Android Studio Girafte
Essentials

Kotlin Edition

Android Studio Giraffe Essentials — Kotlin Edition
ISBN-13: 978-1-951442-76-7
© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

1. INEFOAUCHION ..ceeenreieieeeiceeeereeecsneeeseeeesaeesssneesssesssssssssnssssssasssnsssssnssssssssssnssssanssssssasssnssssssessssessssnssssnsssssnanss 1
1.1 Downloading the Code SAMPIEScccreureeureurineiriirieirerseeneireerei et sesseseens 1
1.2 FEEADACK ...ttt sttt bttt b bbb b s s assssebebebebeb s s s ssssasansesetesas 1
1.3 B At ettt b e b et et a e e a e b ae b et et et et e b s be b et et et e s 2

2. Setting up an Android Studio Development Environment

2.1 System reqUITEMENTS........ccceuviimeriiiueiricriieeiee e sessnaes

2.2 Downloading the Android Studio package

2.3 Installing Android StUAIO........cccureerierecrircrreceee e eaene
2.3.1 Installation 0n WINAOWSccueureerirrieriirieeireeneeseeenetsese e sseesesesssasesessssessesssssssesssasesens 4
2.3.2 Installation 0n MACOSc.cveiireceiericeiree et ese s ese s sse s sse s ansns 4
2.3.3 Installation 0N LINUX.......cccvuureemirreerierieniireeeiseeeneesesesessesessssesesssssesessessssessssssessssssesssssssens 5

2.4 The Android Studio SEtUP WIZArdccceuveeurireucurinicirieieireeicireciereetet ettt seesesseneaes 5

2.5 Installing additional Android SDK packagesccceeueueecriermnerrieenemneeeeeneeesenseeenersesessessenenne 6

2.6 Installing the Android SDK Command-line TOOLS........c.cceeuiuemreriueencrnieenerneenrerneceeneeenersenenne 9
2.6.1 WINAOWS 8.1 .ttt sttt et seses ettt sese ettt s seaesesens 10
2.6.2 WINAOWS 10 ...ttt sse s sse s s sse s sse s sse s sse s ssssesessssesscsens
2.6.3 WINAOWS 11 oot sse s ese s s sse s sse s sessessesesens
2.0.4 LINUX oottt sttt
2.6.5 MACOS.......c it

2.7 Android Studio memory management
2.8 Updating Android Studio and the SDK

2.9 SUINIMATY ottt st b s
3. Creating an Example Android App in Android Studio.........cocevevieviienenriniiniisininenniniiniisenenensenninenne 15
3.1 ADOUL the PIOJECL c.ceuveeuicicicireieecireiseetneieeeirei sttt sttt sttt 15
3.2 Creating a New AnNdroid ProjJecCt.......ocveurirnciniurencineineeineineeinesseesessesessessesessessesessessesessesscsenns 15
3.3 Creating an ACHVILY ..ccccuiuiiiiiiciic e 16
3.4 Defining the Project and SDK Settingscecveureurereureurereireinereerersenessessesessessesessessesessessescssesscsenns 16
3.5 Enabling the New Android Studio Ulcccocevenrcineinincininieneineeneiseeneisesessessesessessesessesscsenns 17
3.6 Modifying the Example APPIICAtion......c.ccoeueurereureurecineeneeineiseeeserseessesseseasessesessessesessessescssesscsenns 18
3.7 Modifying the User INtErfacec..cevcureerereuriirineiniinieireinectneiseeressee et tsessese s ssessesesesscsenns 19
3.8 Reviewing the Layout and Resource Files........cocvnncniinincinenencineinecneiseeeneiseensesseessessesenne 25
3.9 AddIng INEIACTION ..c.vuieerecireeeectreteeetret ettt sttt bttt bbb nae 28
3,10 SUMMATY .o 29
4. Creating an Android Virtual Device (AVD) in Android Studio
4.1 About Android Virtual Devices ...
4.2 Starting the Emulator.........cccecveueee.
4.3 Running the Application in the AVD....
4.4 Running on Multiple DEVICESc.cewerreuemrerreeeeneireneeerrerenetnesensesseseesessesessessesessessesessessesensessesenses
4.5 Stopping a RUNNING APPICAtIONcevuevieeeerireieireecierreeeeeeeeeeneseeesseseesensese s s ssesensessesennes
4.6 Supporting Dark TREMIE..........c.veverieeieirereeeirereeeieee et nsensese s eses s sesensessesensessesenaes
4.7 Running the Emulator in a Separate WindoW..........ccccveeeeireeenerneeenerneeeeenneeeneneeeensesenensesennes

Table of Contents

5. Using and Configuring the Android Studio AVD Emulator

4.8 Enabling the Device FIame.......c.oceveueeeinerneiererreeeneneeeeetseseeesseseesesseseesessesessessesessessesessesseseesessenes
4.9 SUMMATY ..ottt bbb bbb bbb bbbt

5.1 The Emulator Environment
5.2 Emulator Toolbar Optionsc.ececvevreeererrenen.

5.3 Working in Zoom MOGEcucueuucuiciniiiiiiieiseisessese e s sse s ssssss s ssenas
5.4 Resizing the EMulator WIndOW.......c.cc.ccciiiiiniiccceeeese e senas
5.5 Extended COntrol OPLIONSc.cuecureurecirevrecireineeiresseetsesseessessesessessesessessesessessessssessesssessesesesscas

5.5.1 LOCALION ...ttt

5.5.2 DISPLAYS...triuiriiririniirieeieireeeieiseseseisese st sese i sese ettt

5.5.3 CIULAT ...ttt s

5.5.4 BAtOIY..ocuiiiiiiiiicicc s

5.5.5 CIMEI A ..ottt

5.5.6 PRONE ... s

5.5.7 Directional Pad.........cccciuiiiiniiniicicicicicceieciiiccsie s

5.5.8 MICTOPRONE.ceeieiieinireecieireietisee ettt st eaes

5.5.9 FINGEIPIINT ..ottt

5.5.10 Virtual Sensors

5.5.11 SNAPSHOLS...cucveecerieriecieirieieirecireeseecieaeeaens

5.5.12 Record and Playbackcccccoecureerecuneunnces

5.5.13 Google Play

5.5.14 Settings

5.5.15 HEIP vttt st
5.6 Working with SNapshots...........cceiiiiiniciiiicc e
5.7 Configuring Fingerprint EMUlation ..o
5.8 The Emulator in Tool Window Mode...........cccuiiniiniiniiiinernincicicie e senas
5.9 Creating a Resizable EMUIAtOT.........c.ccccuiiiiiiriiiricirccccc e
5.10 SUIMIMATY ..ottt

6. A Tour of the Android Studio USer INTEITACEcccecueeeeeerrveneeerirereesisrneeesessneessssssneesssssssessssssssssssssasssssssns

7. Testing Android Studio Apps on a Physical Android Device

ii

6.1 The WEICOME SCIEI.....cuvreverrirercieeenciereesetsessese et aessese e seese e seesasessesaseseessseseas
6.2 The Menu Bar

6.3 The Main Window
6.4 The Tool WIndowsccvceeeerrerrecenernecerernencnne
6.5 The Tool Window Menus........c..ceceeuveuvecererrennnne
6.6 Android Studio Keyboard Shortcuts..................
6.7 Switcher and Recent Files Navigation
6.8 Changing the Android Studio Theme
0.9 SUITIMATY ..ottt bbb bbb bbb bbbt

7.1 An Overview of the Android Debug Bridge (ADB).........cccvcuviuveincincincieiieerineneesesese s
7.2 Enabling USB Debugging ADB on Android Devices...........cocvcuvcucecicirimeenimnennenneesesseseneeenns
7.2.1 macOS ADB COnfIGUrationc.ccccuceeiuriuriuniuniuniinerieseesesessessessessssesssssssssssssssesssssesssssenas
7.2.2 Windows ADB CONfIgUIAtioN.c.cucuiuiuiuniunimniineiieseie e ssessessessssesssssssssesssssesssssesssssenas
7.2.3 Linux adb Configuration ... ssssenas
7.3 Resolving USB CoNNection ISSUESc.cccuuuiuiuiuniiniineiiiseeesesscne e ssessessessesssssssse e ssssenas
7.4 Enabling Wireless Debugging on Android Devices
7.5 Testing the adb Connection
7.6 DeVICE MIITOTINEG. ...ucvivititeieiiiiiitctte ettt

Table of Contents

7.7 SUINIMIATY .ottt bbb bbb bbb bbb bbb bbb bbb bbb as 69
8. The Basics of the Android Studio Code Editor..........cuuiviivininninriniisiisinininiiniiinininnenniiiniesneneneiens 71
8.1 The Android StUdio EdItOr......ccceuieiriierieieieirisieiseeieiseete ettt sttt enanans
8.2 Splitting the Editor Window
8.3 Code Completion........cccveueeecererenene
8.4 Statement COMPLETIONc.ueueueeirerrieireieeeirei ettt b sttt sttt eae
8.5 Parameter INfOrMAationc.ceceuriieiriieeieieets ettt sttt sttt seasteeanans
8.6 Parameter Name HINtsc.cooiviiiiiiiiiiicecnecetettee ettt
8.7 COAE GENETALIONvereieieieieeeteece ettt a ettt sttt s bt s s s bt st et eass e s st essnantenanans
8.8 COAE FOLAING.......couieiieiieicciccit et
8.9 Quick Documentation LOOKUPc.eccureveeeuriureneiriinicireiseetneiseetsessee s ssessesessessesessessesesesecsesns 79
8.10 Code REfOrMAtNg.........cuuvuiuiuiiiiriiiireitiscieie s sae s 79
8.11 Finding SAmMPle COde ..o e 80
8.12 LiVe TEIMIPLALES ..euvvreveeurerrencereeeeaeiretseet sttt sttt seb st b sttt et sttt bttt 80
813 SUMMATY ..ottt e bbb 81
9. An Overview of the Android Architectureccccovirvuieiiniricisiininiiitnecntsesesteees st sas e 83
9.1 The Android SOfEWAre STACK ...c.c.euveuevrirceeirieieiricieirecie ettt ssese et 83
9.2 The LinUx Kernel.....c.occuiiiiiiriciieiciricecnccietnect ettt sttt 84
9.3 Android RUNtME — ART..c.c.oiiiiiiiiciriceiriiieireei ettt sttt sese et sssesebeeneaes 84
9.4 ANAIOIA LIDTATIES c.c.uvueuviiecerircecieieict ettt ettt sese ettt bttt ettt sssesebeeneae 84
9.4.1 C/Cr+ LIDIATIES weuvreueeercieireecieieeisieeeisecie sttt sttt sasese ettt sttt seaeseen 85
9.5 APPLICation FIrameWOTIK......c.cvcueuririuciriieeireeietricieisecistseecieteae sttt sttt seae et ssseaeseeneaes 85
9.6 APPLICALIONS .cevvvreueiiucieineeieiseie et tese ettt bbbt sese ettt seae ettt eta et essesebetneaes 86
9.7 SUIMIMATY ..ottt bbb bbb bbb 86
10. The Anatomy of an ANdroid APP.....ccccevuercerernecninninnucniniininiienninieeesestsssesstsesssssstsesssssesssssssssesses 87
10.1 ANAIOIA ACHVITIES ..vvvrierteerieeteieeeteteiete et tsae sttt ettt ss bt se bt ssassseas s s easssssensses 87
10.2 Android Fragments........cccciiuiuniuiincinceneieicieieieisecsiseessssesssessss s s s s ssessssssssssssns 87
10.3 ANATOIA INEENES ..vuvuvirieieiieteieeete ettt sttt s ettt asa st sea e s b eassnssensses 88
10.4 BroadCast INTENLSc.euiurueeieteieeeteieieis st tsie sttt sttt ess bt se et asassseasseseassessensses 88
10.5 Broadcast RECEIVETSc.euieuriieeirieieirieieis ettt ettt ettt as st sessenssees 88
10.6 ANATOIA SEIVICES ...uveeriuteirieetrieieteeeieie ettt sttt sttt s bttt s et as st st s b eseassnssenssees 88
10.7 CONENE PrOVIAETSeuceeeeieiricieieieieis sttt sttt se st sas s seas st essessensses 89
10.8 The APpPlication MAanifestccveureueueureeeieerereieireseieeseseeessesesessesetessesessessesessessesessessesesessesesns 89
10.9 APPLICAtION RESOUICES ...ucuuvuereeircievineireeeieiresetsetsesetet st sesetsetseseeae st sesessessesessessesesssssesesacs 89
10.10 APPLICALION CONLEXL..uvuevruerrereineerereenetreretseesesetsetsesetetsesesessesessessesessessesesaessesessessesesscssesessessesesas 89
1011 SUIMIMATY ¢ttt s et b bbbt 89
11. An Introduction t0 KON ..ottt ssssas st sssese st sas e sssssnsssesnes 91
11.1 What 18 KOTHN? ...ttt sttt sttt s ettt et been 91
11.2 KOtHN QNA JAVA ..ttt ettt es st se et sns et esessesensesensssssssensnsssenseren 91
11.3 Converting from Java to KON «.....c.cccureeriirieeineirieeneeenceeeneeceeneeeenseseesesseseesessesessessesennes 91
11.4 Kotlin and Android StUAIO «......c.cueeeueirinieeinincieirceireeetree ettt tseese st esseseessseseseen 92
11.5 Experimenting With KOtccocveeeirieiirieeineceeceeeeeneecie s esessesensessesensensesenses 92
11.6 Semi-colons in KOTHN ..c..eueciriceciriciciricicirccietre ettt seen 93
11,7 SUIMMATY oottt bbb bbbt 93
12. Kotlin Data Types, Variables, and Nullabilityccccocevvuiruinrirrinininncnininncnininnncninennneseneesenennes 95
12.1 KOtHN Data TYPES.....cueuieriveieiereieireieieireseieisesetsetsesetaessesesessesessessesessessesessessesessessesessessesessessesesas 95

iii

Table of Contents

12.1.1 Integer Data TYPESccceuvieriniciriiciiiiricisiitie st ssassse e ssssessssssenes
12.1.2 Floating-Point Data Types

12.1.3 Boolean Data Type.......ccocveuvercurerrecurerrennnne

12.1.4 Character Data Type.....cccoocveeeunerrercurernennn.

12.1.5 String Data Type.....c.ccoueevvecrvinicnrincncneinnns

12.1.6 Escape Sequences....

12.2 Mutable Variables...........

12.3 Immutable Variables ...

12.4 Declaring Mutable and Immutable Variables............cccovveniurrcrnierecrnienecnninecneeeeeeeeeeneees 98

12.5 Data TYPes re ODJECES ...vuvvreuermiereeerrirriecrirreeereireiesseesesesseesesesssasssesssssesesssasesesssasssesssasssesssssssesseaes 98

12.6 Type Annotations and Type INEIeNCeccvurveuiureeriireerirrecniereeneeseseseaeesessseeseseseesenseees 99

12.7 NUIADLE TYPE .ecuvrrernieiecrrririeeiireeitieee e et sse s s ssesessesssssseneens 100

12.8 The Safe Call OPEratorcccveveueerecieireeieireecietneeistsere ettt s ese et aseseseesesessesesesseaees 100

12.9 NOt-NUIl ASSEITION. ... 101

12.10 Nullable Types and the let FUNCHONc.cceuiurecrrieecrcceeeeceeee e seneees 101

12.11 Late Initialization (Jateinit)ccccevieverireeriereeiereeeeerceeetee et ere e s rese s s s seneenenes 102

12.12 The EIVIS OPEIatOrcceucuriueeeireeieirincieieeietseacisteaetsaesesseese s sessesessssesesesseaesssessseenssesssncsesscnees 103

12.13 Type Casting and Type Checkingcccceeverieeecrnieemnernienenneeeenneeeeenseseesessesessessesessenens 103

12.14 SUIMIMATY ..ottt as

13. Kotlin Operators and Expressions..........cceeveunee

13.1 Expression Syntax in Kotlin........cccccoeeevereuennee

13.2 The Basic Assignment Operator

13.3 Kotlin Arithmetic OPeratorscocveeueereueueereueenierieciessesesseisesessessesessssesessessssesssssssessessssesssses

13.4 Augmented AsSignment OPEratorscccueuiuiuririuneiseesereesesessessessessssssssssssasesssssessssesaes 106

13.5 Increment and Decrement OPEratorsocweueereecueeremeuieneeesneesesesessesessessesessessssessessssesseses 106

13.6 EQUALILY OPEIALOLS ...c.ucvevuereeineereecieeseeetetsesesseeseseseesese s ssese e st ss s ss s ssss s sseassaessssssesassnes 107

13.7 Boolean Logical OPEratorscccueuirimiuriuniiseiieseseesessssessessesssssssssssssssssssssssessssesaces 107

13.8 RANEE OPEIALOL ..ottt s

13.9 BitWise OPEIators.......ccccciuiuiuiiiiiiiiiiicieieeiir ettt ennna
13.9.1 BitwiSe INVETSIONcucviiiiiiiiiiititctetett bbb sas
13.9.2 Bitwise AND ..ot s
13.9.3 BItwise OR...cuiiiiiiiiiiicic et
13.9.4 Bitwise XOR ...t
13.9.5 Bitwise Left SHift.......c.cccuiiciiciiciii s saes
13.9.6 Bitwise Right Shift...

13.10 Summary................

14. Kotlin Control Flow

14.1 LoOPIng COontrol fLOWc.cuvvecuiurecuiiriciiiereneeeeeneeenseneie e ssesesssessesessessessssessens
14.1.1 The Kotlin for-in Statement.........cocuveeeecrreeeereireeeererreeenerrereeersesensessesessesseseesessesessessesesessenes 113
14.1.2 THE WHILE LOOP .eeuereeucirieeeineeieisecieiseces ettt sttt seseb et sttt sseaenee 114
14.1.3 The do ... WHIIE LOOD ..cueriieeiriieeiricicisecierecetee ettt sttt ettt sttt sseaenae 115
14.1.4 Breaking from LOOPSc.vveeeueeeeerreeeeerreeeeetreeeeensenenessesensessesessessesessessessssessesssessesssessenes 115
14.1.5 The continue StAtEMENLccocuimiuienieiic s saees 116
14.1.6 Break and Continue Labels.........ccc.oeecinieiiniccriceneeeeeienreeeeenseseeensesenenenes 116

14.2 Conditional Control FLOW ..o ssesesessessesessessesssesens 117
14.2.1 Using the if EXPIESSIONSccocueueeereeeeerrieenetreneeessesemessesemsessesessessesessessessssessesessessesesessenes 117
14.2.2 Using if ... €lse ... EXPIESSIONScccueuverreuemerrieeeetreaenerseseesessesessesseseasessesensessessssessesesessenes 118
14.2.3 Using if ... else if ... EXPIESSIONScceueverreueeerrieeeetrenenetreneesetseseesesseseesessesensessesensessesensessenes 118

iv

Table of Contents

14.2.4 Using the when Statementcocueeeerreeeeerreeeeerrerenerrerensenseseeessesessessesensessesessessesessessesenses
14.3 SUIIMATY ottt bbb bbb bbbt

15. An Overview of Kotlin Functions and Lambdas

15.1 What is a FUNCtion?ccccceeniunininenienerncisenncnnas
15.2 How to Declare a Kotlin Function.........c.cccccecuceece
15.3 Calling @ KOtlin FUNCHON........c.oiiiiiriiicicciciciciicicieicciseee s sse s sasaens
15.4 Single EXPression FUNCHONSc.ciuiuiiciciciiciciiecieieeicisiseiet s ssesessssaens
15.5 LOCAL FUNCHONS ..ottt sa s s s s
15.6 Handling Return VAlUeS ..o s ss s
15.7 Declaring Default FUunction Parameters...........cccccueeeeriuniuniuneiniesereeseneeese e ssesssssesssssssens
15.8 Variable Number of Function Parametersccoeeerinininiincrncescrseesesseeenensessessesssssseens
15.9 Lambda EXPIeSSIONSc.eucueueeeemierieciniirieeieeseseseeseseseesesesssasesesssesesesssssssesssssssesssssssesnsssssesnssssaens
15.10 Higher-order FUNCHONSc.ocviuiiriiiicieicieieiciieciiiciciseseisss s ss s ssssssssssens
1511 SUIMNIMATY «.cuiiiiiiiiiiitee ettt et s bbb

16. The Basics of Object Oriented Programming in Kotlin........cccecveeinininnninininnnnenincninnenennees 127

16.1 What 18 a0 ODJEC?vuvieeicieceireceereceneeeneiseee e ese s s sssas s sssasssesssssnscsssaseaces 127
16.2 What is a Class?.......cccccovuvurvrurinncen.
16.3 Declaring a Kotlin Class.................
16.4 Adding Properties to a Class..........
16.5 Defining Methodscccccveeecrnecencrnecnncrnecnnennne
16.6 Declaring and Initializing a Class Instance
16.7 Primary and Secondary CONSTIUCLOLS......c..c.veuirreeeriureersiereeenesereenseesesenseasesessssesesessssessessssens
16.8 Initializer BIOCKS.........ccviiiiiiiicici s
16.9 Calling Methods and Accessing Properties
16.10 CUSLOM ACCESSOLS ...oucvreirirrirctesirete sttt ae s en st st nntees
16.11 Nested and Inner Classes ... ssssssssssssssssens
16.12 COmMPANION ODJECES......vuevmereeernrreeenniereeerseereeesetseeeseasesesstasesesssssssesssssesesssasesessasesesssssssesssssssens
16.13 SUIMIMATY «.cuiiiiiiiiiicrst bbb bbb st

17. An Introduction to Kotlin Inheritance and Subclassing

17.1 Inheritance, Classes and Subclasses...........cou........
17.2 Subclassing SYNtaxcccceeeeerenererneenerseesenneenes
17.3 A Kotlin Inheritance Example........cccoocoeuverrecencnnee.
17.4 Extending the Functionality of a Subclass
17.5 Overriding Inherited Methods...........coccuiiciiciiiiiiiicc e esesessasaens
17.6 Adding a Custom Secondary CONStIUCTOL..........c.cuiiiuriniurieieseeiese e s sseseseaseens
17.7 Using the SavingSACCOUNt ClaSsc.ccucueicmiciciieiiniiiiisiseissi e sa s ssesassssaens
17.8 SUIMIMATY «.eeiiiiiiii ettt

18. An Overview of Android View Binding.........cccceevnrnsnisrisisnsininininniinininsniiiiinisesss

18.1 FINA VIEW DY I .ttt ese s sse s sse s s sssasnscsnsassaces
18.2 VIEW BINAING ...evuiieciriiecicirectreeenteieeet et seesese s ese s see s sse s ese s s sssassscsnssssaces
18.3 Converting the AndroidSample Project........ccurevceniurecernirneerniereenieeeerseseesessessesesessesens
18.4 Enabling View BInding.......c.ceccuveureeuiureeeirrieriinieneineeseeseseneseseensessssesssssssesssssesesessssesssssssens
18.5 USINg VIEW BINAINGvuvrrvrririecriiriecitireecieieeeeiseeeseisesesssssesesssssese s s sssssssessssesesssssssesnsssssns
18.6 Choosing an Optionccccveuvecurenncee
18.7 View Binding in the Book Examples
18.8 Migrating a Project to View Binding...
18.9 SUMMATY ...

Table of Contents

19. Understanding Android Application and Activity Lifecycles

19.1 Android Applications and Resource Management.............c.cccecuveueercmneeeencrnememserseenserseensenens
19.2 Android Process States.........ccccoeveecureurecrriurenees
19.2.1 Foreground Process
19.2.2 Visible Process
19.2.3 Service Process
19.2.4 Background ProCess...........ccocueucecurieceniiriieeneiriceeiseie et sssssesesssssesesssssesessesenes
19.2.5 EMPLY PIOCESS «.ovvviiiiiicctctttt s
19.3 Inter-Process DePEndenciescocceereurirecrnenecrrineeerneneuetrecietseeseeseseseeseaessasesessessaessesesessences
19.4 The ACHVILY LIfECYCLe.. .. vttt nssaesseasessesse s ssenas
19.5 The ACHVIY StACK.......cuiciiicirct e eae
19.6 ACHIVILY STALES ...t
19.7 Configuration CRANGESc.ccoeuerreerreeiininiineieiseeise e ssessessesssssessssssssesssasessssessessense
19.8 Handling State Change ..o ssssessesessessennas
19.9 SUIMMIATY .ottt

20. Handling Android Activity State Changes............ccoeevuevirrerreirinsinneininneinininiinscnennessesesssssesessene

20.1 New vs. Old Lifecycle TeChNIQUES.......covueeeurureeerirrieciiineeeieeseeseeeeeeseasesesssseesesssessessessesesneses
20.2 The Activity and Fragment Classes
20.3 Dynamic State vs. Persistent State....................
20.4 The Android Lifecycle Methods..........ccoccreuene.
20.5 Lifetimesccvvviuvrerernrincineiciciciciececesiscnens
20.6 Foldable Devices and Multi-ReSume............ccceuriiiniiniinciiinciciccicccissessescssse s 158
20.7 Disabling Configuration Change ReStartscoceeeereeeniureerniuneeerneuneesneseeesseseesessessesessesees 158
20.8 Lifecycle Method LImitatiOns......ccoceeeeeeeereeeeeureeernernesereeneeeetesesensessesesssssesessessssessessssessesssseseses 158
20.9 SUMMIATY ..o b b 159

21. Android Activity State Changes by EXample.........cocvvurvininnerninsinnenncnninncneninnscncssesscsisssssscssesseene

21.1 Creating the State Change EXample Projectoovcuviremeenereeerereeeneeeeneeneesensessensensenesensens
21.2 Designing the USer INTErfacec.cueveeeeeereenieneurerniinerinsereeesessensensessessssssssessesssssessessesessessens
21.3 Overriding the Activity Lifecycle Methodscoovcuiuremeenernerereneienieeeneeneenenneesenensesenensens
21.4 Filtering the Logcat Panel
21.5 Running the Application.........c.cccceeureeeneurerennce
21.6 Experimenting with the Activity

21.7 SUIMMATLY c.coviiniiiniiiiiisenesisss s sssesssssssssssssessssssssssses

22. Saving and Restoring the State of an Android ACtiVity.......cocvevrrirnrinisnsnnnnninnnnnnenessen
22.1 Saving Dynamic STate ... 169
22.2 Default Saving of User INterface Stateocveeureeeneereeceniereeeiereeeneeeeesneseesesseseeseseseeseseses 169
22.3 The BUNALE ClaSScuvruiiireeeieiriieieireecieireeeteiseeeteesesesessesesseseae s sesesssas s ssssssesssssssessssssscsnssnes 170
22.4 SAVING The SEALE.....c.cvereeeeerrieeicirieetet ettt ese s sese st eae s ese st ese st b ese s ese s sasssesassees 171
22.5 RESTOTING the SLALEvuevueieeeieiriecieerecieirectet ettt sa e sss st ss s sas s sasaees 172
22.6 Testing the APPLICAION.cccueuieiirreeitirieietseetei ettt stas e ssasese s s s essesesnsses 172
22.7 SUIMIMATY ¢ttt bbb b bbb bbb 172

23. Understanding Android Views, View Groups and Layoutsccccevcererruceersinsecssessensscssessessscssessenne
23.1 Designing for Different Android Devices
23.2 Views and View Groupscocccoveeeeeerercererencnnes
23.3 Android Layout Managersccccveeeveurenennee
23.4 The View Hierarchyc.coccoceeveeenerieencniennes
23.5 Creating USer INEITACEScveuueuerucruereeeeeieieeeeneesenease e ssense s ssesssessssssssesssssesssssesessessens

vi

Table of Contents

23,6 SUMMATY ..o bbb bbb 176
24. A Guide to the Android Studio Layout Editor TOOL........ccccocvrurvuininrenncnsennuininnensucnensensscsesseessesennee 177

24.1 Basic vs. Empty Views Activity TemMPIates..........eveureveereureeeineerereencireeeietresesseesesesseesesessessesesne 177
24.2 The Android Studio Layout Editor
24.3 Design Mode.........ccoeueueuerrencuninnnnn.
24,4 The Palette ...t
24.5 Design Mode and Layout VIEWS..........c.ccucuvcucunceeueecmiinieneicssisesssese s ssesssssessssssssssns
24.6 NIGHt MO ...t
24.7 €O MOUE......ccoiiiinieiiiiciticie ettt
24.8 SPLE IMOAE ..ttt ettt sttt sttt et
24.9 Setting ALFIDULES.........ucouieieiiiiiiirc et
24,10 TLANSOIINS ..ottt
24.11 Tools ViSibility TOZEIES.......ccevuimiuriiiiriiiireicieiciieicia et sae s sssassaes
24.12 ConVerting VIEWS.......ccouiuiiiiimiiiiiiis s ssss e sssssssssssssens
24.13 Displaying SAmple Data ..o ssesssssesssssesssssns
24.14 Creating a Custom Device Definitionc.ccccucucicicinieniininiineseiseeiseeeesse e 191
24.15 Changing the Current Device
24.16 Layout Validationcecveuenee.

