the File -> Settings... menu option (Android Studio -> Preferences... on macOS)
and clicking on the Keymap entry as shown in Figure 6-8 below:

53

A Tour of the Android Studio User Interface

Figure 6-8

6.5 Switcher and Recent Files Navigation
Another useful mechanism for navigating within the Android Studio main window involves the use of the
Switcher. Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool
windows and currently open files (Figure 6-9).

Figure 6-9
Once displayed, the switcher will remain visible for as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the switcher, navigation to recently opened files is provided by the Recent Files panel (Figure
6-10). This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the
mouse pointer can be used to select an option or the keyboard arrow keys used to scroll through the file name

54

A Tour of the Android Studio User Interface

and tool window options. Pressing the Enter key will select the currently highlighted item.

Figure 6-10

6.6 Changing the Android Studio Theme
The overall theme of the Android Studio environment may be changed either from the welcome screen using
the Configure -> Settings option or via the File -> Settings… menu option (Android Studio -> Preferences… on
macOS) of the main window.

Once the settings dialog is displayed, select the Appearance & Behavior option followed by Appearance in the
left-hand panel and then change the setting of the Theme menu before clicking on the Apply button. The themes
available will depend on the platform but usually include options such as Light, IntelliJ, Windows, High Contrast,
and Darcula. Figure 6-11 shows an example of the main window with the Darcula theme selected:

Figure 6-11
To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

55

A Tour of the Android Studio User Interface

Figure 6-12

6.7 Summary
The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows appear on the sides and bottom edges
of the main window and can be accessed either using the quick access menu located in the status bar or via the
optional tool window bars.

There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of
default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

87

Chapter 12

12. Kotlin Data Types, Variables, and
Nullability
Both this and the following few chapters are intended to introduce the basics of the Kotlin programming
language. This chapter will focus on the various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, typecasting, and Kotlin’s handling of null values.

As outlined in the previous chapter, entitled “An Introduction to Kotlin” a useful way to experiment with the
language is to use the Kotlin online playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://play.kotlinlang.org and use the playground to try out the code in both this
and the other Kotlin introductory chapters that follow.

12.1 Kotlin Data Types
When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics-intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on disk
drives, and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each 1 or 0
is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte. When
people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can be
handled simultaneously by the CPU bus. A 64-bit CPU, for example, can handle data in 64-bit blocks, resulting
in faster performance than a 32-bit based system.

Humans, of course, don’t think in binary. We work with decimal numbers, letters, and words. For a human
to easily (‘easily’ being a relative term in this context) program a computer, some middle ground between
human and computer thinking is needed. This is where programming languages such as Kotlin come into
play. Programming languages allow humans to express instructions to a computer in terms and structures we
understand and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Kotlin define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Kotlin program we could do so with syntax similar to the following:
val mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:
1010

Similarly, we can express a letter, the visual representation of a digit (‘0’ through to ‘9’), or punctuation mark
(referred to in computer terminology as characters) using the following syntax:
val myletter = 'c'

Once again, this is understandable by a human programmer but gets compiled down to a binary sequence for
the CPU to understand. In this case, the letter ‘c’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to human-readable characters). When

https://play.kotlinlang.org/

88

Kotlin Data Types, Variables, and Nullability

converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Kotlin.

12.1.1 Integer Data Types
Kotlin integer data types are used to store whole numbers (in other words a number with no decimal places). All
integers in Kotlin are signed (in other words capable of storing positive, negative, and zero values).

Kotlin provides support for 8, 16, 32, and 64-bit integers (represented by the Byte, Short, Int, and Long types
respectively).

12.1.2 Floating-Point Data Types
The Kotlin floating-point data types can store values containing decimal places. For example, 4353.1223 would
be stored in a floating-point data type. Kotlin provides two floating-point data types in the form of Float and
Double. Which type to use depends on the size of value to be stored and the level of precision required. The
Double type can be used to store up to 64-bit floating-point numbers. The Float data type, on the other hand, is
limited to 32-bit floating-point numbers.

12.1.3 Boolean Data Type
Kotlin, like other languages, includes a data type to handle true or false (1 or 0) conditions. Two Boolean constant
values (true and false) are provided by Kotlin specifically for working with Boolean data types.

12.1.4 Character Data Type
The Kotlin Char data type is used to store a single character of rendered text such as a letter, numerical digit,
punctuation mark, or symbol. Internally characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points that are combined to represent a single
visible character.

The following lines assign a variety of different characters to Character type variables:
val myChar1 = 'f'

val myChar2 = ':'

val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The following example assigns the ‘X’ character
to a variable using Unicode:
val myChar4 = '\u0058'

Note the use of single quotes when assigning a character to a variable. This indicates to Kotlin that this is a Char
data type as opposed to double quotes which indicate a String data type.

12.1.5 String Data Type
The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated, and modified. Double quotes are used to surround single-line strings
during an assignment, for example:
val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes
val message = """You have 10 new messages,

89

Kotlin Data Types, Variables, and Nullability

 5 old messages

 and 6 spam messages."""

The leading spaces on each line of a multi-line string can be removed by making a call to the trimMargin()
function of the String data type:
val message = """You have 10 new messages,

 5 old messages

 and 6 spam messages.""".trimMargin()

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before outputting it to the console:
val username = "John"

val inboxCount = 25

val maxcount = 100

val message = "$username has $inboxCount messages. Message capacity remaining is
${maxcount - inboxCount} messages"

println(message)

When executed, the code will output the following message:
John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape Sequences
In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape characters) available for specifying items such as a new line, tab, or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:
var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:
var backslash = '\\'

The complete list of special characters supported by Kotlin is as follows:

• \n - Newline

• \r - Carriage return

• \t - Horizontal tab

• \\ - Backslash

• \” - Double quote (used when placing a double quote into a string declaration)

• \’ - Single quote (used when placing a single quote into a string declaration)

• \$ - Used when a character sequence containing a $ is misinterpreted as a variable in a string template.

• \unnnn – Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the
Unicode character.

90

Kotlin Data Types, Variables, and Nullability

12.2 Mutable Variables
Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable
may then be used in the Kotlin code to access the value assigned to that variable. This access can involve either
reading the value of the variable or, in the case of mutable variables, changing the value.

12.3 Immutable Variables
Often referred to as a constant, an immutable variable is similar to a mutable variable in that it provides a named
location in memory to store a data value. Immutable variables differ in one significant way in that once a value
has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value that is used repeatedly throughout the application
code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be clear to someone reading your Kotlin
code why you used the value 5 in an expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable values also have the advantage that if the
programmer needs to change a widely used value, it only needs to be changed once in the constant declaration
and not each time it is referenced.

12.4 Declaring Mutable and Immutable Variables
Mutable variables are declared using the var keyword and may be initialized with a value at creation time. For
example:
var userCount = 10

If the variable is declared without an initial value, the type of the variable must also be declared (a topic that will
be covered in more detail in the next section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:
var userCount: Int

userCount = 42

Immutable variables are declared using the val keyword.
val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring the variable without initializing it:
val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in preference to mutable variables
whenever possible.

12.5 Data Types are Objects
All of the above data types are objects, each of which provides a range of functions and properties that may
be used to perform a variety of different type-specific tasks. These functions and properties are accessed using
so-called dot notation. Dot notation involves accessing a function or property of an object by specifying the
variable name followed by a dot followed in turn by the name of the property to be accessed or function to be
called.

A string variable, for example, can be converted to uppercase via a call to the toUpperCase() function of the
String class:
val myString = "The quick brown fox"

91

Kotlin Data Types, Variables, and Nullability

val uppercase = myString.toUpperCase()

Similarly, the length of a string is available by accessing the length property:
val length = myString.length

Functions are also available within the String class to perform tasks such as comparisons and checking for the
presence of a specific word. The following code, for example, will return a true Boolean value since the word
“fox” appears within the string assigned to the myString variable:
val result = myString.contains("fox")

All of the number data types include functions for performing tasks such as converting from one data type to
another such as converting an Int to a Float:
val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the Kotlin data type classes is beyond the
scope of this book (there are hundreds). An exhaustive list for all data types can, however, be found within the
Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

12.6 Type Annotations and Type Inference
Kotlin is categorized as a statically typed programming language. This essentially means that once the data
type of a variable has been identified, that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed programming languages where a variable,
once declared, can subsequently be used to store other data types.

There are two ways in which the type of a variable will be identified. One approach is to use a type annotation at
the point the variable is declared in the code. This is achieved by placing a colon after the variable name followed
by the type declaration. The following line of code, for example, declares a variable named userCount as being
of type Int:
val userCount: Int = 10

In the absence of a type annotation in a declaration, the Kotlin compiler uses a technique referred to as type
inference to identify the type of the variable. When relying on type inference, the compiler looks to see what type
of value is being assigned to the variable at the point that it is initialized and uses that as the type. Consider, for
example, the following variable declarations:
var signalStrength = 2.231

val companyName = "My Company"

During compilation of the above lines of code, Kotlin will infer that the signalStrength variable is of type Double
(type inference in Kotlin defaults to Double for all floating-point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:
val iosBookType = false

val bookTitle: String

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

92

Kotlin Data Types, Variables, and Nullability

if (iosBookType) {

 bookTitle = "iOS App Development Essentials"

} else {

 bookTitle = "Android Studio Development Essentials"

}

12.7 Nullable Type
Kotlin nullable types are a concept that does not exist in most other programming languages (except for the
optional type in Swift). The purpose of nullable types is to provide a safe and consistent approach to handling
situations where a variable may have a null value assigned to it. In other words, the objective is to avoid the
common problem of code crashing with the null pointer exception errors that occur when code encounters a
null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it. Consider, for example, the following code:
val username: String = null

An attempt to compile the above code will result in a compilation error similar to the following:
Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be specifically declared as a nullable type by
placing a question mark (?) after the type declaration:
val username: String? = null

The username variable can now have a null value assigned to it without triggering a compiler error. Once a
variable has been declared as nullable, a range of restrictions is then imposed on that variable by the compiler
to prevent it from being used in situations where it might cause a null pointer exception to occur. A nullable
variable, cannot, for example, be assigned to a variable of non-null type as is the case in the following code:
val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the compiler:
Error: Type mismatch: inferred type is String? but String was expected

The only way that the assignment will be permitted is if some code is added to check that the value assigned to
the nullable variable is non-null:
val username: String? = null

if (username != null) {

 val firstname: String = username

}

In the above case, the assignment will only take place if the username variable references a non-null value.

12.8 The Safe Call Operator
A nullable variable also cannot be used to call a function or to access a property in the usual way. Earlier in this
chapter, the toUpperCase() function was called on a String object. Given the possibility that this could cause a
function to be called on a null reference, the following code will be disallowed by the compiler:
val username: String? = null

val uppercase = username.toUpperCase()

The exact error message generated by the compiler in this situation reads as follows:

93

Kotlin Data Types, Variables, and Nullability

Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable
receiver of type String?

In this instance, the compiler is essentially refusing to allow the function call to be made because no attempt
has been made to verify that the variable is non-null. One way around this is to add some code to verify that
something other than null value has been assigned to the variable before making the function call:
if (username != null) {

 val uppercase = username.toUpperCase()

}

A much more efficient way to achieve this same verification, however, is to call the function using the safe call
operator (represented by ?.) as follows:
val uppercase = username?.toUpperCase()

In the above example, if the username variable is null, the toUpperCase() function will not be called and execution
will proceed at the next line of code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be used when accessing properties:
val uppercase = username?.length

12.9 Not-Null Assertion
The not-null assertion removes all of the compiler restrictions from a nullable type, allowing it to be used in
the same ways as a non-null type, even if it has been assigned a null value. This assertion is implemented using
double exclamation marks after the variable name, for example:
val username: String? = null

val length = username!!.length

The above code will now compile, but will crash with the following exception at runtime since an attempt is
being made to call a function on a nonexistent object:
Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid. Use of the not-null assertion is
generally discouraged and should only be used in situations where you are certain that the value will not be null.

12.10 Nullable Types and the let Function
Earlier in this chapter, we looked at how the safe call operator can be used when making a call to a function
belonging to a nullable type. This technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem occurs when passing a nullable type as an
argument to a function that is expecting a non-null parameter. As an example, consider the times() function of
the Int data type. When called on an Int object and passed another integer value as an argument, the function
multiplies the two values and returns the result. When the following code is executed, for example, the value of
200 will be displayed within the console:
val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times(secondNumber)

print(result)

The above example works because the secondNumber variable is a non-null type. A problem, however, occurs if
the secondNumber variable is declared as being of nullable type:

94

Kotlin Data Types, Variables, and Nullability

val firstNumber = 10

val secondNumber: Int? = 20

val result = firstNumber.times(secondNumber)

print(result)

Now the compilation will fail with the following error message because a nullable type is being passed to a
function that is expecting a non-null parameter:
Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to simply write an if statement to verify that the value assigned to the
variable is non-null before making the call to the function:
val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber != null) {
 val result = firstNumber.times(secondNumber)

 print(result)

}

A more convenient approach to addressing the issue, however, involves the use of the let function. When called
on a nullable type object, the let function converts the nullable type to a non-null variable named it which may
then be referenced within a lambda statement.
secondNumber?.let {
 val result = firstNumber.times(it)
 print(result)

}

Note the use of the safe call operator when calling the let function on secondVariable in the above example. This
ensures that the function is only called when the variable is assigned a non-null value.

12.11 Late Initialization (lateinit)
As previously outlined, non-null types need to be initialized when they are declared. This can be inconvenient
if the value to be assigned to the non-null variable will not be known until later in the code execution. One way
around this is to declare the variable using the lateinit modifier. This modifier designates that a value will be
initialized with a value later. This has the advantage that a non-null type can be declared before it is initialized,
with the disadvantage that the programmer is responsible for ensuring that the initialization has been performed
before attempting to access the variable. Consider the following variable declaration:
var myName: String

Clearly, this is invalid since the variable is a non-null type but has not been assigned a value. Suppose, however,
that the value to be assigned to the variable will not be known until later in the program execution. In this case,
the lateinit modifier can be used as follows:
lateinit var myName: String

With the variable declared in this way, the value can be assigned later, for example:
myName = "John Smith"

print("My Name is " + myName)

Of course, if the variable is accessed before it is initialized, the code will fail with an exception:

95

Kotlin Data Types, Variables, and Nullability

lateinit var myName: String

print("My Name is " + myName)

Exception in thread "main" kotlin.UninitializedPropertyAccessException: lateinit
property myName has not been initialized

To verify whether a lateinit variable has been initialized, check the isInitialized property on the variable. To do
this, we need to access the properties of the variable by prefixing the name with the ‘::’ operator:
if (::myName.isInitialized) {

 print("My Name is " + myName)

}

12.12 The Elvis Operator
The Kotlin Elvis operator can be used in conjunction with nullable types to define a default value that is to be
returned if a value or expression result is null. The Elvis operator (?:) is used to separate two expressions. If the
expression on the left does not resolve to a null value that value is returned, otherwise the result of the rightmost
expression is returned. This can be thought of as a quick alternative to writing an if-else statement to check for
a null value. Consider the following code:
if (myString != null) {

 return myString

} else {

 return "String is null"

}

The same result can be achieved with less coding using the Elvis operator as follows:
return myString ?: "String is null"

12.13 Type Casting and Type Checking
When compiling Kotlin code, the compiler can typically infer the type of an object. Situations will occur,
however, where the compiler is unable to identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this situation, it may be necessary to let
the compiler know the type of object that your code is expecting or to write code that checks whether the object
is of a particular type.

Letting the compiler know the type of object that is expected is known as type casting and is achieved within
Kotlin code using the as cast operator. The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a KeyguardManager object:
val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as KeyguardManager

The Kotlin language includes both safe and unsafe cast operators. The above cast is unsafe and will cause the app
to throw an exception if the cast cannot be performed. A safe cast, on the other hand, uses the as? operator and
returns null if the cast cannot be performed:
val keyMgr = getSystemService(Context.KEYGUARD_SERVICE) as? KeyguardManager

A type check can be performed to verify that an object conforms to a specific type using the is operator, for
example:
if (keyMgr is KeyguardManager) {
 // It is a KeyguardManager object

}

96

Kotlin Data Types, Variables, and Nullability

12.14 Summary
This chapter has begun the introduction to Kotlin by exploring data types together with an overview of how to
declare variables. The chapter has also introduced concepts such as nullable types, typecasting and type checking,
and the Elvis operator, each of which is an integral part of Kotlin programming and designed specifically to
make code writing less prone to error.

113

Chapter 15

15. An Overview of Kotlin Functions
and Lambdas
Kotlin functions and lambdas are a vital part of writing well-structured and efficient code and provide a way to
organize programs while avoiding code repetition. In this chapter we will look at how functions and lambdas
are declared and used within Kotlin.

15.1 What is a Function?
A function is a named block of code that can be called upon to perform a specific task. It can be provided data
on which to perform the task and is capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Kotlin program, the code to perform the arithmetic
can be placed in a function. The function can be programmed to accept the values on which the arithmetic
is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the
program code where the calculation is required the function is simply called, parameter values passed through
as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however,
a subtle difference. The values that a function is able to accept when it is called are referred to as parameters. At
the point that the function is actually called and passed those values, however, they are referred to as arguments.

15.2 How to Declare a Kotlin Function
A Kotlin function is declared using the following syntax:
fun <function name> (<para name>: <para type>, <para name>: <para type>, ...):
<return type> {

 // Function code

}

This combination of function name, parameters and return type are referred to as the function signature or type.
Explanations of the various fields of the function declaration are as follows:

• fun – The prefix keyword used to notify the Kotlin compiler that this is a function.

• <function name> - The name assigned to the function. This is the name by which the function will be
referenced when it is called from within the application code.

• <para name> - The name by which the parameter is to be referenced in the function code.

• <para type> - The type of the corresponding parameter.

• <return type> - The data type of the result returned by the function. If the function does not return a result
then no return type is specified.

• Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result and simply displays a message:
fun sayHello() {

114

An Overview of Kotlin Functions and Lambdas

 println("Hello")

}

The following sample function, on the other hand, takes an integer and a string as parameters and returns a
string result:
fun buildMessageFor(name: String, count: Int): String {

 return("$name, you are customer number $count")

}

15.3 Calling a Kotlin Function
Once declared, functions are called using the following syntax:
<function name> (<arg1>, <arg2>, ...)

Each argument passed through to a function must match the parameters the function is configured to accept.
For example, to call a function named sayHello that takes no parameters and returns no value, we would write
the following code:
sayHello()

In the case of a message that accepts parameters, the function could be called as follows:
buildMessageFor("John", 10)

15.4 Single Expression Functions
When a function contains a single expression, it is not necessary to include the braces around the expression.
All that is required is an equals sign (=) after the function declaration followed by the expression. The following
function contains a single expression declared in the usual way:
fun multiply(x: Int, y: Int): Int {

 return x * y

}

Below is the same function expressed as a single line expression:
fun multiply(x: Int, y: Int): Int = x * y

When using single line expressions, the return type may be omitted in situations where the compiler is able to
infer the type returned by the expression making for even more compact code:
fun multiply(x: Int, y: Int) = x * y

15.5 Local Functions
A local function is a function that is embedded within another function. In addition, a local function has access
to all of the variables contained within the enclosing function:
fun main(args: Array<String>) {

 val name = "John"

 val count = 5

 fun displayString() {
 for (index in 0..count) {
 println(name)
 }
 }

115

An Overview of Kotlin Functions and Lambdas

 displayString()

}

15.6 Handling Return Values
To call a function named buildMessage that takes two parameters and returns a result, on the other hand, we
might write the following code:
val message = buildMessageFor("John", 10)

To improve code readability, the parameter names may also be specified when making the function call:
val message = buildMessageFor(name = "John", count = 10)

In the above examples, we have created a new variable called message and then used the assignment operator (=)
to store the result returned by the function.

15.7 Declaring Default Function Parameters
Kotlin provides the ability to designate a default parameter value to be used in the event that the value is not
provided as an argument when the function is called. This simply involves assigning the default value to the
parameter when the function is declared.