24.17 SUMMATY ...oviiiiiiiceeeietese e eseseseneas

25. A Guide to the Android ConstraintLayout

25.1 How ConstraintLayout WOTKS........c.ccveeueureeeeerreeeecrrieeerneeeeeisesenessesensessesensessesessessesensessesenses
25.1.1 CONSLIAINTS....ocviiiiiiiic bbbt
25.1.2 MATEINS ..ottt
25.1.3 Opposing CONSTIAINES. ...
25.1.4 Constraint Bias ...
25.1.5 CR@INS ..ttt et et e
25.1.6 Chainl SLYIES.....cevieecireeicireieeieieeetersee e tes e es e sesaens

25.2 Baseline ALGNIMENTc.ceeueererrieererreeeeerrereeenseeeesesseseesessesessessesessessesessessesessessesessessesessessesenses

25.3 Configuring Widget DImenSions.........cccveueeeeerreeeeerreuemerrerenersesemsessesensessesessessesessessesessessesense

25.4 GUIENE HEPETuvueiiniiricicireceet sttt sttt bbbttt et been

25.5 Group Helper.......cccoveceuvnecrnencnnnes

25.6 Barrier Helper.......ccoovcecuvvccerencnnnes

25.7 Flow Helper

25.8 Ratios ...,

25.9 ConstraintLayout Advantages

25.10 ConstraintLayout Availability

25.11 SUIMIMATY c.oviiiiiiiii bbb bbb bbb bbb

26. A Guide to Using ConstraintLayout in Android Studio

26.1 Design and Layout VIEWS........cc.cciriiunciiencicieneiseiesie st ssessssssssssssssns
26.2 AULOCONNECE MOME ..ot
26.3 INference MOdE........cuuiuieiiiiiiiiiiie e
26.4 Manipulating Constraints Manually...........c.ccccoeiinininininieccseeese e
26.5 Adding Constraints in the INSPECOrcccucueuucirieiriirircciseese e
26.6 Viewing Constraints in the Attributes Window...........cccceuviiinnincncncincncincccececeenennns
26.7 Deleting CONSLIAINEScveuuiuieieriiieseieesese e sssss s s sse s ssesassses
26.8 Adjusting Constraint Bias.........ccccccoeeveneniercrncunn.
26.9 Understanding ConstraintLayout Margins
26.10 The Importance of Opposing Constraints and Bias
vii

Table of Contents

26.11 Configuring Widget DIMeNSIONS.........cvveuerreererreemirreeenieseeeneesesesessesesssssssessessssesessssesseses
26.12 Design Time ToOlS POSItIONINGcciuieerirrieriiriecriireeenieseeneeseeessasesessasesesssssssessesssseseses
26.13 Adding Guidelines.........c..cceverreeevrerreeeererrenennee

26.14 Adding Barriers
26.15 Adding a Group
26.16 Working with the Flow Helper.....
26.17 Widget Group Alignment and Distribution........
26.18 Converting other Layouts to ConstraintLayout
26.19 SUIMIMATY oottt bbbt bbb

27. Working with ConstraintLayout Chains and Ratios in Android Studioccecevevvevviveivenienncnennnne
27.1 Creating @ CRaiN........c.ccuiuiiicicicciciceceeiesi s aes 225
27.2 Changing the Chain StYle ... saes 227
27.3 Spread Inside Chain StYle.......c.oueiureeeiiirieiiinicieisecieiseectees ettt sssa et ss s ss e seses 228
27.4 Packed Chainl StYLe.....ccuiireeiiricieirecire ettt siees 228
27.5 Packed Chain Style With Bias.......ccoceeeuiurieeinienieieinicieineecineiseeeesesesseesesesssssesessessesessssssessses 228
27.6 Weighted CRaiN ..o saes 228
27.7 Working With RAtIOSc.cueuiuciiciieiiiniiicicsise st sse s saes 229
27.8 SUIMMATY ..ttt ettt b s s 231

28. An Android Studio Layout Editor ConstraintLayout Tutorial.........cceceeevcruirrsenresisncsensensessesscseesennes
28.1 An Android Studio Layout Editor Tool EXampleccccvureeeuiurecrniunecmnieneeneeeneneneeeneees 233
28.2 Preparing the Layout Editor ENVIronmentc..ceccveveeeeniurecrierecrniuneennieseeneeeesesessesessesns 233
28.3 Adding the Widgets to the User INterface..........couvveeeureceiurecrierecrnienecrnieeeenseeeneneseeenseeens 234
28.4 Adding the CONSIIAINEScevueveeererrieeriireereereeeseeseeeseeeeeesseeeesenseasese s s sssessesssssssesssssssessses 237
28.5 TeSting the LAYOULccueureeereerecierreectirieieteeesessesesessesesseas e sssss s esessasssesssssssesssssssesnssnes 239
28.6 Using the Layout INSPECLOTvuevueueeceriereeerierieeneiresesessesesseesesessessesesssasesessssssssssssssessesssseseses 239
28.7 SUIMIMATY «.viiiiiiiiii bbb bbb bbb bbbt 240

29. Manual XML Layout Design in Android Studiocceceveereenuinrernucninnenncsinninnncninniencninecseseneene
29.1 Manually Creating an XIML Layoutcccceueiuriuiunimniiremcineieienesesseisesssssesssesssssesssssesssesses
29.2 Manual XML vs. Visual Layout Design...........

29.3 SUMMATY ..o

30. Managing Constraints using Constraint Sets
30.1 Kotlin Code vs. XML Layout Files..........ccccveureeeirrieeneiriemeireieerrereeennesenenseseeessesessessesensensenes
30.2 Creating VIEWS... ..o
30.3 VIEW ALIIDULES......oveiieiiicic e
30.4 CONSLIAINT SELS....ecvvriecreiiteteiit et en

30.4.1 Establishing CONNECtiONS........c.cocueuecurerrenemrerreenrerneenereesessessesesessesessessesessessesessessesesenens
30.4.2 Applying Constraints t0 @ LayOULc..ceeecureurercunerrerernernecnneineenersesersessesensessesessessesenenens
30.4.3 Parent Constraint CONNECIONS.........coovvverevrieteiieeieee s
30.4.4 Sizing CONSLIAINTScciuiiiiiiiiiiic s
30.4.5 Constraint Biasccccevierieiictcictttct s
30.4.6 Alignment CONSLIAINTS.......cccveuererrerrercrrerrerenrereeetrereeenseseesessessesessessesessessesessessesessessescsesens
30.4.7 Copying and Applying Constraint Sets........eveururererrerrererrerrerernerrererrerseeesessesensessesesseneens 247
30.4.8 ConstraintLayout ChaiNsc.ccccveeeecrrerrencinerneceieeeeee s ssesseseasessesesessesessenens 247
30.4.9 Guidelinescocvcuvriveiciiiiinciiiicenes

viii

30.4.10 Removing Constraints
30.4.11 Scaling.....cceumevercreremcrreemerneeeereenersesenne
30.4.12 Rotation

Table of Contents

30.5 SUMMATY ..ot bbb 249

31. An Android ConstraintSet Tutorial...........cccoeeueerieeniniininiiinienienccteee et aeseses
31.1 Creating the Example Project in Android Studiocccceeueiuiuneiniincincincincinciciciciecrceenennes 251
31.2 Adding Views to an Activity
31.3 Setting View Attributes...................
31.4 Creating VIeW IDS.....ccviiiiiiis s
31.5 Configuring the CONStraint Set........ovuiureuncurcrcueieieieieeeirisise e saesassnes 254
31.6 Adding the EdItText VIEWccoiuiuriiiiniiiincicicieieieiieciseeesici e sse s ssssssns 255
31.7 Converting Density Independent Pixels (dp) to Pixels (PX).....c.coureuveureuvcurcrsemeieimeerinienennes 256
318 SUMMATY ..ottt 257

32. A Guide to Using Apply Changes in Android Studio.......ccecverrerveninncseisnnninineisnnnnenencsssenenenes
32.1 Introducing APpLy Changes..........cceeeurieenerneeeenerreeeennenemessesenesseseesessesessessesessessesessessesesses 259
32.2 Understanding Apply Changes OPLiONScvceeeerreeeeerrevemerreremerreneesensesemessesensessesessessesenses 259
32.3 USING APPLY CRANGES.....c.ccereeecirieieireeeeeireeeneteeeeetseae s ssesessessesessessessssessesessessesessessesesses 260
32.4 Configuring Apply Changes Fallback Settings.........c.ccccooviviiiniiiininciniiciciiiiicnns 261
32.5 An Apply Changes Tutorial.........cccoiiiiii s 261
32.6 Using Apply Code Changesccccureeeeerreueenerreeeeerreeeeennereeessesensessesessessesessessesessessesessessesesses 261
32.7 Using Apply Changes and Restart ACIVILYceveureeemrerreemrerreremetreeeeenreeenessesenesseseesessesennes 262
32.8 USING RUN APD .ottt 262
32.9 SUMMATY ..ot 262

33. An Overview and Example of Android Event Handlingccoccevervurvuenersucncnsensucscnsensecscnnecsncsennee
33.1 Understanding Android EVENts.............ccocuvcucuvcinueieininieniiniinessese e ssessessessesssssssns 263
33.2 Using the android:onClick RESOUICE........c.ccucuuucicimiiriiiiicise e ssessesse s 263
33.3 Event Listeners and Callback Methods ... 264
33.4 An Event Handling EXampleccoiiiiininciniiciincccciseeise e ssessesss s 264
33.5 Designing the User INTerface ..o 265
33.6 The Event Listener and Callback Method.........c.ccccuocuininininininincncscsccicciciecececneins 265
33.7 Consuming EVENLScouiiiiiiiiiiiiiiiiicn s 267
33.8 SUMMATY ..ottt bbb 268

34. Android Touch and Multi-touch Event Handlingcococevueversenveninnisunsnsnininnisensenescnscsnssesesenes
34.1 Intercepting TOUCh EVENTSccccuviereirieieiriceineeteeeeneeeereseesetseseese s ssesensessesensessesenses 269
34.2 The MOtIONEVENt ODJECTuuvueirrieercireeeeeireiceetreeeeetreeeeenseae s nsessese s ssesessessesensessesensessesense 270
34.3 Understanding TOUCh ACHONS.c.cceurevemerrevernerreeeeetreeeeenresenessesensesseseesessesessessesessessesessessesense 270
34.4 Handling Multiple TOUCRESc.ovueverrieieirieeiecetreeereeeetreeeeetrese s sseseesesseseesessesenses 270
34.5 An Example Multi-Touch AppliCationc.cvccueenecerineecinenieciniceeinecietseesesseeeetseaeseesesessssesesees 271
34.6 Designing the Activity User INteIfacecceveureueercrreeeenerneeeeeireeectreeeenreeenesseneeesseseesessesennes 271
34.7 Implementing the Touch Event LISteNercccveucrreueererreeemrerrerenetreeeeenrenenensesenesseseesessesenses 271
34.8 Running the Example APPLICAtiON.......c.ccoeueueererriececrrieeierreeenerrereeetseseesessesensesseseesessesessessesenses 274
34.9 SUMMATY ..o bbb 274

35. Detecting Common Gestures Using the Android Gesture Detector Classoccevevrerruccrersecsucsennee
35.1 Implementing Common Gesture DeteCtion.cccuweiuiuriuniineinienerneisenseeescseseisesssssesesens
35.2 Creating an Example Gesture Detection Project.....
35.3 Implementing the Listener Class.........c.coecvcueunce.
35.4 Creating the GestureDetectorCompat Instance...
35.5 Implementing the onTouchEvent() Method.........
35.6 Testing the APPLICAtION.cciuiuiiriiiircicicice ettt

ix

Table of Contents

35.7 SUIMIMATY ..ot 279
36. Implementing Custom Gesture and Pinch Recognition on Androidcccceeevenrervucnennecnucnerncnnes

36.1 The Android Gesture Builder Application

36.2 The GestureOverlayView Class..........cccvevnenee.

36.3 Detecting Gestures..........cceuveeuvirecieinincerenencnnns

36.4 Identifying SPECific GESLULEScocueuuuurrieiiiiiireiee e ssess s

36.5 Installing and Running the Gesture Builder Applicationcccccuceeuneninininiencrnenerncenes 281

36.6 Creating @ Gestures File ... 282

36.7 Creating the EXample PrOJECT........ccccuuiiiiiiiiriiircseisctecse s ssenes 282

36.8 Extracting the Gestures File from the SD Cardcocoocvcivincinivcincicicinncncsscceeenes 282

36.9 Adding the Gestures File to the Project ... 283

36.10 Designing the User INterfaceccocuuiiininiiniiniireiscccie e ssesesesssesessesesseaes 283

36.11 Loading the Gestures File ...t ssecsssesssssssesssesessesessenes 284

36.12 Registering the Event LISteNer ... esessesesssssesssesssesesssssesssnes 285

36.13 Implementing the onGesturePerformed Method...........ccocvcuivciiicioninininininincscrcenes 285

36.14 Testing the APPLICAtION........cocuiiciciciciciciiiciene et

36.15 Configuring the GestureOverlayView

36.16 Intercepting Gestures...........cocceveeveivicererennnes

36.17 Detecting Pinch Gestures

36.18 A Pinch Gesture Example Project..................

36.19 SUMMATY ..o

37. An Introduction to Android Fragments.........ccvcvernsnenisisinnsenisisisnseseseninsssesesssssssees
37.1 What is @ FTagment?cceeuvecirieenerneeeeineeeeetneeeeessesenessesessessesessessesessessessssessesessessesessessenes 291
37.2 Creating @ Fragment ... s 291
37.3 Adding a Fragment to an Activity using the Layout XML File........ccoceceereernerreeencrrererrennenee 292
37.4 Adding and Managing Fragments in Codecoceveureuernerreeenerreeeenenneeenennenenenseseesensesensensenes 294
37.5 Handling Fragment EVENLSccocvveuerreeecrneeecireeeietneeeeeneeeeesseseesessesensesseseesessesessessesensessenes 295
37.6 Implementing Fragment COmMMUNICAION.......c.cueuererreeemrerreeenerreeeeerserensersesensessesensessesenensenes 295
37.7 SUIMIMATY ..ot st 297

38. Using Fragments in Android Studio - An EXample........cccceeevininruinvinrinncninenncnennenncscneesscseseenes
38.1 About the Example Fragment Application
38.2 Creating the Example Project..........ccccoeuueunce.
38.3 Creating the First Fragment Layout.................
38.4 Migrating a Fragment t0 View Bindingccccoeeviniininiincincincinccieiccciecsceeisessesesssesenseenes
38.5 Adding the Second Fragment ... esessessesssssesssesssesessesesssnes
38.6 Adding the Fragments t0 the ACHIVILYc.ccoeuriiniiiiriniincccic e
38.7 Making the Toolbar Fragment Talk to the ACtiVItyccocveuvcuniivcicicirinirisincssescreeenes 304
38.8 Making the Activity Talk to the Text Fragmentc.cocvcuvencuneuvcincicininenieinessesesssesenennes 307
38.9 Testing the APPLICAtION.......c.ccuiuiicicicicicicieceiciesi et 308
38.10 SUMMATY ...oneiiiiiii e 308

39. Modern Android App Architecture with JetpacK.......ccceceevrviniiieiiiniinniiiiinnccneneccnenecee e
39.1 What is Android JEtPacK?c.cvueueurereieiricerecerccserccstee ettt eees 309
39.2 The “Old” ArchiteCture.........ccvcuiiiiiiiiiii s
39.3 Modern Android Architecture
39.4 The ViewModel Componentccoccerurenecnes
39.5 The LiveData Component..........c.cccoeeveucererenennes

39.6 ViewModel Saved State..........coovverererverenenenee.

Table of Contents

39.7 LiveData and Data BIding........cocevveureeeeiineeineinecicireeienneeenenenetseseesessesensessesensessesessessesenses
39.8 ANAIOId LIfECYCLESucvreeerreeecircececireeceeireeeeetreeeiset st sese et sese s sese s s s ssessesensessesennes
39.9 Repository Modules...........cocuuee..
39.10 Summary ...,
40. An Android ViewModel Tutorial
40.1 ADOUL The PIOJECT cueueeeuiiecieiriecieireecteireieteiseee ettt ese sttt esseen
40.2 Creating the ViewModel Example PrOjJect.........cccciiuriniuniineniincineineicieieeieiseceeeseessesseeens 315
40.3 Removing Unwanted Project EIements.........c.ccccueuriuriuniniuniiniiniincneiseieeneensessecenssesssesesaens 315
40.4 Designing the Fragment Layoul...........ccocvcucuuciicinininininesse e ssesssssessssssaens 316
40.5 Implementing the VIiew MoOdel..........ccocuiuiiiiiiiiciiiiiscsc e sseciessesasesesaens 317
40.6 Associating the Fragment with the View Model.........cccoocviniiiniinincincncnccciecneences 318
40.7 Modifying the Fragmentcccocviuuiiniincicicicicieciriesieciseise e ssssssssssssssens
40.8 Accessing the VieWMOodel Data..........ccccuicicicicieiiieiiseisesise e ssesssssesssssesaens
40.9 TeSting the PrOJECT.......cccvuiuiuiiiirciiiecicic et
40.10 SUIMNIMATY «.cuiiiiiiieiiicee ettt s st b bbb benna
41. An Android Jetpack LiveData Tutorial...........ccceeueeuennen.
41.1 LiveData - A Recapccccevevevverercccnnne.
41.2 Adding LiveData to the ViewModel....
41.3 Implementing the Observer..................
414 SUINIMATY oo bbb bbb bbb bbb bbbt
42. An Overview of Android Jetpack Data Binding........cccoeevucerernurninsinscninninscninsinncnensecscsessecsscseens
42.1 An Overview of Data BINAING ..o ssesasssesaens 325
42.2 The Key Components of Data BiNdingcccccucuciririninincninceeieeneesessecsesseessesesaens 325
42.2.1 The Project Build Configuration...........ccccuccucueeuciniuniuniuniniiseeiseseiescesesessessessesasssesesesns 325
42.2.2 The Data Binding Layout File..........cccococueioiiiriniiiniinccscceie e 326
42.2.3 The Layout File Data EIemMentcccvcureveureurerceneeneneereineeinenneeisesseseesessesessessesessessesessesscsenns 327
42.2.4 The Binding ClLassescceuuiurimiureuneieicieieieiieimeeisssesesessssse s ssessessesssssssssssens 328
42.2.5 Data Binding Variable Configuration...........cccccueuriuniuniniinenieneneiseieeieiecenaessssesesenns 328
42.2.6 Binding EXpressions (ONe-Way)........cccccucuruiemmniunimniunimnieseseesesssessessessessesssssesssssesssssns 329
42.2.7 Binding EXpressions (TWO-Way)........ccccccucuruirmnimnimnienisiiseissesee e ssessessssessesssssssssssns 330
42.2.8 Event and Listener BIndings...........ccocvcuueicinicininininiesecse e ssessessesasssesesssns 330
42.3 SUINIMATY .ottt b bbb bebna 331
43. An Android Jetpack Data Binding Tutorial.........ccccecevvreninuisisnsninisininnincninineeninieenens
43.1 Removing the Redundant Code...........ocuueriurecriireceiinicniecieeseeneeeesesssseesesesensesessesens 333
43.2 Enabling Data BINdINgccccveueureeriiricieeieeeieeenieeenseseeesessesessesessessssessessssssessessssens 334
43.3 Adding the Layout EIEMENtcoveuiureemiereeereireeneireeetesesenseeeessessesensessesesssessesesessesessesens 335
43.4 Adding the Data Element to Layout File.......cccovoeuurcniirecinircinecneeceeeeeeseeeeneeenaens 336
43.5 Working with the BInding Classccccvuureerniurecrirrecriirecrnieeeeneeneeneseesessseesessesessessessesens 336
43.6 Assigning the ViewModel Instance to the Data Binding Variablecccccovvvccnirnccrniunnnce 337
43.7 Adding Binding EXPIeSSIONSeceeiureeemmirreeemirreenirreeensisseeessasrsesssssssessessssessssssesesessesessssens 338
43.8 Adding the Conversion Method ... seaeesens 339
43.9 Adding a Listener BINAINGccocvueeirrieriireeriirieireeetieeeeeeeeeseseesesesessesssessessssssesessssens 339
43.10 TESHING the APP..ecueereirecieirieeireetiee sttt sse s ese st sasasaesscns 340
43,11 SUIMNIMATY ottt b bbb bbb bbbt 340
44. An Android ViewModel Saved State Tutorial...........coceueerinerinernnieneniienineineintenseeseesesnssesnesenenens
44.1 Understanding ViewModel State SavINg..........cccccueiriuriuniuniunimniercrneiseieeesesenseesesesssesasesssaens 341

xi

Table of Contents

442 Implementing ViewModel State SAVINGc..c.oveueureeemirreerirreenereeneeseseseeeeesessesesesseseseenes 341
44.3 Saving and ReStOIINgG StALe.........cccueureeeiureeriirientireseeeeeeeseesee e ssssessesssssesesssasesesnsses 342
44.4 Adding Saved State Support to the ViewModelDemo Project........cocevcuneuvecuneerecrneerecnennee 343
44.5 SUMMATY ..ot

45. Working with Android Lifecycle-Aware Components........c..cc.ecue..

45.1 LIECYCIE AWATEIIESS ...eovueeeinereeeineireeeeneiseeetees e teisese e sese sttt s s snsiees
45.2 LIECYCIE OWIIELS ...ceuvreeiaireeinireieteeseeeieiseeetee sttt ese bbbttt snsees
45.3 LIECYCLE ODSEIVETS ...ucvueuirieinierieeieireieitiseeeteeseaeteisese ettt sa s sssees
45.4 Lifecycle States and EVENLS......c.oeeureeeeriuriecineinieeineiseietseisesetseesesesessese s sssssesessssssessssssessses
45.5 SUIMMATY ..ttt ettt et s s st

46. An Android Jetpack Lifecycle Awareness Tutorialcocevevuiruirersnnninisnsnnnininisnnnenenncnsenes

47. An Overview of the Navigation Architecture Component

48. An Android Jetpack Navigation Component Tutorial

46.1 Creating the Example Lifecycle PrOJect.........coeueurecunierecriereeniireeeieecnneeeeeeneeeesesesseseneenes
46.2 Creating a Lifecycle ODSEIVET......ccieiricrirriciirecieieeenteeeneeeesessasese e esesssssssesssssssesnsees
46.3 Adding the Observer

46.4 Testing the Observer

46.5 Creating a Lifecycle Owner..........ccocovceeverrencnnce
46.6 Testing the Custom Lifecycle Owner...............
46.7 SUIMIMATY «.oouiiiiiiii bbb bbb bbb bbb bbb bbb

47.1 Understanding NaviGation........cc.ccucucueeeumriniuniuimiesesieseseeessessesse s ssessssssssssssssssesssssessssessees
47.2 Declaring a Navigation HOSt........cc.ccucuiririniniiiiciscicsce e saes
47.3 The Navigation GIraph ... sse s s saes
47.4 Accessing the Navigation Controller...........ooiniiincinieicieieieeeseessesssssessese s
47.5 Triggering a Navigation ACtiON ...
47.6 Passing ATZUMENLS.........ccocuiuiiiiiniiiiii st ssss s sssas
47.7 SUIMIMATY ..ottt et b s s s

48.1 Creating the NavigationDemo Project................
48.2 Adding Navigation to the Build Configuration..
48.3 Creating the Navigation Graph Resource File....
48.4 Declaring a Navigation Host........ccecceuerrecmrerrenccn.
48.5 Adding Navigation DestiNations.........cccveeuerreerirreecenimneeerieneeneeeeseseesesesessesesessssesessssenesees
48.6 Designing the Destination Fragment Layouts...........ccceveeeureceuirrecrniunecnnieeeenneeseensessneneeens
48.7 Adding an Action to the Navigation Graph..........ecccveeeeeeniurecrirrecrniunecrnieeeenseeenenesenensesens
48.8 Implement the OnFragmentInteractionLiStENneroceeureerirrecrniurecrnieeeeneeeneneeeeeneees
48.9 Adding View Binding Support to the Destination Fragments..........cocceveureerreurevcrnereecnnenn 370
48.10 Triggering the ACHONoceueureeeeereceireeriree et ese s ese s s s s s sasnaesssaes 370
48.11 Passing Data Using Safeargseceeureerirreemnirreerirreenieseentesesesessesessessssesssssssesessssesesees 371
48.12 SUIMIMATY «.viiiiiiii bbb bbbt bbb 374

49. An Introduction to MOtionLayouUL..........ececivirrinininneininsinncniniinucnesessscsesiesseeessessesssssssssesssssesne 375

xii

49.1 An Overview of MotionLayout
49.2 MotionLayout ...
49.3 MotionScene
49.4 Configuring ConstraintSets............ccccecreureunn.
49.5 Custom Atributes..........ocecuvcuecucecmeccriureureuenn.
49.6 Triggering an ANIMAtiON.......coocuiiimiiiiiiiici s

Table of Contents

49.7 ATC MOION ...ttt sttt
49.8 KEYITAIMES.....cuvreeerrieeeeneieeenseteee ettt eee s ese s ese st ese st sa st sese s escsasaenscsnsaescns

49.8.1 Attribute Keyframes.................

49.8.2 Position Keyframes...................
49.9 Time Linearityccccoeeevveveururennees
49.10 KeyTrigger......cccccovveuriverevvicncurencnens
49.11 Cycle and Time Cycle Keyframes
49.12 Starting an Animation from Code........ccueerecriereceiirecnieceeeeeneseee e sseseaensens 385
49.13 SUIMNIMATY w.cuiiiiiiiiiiics s a bbb bbb bbbt 386

50. An Android MotionLayout Editor Tutorial..........cccccevvvevinrinnerninninncncnninneninennncnenesscsesnessesennee 387

50.1 Creating the MotionLayoutDemo Project ... 387
50.2 ConstraintLayout to MotionLayout CONVersion ... 387
50.3 Configuring Start and End CONStraintscceueeeiuiunemniinernienesseeseseieneesessessessessesssssssssens 389
50.4 Previewing the MotionLayout ANimation.........cccceeueeuiuriuniurernienerseeseseieneesesseiaessessesssssesesenns 392
50.5 Adding an ONCHCK GESLULEcucuuiieieiiiriiiisiisise e sse s s s s ssesaseaes 392
50.6 Adding an Attribute Keyframe to the Transition..........cocecveueiencuncincencincineecieieeeieeseeeenenns 394
50.7 Adding a CustomAttribute to @ Transition........cceeeeuiuriuniurerniinerseirerscicieieseiseseesseeassaesesens 396
50.8 Adding Position Keyframes........ccccoocveuviurirncuncnncee

50.9 SUMMATY ...coviiicieieirircccenens

51. A MotionLayout KeyCycle Tutorial

51.1 An Overview of Cycle KeYIramescccvuveecureurereireirenceneineeineineensenseenesseensessesessessesensessesenne
51.2 Using the Cycle EItOr ... ssesessessesessessesessessesnns
51.3 Creating the KeyCycleDemo Project..........ccccrurercurerreeenirrecinerneennerneenesseenesseseasessesesessesenne
51.4 Configuring the Start and End Constraints.........cocveeeeeereerereererreremnereesennereeensesseseesessesensessesenne
51.5 Creating the CYCLes ..o ssessesessessesessessessasessesessessesenns
51.6 Previewing the ANIMAationc.cevcuneeeercineerencinenneeeeereeeese e sseseasessesessessesnns
51.7 Adding the KeyFrameSet to the MOtiONSCENEc.cueeuivecinerrecrreirecirereeeeeeaeseeenereeaenne
51.8 SUMIMATY ..ottt bbb bbb

52. Working with the Floating Action Button and Snackbar

52.1 The Material Design.........ccccecou.n.e.
52.2 The Design Libraryccccccoeeveuneunee.
52.3 The Floating Action Button (FAB) ...
52.4 The Snackbar........cccccovivineiviinciniinns
52.5 Creating the EXample PIOJECT.......ccciuciiiciiiniiriisceicsse e sse s sssssssssssesenens
52.6 ReVIEWING the PrOJEctcoiuiiiiiciciciciciciciciciccse st
52.7 Removing Navigation FEatUures..........ccovviiicieieiiiiiict s
52.8 Changing the Floating Action BUttOncccoeuiiiriiiininiincninceecicceeceeeeciesaecssssesescnnn
52.9 Adding an Action to the SNackbar ...t
52.10 SUMMATY c..ouiiiiiiiiiii ettt

53. Creating a Tabbed Interface using the TabLayout Componentcccceeeverrersisucsensessesessesnssessesseses 419

53.1 An Introduction to the VIEWPAGEI2c..ceveururciriineneineirecirereerereeenesecenessesesessesessessesenne 419
53.2 An Overview of the TabLayout COMPONENtcoceeeueurecererrecmrerreenrerseensersesensessesensessesenne 419
53.3 Creating the TabLayoutDemo Project..........cccrercrniinencinerneneeneineenesneenesseensessesensessesenne

53.4 Creating the First Fragment
53.5 Duplicating the Fragments..........ccccocveueurerreerrennenee
53.6 Adding the TabLayout and ViewPager2
53.7 Performing the Initialization Tasks.......c..c.ccceeunee

xiii

Table of Contents

53.8 Testing the APPLICAtION.....cccvvueueecirieeerreieeetreeeeetreeeeetrere et sese e sese e ssesessessesessessesensessenes 427
53.9 Customizing the TaDLayOUL.......cccvveerreeecrrieeetreicetreeeeneeeee s s sesessessesensessenes 427
53.10 SUMMATY ..o bbb s 429
54. Working with the RecyclerView and CardView Widgets.........cocererrinrersucrsenrensucnensensncssensecsscsesnees
54.1 An Overview Of the ReCYCIEIVIEWc.vvueuiuriueiniirieeieireieieireteeetseeetetsesetetsese e tsesesetsesessenenes 431
54.2 An Overview Of the CardVIEWccceuveiueiririririciereeiereeie ettt sesen 433
54.3 SUIMIMATY ..ottt bbbttt bbb 434
55. An Android RecyclerView and CardView Tutorial.........coccevvvvrinrininrinisnsnsesinininensenesessesneseenens
55.1 Creating the CardDemo ProJect........cocveeureeeeerreeeeneinieenerreieeenreseeessesenessesensessesessessesesessenes 435
55.2 Modifying the Basic ViewWs ACtiVIty PrOJECtcvvevveureeernerreeeenerreecieirercneineneeenseeeeensesenennenes 435
55.3 Designing the CardVIEW LayOULccc.vecureeencrreeceneineeenenreeeeeneseeenseseeenseseesessesessessesessessenes
55.4 AddIng the ReCYCIEIVIEW......c..cucviiieeieiriiecireecteeeieieieeteieesessesessesseseesessesessessesessessesessessenes
55.5 Adding the IMage Files.......cocviiieirreecinieeieeeeetereeeneieeessesessessesessessesessessesessessesessessenes
55.6 Creating the RecyclerView Adapter.................
55.7 Initializing the RecyclerView Component
55.8 Testing the Application........cccvcveeeurervecurerrenen.
55.9 Responding to Card Selections...........cccveuneeee.
55.10 SUMMATY ..t
56. Working with the AppBar and Collapsing Toolbar Layoutsccceverrucrenrersucsensecsncssensecsscssesnees
56.1 The Anatomy Of AN APPBATc.cviuieeiiireieiireecireieerei ettt sese ettt sese et sesesaeaseaes 445
56.2 The EXAMPLE PIOJECTcuvivirciiecicireieicireieictseeeteisesetet st seb et sesetse s ssetsese st sesessetsesesassnenes 446
56.3 Coordinating the RecyclerView and Toolbarccocvinuviincincivcincicicinirienscsesessseeenes 446
56.4 Introducing the Collapsing Toolbar Layoutccceceiercueincenceneeeecinieenenesesessesesssesenseenes 448
56.5 Changing the Title and Scrim CoOlOTcccociiininiininincecie e 451
56.6 SUIMIMATYoooeieieiciieiiiiiti ettt et b et es 452

57. An Overview of Android Intents

58. Android Explicit Intents - A Worked Example

Xiv

57.1 AN OVErVIEW Of INTENLS ...ucuurerieincieecectreecictreeeeetreee st sesesses s ssese s ssesessessesensesenes
57.2 Explicit Intents
57.3 Returning Data from an Activity
57.4 ImPlicit INtENLS ..cucvvueucerrreecreereeieireeeieeeseeeeeneens
57.5 Using Intent Filters
57.6 Automatic Link VerifiCationc.cveveureeecrreeeneineeeeeirieenenreeeeesseseesessesensessesessessesessessesessessenes
57.7 Manually Enabling LINKScccceeureemerreeeeernieeeirieeeernerenenseeeeessesessessesensessesessessesessessesessessenes
57.8 Checking Intent AVailabilityc.coceverreeciriemniireeieireeeneieeeereeensese e ssesessessesensessenes
57.9 SUMMATY ..ot bbb bbb

58.1 Creating the Explicit Intent Example Application...........cecueeucuvcuvcucicinineninsinessiserssesenseenes 463
58.2 Designing the User Interface Layout for MainACHVItYc.ccocucuccucicinineniieinensisesceseneenes 463
58.3 Creating the Second ACtiVIty Class........cccccuuiriuriuriuniiriiniireieiseie e esesieiseeesssesesesssesesssesesesnes 464
58.4 Designing the User Interface Layout for SeCONdACHVILYc.cocucuuciuciriniiniicinisircicircieenes 465
58.5 Reviewing the Application Manifest File........ccccoviiininiinciniincinccciceeececncsessseeenes
58.6 Creating the Intent..........cccccueeeerircrercurennenn.

58.7 Extracting Intent Data
58.8 Launching SecondActivity as a Sub-Activity..
58.9 Returning Data from a Sub-Activity...............
58.10 Testing the APPLICAtION.......ccvcuiuciciciciciciicicieni e

...

Table of Contents

58.11 SUMMATY c.ouiiiiiiiii bbb 469
59. Android Implicit Intents — A Worked EXampleccccoeeverrinrerninsinncncnsennncncnsennncsessessscsesssessesesses 471
59.1 Creating the Android Studio Implicit Intent Example Projectcccccoeueucueivinerincencnnes 471
59.2 Designing the User Interface
59.3 Creating the Implicit Intent...................

59.4 Adding a Second Matching Activity
59.5 Adding the Web View to the Ul.......ccccciiiiinininiinenircciseeeseiesessessessessessesssssesesenns
59.6 Obtaining the Intent URL..........ccccoiuiiiriiiinincisessise e sse s ssessessesssssssscsns
59.7 Modifying the MyWebView Project Manifest Fileccocvinineinerncincineiciciecniccseeenennns 475
59.8 Installing the MyWebView Package on a Device..........ccocuviureuniineincincrncicieeeneieeesinesisinesenens 476
59.9 Testing the APPLICAtION.........ocuiucuciciiciciieiieicieies e 477
59.10 Manually Enabling the LinkK ..o 477
59.11 Automatic Link Veriflcationcccveevcureerercineenencineinicineireeiseiseesesseessessese e ssessesessessesenns 479
59.12 SUMMATY c..ouiiiiiiiiiiii ettt bbbt 481

60. Android Broadcast Intents and Broadcast RECEIVErScoccvuiruirenrenisnisensnsnininniseinenesssssssssesesenes 483
60.1 An Overview of Broadcast INENTS.........cccueueveureeeencrreeemernenenerresenessesensessesensessesensessesensessesenses 483
60.2 An Overview of Broadcast RECEIVETSc.ouueueureueecrriueeerrereneirerenetseeeeesseaensessesensessesessessesenses 484
60.3 Obtaining Results from @ Broadcast.........c..ceeureeencrreeenerneeencrnerenerneneeenseneeessesenesseseesessesenses 485
60.4 Sticky Broadcast INTENLScceureeerrcrreeeeerreeeeerreeeeetseeensensesensessesessessesessessesessessesessessesessessesenses 485
60.5 The Broadcast Intent EXaMPIe.......c.cveeueurereurirecininecinineecineeiciseeeeseese e sseessssesesessesessssesesees 485
60.6 Creating the Example APPliCation.......cccoeureueeerriucererreeemerneeenenrerenetsesensessesensesseseesessesensessesenses 486
60.7 Creating and Sending the Broadcast INtent..........ccocuveueeerreernerreemnerneenenreeenenseneesersesensensenennes 486
60.8 Creating the Broadcast RECEIVETc.ouevueeercrreeeecrrieeeenneeeneireneeetseneesessesensessesensessesensessesenses 487
60.9 Registering the Broadcast RECEIVETcouieviireeeencirieeeeireecireeenctreeeeeneeeeessesensessesessessesennes 488
60.10 Testing the Broadcast EXAMPLEc.occueueueenerrieeencrnieeneenereeenetseneeenseseesessesensessesessessesenses 489
60.11 Listening for System Broadcasts..........ccoeeeeeereeererreeeerneeemenrerenersenensessesesessesensessesensessesenses 489
60.12 SUIMMATY ..ottt bbbt 489

61. An Introduction to Kotlin Coroutines.............ccceeuererunrereniireniiienineninennniesnntsesieessssessssessssesessssesssenes 491
61.1 What are COTOULINES?c.veuieiriireieieerereietseeeteesesetset st tsesessessese st sesessessesessstsesesaessesessessesesacs 491
61.2 Threads vs. Coroutines
61.3 Coroutine Scope......ccccevurrincucucce
61.4 Suspend Functions.........c.ececevevenee.
61.5 Coroutine Dispatchers
61.6 COroutine BUILAETS.......ceueiirieeicireeeicireeccrceeictreeete ettt sttt ses st sesenaes
61,7 JODS vttt ettt ettt ettt et a ettt ettt ae ettt et et et s asab st et etenene et st enene
61.8 Coroutines — Suspending and RESUMING.........cc.ccueurmuirimniuriniiniiniiseesesesenessessessesssssesessnns
61.9 Returning Results from a COrOULINecocucueuucicieiniieiicisceese e
61.10 USING WItNCONLEXLcouveeeieriiiiiiiiciitseictscie st
61.11 Coroutine Channel COMMUNICAION w....cuueverrereveeeereeeieereeeieirereeetseseasessesesessesessessesesessesesnes
61,12 SUIMMATY ..ottt

62. An Android Kotlin Coroutines TUtorial..........coccvverurrervensisisuisnsnsininisennnnenininieiensssssmeme 499

62.1 Creating the Coroutine Example Application
62.2 Adding Coroutine SUppOIt to the Project.......occureeeerneeeneireereirienerreeenerseseeesseseeensenennes
62.3 Designing the User Interfaceccccocoeeeeureuvecrnennee

62.4 Implementing the SeekBar.............

62.5 Adding the Suspend Function
62.6 Implementing the launchCoroutines Method

XV

Table of Contents

62.7 TeStING the APP..cevuceieeeeireeeieireecieireieee et sese et sese e se s sese s sesessessesessessesessesenes
62.8 SUIMIMATY ..ot

63. An Overview of Android Services

63.1 Intent Service ...
63.2 Bound Service
63.3 The ANAtOMY Of @ SEIVICE c..vuvvrrviiirieeieireieieireeetct et ses ettt sese bbbt sese st sebe st s saetnenes

63.4 Controlling Destroyed Service Restart OPtions...........cceiureucucencueeceseieimeeuresssesesssesesssesesseenes 506
63.5 Declaring a Service in the Manifest File..........cccocviiinininiiniincincicicceieeceeseseesessseseneenes 506
63.6 Starting a Service Running on System Startup.........ccccovivciniiciccc 507
63.7 SUIMIMATY ...ttt b bt 508

64. Android Local Bound Services - A Worked EXample.........ccceccevirvericiniricnscnninnensncnnennscsscssensscsssesenns

64.1 Understanding Bound SEIVICES........ccvuurueuerreueenierieeeeirieeeeneeeeesseseeenseseesesseseesessesessessesensessenes
64.2 Bound Service Interaction OPHIONSccuevreeerureucrrenecerireecirereaetseesesseesessesesesseseesssesesessesesesnes
64.3 A Local Bound Service Example..........c.c.c......
64.4 Adding a Bound Service to the Project
64.5 Implementing the Bindercccccveuvevcrrerncnce.
64.6 Binding the Client to the Service......................
64.7 Completing the Example.......coccoeeunervevcrrerrenecn.
64.8 Testing the Application........cccoveveeeurervercererrenen.
64.9 SUMMATY ..ot bbb

65. Android Remote Bound Services - A Worked Example

65.1 Client to Remote Service CommuUNICatioN.........ccuuruuiveimiiimiiiciissessssssasssssssenns
65.2 Creating the Example APPLICAtioncccocuuiiuiiniiiiiniiniincicicieieseceecieiseeiecsesesesssesessesessenes
65.3 Designing the User INterface ..o secieeseisssesesesssesesssesessenes
65.4 Implementing the Remote Bound Service.........ccvuiuriuniinciniincincincieicinieesieeisessesesssesenseenes
65.5 Configuring a Remote Service in the Manifest File..........ccccocvcuniuvcincicioninininincnincncncinenes
65.6 Launching and Binding to the Remote Service........coouniincencincieicinieeirinsisessisesssesenseenes
65.7 Sending a Message to the Remote Servicecviiriuiirciniincincieieicinieescesesessesesssesenseenes
65.8 SUIMIMATY ...ttt bbbt

66. AN INtroduction t0 KOtLn FLOWccuuueeeeeiieeeeeisrreeeisssneesessssseesssssssesssssssssssssssssessssssssesssssasssssssssssssss

66.1 Understanding FIOWS........c.cocueueeirieencrnieeecinieenetereeetsesenesseseesessesessessesessessesessessesessessesessessenes 523
66.2 Creating the SAMPLe PIOJECTcvcueueeerreeeicireeceeireicieireeeeteeeeenseseesensese s ssesessessesensesenes 523
66.3 Adding the Kotlin Lifecycle LiDrarycccceenenenerneeenerneeeeneeeenseseesenseseesessesensensenes 524
66.4 Declaring @ FLOW........c.ccuceciieineinieetneieetneeeeteee s ssesseseesessesessessesessessesessessesessessesessessenes 524
66.5 EMItting FLOW Data.....c.ccvceeeieeeieirieerneieeineeeeesreeenetseseeessesessessesessessesessessessssessesessessesesesseses 525
66.6 Collecting FIOW Dataccveureueencerieeeerreieeeireeeeesrereeessesenessesessessesessessesessessessssessesessessesessessenes 525
66.7 AddIng @ FIOW BUFTTvueviicicicccrccctcccccceeeteeeee e sesessessesensenenes 526
66.8 Transforming Data with Intermediariesccocveeveureeeenerreeenernercinenneeeeneeeenseeesensesenensenes 528
66.9 Terminal FIOW OPErators......ccceuvcueurereurureucueinereiniseaerseneetstsesetseesesseesessessessesesessessssssesesessencsssnes
66.10 FLOW FIAttENINEGcvrevivereeicieecictreeeeetseicesetseee et sese s s s s s ssesessessesessessesessessesessesenes
66.11 Combining MUltiple FIOWSc.cvveeerrieeecrreeeeeirieeeeireeeeeteeeeesseseeessesessenseseesessesessessesessessenes
66.12 Hot and Cold FIOWS ... sssssessssnes
66.13 SLAtEFLOW ...t
66.14 SharedFlow
66.15 SUMMATY ...

67. An Android SharedFlow Tutorial

Xvi

Table of Contents

67.1 ADOUL the PIOJECLecvuveeicicecectrcicctreecceieeteeeee ettt sese s st sesensessesenncs 537
67.2 Creating the SharedFIoWDemO ProOject........ccocvueeerreeeeerreeemerreeeneineeeeensenenesseseesessesensensesennes 537
67.3 Designing the User Interface Layoutccveureeeererreeeererneeemerrereeetnenenersenenesseseesessesesessesenses 537

67.4 Adding the List ROW LaAYOULccvueverrieeeeirieeeeireeictreeeeenreeenessesensessese s ssesensessesessessesensessesenses 537
67.5 Adding the RecyclerVIew Adapter.......coueeirneeeencrreemerneneneirerenetseseesesseseesessesensessesessessesenses 538
67.6 Adding the VIEWMOELc..couivieeiiiriciiriceinecictreeeeneee et netsese s ssessesessessesensessesenses 539
67.7 Configuring the VieWMOdeIPTOVIErccviuriueererreeeeerneeeeeireeenctreeeeenseneeensesensessesessessesennes 540
67.8 Collecting the FLOW ValUes.........c.occcureieirieincineccineeeneeeeneneeetseseesessesensessesensessesensessesenses 541
67.9 Testing the SharedFIOWDEMO APP ...c.vuevereeererreeeeerrieeeerreneeesseseesessesensesseseesessesessessesessessesenses 542
67.10 Handling Flows in the Background..........cccocveneirireiniencineccreeeneeeenseeeeesseseeensenennes 542
67.11 SUIMMATY ..ttt 545

68. An Overview of Android SQLite DatabDasesccceeerrreeereeirreeeeeessseeeeessssseeecsssssseeesssssesessssssssessssssssesns 547

68.1 Understanding Database Tables.............cccvcuuvcinueiciininiiiiisesse e ssessessessesssesssns
68.2 Introducing Database SChema ..o
68.3 Columns and Datad TYPES ..c.c.eeeereveereerereeeirereieireseeetsesesetsesessessesessessesessessesessessesessessesessessesesns
68.4 Database ROWS ..ot
68.5 Introducing Primary Keyscccviuriniincincineieieieieisieseicissise e ssessssssssssssssns
68.6 What is SQLIte? ...c.ocvvvevreeireeerecieenene
68.7 Structured Query Language (SQL).......ccocriuiuremniineineuncrncieienenieeneeseseeeseneens
68.8 Trying SQLite on an Android Virtual Device (AVD)
68.9 The Android Room Persistence Library
68.10 SUIMMATY ...ttt ettt

69. The Android Room Persistence LiDraryccccvcvivivnininiinnnninininnnnensneenes 553
69.1 Revisiting Modern App ArChiteCtUrec.veveueeeecrreeeeerneeenerreeenetreeeeessesenesseseesessesensessesenses 553
69.2 Key Elements of Room Database PersisteniCe........ocvuueurreuemerreremrerreeemerrenemersesensessesensessesennes 553
69.2.1 REPOSIOTY ...ttt 554
69.2.2 ROOM Databasecccuiuimiiiiiiiiiis s 554
69.2.3 Data Access Object (DAQ)cuvcurrecriereerieererieenereeeese e ssesessessesessessesessessessasessescens 554
09.2.4 BNEIEIES oottt s
69.2.5 SQLILE DALADASE ...voeveereeeteeteeerete ettt ettt et r s et neereneans

69.3 Understanding Entities

69.4 Data Access Objects.......c.ceeurereneen.

69.5 The Room Database...........cccceucce.

69.6 The Repository........ccceeerereecurerrennne

69.7 In-Memory Databases....................

69.8 Database Inspector..........cococevuveueenes

69.9 SUMMATY ..ot

70. An Android TableLayout and TableROW TUtorialccccevcverrerrrinrinseiscnsennueninsensucsensessscsesseessessesnes 563
70.1 The TableLayout and TableROW Layout VIEWS.........coeeeureureveueerereenceremeeeereneeeeseseeessesessessesenne 563
70.2 Creating the Room Database PrOJECtcccuvcuueicicininiiriiiseineise e ssessessesasssesescsns 564
70.3 Converting to a LIN€arLayoul...........cococvviiiiiiniiiiniicc s 564
70.4 Adding the TableLayout to the User Interface..........cccccvuueiurininiiniineincinciscecicieicieeeieenenns 565
70.5 Configuring the TabIEROWSc.ccriuiiniiiiniicicicieeci e sae s 566
70.6 Adding the Button Bar to the LayOoutc.ccccuueieicininiriniineeise e 567
70.7 Adding the ReCyClerVIEW........cc.cuiiiiiiriiiincicicicicieieceeeeeicsise et sa s sssassses

70.8 Adjusting the Layout Margins
70.9 SUIMMATY ..ottt

xvii

Table of Contents

71. An Android Room Database and Repository Tutorial

71.1 About the ROOMDEMO PrOJECt........coviuivieiiieciiiriicieiriceeiceeeeeeseseeeesene e sseeenes
71.2 Modifying the Build Configuration
71.3 Building the Entity.......ccccocoeecnivcnincncenn.

71.4 Creating the Data Access Object..........c...........

71.5 Adding the Room Database........ccccocovuureuremnecn.

71.6 Adding the REPOSILOLYcuueuevmieererrerenicrieraeaeieesesseasessesessessessessessessesssssssssssssessssessssesense
71.7 Adding the VIEWMOMELcvemiiirciciicecieeieieiseieirestese s ssessssesssssssesssasensssensenses
71.8 Creating the Product Item Layoutccccocuveeeiirieeeneirieeericeeeneeeeeseeeeseseeesseseeseesesensenenes
71.9 Adding the RecyclerVIew Adapter.........ccvueerereeneeneerernierenenererensensessenseessssssssesssesessessesenses
71.10 Preparing the Main ACHVILYccoceveurieiierieierieieeeeeteeeseseeeseseese s ssessesensenenes
71.11 Adding the BUtton LISENETS.......ccecuueremeeruereeaieeenerneiseriesessessessessersessessensssssssssessssesessenenses
71.12 Adding LiveData ODSEIVELScccuevuereruerueaieeineaneiesseesessessessessessessessessssssssssesssssesessesenses
71.13 Initializing the RECYCLEIVIEW.......c.cvucvueecrreeeeeeinenneireieesesessesse s ssessnassssssssessasenssssesenses
71.14 Testing the ROOMDEIMO APPccuiuiiririeiiririeiriecieiineeeeereee e ssese e ssesessessesenssesenes
71.15 Using the Database INSPECtOrcccuiuiucuriueiniirieeieirieereieeeeseeeseseeeesese s ssessesensessenes
71.16 SUIMIMATY ..ot a bbbt s

72. Video Playback on Android using the VideoView and MediaController Classes..........ccecceueereruncenes 587

72.1 Introducing the Android VideoVIeW Classc.coceuveureeeenerrereenerrereincenereeeeseseesenseseesesseseesessenes
72.2 Introducing the Android MediaController Class
72.3 Creating the Video Playback Exampleccocoeunvurvceneurecuncnnee

72.4 Designing the VideoPlayer Layoutccocveeeererreeeeneurereenerreeeeeeseseeesseresesseseesessesessessesessessenes
72.5 Downloading the VIdeo File.........veiecireeincinicieineeeenneieeeeseeeeeeseseeesseseesessesessessesessessenes
72.6 Configuring the VIdEOVIEWccocueueecrreueercireeeicireieietrereeeeseieeetseseeessesessessesessessesessessesessesseses
72.7 Adding the MediaController to the Video VIEW......cccveuneureeeenerreeeeneereeeeneineneeseesereeseeseseesennenes
72.8 Setting up the onPreparedLiStENETcccureueercereeeereirereeerreieeerseseeesseseeesseseesessesessessesessessenes
72.9 SUIMIMATY ..ot

73. Android Picture-in-PiCture MOdE.......ccceeerereerrerrereeeerrrereeesssneeessssssesessssassssssssssssssssssssssssssasesssssssssesssse

73.1 Picture-in-Picture FEatUIes........cooevviiueiiiteiecte ettt
73.2 Enabling Picture-in-Picture Mode...................
73.3 Configuring Picture-in-Picture Parameters ...
73.4 Entering Picture-in-Picture Mode.............c.........
73.5 Detecting Picture-in-Picture Mode Changes.....
73.6 Adding Picture-in-Picture Actions...........ccceceu....
73.7 SUMMATY ...ovniiiniriiciicniecsesesssesenes

74. An Android Picture-in-Picture TULOFIal.........ccceeeeeiiiiiiirieeeeeeeeieeicecrssssnnneeeeeeeeesssssssssssssseseesssssssssssssans

74.1 Adding Picture-in-Picture Support to the Manifest........cocvweverreveererreeeereenereeserreveeseeseveesennenee
74.2 Adding a Picture-in-Picture BUONcccocureueencireeeineireeeeerreieeetseeetesseseeessesessessesessessesessessenes
74.3 Entering Picture-in-Picture MOde........c.ocevcureueencireeeineireeceneireeeietneeeieeseseesessesessessesessessesessessenes
74.4 Detecting Picture-in-Picture Mode Changesccocveeeveureeeererreueenerrereeseeseseesesseveesessesensesnenee
74.5 Adding a Broadcast RECEIVETc.oceuveureueecireeeeneireieieirereeenseeeeesseseeessesessessesessessesessessesessessenes
74.6 AdIng the PiP ACHOMN. ..c..ceueieeeieireeceetreieictneeeeet et sese et seseesetseseesetsesessessesessessesessessesesseseses
74.7 Testing the Picture-in-Picture ACHIONccocveueereureeeereerereeneireeeeeeseseesessereeesseseeessesessessesessessenes
74.8 SUIMIMATY ...t

75. Making Runtime Permission Requests in Android..........ccccceuueuueeee

75.1 Understanding Normal and Dangerous Permissions
75.2 Creating the Permissions Example Project..........cccoeencrieincirercincineceneneeeneseneeseesenenensenes

Xviii

Table of Contents

75.3 ChecKing for @ PErmiSSIONcc.euecueeeecrreurecireieetereesesseseesessessesessessesesseseeseaessesessesesensessesenns
75.4 Requesting Permission at RUNTIME.........ccoiiiiiiiiiiii s
75.5 Providing a Rationale for the Permission ReQUEStc..c.ececurerrecunerrencmnerrecnnernecnreneenneneeeenne
75.6 Testing the PermiSsions APP.......ccccceeererrerreremreuneeererneensesseessessesessessesessessesessessessssessesesessesenns
75.7 SUIMIMATY ..ottt bbb bbb bbb bbb bbb bbb

76. Android Audio Recording and Playback using MediaPlayer and MediaRecorder

76.1 Playing AUAIO ...ttt
76.2 Recording Audio and Video using the MediaRecorder Class
76.3 About the EXample PrOJECTccueueicireeeiiirieeieireeeictreieiciseeeteisese et sesessetsesessetsesesaessesessessesesnes
76.4 Creating the AUdIOAPD PTOJECL.......cciuiuiiiiciciciciciecseieei st
76.5 Designing the User INTerface ..o
76.6 Checking for Microphone Availability...........cccocueioiiiinininininicccccceceececciei
76.7 Initializing the ACHVILYccoiiiiriiccrccc e
76.8 Implementing the record Audio() Method........c.ccccuocuininininininincncrccceeceie e
76.9 Implementing the stopAudio() Method.........cccocuiiirinininininirecccceieeeieeeeeeeiees
76.10 Implementing the playAudio() method.........ccccciiiiininiiinicccccceceececees
76.11 Configuring and Requesting PErmiSSIONSc.ccccuiueiuriurimnieneinieserseiseneeessessessesaesssssssenens
76.12 Testing the Application..........ccccoeeveuveurerniercrncenenn.
76.13 SUMMATY ...