To see default parameters in action the buildMessageFor function will be modified so that the string “Customer”
is used as a default in the event that a customer name is not passed through as an argument. Similarly, the count
parameter is declared with a default value of 0:
fun buildMessageFor(name: String = "Customer", count: Int = 0): String {
 return("$name, you are customer number $count")

}

When parameter names are used when making the function call, any parameters for which defaults have been
specified may be omitted. The following function call, for example, omits the customer name argument but still
compiles because the parameter name has been specified for the second argument:
val message = buildMessageFor(count = 10)

If parameter names are not used within the function call, however, only the trailing arguments may be omitted:
val message = buildMessageFor("John") // Valid

val message = buildMessageFor(10) // Invalid

15.8 Variable Number of Function Parameters
It is not always possible to know in advance the number of parameters a function will need to accept when it is
called within application code. Kotlin handles this possibility through the use of the vararg keyword to indicate
that the function accepts an arbitrary number of parameters of a specified data type. Within the body of the
function, the parameters are made available in the form of an array object. The following function, for example,
takes as parameters a variable number of String values and then outputs them to the console panel:
fun displayStrings(vararg strings: String)

{

 for (string in strings) {

 println(string)

 }

}

displayStrings("one", "two", "three", "four")

116

An Overview of Kotlin Functions and Lambdas

Kotlin does not permit multiple vararg parameters within a function and any single parameters supported by
the function must be declared before the vararg declaration:
fun displayStrings(name: String, vararg strings: String)

{

 for (string in strings) {

 println(string)

 }

}

15.9 Lambda Expressions
Having covered the basics of functions in Kotlin it is now time to look at the concept of lambda expressions.
Essentially, lambdas are self-contained blocks of code. The following code, for example, declares a lambda,
assigns it to a variable named sayHello and then calls the function via the lambda reference:
val sayHello = { println("Hello") }

sayHello()

Lambda expressions may also be configured to accept parameters and return results. The syntax for this is as
follows:
{<para name>: <para type>, <para name>: <para type>, ... ->

 // Lambda expression here

}

The following lambda expression, for example, accepts two integer parameters and returns an integer result:
val multiply = { val1: Int, val2: Int -> val1 * val2 }

val result = multiply(10, 20)

Note that the above lambda examples have assigned the lambda code block to a variable. This is also possible
when working with functions. Of course, the following syntax will execute the function and assign the result of
that execution to a variable, instead of assigning the function itself to the variable:
val myvar = myfunction()

To assign a function reference to a variable, simply remove the parentheses and prefix the function name with
double colons (::) as follows. The function may then be called simply by referencing the variable name:
val mavar = ::myfunction

myvar()

A lambda block may be executed directly by placing parentheses at the end of the expression including any
arguments. The following lambda directly executes the multiplication lambda expression multiplying 10 by 20.
val result = { val1: Int, val2: Int -> val1 * val2 }(10, 20)

The last expression within a lambda serves as the expressions return value (hence the value of 200 being assigned
to the result variable in the above multiplication examples). In fact, unlike functions, lambdas do not support
the return statement. In the absence of an expression that returns a result (such as an arithmetic or comparison
expression), simply declaring the value as the last item in the lambda will cause that value to be returned. The
following lambda returns the Boolean true value after printing a message:
val result = { println("Hello"); true }()

Similarly, the following lambda simply returns a string literal:
val nextmessage = { println("Hello"); "Goodbye" }()

117

An Overview of Kotlin Functions and Lambdas

A particularly useful feature of lambdas and the ability to create function references is that they can be both
passed to functions as arguments and returned as results. This concept, however, requires an understanding of
function types and higher-order functions.

15.10 Higher-order Functions
On the surface, lambdas and function references do not seem to be particularly compelling features. The
possibilities that these features offer become more apparent, however, when we consider that lambdas and
function references have the same capabilities of many other data types. In particular, these may be passed
through as arguments to another function, or even returned as a result from a function.

A function that is capable of receiving a function or lambda as an argument, or returning one as a result is
referred to as a higher-order function.

Before we look at what is, essentially, the ability to plug one function into another, it is first necessary to explore
the concept of function types. The type of a function is dictated by a combination of the parameters it accepts and
the type of result it returns. A function which accepts an Int and a Double as parameters and returns a String
result for example is considered to have the following function type:
(Int, Double) -> String

In order to accept a function as a parameter, the receiving function simply declares the type of the function it is
able to accept.

For the purposes of an example, we will begin by declaring two unit conversion functions:
fun inchesToFeet (inches: Double): Double {

 return inches * 0.0833333

}

fun inchesToYards (inches: Double): Double {

 return inches * 0.0277778

}

The example now needs an additional function, the purpose of which is to perform a unit conversion and print
the result in the console panel. This function needs to be as general purpose as possible, capable of performing
a variety of different measurement unit conversions. In order to demonstrate functions as parameters, this
new function will take as a parameter a function type that matches both the inchesToFeet and inchesToYards
functions together with a value to be converted. Since the type of these functions is equivalent to (Double) ->
Double, our general purpose function can be written as follows:
fun outputConversion(converterFunc: (Double) -> Double, value: Double) {

 val result = converterFunc(value)

 println("Result of conversion is $result")

}

When the outputConversion function is called, it will need to be passed a function matching the declared type.
That function will be called to perform the conversion and the result displayed in the console panel. This means
that the same function can be called to convert inches to both feet and yards, simply by “plugging in” the
appropriate converter function as a parameter, keeping in mind that it is the function reference that is being
passed as an argument:
outputConversion(::inchesToFeet, 22.45)

outputConversion(::inchesToYards, 22.45)

Functions can also be returned as a data type simply by declaring the type of the function as the return type.

118

An Overview of Kotlin Functions and Lambdas

The following function is configured to return either our inchesToFeet or inchesToYards function type (in other
words a function which accepts and returns a Double value) based on the value of a Boolean parameter:
fun decideFunction(feet: Boolean): (Double) -> Double

{

 if (feet) {

 return ::inchesToFeet

 } else {

 return ::inchesToYards

 }

}

When called, the function will return a function reference which can then be used to perform the conversion:
val converter = decideFunction(true)

val result = converter(22.4)

println(result)

15.11 Summary
Functions and lambda expressions are self-contained blocks of code that can be called upon to perform a
specific task and provide a mechanism for structuring code and promoting reuse. This chapter has introduced
the basic concepts of function and lambda declaration and implementation in addition to the use of higher-
order functions that allow lambdas and functions to be passed as arguments and returned as results.

153

Chapter 21

21. Android Activity State Changes by
Example
The previous chapters have discussed in some detail the different states and lifecycles of the activities that
comprise an Android application. In this chapter, we will put the theory of handling activity state changes into
practice through the creation of an example application. The purpose of this example application is to provide
a real world demonstration of an activity as it passes through a variety of different states within the Android
runtime. In the next chapter, entitled “Saving and Restoring the State of an Android Activity”, the example project
constructed in this chapter will be extended to demonstrate the saving and restoration of dynamic activity state.

21.1 Creating the State Change Example Project
The first step in this exercise is to create the new project. Begin by launching Android Studio and, if necessary,
closing any currently open projects using the File -> Close Project menu option so that the Welcome screen
appears.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter StateChange into the Name field and specify com.ebookfrenzy.statechange as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin. Upon completion of the project creation process, the StateChange project should be
listed in the Project tool window located along the left-hand edge of the Android Studio main window. Use the
steps outlined in section 18.8 Migrating a Project to View Binding to convert the project to use view binding.

The next action to take involves the design of the user interface for the activity. This is stored in a file named
activity_main.xml which should already be loaded into the Layout Editor tool. If it is not, navigate to it in the
project tool window where it can be found in the app -> res -> layout folder. Once located, double-clicking on
the file will load it into the Android Studio Layout Editor tool.

Figure 21-1

154

Android Activity State Changes by Example

21.2 Designing the User Interface
With the user interface layout loaded into the Layout Editor tool, it is now time to design the user interface for
the example application. Instead of the “Hello World!” TextView currently present in the user interface design,
the activity actually requires an EditText view. Select the TextView object in the Layout Editor canvas and press
the Delete key on the keyboard to remove it from the design.

From the Palette located on the left side of the Layout Editor, select the Text category and, from the list of text
components, click and drag a Plain Text component over to the visual representation of the device screen. Move
the component to the center of the display so that the center guidelines appear and drop it into place so that the
layout resembles that of Figure 21-2.

Figure 21-2
When using the EditText widget it is necessary to specify an input type for the view. This simply defines the type
of text or data that will be entered by the user. For example, if the input type is set to Phone, the user will be
restricted to entering numerical digits into the view. Alternatively, if the input type is set to TextCapCharacters,
the input will default to upper case characters. Input type settings may also be combined.

For this example, we will use the default input type to support general text input. To choose a different setting
in the future, select the EditText widget in the layout and locate the inputType entry within the Attributes tool
window. Next, click the flag icon to the left of the current setting to open the list of options, as shown in Figure
21-3 below. The Type menu provides options to restrict the input to text, numbers, dates and times, and phone
numbers. The Variations menu provides additional options for the currently selected input type. For example, a
variation is available for the text input type for email addresses as input.

Once a type and variation have been chosen, the input type may be customized further using the list of flag
checkboxes:

155

Android Activity State Changes by Example

Figure 21-3

Remaining in the Attributes tool window, change the id of the view to editText and click on the Refactor button
in the resulting dialog.

By default the EditText is displaying text which reads “Name”. Remaining within the Attributes panel, delete this
from the text property field so that the view is blank within the layout.

Before continuing, click on the Infer Constraints button in the layout editor toolbar to add any missing constraints.

21.3 Overriding the Activity Lifecycle Methods
At this point, the project contains a single activity named MainActivity, which is derived from the Android
AppCompatActivity class. The source code for this activity is contained within the MainActivity.kt file which
should already be open in an editor session and represented by a tab in the editor tab bar. If the file is no
longer open, navigate to it in the Project tool window panel (app -> java -> com.ebookfrenzy.statechange ->
MainActivity) and double-click on it to load the file into the editor.

So far the only lifecycle method overridden by the activity is the onCreate() method which has been implemented
to call the super class instance of the method before setting up the user interface for the activity. We will now
modify this method so that it outputs a diagnostic message in the Android Studio Logcat panel each time it
executes. For this, we will use the Log class, which requires that we import android.util.Log and declare a tag that
will enable us to filter these messages in the log output:
package com.ebookfrenzy.statechange

import androidx.appcompat.app.AppCompatActivity

import android.os.Bundle

import android.util.Log

import com.ebookfrenzy.statechange.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

156

Android Activity State Changes by Example

 private val TAG = "StateChange"

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)

 Log.i(TAG, "onCreate")
 }

}

.

.

The next task is to override some more methods, with each one containing a corresponding log call. These
override methods may be added manually or generated using the Alt-Insert keyboard shortcut as outlined in the
chapter entitled “The Basics of the Android Studio Code Editor”. Note that the Log calls will still need to be added
manually if the methods are being auto-generated:
override fun onStart() {

 super.onStart()

 Log.i(TAG, "onStart")

}

override fun onResume() {

 super.onResume()

 Log.i(TAG, "onResume")

}

override fun onPause() {

 super.onPause()

 Log.i(TAG, "onPause")

}

override fun onStop() {

 super.onStop()

 Log.i(TAG, "onStop")

}

override fun onRestart() {

 super.onRestart()

 Log.i(TAG, "onRestart")

}

override fun onDestroy() {

 super.onDestroy()

 Log.i(TAG, "onDestroy")

}

157

Android Activity State Changes by Example

override fun onSaveInstanceState(outState: Bundle) {

 super.onSaveInstanceState(outState)

 Log.i(TAG, "onSaveInstanceState")

}

override fun onRestoreInstanceState(savedInstanceState: Bundle) {

 super.onRestoreInstanceState(savedInstanceState)

 Log.i(TAG, "onRestoreInstanceState")

}

21.4 Filtering the Logcat Panel
The purpose of the code added to the overridden methods in MainActivity.kt is to output logging information
to the Logcat tool window. This output can be configured to display all events relating to the device or emulator
session, or restricted to those events that relate to the currently selected app. The output can also be further
restricted to only those log events that match a specified filter.

When displayed while the current app is running, the Logcat tool window will appear as shown in Figure 21-4
below:

Figure 21-4
The menu marked A in the above figure allows you to select the device or emulator for which log output is to be
displayed. This output appears in the output panel marked C. The log output can be filtered by entering options
into the field marked B. By default key setting, package:mine, restricts the output to log messages generated
by the current app package (in this case com.ebookfrenzy.statechange). Leaving this field black will allow log
output from the selected device or emulator to be displayed, including diagnostic messages generated by the
operating system. Keys may also be combined to further filter the output. For example, we can configure the
Logcat panel to display only messages associated with our StateChange tag as follows:
package:mine tag:StateChange

We can also exclude output by prefixing the key with a minus (-) sign. In addition to the StateChange tag, we
might also have diagnostic messages that use a different tag named “OtherTag”. To filter the log so that output
from this second tag is excluded we could enter the following key options:
package:mine tag:StateChange -tag:OtherTag

In addition to your own tag values, it is also possible to select from a range of predefined diagnostic tags built
into Android. Logcat will display a list of matching tags as you type into the filter field as shown in Figure 21-5:

158

Android Activity State Changes by Example

Figure 21-5
The level key may be used to control which messages are displayed based on severity. To filter out all messages
except error messages, the following key would be used:
level:error

In addition to error, the Logcat panel also supports verbose, info, warn and assert level settings.

Logcat also supports multiple log panels, each with its own filter settings. To add another panel, click on the +
button marked D in Figure 21-4 above. Switch between different panels using the corresponding tabs, or display
them side-by-side by right-clicking on the currently displayed panel and selecting either the Split-Right or Split-
Down menu option to arrange the panels horizontally or vertically. To rename a panel, right-click on the tab
and select the Rename Tab option. Before proceeding close all but one Logcat panel and configure the filter as
follows:
package:mine tag:StateChange

21.5 Running the Application
For optimal results, the application should be run on a physical Android device or emulator. With the device
configured and connected to the development computer, click on the run button represented by a green triangle
located in the Android Studio toolbar as shown in Figure 21-6 below, select the Run -> Run… menu option or
use the Shift+F10 keyboard shortcut:

Figure 21-6
Select the physical Android device or emulator from the Choose Device dialog if it appears (assuming that
you have not already configured it to be the default target). After Android Studio has built the application and
installed it on the device it should start up and be running in the foreground.

A review of the Logcat panel should indicate which methods have so far been triggered:

159

Android Activity State Changes by Example

Figure 21-7

21.6 Experimenting with the Activity
With the diagnostics working, it is now time to exercise the application with a view to gaining an understanding
of the activity lifecycle state changes. To begin with, consider the initial sequence of log events in the Logcat
panel:
onCreate

onStart

onResume

Clearly, the initial state changes are exactly as outlined in “Understanding Android Application and Activity
Lifecycles”. Note, however, that a call was not made to onRestoreInstanceState() since the Android runtime
detected that there was no state to restore in this situation.

Tap on the Home icon in the bottom status bar on the device display and note the sequence of method calls
reported in the log as follows:
onPause

onStop

onSaveInstanceState

In this case, the runtime has noticed that the activity is no longer in the foreground, is not visible to the user
and has stopped the activity, but not without providing an opportunity for the activity to save the dynamic state.
Depending on whether the runtime ultimately destroyed the activity or simply restarted it, the activity will
either be notified it has been restarted via a call to onRestart() or will go through the creation sequence again
when the user returns to the activity.

As outlined in “Understanding Android Application and Activity Lifecycles”, the destruction and recreation of
an activity can be triggered by making a configuration change to the device, such as rotating from portrait to
landscape. To see this in action, simply rotate the device while the StateChange application is in the foreground.
When using the emulator, device rotation may be simulated using the rotation button located in the emulator
toolbar. To complete the rotation, it may also be necessary to tap on the rotation button. This appears at the
bottom of the device or emulator screen as shown in Figure 21-8:

Figure 21-8
The resulting sequence of method calls in the log should read as follows:
onPause

onStop

onSaveInstanceState

160

Android Activity State Changes by Example

onDestroy

onCreate

onStart

onRestoreInstanceState

onResume

Clearly, the runtime system has given the activity an opportunity to save state before being destroyed and
restarted.

21.7 Summary
The old adage that a picture is worth a thousand words holds just as true for examples when learning a new
programming paradigm. In this chapter, we have created an example Android application for the purpose of
demonstrating the different lifecycle states through which an activity is likely to pass. In the course of developing
the project in this chapter, we also looked at a mechanism for generating diagnostic logging information from
within an activity.

In the next chapter, we will extend the StateChange example project to demonstrate how to save and restore an
activity’s dynamic state.

213

Chapter 27

27. Working with ConstraintLayout
Chains and Ratios in Android Studio
The previous chapters have introduced the key features of the ConstraintLayout class and outlined the best
practices for ConstraintLayout-based user interface design within the Android Studio Layout Editor. Although
the concepts of ConstraintLayout chains and ratios were outlined in the chapter entitled “A Guide to the Android
ConstraintLayout”, we have not yet addressed how to make use of these features within the Layout Editor. The
focus of this chapter, therefore, is to provide practical steps on how to create and manage chains and ratios when
using the ConstraintLayout class.

27.1 Creating a Chain
Chains may be implemented either by adding a few lines to the XML layout resource file of an activity or by
using some chain specific features of the Layout Editor.

Consider a layout consisting of three Button widgets constrained so as to be positioned in the top-left, top-
center and top-right of the ConstraintLayout parent as illustrated in Figure 27-1:

Figure 27-1
To represent such a layout, the XML resource layout file might contain the following entries for the button
widgets:
<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

<Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

214

Working with ConstraintLayout Chains and Ratios in Android Studio

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toStartOf="@+id/button3"

 app:layout_constraintStart_toEndOf="@+id/button1"

 app:layout_constraintTop_toTopOf="parent" />

<Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintTop_toTopOf="parent" />

As currently configured, there are no bi-directional constraints to group these widgets into a chain. To address
this, additional constraints need to be added from the right-hand side of button1 to the left side of button2, and
from the left side of button3 to the right side of button2 as follows:
<Button

 android:id="@+id/button1"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintStart_toStartOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintEnd_toStartOf="@+id/button2" />

<Button

 android:id="@+id/button2"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginStart="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toStartOf="@+id/button3"

 app:layout_constraintStart_toEndOf="@+id/button1"

 app:layout_constraintTop_toTopOf="parent" />

215

Working with ConstraintLayout Chains and Ratios in Android Studio

<Button

 android:id="@+id/button3"

 android:layout_width="wrap_content"

 android:layout_height="wrap_content"

 android:layout_marginEnd="8dp"

 android:layout_marginTop="16dp"

 android:text="Button"

 app:layout_constraintHorizontal_bias="0.5"

 app:layout_constraintEnd_toEndOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintStart_toEndOf="@+id/button2" />

With these changes, the widgets now have bi-directional horizontal constraints configured. This essentially
constitutes a ConstraintLayout chain which is represented visually within the Layout Editor by chain connections
as shown in Figure 27-2 below. Note that in this configuration the chain has defaulted to the spread chain style.

Figure 27-2
A chain may also be created by right-clicking on one of the views and selecting the Chains -> Create Horizontal
Chain or Chains -> Create Vertical Chain menu options.

27.2 Changing the Chain Style
If no chain style is configured, the ConstraintLayout will default to the spread chain style. The chain style can be
altered by right-clicking any of the widgets in the chain and selecting the Cycle Chain Mode menu option. Each
time the menu option is clicked the style will switch to another setting in the order of spread, spread inside and
packed.

Alternatively, the style may be specified in the Attributes tool window unfolding the layout_constraints property
and changing either the horizontal_chainStyle or vertical_chainStyle property depending on the orientation of
the chain:

Figure 27-3

27.3 Spread Inside Chain Style
Figure 27-4 illustrates the effect of changing the chain style to the spread inside chain style using the above
techniques:

216

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 27-4

27.4 Packed Chain Style
Using the same technique, changing the chain style property to packed causes the layout to change as shown in
Figure 27-5:

Figure 27-5

27.5 Packed Chain Style with Bias
The positioning of the packed chain may be influenced by applying a bias value. The bias can be any value
between 0.0 and 1.0, with 0.5 representing the center of the parent. Bias is controlled by selecting the chain head
widget and assigning a value to the layout_constraintHorizontal_bias or layout_constraintVertical_bias attribute
in the Attributes panel. Figure 27-6 shows a packed chain with a horizontal bias setting of 0.2:

Figure 27-6

27.6 Weighted Chain
The final area of chains to explore involves weighting of the individual widgets to control how much space each
widget in the chain occupies within the available space. A weighted chain may only be implemented using the
spread chain style and any widget within the chain that is to respond to the weight property must have the
corresponding dimension property (height for a vertical chain and width for a horizontal chain) configured
for match constraint mode. Match constraint mode for a widget dimension may be configured by selecting the
widget, displaying the Attributes panel and changing the dimension to match_constraint (equivalent to 0dp).
In Figure 27-7, for example, the layout_width constraint for a button has been set to match_constraint (0dp) to
indicate that the width of the widget is to be determined based on the prevailing constraint settings:

217

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 27-7
Assuming that the spread chain style has been selected, and all three buttons have been configured such that the
width dimension is set to match the constraints, the widgets in the chain will expand equally to fill the available
space:

Figure 27-8
The amount of space occupied by each widget relative to the other widgets in the chain can be controlled by
adding weight properties to the widgets. Figure 27-9 shows the effect of setting the layout_constraintHorizontal_
weight property to 4 on button1, and to 2 on both button2 and button3:

Figure 27-9
As a result of these weighting values, button1 occupies half of the space (4/8), while button2 and button3 each
occupy one quarter (2/8) of the space.

27.7 Working with Ratios
ConstraintLayout ratios allow one dimension of a widget to be sized relative to the widget’s other dimension
(otherwise known as aspect ratio). An aspect ratio setting could, for example, be applied to an ImageView to
ensure that its width is always twice its height.

218

Working with ConstraintLayout Chains and Ratios in Android Studio

A dimension ratio constraint is configured by setting the constrained dimension to match constraint mode and
configuring the layout_constraintDimensionRatio attribute on that widget to the required ratio. This ratio value
may be specified either as a float value or a width:height ratio setting. The following XML excerpt, for example,
configures a ratio of 2:1 on an ImageView widget:
<ImageView

 android:layout_width="0dp"

 android:layout_height="100dp"

 android:id="@+id/imageView"

 app:layout_constraintDimensionRatio="2:1" />

The above example demonstrates how to configure a ratio when only one dimension is set to match constraint. A
ratio may also be applied when both dimensions are set to match constraint mode. This involves specifying the
ratio preceded with either an H or a W to indicate which of the dimensions is constrained relative to the other.