77. An Android Notifications Tutorial

77.1 An Overview of Notiflcations.........ccociiiiii e
77.2 Creating the NotifyDemo Projectcccvururrercirenenceniireeinerneenerseeseseeensessesessessesensessesenne
77.3 Designing the USer INTErfacecocuvueevcrreerencireinecireineeneseeeseseeessessesesessesessessesessessesesessesenns
77.4 Creating the SECONA ACHVILY ...c..c.overireererrerrecireirecirereeeresee e ssesessesesessessesnns
77.5 Creating a Notification Channelcccvevcunurercininenenenenenenecneeeeseeensesesensessesessessesenne
77.6 Requesting Notification PermiSsionc.ccccueecereurecrneineernerneennerneenesseensessesessessesensessesenne
77.7 Creating and Issuing @ NOTHICAtIONcocueuecureureciereicieeeereeeeenee e nseseesenne
77.8 Launching an Activity from a NOtiflcation.........ccccveueeeeuneurencinernencnnerneennerneennenseensessesenseseesenne
77.9 Adding Actions t0 @ NOtHfICAtIONcuueuecriericirrecierccrereereee et seesenne
77.10 Bundled NOtIICAtiONS. ..o sssasssas
77.11 SUMMATY oottt

78. An Android Direct Reply Notification Tutorialceceevcvverrerninsinscncnsenncncnsenncnensecncsesseenes

78.1 Creating the DirectReply Project ...
78.2 Designing the User INterface ..o ssesssssnns
78.3 Requesting Notification PermiSSioncccuccucucicminimniuniniineisieseseisesessessessessesssssssssssssns
78.4 Creating the Notification Channel............cccocvciinirinininininccecee e
78.5 Building the RemoteInput ODJect ...
78.6 Creating the PendingIntent. ..ot sse s
78.7 Creating the Reply ACHON........cc.cuiiiiiiicircicieie et ss e
78.8 Receiving Direct Reply INPUL.........cocuiuiiiincinciciciciciiieiccise et sse e
78.9 Updating the NOtHICAONcuvuiiriiiicicirciccic et sae s s
78.10 SUIMIMATY ..ottt bbbt

79. Working with the Google Maps Android API in Android Studioecevevvevrcrucsisersenesncsncennes

79.1 The Elements of the Google Maps Android API
79.2 Creating the Google Maps Project........c.ccocceuveunee
79.3 Creating a Google Cloud Billing Account.............
79.4 Creating a New Google Cloud Project..................

Xix

Table of Contents

79.5 Enabling the Google Maps SDK.......ccccveireeirrieeneinieenrereeesseseeessesenesseseesessesessessesessessenes
79.6 Generating a Google Maps API KeY.........ccocvuerreeeneineeemnenreieeerrereeenneseeenseseesessesessessesesessenes
79.7 Adding the API Key to the Android Studio Project...............
79.8 Testing the AppliCation.......cccvveeeureeceierecriereenneeeeeneeeneeneeens
79.9 Understanding Geocoding and Reverse Geocoding
79.10 Adding a Map to an Application..........cccveeeecereerecrrevencrnenens
79.11 Requesting Current Location Permission
79.12 Displaying the User’s Current LOCAtIONcocureueererreeeeerreeeeerrereeenrerenennesenensesessessesensensenes
79.13 Changing the Map TYPE......cvccureeererreeeeerreeeeetreeeeesseseeesseseesessesessessesessessessssessesesessesesessenes
79.14 Displaying Map Controls t0 the USeTccveureeeeerreeemnerreeeenerrereeenseremenseseeessesensessesenessenes
79.15 Handling Map Gesture INteraction........ccocveeecureeeererreeemerneeemsersereeensesenenseseesessesessesseseressenes
79.15.1 Map Z00MmiNgG GESTUIES.........cccevriiueiriireiiciiiiesiiesese st sssssesssssaessssssesssaes
79.15.2 Map Scrolling/Panning GeSTUIESc.cewcueermemeuemmereremeresemeresensesesessessesesessescssenens
79.15.3 Map Tilt GESLUIES.cueuiiuiricieireceeiricietreeie ettt ettt neaeas
79.15.4 Map Rotation GESLULES........cccvururueueuiinirinrerereecntntneetereetetsse et sse s sestatsseseseseseseseans
79.16 Creating Map MATKETIS......c..c.vceverreueeerreeeeeineeeeeneeeeetseseeessesessessesessessesensessessssessesessessesessesseses
79.17 Controlling the Map CamMeraccccveureueeerreeemrerrereeerrerenenseseeessesessessesessessesessessesessessesersessenes
79.18 SUMMATY ..ottt bbb bbb

80. Printing with the Android Printing Frameworkccccevuvrueiinrennucnrinnenncsinninnncninnicscninsecsesesseene

80.1 The Android Printing ATrChIteCtULEc.ccuuiuiuiuriuiiirciiiseecie e 663
80.2 The Print Service Plugins
80.3 Google Cloud Print.........cccccuceueevinerencenennenn.
80.4 Printing to GOOGle DIIVe........ccuiuiiiiiiciciiiicicsises e ss s
80.58aVE S PDF ...ttt
80.6 Printing from Android DEVICES ... ssesessenes 665
80.7 Options for Building Print Support into Android APps........ccececceececirinenirinenieseseeserseenes 666
80.7.1 Image PIiNting.......ccooviriiieinieiiiiiicicte b 666
80.7.2 Creating and Printing HTML CONteNLtccvcuiuriuiererneecrciencieecieimeesseassisesssesesssesesseeses 667
80.7.3 Printing @ Web Page........c.ccocuiiiiiiiiicccce e 668
80.7.4 Printing a Custom DOCUMENtccceviiiriiiiiiii s 669
80.8 SUMMATY ..ottt e 669

81. An Android HTML and Web Content Printing EXamplecccevvrvninirnsnsninisncsnsnsesesscssssennes

81.1 Creating the HTML Printing Example Applicationc..ceveureueererreeeenerneeeeserreveesenrerensensenee 671
81.2 Printing Dynamic HTML Content..................

81.3 Creating the Web Page Printing Example
81.4 Removing the Floating Action Button

81.5 Removing Navigation Features.............ccccc......

81.6 Designing the User Interface LaYOULcocvveveureueererreeeeerrereeerrereeenresensensesensessesessessesenessenes
81.7 Accessing the WebView from the Main ACHVILYc.ccveeevverreeeenerreecenerreeeeireneeenseneesensenenennenes 676
81.8 Loading the Web Page into the WebVIeW........ccccvveveirieeineeeenerneecieneeceineeeenreseeennesenennenes 676
81.9 Adding the Print Menu OPtioN.......ccccureeeecrreeeeerreeeeerreeeeeneeeeenseseesesseseesesseseesessesessessesessessenes 677
8110 SUMMATY ..ttt bbb s 679

82. A Guide to Android Custom Document Printing........cccocevevcrrernucnsensenncsinsinnncnsinnecscsissessesessecne

82.1 An Overview of Android Custom Document Printingc.ccccceceeceruneneeenesineseserneenes 681
82.1.1 Custom Print AdApPters.......cocveeecereerercireineeireineeineiseetsessese s sses s tsessesessessesessessessscseens
82.2 Preparing the Custom Document Printing Project
82.3 Creating the Custom Print Adapter..........ccccoecunee
82.4 Implementing the onLayout() Callback Method

Table of Contents

82.5 Implementing the onWrite() Callback Methodccoeueeecireemcineceeireceireceeneeeeenreeennes 687
82.6 Checking a Page is In RANGEc.vuevcrrieeieiriceireetreeereee et nsese e sesensessesensessesenses 689
82.7 Drawing the Content on the Page Canvascccecveeererreeernerneeemnernereeerseemsessesemsessesessesseseene 690

82.8 Starting the Print JOD ..ot sesenaes 692
82.9 Testing the APPLICAtION.cceuevcrreeeeeireeecireecereeeet ettt sese st sese s s s nsessesenaes 693
82.10 SUMMATY ..ottt bbb 693

83. An Introduction to Android APpP LinKS.......cccccvevveruinvinreininsinnecninninnicncninnenisesscsesesscsesseseseses 695

83.1 An Overview of Android APP Linkscccveeeeveureeeineirieineineeicneeeecineeeieiseseeeesesesessesessessesesne 695
83.2 AP Link INent FIIETScueuueviiiriecicireecicireictcincietct ettt sese et sesesse st sesessessesessessesennes 695
83.3 Handling App Link INTENESccucuiuiiiiiiciseicicicieiciee et sasss s sssssssens 696
83.4 Associating the App with @ Website.........ccocuocuviiiiiiiiciiniccc e 696
83.5 SUMMATY ..ottt bbb 697

84. An Android Studio App Links Tutorialccccccevirviiviiniriinsiininiininincetnencse et seeeessessessesnes 699

84.1 About the EXaMPLe APD ..cecvriieeirecieiricieireeietneieieteetsiseseiseeae e ssesese st sseesssseae s sessesesees
84.2 The Database Schema...........cccconuueece.
84.3 Loading and Running the Project.....
84.4 Adding the URL Mapping..............
84.5 Adding the Intent Filter..................
84.6 Adding Intent Handling Code.......
84.7 Testing the APp.....cccvcveeeerrecererrecrnennene
84.8 Creating the Digital Asset Links File
84.9 Testing the APP LiNK......ccciieiiiiecirecereectneieeetreieeensene s ssessesessessesessessesessessesessessesense
84.10 SUIMMATY ..ottt bbb bbb

85. An Android Biometric Authentication TUtOrial.........cccceeeerrveeeeeiirreerecerssereessrseeeeessssseeesessssseessssssesesns 709

85.1 An Overview of Biometric Authentication............ccceeirniviinicinesnns 709
85.2 Creating the Biometric Authentication Project ... 709
85.3 Configuring Device Fingerprint Authenticationcceeeeeneniincrncincincencineieicieneeeenen 710
85.4 Adding the Biometric Permission to the Manifest File.........cccccocveniuniiniincncinincioninininincns 710
85.5 Designing the User INterfaceccoeuvivininineinincincincinciceecceeeseeeeseeens

85.6 Adding a Toast Convenience Method...................

85.7 Checking the Security Settings............cocoeeurcuveunec.

85.8 Configuring the Authentication Callbacks
85.9 Adding the CancellationSignal..........cccocoeeurcuncunce.

85.10 Starting the Biometric PrOMPLc.ccvcuiuvcicincicieiciiriciiecisesese e ssessessessssesassnes
85.11 TeSting the PrOJECt. ...t
85.12 SUIMIMATY ..ottt

86. Creating, Testing, and Uploading an Android App Bundle...........cocevuevurrurrneninuisensnnencncsncsensensennes 717

86.1 The Release Preparation PrOCeSS........coceevcururecueineucirineeeinitieiseeseiseesetsesesesseessssesesessesessssesesees
86.2 ANAroid APP BUNAIEs.....c.c.cuiiueinicieireeieiecieirccsectsreeceeie ettt et een
86.3 Register for a Google Play Developer Console ACCOUNL.......c.ceeevreeeeerreeemrerrereerersereesensenennes
86.4 Configuring the App in the COonsoleccreercrreeenerreeereeenereeeeseeeeesseseeesseseesessesenses
86.5 Enabling Google Play APpP SIgNINg........ccocreeueureeeererrieemerninenerrerenetsesensessesessessesessessesessessesenses
86.6 Creating a Keystore Filecceiirieiiirieeeeieteeeenneeeeessese et ssessesessessesensessesensessesenses
86.7 Creating the Android App Bundle....
86.8 Generating Test APK Files......couvveuiurecrniineceiineceireeeieeeneeeeseneeeeeeneeenaens
86.9 Uploading the App Bundle to the Google Play Developer Console
86.10 Exploring the App Bundle ...

XXi

Table of Contents

86.11 Managing TESTELScccccuviiiiriiieiiiiiiciieie ettt sssss
86.12 Rolling the App Out fOr TeSHING......cccvreueeerrereeerrereieirereeerreeeeerereeessesensesseseesessesessessesensessenes
86.13 Uploading New App Bundle Revisions
86.14 Analyzing the App Bundle File

86.15 SUMMATY ..ottt bbb

87. An Overview of Android In-App Billingcccccevevirruinininnininsnneinininncniniiscncniensesisesseseseene 731

87.1 Preparing a Project for In-App PUrchasingc.ecvcveuveuneincenciveineieinineniessessesesssesenseenes 731
87.2 Creating In-App Products and SUDSCIIPHONSc.cvueviureuiicencieieicieieeerinesesesseseseseseneenes 731
87.3 Billing Client InitialiZation..........c.ccccucueieiririiiriniircsse e sesesseaes 732
87.4 Connecting to the Google Play Billing Library..........ccccocvcvevcincivcineicioninenieinesiseseiscnneenes 733
87.5 Querying Available ProdUCtS.........c.ccocuiciiiniiiniirciscicce e
87.6 Starting the PUrchase PrOCESS........coccuuiiuiriuiiiiiinessise s ssessssesssssssasesssasessssessenes
87.7 Completing the PUIChAse..........c.ccucuiiciciciciiiccirce et
87.8 Querying Previous PUIChases..........ccccuiiiiiiiniiniinisiscccie e
87.9 SUIMMATY ..ottt

88. An Android In-App Purchasing Tutorial

88.1 About the In-App Purchasing Example Project....
88.2 Creating the InAppPurchase Project............c........
88.3 Adding Libraries to the Project.........ccccveuuece.
88.4 Designing the User Interface.........ccocceceeurerenee.
88.5 Adding the App to the Google Play StOre........cccvveverrieeenerreeeenerreeeierreeeeeireseeenseaeeensesenennenes
88.6 Creating an IN-APP PrOAUCT......cccvevcrreeicireeeireecetreeeeneeeeesseseesensese s ssessesessessesessessenes
88.7 ENabling LiCense TESTELScvuueurirreuererrereeerrieeeetreeeesetsesemesseseesessesessessesensessesessessesessessesersessenes
88.8 Initializing the Billing CHENLccccureuererrieeeeireeeetreeeieteeeenereeenseseeensese s esessesessessesensessenes
88.9 QUErying the PrOQUCL.......cccoeueeeicireeirecctreectreceteeeet et ssese e ssese e sesessessesenseaenes
88.10 Launching the PUIrchase FIOW ..ot nesseseesensesessessesensensenes
88.11 Handling Purchase UPAatesccveureueeerreueenerreeeeneineeeenreeenenseseesenseseeensesessessesessessesessessenes
88.12 Consuming the PrOAUCLccvcuiueierreeecirecetrecetreee et neseesessese s ssesessessesensessenes
88.13 Restoring a Previous PUIChAsecccueeeecureeeecireecieinicetreieeeneneeensese s esessesessessesensensenes
88.14 TeStING the APP..ccrieererreeeierreeeieireeeerreeeeetseee e sseseeses st sese et se s ssese s ssesessessesessessesessesenes
88.15 Troubleshooting
88.16 SUMMATY ..o

89. Working with Material Design 3 Theming

89.1 Material Design 2 vs. Material DeSigI 3ccouiuriuiiiniiniincieinciieieiecseieeicsesisesssesessseseseenes 749
89.2 Understanding Material Design Themingcccecveureuniurcrneinceneeeeeiecnimeeeisesesesssesesssesesseenes 749
89.3 Material Design 3 TREMUNGc..cocuiuiiicicimiiiiiesies e 749
89.4 Building @ Custom TREMme. ..o 751
89.5 SUIMMATY ..ottt 752

90. A Material Design 3 Theming and Dynamic Color Tutorial...........cccoevevuirurrnsnriniscsnsnsesesscsnesennes 753

90.1 Creating the ThemeDemO PrOJECtc.vveveureeeeerreeeeeirieeeerreieeereseeeesesensenseseesessesessessesensessenes
90.2 Designing the USer INTEIfacecvueverreeeecrriremerrieeieineeeeeteeeeesseseesessesensesseseesessesessessesessessenes
90.3 Building @ NeW THEIIEc.cvereueeeireeeeerreeeietreeeeetresenessese s sesesses s ssessesessessesessessesessessesessessenes
90.4 Adding the Theme t0 the PIOJECt ..ot nsesessensesensensenes
90.5 Enabling Dynamic Color Support
90.6 Previewing Dynamic Colors.........ccocveeeurereneen.

90.7 SUIMIMATY ..ottt

91. An Overview of Gradle in Android Studio

xxii

Table of Contents

91.1 AN OVErview Of GIadlec.ccucuicicireeeeiricenecictreecee et ssese e sesensessesensessesenses 761
91.2 Gradle and Android StUAIOc.vueveereeeeeiriieeirectreeeree et seae e seaenaes 761

91.2.1 Sensible Defaults

91.2.2 Dependencies.........cocecueuremcenenee.

91.2.3 Build Variantsccocceeeeureunece

91.2.4 Manifest Entriescccccvvueeeee.

91.2.5 APK Signing........cccoevvmmnuennnenns

91.2.6 ProGuard Support
91.3 The Property and Settings Gradle Build File........ccccoceuernemeineemncinecerneeereeeerreeeeensenennes 762
91.4 The Top-level Gradle Build File..........ccceneveurineiininiciniccinicricecisecesecietseciseseae e eeseseaseseses 763
91.5 Module Level Gradle Build Files..........ccvereeiinieenerrieiernieeireeeneineeeeensenenessesensessesesessesennes 764
91.6 Configuring Signing Settings in the Build File........c..ccoeuneeircncinecereeerececrreeeenneeennes 766
91.7 Running Gradle Tasks from the Command Lineccococeeeureemnerreeenerreeenerneeenerneneesenrenennes 767
91,8 SUMMATY ..ot 768

INAEX ettt bbb e s b RS beb e bR s b e bbb b s

Xxiii

Chapter 1

1. Introduction

Fully updated for Android Studio Giraffe and the new U], this book teaches you how to develop Android-based
applications using the Kotlin programming language.

This book begins with the basics and outlines how to set up an Android development and testing environment,
followed by an introduction to programming in Kotlin, including data types, control flow, functions, lambdas,
and object-oriented programming. Asynchronous programming using Kotlin coroutines and flow is also
covered in detail.

Chapters also cover the Android Architecture Components, including view models, lifecycle management,
Room database access, the Database Inspector, app navigation, live data, and data binding.

More advanced topics such as intents are also covered, as are touch screen handling, gesture recognition, and the
recording and playback of audio. This book edition also covers printing, transitions, and foldable device support.

The concepts of material design are also covered in detail, including the use of floating action buttons, Snackbars,
tabbed interfaces, card views, navigation drawers, and collapsing toolbars.

Other key features of Android Studio and Android are also covered in detail, including the Layout Editor, the
ConstraintLayout and ConstraintSet classes, MotionLayout Editor, view binding, constraint chains, barriers,
and direct reply notifications.

Chapters also cover advanced features of Android Studio, such as App Links, Gradle build configuration, in-app
billing, and submitting apps to the Google Play Developer Console.

Assuming you already have some programming experience, are ready to download Android Studio and the
Android SDK, have access to a Windows, Mac, or Linux system, and have ideas for some apps to develop, you
are ready to get started.

1.1 Downloading the Code Samples

The source code and Android Studio project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/giraffekotlin/index.php
The steps to load a project from the code samples into Android Studio are as follows:
1. From the Welcome to Android Studio dialog, click on the Open button option.

2. In the project selection dialog, navigate to and select the folder containing the project to be imported and
click on OK.

1.2 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/giraffekotlin/index.php
mailto:feedback%40ebookfrenzy.com?subject=

Introduction

1.3 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/giraffekotlin. html

If you find an error not listed in the errata, please let us know by emailing our technical support team at feedback@
ebookfrenzy.com. They are there to help you and will work to resolve any problems you may encounter.

https://www.ebookfrenzy.com/errata/giraffekotlin.html
mailto:feedback%40ebookfrenzy.com?subject=
mailto:feedback%40ebookfrenzy.com?subject=

Chapter 2

2. Setting up an Android Studio
Development Environment

Before any work can begin on developing an Android application, the first step is to configure a computer
system to act as the development platform. This involves several steps consisting of installing the Android Studio
Integrated Development Environment (IDE), including the Android Software Development Kit (SDK), the
Kotlin plug-in and the Open]JDK Java development environment.

This chapter will cover the steps necessary to install the requisite components for Android application
development on Windows, macOS, and Linux-based systems.

2.1 System requirements

Android application development may be performed on any of the following system types:
« Windows 8/10/11 64-bit

« macOS 10.14 or later running on Intel or Apple silicon

« Chrome OS device with Intel i5 or higher

o Linux systems with version 2.31 or later of the GNU C Library (glibc)

o Minimum of 8GB of RAM

« Approximately 8GB of available disk space

« 1280 x 800 minimum screen resolution

2.2 Downloading the Android Studio package

Most of the work involved in developing applications for Android will be performed using the Android Studio
environment. The content and examples in this book were created based on Android Studio Giraffe 2022.3.1
using the Android API 33 SDK (Tiramisu), which, at the time of writing, are the latest stable releases.

Android Studio is, however, subject to frequent updates, so a newer version may have been released since this
book was published.

The latest release of Android Studio may be downloaded from the primary download page, which can be found
at the following URL:

https://developer.android.com/studio/index.html

If this page provides instructions for downloading a newer version of Android Studio, there may be differences
between this book and the software. A web search for “Android Studio Giraffe” should provide the option to
download the older version if these differences become a problem. Alternatively, visit the following web page to
find Android Studio Giraffe 2022.3.1 in the archives:

https://developer.android.com/studio/archive

https://developer.android.com/studio/index.html
https://developer.android.com/studio/archive

Setting up an Android Studio Development Environment

2.3 Installing Android Studio

Once downloaded, the exact steps to install Android Studio differ depending on the operating system on which
the installation is performed.

2.3.1 Installation on Windows

Locate the downloaded Android Studio installation executable file (named android-studio-<version>-windows.
exe) in a Windows Explorer window and double-click on it to start the installation process, clicking the Yes
button in the User Account Control dialog if it appears.

Once the Android Studio setup wizard appears, work through the various screens to configure the installation to
meet your requirements in terms of the file system location into which Android Studio should be installed and
whether or not it should be made available to other system users. When prompted to select the components to
install, ensure that the Android Studio and Android Virtual Device options are all selected.

Although there are no strict rules on where Android Studio should be installed on the system, the remainder
of this book will assume that the installation was performed into C:\Program Files\Android\Android Studio and
that the Android SDK packages have been installed into the user’s AppData\Local\Android\sdk sub-folder. Once
the options have been configured, click the Install button to begin the installation process.

On versions of Windows with a Start menu, the newly installed Android Studio can be launched from the entry
added to that menu during the installation. The executable may be pinned to the taskbar for easy access by
navigating to the Android Studio\bin directory, right-clicking on the studio64 executable, and selecting the Pin to
Taskbar menu option (on Windows 11, this option can be found by selecting Show more options from the menu).

2.3.2 Installation on macOS

Android Studio for macOS is downloaded as a disk image (.dmg) file. Once the android-studio-<version>-mac.
dmg file has been downloaded, locate it in a Finder window and double-click on it to open it, as shown in Figure
2-1:

Figure 2-1

To install the package, drag the Android Studio icon and drop it onto the Applications folder. The Android
Studio package will then be installed into the Applications folder of the system, a process that will typically take
a few seconds to complete.

To launch Android Studio, locate the executable in the Applications folder using a Finder window and double-
click on it.

For future, easier access to the tool, drag the Android Studio icon from the Finder window and drop it onto the
dock.

4

Setting up an Android Studio Development Environment

2.3.3 Installation on Linux

Having downloaded the Linux Android Studio package, open a terminal window, change directory to the
location where Android Studio is to be installed, and execute the following command:

tar xvfz /<path to package>/android-studio-<version>-linux.tar.gz

Note that the Android Studio bundle will be installed into a subdirectory named android-studio. Therefore,

assuming that the above command was executed in /home/demo, the software packages will be unpacked into /
home/demo/android-studio.

To launch Android Studio, open a terminal window, change directory to the android-studio/bin sub-directory,
and execute the following command:

./studio.sh

2.4 The Android Studio setup wizard

If you have previously installed an earlier version of Android Studio, the first time this new version is launched,
a dialog may appear providing the option to import settings from a previous Android Studio version. If you have
settings from a previous version and would like to import them into the latest installation, select the appropriate
option and location. Alternatively, indicate that you do not need to import any previous settings and click the
OK button to proceed.

If you are installing Android Studio for the first time, the initial dialog that appears once the setup process starts
may resemble that shown in Figure 2-2 below:

Figure 2-2

If this dialog appears, click the Next button to display the Install Type screen (Figure 2-3). On this screen, select
the Standard installation option before clicking Next.

Setting up an Android Studio Development Environment

Figure 2-3
On the Select UI Theme screen, select either the Darcula or Light theme based on your preferences. After
making a choice, click Next, and review the options in the Verify Settings screen before proceeding to the
License Agreement screen. Select each license category and enable the Accept checkbox. Finally, click the Finish
button to initiate the installation.

After these initial setup steps have been taken, click the Finish button to display the Welcome to Android Studio
screen using your chosen Ul theme:

Figure 2-4
2.5 Installing additional Android SDK packages

The steps performed so far have installed the Android Studio IDE and the current set of default Android SDK
packages. Before proceeding, it is worth taking some time to verify which packages are installed and to install
any missing or updated packages.

Setting up an Android Studio Development Environment

This task can be performed by clicking on the More Actions link within the welcome dialog and selecting the
SDK Manager option from the drop-down menu. Once invoked, the Android SDK screen of the Settings dialog
will appear as shown in Figure 2-5:

Figure 2-5

Google pairs each release of Android Studio with a maximum supported Application Programming Interface
(API) level of the Android SDK. In the case of Android Studio Giraffe, this is Android Tiramisu (API Level 33).
This information can be confirmed using the following link:

https://developer.android.com/studio/releases#api-level-support

Immediately after installing Android Studio for the first time, it is likely that only the latest supported version
of the Android SDK has been installed. To install older versions of the Android SDK, select the checkboxes
corresponding to the versions and click the Apply button. The rest of this book assumes that the Android
Tiramisu (API Level 33) SDK is installed.

Most of the examples in this book will support older versions of Android as far back as Android 8.0 (Oreo).
This ensures that the apps run on a wide range of Android devices. Within the list of SDK versions, enable
the checkbox next to Android 8.0 (Oreo) and click the Apply button. Click the OK button to install the SDK
in the resulting confirmation dialog. Subsequent dialogs will seek the acceptance of licenses and terms before
performing the installation. Click Finish once the installation is complete.

It is also possible that updates will be listed as being available for the latest SDK. To access detailed information
about the packages that are ready to be updated, enable the Show Package Details option located in the lower
right-hand corner of the screen. This will display information similar to that shown in Figure 2-6:

https://developer.android.com/studio/releases#api-level-support

Setting up an Android Studio Development Environment

Figure 2-6

The above figure highlights the availability of an update. To install the updates, enable the checkbox to the left of
the item name and click the Apply button.

In addition to the Android SDK packages, several tools are also installed for building Android applications. To
view the currently installed packages and check for updates, remain within the SDK settings screen and select
the SDK Tools tab as shown in Figure 2-7:

Figure 2-7

Within the Android SDK Tools screen, make sure that the following packages are listed as Installed in the Status
column:

« Android SDK Build-tools

« Android Emulator

« Android SDK Platform-tools
» Google Play Services

« Intel x86 Emulator Accelerator (HAXM installer)”

Google USB Driver (Windows only)
+ Layout Inspector image server for API 31 and 34

"Note that the Intel x86 Emulator Accelerator (HAXM installer) cannot be installed on Apple silicon-based
Macs.