Consider, for example, the following XML excerpt for an ImageView object:
<ImageView

 android:layout_width="0dp"

 android:layout_height="0dp"

 android:id="@+id/imageView"

 app:layout_constraintBottom_toBottomOf="parent"

 app:layout_constraintRight_toRightOf="parent"

 app:layout_constraintLeft_toLeftOf="parent"

 app:layout_constraintTop_toTopOf="parent"

 app:layout_constraintDimensionRatio="W,1:3" />

In the above example the height will be defined subject to the constraints applied to it. In this case constraints
have been configured such that it is attached to the top and bottom of the parent view, essentially stretching the
widget to fill the entire height of the parent. The width dimension, on the other hand, has been constrained to
be one third of the ImageView’s height dimension. Consequently, whatever size screen or orientation the layout
appears on, the ImageView will always be the same height as the parent and the width one third of that height.

The same results may also be achieved without the need to manually edit the XML resource file. Whenever a
widget dimension is set to match constraint mode, a ratio control toggle appears in the Inspector area of the
property panel. Figure 27-10, for example, shows the layout width and height attributes of a button widget set
to match constraint mode and 100dp respectively, and highlights the ratio control toggle in the widget sizing
preview:

Figure 27-10
By default the ratio sizing control is toggled off. Clicking on the control enables the ratio constraint and displays

219

Working with ConstraintLayout Chains and Ratios in Android Studio

an additional field where the ratio may be changed:

Figure 27-11

27.8 Summary
Both chains and ratios are powerful features of the ConstraintLayout class intended to provide additional
options for designing flexible and responsive user interface layouts within Android applications. As outlined in
this chapter, the Android Studio Layout Editor has been enhanced to make it easier to use these features during
the user interface design process.

257

Chapter 34

34. Android Touch and Multi-touch
Event Handling
Most Android based devices use a touch screen as the primary interface between user and device. The previous
chapter introduced the mechanism by which a touch on the screen translates into an action within a running
Android application. There is, however, much more to touch event handling than responding to a single finger
tap on a view object. Most Android devices can, for example, detect more than one touch at a time. Nor are
touches limited to a single point on the device display. Touches can, of course, be dynamic as the user slides one
or more points of contact across the surface of the screen.

Touches can also be interpreted by an application as a gesture. Consider, for example, that a horizontal swipe
is typically used to turn the page of an eBook, or how a pinching motion can be used to zoom in and out of an
image displayed on the screen.

This chapter will explain the handling of touches that involve motion and explore the concept of intercepting
multiple concurrent touches. The topic of identifying distinct gestures will be covered in the next chapter.

34.1 Intercepting Touch Events
Touch events can be intercepted by a view object through the registration of an onTouchListener event listener
and the implementation of the corresponding onTouch() callback method or lambda. The following code, for
example, ensures that any touches on a ConstraintLayout view instance named myLayout result in a call to a
lambda expression:
binding.myLayout.setOnTouchListener {v: View, m: MotionEvent ->

 // Perform tasks here

 true

}

Of course, the above code could also be implemented by using a function instead of a lambda as follows, though
the lambda approach results in more compact and readable code:
binding.myLayout.setOnTouchListener(object : View.OnTouchListener {

 override fun onTouch(v: View, m: MotionEvent): Boolean {

 // Perform tasks here

 return true

 }

})

As indicated in the code example, the lambda expression is required to return a Boolean value indicating to the
Android runtime system whether or not the event should be passed on to other event listeners registered on the
same view or discarded. The method is passed both a reference to the view on which the event was triggered and
an object of type MotionEvent.

258

Android Touch and Multi-touch Event Handling

34.2 The MotionEvent Object
The MotionEvent object passed through to the onTouch() callback method is the key to obtaining information
about the event. Information contained within the object includes the location of the touch within the view and
the type of action performed. The MotionEvent object is also the key to handling multiple touches.

34.3 Understanding Touch Actions
An important aspect of touch event handling involves being able to identify the type of action performed by
the user. The type of action associated with an event can be obtained by making a call to the getActionMasked()
method of the MotionEvent object which was passed through to the onTouch() callback method. When the first
touch on a view occurs, the MotionEvent object will contain an action type of ACTION_DOWN together with
the coordinates of the touch. When that touch is lifted from the screen, an ACTION_UP event is generated. Any
motion of the touch between the ACTION_DOWN and ACTION_UP events will be represented by ACTION_
MOVE events.

When more than one touch is performed simultaneously on a view, the touches are referred to as pointers.
In a multi-touch scenario, pointers begin and end with event actions of type ACTION_POINTER_DOWN
and ACTION_POINTER_UP respectively. To identify the index of the pointer that triggered the event, the
getActionIndex() callback method of the MotionEvent object must be called.

34.4 Handling Multiple Touches
The chapter entitled “An Overview and Example of Android Event Handling” began exploring event handling
within the narrow context of a single touch event. In practice, most Android devices possess the ability to
respond to multiple consecutive touches (though it is important to note that the number of simultaneous
touches that can be detected varies depending on the device).

As previously discussed, each touch in a multi-touch situation is considered by the Android framework to be
a pointer. Each pointer, in turn, is referenced by an index value and assigned an ID. The current number of
pointers can be obtained via a call to the getPointerCount() method of the current MotionEvent object. The ID
for a pointer at a particular index in the list of current pointers may be obtained via a call to the MotionEvent
getPointerId() method. For example, the following code excerpt obtains a count of pointers and the ID of the
pointer at index 0:
binding.myLayout.setOnTouchListener {v: View, m: MotionEvent ->

 val pointerCount = m.pointerCount

 val pointerId = m.getPointerId(0)

 true

}

Note that the pointer count will always be greater than or equal to 1 when the onTouch listener is triggered (since
at least one touch must have occurred for the callback to be triggered).

A touch on a view, particularly one involving motion across the screen, will generate a stream of events before
the point of contact with the screen is lifted. As such, it is likely that an application will need to track individual
touches over multiple touch events. While the ID of a specific touch gesture will not change from one event to
the next, it is important to keep in mind that the index value will change as other touch events come and go.
When working with a touch gesture over multiple events, therefore, it is essential that the ID value be used as
the touch reference to make sure the same touch is being tracked. When calling methods that require an index
value, this should be obtained by converting the ID for a touch to the corresponding index value via a call to the
findPointerIndex() method of the MotionEvent object.

259

Android Touch and Multi-touch Event Handling

34.5 An Example Multi-Touch Application
The example application created in the remainder of this chapter will track up to two touch gestures as they
move across a layout view. As the events for each touch are triggered, the coordinates, index and ID for each
touch will be displayed on the screen.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter MotionEvent into the Name field and specify com.ebookfrenzy.motionevent as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin.

Adapt the project to use view binding as outlined in section 18.8 Migrating a Project to View Binding.

34.6 Designing the Activity User Interface
The user interface for the application’s sole activity is to consist of a ConstraintLayout view containing two
TextView objects. Within the Project tool window, navigate to app -> res -> layout and double-click on the
activity_main.xml layout resource file to load it into the Android Studio Layout Editor tool.

Select and delete the default “Hello World!” TextView widget and then, with autoconnect enabled, drag and
drop a new TextView widget so that it is centered horizontally and positioned at the 16dp margin line on the
top edge of the layout:

Figure 34-1
Drag a second TextView widget and position and constrain it so that it is distanced by a 32dp margin from the
bottom of the first widget:

Figure 34-2
Using the Attributes tool window, change the IDs for the TextView widgets to textView1 and textView2
respectively. Change the text displayed on the widgets to read “Touch One Status” and “Touch Two Status” and
extract the strings to resources using the warning button in the top right-hand corner of the Layout Editor.

34.7 Implementing the Touch Event Listener
To receive touch event notifications it will be necessary to register a touch listener on the layout view within the
onCreate() method of the MainActivity activity class. Select the MainActivity.kt tab from the Android Studio
editor panel to display the source code. Within the onCreate() method, add code to register the touch listener
and implement code which, in this case, is going to call a second method named handleTouch() to which is
passed the MotionEvent object:
package com.ebookfrenzy.motionevent

import androidx.appcompat.app.AppCompatActivity

260

Android Touch and Multi-touch Event Handling

import android.os.Bundle

import android.view.MotionEvent

import com.ebookfrenzy.motionevent.databinding.ActivityMainBinding

class MainActivity : AppCompatActivity() {

 private lateinit var binding: ActivityMainBinding

 override fun onCreate(savedInstanceState: Bundle?) {

 super.onCreate(savedInstanceState)

 binding = ActivityMainBinding.inflate(layoutInflater)

 setContentView(binding.root)

 binding.root.setOnTouchListener {_, m: MotionEvent ->
 handleTouch(m)
 true
 }
 }

}

When we designed the user interface, the parent ConstraintLayout was not assigned an ID that would allow us
to access it via the view binding mechanism. Since this layout component is the top-most component in the UI
layout hierarchy, we have been able to reference it using the root binding property in the code above.

The final task before testing the application is to implement the handleTouch() method called by the listener. The
code for this method reads as follows:
private fun handleTouch(m: MotionEvent)

{

 val pointerCount = m.pointerCount

 for (i in 0 until pointerCount)

 {

 val x = m.getX(i)

 val y = m.getY(i)

 val id = m.getPointerId(i)

 val action = m.actionMasked

 val actionIndex = m.actionIndex

 var actionString: String

 when (action)

 {

 MotionEvent.ACTION_DOWN -> actionString = "DOWN"

 MotionEvent.ACTION_UP -> actionString = "UP"

 MotionEvent.ACTION_POINTER_DOWN -> actionString = "PNTR DOWN"

 MotionEvent.ACTION_POINTER_UP -> actionString = "PNTR UP"

 MotionEvent.ACTION_MOVE -> actionString = "MOVE"

261

Android Touch and Multi-touch Event Handling

 else -> actionString = ""

 }

 val touchStatus =

 "Action: $actionString Index: $actionIndex ID: $id X: $x Y: $y"

 if (id == 0)

 binding.textView1.text = touchStatus

 else

 binding.textView2.text = touchStatus

 }

}

Before compiling and running the application, it is worth taking the time to walk through this code systematically
to highlight the tasks that are being performed.

The code begins by identifying how many pointers are currently active on the view:
val pointerCount = m.pointerCount

Next, the pointerCount variable is used to initiate a for loop which performs a set of tasks for each active pointer.
The first few lines of the loop obtain the X and Y coordinates of the touch together with the corresponding event
ID, action type and action index. Lastly, a string variable is declared:
for (i in 0 until pointerCount)

{

 val x = m.getX(i)

 val y = m.getY(i)

 val id = m.getPointerId(i)

 val action = m.actionMasked

 val actionIndex = m.actionIndex

 var actionString: String

Since action types equate to integer values, a when statement is used to convert the action type to a more
meaningful string value, which is stored in the previously declared actionString variable:
when (action)

{

 MotionEvent.ACTION_DOWN -> actionString = "DOWN"

 MotionEvent.ACTION_UP -> actionString = "UP"

 MotionEvent.ACTION_POINTER_DOWN -> actionString = "PNTR DOWN"

 MotionEvent.ACTION_POINTER_UP -> actionString = "PNTR UP"

 MotionEvent.ACTION_MOVE -> actionString = "MOVE"

 else -> actionString = ""

}

Finally, the string message is constructed using the actionString value, the action index, touch ID and X and Y
coordinates. The ID value is then used to decide whether the string should be displayed on the first or second
TextView object:
val touchStatus =

 "Action: $actionString Index: $actionIndex ID: $id X: $x Y: $y"

262

Android Touch and Multi-touch Event Handling

if (id == 0)

 binding.textView1.text = touchStatus

else

 binding.textView2.text = touchStatus

34.8 Running the Example Application
Compile and run the application and, once launched, experiment with single and multiple touches on the screen
and note that the text views update to reflect the events as illustrated in Figure 34-3. When running on an
emulator, multiple touches may be simulated by holding down the Ctrl (Cmd on macOS) key while clicking the
mouse button (note that simulating multiple touches may not work if the emulator is running in a tool window):

Figure 34-3

34.9 Summary
Activities receive notifications of touch events by registering an onTouchListener event listener and implementing
the onTouch() callback method which, in turn, is passed a MotionEvent object when called by the Android
runtime. This object contains information about the touch such as the type of touch event, the coordinates of
the touch and a count of the number of touches currently in contact with the view.

When multiple touches are involved, each point of contact is referred to as a pointer with each assigned an index
and an ID. While the index of a touch can change from one event to another, the ID will remain unchanged until
the touch ends.

This chapter has worked through the creation of an example Android application designed to display the
coordinates and action type of up to two simultaneous touches on a device display.

Having covered touches in general, the next chapter (entitled “Detecting Common Gestures Using the Android
Gesture Detector Class”) will look further at touch screen event handling through the implementation of gesture
recognition.

303

Chapter 40

40. An Android ViewModel Tutorial
The previous chapter introduced the fundamental concepts of Android Jetpack and outlined the basics of
modern Android app architecture. Jetpack defines a set of recommendations describing how an Android app
project should be structured while providing a set of libraries and components that make it easier to conform to
these guidelines with the goal of developing reliable apps with less coding and fewer errors.

To help reinforce and clarify the information provided in the previous chapter, this chapter will step through the
creation of an example app project that uses the ViewModel component. This example will be further enhanced
in the next chapter by including LiveData and data binding support.

40.1 About the Project
In the chapter entitled “Creating an Example Android App in Android Studio”, a project named AndroidSample
was created in which all of the code for the app was bundled into the main Activity class file. In the chapter that
followed, an AVD emulator was created and used to run the app. While the app was running, we experienced
first-hand the kind of problems that occur when developing apps in this way when the data displayed on a
TextView widget was lost during a device rotation.

This chapter will implement the same currency converter app, this time using the ViewModel component and
following the Google app architecture guidelines to avoid Activity lifecycle complications.

40.2 Creating the ViewModel Example Project
When the AndroidSample project was created, the Empty Views Activity template was chosen as the basis for
the project. For this project, however, the Basic Views Template template will be used.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Basic Views Activity template before clicking on the Next button.

Enter ViewModelDemo into the Name field and specify com.ebookfrenzy.viewmodeldemo as the package name.
Before clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and
the Language menu to Kotlin.

40.3 Removing Unwanted Project Elements
As outlined in the “A Guide to the Android Studio Layout Editor Tool”, the Basic Views Activity template includes
features that will not be needed by all projects. Before adding the ViewModel to the project, we first need to
remove the navigation features, the second content fragment, and floating action button as follows:

1. Double-click on the activity_main.xml layout file in the Project tool window, select the floating action
button and tap the keyboard delete key to remove the object from the layout.

2. Edit the MainActivity.kt file and remove the floating action button code from the onCreate method as
follows:

override fun onCreate(savedInstanceState: Bundle?) {

.

.

 binding.fab.setOnClickListener { view ->

304

An Android ViewModel Tutorial

 Snackbar.make(view, "Replace with your own action", Snackbar.LENGTH_LONG)

 .setAnchorView(R.id.fab)

 .setAction("Action", null).show()

 }

}

3. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

4. Within the editor, select the SecondFragment entry in the graph panel and tap the keyboard delete key to
remove it from the graph.

5. Locate and delete the SecondFragment.kt and fragment_second.xml files.

6. The final task is to remove some code from the FirstFragment class so that the Button view no longer
navigates to the now non-existent second fragment when clicked. Edit the FirstFragment.kt file and remove
the code from the onViewCreated() method so that it reads as follows:

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 super.onViewCreated(view, savedInstanceState)

 binding.buttonFirst.setOnClickListener {

 findNavController().navigate(R.id.action_FirstFragment_to_SecondFragment)

 }

}

40.4 Designing the Fragment Layout
The next step is to design the layout of the fragment. First, locate the fragment_first.xml file in the Project tool
window and double click on it to load it into the layout editor. Once the layout has loaded, select and delete
the existing Button, TextView, and ConstraintLayout components. Next, right-click on the NestedScrollView
instance in the Component Tree panel and select the Convert NestedScrollView to ConstraintLayout menu option
as shown in Figure 40-1, and accept the default settings in the resulting dialog:

Figure 40-1
Select the converted ConstraintLayout component and use the Attributes tool window to change the id to
constraintLayout.

Add a new TextView, position it in the center of the layout and change the id to resultText. Next, drag a Number
(Decimal) view from the palette and position it above the existing TextView. With the view selected in the layout
refer to the Attributes tool window and change the id to dollarText.

Drag a Button widget onto the layout so that it is positioned below the TextView, and change the text attribute to

305

An Android ViewModel Tutorial

read “Convert”. With the button still selected, change the id property to convertButton. At this point, the layout
should resemble that illustrated in Figure 40-2 (note that the three views have been constrained using a vertical
chain):

Figure 40-2
Finally, click on the warning icon in the top right-hand corner of the layout editor and convert the hard-coded
strings to resources.

40.5 Implementing the View Model
With the user interface layout completed, the data model for the app needs to be created within the view model.
Begin by locating the com.ebookfrenzy.viewmodeldemo entry in the Project tool window, right-clicking on it
and selecting the New -> Kotlin Class/File menu option. Name the new class MainViewModel and press the
keyboard enter key. Edit the new class file so that it reads as follows:
package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel

class MainViewModel : ViewModel() {

 private val rate = 0.74f
 private var dollarText = ""
 private var result: Float = 0f

 fun setAmount(value: String) {
 this.dollarText = value
 result = value.toFloat() * rate
 }

 fun getResult(): Float {
 return result

306

An Android ViewModel Tutorial

 }
}

The class declares variables to store the current dollar string value and the converted amount together with
getter and setter methods to provide access to those data values. When called, the setAmount() method takes as
an argument the current dollar amount and stores it in the local dollarText variable. The dollar string value is
converted to a floating point number, multiplied by a fictitious exchange rate and the resulting euro value stored
in the result variable. The getResult() method, on the other hand, simply returns the current value assigned to
the result variable.

40.6 Associating the Fragment with the View Model
Clearly, there needs to be some way for the fragment to obtain a reference to the ViewModel to be able to access
the model and observe data changes. A Fragment or Activity maintains references to the ViewModels on which
it relies for data using an instance of the ViewModelProvider class.

A ViewModelProvider instance is created using the ViewModelProvider class from within the Fragment.
When called, the class initializer is passed a reference to the current Fragment or Activity and returns a
ViewModelProvider instance as follows:
val viewModelProvider = ViewModelProvider(this)

Once the ViewModelProvider instance has been created, an index value can used to request a specific ViewModel
class. The provider will then either create a new instance of that ViewModel class, or return an existing instance,
for example:
val viewModel = ViewModelProvider(this)[MyViewModel::class.java]

Edit the FirstFragment.kt file and override the onCreate() method to set up the ViewModelProvider:
.

.

import androidx.lifecycle.ViewModelProvider
.

.

class FirstFragment : Fragment() {

.

.

 private lateinit var viewModel: MainViewModel

 override fun onCreate(savedInstanceState: Bundle?) {
 super.onCreate(savedInstanceState)
 viewModel = ViewModelProvider(this)[MainViewModel::class.java]
 }
.

.

With access to the model view, code can now be added to the Fragment to begin working with the data model.

40.7 Modifying the Fragment
The fragment class now needs to be updated to react to button clicks and to interact with the data values stored
in the ViewModel. The class will also need references to the three views in the user interface layout to react to
button clicks, extract the current dollar value and to display the converted currency amount.

307

An Android ViewModel Tutorial

In the chapter entitled “Creating an Example Android App in Android Studio”, the onClick property of the Button
widget was used to designate the method to be called when the button is clicked by the user. Unfortunately, this
property is only able to call methods on an Activity and cannot be used to call a method in a Fragment. To get
around this limitation, we will need to add some code to the Fragment class to set up an onClick listener on the
button. This can be achieved in the onViewCreated() lifecycle method in the FirstFragment.kt file as outlined
below:
override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 super.onViewCreated(view, savedInstanceState)

 binding.convertButton.setOnClickListener {

 }
}

With the listener added, any code placed within the onClick() method will be called whenever the button is
clicked by the user.

40.8 Accessing the ViewModel Data
When the button is clicked, the onClick() method needs to read the current value from the EditText view, confirm
that the field is not empty and then call the setAmount() method of the ViewModel instance. The method will
then need to call the ViewModel’s getResult() method and display the converted value on the TextView widget.

Since LiveData is not yet being used in the project, it will also be necessary to get the latest result value from the
ViewModel each time the Fragment is created.

Remaining in the FirstFragment.kt file, implement these requirements as follows in the onViewCreated() method:
.

.

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

 super.onViewCreated(view, savedInstanceState)

 binding.resultText.text = viewModel.getResult().toString()

 binding.convertButton.setOnClickListener {

 if (binding.dollarText.text.isNotEmpty()) {
 viewModel.setAmount(binding.dollarText.text.toString())
 binding.resultText.text = viewModel.getResult().toString()
 } else {
 binding.resultText.text = "No Value"
 }
 }

}

40.9 Testing the Project
With this phase of the project development completed, build and run the app on the simulator or a physical
device, enter a dollar value and click on the Convert button. The converted amount should appear on the
TextView indicating that the UI controller and ViewModel re-structuring appears to be working as expected.

When the original AndroidSample app was run, rotating the device caused the value displayed on the resultText

308

An Android ViewModel Tutorial

TextView widget to be lost. Repeat this test now with the ViewModelDemo app and note that the current euro
value is retained after the rotation. This is because the ViewModel remained in memory as the Fragment was
destroyed and recreated and code was added to the onViewCreated() method to update the TextView with the
result data value from the ViewModel each time the Fragment re-started.

While this is an improvement on the original AndroidSample app, there is much more that can be achieved
to simplify the project by making use of LiveData and data binding, both of which are the topics of the next
chapters.