If any of the above packages are listed as Not Installed or requiring an update, select the checkboxes next to those
packages and click the Apply button to initiate the installation process. If the HAXM emulator settings dialog
appears, select the recommended memory allocation:

Setting up an Android Studio Development Environment

Figure 2-8

Once the installation is complete, review the package list and ensure that the selected packages are listed as
Installed in the Status column. If any are listed as Not installed, make sure they are selected and click the Apply
button again.

2.6 Installing the Android SDK Command-line Tools

Android Studio includes tools that allow some tasks to be performed from your operating system command
line. To install these tools on your system, open the SDK Manager, select the SDK Tools tab, and locate the
Android SDK Command-line Tools (latest) package as shown in Figure 2-9:

Figure 2-9
If the command-line tools package is not already installed, enable it and click Apply, followed by OK to complete
the installation. When the installation completes, click Finish and close the SDK Manager dialog.

For the operating system on which you are developing to be able to find these tools, it will be necessary to add
them to the system’s PATH environment variable.

Setting up an Android Studio Development Environment

Regardless of your operating system, you will need to configure the PATH environment variable to include the
following paths (where <path_to_android_sdk_installation> represents the file system location into which you
installed the Android SDK):

<path to android sdk installation>/sdk/cmdline-tools/latest/bin
<path to android sdk installation>/sdk/platform-tools

You can identify the location of the SDK on your system by launching the SDK Manager and referring to the
Android SDK Location: field located at the top of the settings panel, as highlighted in Figure 2-10:

Figure 2-10

Once the location of the SDK has been identified, the steps to add this to the PATH variable are operating system
dependent:

2.6.1 Windows 8.1

1. On the start screen, move the mouse to the bottom right-hand corner of the screen and select Search from
the resulting menu. In the search box, enter Control Panel. When the Control Panel icon appears in the
results area, click on it to launch the tool on the desktop.

2. Within the Control Panel, use the Category menu to change the display to Large Icons. From the list of
icons, select the one labeled System.

3. Inthe Environment Variables dialog, locate the Path variable in the System variables list, select it, and click
the Edit... button. Using the New button in the edit dialog, add two new entries to the path. For example,
assuming the Android SDK was installed into C:\Users\demo\AppData\Local\Android\Sdk, the following
entries would need to be added:

C:\Users\demo\AppData\Local\Android\Sdk\cmdline-tools\latest\bin
C:\Users\demo\AppData\Local\Android\Sdk\platform-tools

4. Click OK in each dialog box and close the system properties control panel.

Open a command prompt window by pressing Windows + R on the keyboard and entering cmd into the Run
dialog. Within the Command Prompt window, enter:

echo %Path%

The returned path variable value should include the paths to the Android SDK platform tools folders. Verify that
the platform-tools value is correct by attempting to run the adb tool as follows:

adb

The tool should output a list of command-line options when executed.

Similarly, check the tools path setting by attempting to run the AVD Manager command-line tool (don’t worry
if the avdmanager tool reports a problem with Java - this will be addressed later):

avdmanager
If a message similar to the following message appears for one or both of the commands, it is most likely that an

10

Setting up an Android Studio Development Environment

incorrect path was appended to the Path environment variable:

'adb' is not recognized as an internal or external command,

operable program or batch file.

2.6.2 Windows 10

Right-click on the Start menu, select Settings from the resulting menu and enter “Edit the system environment
variables” into the Find a setting text field. In the System Properties dialog, click the Environment Variables...
button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.3 Windows 11

Right-click on the Start icon located in the taskbar and select Settings from the resulting menu. When the
Settings dialog appears, scroll down the list of categories and select the “About” option. In the About screen,
select Advanced system settings from the Related links section. When the System Properties window appears,
click the Environment Variables... button. Follow the steps outlined for Windows 8.1 starting from step 3.

2.6.4 Linux

This configuration can be achieved on Linux by adding a command to the .bashrc file in your home directory
(specifics may differ depending on the particular Linux distribution in use). Assuming that the Android SDK
bundle package was installed into /home/demo/Android/sdk, the export line in the .bashrc file would read as
follows:

export PATH=/home/demo/Android/sdk/platform-tools:/home/demo/Android/sdk/cmdline-
tools/latest/bin:/home/demo/android-studio/bin:$PATH

Note also that the above command adds the android-studio/bin directory to the PATH variable. This will enable
the studio.sh script to be executed regardless of the current directory within a terminal window.

2.6.5 macOS

Several techniques may be employed to modify the $PATH environment variable on macOS. Arguably the
cleanest method is to add a new file in the /etc/paths.d directory containing the paths to be added to $PATH.
Assuming an Android SDK installation location of /Users/demo/Library/Android/sdk, the path may be configured
by creating a new file named android-sdk in the /etc/paths.d directory containing the following lines:

/Users/demo/Library/Android/sdk/cmdline-tools/latest/bin
/Users/demo/Library/Android/sdk/platform-tools

Note that since this is a system directory, it will be necessary to use the sudo command when creating the file.
For example:

sudo vi /etc/paths.d/android-sdk

2.7 Android Studio memory management

Android Studio is a large and complex software application with many background processes. Although
Android Studio has been criticized in the past for providing less than optimal performance, Google has made
significant performance improvements in recent releases and continues to do so with each new version. These
improvements include allowing the user to configure the amount of memory used by both the Android Studio
IDE and the background processes used to build and run apps. This allows the software to take advantage of
systems with larger amounts of RAM.

If you are running Android Studio on a system with sufficient unused RAM to increase these values (this feature
is only available on 64-bit systems with 5GB or more of RAM) and find that Android Studio performance
appears to be degraded, it may be worth experimenting with these memory settings. Android Studio may also
notify you that performance can be increased via a dialog similar to the one shown below:

11

Setting up an Android Studio Development Environment

Figure 2-11

To view and modify the current memory configuration, select the File -> Settings... main menu option (Android
Studio -> Settings... on macOS) and, in the resulting dialog, select Appearance & Behavior followed by the
Memory Settings option listed under System Settings in the left-hand navigation panel, as illustrated in Figure
2-12 below:

Figure 2-12

When changing the memory allocation, be sure not to allocate more memory than necessary or than your
system can spare without slowing down other processes.

The IDE heap size setting adjusts the memory allocated to Android Studio and applies regardless of the
currently loaded project. On the other hand, when a project is built and run from within Android Studio,
several background processes (referred to as daemons) perform the task of compiling and running the app.
When compiling and running large and complex projects, build time could be improved by adjusting the
daemon heap settings. Unlike the IDE heap settings, these daemon settings apply only to the current project and
can only be accessed when a project is open in Android Studio. To display the SDK Manager from within an
open project, select the Tools -> SDK Manager... menu option from the main menu.

2.8 Updating Android Studio and the SDK

From time to time, new versions of Android Studio and the Android SDK are released. New versions of the SDK
are installed using the Android SDK Manager. Android Studio will typically notify you when an update is ready
to be installed.

To manually check for Android Studio updates, use the Help -> Check for Updates... menu option from the
Android Studio main window (Android Studio -> Check for Updates... on macOS).

12

Setting up an Android Studio Development Environment

2.9 Summary

Before beginning the development of Android-based applications, the first step is to set up a suitable development
environment. This consists of the Android SDKs and Android Studio IDE (which also includes the OpenJDK
development environment). This chapter covers the steps necessary to install these packages on Windows,
macO§, and Linux.

13

Chapter 3

3. Creating an Example Android App
in Android Studio

The preceding chapters of this book have covered the steps necessary to configure an environment suitable for
developing Android applications using the Android Studio IDE. Before moving on to slightly more advanced
topics, now is a good time to validate that all required development packages are installed and functioning
correctly. The best way to achieve this goal is to create an Android application and compile and run it. This
chapter will cover creating an Android application project using Android Studio. Once the project has been
created, a later chapter will explore using the Android emulator environment to perform a test run of the
application.

3.1 About the Project

The project created in this chapter takes the form of a rudimentary currency conversion calculator (so simple, in
fact, that it only converts from dollars to euros and does so using an estimated conversion rate). The project will
also use one of the most basic Android Studio project templates. This simplicity allows us to introduce some key
aspects of Android app development without overwhelming the beginner by introducing too many concepts,
such as the recommended app architecture and Android architecture components, at once. When following
the tutorial in this chapter, rest assured that the techniques and code used in this initial example project will be
covered in much greater detail later.

3.2 Creating a New Android Project

The first step in the application development process is to create a new project within the Android Studio
environment. Begin, therefore, by launching Android Studio so that the “Welcome to Android Studio” screen
appears as illustrated in Figure 3-1:

Figure 3-1
15

Creating an Example Android App in Android Studio

Once this window appears, Android Studio is ready for a new project to be created. To create the new project,
click on the New Project option to display the first screen of the New Project wizard.

3.3 Creating an Activity

The next step is to define the type of initial activity to be created for the application. Options are available to
create projects for Phone and Tablet, Wear OS, Television, or Automotive. A range of different activity types is
available when developing Android applications, many of which will be covered extensively in later chapters.
For this example, however, select the Phone and Tablet option from the Templates panel, followed by the option
to create an Empty Views Activity. The Empty Views Activity option creates a template user interface consisting
of a single TextView object.

Figure 3-2
With the Empty Views Activity option selected, click Next to continue with the project configuration.

3.4 Defining the Project and SDK Settings

In the project configuration window (Figure 3-3), set the Name field to AndroidSample. The application name is
the name by which the application will be referenced and identified within Android Studio and is also the name
that would be used if the completed application were to go on sale in the Google Play store.

The Package name uniquely identifies the application within the Android application ecosystem. Although this
can be set to any string that uniquely identifies your app, it is traditionally based on the reversed URL of your
domain name followed by the application’s name. For example, if your domain is www.mycompany.com, and the
application has been named AndroidSample, then the package name might be specified as follows:

com.mycompany.androidsample

If you do not have a domain name, you can enter any other string into the Company Domain field, or you may
use example.com for testing, though this will need to be changed before an application can be published:
com.example.androidsample

The Save location setting will default to a location in the folder named AndroidStudioProjects located in your

home directory and may be changed by clicking on the folder icon to the right of the text field containing the
current path setting.

Set the minimum SDK setting to API 26 (Oreo; Android 8.0). This minimum SDK will be used in most projects
created in this book unless a necessary feature is only available in a more recent version. The objective here is to

16

Creating an Example Android App in Android Studio

build an app using the latest Android SDK while retaining compatibility with devices running older versions of
Android (in this case, as far back as Android 8.0). The text beneath the Minimum SDXK setting will outline the
percentage of Android devices currently in use on which the app will run. Click on the Help me choose button
(highlighted in Figure 3-3) to see a full breakdown of the various Android versions still in use:

Figure 3-3

Finally, change the Language menu to Kotlin and select Kotlin DSL (build.gradle.kts) as the build configuration
language before clicking Finish to create the project.

3.5 Enabling the New Android Studio Ul

Android Studio is transitioning to a new, modern user interface that is not enabled by default in the Giraffe
version. If your installation of Android Studio resembles Figure 3-4 below, then you will need to enable the new
UI before proceeding:

Figure 3-4

17

Creating an Example Android App in Android Studio

Enable the new Ul by selecting the File -> Settings... menu option (Android Studio -> Settings... on macOS) and
selecting the New UI option under Appearance and Behavior in the left-hand panel. From the main panel, turn
on the Enable new UI checkbox before clicking Apply, followed by OK to commit the change:

Figure 3-5

When prompted, restart Android Studio to activate the new user interface.

3.6 Moditying the Example Application

Once Android Studio has restarted, the main window will reappear using the new Ul and containing our
AndroidSample project as illustrated in Figure 3-6 below:

Figure 3-6

The newly created project and references to associated files are listed in the Project tool window on the left side
of the main project window. The Project tool window has several modes in which information can be displayed.
By default, this panel should be in Android mode. This setting is controlled by the menu at the top of the panel
as highlighted in Figure 3-7. If the panel is not currently in Android mode, use the menu to switch mode:

18

Creating an Example Android App in Android Studio

Figure 3-7
3.7 Moditying the User Interface

The user interface design for our activity is stored in a file named activity_main.xml which, in turn, is located
under app -> res -> layout in the Project tool window file hierarchy. Once located in the Project tool window,
double-click on the file to load it into the user interface Layout Editor tool, which will appear in the center panel
of the Android Studio main window:

Figure 3-8
19

Creating an Example Android App in Android Studio

In the toolbar across the top of the Layout Editor window is a menu (currently set to Pixel in the above figure)
which is reflected in the visual representation of the device within the Layout Editor panel. A range of other
device options are available by clicking on this menu.

Use the System UI Mode button () to turn Night mode on and off for the device screen layout. To change
the orientation of the device representation between landscape and portrait, use the drop-down menu showing

the icon.

As we can see in the device screen, the content layout already includes a label that displays a “Hello World!”
message. Running down the left-hand side of the panel is a palette containing different categories of user
interface components that may be used to construct a user interface, such as buttons, labels, and text fields.
However, it should be noted that not all user interface components are visible to the user. One such category
consists of layouts. Android supports a variety of layouts that provide different levels of control over how visual
user interface components are positioned and managed on the screen. Though it is difficult to tell from looking
at the visual representation of the user interface, the current design has been created using a ConstraintLayout.
This can be confirmed by reviewing the information in the Component Tree panel, which, by default, is located
in the lower left-hand corner of the Layout Editor panel and is shown in Figure 3-9:

Figure 3-9

As we can see from the component tree hierarchy, the user interface layout consists of a ConstraintLayout parent
and a TextView child object.

Before proceeding, check that the Layout Editor’s Autoconnect mode is enabled. This means that as components
are added to the layout, the Layout Editor will automatically add constraints to ensure the components are
correctly positioned for different screen sizes and device orientations (a topic that will be covered in much greater
detail in future chapters). The Autoconnect button appears in the Layout Editor toolbar and is represented by a
U-shaped icon. When disabled, the icon appears with a diagonal line through it (Figure 3-10). If necessary, re-
enable Autoconnect mode by clicking on this button.

Figure 3-10

The next step in modifying the application is to add some additional components to the layout, the first of which
will be a Button for the user to press to initiate the currency conversion.

The Palette panel consists of two columns, with the left-hand column containing a list of view component
categories. The right-hand column lists the components contained within the currently selected category. In
Figure 3-11, for example, the Button view is currently selected within the Buttons category:

20

Creating an Example Android App in Android Studio

Figure 3-11

Click and drag the Button object from the Buttons list and drop it in the horizontal center of the user interface
design so that it is positioned beneath the existing TextView widget:

Figure 3-12

The next step is to change the text currently displayed by the Button component. The panel located to the right
of the design area is the Attributes panel. This panel displays the attributes assigned to the currently selected
component in the layout. Within this panel, locate the text property in the Common Attributes section and
change the current value from “Button” to “Convert’, as shown in Figure 3-13:

21

Creating an Example Android App in Android Studio

Figure 3-13

The second text property with a wrench next to it allows a text property to be set, which only appears within the
Layout Editor tool but is not shown at runtime. This is useful for testing how a visual component and the layout
will behave with different settings without running the app repeatedly.

Just in case the Autoconnect system failed to set all of the layout connections, click on the Infer Constraints
button (Figure 3-14) to add any missing constraints to the layout:

Figure 3-14

It is important to explain the warning button in the top right-hand corner of the Layout Editor tool, as indicated
in Figure 3-15. This warning indicates potential problems with the layout. For details on any problems, click on
the button:

Figure 3-15
When clicked, the Problems tool window (Figure 3-16) will appear, describing the nature of the problems:

Figure 3-16
This tool window is divided into two panels. The left panel (marked A in the above figure) lists issues detected
22

Creating an Example Android App in Android Studio

within the layout file. In our example, only the following problem is listed:
button <Button>: Hardcoded text

When an item is selected from the list (B), the right-hand panel will update to provide additional detail on the
problem (C). In this case, the explanation reads as follows:

Hardcoded string "Convert", should use @string resource
The tool window also includes a preview editor (D), allowing manual corrections to be made to the layout file.

This I18N message informs us that a potential issue exists concerning the future internationalization of the
project (“I18N” comes from the fact that the word “internationalization” begins with an “I”, ends with an “N”
and has 18 letters in between). The warning reminds us that attributes and values such as text strings should be
stored as resources wherever possible when developing Android applications. Doing so enables changes to the
appearance of the application to be made by modifying resource files instead of changing the application source
code. This can be especially valuable when translating a user interface to a different spoken language. If all of the
text in a user interface is contained in a single resource file, for example, that file can be given to a translator, who
will then perform the translation work and return the translated file for inclusion in the application. This enables
multiple languages to be targeted without the necessity for any source code changes to be made. In this instance,
we are going to create a new resource named convert_string and assign to it the string “Convert”

Begin by clicking on the Show Quick Fixes button (E) and selecting the Extract string resource option from the
menu, as shown in Figure 3-17:

Figure 3-17

After selecting this option, the Extract Resource panel (Figure 3-18) will appear. Within this panel, change the
resource name field to convert_string and leave the resource value set to Convert before clicking on the OK
button:

Figure 3-18

23

Creating an Example Android App in Android Studio

The next widget to be added is an EditText widget, into which the user will enter the dollar amount to be
converted. From the Palette panel, select the Text category and click and drag a Number (Decimal) component
onto the layout so that it is centered horizontally and positioned above the existing TextView widget. With the
widget selected, use the Attributes tools window to set the hint property to “dollars” Click on the warning icon
and extract the string to a resource named dollars_hint.

The code written later in this chapter will need to access the dollar value entered by the user into the EditText
field. It will do this by referencing the id assigned to the widget in the user interface layout. The default id
assigned to the widget by Android Studio can be viewed and changed from within the Attributes tool window
when the widget is selected in the layout, as shown in Figure 3-19:

Figure 3-19

Change the id to dollarText and, in the Rename dialog, click on the Refactor button. This ensures that any
references elsewhere within the project to the old id are automatically updated to use the new id:

Figure 3-20
Repeat the steps to set the id of the TextView widget to textView, if necessary.

Add any missing layout constraints by clicking on the Infer Constraints button. At this point, the layout should
resemble that shown in Figure 3-21:

24

Creating an Example Android App in Android Studio

Figure 3-21
3.8 Reviewing the Layout and Resource Files

Before moving on to the next step, we will look at some internal aspects of user interface design and resource
handling. In the previous section, we changed the user interface by modifying the activity_main.xml file using
the Layout Editor tool. In fact, all that the Layout Editor was doing was providing a user-friendly way to edit the
underlying XML content of the file. In practice, there is no reason why you cannot modify the XML directly to
make user interface changes, and, in some instances, this may actually be quicker than using the Layout Editor
tool. In the top right-hand corner of the Layout Editor panel is the View Modes menu button marked A in
Figure 3-22 below:

Figure 3-22

By default, the editor will be in Design mode, whereby just the visual representation of the layout is displayed.
25

Creating an Example Android App in Android Studio

In Code mode, the editor will display the XML for the layout, while in Split mode, both the layout and XML are
displayed, as shown in Figure 3-23:

Figure 3-23

The button to the left of the View Modes button (marked B in Figure 3-22 above) is used to toggle between Code
and Split modes quickly.

As can be seen from the structure of the XML file, the user interface consists of the ConstraintLayout component,
which in turn, is the parent of the TextView, Button, and EditText objects. We can also see, for example, that the
text property of the Button is set to our convert_string resource. Although complexity and content vary, all user
interface layouts are structured in this hierarchical, XML-based way.

As changes are made to the XML layout, these will be reflected in the layout canvas. The layout may also be
modified visually from within the layout canvas panel, with the changes appearing in the XML listing. To
see this in action, switch to Split mode and modify the XML layout to change the background color of the
ConstraintLayout to a shade of red as follows:

<?xml version="1.0" encoding="utf-8"?>

<androidx.constraintlayout.widget.ConstraintLayout xmlns:android="http://schemas.
android.com/apk/res/android"

xmlns:app="http://schemas.android.com/apk/res-auto"
xmlns:tools="http://schemas.android.com/tools"
android:layout width="match parent"

android:layout height="match parent"
tools:context=".MainActivity"
android:background="#££2438" >

</androidx.constraintlayout.widget.ConstraintLayout>

Note that the layout color changes in real-time to match the new setting in the XML file. Note also that a small
red square appears in the XML editor’s left margin (also called the gutter) next to the line containing the color
setting. This is a visual cue to the fact that the color red has been set on a property. Clicking on the red square
will display a color chooser allowing a different color to be selected:

26

Creating an Example Android App in Android Studio

Figure 3-24

Before proceeding, delete the background property from the layout file so that the background returns to the
default setting.

Finally, use the Project panel to locate the app -> res -> values -> strings.xml file and double-click on it to load it
into the editor. Currently, the XML should read as follows:
<resources>
<string name="app name">AndroidSample</string>
<string name="convert string">Convert</string>
<string name="dollars hint">dollars</string>
</resources>

To demonstrate resources in action, change the string value currently assigned to the convert_string resource to
“Convert to Euros” and then return to the Layout Editor tool by selecting the tab for the layout file in the editor
panel. Note that the layout has picked up the new resource value for the string.

There is also a quick way to access the value of a resource referenced in an XML file. With the Layout Editor
tool in Split or Code mode, click on the “@string/convert_string” property setting so that it highlights, and
then press Ctrl-B on the keyboard (Cmd-B on macOS). Android Studio will subsequently open the strings.xml
file and take you to the line in that file where this resource is declared. Use this opportunity to revert the string
resource to the original “Convert” text and to add the following additional entry for a string resource that will
be referenced later in the app code:

<resources>

<string name="convert string">Convert</string>
<string name="dollars hint">dollars</string>
<string name="no_value_string">No Value</string>

</resources>

Resource strings may also be edited using the Android Studio Translations Editor by clicking on the Open editor
link in the top right-hand corner of the editor window. This will display the Translation Editor in the main panel
of the Android Studio window:

27

Creating an Example Android App in Android Studio

Figure 3-25

This editor allows the strings assigned to resource keys to be edited and for translations for multiple languages
to be managed.

3.9 Adding Interaction

The final step in this example project is to make the app interactive so that when the user enters a dollar value
into the EditText field and clicks the convert button, the converted euro value appears on the TextView. This
involves the implementation of some event handling on the Button widget. Specifically, the Button needs to be
configured so that a method in the app code is called when an onClick event is triggered. Event handling can
be implemented in several ways and is covered in a later chapter entitled “An Overview and Example of Android
Event Handling”. Return the layout editor to Design mode, select the Button widget in the layout editor, refer to
the Attributes tool window, and specify a method named convertCurrency as shown below:

Figure 3-26

Next, double-click on the MainActivity.kt file in the Project tool window (app -> java -> <package name> ->
MainActivity) to load it into the code editor and add the code for the convertCurrency method to the class file so
that it reads as follows, noting that it is also necessary to import some additional Android packages:

package com.example.androidsample

import androidx.appcompat.app.AppCompatActivity
import android.os.Bundle

import android.view.View

import android.widget.EditText

import android.widget.TextView

28

Creating an Example Android App in Android Studio

class MainActivity : AppCompatActivity() {
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
setContentView (R.layout.activity main)

fun convertCurrency (view: View) ({

val dollarText: EditText = findViewById(R.id.dollarText)
val textView: TextView = findViewById(R.id.textView)

if (dollarText.text.isNotEmpty()) {
val dollarValue = dollarText.text.toString() .toFloat()
val euroValue = dollarValue * 0.85f
textView. text = euroValue.toString()

} else {
textView. text = getString(R.string.no_value_string)

H
The method begins by obtaining references to the EditText and TextView objects by making a call to a method
named findViewByld, passing through the id assigned within the layout file. A check is then made to ensure
that the user has entered a dollar value, and if so, that value is extracted, converted from a String to a floating
point value, and converted to euros. Finally, the result is displayed on the TextView widget.

If any of this is unclear, rest assured that these concepts will be covered in greater detail in later chapters. In
particular, the topic of accessing widgets from within code using findByViewld and an introduction to an
alternative technique referred to as view binding will be covered in the chapter entitled “An Overview of Android
View Binding”.

3.10 Summary

While not excessively complex, several steps are involved in setting up an Android development environment.
Having performed those steps, it is worth working through an example to ensure the environment is correctly
installed and configured. In this chapter, we have created an example application and then used the Android
Studio Layout Editor tool to modify the user interface layout. In doing so, we explored the importance of using
resources wherever possible, particularly string values, and briefly touched on layouts. Next, we looked at the
underlying XML used to store Android application user interface designs.

Finally, an onClick event was added to a Button connected to a method implemented to extract the user input
from the EditText component, convert it from dollars to euros and then display the result on the TextView.

With the app ready for testing, the steps necessary to set up an emulator for testing purposes will be covered in
detail in the next chapter.

29

Chapter 4

4. Creating an Android Virtual
Device (AVD) in Android Studio

Although the Android Studio Preview panel allows us to see the layout we are designing, compiling and running
an entire app will be necessary to thoroughly test that it works. An Android application may be tested by
installing and running it on a physical device or in an Android Virtual Device (AVD) emulator environment.
Before an AVD can be used, it must first be created and configured to match the specifications of a particular
device model. In this chapter, we will work through creating such a virtual device using the Pixel 4 phone as a
reference example.

4.1 About Android Virtual Devices

AVDs are emulators that allow Android applications to be tested without needing to install the application on
a physical Android-based device. An AVD may be configured to emulate various hardware features, including
screen size, memory capacity, and the presence or otherwise of features such as a camera, GPS navigation
support, or an accelerometer. Several emulator templates are installed as part of the standard Android Studio
installation, allowing AVDs to be configured for various devices. Custom configurations may be created to
match any physical Android device by specifying properties such as processor type, memory capacity, and the
size and pixel density of the screen.

An AVD session can appear as a separate window or embedded within the Android Studio window.

New AVDs are created and managed using the Android Virtual Device Manager, which may be used in
command-line mode or with a more user-friendly graphical user interface. To create a new AVD, the first step is
to launch the AVD Manager. This can be achieved from within the Android Studio environment by clicking the
Device Manager button in the right-hand tool window bar, as indicated in Figure 4-1:

Figure 4-1
Once opened, the manager will appear as a tool window, as shown in Figure 4-2:

31

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-2

If you installed Android Studio for the first time on a computer (as opposed to upgrading an existing Android
Studio installation), the installer might have created an initial AVD instance ready for use, as shown in Figure

4-3:

Figure 4-3
If this AVD is present on your system, you can use it to test apps. If no AVD was created, or you would like to
create AVDs for different device types, follow the steps in the rest of this chapter.

To add a new AVD, begin by making sure that the Virtual tab is selected before clicking on the Create device
button to open the Virtual Device Configuration dialog:

Figure 4-4
32

Creating an Android Virtual Device (AVD) in Android Studio
Within the dialog, perform the following steps to create a Pixel 4-compatible emulator:
1. Select the Phone option From the Category panel to display the available Android phone AVD templates.
2. Select the Pixel 4 device option and click Next.

3. On the System Image screen, select the latest version of Android. If the system image has not yet been
installed, a Download link will be provided next to the Release Name. Click this link to download and install
the system image before selecting it. If the image you need is not listed, click on the x86 Iimages (or ARM
images if you are running a Mac with Apple Silicon) and Other images tabs to view alternative lists.

4. Click Next to proceed and enter a descriptive name (for example, Pixel 4 API 33) into the name field or
accept the default name.

5. Click Finish to create the AVD.

6. If future modifications to the AVD are necessary, re-open the Device Manager, select the AVD from the list,
and click on the pencil icon in the Actions column to edit the settings.

4.2 Starting the Emulator

To test the newly created AVD emulator, select the emulator from the Device Manager and click the launch
button (the triangle in the Actions column). The emulator will appear embedded into the main Android Studio
window and begin the startup process. The amount of time it takes for the emulator to start will depend on the
configuration of both the AVD and the system on which it is running:

Figure 4-5
To hide and show the emulator tool window, click the Running Devices tool window button (marked A above).
Click the “x” close button next to the tab (B) to exit the emulator. The emulator tool window can accommodate
multiple emulator sessions, with each session represented by a tab. Figure 4-6, for example, shows a tool window

with two emulator sessions:

33

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-6

To switch between sessions, click on the corresponding tab.