40.10 Summary
In this chapter we revisited the AndroidSample project created earlier in the book and created a new version of
the project structured to comply with the Android Jetpack architectural guidelines. The example project also
demonstrated the use of ViewModels to separate data handling from user interface related code. Finally, the
chapter showed how the ViewModel approach avoids some of the problems of handling Fragment and Activity
lifecycles.

477

Chapter 61

61. An Introduction to Kotlin
Coroutines
When an Android application is first started, the runtime system creates a single thread in which all application
components will run by default. This thread is generally referred to as the main thread. The primary role of the
main thread is to handle the user interface in terms of event handling and interaction with views in the user
interface. Any additional components that are started within the application will, by default, also run on the
main thread.

Any code within an application that performs a time consuming task using the main thread will cause the entire
application to appear to lock up until the task is completed. This will typically result in the operating system
displaying an “Application is not responding” warning to the user. This is far from the desired behavior for any
application. Fortunately, Kotlin provides a lightweight alternative in the form of Coroutines. In this chapter,
we will introduce Coroutines, including terminology such as dispatchers, coroutine scope, suspend functions,
coroutine builders, and structured concurrency. The chapter will also explore channel-based communication
between coroutines.

61.1 What are Coroutines?
Coroutines are blocks of code that execute asynchronously without blocking the thread from which they
are launched. Coroutines can be implemented without having to worry about building complex AsyncTask
implementations or directly managing multiple threads. Because of the way they are implemented, coroutines
are much more efficient and less resource intensive than using traditional multi-threading options. Coroutines
also make for code that is much easier to write, understand and maintain since it allows code to be written
sequentially without having to write callbacks to handle thread related events and results.

Although a relatively recent addition to Kotlin, there is nothing new or innovative about coroutines. Coroutines
in one form or another have existed in programming languages since the 1960s and are based on a model known
as Communicating Sequential Processes (CSP). Kotlin still uses multi-threading behind the scenes, though it
does so highly efficiently.

61.2 Threads vs Coroutines
A problem with threads is that they are a finite resource and expensive in terms of CPU capabilities and system
overhead. In the background, a lot of work is involved in creating, scheduling and destroying a thread. Although
modern CPUs can run large numbers of threads, the actual number of threads that can be run in parallel at
any one time is limited by the number of CPU cores (though newer CPUs have 8 cores, most Android devices
contain CPUs with 4 cores). When more threads are required than there are CPU cores, the system has to
perform thread scheduling to decide how the execution of these threads is to be shared between the available
cores.

To avoid these overheads, instead of starting a new thread for each coroutine and then destroying it when the
coroutine exits, Kotlin maintains a pool of active threads and manages how coroutines are assigned to those
threads. When an active coroutine is suspended it is saved by the Kotlin runtime and another coroutine resumed
to take its place. When the coroutine is resumed, it is simply restored to an existing unoccupied thread within
the pool to continue executing until it either completes or is suspended. Using this approach, a limited number

478

An Introduction to Kotlin Coroutines

of threads are used efficiently to execute asynchronous tasks with the potential to perform large numbers of
concurrent tasks without the inherent performance degeneration that would occur using standard multi-
threading.

61.3 Coroutine Scope
All coroutines must run within a specific scope which allows them to be managed as groups instead of as
individual coroutines. This is particularly important when canceling and cleaning up coroutines, for example
when a Fragment or Activity is destroyed, and ensuring that coroutines do not “leak” (in other words continue
running in the background when they are no longer needed by the app). By assigning coroutines to a scope they
can, for example, all be canceled in bulk when they are no longer needed.

Kotlin and Android provide some built-in scopes as well as the option to create custom scopes using the
CoroutineScope class. The built-in scopes can be summarized as follows:

• GlobalScope – GlobalScope is used to launch top-level coroutines which are tied to the entire lifecycle of the
application. Since this has the potential for coroutines in this scope to continue running when not needed
(for example when an Activity exits) use of this scope is not recommended for use in Android applications.
Coroutines running in GlobalScope are considered to be using unstructured concurrency.

• ViewModelScope – Provided specifically for use in ViewModel instances when using the Jetpack architecture
ViewModel component. Coroutines launched in this scope from within a ViewModel instance are automatically
canceled by the Kotlin runtime system when the corresponding ViewModel instance is destroyed.

• LifecycleScope - Every lifecycle owner has associated with it a LifecycleScope. This scope is canceled when
the corresponding lifecycle owner is destroyed making it particularly useful for launching coroutines from
within activities and fragments.

For all other requirements. A custom scope will most likely be used. The following code, for example, creates a
custom scope named myCoroutineScope:
private val myCoroutineScope = CoroutineScope(Dispatchers.Main)

The coroutineScope declares the dispatcher that will be used to run coroutines (though this can be overridden)
and must be referenced each time a coroutine is started if it is to be included within the scope. All of the running
coroutines in a scope can be canceled via a call to the cancel() method of the scope instance:
myCoroutineScope.cancel()

61.4 Suspend Functions
A suspend function is a special type of Kotlin function that contains the code of a coroutine. It is declared
using the Kotlin suspend keyword which indicates to Kotlin that the function can be paused and resumed later,
allowing long-running computations to execute without blocking the main thread.

The following is an example suspend function:
suspend fun mySlowTask() {

 // Perform long-running task here

}

61.5 Coroutine Dispatchers
Kotlin maintains threads for different types of asynchronous activity and, when launching a coroutine, it will be
necessary to select the appropriate dispatcher from the following options:

• Dispatchers.Main – Runs the coroutine on the main thread and is suitable for coroutines that need to make
changes to the UI and as a general purpose option for performing lightweight tasks.

479

An Introduction to Kotlin Coroutines

• Dispatchers.IO – Recommended for coroutines that perform network, disk, or database operations.

• Dispatchers.Default – Intended for CPU intensive tasks such as sorting data or performing complex
calculations.

The dispatcher is responsible for assigning coroutines to appropriate threads and suspending and resuming the
coroutine during its lifecycle. In addition to the predefined dispatchers, it is also possible to create dispatchers
for your own custom thread pools.

61.6 Coroutine Builders
The coroutine builders bring together all of the components covered so far and launch the coroutines so that
they start executing. For this purpose, Kotlin provides the following six builders:

• launch – Starts a coroutine without blocking the current thread and does not return a result to the caller. Use
this builder when calling a suspend function from within a traditional function, and when the results of the
coroutine do not need to be handled (sometimes referred to as “fire and forget” coroutines).

• async – Starts a coroutine and allows the caller to wait for a result using the await() function without blocking
the current thread. Use async when you have multiple coroutines that need to run in parallel. The async
builder can only be used from within another suspend function.

• withContext – Allows a coroutine to be launched in a different context from that used by the parent coroutine.
A coroutine running using the Main context could, for example, launch a child coroutine in the Default
context using this builder. The withContext builder also provides a useful alternative to async when returning
results from a coroutine.

• coroutineScope – The coroutineScope builder is ideal for situations where a suspend function launches
multiple coroutines that will run in parallel and where some action needs to take place only when all the
coroutines reach completion. If those coroutines are launched using the coroutineScope builder, the calling
function will not return until all child coroutines have completed. When using coroutineScope, a failure in
any of the coroutines will result in the cancellation of all other coroutines.

• supervisorScope – Similar to the coroutineScope outlined above, with the exception that a failure in one child
does not result in cancellation of the other coroutines.

• runBlocking - Starts a coroutine and blocks the current thread until the coroutine reaches completion. This
is typically the exact opposite of what is wanted from coroutines but is useful for testing code and when
integrating legacy code and libraries. Otherwise to be avoided.

61.7 Jobs
Each call to a coroutine builder such as launch or async returns a Job instance which can, in turn, be used
to track and manage the lifecycle of the corresponding coroutine. Subsequent builder calls from within the
coroutine create new Job instances which will become children of the immediate parent Job forming a parent-
child relationship tree where canceling a parent Job will recursively cancel all its children. Canceling a child does
not, however, cancel the parent, though an uncaught exception within a child created using the launch builder
may result in the cancellation of the parent (this is not the case for children created using the async builder
which encapsulates the exception in the result returned to the parent).

The status of a coroutine can be identified by accessing the isActive, isCompleted and isCancelled properties of
the associated Job object. In addition to these properties, several methods are also available on a Job instance. A
Job and all of its children may, for example, be canceled by calling the cancel() method of the Job object, while a
call to the cancelChildren() method will cancel all child coroutines.

480

An Introduction to Kotlin Coroutines

The join() method can be called to suspend the coroutine associated with the job until all of its child jobs
have completed. To perform this task and cancel the Job once all child jobs have completed, simply call the
cancelAndJoin() method.

This hierarchical Job structure together with coroutine scopes form the foundation of structured concurrency,
the goal of which is to ensure that coroutines do not run for longer than they are required without the need to
manually keep references to each coroutine.

61.8 Coroutines – Suspending and Resuming
To gain a better understanding of coroutine suspension, it helps to see some examples of coroutines in action.
To start with, let’s assume a simple Android app containing a button that, when clicked, calls a function named
startTask(). It is the responsibility of this function to call a suspend function named performSlowTask() using the
Main coroutine dispatcher. The code for this might read as follows:
private val myCoroutineScope = CoroutineScope(Dispatchers.Main)

fun startTask(view: View) {

 myCoroutineScope.launch(Dispatchers.Main) {

 performSlowTask()

 }

}

In the above code, a custom scope is declared and referenced in the call to the launch builder which, in turn,
calls the performSlowTask() suspend function. Since startTask() is not a suspend function, the coroutine must be
started using the launch builder instead of the async builder.

Next, we can declare the performSlowTask() suspend function as follows:
suspend fun performSlowTask() {

 Log.i(TAG, "performSlowTask before")

 delay(5_000) // simulates long-running task

 Log.i(TAG, "performSlowTask after")

}

As implemented, all the function does is output diagnostic messages before and after performing a 5-second
delay, simulating a long-running task. While the 5-second delay is in effect, the user interface will continue
to be responsive because the main thread is not being blocked. To understand why it helps to explore what is
happening behind the scenes.

First, the startTask() function is executed and launches the performSlowTask() suspend function as a coroutine.
This function then calls the Kotlin delay() function passing through a time value. In fact, the built-in Kotlin
delay() function is itself implemented as a suspend function so is also launched as a coroutine by the Kotlin
runtime environment. The code execution has now reached what is referred to as a suspend point which will
cause the performSlowTask() coroutine to be suspended while the delay coroutine is running. This frees up
the thread on which performSlowTask() was running and returns control to the main thread so that the UI is
unaffected.

Once the delay() function reaches completion, the suspended coroutine will be resumed and restored to a thread
from the pool where it can display the Log message and return to the startTask() function.

When working with coroutines in Android Studio suspend points within the code editor are marked as shown
in the figure below:

481

An Introduction to Kotlin Coroutines

Figure 61-1

61.9 Returning Results from a Coroutine
The above example ran a suspend function as a coroutine but did not demonstrate how to return results. Suppose,
however, that the performSlowTask() function is required to return a string value which is to be displayed to the
user via a TextView object.

To do this, we need to rewrite the suspend function to return a Deferred object. A Deferred object is essentially
a commitment to provide a value at some point in the future. By calling the await() function on the Deferred
object, the Kotlin runtime will deliver the value when it is returned by the coroutine. The code in our startTask()
function might, therefore, be rewritten as follows:
fun startTask(view: View) {

 coroutineScope.launch(Dispatchers.Main) {

 statusText.text = performSlowTask().await()

 }

}

The problem now is that we are having to use the launch builder to start the coroutine since startTask() is not a
suspend function. As outlined earlier in this chapter, it is only possible to return results when using the async
builder. To get around this, we have to adapt the suspend function to use the async builder to start another
coroutine that returns a Deferred result:
suspend fun performSlowTask(): Deferred<String> =

 coroutineScope.async(Dispatchers.Default) {

 Log.i(TAG, "performSlowTask before")

 delay(5_000)

 Log.i(TAG, "performSlowTask after")

 return@async "Finished"

}

Now when the app runs, the “Finished” result string will be displayed on the TextView object when the
performSlowTask() coroutine completes. Once again, the wait for the result will take place in the background
without blocking the main thread.

61.10 Using withContext
As we have seen, coroutines are launched within a specified scope and using a specific dispatcher. By default,
any child coroutines will inherit the same dispatcher as that used by the parent. Consider the following code

482

An Introduction to Kotlin Coroutines

designed to call multiple functions from within a suspend function:
fun startTask(view: View) {

 coroutineScope.launch(Dispatchers.Main) {

 performTasks()

 }

}

suspend fun performTasks() {

 performTask1()

 performTask2()

 performTask3()

}

suspend fun performTask1() {

 Log.i(TAG, "Task 1 ${Thread.currentThread().name}")

}

suspend fun performTask2() {

 Log.i(TAG, "Task 2 ${Thread.currentThread().name}")

}

suspend fun performTask3 () {

 Log.i(TAG, "Task 3 ${Thread.currentThread().name}")

}

Since the performTasks() function was launched using the Main dispatcher, all three of the functions will default
to the main thread. To prove this, the functions have been written to output the name of the thread in which they
are running. On execution, the Logcat panel will contain the following output:
Task 1 main

Task 2 main

Task 3 main

Imagine, however, that the performTask2() function performs some network intensive operations more suited
to the IO dispatcher. This can easily be achieved using the withContext launcher which allows the context of
a coroutine to be changed while still staying in the same coroutine scope. The following change switches the
performTask2() coroutine to an IO thread:
suspend fun performTasks() {

 performTask1()

 withContext(Dispatchers.IO) { performTask2() }

 performTask3()

}

When executed, the output will read as follows indicating that the Task 2 coroutine is no longer on the main
thread:
Task 1 main

Task 2 DefaultDispatcher-worker-1

483

An Introduction to Kotlin Coroutines

Task 3 main

The withContext builder also provides an interesting alternative to using the async builder and the Deferred
object await() call when returning a result. Using withContext, the code from the previous section can be
rewritten as follows:
fun startTask(view: View) {

 coroutineScope.launch(Dispatchers.Main) {

 statusText.text = performSlowTask()

 }

}

suspend fun performSlowTask(): String =

 withContext(Dispatchers.Main) {

 Log.i(TAG, "performSlowTask before")

 delay(5_000)

 Log.i(TAG, "performSlowTask after")

 return@withContext "Finished"

 }

}

61.11 Coroutine Channel Communication
Channels provide a simple way to implement communication between coroutines including streams of data.
In the simplest form this involves the creation of a Channel instance and calling the send() method to send the
data. Once sent, transmitted data can be received in another coroutine via a call to the receive() method of the
same Channel instance.

The following code, for example, passes six integers from one coroutine to another:
.

.

import kotlinx.coroutines.channels.*

.

.

val channel = Channel<Int>()

suspend fun channelDemo() {

 coroutineScope.launch(Dispatchers.Main) { performTask1() }

 coroutineScope.launch(Dispatchers.Main) { performTask2() }

}

suspend fun performTask1() {

 (1..6).forEach {

 channel.send(it)

 }

}

484

An Introduction to Kotlin Coroutines

suspend fun performTask2() {

 repeat(6) {

 Log.d(TAG, "Received: ${channel.receive()}")

 }

}

When executed, the following logcat output will be generated:
Received: 1

Received: 2

Received: 3

Received: 4

Received: 5

Received: 6

61.12 Summary
Kotlin coroutines provide a simpler and more efficient approach to performing asynchronous tasks than that
offered by traditional multi-threading. Coroutines allow asynchronous tasks to be implemented in a structured
way without the need to implement the callbacks associated with typical thread-based tasks. This chapter has
introduced the basic concepts of coroutines including jobs, scope, builders, suspend functions, structured
concurrency and channel-based communication.

539

Chapter 69

69. The Android Room Persistence
Library
Included with the Android Architecture Components, the Room persistence library is designed specifically to
make it easier to add database storage support to Android apps in a way that is consistent with the Android
architecture guidelines. With the basics of SQLite databases covered in the previous chapter, this chapter will
explore the basic concepts behind Room-based database management, the key elements that work together to
implement Room support within an Android app and how these are implemented in terms of architecture and
coding. Having covered these topics, the next two chapters will put this theory into practice in the form of an
example Room database project.

69.1 Revisiting Modern App Architecture
The chapter entitled “Modern Android App Architecture with Jetpack” introduced the concept of modern app
architecture and stressed the importance of separating different areas of responsibility within an app. The
diagram illustrated in Figure 69-1 outlines the recommended architecture for a typical Android app:

Figure 69-1
With the top three levels of this architecture covered in some detail in earlier chapters of this book, it is now time
to begin exploration of the repository and database architecture levels in the context of the Room persistence
library.

69.2 Key Elements of Room Database Persistence
Before going into greater detail later in the chapter, it is first worth summarizing the key elements involved in
working with SQLite databases using the Room persistence library:

540

The Android Room Persistence Library

69.2.1 Repository
As previously discussed, the repository module contains all of the code necessary for directly handling all data
sources used by the app. This avoids the need for the UI controller and ViewModel to contain code that directly
accesses sources such as databases or web services.

69.2.2 Room Database
The room database object provides the interface to the underlying SQLite database. It also provides the repository
with access to the Data Access Object (DAO). An app should only have one room database instance which may
then be used to access multiple database tables.

69.2.3 Data Access Object (DAO)
The DAO contains the SQL statements required by the repository to insert, retrieve and delete data within
the SQLite database. These SQL statements are mapped to methods which are then called from within the
repository to execute the corresponding query.

69.2.4 Entities
An entity is a class that defines the schema for a table within the database and defines the table name, column
names and data types, and identifies which column is to be the primary key. In addition to declaring the table
schema, entity classes also contain getter and setter methods that provide access to these data fields. The data
returned to the repository by the DAO in response to the SQL query method calls will take the form of instances
of these entity classes. The getter methods will then be called to extract the data from the entity object. Similarly,
when the repository needs to write new records to the database, it will create an entity instance, configure values
on the object via setter calls, then call insert methods declared in the DAO, passing through entity instances to
be saved.

69.2.5 SQLite Database
The actual SQLite database responsible for storing and providing access to the data. The app code, including the
repository, should never make direct access to this underlying database. All database operations are performed
using a combination of the room database, DAOs and entities.

The architecture diagram in Figure 69-2 illustrates the way in which these different elements interact to provide
Room-based database storage within an Android app:

Figure 69-2

541

The Android Room Persistence Library

The numbered connections in the above architecture diagram can be summarized as follows:

1. The repository interacts with the Room Database to get a database instance which, in turn, is used to obtain
references to DAO instances.

2. The repository creates entity instances and configures them with data before passing them to the DAO for
use in search and insertion operations.

3. The repository calls methods on the DAO passing through entities to be inserted into the database and
receives entity instances back in response to search queries.

4. When a DAO has results to return to the repository it packages those results into entity objects.

5. The DAO interacts with the Room Database to initiate database operations and handle results.

6. The Room Database handles all of the low level interactions with the underlying SQLite database, submitting
queries and receiving results.

With a basic outline of the key elements of database access using the Room persistent library covered, it is now
time to explore entities, DAOs, room databases and repositories in more detail.

69.3 Understanding Entities
Each database table will have associated with it an entity class. This class defines the schema for the table and
takes the form of a standard Kotlin class interspersed with some special Room annotations. An example Kotlin
class declaring the data to be stored within a database table might read as follows:
class Customer {

 var id: Int = 0
 var name: String? = null

 var address: String? = null

 constructor() {}

 constructor(id: Int, name: String, address: String) {

 this.id = id

 this.name = name

 this.address = address

 }

 constructor(name: String, address: String) {

 this.name = name

 this.address = address

 }

}

As currently implemented, the above code declares a basic Kotlin class containing a number of variables
representing database table fields and a collection of getter and setter methods. This class, however, is not yet an
entity. To make this class into an entity and to make it accessible within SQL statements, some Room annotations
need to be added as follows:
@Entity(tableName = "customers")
class Customer {

542

The Android Room Persistence Library

 @PrimaryKey(autoGenerate = true)
 @NonNull
 @ColumnInfo(name = "customerId")
 var id: Int = 0

 @ColumnInfo(name = "customerName")
 var name: String? = null

 var address: String? = null

 constructor() {}

 constructor(id: Int, name: String, address: String) {

 this.id = id

 this.name = name

 this.address = address

 }

 constructor(name: String, address: String) {

 this.name = name

 this.address = address

 }

}

The above annotations begin by declaring that the class represents an entity and assigns a table name of
“customers”. This is the name by which the table will be referenced in the DAO SQL statements:
@Entity(tableName = "customers")

Every database table needs a column to act as the primary key. In this case, the customer id is declared as the
primary key. Annotations have also been added to assign a column name to be referenced in SQL queries and to
indicate that the field cannot be used to store null values. Finally, the id value is configured to be auto-generated.
This means that the id assigned to new records will be automatically generated by the system to avoid duplicate
keys.
@PrimaryKey(autoGenerate = true)

@NonNull

@ColumnInfo(name = "customerId")

var id: Int = 0

A column name is also assigned to the customer name field. Note, however, that no column name was assigned
to the address field. This means that the address data will still be stored within the database, but that it is not
required to be referenced in SQL statements. If a field within an entity is not required to be stored within a
database, simply use the @Ignore annotation:
@Ignore

var MyString: String? = null

Annotations may also be included within an entity class to establish relationships with other entities using a
relational database concept referred to as foreign keys. Foreign keys allow a table to reference the primary key
in another table. For example, a relationship could be established between an entity named Purchase and our

543

The Android Room Persistence Library

existing Customer entity as follows:
@Entity(foreignKeys = arrayOf(ForeignKey(entity = Customer::class,

 parentColumns = arrayOf("customerId"),

 childColumns = arrayOf("buyerId"),

 onDelete = ForeignKey.CASCADE,

 onUpdate = ForeignKey.RESTRICT)))

class Purchase {

 @PrimaryKey(autoGenerate = true)

 @NonNull

 @ColumnInfo(name = "purchaseId")

 var purchaseId: Int = 0

 @ColumnInfo(name = "buyerId")

 var buyerId: Int = 0

.

.

}

Note that the foreign key declaration also specifies the action to be taken when a parent record is deleted or
updated. Available options are CASCADE, NO_ACTION, RESTRICT, SET_DEFAULT and SET_NULL.

69.4 Data Access Objects
A Data Access Object provides a way to access the data stored within a SQLite database. A DAO is declared as
a standard Kotlin interface with some additional annotations that map specific SQL statements to methods that
may then be called by the repository.

The first step is to create the interface and declare it as a DAO using the @Dao annotation:
@Dao

interface CustomerDao {

}

Next, entries are added consisting of SQL statements and corresponding method names. The following
declaration, for example, allows all of the rows in the customers table to be retrieved via a call to a method
named getAllCustomers():
@Dao

interface CustomerDao {

 @Query("SELECT * FROM customers")

 fun getAllCustomers(): LiveData<List<Customer>>

}

Note that the getAllCustomers() method returns a List object containing a Customer entity object for each record
retrieved from the database table. The DAO is also making use of LiveData so that the repository is able to
observe changes to the database.

Arguments may also be passed into the methods and referenced within the corresponding SQL statements.
Consider the following DAO declaration which searches for database records matching a customer’s name (note
that the column name referenced in the WHERE condition is the name assigned to the column in the entity

544

The Android Room Persistence Library

class):
@Query("SELECT * FROM customers WHERE name = :customerName")

fun findCustomer(customerName: String): List<Customer>

In this example, the method is passed a string value which is, in turn, included within an SQL statement by
prefixing the variable name with a colon (:).

A basic insertion operation can be declared as follows using the @Insert convenience annotation:
@Insert

fun addCustomer(Customer customer)

This is referred to as a convenience annotation because the Room persistence library can infer that the Customer
entity passed to the addCustomer() method is to be inserted into the database without the need for the SQL
insert statement to be provided. Multiple database records may also be inserted in a single transaction as follows:
@Insert

fun insertCustomers(Customer... customers)

The following DAO declaration deletes all records matching the provided customer name:
@Query("DELETE FROM customers WHERE name = :name")

fun deleteCustomer(String name)

As an alternative to using the @Query annotation to perform deletions, the @Delete convenience annotation
may also be used. In the following example, all of the Customer records that match the set of entities passed to
the deleteCustomers() method will be deleted from the database:
@Delete

fun deleteCustomers(Customer... customers)

The @Update convenience annotation provides similar behavior when updating records:
@Update

fun updateCustomers(Customer... customers)

The DAO methods for these types of database operations may also be declared to return an int value indicating
the number of rows affected by the transaction, for example:
@Delete

fun deleteCustomers(Customer... customers): int

69.5 The Room Database
The Room database class is created by extending the RoomDatabase class and acts as a layer on top of the
actual SQLite database embedded into the Android operating system. The class is responsible for creating and
returning a new room database instance and for providing access to the DAO instances associated with the
database.

The Room persistence library provides a database builder for creating database instances. Each Android app
should only have one room database instance, so it is best to implement defensive code within the class to
prevent more than one instance being created.

An example Room Database implementation for use with the example customer table is outlined in the following
code listing:
import android.content.Context

import android.arch.persistence.room.Database

import android.arch.persistence.room.Room

545

The Android Room Persistence Library

import android.arch.persistence.room.RoomDatabase

@Database(entities = [(Customer::class)], version = 1)

abstract class CustomerRoomDatabase: RoomDatabase() {

 abstract fun customerDao(): CustomerDao

 companion object {

 private var INSTANCE: CustomerRoomDatabase? = null

 internal fun getDatabase(context: Context): CustomerRoomDatabase? {

 if (INSTANCE == null) {

 synchronized(CustomerRoomDatabase::class.java) {

 if (INSTANCE == null) {

 INSTANCE =

 Room.databaseBuilder(

 context.applicationContext,

 CustomerRoomDatabase::class.java,

 "customer_database").build()

 }

 }

 }

 return INSTANCE

 }

 }

}

Important areas to note in the above example are the annotation above the class declaration declaring the entities
with which the database is to work, the code to check that an instance of the class has not already been created
and assignment of the name “customer_database” to the instance.

69.6 The Repository
The repository is responsible for getting a Room Database instance, using that instance to access associated
DAOs and then making calls to DAO methods to perform database operations. A typical constructor for a
repository designed to work with a Room Database might read as follows:
class CustomerRepository(application: Application) {

 private var customerDao: CustomerDao?

 init {

 val db: CustomerRoomDatabase? =

 CustomerRoomDatabase.getDatabase(application)

 customerDao = db?.customerDao()

 }

.

.

546

The Android Room Persistence Library

Once the repository has access to the DAO, it can make calls to the data access methods. The following code, for
example, calls the getAllCustomers() DAO method:
val allCustomers: LiveData<List<Customer>>?

allCustomers = customerDao.getAllCustomers()

When calling DAO methods, it is important to note that unless the method returns a LiveData instance (which
automatically runs queries on a separate thread), the operation cannot be performed on the app’s main thread.
In fact, attempting to do so will cause the app to crash with the following diagnostic output:
Cannot access database on the main thread since it may potentially lock the UI
for a long period of time

Since some database transactions may take a longer time to complete, running the operations on a separate
thread avoids the app appearing to lock up. As will be demonstrated in the chapter entitled “An Android Room
Database and Repository Tutorial”, this problem can be easily resolved by making use of coroutines (for more
information or a reminder of how to use coroutines, refer back to the chapter entitled “An Introduction to Kotlin
Coroutines”).

69.7 In-Memory Databases
The examples outlined in this chapter involved the use of a SQLite database that exists as a database file on
the persistent storage of an Android device. This ensures that the data persists even after the app process is
terminated.

The Room database persistence library also supports in-memory databases. These databases reside entirely
in memory and are lost when the app terminates. The only change necessary to work with an in-memory
database is to call the Room.inMemoryDatabaseBuilder() method of the Room Database class instead of Room.
databaseBuilder(). The following code shows the difference between the method calls (note that the in-memory
database does not require a database name):
// Create a file storage based database

INSTANCE = Room.databaseBuilder<CustomerRoomDatabase>(context.applicationContext,

 CustomerRoomDatabase::class.java, "customer_database")

 .build()

// Create an in-memory database

INSTANCE = Room.inMemoryDatabaseBuilder<CustomerRoomDatabase>(

 context.getApplicationContext(),

 CustomerRoomDatabase.class)

 .build()

69.8 Database Inspector
Android Studio includes a Database Inspector tool window which allows the Room databases associated with
running apps to be viewed, searched and modified as shown in Figure 69-3:

Figure 69-3

547

The Android Room Persistence Library

Use of the Database Inspector will be covered in the chapter entitled “An Android Room Database and Repository
Tutorial”.

69.9 Summary
The Android Room persistence library is bundled with the Android Architecture Components and acts as an
abstract layer above the lower level SQLite database. The library is designed to make it easier to work with
databases while conforming to the Android architecture guidelines. This chapter has introduced the different
elements that interact to build Room-based database storage into Android app projects including entities,
repositories, data access objects, annotations and Room Database instances.

With the basics of SQLite and the Room architecture component covered, the next step is to create an example
app that puts this theory into practice. Since the user interface for the example application will require a forms
based layout, the next chapter, entitled “An Android TableLayout and TableRow Tutorial”, will detour slightly
from the core topic by introducing the basics of the TableLayout and TableRow views.

715

Chapter 87

87. An Overview of Android In-App
Billing
In the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. Another
revenue opportunity was soon introduced in the form of embedding advertising within applications. Perhaps the
most common and lucrative option is now to charge the user for purchasing items from within the application
after it has been installed. This typically takes the form of access to a higher level in a game, acquiring virtual
goods or currency, or subscribing to premium content in the digital edition of a magazine or newspaper.

Google provides support for the integration of in-app purchasing through the Google Play In-App Billing API
and the Play Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app
billing into your Android projects. Once these topics have been explored, the next chapter will walk you through
creating an example app that includes in-app purchasing features.

87.1 Preparing a Project for In-App Purchasing
Building in-app purchasing into an app will require a Google Play Developer Console account, details of which
were covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. You will also
need to register a Google merchant account and configure your payment settings. These settings can be found
by navigating to Setup -> Payments profile in the Play Console. Note that merchant registration is not available
in all countries. For details, refer to the following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app will then need to be uploaded to the console and enabled for in-app purchasing. The console will not
activate in-app purchasing support for an app, however, unless the Google Play Billing Library has been added
to the module-level build.gradle file. When working with Kotlin, the Google Play Kotlin Extensions Library is
also recommended:
dependencies {

.

.

 implementation 'com.android.billingclient:billing:<latest version>'
 implementation 'com.android.billingclient:billing-ktx:<latest version>'
.

.

}

Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

87.2 Creating In-App Products and Subscriptions
Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel as highlighted in Figure 87-1 below:

https://support.google.com/googleplay/android-developer/answer/9306917

716

An Overview of Android In-App Billing

Figure 87-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into
the categories of consumable (the item must be purchased each time it is required by the user such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed on a regular schedule such as access to news
content or the premium features of an app. When creating a subscription, a base plan is defined specifying the
price, renewal period (monthly, annually, etc.), and whether the subscription auto-renews. Users can also be
provided with discount offers and given the option of pre-purchasing a subscription.

87.3 Billing Client Initialization
Communication between your app and the Google Play Billing Library is handled by a BillingClient instance.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =

 PurchasesUpdatedListener { billingResult, purchases ->

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

 && purchases != null

) {

 for (purchase in purchases) {

 // Process the purchases

 }

 } else if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.USER_CANCELED

) {

 // Purchase cancelled by user

 } else {

717

An Overview of Android In-App Billing

 // Handle errors here

 }

 }

billingClient = BillingClient.newBuilder(this)

 .setListener(purchasesUpdatedListener)

 .enablePendingPurchases()

 .build()

87.4 Connecting to the Google Play Billing Library
After the successful creation of the Billing Client, the next step is to initialize a connection to the Google Play
Billing Library. To establish this connection, a call needs to be made to the startConnection() method of the
billing client instance. Since the connection is performed asynchronously, a BillingClientStateListener handler
needs to be implemented to receive a callback indicating whether the connection was successful. Code should
also be added to override the onBillingServiceDisconnected() method. This is called if the connection to the
Billing Library is lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method which can be used to check that the client is ready:
billingClient.startConnection(object : BillingClientStateListener {

 override fun onBillingSetupFinished(

 billingResult: BillingResult

) {

 if (billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK

) {

 // Connection successful

 } else {

 // Connection failed

 }

 }

 override fun onBillingServiceDisconnected() {

 // Connection to billing service lost

 }

})

87.5 Querying Available Products
Once the billing environment is initialized and ready to go, the next step is to request the details of the products or
subscriptions that are available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):
val queryProductDetailsParams = QueryProductDetailsParams.newBuilder()

 .setProductList(

 ImmutableList.of(

 QueryProductDetailsParams.Product.newBuilder()

718

An Overview of Android In-App Billing

 .setProductId(productId)

 .setProductType(

 BillingClient.ProductType.INAPP

)

 .build()

)

)

 .build()

billingClient.queryProductDetailsAsync(

 queryProductDetailsParams

) { billingResult, productDetailsList ->

 if (!productDetailsList.isEmpty()) {

 // Process list of matching products

 } else {

 // No product matches found

 }

}

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler (in this case in
the form of a lambda code block) which, in turn, is called and passed a list of ProductDetail objects containing
information about the matching products. For example, we can call methods on these objects to get information
such as the product name, title, description, price, and offer details.

87.6 Starting the Purchase Process
Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the item being purchased.
val billingFlowParams = BillingFlowParams.newBuilder()

 .setProductDetailsParamsList(

 ImmutableList.of(

 BillingFlowParams.ProductDetailsParams.newBuilder()

 .setProductDetails(productDetails)

 .build()

)

)

 .build()

billingClient.launchBillingFlow(this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.

87.7 Completing the Purchase
When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:

719

An Overview of Android In-App Billing

if (purchase.getPurchaseState() == Purchase.PurchaseState.PURCHASED) {

 // Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {

 // Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it will need to be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance together with an AcknowledgePurchaseResponseListener handler. Managed product purchases and
subscriptions are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase(acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener);

val acknowledgePurchaseParams = AcknowledgePurchaseParams.newBuilder()

 .setPurchaseToken(purchase.purchaseToken)

 .build()

val acknowledgePurchaseResponseListener = AcknowledgePurchaseResponseListener {

 // Check acknowledgement result

}

billingClient.acknowledgePurchase(

 acknowledgePurchaseParams,

 acknowledgePurchaseResponseListener

)

For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token and a call to the billing client’s consumePurchase() method:
val consumeParams = ConsumeParams.newBuilder()

 .setPurchaseToken(purchase.purchaseToken)

 .build()

coroutineScope.launch {

 val result = billingClient.consumePurchase(consumeParams)

 if (result.billingResult.responseCode ==

 BillingClient.BillingResponseCode.OK) {

 // Purchase successfully consumed

 }

}

87.8 Querying Previous Purchases
When working with in-app billing it is a common requirement to check whether a user has already purchased a
product or subscription. A list of all the user’s previous purchases of a specific type can be generated by calling

720

An Overview of Android In-App Billing

the queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:
val queryPurchasesParams = QueryPurchasesParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build()

billingClient.queryPurchasesAsync(

 queryPurchasesParams,

 purchasesListener

)

.

.

private val purchasesListener =

 PurchasesResponseListener { billingResult, purchases ->

 if (!purchases.isEmpty()) {

 // Access existing active purchases

 } else {

 // No

 }

 }

To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:
val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder()

 .setProductType(BillingClient.ProductType.INAPP)

 .build()

billingClient.queryPurchaseHistoryAsync(queryPurchaseHistoryParams) {
billingResult, historyList ->

 // Process purchase history list

}

87.9 Summary
In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. In this chapter, we have explored managed products and subscriptions and explained
the difference between consumable and non-consumable products. In-app purchasing support is added to
an app using the Google Play In-app Billing Library and involves creating and initializing a billing client on
which methods are called to perform tasks such as making purchases, listing available products, and consuming
existing purchases. The next chapter contains a tutorial demonstrating the addition of in-app purchases to an
Android Studio project.