Although the emulator probably defaulted to appearing in portrait orientation, this and other default options
can be changed. Within the Device Manager, select the new Pixel 4 entry and click on the pencil icon in the
Actions column of the device row. In the configuration screen, locate the Startup orientation section and change
the orientation setting. Exit and restart the emulator session to see this change take effect. More details on the
emulator are covered in the next chapter, “Using and Configuring the Android Studio AVD Emulator”).

To save time in the next section of this chapter, leave the emulator running before proceeding.

4.3 Running the Application in the AVD

With an AVD emulator configured, the example AndroidSample application created in the earlier chapter can
now be compiled and run. With the AndroidSample project loaded into Android Studio, make sure that the
newly created Pixel 4 AVD is displayed in the device menu (marked A in Figure 4-7 below), then either click the
run button represented by a triangle (B), select the Run -> Run app’ menu option or use the Ctrl-R keyboard
shortcut:

Figure 4-7

The device menu (A) may be used to select a different AVD instance or physical device as the run target and
also to run the app on multiple devices. The menu also provides access to the Device Manager as well as device
connection configuration and troubleshooting options:

Figure 4-8

Once the application is installed and running, the user interface for the first fragment will appear within the
emulator (a fragment is a reusable section of an Android project typically consisting of a user interface layout and
some code, a topic which will be covered later in the chapter entitled “An Introduction to Android Fragments”):

34

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-9

Once the run process begins, the Run tool window will appear. The Run tool window will display diagnostic
information as the application package is installed and launched. Figure 4-10 shows the Run tool window output
from a typical successful application launch:

Figure 4-10

If problems are encountered during the launch process, the Run tool window will provide information to help
isolate the problem’s cause.

Assuming the application loads into the emulator and runs as expected, we have safely verified that the Android
development environment is correctly installed and configured. With the app running, try performing a
currency conversion to verify that the app works as intended.

4.4 Running on Multiple Devices

The run target menu shown in Figure 4-8 above includes an option to run the app on multiple emulators and
devices in parallel. When selected, this option displays the dialog in Figure 4-11, providing a list of the AVDs
configured on the system and any attached physical devices. Enable the checkboxes next to the emulators or
devices to be targeted before clicking on the Run button:

35

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-11

After clicking the Run button, Android Studio will launch the app on the selected emulators and devices.

4.5 Stopping a Running Application

To stop a running application, click the stop button located in the main toolbar, as shown in Figure 4-12:

Figure 4-12

An app may also be terminated using the Run tool window. Begin by displaying the Run tool window using the
window bar button that becomes available when the app is running. Once the Run tool window appears, click
the stop button highlighted in Figure 4-13 below:

Figure 4-13
4.6 Supporting Dark Theme

To test how an app behaves when dark theme is enabled, open the Settings app within the running Android
instance in the emulator, choose the Display category, and enable the Dark theme option as shown in Figure
4-14:

36

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-14

With dark theme enabled, run the AndroidSample app and note that it appears using a dark theme, including a
black background and a purple background color on the button, as shown in Figure 4-15:

Figure 4-15

Return to the Settings app and turn off Dark theme mode before continuing.

4.7 Running the Emulator in a Separate Window

So far in this chapter, we have only used the emulator as a tool window embedded within the main Android
Studio window. The emulator can be configured to appear in a separate window within the Settings dialog,
which can be displayed by clicking on the IDE and Project Settings button located in the Android Studio toolbar,
as highlighted in Figure 4-16:

37

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-16

Within the Settings dialog, navigate to Tools -> Emulator in the side panel, and disable the Launch in a tool
window option:

Figure 4-17

With the option disabled, click the Apply button followed by OK to commit the change, then exit the current
emulator session by clicking on the close button on the tab marked B in Figure 4-5 above.

Run the sample app once again, at which point the emulator will appear as a separate window, as shown below:

38

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-18

The choice of standalone or tool window mode is a matter of personal preference. If you prefer the emulator
running in a tool window, return to the settings screen and re-enable the Launch in a tool window option. Before
committing to standalone mode, however, keep in mind that the Running Devices tool window may also be
detached from the main Android Studio window from within the tool window Options menu, which is accessed
by clicking the button indicated in Figure 4-19:

Figure 4-19

From within the Options menu, select View Mode -> Float to detach the tool window from the Android Studio
main window:

39

Creating an Android Virtual Device (AVD) in Android Studio

Figure 4-20

To re-dock the Running Devices tool window, click on the Dock button shown in Figure 4-21:

Figure 4-21
4.8 Enabling the Device Frame

The emulator can be configured to appear with or without the device frame. To change the setting, exit the
emulator, open the Device Manager, select the AVD from the list, and click on the pencil icon in the Actions
column. In the settings screen, locate and change the Enable Device Frame option:

Figure 4-22

40

Creating an Android Virtual Device (AVD) in Android Studio

Once the device frame has been enabled, the emulator will appear as shown in Figure 4-23 the next time it is
launched:

Figure 4-23
4.9 Summary

A typical application development process follows a cycle of coding, compiling, and running in a test
environment. Android applications may be tested on a physical Android device or an Android Virtual Device
(AVD) emulator. AVDs are created and managed using the Android Studio Device Manager tool, which may
be used as a command-line tool or via a graphical user interface. When creating an AVD to simulate a specific
Android device model, the virtual device should be configured with a hardware specification matching that of
the physical device.

The AVD emulator session may be displayed as a standalone window or embedded into the main Android
Studio user interface.

41

Chapter 6

6. A Tour of the Android Studio User
Interface

While it is tempting to plunge into running the example application created in the previous chapter, it involves
using aspects of the Android Studio user interface, which are best described in advance.

Android Studio is a powerful and feature-rich development environment that is, to a large extent, intuitive to
use. That being said, taking the time now to gain familiarity with the layout and organization of the Android
Studio user interface will shorten the learning curve in later chapters of the book. With this in mind, this chapter
will provide an overview of the various areas and components of the Android Studio environment.

6.1 The Welcome Screen

The welcome screen (Figure 6-1) is displayed any time that Android Studio is running with no projects currently
open (open projects can be closed at any time by selecting the File -> Close Project menu option). If Android
Studio was previously exited while a project was still open, the tool will bypass the welcome screen the next time
it is launched, automatically opening the previously active project.

Figure 6-1
In addition to a list of recent projects, the welcome screen provides options for performing tasks such as opening
and creating projects, along with access to projects currently under version control. In addition, the Customize
screen provides options to change the theme and font settings used by both the IDE and the editor. Android
Studio plugins may be viewed, installed, and managed using the Plugins option.

Additional options are available by selecting the More Actions link or using the menu shown in Figure 6-2 when
53

A Tour of the Android Studio User Interface

the list of recent projects replaces the More Actions link:

Figure 6-2
6.2 The Menu Bar

The Android Studio main window will appear when a new project is created, or an existing one is opened. When
multiple projects are open simultaneously, each will be assigned its own main window. The precise configuration
of the window will vary depending on the operating system Android Studio is running on and which tools and
panels were displayed the last time the project was open. The appearance, for example, of the main menu bar will
differ depending on the host operating system. On macOS, Android Studio follows the standard convention of
placing the menu bar along the top edge of the desktop, as illustrated in Figure 6-3:

Figure 6-3
When Android Studio is running on Windows or Linux, however, the main menu is accessed via the button
highlighted in Figure 6-4:

Figure 6-4
6.3 The Main Window

Once a project is open, the Android Studio main window will typically resemble that of Figure 6-5:

54

A Tour of the Android Studio User Interface

Figure 6-5
The various elements of the main window can be summarized as follows:

A - Toolbar - A selection of shortcuts to frequently performed actions. The toolbar buttons provide quick
access to a select group of menu bar actions. The toolbar can be customized by right-clicking on the bar and
selecting the Customize Toolbar... menu option. The toolbar menu shown in Figure 6-6 provides a convenient
way to perform tasks such as creating and opening projects and switching between windows when multiple
projects are open:

Figure 6-6

B - Navigation Bar - The navigation bar provides a convenient way to move around the files and folders that
make up the project. Clicking on an element in the navigation bar will drop down a menu listing the sub-folders
and files at that location, ready for selection. Similarly, clicking on a class name displays a menu listing methods
contained within that class:

55

A Tour of the Android Studio User Interface

Figure 6-7

Select a method from the list to be taken to the corresponding location within the code editor. You can hide,
display, and change the position of this bar using the View -> Appearance -> Navigation Bar menu option.

C - Editor Window - The editor window displays the content of the file on which the developer is currently
working. When multiple files are open, each file is represented by a tab located along the top edge of the editor,
as shown in Figure 6-8:

Figure 6-8

D - Status Bar - The status bar displays informational messages about the project and the activities of Android
Studio. Hovering over items in the status bar will display a description of that field. Many fields are interactive,
allowing users to click to perform tasks or obtain more detailed status information.

Figure 6-9

The widgets displayed in the status bar can be changed using the View -> Appearance -> Status Bar Widgets
menu.

E - Project Tool Window - The project tool window provides a hierarchical overview of the project file structure
allowing navigation to specific files and folders to be performed. The toolbar can be used to display the project in

several different ways. The default setting is the Android view which is the mode primarily used in the remainder
of this book.

The project tool window is just one of many available tools within the Android Studio environment.

6.4 The Tool Windows

In addition to the project view tool window, Android Studio also includes many other windows, which, when
enabled, are displayed tool window bars that appear along the left and right edges of the main window and
contain buttons for showing and hiding each of the tool windows. Figure 6-10 shows typical tool window bar
configurations, though the buttons and their positioning may differ for your Android Studio installation.

56

A Tour of the Android Studio User Interface

Figure 6-10

Clicking on a button will display the corresponding tool window, while a second click will hide the window. The
location of a button in a tool window bar indicates the side of the window against which the window will appear
when displayed. These positions can be changed by clicking and dragging the buttons to different locations in
other window toolbars.

Android Studio offers a wide range of tool windows, the most commonly used of which are as follows:

Project (A) - The project view provides an overview of the file structure that makes up the project allowing
for quick navigation between files. Generally, double-clicking on a file in the project view will cause that file
to be loaded into the appropriate editing tool.

Resource Manager (B) - A tool for adding and managing resources and assets within the project, such as
images, colors, and layout files.

More Tool Windows (C) - Displays a menu containing additional tool windows not currently displayed in a
tool window bar. When a tool window is selected from this menu, it will appear as a button in a tool window
bar.

Run (D) - The run tool window becomes available when an application is currently running and provides a
view of the results of the run together with options to stop or restart a running process. If an application fails
to install and run on a device or emulator, this window typically provides diagnostic information about the
problem.

Logcat (E) — The Logcat tool window provides access to the monitoring log output from a running application

57

A Tour of the Android Studio User Interface

and options for taking screenshots and videos of the application and stopping and restarting a process.

Problems (F) - A central location to view all of the current errors or warnings within the project. Double-
clicking on an item in the problem list will take you to the problem file and location.

o App Quality Insights (G) - Provides access to the cloud-based Firebase app quality and crash analytics
platform.

Terminal (H) - Provides access to a terminal window on the system on which Android Studio is running. On
Windows systems, this is the Command Prompt interface, while on Linux and macOS systems, this takes the
form of a Terminal prompt.

o Version Control (I) - This tool window is used when the project files are under source code version control,
allowing access to Git repositories and code change history.

Notifications (J) - This tool window is used when the project files are under source code version control,
allowing access to Git repositories and code change history.

Gradle (K) - The Gradle tool window provides a view of the Gradle tasks that make up the project build
configuration. The window lists the tasks involved in compiling the various elements of the project into an
executable application. Right-click on a top-level Gradle task and select the Open Gradle Config menu option
to load the Gradle build file for the current project into the editor. Gradle will be covered in greater detail later
in this book.

« Device Manager (L) - Provides access to the Device Manager tool window where physical Android device
connections and emulators may be added, removed, and managed.

« Running Devices (M) - Contains the AVD emulator if the option has been enabled to run the emulator in a
tool window as outlined in the chapter entitled “Creating an Android Virtual Device (AVD) in Android Studio”.

« App Inspection - Provides access to the Database and Background Task inspectors. The Database Inspector
allows you to inspect, query, and modify your app’s databases while running. The Background Task Inspector
allows background worker tasks created using WorkManager to be monitored and managed.

» Bookmarks - The Bookmarks tool window provides quick access to bookmarked files and code lines. For
example, right-clicking on a file in the project view allows access to an Add to Bookmarks menu option.
Similarly, you can bookmark a line of code in a source file by moving the cursor to that line and pressing the
F11 key (F3 on macOS). All bookmarked items can be accessed through this tool window.

« Build - The build tool window displays information about the build process while a project is being compiled
and packaged and details of any errors encountered.

o Build Variants — The build variants tool window provides a quick way to configure different build targets
for the current application project (for example, different builds for debugging and release versions of the
application or multiple builds to target different device categories).

o Device File Explorer — Available via the View -> Tool Windows -> Device File Explorer menu, this tool window
provides direct access to the filesystem of the currently connected Android device or emulator, allowing the
filesystem to be browsed and files copied to the local filesystem.

 Layout Inspector - Provides a visual 3D rendering of the hierarchy of components that make up a user
interface layout.

Structure - The structure tool provides a high-level view of the structure of the source file currently displayed
in the editor. This information includes a list of items such as classes, methods, and variables in the file.

58

A Tour of the Android Studio User Interface
Selecting an item from the structure list will take you to that location in the source file in the editor window.

« TODO - As the name suggests, this tool provides a place to review items that have yet to be completed on
the project. Android Studio compiles this list by scanning the source files that make up the project to look for
comments that match specified TODO patterns. These patterns can be reviewed and changed by opening the
Settings dialog and navigating to the TODO entry listed under Editor.

6.5 The Tool Window Menus

Each tool window has its own toolbar along the top edge. The menu buttons within these toolbars vary from one
tool to the next, though all tool windows contain an Options menu (marked A in Figure 6-11):

Figure 6-11

The Options menu allows various aspects of the window to be changed. Figure 6-12, for example, shows the
Options menu for the Project tool window. Settings are available, for example, to undock a window and to allow
it to float outside of the boundaries of the Android Studio main window, and to move and resize the tool panel:

Figure 6-12

All tool windows also include a far-right button on the toolbar (marked B in Figure 6-11 above), providing an
additional way to hide the tool window from view. A search of the items within a tool window can be performed
by giving that window focus by clicking on it and then typing the search term (for example, the name of a file

in the Project tool window). A search box will appear in the window’s toolbar, and items matching the search
highlighted.

6.6 Android Studio Keyboard Shortcuts

Android Studio includes many keyboard shortcuts to save time when performing common tasks. A complete
keyboard shortcut keymap listing can be viewed and printed from within the Android Studio project window by
selecting the Help -> Keyboard Shortcuts PDF menu option. You may also list and modify the keyboard shortcuts
by opening the Settings dialog and clicking on the Keymap entry, as shown in Figure 6-13 below:

59

A Tour of the Android Studio User Interface

Figure 6-13
6.7 Switcher and Recent Files Navigation

Another useful mechanism for navigating within the Android Studio main window involves using the Switcher.
Accessed via the Ctrl-Tab keyboard shortcut, the switcher appears as a panel listing both the tool windows and
currently open files (Figure 6-14).

Figure 6-14

Once displayed, the switcher will remain visible as long as the Ctrl key remains depressed. Repeatedly tapping
the Tab key while holding down the Ctrl key will cycle through the various selection options while releasing the
Ctrl key causes the currently highlighted item to be selected and displayed within the main window.

In addition to the Switcher, the Recent Files panel provides navigation to recently opened files (Figure 6-15).
This can be accessed using the Ctrl-E keyboard shortcut (Cmd-E on macOS). Once displayed, either the mouse
pointer can be used to select an option, or the keyboard arrow keys can be used to scroll through the file name
and tool window options. Pressing the Enter key will select the currently highlighted item:

60

A Tour of the Android Studio User Interface

Figure 6-15
6.8 Changing the Android Studio Theme

The overall theme of the Android Studio environment may be changed using the Settings dialog. Once the
settings dialog is displayed, select the Appearance & Behavior option in the left-hand panel, followed by
Appearance. Then, change the setting of the Theme menu before clicking on the OK button. The themes available
will depend on the platform but usually include options such as Light, Intelli], Windows, High Contrast, and
Darcula. Figure 6-16 shows an example of the main window with the Dark theme selected:

Figure 6-16

To synchronize the Android Studio theme with the operating system light and dark mode setting, enable the
Sync with OS option and use the drop-down menu to control which theme to use for each mode:

61

A Tour of the Android Studio User Interface

Figure 6-17
6.9 Summary

The primary elements of the Android Studio environment consist of the welcome screen and main window.
Each open project is assigned its own main window, which, in turn, consists of a menu bar, toolbar, editing and
design area, status bar, and a collection of tool windows. Tool windows appear on the sides of the main window.

There are very few actions within Android Studio that cannot be triggered via a keyboard shortcut. A keymap of
default keyboard shortcuts can be accessed at any time from within the Android Studio main window.

62

Chapter 9

9. An Overview of the Android
Architecture

So far, in this book, steps have been taken to set up an environment suitable for developing Android applications
using Android Studio. An initial step has also been taken into the application development process by creating
an Android Studio application project.

However, before delving further into the practical matters of Android application development, it is essential to
understand some of the more abstract concepts of both the Android SDK and Android development in general.
Gaining a clear understanding of these concepts now will provide a sound foundation on which to build further
knowledge.

Starting with an overview of the Android architecture in this chapter and continuing in the following few
chapters of this book, the goal is to provide a detailed overview of the fundamentals of Android development.

9.1 The Android Software Stack

Android is structured as a software stack comprising applications, an operating system, a runtime environment,
middleware, services, and libraries. This architecture can best be represented visually, as Figure 9-1 outlines.
Each layer of the stack, and the corresponding elements within each layer, are tightly integrated and carefully
tuned to provide the optimal application development and execution environment for mobile devices. The
remainder of this chapter will work through the different layers of the Android stack, starting at the bottom with
the Linux Kernel.

Figure 9-1
83

An Overview of the Android Architecture

9.2 The Linux Kernel

Positioned at the bottom of the Android software stack, the Linux Kernel provides a level of abstraction between
the device hardware and the upper layers of the Android software stack. The kernel provides preemptive
multitasking, low-level core system services such as memory, process, and power management, and a network
stack and device drivers for hardware such as the device display, WiFi, and audio.

The original Linux kernel was developed in 1991 by Linus Torvalds. It was combined with a set of tools, utilities,
and compilers developed by Richard Stallman at the Free Software Foundation to create a complete operating
system called GNU/Linux. Various Linux distributions have been derived from these basic underpinnings, such
as Ubuntu and Red Hat Enterprise Linux.

However, it is important to note that Android uses only the Linux kernel. That said, it is worth noting that
the Linux kernel was originally developed for use in traditional desktop and server computer systems. In fact,
Linux is now most widely deployed in mission-critical enterprise server environments. It is a testament to both
the power of today’s mobile devices and the efficiency and performance of the Linux kernel that we find this
software at the heart of the Android software stack.

9.3 Android Runtime — ART

When an Android app is built within Android Studio, it is compiled into an intermediate bytecode format
(DEX format). When the application is subsequently loaded onto the device, the Android Runtime (ART)
uses a process referred to as Ahead-of-Time (AOT) compilation to translate the bytecode down to the native
instructions required by the device processor. This format is known as Executable and Linkable Format (ELF).

Each time the application is subsequently launched, the ELF executable version is run, resulting in faster
application performance and improved battery life.

This contrasts with the Just-in-Time (JIT) compilation approach used in older Android implementations,
whereby the bytecode was translated within a virtual machine (VM) each time the application was launched.

9.4 Android Libraries

In addition to a set of standard Java development libraries (providing support for such general-purpose tasks as
string handling, networking, and file manipulation), the Android development environment also includes the
Android Libraries. These are a set of Java-based libraries that are specific to Android development. Examples
of libraries in this category include the application framework libraries in addition to those that facilitate user
interface building, graphics drawing, and database access.

A summary of some key core Android libraries available to the Android developer is as follows:
« android.app - Provides access to the application model and is the cornerstone of all Android applications.

« android.content - Facilitates content access, publishing, and messaging between applications and application
components.

« android.database - Used to access data published by content providers and includes SQLite database
management classes.

o android.graphics - A low-level 2D graphics drawing API including colors, points, filters, rectangles, and
canvases.

« android.hardware - Presents an API providing access to hardware such as the accelerometer and light sensor.

o android.opengl — A Java interface to the OpenGL ES 3D graphics rendering API.

84

An Overview of the Android Architecture

« android.os - Provides applications with access to standard operating system services, including messages,
system services, and inter-process communication.

« android.media - Provides classes to enable playback of audio and video.

o android.net - A set of APIs providing access to the network stack. Includes android.net.wifi, which provides
access to the device’s wireless stack.

« android.print - Includes a set of classes that enable content to be sent to configured printers from within
Android applications.

« android.provider - A set of convenience classes that provide access to standard Android content provider
databases such as those maintained by the calendar and contact applications.

« android.text — Used to render and manipulate text on a device display.

« android.util - A set of utility classes for performing tasks such as string and number conversion, XML
handling and date and time manipulation.

« android.view - The fundamental building blocks of application user interfaces.

« android.widget - A rich collection of pre-built user interface components such as buttons, labels, list views,
layout managers, radio buttons etc.

« android.webkit — A set of classes intended to allow web-browsing capabilities to be built into applications.

Having covered the Java-based libraries in the Android runtime, it is now time to turn our attention to the C/
C++-based libraries in this layer of the Android software stack.

9.4.1 C/C++ Libraries

The Android runtime core libraries outlined in the preceding section are Java-based and provide the primary
APIs for Android developers. It is important to note, however, that the core libraries do not perform much of
the actual work and are, in fact, essentially Java “wrappers” around a set of C/C++-based libraries. When making
calls, for example, to the android.opengl library to draw 3D graphics on the device display, the library ultimately
makes calls to the OpenGL ES C++ library, which, in turn, works with the underlying Linux kernel to perform
the drawing tasks.

C/C++ libraries are included to fulfill a broad and diverse range of functions, including 2D and 3D graphics
drawing, Secure Sockets Layer (SSL) communication, SQLite database management, audio and video playback,
bitmap and vector font rendering, display subsystem and graphic layer management and an implementation of
the standard C system library (libc).

In practice, the typical Android application developer will access these libraries solely through the Java-based
Android core library APIs. If direct access to these libraries is needed, this can be achieved using the Android
Native Development Kit (NDK), the purpose of which is to call the native methods of non-Java or Kotlin
programming languages (such as C and C++) from within Java code using the Java Native Interface (JNI).

9.5 Application Framework

The Application Framework is a set of services that collectively form the environment in which Android
applications run and are managed. This framework implements the concept that Android applications are
constructed from reusable, interchangeable, and replaceable components. This concept is taken a step further in
that an application can also publish its capabilities along with any corresponding data so that other applications
can find and reuse them.

85

An Overview of the Android Architecture

The Android framework includes the following key services:

o Activity Manager - Controls all aspects of the application lifecycle and activity stack.

» Content Providers — Allows applications to publish and share data with other applications.

 Resource Manager - Provides access to non-code embedded resources such as strings, color settings, and
user interface layouts.

« Notifications Manager - Allows applications to display alerts and notifications to the user.
o View System - An extensible set of views used to create application user interfaces.

» Package Manager - The system by which applications can find information about other applications currently
installed on the device.

o Telephony Manager - Provides information to the application about the telephony services available on the
device, such as status and subscriber information.

» Location Manager — Provides access to the location services allowing an application to receive updates about
location changes.

9.6 Applications

Located at the top of the Android software stack are the applications. These comprise the native applications
provided with the particular Android implementation (for example, web browser and email applications) and
the third-party applications installed by the user after purchasing the device.

9.7 Summary

A good Android development knowledge foundation requires an understanding of the overall architecture
of Android. Android is implemented as a software stack architecture consisting of a Linux kernel, a runtime
environment, corresponding libraries, an application framework, and a set of applications. Applications are
predominantly written in Java or Kotlin and compiled into bytecode format within the Android Studio build
environment. When the application is subsequently installed on a device, this bytecode is compiled down by
the Android Runtime (ART) to the native format used by the CPU. The key goals of the Android architecture
are performance and efficiency, both in application execution and in the implementation of reuse in application
design.

86

Chapter 10

10. The Anatomy of an Android App

Regardless of your prior programming experiences, be it Windows, macOS, Linux, or even iOS based, the
chances are good that Android development is quite unlike anything you have encountered before.

Therefore, this chapter’s objective is to provide an understanding of the high-level concepts behind the
architecture of Android applications. In doing so, we will explore in detail the various components that can
be used to construct an application and the mechanisms that allow these to work together to create a cohesive
application.

10.1 Android Activities

Those familiar with object-oriented programming languages such as Java, Kotlin, C++, or C# will be familiar
with the concept of encapsulating elements of application functionality into classes that are then instantiated as
objects and manipulated to create an application. This is still true since Android applications are written in Java
and Kotlin. Android, however, also takes the concept of reusable components to a higher level.

Android applications are created by combining one or more components known as Activities. An activity is a
single, standalone module of application functionality that usually correlates directly to a single user interface
screen and its corresponding functionality. An appointment application might, for example, have an activity
screen that displays appointments set up for the current day. An appointment application might have an activity
screen that displays appointments set up for the current day. The application might also utilize a second activity
consisting of a screen where the user may enter new appointments.

Activities are intended as fully reusable and interchangeable building blocks that can be shared amongst different
applications. An existing email application may contain an activity for composing and sending an email message.
A developer might be writing an application that is also required to send an email message. Rather than develop
an email composition activity specifically for the new application, the developer can use the activity from the
existing email application.

Activities are created as subclasses of the Android Activity class and must be implemented so as to be entirely
independent of other activities in the application. In other words, a shared activity cannot rely on being called at
a known point in a program flow (since other applications may use the activity in unanticipated ways), and one
activity cannot directly call methods or access instance data of another activity. This, instead, is achieved using
Intents and Content Providers.

By default, an activity cannot return results to the activity from which it was invoked. If this functionality is
required, the activity must be started explicitly as a sub-activity of the originating activity.

10.2 Android Fragments

As described above, an activity typically represents a single user interface screen within an app. One option is
constructing the activity using a single user interface layout and one corresponding activity class file. A better
alternative, however, is to break the activity into different sections. Each section is a fragment consisting of part
of the user interface layout and a matching class file (declared as a subclass of the Android Fragment class). In
this scenario, an activity becomes a container into which one or more fragments are embedded.

Fragments provide an efficient alternative to having each user interface screen represented by a separate activity.
Instead, an app can have a single activity that switches between fragments, each representing a different app

87

The Anatomy of an Android App

screen.

10.3 Android Intents

Intents are the mechanism by which one activity can launch another and implement the flow through the
activities that make up an application. Intents consist of a description of the operation to be performed and,
optionally, the data on which it is to be performed.

Intents can be explicit, in that they request the launch of a specific activity by referencing the activity by class
name, or implicit by stating either the type of action to be performed or providing data of a specific type on
which the action is to be performed. In the case of implicit intents, the Android runtime will select the activity
to launch that most closely matches the criteria specified by the Intent using a process referred to as Intent
Resolution.

10.4 Broadcast Intents

Another type of Intent, the Broadcast Intent, is a system-wide intent sent out to all applications that have
registered an “interested” Broadcast Receiver. The Android system, for example, will typically send out Broadcast
Intents to indicate changes in device status, such as the completion of system start-up, connection of an external
power source to the device, or the screen being turned on or off.

A Broadcast Intent can be normal (asynchronous) in that it is sent to all interested Broadcast Receivers at more
or less the same time or ordered in that it is sent to one receiver at a time where it can be processed and then
either aborted or allowed to be passed to the next Broadcast Receiver.