777

Index

Index

Symbols
?. 93

<application> 492

<fragment> 281

<fragment> element 281

<receiver> 470

<service> 492, 498, 505

 Code Reformatting 73

:: operator 95

.well-known folder 443, 466, 680

A
AbsoluteLayout 166

ACCESS_COARSE_LOCATION permission 590

ACCESS_FINE_LOCATION permission 590

acknowledgePurchase() method 719

ACTION_DOWN 258

ACTION_MOVE 258

ACTION_POINTER_DOWN 258

ACTION_POINTER_UP 258

ACTION_UP 258

ACTION_VIEW 461

Active / Running state 142

Activity 79, 145

adding views in Java code 239

class 145

creation 14

Entire Lifetime 149

Foreground Lifetime 149

lifecycle methods 147

lifecycles 139

returning data from 440

state change example 153

state changes 145

states 142

Visible Lifetime 149

ActivityCompat class 595

Activity Lifecycle 141

Activity Manager 78

ActivityResultLauncher 441

Activity Stack 141

Actual screen pixels 230

adb

command-line tool 57

connection testing 63

device pairing 61

enabling on Android devices 57

Linux configuration 60

list devices 57

macOS configuration 58

overview 57

restart server 58

testing connection 63

WiFi debugging 61

Windows configuration 59

Wireless debugging 61

Wireless pairing 61

addCategory() method 469

addMarker() method 644

addView() method 234

ADD_VOICEMAIL permission 590

android

exported 493

gestureColor 274

layout_behavior property 433

onClick 283

process 493, 505

uncertainGestureColor 274

Android

Activity 79

architecture 75

events 251

intents 80

onClick Resource 251

778

Index

runtime 76

SDK Packages 6

android.app 76

Android Architecture Components 297

android.content 76

android.content.Intent 439

android.database 76

Android Debug Bridge. See ADB

Android Design Support Library 403

Android Development

System Requirements 3

Android Devices

designing for different 165

android.graphics 76

android.hardware 76

android.intent.action 475

android.intent.action.BOOT_COMPLETED 494

android.intent.action.MAIN 461

android.intent.category.LAUNCHER 461

Android Libraries 76

android.media 77

Android Monitor tool window 32

Android Native Development Kit 77

android.net 77

android.opengl 77

android.os 77

android.permission.RECORD_AUDIO 599

android.print 77

Android Project

create new 13

android.provider 77

Android SDK Location

identifying 9

Android SDK Manager 8, 10

Android SDK Packages

version requirements 8

Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10

Android Software Stack 75

Android Studio

changing theme 54

downloading 3

Editor Window 49

installation 4

Linux installation 5

macOS installation 4

Main Window 48

Menu Bar 48

Navigation Bar 48

Project tool window 49

setup wizard 5

Status Bar 49

Toolbar 48

Tool window bars 50

tool windows 49

updating 12

Welcome Screen 47

Windows installation 4

android.text 77

android.util 77

android.view 77

android.view.View 168

android.view.ViewGroup 165, 168

Android Virtual Device. See AVD

overview 27

Android Virtual Device Manager 27

android.webkit 77

android.widget 77

AndroidX libraries 770

API Key 635

APK analyzer 712

APK file 706

split 734

APK File

analyzing 712

APK Signing 770

APK Wizard dialog 704

App Architecture

modern 297

AppBar

779

Index
anatomy of 431

appbar_scrolling_view_behavior 433

App Bundles 701

creating 706

overview 701

revisions 711

uploading 708

AppCompatActivity class 146

App Inspector 51

Application

stopping 32

Application Context 81

Application Framework 77

Application Manifest 81

Application Resources 81

App Link

Adding Intent Filter 688

Assistant 683

Digital Asset Links file 680, 443

Intent Filter Handling 688

Intent Filters 679

Intent Handling 680

Testing 692

tutorial 683

URL Mapping 685

App Link Assistant 683

App Links 679

auto verification 442

autoVerify 443

manually enabling 445

overview 679

Apply Changes 247

Apply Changes and Restart Activity 247

Apply Code Changes 247

fallback settings 249

options 247

Run App 247

tutorial 249

applyToActivitiesIfAvailable() method 767

Architecture Components 297

ART 76

as 95

as? 95

asFlow() builder 510

assetlinks.json , 680, 443

asSharedFlow() 520

asStateFlow() 519

async 479

Attribute Keyframes 370

Audio

supported formats 597

Audio Playback 597

Audio Recording 597

Autoconnect Mode 196

Automatic Link Verification 442, 465

autoVerify 443, 688

AVD

cold boot 42

command-line creation 27

creation 27

device frame 35

Display mode 44

launch in tool window 35

overview 27

quickboot 42

Resizable 44

running an application 30

Snapshots 41

standalone 33

starting 29

Startup size and orientation 30

B
Background Process 140

Barriers 190

adding 208

constrained views 190

Base APK file 734

Baseline Alignment 189

beginTransaction() method 282

BillingClient 720

acknowledgePurchase() method 719

consumeAsync() method 719

getPurchaseState() method 718

780

Index

initialization 716, 724

launchBillingFlow() method 718

queryProductDetailsAsync() method 717

queryPurchasesAsync() method 720

startConnection() method 717

BillingResult 731

getDebugMessage() 731

Binding Expressions 317

one-way 317

two-way 318

BIND_JOB_SERVICE permission 493

bindService() method 491, 495, 499

Biometric Authentication 693

callbacks 697

overview 693

tutorial 693

Biometric Prompt 698

Bitwise AND 101

Bitwise Inversion 100

Bitwise Left Shift 102

Bitwise OR 101

Bitwise Right Shift 102

Bitwise XOR 101

black activity 14

Blank template 169

Blueprint view 195

BODY_SENSORS permission 590

Bookmarks 51

Boolean 88

Bound Service 491, 495

adding to a project 496

Implementing the Binder 496

Interaction options 495

BoundService class 497

Broadcast Intent 469

example 472

overview 80, 469

sending 472

Sticky 471

Broadcast Receiver 469

adding to manifest file 474

creation 473

overview 80, 470

BroadcastReceiver class 470

BroadcastReceiver superclass 473

buffer() operator 513

Build tool window 51

Build Variants 51, 770

tool window 51

Bundle class 162

Bundled Notifications 618

C
Calendar permissions 590

CALL_PHONE permission 590

CAMERA permission 590

Camera permissions 590

CameraUpdateFactory class

methods 645

cancelAndJoin() 480

cancelChildren() 479

CancellationSignal 698

Canvas class 674

CardView

example 423

layout file 421

responding to selection of 429

CardView class 421

C/C++ Libraries 77

Chain bias 216

chain head 188

chains 188

Chains

creation of 213

Chain style

changing 215

chain styles 188

Char 88

CharSequence 163

CheckBox 165

checkSelfPermission() method 594

Circle class 631

Code completion 68

Code Editor

781

Index
basics 65

Code completion 68

Code Generation 70

Code Reformatting 73

Document Tabs 66

Editing area 66

Gutter Area 66

Live Templates 74

Splitting 67

Statement Completion 69

Status Bar 67

Code Generation 70

code samples

download 1

cold boot 42

Cold flows 518

CollapsingToolbarLayout

example 435

introduction 434

parallax mode 434

pin mode 434

setting scrim color 437

setting title 437

with image 434

collectLatest() operator 512

collect() operator 511

Color class 675

COLOR_MODE_COLOR 650, 670

COLOR_MODE_MONOCHROME 650, 670

com.android.application 737

com.android.dynamic-feature 737

combine() operator 517

Common Gestures 263

detection 263

Communicating Sequential Processes 477

Companion Objects 125

Component tree 17

Configuration APK file 734

conflate() operator 512

Constraint Bias 187

adjusting 200

ConstraintLayout

advantages of 193

Availability 194

Barriers 190

Baseline Alignment 189

chain bias 216

chain head 188

chains 188

chain styles 188

Constraint Bias 187

Constraints 185

conversion to 212

convert to MotionLayout 377

deleting constraints 200

guidelines 206

Guidelines 190

manual constraint manipulation 197

Margins 186, 201

Opposing Constraints 186, 202

overview of 185

Packed chain 189, 216

ratios 193, 217

Spread chain 188

Spread inside 215

Spread inside chain 188

tutorial 221

using in Android Studio 195

Weighted chain 188, 216

Widget Dimensions 189, 204

Widget Group Alignment 211

ConstraintLayout chains

creation of 213

in layout editor 213

ConstraintLayout Chain style

changing 215

Constraints

deleting 200

ConstraintSet

addToHorizontalChain() method 236

addToVerticalChain() method 236

alignment constraints 235

apply to layout 234

applyTo() method 234

782

Index

centerHorizontally() method 235

centerVertically() method 235

chains 235

clear() method 236

clone() method 235

connect() method 234

connect to parent 234

constraint bias 235

copying constraints 235

create 234

create connection 234

createHorizontalChain() method 235

createVerticalChain() method 235

guidelines 236

removeFromHorizontalChain() method 236

removeFromVerticalChain() method 236

removing constraints 236

rotation 237

scaling 236

setGuidelineBegin() method 236

setGuidelineEnd() method 236

setGuidelinePercent() method 236

setHorizonalBias() method 235

setRotationX() method 237

setRotationY() method 237

setScaleX() method 236

setScaleY() method 236

setTransformPivot() method 237

setTransformPivotX() method 237

setTransformPivotY() method 237

setVerticalBias() method 235

sizing constraints 235

tutorial 239

view IDs 241

ConstraintSet class 233, 234

ConstraintSet.PARENT_ID 234

Constraint Sets 234

ConstraintSets

configuring 366

consumeAsync() method 719

ConsumeParams 729

Contacts permissions 590

container view 165

Content Provider 78

overview 81

Context class 81

CoordinatorLayout 166, 431, 433

Coroutine Builders 479

async 479

coroutineScope 479

launch 479

runBlocking 479

supervisorScope 479

withContext 479

Coroutine Dispatchers 478

Coroutines 477, 509

adding libraries 485

channel communication 483

GlobalScope 478

returning results 481

Suspend Functions 478

suspending 480

tutorial 485

ViewModelScope 478

vs. Threads 477

coroutineScope 479

Coroutine Scope 478

createPrintDocumentAdapter() method 665

Custom Accessors 123

Custom Attribute 367

Custom Document Printing 653, 665

Custom Gesture

recognition 269

Custom Print Adapter

implementation 667

Custom Print Adapters 665

Custom Theme

building 761

Cycle Editor 395

Cycle Keyframe 375

Cycle Keyframes

overview 391

D

783

Index
dangerous permissions 589

list of 590

Dark Theme 32

enable on device 32

Data Access Object (DAO) 540

Database Inspector 546, 570

live updates 570

SQL query 570

Database Rows 534

Database Schema 533

Database Tables 533

Data binding

binding expressions 317

Data Binding 300

binding classes 316

enabling 322

event and listener binding 318

key components 313

overview 313

tutorial 321

variables 316

with LiveData 300

DDMS 32

Debugging

enabling on device 57

debug.keystore file 443, 465

Default Function Parameters 115

DefaultLifecycleObserver 336, 339

deltaRelative 371

Density-independent pixels 229

Density Independent Pixels

converting to pixels 244

Device Definition

custom 182

Device File Explorer 51

device frame 35

Device Manager 51

Device Mirroring 63

enabling 63

device pairing 61

Digital Asset Links file 443, 680, 443

Direct Reply Input 627

Direct Reply Notification 621

Dispatchers.Default 479

Dispatchers.IO 479

Dispatchers.Main 478

dp 229

DROP_LATEST 520

DROP_OLDEST 520

Dynamic Colors

applyToActivitiesIfAvailable() method 767

enabling 767

enabling in Android 767

Dynamic Delivery 736

Dynamic Feature APK 734

Dynamic Feature Module

architecture 733

overview 733

removal 757

tutorial 743

Dynamic Feature Modules

deferred installation 739

handling of large 740

Dynamic Feature Support

adding to project 743

Dynamic State 147

saving 161

E
Elvis Operator 95

Empty Process 141

Empty template 169

Emulator 51

battery 40

cellular configuration 40

configuring fingerprints 42

directional pad 40

extended control options 39

Extended controls 39

fingerprint 40

location configuration 40

phone settings 40

Resizable 44

resize 39

784

Index

rotate 38

Screen Record 41

Snapshots 41

starting 29

take screenshot 38

toolbar 37

toolbar options 37

tool window mode 43

Virtual Sensors 41

zoom 38

enablePendingPurchases() method 719

enabling ADB support 57

Escape Sequences 89

ettings.gradle file 770

Event Handling 251

example 252

Event Listener 253

Event Listeners 252

Event Log 51

Events

consuming 255

explicit

intent 80

explicit intent 439

Explicit Intent 439

Extended Control

options 39

F
Favorites

tool window 51

Files

switching between 66

filter() operator 514

findPointerIndex() method 258

findViewById() 135

Fingerprint

emulation 42

Fingerprint authentication

device configuration 694

permission 694

steps to implement 693

Fingerprint Authentication

overview 693

tutorial 693

FLAG_INCLUDE_STOPPED_PACKAGES 469

flatMapConcat() operator 517

flatMapMerge() operator 517

flexible space area 431

Float 88

floating action button 14, 170, 403

changing appearance of 406

margins 404

overview of 403

removing 171

sizes 404

Flow 509

asFlow() builder 510

asSharedFlow() 520

asStateFlow() 519

backgroudn handling 528

buffering 512

buffer() operator 513

builder 510

cold 518

collect() 511

collecting data 511

collectLatest() operator 512

combine() operator 517

conflate() operator 512

declaring 510

emit() 511

emitting data 511

filter() operator 514

flatMapConcat() operator 517

flatMapMerge() operator 517

flattening 516

flowOf() builder 510

flow of flows 516

fold() operator 516

hot 518

intermediate operators 514

library requirements 510

map() operator 514

785

Index
MutableSharedFlow 520

MutableStateFlow 519

onEach() operator 518

reduce() operator 515, 516

repeatOnLifecycle 530

SharedFlow 520

single() operator 512

StateFlow 519

terminal flow operators 515

transform() operator 515

try/finally 512

zip() operator 517

flow builder 510

flowOf() builder 510

flow of flows 516

Flow operators 514

Flows

combining 517

Introduction to 509

Foldable Devices 150

multi-resume 150

Foreground Process 140

Forward-geocoding 638

Fragment

creation 279

event handling 283

XML file 279, 280

FragmentActivity class 146

Fragment Communication 283

Fragments 279

adding in code 282

duplicating 412

example 287

overview 279

FragmentStateAdapter class 415

FrameLayout 166

Function Parameters

variable number of 115

Functions 113

G
Geocoder class 637

Geocoder object 638

Geocoding 637

Gesture Builder Application 269

building and running 270

Gesture Detector class 263

GestureDetectorCompat 266

instance creation 266

GestureDetectorCompat class 263

GestureDetector.OnDoubleTapListener 263, 264

GestureDetector.OnGestureListener 264

GestureLibrary 269

GestureLibrary class 269

GestureOverlayView 269

configuring color 274

configuring multiple strokes 274

GestureOverlayView class 269

GesturePerformedListener 269

Gestures

interception of 275

Gestures File

creation 270

extract from SD card 271

loading into application 272

GET_ACCOUNTS permission 590

getAction() method 475

getDebugMessage() 731

getFromLocation() method 638

getId() method 234

getIntent() method 440

getPointerCount() method 258

getPointerId() method 258

getPurchaseState() method 718

getService() method 499

GlobalScope 478

GNU/Linux 76

Google Cloud

billing account 632

Console 632

new project 633

Google Cloud Print 648

Google Drive

printing to 648

786

Index

GoogleMap 631

map types 641

GoogleMap.MAP_TYPE_HYBRID 642

GoogleMap.MAP_TYPE_NONE 642

GoogleMap.MAP_TYPE_NORMAL 642

GoogleMap.MAP_TYPE_SATELLITE 642

GoogleMap.MAP_TYPE_TERRAIN 642

Google Maps Android API 631

Controlling the Map Camera 645

displaying controls 642

gesture handling 643

Map Markers 644

overview 631

Google Maps SDK 631

API Key 635

Credentials 635

enabling 634

Maps SDK for Android 635

Google Play Billing Library 715

Google Play Console 722

Creating an in-app product 722

License Testers 723

Google Play Developer Console 702

Go to Line:Column 67

Gradle

APK signing settings 774

Build Variants 770

command line tasks 775

dependencies 769

Manifest Entries 770

overview 769

sensible defaults 769

tool window 51

Gradle Build File

top level 771

Gradle Build Files

module level 772

gradle.properties file 770

GridLayout 166

GridLayoutManager 419

H

Handler class 504

Higher-order Functions 117

Hot flows 518

HP Print Services Plugin 647

HTML printing 651

HTML Printing

example 655

I
IBinder 491, 497

IBinder object 495, 503, 504

Image Printing 650

Immutable Variables 90

implicit

intent 80

implicit intent 439

Implicit Intent 441

Implicit Intents

example 457

in 229

INAPP 720

In-App Products 715

In-App Purchasing 721

acknowledgePurchase() method 719

BillingClient 716

BillingResult 731

consumeAsync() method 719

ConsumeParams 729

Consuming purchases 728

enablePendingPurchases() method 719

getPurchaseState() method 718

Google Play Billing Library 715

launchBillingFlow() method 718

Libraries 721

newBuilder() method 716

onBillingServiceDisconnected() callback 725

onBillingServiceDisconnected() method 717

onBillingSetupFinished() listener 725

onProductDetailsResponse() callback 726

Overview 715

ProductDetail 718

ProductDetails 726

787

Index
products 715

ProductType 720

Purchase Flow 727

PurchaseResponseListener 720

PurchasesUpdatedListener 718

PurchaseUpdatedListener 727

purchase updates 727

queryProductDetailsAsync() 726

queryProductDetailsAsync() method 717

queryPurchasesAsync() 729

queryPurchasesAsync() method 720

runOnUiThread() 727

startConnection() method 717

subscriptions 715

tutorial 721

Initializer Blocks 123

In-Memory Database 546

Inner Classes 124

Instant Dynamic Feature Module 734

IntelliJ IDEA 83

Intent 80

explicit 80

implicit 80

Intent Availability

checking for 446

intent filters 439

Intent Filters 442

App Link 679

intent resolution 442

Intents 439

ActivityResultLauncher 441

overview 439

registerForActivityResult() 441, 454

Intent Service 491

IntentService class 491, 494

Intent URL 460

intermediate flow operators 514

is 95

isInitialized property 95

J
Java

convert to Kotlin 83

Java Native Interface 77

JetBrains 83

Jetpack 297

overview 297

JobIntentService 491

BIND_JOB_SERVICE permission 493

onHandleWork() method 491

join() 480

K
KeyAttribute 370

Keyboard Shortcuts 52

KeyCycle 375, 391

Cycle Editor 395

tutorial 391

Keyframe 383

Keyframes 370

KeyFrameSet 400

KeyPosition 371

deltaRelative 371

parentRelative 371

pathRelative 372

Keystore File

creation 704

KeyTimeCycle 375, 391

keytool 443

KeyTrigger 374

Killed state 142

Kotlin

accessing class properties 123

and Java 83

arithmetic operators 97

assignment operator 97

augmented assignment operators 98

bitwise operators 100

Boolean 88

break 108

breaking from loops 107

calling class methods 123

Char 88

class declaration 119

788

Index

class initialization 120

class properties 120

Companion Objects 125

conditional control flow 109

continue labels 108

continue statement 108

control flow 105

convert from Java 83

Custom Accessors 123

data types 87

decrement operator 98

Default Function Parameters 115

defining class methods 120

do ... while loop 107

Elvis Operator 95

equality operators 99

Escape Sequences 89

expression syntax 97

Float 88

Flow 509

for-in statement 105

function calling 114

Functions 113

Higher-order Functions 117

if ... else ... expressions 110

if expressions 109

Immutable Variables 90

increment operator 98

inheritance 129

Initializer Blocks 123

Inner Classes 124

introduction 83

Lambda Expressions 116

let Function 93

Local Functions 114

logical operators 99

looping 105

Mutable Variables 90

Not-Null Assertion 93

Nullable Type 92

Overriding inherited methods 132

playground 84

Primary Constructor 120

properties 123

range operator 100

Safe Call Operator 92

Secondary Constructors 120

Single Expression Functions 114

String 88

subclassing 129

Type Annotations 91

Type Casting 95

Type Checking 95

Type Inference 91

variable parameters 115

when statement 110

while loop 106

L
Lambda Expressions 116

lateinit 94

Late Initialization 94

launch 479

launchBillingFlow() method 718

layout_collapseMode

parallax 436

pin 436

layout_constraintDimentionRatio 218

layout_constraintHorizontal_bias 216

layout_constraintVertical_bias 216

layout editor

ConstraintLayout chains 213

Layout Editor 16, 221

Autoconnect Mode 196

code mode 176

Component Tree 173

design mode 173

device screen 173

example project 221

Inference Mode 197

palette 173

properties panel 174

Sample Data 182

Setting Properties 177

789

Index
toolbar 174

user interface design 221

view conversion 181

Layout Editor Tool

changing orientation 16

overview 173

Layout Inspector 52

Layout Managers 165

LayoutResultCallback object 671

Layouts 165

layout_scrollFlags

enterAlwaysCollapsed mode 433

enterAlways mode 433

exitUntilCollapsed mode 433

scroll mode 433

Layout Validation 184

let Function 93

libc 77

License Testers 723

Lifecycle

awareness 335

components 300

observers 336

owners 335

states and events 336

tutorial 339

Lifecycle-Aware Components 335

Lifecycle library 510

Lifecycle Methods 147

Lifecycle Observer 339

creating a 339

Lifecycle Owner

creating a 341

Lifecycles

modern 300

Lifecycle.State.CREATED 530

Lifecycle.State.DESTROYED 530

Lifecycle.State.INITIALIZED 530

Lifecycle.State.RESUMED 530

Lifecycle.State.STARTED 530

LinearLayout 166

LinearLayoutManager 419

LinearLayoutManager layout 427

Linux Kernel 76

list devices 57

LiveData 298, 309

adding to ViewModel 309

observer 311

tutorial 309

Live Templates 74

Local Bound Service 495

example 495

Local Functions 114

Location Manager 78

Location permission 590

Logcat

tool window 52

LogCat

enabling 157

M
MANAGE_EXTERNAL_STORAGE 591

adb enabling 591

testing 591

Manifest File

permissions 461

map() operator 514

Maps 631

MapView 631

adding to a layout 638

Marker class 631

match_parent properties 229

Material design 403

Material Design 2 759

Material Design 2 Theming 759

Material Design 3 759

Material Theme Builder 761

Material You 759

measureTimeMillis() function 513

MediaController

adding to VideoView instance 575

MediaController class 572

methods 572

MediaPlayer class 597

790

Index

methods 597

MediaRecorder class 597

methods 598

recording audio 598

Memory Indicator 67

Messenger object 504

Microphone

checking for availability 600

Microphone permissions 590

mm 229

MotionEvent 257, 258, 277

getActionMasked() 258

MotionLayout 365

arc motion 370

Attribute Keyframes 370

ConstraintSets 366

Custom Attribute 386

Custom Attributes 367

Cycle Editor 395

Cycle Keyframes 375

Editor 377

KeyAttribute 370

KeyCycle 391

Keyframes 370

KeyFrameSet 400

KeyPosition 371

KeyTimeCycle 391

KeyTrigger 374

OnClick 369, 382

OnSwipe 369

overview 365

Position Keyframes 371

previewing animation 381

starting animation 368

Trigger Keyframe 374

Tutorial 377

MotionScene

ConstraintSets 366

Custom Attributes 367

file 366

overview 365

transition 366

moveCamera() method 645

multiple devices

testing app on 31

Multiple Touches

handling 258

multi-resume 150

Multi-Touch

example 259

Multi-touch Event Handling 257

multi-window support 150

MutableSharedFlow 520

MutableStateFlow 519

Mutable Variables 90

My Location Layer 632

N
Navigation 345

adding destinations 354

overview 345

pass data with safeargs 361

passing arguments 350

safeargs 350

stack 345

tutorial 351

Navigation Action

triggering 349

Navigation Architecture Component 345

Navigation Component

tutorial 351

Navigation Controller

accessing 349

Navigation Graph 348, 352

adding actions 357

creating a 352

Navigation Host 346

declaring 353

newBuilder() method 716

normal permissions 589

Notification

adding actions 618

direct reply 621

Direct Reply Input 627

791

Index
issuing a basic 614

launch activity from a 616

PendingIntent 624

Reply Action 626

updating direct reply 628

Notifications 607

bundled 618

overview 607

Notifications Manager 78

Not-Null Assertion 93

Nullable Type 92

O
Observer

implementing a LiveData 311

onAttach() method 284

onBillingServiceDisconnected() callback 725

onBillingServiceDisconnected() method 717

onBillingSetupFinished() listener 725

onBind() method 492, 495, 503

onBindViewHolder() method 427

OnClick 369

onClickListener 252, 253, 256

onClick() method 251

onCreateContextMenuListener 252

onCreate() method 140, 147, 492

onCreateView() method 148

on-demand modules 733

onDestroy() method 148, 492

onDoubleTap() method 263

onDown() method 263

onEach() operator 518

onFling() method 263

onFocusChangeListener 252

OnFragmentInteractionListener

implementation 359

onGesturePerformed() method 269

onHandleWork() method 491, 492

onKeyListener 252

onLayoutFailed() method 671

onLayoutFinished() method 671

onLongClickListener 252, 255

onLongPress() method 263

onMapReady() method 640

onPageFinished() callback 656

onPause() method 148

onProductDetailsResponse() callback 726

onReceive() method 140, 470, 471, 473

onRequestPermissionsResult() method 593, 604, 612, 622

onRestart() method 148

onRestoreInstanceState() method 148

onResume() method 140, 148

onSaveInstanceState() method 148

onScaleBegin() method 275

onScaleEnd() method 275

onScale() method 275

onScroll() method 263

OnSeekBarChangeListener 294

onServiceConnected() method 495, 498, 505

onServiceDisconnected() method 495, 498, 505

onShowPress() method 263

onSingleTapUp() method 263

onStartCommand() method 492

onStart() method 148

onStop() method 148

onTouchEvent() method 263, 275

onTouchListener 252, 257

onTouch() method 257, 258

onViewCreated() method 148

onViewStatusRestored() method 148

OpenJDK 3

P
Package Explorer 15

Package Manager 78

PackageManager class 600

PackageManager.FEATURE_MICROPHONE 600

PackageManager.PERMISSION_DENIED 591

PackageManager.PERMISSION_GRANTED 591

Package Name 14

Packed chain 189, 216

PageRange 672, 673

Paint class 675

parentRelative 371

792

Index

parent view 167

pathRelative 372

Paused state 142

PdfDocument 653

PdfDocument.Page 665, 672

PendingIntent class 624

Permission

checking for 591

permissions

dangerous 589

normal 589

Persistent State 147

Phone permissions 590

Pinch Gesture

detection 275

example 275

Pinch Gesture Recognition 269

Play Core Library 739, 743

Polygon class 631

Polyline class 631

Position Keyframes 371

POST_NOTIFICATIONS permission 590, 622

Primary Constructor 120

PrintAttributes 670

PrintDocumentAdapter 653, 665

PrintDocumentInfo 670

Printing

color 650

monochrome 650

Printing framework

architecture 647

Printing Framework 647

Print Job

starting 676

Print Manager 647

PrintManager service 657

Problems

tool window 52

PROCESS_OUTGOING_CALLS permission 590

Process States 139

ProductDetail 718

ProductDetails 726

ProductType 720

Profiler

tool window 52

ProgressBar 165

proguard-rules.pro file 774

ProGuard Support 770

Project

tool window 52

Project Name 14

Project tool window 15, 52

pt 229

PurchaseResponseListener 720

PurchasesUpdatedListener 718

PurchaseUpdatedListener 727

putExtra() method 439, 469

px 230

Q
queryProductDetailsAsync() 726

queryProductDetailsAsync() method 717

queryPurchaseHistoryAsync() method 720

queryPurchasesAsync() 729

queryPurchasesAsync() method 720

quickboot snapshot 42

Quick Documentation 72

R
RadioButton 165

Range Operator 100

ratios 217

READ_CALENDAR permission 590

READ_CALL_LOG permission 590

READ_CONTACTS permission 590

READ_EXTERNAL_STORAGE permission 591

READ_PHONE_STATE permission 590

READ_SMS permission 590

RECEIVE_MMS permission 590

RECEIVE_SMS permission 590

RECEIVE_WAP_PUSH permission 590

Recent Files Navigation 53

RECORD_AUDIO permission 590

Recording Audio

793

Index
permission 599

RecyclerView 419

adding to layout file 420

example 423

GridLayoutManager 419

initializing 427

LinearLayoutManager 419

StaggeredGridLayoutManager 419

RecyclerView Adapter

creation of 425

RecyclerView.Adapter 420, 425

getItemCount() method 420

onBindViewHolder() method 420

onCreateViewHolder() method 420

RecyclerView.ViewHolder

getAdapterPosition() method 430

reduce() operator 515, 516

registerForActivityResult() 441

registerForActivityResult() method 440, 454

registerReceiver() method 471

RelativeLayout 166

release mode 701

Release Preparation 701

Remote Bound Service 503

client communication 503

implementation 504

manifest file declaration 505

RemoteInput.Builder() method 624

RemoteInput Object 624

Remote Service

launching and binding 505

sending a message 507

repeatOnLifecycle 530

Repository

tutorial 557

Repository Modules 300

requestPermissions() method 593

Resizable Emulator 44

Resource

string creation 19

Resource File 21

Resource Management 139

Resource Manager 52, 78

result receiver 471

Reverse-geocoding 638

Reverse Geocoding 637

Room

Data Access Object (DAO) 540

entities 540, 541

In-Memory Database 546

Repository 540

Room Database 540

tutorial 557

Room Database Persistence 539

Room Persistence Library 537, 539

root element 165

root view 167

Run

tool window 52

runBlocking 479

Running Devices

tool window 63

runOnUiThread() 727

Runtime Permission Requests 589

S
safeargs 350, 361

Safe Call Operator 92

Sample Data 182

Saved State 299, 329

library dependencies 331

SavedStateHandle 330

contains() method 331

keys() method 331

remove() method 331

Saved State module 329

SavedStateViewModelFactory 330

ScaleGestureDetector class 275

Scale-independent 229

SDK Packages 6

Secondary Constructors 120

Secure Sockets Layer (SSL) 77

SeekBar 287

sendBroadcast() method 469, 471

794

Index

sendOrderedBroadcast() method 469, 471

SEND_SMS permission 590

sendStickyBroadcast() method 469

Sensor permissions 590

Service

anatomy 492

launch at system start 494

manifest file entry 492

overview 80

run in separate process 493

ServiceConnection class 505

Service Process 140

Service Restart Options 492

setAudioEncoder() method 598

setAudioSource() method 598

setBackgroundColor() 234

setCompassEnabled() method 643

setContentView() method 233, 239

setId() method 234

setMyLocationButtonEnabled() method 643

setOnClickListener() method 251, 253

setOnDoubleTapListener() method 263, 266

setOutputFile() method 598

setOutputFormat() method 598

setResult() method 441

setText() method 164

setTransition() 375

setVideoSource() method 598

SHA-256 certificate fingerprint 443

SharedFlow 520, 523

backgroudn handling 528

DROP_LATEST 520

DROP_OLDEST 520

in ViewModel 525

repeatOnLifecycle 530

SUSPEND 521

tutorial 523

shouldOverrideUrlLoading() method 656

shouldShowRequestPermissionRationale() method 595

SimpleOnScaleGestureListener 275

SimpleOnScaleGestureListener class 277

single() operator 512

SMS permissions 590

Snackbar 403, 404, 405

overview of 404

Snapshots

emulator 41

sp 229

Space class 166

split APK files 734

SplitCompatApplication 738

SplitInstallManager 739

Spread chain 188

Spread inside 215

Spread inside chain 188

SQL 534

SQLite 533

AVD command-line use 535

Columns and Data Types 533

overview 534

Primary keys 534

StaggeredGridLayoutManager 419

startActivity() method 439

startConnection() method 717

startForeground() method 140

START_NOT_STICKY 492

START_REDELIVER_INTENT 492

START_STICKY 492

State

restoring 164

State Change

handling 143

StateFlow 519

Statement Completion 69

status bar 431

Status Bar Widgets 67

Memory Indicator 67

Sticky Broadcast Intents 471

Stopped state 142

Storage permissions 591

String 88

strings.xml file 23

Structure

tool window 52

795

Index
Structured Query Language 534

Structure tool window 52

SUBS 720

subscriptions 715

supervisorScope 479

SupportMapFragment class 631

SUSPEND 521

Suspend Functions 478

Switcher 53

System Broadcasts 475

system requirements 3

T
tab bar 431

TabLayout 409

adding to layout 413

app

tabGravity property 418

tabMode property 418

example 410

fixed mode 417

getItemCount() method 409

overview 409

scrollable mode 417

TableLayout 166, 549

TableRow 549

Telephony Manager 78

Templates

blank vs. empty 169

Terminal

tool window 52

terminal flow operators 515

Theme

building a custom 761

Theming 759

Material Theme Builder 761

tutorial 763

Time Cycle Keyframes 375

TODO

tool window 52

toolbar 431

ToolbarListener 284

tools

layout 281

Tool window bars 50

Tool windows 49

Touch Actions 258

Touch Event Listener

implementation 259

Touch Events

intercepting 257

Touch handling 257

transform() operator 515

try/finally 512

Type Annotations 91

Type Casting 95

Type Checking 95

Type Inference 91

U
UiSettings class 631

unbindService() method 491

unregisterReceiver() method 471

URL Mapping 685

USB connection issues

resolving 60

USE_BIOMETRIC 694

user interface state 147

USE_SIP permission 590

V
Video Playback 571

VideoView class 571

methods 571

supported formats 571

view bindings 135

enabling 136

using 136

View class

setting properties 240

view conversion 181

ViewGroup 165

View Groups 165

View Hierarchy 167

796

Index

ViewHolder class 420

sample implementation 426

ViewModel

adding LiveData 309

data access 307

fragment association 306

overview 298

saved state 329

Saved State 299, 329

tutorial 303

ViewModelProvider 306

ViewModel Saved State 329

ViewModelScope 478

ViewPager 409, 414

adapter 414

adding to layout 413

example 410

Views 165

Java creation 233

View System 78

Virtual Device Configuration dialog 28

Virtual Sensors 41

Visible Process 140

W
WebViewClient 651, 656

WebView view 459

Weighted chain 188, 216

Welcome screen 47

while Loop 106

Widget Dimensions 189

Widget Group Alignment 211

Widgets palette 222

WiFi debugging 61

Wireless debugging 61

Wireless pairing 61

withContext 479, 481

wrap_content properties 231

WRITE_CALENDAR permission 590

WRITE_CALL_LOG permission 590

WRITE_CONTACTS permission 590

WRITE_EXTERNAL_STORAGE permission 591

X
XML Layout File

manual creation 229

vs. Java Code 233

Z
zip() operator 517

797

Index

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Modifying the Example Application
	3.6 Modifying the User Interface
	3.7 Reviewing the Layout and Resource Files
	3.8 Adding Interaction
	3.9 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Enabling the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Main Window
	6.3 The Tool Windows
	6.4 Android Studio Keyboard Shortcuts
	6.5 Switcher and Recent Files Navigation
	6.6 Changing the Android Studio Theme
	6.7 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android Application
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables, and Nullability
	12.1 Kotlin Data Types
	12.1.1 Integer Data Types
	12.1.2 Floating-Point Data Types
	12.1.3 Boolean Data Type
	12.1.4 Character Data Type
	12.1.5 String Data Type
	12.1.6 Escape Sequences

	12.2 Mutable Variables
	12.3 Immutable Variables
	12.4 Declaring Mutable and Immutable Variables
	12.5 Data Types are Objects
	12.6 Type Annotations and Type Inference
	12.7 Nullable Type
	12.8 The Safe Call Operator
	12.9 Not-Null Assertion
	12.10 Nullable Types and the let Function
	12.11 Late Initialization (lateinit)
	12.12 The Elvis Operator
	12.13 Type Casting and Type Checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression Syntax in Kotlin
	13.2 The Basic Assignment Operator
	13.3 Kotlin Arithmetic Operators
	13.4 Augmented Assignment Operators
	13.5 Increment and Decrement Operators
	13.6 Equality Operators
	13.7 Boolean Logical Operators
	13.8 Range Operator
	13.9 Bitwise Operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise Left Shift
	13.9.6 Bitwise Right Shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping Control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while Loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue Statement
	14.1.6 Break and Continue Labels

	14.2 Conditional Control Flow
	14.2.1 Using the if Expressions
	14.2.2 Using if ... else … Expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when Statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a Function?
	15.2 How to Declare a Kotlin Function
	15.3 Calling a Kotlin Function
	15.4 Single Expression Functions
	15.5 Local Functions
	15.6 Handling Return Values
	15.7 Declaring Default Function Parameters
	15.8 Variable Number of Function Parameters
	15.9 Lambda Expressions
	15.10 Higher-order Functions
	15.11 Summary

	16. The Basics of Object Oriented Programming in Kotlin
	16.1 What is an Object?
	16.2 What is a Class?
	16.3 Declaring a Kotlin Class
	16.4 Adding Properties to a Class
	16.5 Defining Methods
	16.6 Declaring and Initializing a Class Instance
	16.7 Primary and Secondary Constructors
	16.8 Initializer Blocks
	16.9 Calling Methods and Accessing Properties
	16.10 Custom Accessors
	16.11 Nested and Inner Classes
	16.12 Companion Objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, Classes and Subclasses
	17.2 Subclassing Syntax
	17.3 A Kotlin Inheritance Example
	17.4 Extending the Functionality of a Subclass
	17.5 Overriding Inherited Methods
	17.6 Adding a Custom Secondary Constructor
	17.7 Using the SavingsAccount Class
	17.8 Summary

	18. An Overview of Android View Binding
	18.1 Find View by Id
	18.2 View Binding
	18.3 Converting the AndroidSample project
	18.4 Enabling View Binding
	18.5 Using View Binding
	18.6 Choosing an Option
	18.7 View Binding in the Book Examples
	18.8 Migrating a Project to View Binding
	18.9 Summary

	19. Understanding Android Application and Activity Lifecycles
	19.1 Android Applications and Resource Management
	19.2 Android Process States
	19.2.1 Foreground Process
	19.2.2 Visible Process
	19.2.3 Service Process
	19.2.4 Background Process
	19.2.5 Empty Process

	19.3 Inter-Process Dependencies
	19.4 The Activity Lifecycle
	19.5 The Activity Stack
	19.6 Activity States
	19.7 Configuration Changes
	19.8 Handling State Change
	19.9 Summary

	20. Handling Android Activity State Changes
	20.1 New vs. Old Lifecycle Techniques
	20.2 The Activity and Fragment Classes
	20.3 Dynamic State vs. Persistent State
	20.4 The Android Lifecycle Methods
	20.5 Lifetimes
	20.6 Foldable Devices and Multi-Resume
	20.7 Disabling Configuration Change Restarts
	20.8 Lifecycle Method Limitations
	20.9 Summary

	21. Android Activity State Changes by Example
	21.1 Creating the State Change Example Project
	21.2 Designing the User Interface
	21.3 Overriding the Activity Lifecycle Methods
	21.4 Filtering the Logcat Panel
	21.5 Running the Application
	21.6 Experimenting with the Activity
	21.7 Summary

	22. Saving and Restoring the State of an Android Activity
	22.1 Saving Dynamic State
	22.2 Default Saving of User Interface State
	22.3 The Bundle Class
	22.4 Saving the State
	22.5 Restoring the State
	22.6 Testing the Application
	22.7 Summary

	23. Understanding Android Views, View Groups and Layouts
	23.1 Designing for Different Android Devices
	23.2 Views and View Groups
	23.3 Android Layout Managers
	23.4 The View Hierarchy
	23.5 Creating User Interfaces
	23.6 Summary

	24. A Guide to the Android Studio Layout Editor Tool
	24.1 Basic vs. Empty Views Activity Templates
	24.2 The Android Studio Layout Editor
	24.3 Design Mode
	24.4 The Palette
	24.5 Design Mode and Layout Views
	24.6 Night Mode
	24.7 Code Mode
	24.8 Split Mode
	24.9 Setting Attributes
	24.10 Transforms
	24.11 Tools Visibility Toggles
	24.12 Converting Views
	24.13 Displaying Sample Data
	24.14 Creating a Custom Device Definition
	24.15 Changing the Current Device
	24.16 Layout Validation
	24.17 Summary

	25. A Guide to the Android ConstraintLayout
	25.1 How ConstraintLayout Works
	25.1.1 Constraints
	25.1.2 Margins
	25.1.3 Opposing Constraints
	25.1.4 Constraint Bias
	25.1.5 Chains
	25.1.6 Chain Styles

	25.2 Baseline Alignment
	25.3 Configuring Widget Dimensions
	25.4 Guideline Helper
	25.5 Group Helper
	25.6 Barrier Helper
	25.7 Flow Helper
	25.8 Ratios
	25.9 ConstraintLayout Advantages
	25.10 ConstraintLayout Availability
	25.11 Summary

	26. A Guide to Using ConstraintLayout in Android Studio
	26.1 Design and Layout Views
	26.2 Autoconnect Mode
	26.3 Inference Mode
	26.4 Manipulating Constraints Manually
	26.5 Adding Constraints in the Inspector
	26.6 Viewing Constraints in the Attributes Window
	26.7 Deleting Constraints
	26.8 Adjusting Constraint Bias
	26.9 Understanding ConstraintLayout Margins
	26.10 The Importance of Opposing Constraints and Bias
	26.11 Configuring Widget Dimensions
	26.12 Design Time Tools Positioning
	26.13 Adding Guidelines
	26.14 Adding Barriers
	26.15 Adding a Group
	26.16 Working with the Flow Helper
	26.17 Widget Group Alignment and Distribution
	26.18 Converting other Layouts to ConstraintLayout
	26.19 Summary

	27. Working with ConstraintLayout Chains and Ratios in Android Studio
	27.1 Creating a Chain
	27.2 Changing the Chain Style
	27.3 Spread Inside Chain Style
	27.4 Packed Chain Style
	27.5 Packed Chain Style with Bias
	27.6 Weighted Chain
	27.7 Working with Ratios
	27.8 Summary

	28. An Android Studio Layout Editor ConstraintLayout Tutorial
	28.1 An Android Studio Layout Editor Tool Example
	28.2 Preparing the Layout Editor Environment
	28.3 Adding the Widgets to the User Interface
	28.4 Adding the Constraints
	28.5 Testing the Layout
	28.6 Using the Layout Inspector
	28.7 Summary

	29. Manual XML Layout Design in Android Studio
	29.1 Manually Creating an XML Layout
	29.2 Manual XML vs. Visual Layout Design
	29.3 Summary

	30. Managing Constraints using Constraint Sets
	30.1 Kotlin Code vs. XML Layout Files
	30.2 Creating Views
	30.3 View Attributes
	30.4 Constraint Sets
	30.4.1 Establishing Connections
	30.4.2 Applying Constraints to a Layout
	30.4.3 Parent Constraint Connections
	30.4.4 Sizing Constraints
	30.4.5 Constraint Bias
	30.4.6 Alignment Constraints
	30.4.7 Copying and Applying Constraint Sets
	30.4.8 ConstraintLayout Chains
	30.4.9 Guidelines
	30.4.10 Removing Constraints
	30.4.11 Scaling
	30.4.12 Rotation

	30.5 Summary

	31. An Android ConstraintSet Tutorial
	31.1 Creating the Example Project in Android Studio
	31.2 Adding Views to an Activity
	31.3 Setting View Attributes
	31.4 Creating View IDs
	31.5 Configuring the Constraint Set
	31.6 Adding the EditText View
	31.7 Converting Density Independent Pixels (dp) to Pixels (px)
	31.8 Summary

	32. A Guide to using Apply Changes in Android Studio
	32.1 Introducing Apply Changes
	32.2 Understanding Apply Changes Options
	32.3 Using Apply Changes
	32.4 Configuring Apply Changes Fallback Settings
	32.5 An Apply Changes Tutorial
	32.6 Using Apply Code Changes
	32.7 Using Apply Changes and Restart Activity
	32.8 Using Run App
	32.9 Summary

	33. An Overview and Example of Android Event Handling
	33.1 Understanding Android Events
	33.2 Using the android:onClick Resource
	33.3 Event Listeners and Callback Methods
	33.4 An Event Handling Example
	33.5 Designing the User Interface
	33.6 The Event Listener and Callback Method
	33.7 Consuming Events
	33.8 Summary

	34. Android Touch and Multi-touch Event Handling
	34.1 Intercepting Touch Events
	34.2 The MotionEvent Object
	34.3 Understanding Touch Actions
	34.4 Handling Multiple Touches
	34.5 An Example Multi-Touch Application
	34.6 Designing the Activity User Interface
	34.7 Implementing the Touch Event Listener
	34.8 Running the Example Application
	34.9 Summary

	35. Detecting Common Gestures Using the Android Gesture Detector Class
	35.1 Implementing Common Gesture Detection
	35.2 Creating an Example Gesture Detection Project
	35.3 Implementing the Listener Class
	35.4 Creating the GestureDetectorCompat Instance
	35.5 Implementing the onTouchEvent() Method
	35.6 Testing the Application
	35.7 Summary

	36. Implementing Custom Gesture and Pinch Recognition on Android
	36.1 The Android Gesture Builder Application
	36.2 The GestureOverlayView Class
	36.3 Detecting Gestures
	36.4 Identifying Specific Gestures
	36.5 Installing and Running the Gesture Builder Application
	36.6 Creating a Gestures File
	36.7 Creating the Example Project
	36.8 Extracting the Gestures File from the SD Card
	36.9 Adding the Gestures File to the Project
	36.10 Designing the User Interface
	36.11 Loading the Gestures File
	36.12 Registering the Event Listener
	36.13 Implementing the onGesturePerformed Method
	36.14 Testing the Application
	36.15 Configuring the GestureOverlayView
	36.16 Intercepting Gestures
	36.17 Detecting Pinch Gestures
	36.18 A Pinch Gesture Example Project
	36.19 Summary

	37. An Introduction to Android Fragments
	37.1 What is a Fragment?
	37.2 Creating a Fragment
	37.3 Adding a Fragment to an Activity using the Layout XML File
	37.4 Adding and Managing Fragments in Code
	37.5 Handling Fragment Events
	37.6 Implementing Fragment Communication
	37.7 Summary

	38. Using Fragments in Android Studio - An Example
	38.1 About the Example Fragment Application
	38.2 Creating the Example Project
	38.3 Creating the First Fragment Layout
	38.4 Migrating a Fragment to View Binding
	38.5 Adding the Second Fragment
	38.6 Adding the Fragments to the Activity
	38.7 Making the Toolbar Fragment Talk to the Activity
	38.8 Making the Activity Talk to the Text Fragment
	38.9 Testing the Application
	38.10 Summary

	39. Modern Android App Architecture with Jetpack
	39.1 What is Android Jetpack?
	39.2 The “Old” Architecture
	39.3 Modern Android Architecture
	39.4 The ViewModel Component
	39.5 The LiveData Component
	39.6 ViewModel Saved State
	39.7 LiveData and Data Binding
	39.8 Android Lifecycles
	39.9 Repository Modules
	39.10 Summary

	40. An Android ViewModel Tutorial
	40.1 About the Project
	40.2 Creating the ViewModel Example Project
	40.3 Removing Unwanted Project Elements
	40.4 Designing the Fragment Layout
	40.5 Implementing the View Model
	40.6 Associating the Fragment with the View Model
	40.7 Modifying the Fragment
	40.8 Accessing the ViewModel Data
	40.9 Testing the Project
	40.10 Summary

	41. An Android Jetpack LiveData Tutorial
	41.1 LiveData - A Recap
	41.2 Adding LiveData to the ViewModel
	41.3 Implementing the Observer
	41.4 Summary

	42. An Overview of Android Jetpack Data Binding
	42.1 An Overview of Data Binding
	42.2 The Key Components of Data Binding
	42.2.1 The Project Build Configuration
	42.2.2 The Data Binding Layout File
	42.2.3 The Layout File Data Element
	42.2.4 The Binding Classes
	42.2.5 Data Binding Variable Configuration
	42.2.6 Binding Expressions (One-Way)
	42.2.7 Binding Expressions (Two-Way)
	42.2.8 Event and Listener Bindings

	42.3 Summary

	43. An Android Jetpack Data Binding Tutorial
	43.1 Removing the Redundant Code
	43.2 Enabling Data Binding
	43.3 Adding the Layout Element
	43.4 Adding the Data Element to Layout File
	43.5 Working with the Binding Class
	43.6 Assigning the ViewModel Instance to the Data Binding Variable
	43.7 Adding Binding Expressions
	43.8 Adding the Conversion Method
	43.9 Adding a Listener Binding
	43.10 Testing the App
	43.11 Summary

	44. An Android ViewModel Saved State Tutorial
	44.1 Understanding ViewModel State Saving
	44.2 Implementing ViewModel State Saving
	44.3 Saving and Restoring State
	44.4 Adding Saved State Support to the ViewModelDemo Project
	44.5 Summary

	45. Working with Android Lifecycle-Aware Components
	45.1 Lifecycle Awareness
	45.2 Lifecycle Owners
	45.3 Lifecycle Observers
	45.4 Lifecycle States and Events
	45.5 Summary

	46. An Android Jetpack Lifecycle Awareness Tutorial
	46.1 Creating the Example Lifecycle Project
	46.2 Creating a Lifecycle Observer
	46.3 Adding the Observer
	46.4 Testing the Observer
	46.5 Creating a Lifecycle Owner
	46.6 Testing the Custom Lifecycle Owner
	46.7 Summary