10.5 Broadcast Receivers

Broadcast Receivers are the mechanism by which applications can respond to Broadcast Intents. A Broadcast
Receiver must be registered by an application and configured with an Intent Filter to indicate the types of
broadcast it is interested in. When a matching intent is broadcast, the receiver will be invoked by the Android
runtime regardless of whether the application that registered the receiver is currently running. The receiver
then has 5 seconds to complete required tasks (such as launching a Service, making data updates, or issuing a
notification to the user) before returning. Broadcast Receivers operate in the background and do not have a user
interface.

10.6 Android Services

Android Services are processes that run in the background and do not have a user interface. They can be started
and managed from activities, Broadcast Receivers, or other Services. Android Services are ideal for situations
where an application needs to continue performing tasks but does not necessarily need a user interface to
be visible to the user. Although Services lack a user interface, they can still notify the user of events using
notifications and toasts (small notification messages that appear on the screen without interrupting the currently
visible activity) and are also able to issue Intents.

The Android runtime gives Services a higher priority than many other processes and will only be terminated as a
last resort by the system to free up resources. If the runtime needs to kill a Service, however, it will be automatically
restarted as soon as adequate resources become available. A Service can reduce the risk of termination by
declaring itself as needing to run in the foreground. This is achieved by making a call to startForeground(). This is
only recommended for situations where termination would be detrimental to the user experience (for example,
if the user is listening to audio being streamed by the Service).

Example situations where a Service might be a practical solution include, as previously mentioned, the streaming
of audio that should continue when the application is no longer active or a stock market tracking application
that needs to notify the user when a share hits a specified price.

88

The Anatomy of an Android App
10.7 Content Providers

Content Providers implement a mechanism for the sharing of data between applications. Any application can
provide other applications with access to its underlying data by implementing a Content Provider, including the
ability to add, remove and query the data (subject to permissions). Access to the data is provided via a Universal
Resource Identifier (URI) defined by the Content Provider. Data can be shared as a file or an entire SQLite
database.

The native Android applications include several standard Content Providers allowing applications to access
data such as contacts and media files. The Content Providers currently available on an Android system may be
located using a Content Resolver.

10.8 The Application Manifest

The Application Manifest file is the glue that pulls together the various elements that comprise an application.
Within this XML-based file, the application outlines the activities, services, broadcast receivers, data providers,
and permissions that comprise the complete application.

10.9 Application Resources

In addition to the manifest file and the Dex files containing the byte code, an Android application package
typically contains a collection of resource files. These files contain resources such as strings, images, fonts, and
colors that appear in the user interface, together with the XML representation of the user interface layouts. These
files are stored in the /res sub-directory of the application project’s hierarchy by default.

10.10 Application Context

When an application is compiled, a class named R is created containing references to the application resources.
The application manifest file and these resources combine to create what is known as the Application Context.
This context, represented by the Android Context class, may be used in the application code to gain access to the
application resources at runtime. In addition, a wide range of methods may be called on an application’s context
to gather information and change the application’s environment at runtime.

10.11 Summary

A number of different elements can be brought together to create an Android application. In this chapter, we
have provided a high-level overview of Activities, Fragments, Services, Intents, and Broadcast Receivers and an
overview of the manifest file and application resources.

Maximum reuse and interoperability are promoted by creating individual, standalone functionality modules
in the form of activities and intents while implementing content providers to achieve data sharing between
applications.

While activities are focused on areas where the user interacts with the application (an activity essentially
equating to a single user interface screen and often made up of one or more fragments), background processing
is typically handled by Services and Broadcast Receivers.

The components that make up the application are outlined for the Android runtime system in a manifest file
which, combined with the application’s resources, represents the application’s context.

Much has been covered in this chapter that is likely new to the average developer. Rest assured, however, that
extensive exploration and practical use of these concepts will be made in subsequent chapters to ensure a solid
knowledge foundation on which to build your own applications.

89

Chapter 11

11. An Introduction to Kotlin

Android development is performed primarily using Android Studio which is, in turn, based on the Intelli] IDEA
development environment created by a company named JetBrains. Prior to the release of Android Studio 3.0,
all Android apps were written using Android Studio and the Java programming language (with some occasional
C++ code when needed).

Since the introduction of Android Studio 3.0, however, developers now have the option of creating Android apps
using another programming language called Kotlin. Although detailed coverage of all features of this language
is beyond the scope of this book (entire books can and have been written covering solely Kotlin), the objective
of this and the following six chapters is to provide enough information to begin programming in Kotlin and
quickly get up to speed developing Android apps using this programming language.

11.1 What is Kotlin?

Named after an island located in the Baltic Sea, Kotlin is a programming language created by JetBrains and
follows Java in the tradition of naming programming languages after islands. Kotlin code is intended to be easier
to understand and write and also safer than many other programming languages. The language, compiler and
related tools are all open source and available for free under the Apache 2 license.

The primary goals of the Kotlin language are to make code both concise and safe. Code is generally considered
concise when it can be easily read and understood. Conciseness also plays a role when writing code, allowing
code to be written more quickly and with greater efficiency. In terms of safety, Kotlin includes a number of
features that improve the chances that potential problems will be identified when the code is being written
instead of causing runtime crashes.

A third objective in the design and implementation of Kotlin involves interoperability with Java.

11.2 Kotlin and Java

Originally introduced by Sun Microsystems in 1995 Java is still by far the most popular programming language
in use today. Until the introduction of Kotlin, it is quite likely that every Android app available on the market
was written in Java. Since acquiring the Android operating system, Google has invested heavily in tuning and
optimizing compilation and runtime environments for running Java-based code on Android devices.

Rather than try to re-invent the wheel, Kotlin is designed to both integrate with and work alongside Java. When
Kotlin code is compiled it generates the same bytecode as that generated by the Java compiler enabling projects
to be built using a combination of Java and Kotlin code. This compatibility also allows existing Java frameworks
and libraries to be used seamlessly from within Kotlin code and also for Kotlin code to be called from within
Java.

Kotlin’s creators also acknowledged that while there were ways to improve on existing languages, there are many
features of Java that did not need to be changed. Consequently, those familiar with programming in Java will
find many of these skills to be transferable to Kotlin-based development. Programmers with Swift programming
experience will also find much that is familiar when learning Kotlin.

11.3 Converting from Java to Kotlin

Given the high level of interoperability between Kotlin and Java it is not essential to convert existing Java code
to Kotlin since these two languages will comfortably co-exist within the same project. That being said, Java code
91

An Introduction to Kotlin

can be converted to Kotlin from within Android Studio using a built-in Java to Kotlin converter. To convert an
entire Java source file to Kotlin, load the file into the Android Studio code editor and select the Code -> Convert
Java File to Kotlin File menu option. Alternatively, blocks of Java code may be converted to Kotlin by cutting the
code and pasting it into an existing Kotlin file within the Android Studio code editor. Note when performing
Java to Kotlin conversions that the Java code will not always convert to the best possible Kotlin code and that
time should be taken to review and tidy up the code after conversion.

11.4 Kotlin and Android Studio

Support for Kotlin is provided within Android Studio via the Kotlin Plug-in which is integrated by default into
Android Studio 3.0 or later.
11.5 Experimenting with Kotlin

When learning a new programming language, it is often useful to be able to enter and execute snippets of code.
One of the best ways to do this with Kotlin is to use the Kotlin Playground (Figure 11-1) located at https://play.
kotlinlang.org:

Figure 11-1

In addition to providing an environment in which Kotlin code may be quickly entered and executed, the
playground also includes a set of examples and tutorials demonstrating key Kotlin features in action.

Try out some Kotlin code by opening a browser window, navigating to the playground and entering the following
into the main code panel:
fun main(args: Array<String>) {

println ("Welcome to Kotlin")

for (i in 1..8) {

println("i = $i")

92

https://play.kotlinlang.org/
https://play.kotlinlang.org/

An Introduction to Kotlin

}

After entering the code, click on the Run button and note the output in the console panel:

Figure 11-2
11.6 Semi-colons in Kotlin

Unlike programming languages such as Java and C++, Kotlin does not require semi-colons at the end of each
statement or expression line. The following, therefore, is valid Kotlin code:

val mynumber = 10
println (mynumber)
Semi-colons are only required when multiple statements appear on the same line:

val mynumber = 10; println (mynumber)

11.7 Summary

For the first time since the Android operating system was introduced, developers now have an alternative to
writing apps in Java code. Kotlin is a programming language developed by JetBrains, the company that created
the development environment on which Android Studio is based. Kotlin is intended to make code safer and
easier to understand and write. Kotlin is also highly compatible with Java, allowing Java and Kotlin code to
co-exist within the same projects. This interoperability ensures that most of the standard Java and Java-based
Android libraries and frameworks are available for use when developing using Kotlin.

Kotlin support for Android Studio is provided via a plug-in bundled with Android Studio 3.0 or later. This plug-
in also provides a converter to translate Java code to Kotlin.

When learning Kotlin, the online playground provides a useful environment for quickly trying out Kotlin code.

93

Chapter 12

12. Kotlin Data Types, Variables, and
Nullability

Both this and the following few chapters are intended to introduce the basics of the Kotlin programming
language. This chapter will focus on the various data types available for use within Kotlin code. This will also
include an explanation of constants, variables, typecasting, and Kotlin's handling of null values.

As outlined in the previous chapter, entitled “An Introduction to Kotlin” a useful way to experiment with the
language is to use the Kotlin online playground environment. Before starting this chapter, therefore, open a
browser window, navigate to https://play.kotlinlang.org and use the playground to try out the code in both this
and the other Kotlin introductory chapters that follow.

12.1 Kotlin Data Types

When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics-intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on disk
drives, and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each 1 or 0
is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte. When
people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can be
handled simultaneously by the CPU bus. A 64-bit CPU, for example, can handle data in 64-bit blocks, resulting
in faster performance than a 32-bit based system.

Humans, of course, don't think in binary. We work with decimal numbers, letters, and words. For a human
to easily (‘easily’ being a relative term in this context) program a computer, some middle ground between
human and computer thinking is needed. This is where programming languages such as Kotlin come into
play. Programming languages allow humans to express instructions to a computer in terms and structures we
understand and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Kotlin define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Kotlin program we could do so with syntax similar to the following:

val mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:

1010

Similarly, we can express a letter, the visual representation of a digit (‘0’ through to ‘9’), or punctuation mark
(referred to in computer terminology as characters) using the following syntax:

val myletter = 'c'

Once again, this is understandable by a human programmer but gets compiled down to a binary sequence for

the CPU to understand. In this case, the letter ‘¢’ is represented by the decimal number 99 using the ASCII
table (an internationally recognized standard that assigns numeric values to human-readable characters). When

95

https://play.kotlinlang.org/

Kotlin Data Types, Variables, and Nullability

converted to binary, it is stored as:
10101100011

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Kotlin.

12.1.1 Integer Data Types

Kotlin integer data types are used to store whole numbers (in other words a number with no decimal places). All
integers in Kotlin are signed (in other words capable of storing positive, negative, and zero values).

Kotlin provides support for 8, 16, 32, and 64-bit integers (represented by the Byte, Short, Int, and Long types
respectively).

12.1.2 Floating-Point Data Types

The Kotlin floating-point data types can store values containing decimal places. For example, 4353.1223 would
be stored in a floating-point data type. Kotlin provides two floating-point data types in the form of Float and
Double. Which type to use depends on the size of value to be stored and the level of precision required. The
Double type can be used to store up to 64-bit floating-point numbers. The Float data type, on the other hand, is
limited to 32-bit floating-point numbers.

12.1.3 Boolean Data Type

Kotlin, like other languages, includes a data type to handle true or false (1 or 0) conditions. Two Boolean constant
values (true and false) are provided by Kotlin specifically for working with Boolean data types.

12.1.4 Character Data Type

The Kotlin Char data type is used to store a single character of rendered text such as a letter, numerical digit,
punctuation mark, or symbol. Internally characters in Kotlin are stored in the form of 16-bit Unicode grapheme
clusters. A grapheme cluster is made of two or more Unicode code points that are combined to represent a single
visible character.

The following lines assign a variety of different characters to Character type variables:
val myCharl = 'f'

val myChar?2
val myChar3 = 'X'

Characters may also be referenced using Unicode code points. The following example assigns the X’ character
to a variable using Unicode:

val myChar4 = '\u0058"'

Note the use of single quotes when assigning a character to a variable. This indicates to Kotlin that this is a Char
data type as opposed to double quotes which indicate a String data type.

12.1.5 String Data Type

The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated, and modified. Double quotes are used to surround single-line strings
during an assignment, for example:

val message = "You have 10 new messages."

Alternatively, a multi-line string may be declared using triple quotes

val message = """You have 10 new messages,

96

Kotlin Data Types, Variables, and Nullability

5 old messages
and 6 spam messages."""
The leading spaces on each line of a multi-line string can be removed by making a call to the trimMargin()
function of the String data type:
val message = """You have 10 new messages,
5 old messages

and 6 spam messages.""".trimMargin ()

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string
from a variety of different sources using string interpolation before outputting it to the console:

val username = "John"

val inboxCount = 25

val maxcount = 100

val message = "S$Susername has $inboxCount messages. Message capacity remaining is
${maxcount - inboxCount} messages"
println (message)

When executed, the code will output the following message:

John has 25 messages. Message capacity remaining is 75 messages.

12.1.6 Escape Sequences

In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape characters) available for specifying items such as a new line, tab, or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:

var newline = '\n'

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:

var backslash = "\\'

The complete list of special characters supported by Kotlin is as follows:

« \n - Newline

« \r - Carriage return

« \t - Horizontal tab

« \\ - Backslash

« \” - Double quote (used when placing a double quote into a string declaration)

« \’ - Single quote (used when placing a single quote into a string declaration)

« \$ - Used when a character sequence containing a $ is misinterpreted as a variable in a string template.

« \unnnn - Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the
Unicode character.

97

Kotlin Data Types, Variables, and Nullability
12.2 Mutable Variables

Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable
may then be used in the Kotlin code to access the value assigned to that variable. This access can involve either
reading the value of the variable or, in the case of mutable variables, changing the value.

12.3 Immutable Variables

Often referred to as a constant, an immutable variable is similar to a mutable variable in that it provides a named
location in memory to store a data value. Immutable variables differ in one significant way in that once a value
has been assigned it cannot subsequently be changed.

Immutable variables are particularly useful if there is a value that is used repeatedly throughout the application
code. Rather than use the value each time, it makes the code easier to read if the value is first assigned to a
constant which is then referenced in the code. For example, it might not be clear to someone reading your Kotlin
code why you used the value 5 in an expression. If, instead of the value 5, you use an immutable variable named
interestRate the purpose of the value becomes much clearer. Immutable values also have the advantage that if the
programmer needs to change a widely used value, it only needs to be changed once in the constant declaration
and not each time it is referenced.

12.4 Declaring Mutable and Immutable Variables

Mutable variables are declared using the var keyword and may be initialized with a value at creation time. For
example:

var userCount = 10
If the variable is declared without an initial value, the type of the variable must also be declared (a topic that will

be covered in more detail in the next section of this chapter). The following, for example, is a typical declaration
where the variable is initialized after it has been declared:

var userCount: Int

userCount = 42

Immutable variables are declared using the val keyword.

val maxUserCount = 20

As with mutable variables, the type must also be specified when declaring the variable without initializing it:

val maxUserCount: Int

maxUserCount = 20

When writing Kotlin code, immutable variables should always be used in preference to mutable variables
whenever possible.

12.5 Data Types are Objects

All of the above data types are objects, each of which provides a range of functions and properties that may
be used to perform a variety of different type-specific tasks. These functions and properties are accessed using
so-called dot notation. Dot notation involves accessing a function or property of an object by specifying the
variable name followed by a dot followed in turn by the name of the property to be accessed or function to be
called.

A string variable, for example, can be converted to uppercase via a call to the toUpperCase() function of the
String class:

val myString = "The quick brown fox"

98

Kotlin Data Types, Variables, and Nullability
val uppercase = myString.toUpperCase ()

Similarly, the length of a string is available by accessing the length property:
val length = myString.length

Functions are also available within the String class to perform tasks such as comparisons and checking for the
presence of a specific word. The following code, for example, will return a true Boolean value since the word
“fox” appears within the string assigned to the myString variable:

val result = myString.contains ("fox")

All of the number data types include functions for performing tasks such as converting from one data type to
another such as converting an Int to a Float:

val myInt = 10

val myFloat = myInt.toFloat()

A detailed overview of all of the properties and functions provided by the Kotlin data type classes is beyond the
scope of this book (there are hundreds). An exhaustive list for all data types can, however, be found within the
Kotlin reference documentation available online at:

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/
12.6 Type Annotations and Type Inference

Kotlin is categorized as a statically typed programming language. This essentially means that once the data
type of a variable has been identified, that variable cannot subsequently be used to store data of any other type
without inducing a compilation error. This contrasts to loosely typed programming languages where a variable,
once declared, can subsequently be used to store other data types.

There are two ways in which the type of a variable will be identified. One approach is to use a type annotation at
the point the variable is declared in the code. This is achieved by placing a colon after the variable name followed
by the type declaration. The following line of code, for example, declares a variable named userCount as being
of type Int:

val userCount: Int = 10
In the absence of a type annotation in a declaration, the Kotlin compiler uses a technique referred to as type
inference to identify the type of the variable. When relying on type inference, the compiler looks to see what type

of value is being assigned to the variable at the point that it is initialized and uses that as the type. Consider, for
example, the following variable declarations:

var signalStrength = 2.231

val companyName = "My Company"

During compilation of the above lines of code, Kotlin will infer that the signalStrength variable is of type Double
(type inference in Kotlin defaults to Double for all floating-point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:
val bookTitle = "Android Studio Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:

val iosBookType = false

val bookTitle: String

99

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/

Kotlin Data Types, Variables, and Nullability

if (iosBookType) {

bookTitle = "i0S App Development Essentials"
} else {

bookTitle = "Android Studio Development Essentials"
}
12.7 Nullable Type

Kotlin nullable types are a concept that does not exist in most other programming languages (except for the
optional type in Swift). The purpose of nullable types is to provide a safe and consistent approach to handling
situations where a variable may have a null value assigned to it. In other words, the objective is to avoid the
common problem of code crashing with the null pointer exception errors that occur when code encounters a
null value where one was not expected.

By default, a variable in Kotlin cannot have a null value assigned to it. Consider, for example, the following code:

val username: String = null

An attempt to compile the above code will result in a compilation error similar to the following:

Error: Null cannot be a value of a non-null string type String

If a variable is required to be able to store a null value, it must be specifically declared as a nullable type by
placing a question mark (?) after the type declaration:

val username: String? = null

The username variable can now have a null value assigned to it without triggering a compiler error. Once a
variable has been declared as nullable, a range of restrictions is then imposed on that variable by the compiler

to prevent it from being used in situations where it might cause a null pointer exception to occur. A nullable
variable, cannot, for example, be assigned to a variable of non-null type as is the case in the following code:

val username: String? = null

val firstname: String = username

The above code will elicit the following error when encountered by the compiler:

Error: Type mismatch: inferred type is String? but String was expected

The only way that the assignment will be permitted is if some code is added to check that the value assigned to
the nullable variable is non-null:

val username: String? = null
if (username != null) {
val firstname: String = username

}

In the above case, the assignment will only take place if the username variable references a non-null value.

12.8 The Safe Call Operator

A nullable variable also cannot be used to call a function or to access a property in the usual way. Earlier in this
chapter, the toUpperCase() function was called on a String object. Given the possibility that this could cause a
function to be called on a null reference, the following code will be disallowed by the compiler:

val username: String? = null

val uppercase = username.toUpperCase ()

The exact error message generated by the compiler in this situation reads as follows:

100

Kotlin Data Types, Variables, and Nullability

Error: (Only safe (?.) or non-null asserted (!!.) calls are allowed on a nullable
receiver of type String?

In this instance, the compiler is essentially refusing to allow the function call to be made because no attempt
has been made to verify that the variable is non-null. One way around this is to add some code to verify that
something other than null value has been assigned to the variable before making the function call:
if (username != null) {

val uppercase = username.toUpperCase ()
}
A much more efficient way to achieve this same verification, however, is to call the function using the safe call
operator (represented by ?.) as follows:

val uppercase = username?.toUpperCase ()

In the above example, if the username variable is null, the toUpperCase() function will not be called and execution
will proceed at the next line of code. If, on the other hand, a non-null value is assigned the toUpperCase()
function will be called and the result assigned to the uppercase variable.

In addition to function calls, the safe call operator may also be used when accessing properties:

val uppercase = username?.length

12.9 Not-Null Assertion

The not-null assertion removes all of the compiler restrictions from a nullable type, allowing it to be used in
the same ways as a non-null type, even if it has been assigned a null value. This assertion is implemented using
double exclamation marks after the variable name, for example:

val username: String? = null

val length = username!!.length

The above code will now compile, but will crash with the following exception at runtime since an attempt is
being made to call a function on a nonexistent object:

Exception in thread "main" kotlin.KotlinNullPointerException

Clearly, this causes the very issue that nullable types are designed to avoid. Use of the not-null assertion is
generally discouraged and should only be used in situations where you are certain that the value will not be null.

12.10 Nullable Types and the let Function

Earlier in this chapter, we looked at how the safe call operator can be used when making a call to a function
belonging to a nullable type. This technique makes it easier to check if a value is null without having to write
an if statement every time the variable is accessed. A similar problem occurs when passing a nullable type as an
argument to a function that is expecting a non-null parameter. As an example, consider the times() function of
the Int data type. When called on an Int object and passed another integer value as an argument, the function
multiplies the two values and returns the result. When the following code is executed, for example, the value of
200 will be displayed within the console:

val firstNumber = 10

val secondNumber = 20

val result = firstNumber.times (secondNumber)

print (result)

The above example works because the secondNumber variable is a non-null type. A problem, however, occurs if
the secondNumber variable is declared as being of nullable type:

101

Kotlin Data Types, Variables, and Nullability

val firstNumber = 10

val secondNumber: Int? = 20

val result = firstNumber.times (secondNumber)

print (result)
Now the compilation will fail with the following error message because a nullable type is being passed to a
function that is expecting a non-null parameter:

Error: Type mismatch: inferred type is Int? but Int was expected

A possible solution to this problem is to write an if statement to verify that the value assigned to the variable is
non-null before making the call to the function:

val firstNumber = 10

val secondNumber: Int? = 20

if (secondNumber !'= null) ({
val result = firstNumber.times (secondNumber)
print (result)

}

A more convenient approach to addressing the issue, however, involves the use of the let function. When called
on a nullable type object, the let function converts the nullable type to a non-null variable named it which may
then be referenced within a lambda statement.
secondNumber?.let {

val result = firstNumber.times (it)

print (result)

}

Note the use of the safe call operator when calling the let function on secondVariable in the above example. This
ensures that the function is only called when the variable is assigned a non-null value.

12.11 Late Initialization (lateinit)

As previously outlined, non-null types need to be initialized when they are declared. This can be inconvenient
if the value to be assigned to the non-null variable will not be known until later in the code execution. One way
around this is to declare the variable using the lateinit modifier. This modifier designates that a value will be
initialized with a value later. This has the advantage that a non-null type can be declared before it is initialized,
with the disadvantage that the programmer is responsible for ensuring that the initialization has been performed
before attempting to access the variable. Consider the following variable declaration:

var myName: String
Clearly, this is invalid since the variable is a non-null type but has not been assigned a value. Suppose, however,

that the value to be assigned to the variable will not be known until later in the program execution. In this case,
the lateinit modifier can be used as follows:

lateinit var myName: String

With the variable declared in this way, the value can be assigned later, for example:

myName = "John Smith"

print ("My Name is " + myName)

Of course, if the variable is accessed before it is initialized, the code will fail with an exception:

102

Kotlin Data Types, Variables, and Nullability

lateinit var myName: String
print ("My Name is " + myName)

Exception in thread "main" kotlin.UninitializedPropertyAccessException: lateinit
property myName has not been initialized

To verify whether a lateinit variable has been initialized, check the isInitialized property on the variable. To do
this, we need to access the properties of the variable by prefixing the name with the “:” operator:
if (::myName.isInitialized) {

print ("My Name is " + myName)

)
12.12 The Elvis Operator

The Kotlin Elvis operator can be used in conjunction with nullable types to define a default value that is to be
returned if a value or expression result is null. The Elvis operator (?:) is used to separate two expressions. If the
expression on the left does not resolve to a null value that value is returned, otherwise the result of the rightmost
expression is returned. This can be thought of as a quick alternative to writing an if-else statement to check for
a null value. Consider the following code:
if (myString != null) {

return myString
} else {

return "String is null"

}

The same result can be achieved with less coding using the Elvis operator as follows:

return myString ?: "String is null"

12.13 Type Casting and Type Checking

When compiling Kotlin code, the compiler can typically infer the type of an object. Situations will occur,
however, where the compiler is unable to identify the specific type. This is often the case when a value type is
ambiguous or an unspecified object is returned from a function call. In this situation, it may be necessary to let
the compiler know the type of object that your code is expecting or to write code that checks whether the object
is of a particular type.

Letting the compiler know the type of object that is expected is known as type casting and is achieved within
Kotlin code using the as cast operator. The following code, for example, lets the compiler know that the result
returned from the getSystemService() method needs to be treated as a KeyguardManager object:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as KeyguardManager
The Kotlin language includes both safe and unsafe cast operators. The above cast is unsafe and will cause the app

to throw an exception if the cast cannot be performed. A safe cast, on the other hand, uses the as? operator and
returns null if the cast cannot be performed:

val keyMgr = getSystemService (Context.KEYGUARD SERVICE) as? KeyguardManager
A type check can be performed to verify that an object conforms to a specific type using the is operator, for
example:
if (keyMgr is KeyguardManager) {
// It is a KeyguardManager object

103

Kotlin Data Types, Variables, and Nullability

12.14 Summary

This chapter has begun the introduction to Kotlin by exploring data types together with an overview of how to
declare variables. The chapter has also introduced concepts such as nullable types, typecasting and type checking,
and the Elvis operator, each of which is an integral part of Kotlin programming and designed specifically to
make code writing less prone to error.

104

Chapter 22

22. Saving and Restoring the State of
an Android Activity

If the previous few chapters have achieved their objective, it should now be clearer as to the importance of saving
and restoring the state of a user interface at particular points in the lifetime of an activity.

In this chapter, we will extend the example application created in “Android Activity State Changes by Example”
to demonstrate the steps involved in saving and restoring state when the runtime system destroys and recreates
an activity.

A key component of saving and restoring dynamic state involves using the Android SDK Bundle class, a topic
that will also be covered in this chapter.

22.1 Saving Dynamic State

As we have learned, an activity can save dynamic state information via a call from the runtime system to the
activity’s implementation of the onSavelnstanceState() method. Passed through as an argument to the method is
a reference to a Bundle object into which the method must store any dynamic data that needs to be saved. The
Bundle object is then stored by the runtime system on behalf of the activity and subsequently passed through
as an argument to the activity’s onCreate() and onRestorelnstanceState() methods if and when they are called.
The data can then be retrieved from the Bundle object within these methods and used to restore the state of the
activity.

22.2 Default Saving of User Interface State

In the previous chapter, the diagnostic output from the StateChange example application showed that an activity
goes through several state changes when the device on which it is running is rotated sufficiently to trigger an
orientation change.

Launch the StateChange application once again and enter some text into the EditText field before performing
the device rotation (on devices or emulators running Android 9 or later, it may be necessary to tap the rotation
button in the status bar to complete the rotation). Having rotated the device, the following state change sequence
should appear in the Logcat window:

onPause

onStop

onSavelnstanceState

onDestroy

onCreate

onStart

onRestorelInstanceState

onResume

Clearly, this has resulted in the activity being destroyed and re-created. A review of the user interface of the
running application, however, should show that the text entered into the EditText field has been preserved.
Given that the activity was destroyed and recreated and we did not add any specific code to ensure the text was
saved and restored, this behavior requires some explanation.