	47. An Overview of the Navigation Architecture Component
	47.1 Understanding Navigation
	47.2 Declaring a Navigation Host
	47.3 The Navigation Graph
	47.4 Accessing the Navigation Controller
	47.5 Triggering a Navigation Action
	47.6 Passing Arguments
	47.7 Summary

	48. An Android Jetpack Navigation Component Tutorial
	48.1 Creating the NavigationDemo Project
	48.2 Adding Navigation to the Build Configuration
	48.3 Creating the Navigation Graph Resource File
	48.4 Declaring a Navigation Host
	48.5 Adding Navigation Destinations
	48.6 Designing the Destination Fragment Layouts
	48.7 Adding an Action to the Navigation Graph
	48.8 Implement the OnFragmentInteractionListener
	48.9 Adding View Binding Support to the Destination Fragments
	48.10 Triggering the Action
	48.11 Passing Data Using Safeargs
	48.12 Summary

	49. An Introduction to MotionLayout
	49.1 An Overview of MotionLayout
	49.2 MotionLayout
	49.3 MotionScene
	49.4 Configuring ConstraintSets
	49.5 Custom Attributes
	49.6 Triggering an Animation
	49.7 Arc Motion
	49.8 Keyframes
	49.8.1 Attribute Keyframes
	49.8.2 Position Keyframes

	49.9 Time Linearity
	49.10 KeyTrigger
	49.11 Cycle and Time Cycle Keyframes
	49.12 Starting an Animation from Code
	49.13 Summary

	50. An Android MotionLayout Editor Tutorial
	50.1 Creating the MotionLayoutDemo Project
	50.2 ConstraintLayout to MotionLayout Conversion
	50.3 Configuring Start and End Constraints
	50.4 Previewing the MotionLayout Animation
	50.5 Adding an OnClick Gesture
	50.6 Adding an Attribute Keyframe to the Transition
	50.7 Adding a CustomAttribute to a Transition
	50.8 Adding Position Keyframes
	50.9 Summary

	51. A MotionLayout KeyCycle Tutorial
	51.1 An Overview of Cycle Keyframes
	51.2 Using the Cycle Editor
	51.3 Creating the KeyCycleDemo Project
	51.4 Configuring the Start and End Constraints
	51.5 Creating the Cycles
	51.6 Previewing the Animation
	51.7 Adding the KeyFrameSet to the MotionScene
	51.8 Summary

	52. Working with the Floating Action Button and Snackbar
	52.1 The Material Design
	52.2 The Design Library
	52.3 The Floating Action Button (FAB)
	52.4 The Snackbar
	52.5 Creating the Example Project
	52.6 Reviewing the Project
	52.7 Removing Navigation Features
	52.8 Changing the Floating Action Button
	52.9 Adding an Action to the Snackbar
	52.10 Summary

	53. Creating a Tabbed Interface using the TabLayout Component
	53.1 An Introduction to the ViewPager2
	53.2 An Overview of the TabLayout Component
	53.3 Creating the TabLayoutDemo Project
	53.4 Creating the First Fragment
	53.5 Duplicating the Fragments
	53.6 Adding the TabLayout and ViewPager2
	53.7 Creating the Pager Adapter
	53.8 Performing the Initialization Tasks
	53.9 Testing the Application
	53.10 Customizing the TabLayout
	53.11 Summary

	54. Working with the RecyclerView and CardView Widgets
	54.1 An Overview of the RecyclerView
	54.2 An Overview of the CardView
	54.3 Summary

	55. An Android RecyclerView and CardView Tutorial
	55.1 Creating the CardDemo Project
	55.2 Modifying the Basic Views Activity Project
	55.3 Designing the CardView Layout
	55.4 Adding the RecyclerView
	55.5 Adding the Image Files
	55.6 Creating the RecyclerView Adapter
	55.7 Initializing the RecyclerView Component
	55.8 Testing the Application
	55.9 Responding to Card Selections
	55.10 Summary

	56. Working with the AppBar and Collapsing Toolbar Layouts
	56.1 The Anatomy of an AppBar
	56.2 The Example Project
	56.3 Coordinating the RecyclerView and Toolbar
	56.4 Introducing the Collapsing Toolbar Layout
	56.5 Changing the Title and Scrim Color
	56.6 Summary

	57. An Overview of Android Intents
	57.1 An Overview of Intents
	57.2 Explicit Intents
	57.3 Returning Data from an Activity
	57.4 Implicit Intents
	57.5 Using Intent Filters
	57.6 Automatic Link Verification
	57.7 Manually Enabling Links
	57.8 Checking Intent Availability
	57.9 Summary

	58. Android Explicit Intents – A Worked Example
	58.1 Creating the Explicit Intent Example Application
	58.2 Designing the User Interface Layout for MainActivity
	58.3 Creating the Second Activity Class
	58.4 Designing the User Interface Layout for SecondActivity
	58.5 Reviewing the Application Manifest File
	58.6 Creating the Intent
	58.7 Extracting Intent Data
	58.8 Launching SecondActivity as a Sub-Activity
	58.9 Returning Data from a Sub-Activity
	58.10 Testing the Application
	58.11 Summary

	59. Android Implicit Intents – A Worked Example
	59.1 Creating the Android Studio Implicit Intent Example Project
	59.2 Designing the User Interface
	59.3 Creating the Implicit Intent
	59.4 Adding a Second Matching Activity
	59.5 Adding the Web View to the UI
	59.6 Obtaining the Intent URL
	59.7 Modifying the MyWebView Project Manifest File
	59.8 Installing the MyWebView Package on a Device
	59.9 Testing the Application
	59.10 Manually Enabling the Link
	59.11 Automatic Link Verification
	59.12 Summary

	60. Android Broadcast Intents and Broadcast Receivers
	60.1 An Overview of Broadcast Intents
	60.2 An Overview of Broadcast Receivers
	60.3 Obtaining Results from a Broadcast
	60.4 Sticky Broadcast Intents
	60.5 The Broadcast Intent Example
	60.6 Creating the Example Application
	60.7 Creating and Sending the Broadcast Intent
	60.8 Creating the Broadcast Receiver
	60.9 Registering the Broadcast Receiver
	60.10 Testing the Broadcast Example
	60.11 Listening for System Broadcasts
	60.12 Summary

	61. An Introduction to Kotlin Coroutines
	61.1 What are Coroutines?
	61.2 Threads vs Coroutines
	61.3 Coroutine Scope
	61.4 Suspend Functions
	61.5 Coroutine Dispatchers
	61.6 Coroutine Builders
	61.7 Jobs
	61.8 Coroutines – Suspending and Resuming
	61.9 Returning Results from a Coroutine
	61.10 Using withContext
	61.11 Coroutine Channel Communication
	61.12 Summary

	62. An Android Kotlin Coroutines Tutorial
	62.1 Creating the Coroutine Example Application
	62.2 Adding Coroutine Support to the Project
	62.3 Designing the User Interface
	62.4 Implementing the SeekBar
	62.5 Adding the Suspend Function
	62.6 Implementing the launchCoroutines Method
	62.7 Testing the App
	62.8 Summary

	63. An Overview of Android Services
	63.1 Intent Service
	63.2 Bound Service
	63.3 The Anatomy of a Service
	63.4 Controlling Destroyed Service Restart Options
	63.5 Declaring a Service in the Manifest File
	63.6 Starting a Service Running on System Startup
	63.7 Summary

	64. Android Local Bound Services – A Worked Example
	64.1 Understanding Bound Services
	64.2 Bound Service Interaction Options
	64.3 A Local Bound Service Example
	64.4 Adding a Bound Service to the Project
	64.5 Implementing the Binder
	64.6 Binding the Client to the Service
	64.7 Completing the Example
	64.8 Testing the Application
	64.9 Summary

	65. Android Remote Bound Services – A Worked Example
	65.1 Client to Remote Service Communication
	65.2 Creating the Example Application
	65.3 Designing the User Interface
	65.4 Implementing the Remote Bound Service
	65.5 Configuring a Remote Service in the Manifest File
	65.6 Launching and Binding to the Remote Service
	65.7 Sending a Message to the Remote Service
	65.8 Summary

	66. An Introduction to Kotlin Flow
	66.1 Understanding Flows
	66.2 Creating the Sample Project
	66.3 Adding the Kotlin Lifecycle Library
	66.4 Declaring a Flow
	66.5 Emitting Flow Data
	66.6 Collecting Flow Data
	66.7 Adding a Flow Buffer
	66.8 Transforming Data with Intermediaries
	66.9 Terminal Flow Operators
	66.10 Flow Flattening
	66.11 Combining Multiple Flows
	66.12 Hot and Cold Flows
	66.13 StateFlow
	66.14 SharedFlow
	66.15 Summary

	67. An Android SharedFlow Tutorial
	67.1 About the Project
	67.2 Creating the SharedFlowDemo Project
	67.3 Designing the User Interface Layout
	67.4 Adding the List Row Layout
	67.5 Adding the RecyclerView Adapter
	67.6 Adding the ViewModel
	67.7 Configuring the ViewModelProvider
	67.8 Collecting the Flow Values
	67.9 Testing the SharedFlowDemo App
	67.10 Handling Flows in the Background
	67.11 Summary

	68. An Overview of Android SQLite Databases
	68.1 Understanding Database Tables
	68.2 Introducing Database Schema
	68.3 Columns and Data Types
	68.4 Database Rows
	68.5 Introducing Primary Keys
	68.6 What is SQLite?
	68.7 Structured Query Language (SQL)
	68.8 Trying SQLite on an Android Virtual Device (AVD)
	68.9 The Android Room Persistence Library
	68.10 Summary

	69. The Android Room Persistence Library
	69.1 Revisiting Modern App Architecture
	69.2 Key Elements of Room Database Persistence
	69.2.1 Repository
	69.2.2 Room Database
	69.2.3 Data Access Object (DAO)
	69.2.4 Entities
	69.2.5 SQLite Database

	69.3 Understanding Entities
	69.4 Data Access Objects
	69.5 The Room Database
	69.6 The Repository
	69.7 In-Memory Databases
	69.8 Database Inspector
	69.9 Summary

	70. An Android TableLayout and TableRow Tutorial
	70.1 The TableLayout and TableRow Layout Views
	70.2 Creating the Room Database Project
	70.3 Converting to a LinearLayout
	70.4 Adding the TableLayout to the User Interface
	70.5 Configuring the TableRows
	70.6 Adding the Button Bar to the Layout
	70.7 Adding the RecyclerView
	70.8 Adjusting the Layout Margins
	70.9 Summary

	71. An Android Room Database and Repository Tutorial
	71.1 About the RoomDemo Project
	71.2 Modifying the Build Configuration
	71.3 Building the Entity
	71.4 Creating the Data Access Object
	71.5 Adding the Room Database
	71.6 Adding the Repository
	71.7 Adding the ViewModel
	71.8 Creating the Product Item Layout
	71.9 Adding the RecyclerView Adapter
	71.10 Preparing the Main Activity
	71.11 Adding the Button Listeners
	71.12 Adding LiveData Observers
	71.13 Initializing the RecyclerView
	71.14 Testing the RoomDemo App
	71.15 Using the Database Inspector
	71.16 Summary

	72. Video Playback on Android using the VideoView and MediaController Classes
	72.1 Introducing the Android VideoView Class
	72.2 Introducing the Android MediaController Class
	72.3 Creating the Video Playback Example
	72.4 Designing the VideoPlayer Layout
	72.5 Downloading the Video File
	72.6 Configuring the VideoView
	72.7 Adding the MediaController to the Video View
	72.8 Setting up the onPreparedListener
	72.9 Summary

	73. Android Picture-in-Picture Mode
	73.1 Picture-in-Picture Features
	73.2 Enabling Picture-in-Picture Mode
	73.3 Configuring Picture-in-Picture Parameters
	73.4 Entering Picture-in-Picture Mode
	73.5 Detecting Picture-in-Picture Mode Changes
	73.6 Adding Picture-in-Picture Actions
	73.7 Summary

	74. An Android Picture-in-Picture Tutorial
	74.1 Adding Picture-in-Picture Support to the Manifest
	74.2 Adding a Picture-in-Picture Button
	74.3 Entering Picture-in-Picture Mode
	74.4 Detecting Picture-in-Picture Mode Changes
	74.5 Adding a Broadcast Receiver
	74.6 Adding the PiP Action
	74.7 Testing the Picture-in-Picture Action
	74.8 Summary

	75. Making Runtime Permission Requests in Android
	75.1 Understanding Normal and Dangerous Permissions
	75.2 Creating the Permissions Example Project
	75.3 Checking for a Permission
	75.4 Requesting Permission at Runtime
	75.5 Providing a Rationale for the Permission Request
	75.6 Testing the Permissions App
	75.7 Summary

	76. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	76.1 Playing Audio
	76.2 Recording Audio and Video using the MediaRecorder Class
	76.3 About the Example Project
	76.4 Creating the AudioApp Project
	76.5 Designing the User Interface
	76.6 Checking for Microphone Availability
	76.7 Initializing the Activity
	76.8 Implementing the recordAudio() Method
	76.9 Implementing the stopAudio() Method
	76.10 Implementing the playAudio() method
	76.11 Configuring and Requesting Permissions
	76.12 Testing the Application
	76.13 Summary

	77. An Android Notifications Tutorial
	77.1 An Overview of Notifications
	77.2 Creating the NotifyDemo Project
	77.3 Designing the User Interface
	77.4 Creating the Second Activity
	77.5 Creating a Notification Channel
	77.6 Requesting Notification Permission
	77.7 Creating and Issuing a Notification
	77.8 Launching an Activity from a Notification
	77.9 Adding Actions to a Notification
	77.10 Bundled Notifications
	77.11 Summary

	78. An Android Direct Reply Notification Tutorial
	78.1 Creating the DirectReply Project
	78.2 Designing the User Interface
	78.3 Requesting Notification Permission
	78.4 Creating the Notification Channel
	78.5 Building the RemoteInput Object
	78.6 Creating the PendingIntent
	78.7 Creating the Reply Action
	78.8 Receiving Direct Reply Input
	78.9 Updating the Notification
	78.10 Summary

	79. Working with the Google Maps Android API in Android Studio
	79.1 The Elements of the Google Maps Android API
	79.2 Creating the Google Maps Project
	79.3 Creating a Google Cloud Billing Account
	79.4 Creating a New Google Cloud Project
	79.5 Enabling the Google Maps SDK
	79.6 Generating a Google Maps API Key
	79.7 Adding the API Key to the Android Studio Project
	79.8 Testing the Application
	79.9 Understanding Geocoding and Reverse Geocoding
	79.10 Adding a Map to an Application
	79.11 Requesting Current Location Permission
	79.12 Displaying the User’s Current Location
	79.13 Changing the Map Type
	79.14 Displaying Map Controls to the User
	79.15 Handling Map Gesture Interaction
	79.15.1 Map Zooming Gestures
	79.15.2 Map Scrolling/Panning Gestures
	79.15.3 Map Tilt Gestures
	79.15.4 Map Rotation Gestures

	79.16 Creating Map Markers
	79.17 Controlling the Map Camera
	79.18 Summary

	80. Printing with the Android Printing Framework
	80.1 The Android Printing Architecture
	80.2 The Print Service Plugins
	80.3 Google Cloud Print
	80.4 Printing to Google Drive
	80.5 Save as PDF
	80.6 Printing from Android Devices
	80.7 Options for Building Print Support into Android Apps
	80.7.1 Image Printing
	80.7.2 Creating and Printing HTML Content
	80.7.3 Printing a Web Page
	80.7.4 Printing a Custom Document

	80.8 Summary

	81. An Android HTML and Web Content Printing Example
	81.1 Creating the HTML Printing Example Application
	81.2 Printing Dynamic HTML Content
	81.3 Creating the Web Page Printing Example
	81.4 Removing the Floating Action Button
	81.5 Removing Navigation Features
	81.6 Designing the User Interface Layout
	81.7 Accessing the WebView from the Main Activity
	81.8 Loading the Web Page into the WebView
	81.9 Adding the Print Menu Option
	81.10 Summary

	82. A Guide to Android Custom Document Printing
	82.1 An Overview of Android Custom Document Printing
	82.1.1 Custom Print Adapters

	82.2 Preparing the Custom Document Printing Project
	82.3 Creating the Custom Print Adapter
	82.4 Implementing the onLayout() Callback Method
	82.5 Implementing the onWrite() Callback Method
	82.6 Checking a Page is in Range
	82.7 Drawing the Content on the Page Canvas
	82.8 Starting the Print Job
	82.9 Testing the Application
	82.10 Summary

	83. An Introduction to Android App Links
	83.1 An Overview of Android App Links
	83.2 App Link Intent Filters
	83.3 Handling App Link Intents
	83.4 Associating the App with a Website
	83.5 Summary

	84. An Android Studio App Links Tutorial
	84.1 About the Example App
	84.2 The Database Schema
	84.3 Loading and Running the Project
	84.4 Adding the URL Mapping
	84.5 Adding the Intent Filter
	84.6 Adding Intent Handling Code
	84.7 Testing the App
	84.8 Creating the Digital Asset Links File
	84.9 Testing the App Link
	84.10 Summary

	85. An Android Biometric Authentication Tutorial
	85.1 An Overview of Biometric Authentication
	85.2 Creating the Biometric Authentication Project
	85.3 Configuring Device Fingerprint Authentication
	85.4 Adding the Biometric Permission to the Manifest File
	85.5 Designing the User Interface
	85.6 Adding a Toast Convenience Method
	85.7 Checking the Security Settings
	85.8 Configuring the Authentication Callbacks
	85.9 Adding the CancellationSignal
	85.10 Starting the Biometric Prompt
	85.11 Testing the Project
	85.12 Summary

	86. Creating, Testing and Uploading an Android App Bundle
	86.1 The Release Preparation Process
	86.2 Android App Bundles
	86.3 Register for a Google Play Developer Console Account
	86.4 Configuring the App in the Console
	86.5 Enabling Google Play App Signing
	86.6 Creating a Keystore File
	86.7 Creating the Android App Bundle
	86.8 Generating Test APK Files
	86.9 Uploading the App Bundle to the Google Play Developer Console
	86.10 Exploring the App Bundle
	86.11 Managing Testers
	86.12 Rolling the App Out for Testing
	86.13 Uploading New App Bundle Revisions
	86.14 Analyzing the App Bundle File
	86.15 Summary

	87. An Overview of Android In-App Billing
	87.1 Preparing a Project for In-App Purchasing
	87.2 Creating In-App Products and Subscriptions
	87.3 Billing Client Initialization
	87.4 Connecting to the Google Play Billing Library
	87.5 Querying Available Products
	87.6 Starting the Purchase Process
	87.7 Completing the Purchase
	87.8 Querying Previous Purchases
	87.9 Summary

	88. An Android In-App Purchasing Tutorial
	88.1 About the In-App Purchasing Example Project
	88.2 Creating the InAppPurchase Project
	88.3 Adding Libraries to the Project
	88.4 Designing the User Interface
	88.5 Adding the App to the Google Play Store
	88.6 Creating an In-App Product
	88.7 Enabling License Testers
	88.8 Initializing the Billing Client
	88.9 Querying the Product
	88.10 Launching the Purchase Flow
	88.11 Handling Purchase Updates
	88.12 Consuming the Product
	88.13 Restoring a Previous Purchase
	88.14 Testing the App
	88.15 Troubleshooting
	88.16 Summary

	89. An Overview of Android Dynamic Feature Modules
	89.1 An Overview of Dynamic Feature Modules
	89.2 Dynamic Feature Module Architecture
	89.3 Creating a Dynamic Feature Module
	89.4 Converting an Existing Module for Dynamic Delivery
	89.5 Working with Dynamic Feature Modules
	89.6 Handling Large Dynamic Feature Modules
	89.7 Summary

	90. An Android Studio Dynamic Feature Tutorial
	90.1 Creating the DynamicFeature Project
	90.2 Adding Dynamic Feature Support to the Project
	90.3 Designing the Base Activity User Interface
	90.4 Adding the Dynamic Feature Module
	90.5 Reviewing the Dynamic Feature Module
	90.6 Adding the Dynamic Feature Activity
	90.7 Implementing the launchIntent() Method
	90.8 Uploading the App Bundle for Testing
	90.9 Implementing the installFeature() Method
	90.10 Adding the Update Listener
	90.11 Using Deferred Installation
	90.12 Removing a Dynamic Module
	90.13 Summary

	91. Working with Material Design 3 Theming
	91.1 Material Design 2 vs Material Design 3
	91.2 Understanding Material Design Theming
	91.3 Material Design 3 Theming
	91.4 Building a Custom Theme
	91.5 Summary

	92. A Material Design 3 Theming and Dynamic Color Tutorial
	92.1 Creating the ThemeDemo Project
	92.2 Designing the User Interface
	92.3 Building a New Theme
	92.4 Adding the Theme to the Project
	92.5 Enabling Dynamic Color Support
	92.6 Summary

	93. An Overview of Gradle in Android Studio
	93.1 An Overview of Gradle
	93.2 Gradle and Android Studio
	93.2.1 Sensible Defaults
	93.2.2 Dependencies
	93.2.3 Build Variants
	93.2.4 Manifest Entries
	93.2.5 APK Signing
	93.2.6 ProGuard Support

	93.3 The Property and Settings Gradle Build File
	93.4 The Top-level Gradle Build File
	93.5 Module Level Gradle Build Files
	93.6 Configuring Signing Settings in the Build File
	93.7 Running Gradle Tasks from the Command-line
	93.8 Summary

	Index