169

Saving and Restoring the State of an Android Activity

In fact, most view widgets included with the Android SDK already implement the behavior necessary to save
and restore state when an activity is restarted automatically. The only requirement to enable this behavior is for
the onSavelnstanceState() and onRestorelnstanceState() override methods in the activity to include calls to the
equivalent methods of the superclass:
override fun onSavelInstanceState (outState: Bundle?) {

super.onSavelnstanceState (outState)

Log.1(TAG, "onSavelInstanceState")

override fun onRestorelnstanceState (savedInstanceState: Bundle?) {
super.onRestorelInstanceState (savedInstanceState)
Log.1(TAG, "onRestorelInstanceState")

}

The automatic saving of state for a user interface view can be disabled in the XML layout file by setting the
android:saveEnabled property to false. The automatic state saving for a user interface view can be turned off in
the XML layout file by setting the android:saveEnabled property to false. For this example, we will disable the
automatic state-saving mechanism for the EditText view in the user interface layout and then add code to the
application to manually save and restore the view’s state.

To configure the EditText view such that state will not be saved and restored if the activity is restarted, edit
the activity_main.xml file so that the entry for the view reads as follows (note that the XML can be edited by
switching the Layout Editor to Code view mode as outlined in “Creating an Example Android App in Android
Studio”):
<EditText

android:id="@+id/editText"

android:layout width="wrap content"

android:layout height="wrap content"”

android:ems="10"

android:inputType="text"

android:saveEnabled="false"

app:layout constraintBottom toBottomOf="parent"

app:layout constraintEnd toEndOf="parent"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent" />

After making the change, run the application, enter text, and rotate the device to verify that the text is no longer
saved and restored.

22.3 The Bundle Class

For situations where state needs to be saved beyond the default functionality provided by the user interface
view components, the Bundle class provides a container for storing data using a key-value pair mechanism.
The keys take the form of string values, while the values associated with those keys can be a primitive value or
any object that implements the Android Parcelable interface. A wide range of classes already implements the
Parcelable interface. Custom classes may be made “parcelable” by implementing the set of methods defined in
the Parcelable interface, details of which can be found in the Android documentation at:

https://developer.android.com/reference/android/os/Parcelable.html

170

http://developer.android.com/reference/android/os/Parcelable.html

Saving and Restoring the State of an Android Activity

The Bundle class also contains a set of methods that can be used to get and set key-value pairs for various data
types, including both primitive types (including Boolean, char, double, and float values) and objects (such as
Strings and CharSequences).

For this example, having disabled the automatic saving of text for the EditText view, we need to ensure that the
text entered into the EditText field by the user is saved into the Bundle object and subsequently restored. This
will demonstrate how to manually save and restore state within an Android application and will be achieved
using the putCharSequence() and getCharSequence() methods of the Bundle class, respectively.

22.4 Saving the State

The first step in extending the StateChange application is to make sure that the text entered by the user is
extracted from the EditText component within the onSavelnstanceState() method of the MainActivity activity
and then saved as a key-value pair into the Bundle object.

To extract the text from the EditText object, we must first identify that object in the user interface. Clearly, this
involves bridging the gap between the Kotlin code for the activity (contained in the MainActivity.kt source code
file) and the XML representation of the user interface (contained within the activity_main.xml resource file). To
extract the text entered into the EditText component, we need to gain access to that user interface object.

Each component within a user interface has associated with it a unique identifier. By default, the Layout Editor
tool constructs the id for a newly added component from the object type. If more than one view of the same
type is contained in the layout, the type name is followed by a sequential number (though this can, and should,
be changed to something more meaningful by the developer). As can be seen by checking the Component Tree
panel within the Android Studio main window when the activity_main.xml file is selected and the Layout Editor
tool displayed, the EditText component has been assigned the id editText:

Figure 22-1
We can now obtain the text that the editText view contains via the object’s text property, which, in turn, returns
the current text:

val userText = binding.editText.text

Finally, we can save the text using the Bundle object’s putCharSequence() method, passing through the key
(this can be any string value, but in this instance, we will declare it as “savedText”) and the userText object as
arguments:

outState?.putCharSequence ("savedText", userText)

Bringing this all together gives us a modified onSavelnstanceState() method in the MainActivity.kt file that reads
as follows:
override fun onSavelnstanceState (outState: Bundle) {

super.onSavelnstanceState (outState)

Log.1(TAG, "onSavelInstanceState")

val userText = binding.editText.text
outState.putCharSequence ("savedText", userText)
171

Saving and Restoring the State of an Android Activity
}

Now that steps have been taken to save the state, the next phase is to restore it when needed.

22.5 Restoring the State

The saved dynamic state can be restored in those lifecycle methods that are passed the Bundle object as an
argument. This leaves the developer with the choice of using either onCreate() or onRestorelnstanceState().
The method to use will depend on the nature of the activity. In instances where state is best restored after
the activity’s initialization tasks have been performed, the onRestorelnstanceState() method is generally more
suitable. For this example, we will add code to the onRestorelnstanceState() method to extract the saved state
from the Bundle using the “savedText” key. We can then display the text on the editText component using the
object’s setText() method:

override fun onRestorelInstanceState (savedInstanceState: Bundle) {
super.onRestorelInstanceState (savedInstanceState)

Log.1i (TAG, "onRestoreInstanceState")

val userText = savedInstanceState.getCharSequence ("savedText")
binding.editText.setText (userText)

)
22.6 Testing the Application

All that remains is once again to build and run the StateChange application. Once running and in the foreground,
touch the EditText component and enter some text before rotating the device to another orientation. Whereas
the text changes were previously lost, the new text is retained within the editText component thanks to the code
we have added to the activity in this chapter.

Having verified that the code performs as expected, comment out the super.onSavelnstanceState() and super.
onRestorelnstanceState() calls from the two methods, re-launch the app and note that the text is still preserved
after a device rotation. The default save and restoration system has essentially been replaced by a custom
implementation, thereby providing a way to dynamically and selectively save and restore state within an activity.

22.7 Summary

The saving and restoration of dynamic state in an Android application is a matter of implementing the appropriate
code in the appropriate lifecycle methods. For most user interface views, this is handled automatically by
the Activity superclass. In other instances, this typically consists of extracting values and settings within the
onSavelnstanceState() method and saving the data as key-value pairs within the Bundle object passed through
to the activity by the runtime system.

State can be restored in either the onCreate() or the onRestorelnstanceState() methods of the activity by extracting
values from the Bundle object and updating the activity based on the stored values.

In this chapter, we have used these techniques to update the StateChange project so that the Activity retains
changes through the destruction and subsequent recreation of an activity.

172

Chapter 23

23. Understanding Android Views,
View Groups and Layouts

With the possible exception of listening to streaming audio, a user’s interaction with an Android device is
primarily visual and tactile. All of this interaction occurs through the user interfaces of the applications installed
on the device, including both the built-in applications and any third-party applications installed by the user.
Therefore, it should come as no surprise that a critical element of developing Android applications involves
designing and creating user interfaces.

This chapter covers the Android user interface structure, including an overview of the elements that can be
combined to make up a user interface: Views, View Groups, and Layouts.

23.1 Designing for Different Android Devices

The term “Android device” covers many tablet and smartphone products with different screen sizes and
resolutions. As a result, application user interfaces must now be carefully designed to ensure correct presentation
on as wide a range of display sizes as possible. A key part of this is ensuring that the user interface layouts resize
correctly when run on different devices. This can largely be achieved through careful planning and using the
layout managers outlined in this chapter.

It is also essential to remember that most Android-based smartphones and tablets can be held by the user in
both portrait and landscape orientations. A well-designed user interface should be able to adapt to such changes
and make sensible layout adjustments to utilize the available screen space in each orientation.

23.2 Views and View Groups

Every item in a user interface is a subclass of the Android View class (to be precise android.view.View). The
Android SDK provides a set of pre-built views that can be used to construct a user interface. Typical examples
include standard items such as the Button, CheckBox, ProgressBar, and TextView classes. Such views are also
referred to as widgets or components. For requirements not met by the widgets supplied with the SDK, new views
may be created by subclassing and extending an existing class or creating an entirely new component by building
directly on top of the View class.

A view can also comprise multiple other views (otherwise known as a composite view). Such views are subclassed
from the Android ViewGroup class (android.view.ViewGroup), which is itself a subclass of View. An example
of such a view is the RadioGroup, which is intended to contain multiple RadioButton objects such that only
one can be in the “on” position at any one time. Regarding structure, composite views consist of a single parent
view (derived from the ViewGroup class and otherwise known as a container view or root element) capable of
containing other views (known as child views).

Another category of ViewGroup-based container view is that of the layout manager.

23.3 Android Layout Managers

In addition to the widget style views discussed in the previous section, the SDK also includes a set of views
referred to as layouts. Layouts are container views (and, therefore, subclassed from ViewGroup) designed to
control how child views are positioned on the screen.

173

Understanding Android Views, View Groups and Layouts
The Android SDK includes the following layout views that may be used within an Android user interface design:

« ConstraintLayout - Introduced in Android 7, this layout manager is recommended for most layout
requirements. ConstraintLayout allows the positioning and behavior of the views in a layout to be defined
by simple constraint settings assigned to each child view. The flexibility of this layout allows complex layouts
to be quickly and easily created without the necessity to nest other layout types inside each other, resulting
in improved layout performance. ConstraintLayout is also tightly integrated into the Android Studio Layout
Editor tool. Unless otherwise stated, this is the layout of choice for most of examples in this book.

« LinearLayout - Positions child views in a single row or column depending on the orientation selected. A
weight value can be set on each child to specify how much of the layout space that child should occupy relative
to other children.

« TableLayout — Arranges child views into a grid format of rows and columns. Each row within a table is
represented by a TableRow object child, which, in turn, contains a view object for each cell.

o FrameLayout — The purpose of the FrameLayout is to allocate an area of the screen, typically to display
a single view. If multiple child views are added, they will, by default, appear on top of each other and be
positioned in the top left-hand corner of the layout area. Alternate positioning of individual child views can
be achieved by setting gravity values on each child. For example, setting a center_vertical gravity value on a
child will cause it to be positioned in the vertical center of the containing FrameLayout view.

o RelativeLayout - The RelativeLayout allows child views to be positioned relative to each other and the
containing layout view through the specification of alignments and margins on child views. For example,
child View A may be configured to be positioned in the vertical and horizontal center of the containing
RelativeLayout view. View B, on the other hand, might also be configured to be centered horizontally within
the layout view but positioned 30 pixels above the top edge of View A, thereby making the vertical position
relative to that of View A. The RelativeLayout manager can be helpful when designing a user interface that
must work on various screen sizes and orientations.

 AbsoluteLayout — Allows child views to be positioned at specific X and Y coordinates within the containing
layout view. Using this layout is discouraged since it lacks the flexibility to respond to screen size and
orientation changes.

 GridLayout — A GridLayout instance is divided by invisible lines that form a grid containing rows and
columns of cells. Child views are then placed in cells and may be configured to cover multiple cells horizontally
and vertically, allowing a wide range of layout options to be quickly and easily implemented. Gaps between
components in a GridLayout may be implemented by placing a special type of view called a Space view into
adjacent cells or setting margin parameters.

» CoordinatorLayout - Introduced as part of the Android Design Support Library with Android 5.0, the
CoordinatorLayout is designed specifically for coordinating the appearance and behavior of the app bar
across the top of an application screen with other view elements. When creating a new activity using the Basic
Views Activity template, the parent view in the main layout will be implemented using a CoordinatorLayout
instance. This layout manager will be covered in greater detail, starting with the chapter “Working with the
Floating Action Button and Snackbar”.

When considering layouts in the user interface for an Android application, it is worth keeping in mind that, as
outlined in the next section, these can be nested within each other to create a user interface design of just about
any necessary level of complexity.

174

Understanding Android Views, View Groups and Layouts

23.4 The View Hierarchy

Each view in a user interface represents a rectangular area of the display. A view is responsible for what is drawn
in that rectangle and responding to events within that part of the screen (such as a touch event).

A user interface screen is comprised of a view hierarchy with a root view positioned at the top of the tree and
child views positioned on branches below. The child of a container view appears on top of its parent view and
is constrained to appear within the bounds of the parent view’s display area. Consider, for example, the user
interface illustrated in Figure 23-1:

Figure 23-1

In addition to the visible button and checkbox views, the user interface actually includes a number of layout views
that control how the visible views are positioned. Figure 23-2 shows an alternative view of the user interface, this
time highlighting the presence of the layout views in relation to the child views:

Figure 23-2
175

Understanding Android Views, View Groups and Layouts

As was previously discussed, user interfaces are constructed in the form of a view hierarchy with a root view at
the top. This being the case, we can also visualize the above user interface example in the form of the view tree
illustrated in Figure 23-3:

Figure 23-3

The view hierarchy diagram gives probably the clearest overview of the relationship between the various views
that make up the user interface shown in Figure 23-1. When a user interface is displayed to the user, the Android
runtime walks the view hierarchy, starting at the root view and working down the tree as it renders each view.

23.5 Creating User Interfaces

With a clearer understanding of the concepts of views, layouts and the view hierarchy, the following few chapters
will focus on the steps involved in creating user interfaces for Android activities. In fact, there are three different
approaches to user interface design: using the Android Studio Layout Editor tool, handwriting XML layout
resource files or writing Kotlin code, each of which will be covered.

23.6 Summary

Each element within a user interface screen of an Android application is a view that is ultimately subclassed from
the android.view. View class. Each view represents a rectangular area of the device display and is responsible both
for what appears in that rectangle and for handling events that take place within the view’s bounds. Multiple
views may be combined to create a single composite view. The views within a composite view are children of a
container view which is generally a subclass of android.view. ViewGroup (which is itself a subclass of android.
view.View). A user interface is comprised of views constructed in the form of a view hierarchy.

The Android SDK includes a range of pre-built views that can be used to create a user interface. These include
basic components such as text fields and buttons, in addition to a range of layout managers that can be used
to control the positioning of child views. If the supplied views do not meet a specific requirement, custom
views may be created, either by extending or combining existing views, or by subclassing android.view. View and
creating an entirely new class of view.

User interfaces may be created using the Android Studio Layout Editor tool, handwriting XML layout resource
files or by writing Kotlin code. Each of these approaches will be covered in the chapters that follow.

176

Chapter 25

25. A Guide to the Android
ConstraintLayout

As discussed in the chapter entitled “Understanding Android Views, View Groups and Layouts”, Android provides
several layout managers to design user interfaces. With Android 7, Google introduced a layout that addressed
many of the shortcomings of the older layout managers. This layout, called ConstraintLayout, combines a
simple, expressive, and flexible layout system with powerful features built into the Android Studio Layout Editor
tool to ease the creation of responsive user interface layouts that adapt automatically to different screen sizes and
changes in device orientation.

This chapter will outline the basic concepts of ConstraintLayout, while the next chapter will provide a detailed
overview of how constraint-based layouts can be created using ConstraintLayout within the Android Studio
Layout Editor tool.

25.1 How ConstraintLayout Works

In common with all other layouts, ConstraintLayout manages the positioning and sizing behavior of the visual
components (also referred to as widgets) it contains. It does this based on the constraint connections set on each
child widget.

To fully understand and use ConstraintLayout, it is essential to gain an appreciation of the following key concepts:
« Constraints

» Margins

» Opposing Constraints

» Constraint Bias

o Chains

o Chain Styles

o Guidelines

o Groups

« Barriers

« Flow

25.1.1 Constraints

Constraints are sets of rules that dictate how a widget is aligned and distanced relative to other widgets, the sides
of the containing ConstraintLayout, and special elements called guidelines. Constraints also dictate how the
user interface layout of an activity will respond to changes in device orientation or when displayed on devices
of differing screen sizes. To be adequately configured, a widget must have sufficient constraint connections
such that its position can be resolved by the ConstraintLayout layout engine in both the horizontal and vertical

195

A Guide to the Android ConstraintLayout
planes.

25.1.2 Margins

A margin is a form of constraint that specifies a fixed distance. Consider a Button object that needs to be
positioned near the top right-hand corner of the device screen. This might be achieved by implementing margin
constraints from the top and right-hand edges of the Button connected to the corresponding sides of the parent
ConstraintLayout, as illustrated in Figure 25-1:

Figure 25-1

As indicated in the above diagram, each of these constraint connections has associated with it a margin value
dictating the fixed distances of the widget from two sides of the parent layout. Under this configuration,
regardless of screen size or the device orientation, the Button object will always be positioned 20 and 15 device-
independent pixels (dp) from the top and right-hand edges of the parent ConstraintLayout, respectively, as
specified by the two constraint connections.

While the above configuration will be acceptable for some situations, it does not provide any flexibility in terms
of allowing the ConstraintLayout layout engine to adapt the position of the widget to respond to device rotation
and to support screens of different sizes. To add this responsiveness to the layout, it is necessary to implement
opposing constraints.

25.1.3 Opposing Constraints

Two constraints operating along the same axis on a single widget are considered opposing constraints. In other
words, a widget with constraints on both its left and right-hand sides is considered to have horizontally opposing
constraints. Figure 25-2, for example, illustrates the addition of both horizontally and vertically opposing
constraints to the previous layout:

Figure 25-2

196

A Guide to the Android ConstraintLayout

The key point to understand here is that once opposing constraints are implemented on a particular axis, the
positioning of the widget becomes percentage rather than coordinate-based. Instead of being fixed at 20dp from
the top of the layout, for example, the widget is now positioned at 30% from the top. In different orientations
and when running on larger or smaller screens, the Button will always be in the same location relative to the
dimensions of the parent layout.

It is now important to understand that the layout outlined in Figure 25-2 has been implemented using not only
opposing constraints, but also by applying constraint bias.

25.1.4 Constraint Bias

It has now been established that a widget in a ConstraintLayout can potentially be subject to opposing
constraint connections. By default, opposing constraints are equal, resulting in the corresponding widget being
centered along the axis of opposition. Figure 25-3, for example, shows a widget centered within the containing
ConstraintLayout using opposing horizontal and vertical constraints:

Figure 25-3

To allow for the adjustment of widget position in the case of opposing constraints, the ConstraintLayout
implements a feature known as constraint bias. Constraint bias allows the positioning of a widget along the axis
of opposition to be biased by a specified percentage in favor of one constraint. Figure 25-4, for example, shows
the previous constraint layout with a 75% horizontal bias and 10% vertical bias:

Figure 25-4

The next chapter, entitled A Guide to Using ConstraintLayout in Android Studio”, will cover these concepts in
greater detail and explain how these features have been integrated into the Android Studio Layout Editor tool.

197

A Guide to the Android ConstraintLayout

In the meantime, however, a few more areas of the ConstraintLayout class need to be covered.

25.1.5 Chains

ConstraintLayout chains provide a way for the layout behavior of two or more widgets to be defined as a group.
Chains can be declared in either the vertical or horizontal axis and configured to define how the widgets in the
chain are spaced and sized.

Widgets are chained when connected by bi-directional constraints. Figure 25-5, for example, illustrates three
widgets chained in this way:

Figure 25-5

The first element in the chain is the chain head which translates to the top widget in a vertical chain or, in the
case of a horizontal chain, the left-most widget. The layout behavior of the entire chain is primarily configured
by setting attributes on the chain head widget.

25.1.6 Chain Styles

The layout behavior of a ConstraintLayout chain is dictated by the chain style setting applied to the chain head
widget. The ConstraintLayout class currently supports the following chain layout styles:

o Spread Chain - The widgets within the chain are distributed evenly across the available space. This is the
default behavior for chains.

Figure 25-6

+ Spread Inside Chain - The widgets within the chain are spread evenly between the chain head and the last
widget. The head and last widgets are not included in the distribution of spacing.

Figure 25-7
» Weighted Chain - Allows the space taken up by each widget in the chain to be defined via weighting properties.

198

A Guide to the Android ConstraintLayout

Figure 25-8

o Packed Chain - The widgets that make up the chain are packed together without spacing. A bias may be
applied to control the horizontal or vertical positioning of the chain relative to the parent container.

Figure 25-9
25.2 Baseline Alignment

So far, this chapter has only referred to constraints that dictate alignment relative to the sides of a widget (typically
referred to as side constraints). A common requirement, however, is for a widget to be aligned relative to the
content that it displays rather than the boundaries of the widget itself. To address this need, ConstraintLayout
provides baseline alignment support.

For example, assume that the previous theoretical layout from Figure 25-1 requires a TextView widget to be
positioned 40dp to the left of the Button. In this case, the TextView needs to be baseline aligned with the Button
view. This means that the text within the Button needs to be vertically aligned with the text within the TextView.
The additional constraints for this layout would need to be connected as illustrated in Figure 25-10:

Figure 25-10

The TextView is now aligned vertically along the baseline of the Button and positioned 40dp horizontally from
the Button object’s left-hand edge.

25.3 Configuring Widget Dimensions

Controlling the dimensions of a widget is a key element of the user interface design process. The ConstraintLayout
provides three options that can be set on individual widgets to manage sizing behavior. These settings are
configured individually for height and width dimensions:

« Fixed - The widget is fixed to specified dimensions.

« Match Constraint —Allows the widget to be resized by the layout engine to satisfy the prevailing constraints.

199

A Guide to the Android ConstraintLayout
Also referred to as the AnySize or MATCH_CONSTRAINT option.

« Wrap Content — The widget’s size is dictated by its content (i.e., text or graphics).

25.4 Guideline Helper

Guidelines are special elements available within the ConstraintLayout that provide an additional target to
which constraints may be connected. Multiple guidelines may be added to a ConstraintLayout instance which
may, in turn, be configured in horizontal or vertical orientations. Once added, constraint connections may be
established from widgets in the layout to the guidelines. This is particularly useful when multiple widgets must
be aligned along an axis. In Figure 25-11, for example, three Button objects contained within a ConstraintLayout
are constrained along a vertical guideline:

Figure 25-11
25.5 Group Helper

This feature of ConstraintLayout allows widgets to be placed into logical groups, and the visibility of those
widgets controlled as a single entity. A Group is a list of references to other widgets in a layout. Once defined,
changing the visibility attribute (visible, invisible, or gone) of the group instance will apply the change to all
group members. This makes hiding and showing multiple widgets with a single attribute change easy. A single
layout may contain multiple groups, and a widget can belong to more than one group. If a conflict occurs
between groups, the last group to be declared in the XML file takes priority.

25.6 Barrier Helper

Rather like guidelines, barriers are virtual views that can be used to constrain views within a layout. As with
guidelines, a barrier can be vertical or horizontal, and one or more views may be constrained to it (to avoid
confusion, these will be referred to as constrained views). Unlike guidelines, where the guideline remains at a
fixed position within the layout, however, the position of a barrier is defined by a set of so-called reference views.
Barriers were introduced to address an issue that occurs with some frequency involving overlapping views.
Consider, for example, the layout illustrated in Figure 25-12 below:

200

A Guide to the Android ConstraintLayout

Figure 25-12

The key points to note about the above layout are that the width of View 3 is set to match constraint mode, and
the left-hand edge of the view is connected to the right-hand edge of View 1. As currently implemented, an
increase in width of View 1 will have the desired effect of reducing the width of View 3:

Figure 25-13

A problem arises, however, if View 2 increases in width instead of View 1:

Figure 25-14

Because View 3 is only constrained by View 1, it does not resize to accommodate the increase in width of View

201

A Guide to the Android ConstraintLayout
2, causing the views to overlap.

A solution to this problem is to add a vertical barrier and assign Views 1 and 2 as the barrier’s reference views
so that they control the barrier position. The left-hand edge of View 3 will then be constrained relative to the
barrier, making it a constrained view.

Now when either View 1 or View 2 increases in width, the barrier will move to accommodate the widest of the
two views, causing the width of View 3 to change relative to the new barrier position:

Figure 25-15

When working with barriers, there is no limit to the number of reference and constrained views that can be
associated with a single barrier.

25.7 Flow Helper

The ConstraintLayout Flow helper allows groups of views to be displayed in a flowing grid-style layout. As
with the Group helper, Flow contains references to the views it is responsible for positioning and provides
various configuration options, including vertical and horizontal orientations, wrapping behavior (including the
maximum number of widgets before wrapping), spacing, and alignment properties. Chain behavior may also be
applied to a Flow layout, including spread, spread inside, and packed options.

Figure 25-16 represents the layout of five uniformly sized buttons positioned using a Flow helper instance in
horizontal mode with no wrap settings:

Figure 25-16

Figure 25-17 shows the same buttons in a horizontal flow configuration with wrapping set to occur after every
third widget:

202

A Guide to the Android ConstraintLayout

Figure 25-17

Figure 25-18, on the other hand, shows the buttons with wrapping set to chain mode using spread inside (the
effects of which are only visible on the second row since the first row is full). The configuration also has the gap
attribute set to add spacing between buttons:

Figure 25-18

As a final demonstration of the flexibility of the Flow helper, Figure 25-19 shows five buttons of varying sizes
configured in horizontal, packed chain mode with wrapping after each third widget. In addition, the grid content
has been right-aligned by setting a horizontal-bias value of 1.0 (a value of 0.0 would cause left-alignment while
0.5 would center-align the grid content):

Figure 25-19
25.8 Ratios

The dimensions of a widget may be defined using ratio settings. A widget could, for example, be constrained
using a ratio setting such that, regardless of any resizing behavior, the width is always twice the height dimension.

25.9 ConstraintLayout Advantages

ConstraintLayout provides a level of flexibility that allows many of the features of older layouts to be achieved
with a single layout instance where it would previously have been necessary to nest multiple layouts. This can
avoid the problems inherent in layout nesting by allowing so-called “flat” or “shallow” layout hierarchies to be
designed, leading both to less complex layouts and improved user interface rendering performance at runtime.

ConstraintLayout was also implemented to address the wide range of Android device screen sizes available

203

A Guide to the Android ConstraintLayout

today. The flexibility of ConstraintLayout makes it easier for user interfaces to be designed that respond and
adapt to the device on which the app is running.

Finally, as will be demonstrated in the chapter entitled “A Guide to Using ConstraintLayout in Android Studio”,
the Android Studio Layout Editor tool has been enhanced specifically for ConstraintLayout-based user interface
design.

25.10 ConstraintLayout Availability

Although introduced with Android 7, ConstraintLayout is provided as a separate support library from the main
Android SDK and is compatible with older Android versions as far back as API Level 9 (Gingerbread). This
allows apps that use this layout to run on devices running much older versions of Android.

25.11 Summary

ConstraintLayout is a layout manager introduced with Android 7. It is designed to ease the creation of flexible
layouts that adapt to the size and orientation of the many Android devices on the market. ConstraintLayout uses
constraints to control the alignment and positioning of widgets relative to the parent ConstraintLayout instance,
guidelines, barriers, and the other widgets in the layout. ConstraintLayout is the default layout for newly created
Android Studio projects and is recommended when designing user interface layouts. This simple yet flexible
approach to layout management allows complex and responsive user interfaces to be easily implemented.

204

Chapter 26

26. A Guide to Using
ConstraintLayout in Android Studio

As mentioned more than once in previous chapters, Google has made significant changes to the Android
Studio Layout Editor tool, many of which were made solely to support user interface layout design using
ConstraintLayout. Now that the basic concepts of ConstraintLayout have been outlined in the previous chapter,
this chapter will explore these concepts in more detail while also outlining how the Layout Editor tool allows
ConstraintLayout-based user interfaces to be designed and implemented.

26.1 Design and Layout Views

The chapter entitled “A Guide to the Android Studio Layout Editor Tool” explained that the Android Studio
Layout Editor tool provides two ways to view the user interface layout of an activity in the form of Design and
Layout (also known as blueprint) views. These views of the layout may be displayed individually or, as in Figure
26-1, side-by-side:

Figure 26-1

The Design view (positioned on the leftin the above figure) presents a “what you see is what you get” representation
of the layout, wherein the layout appears as it will within the running app. On the other hand, the Layout view
displays a blueprint style of view where shaded outlines represent the widgets. As shown in Figure 26-1 above,
the Layout view also displays the constraint connections (in this case, opposing constraints used to center a
button within the layout). These constraints are also overlaid onto the Design view when a specific widget in the
layout is selected or when the mouse pointer hovers over the design area, as illustrated in Figure 26-2:

205

A Guide to Using ConstraintLayout in Android Studio

Figure 26-2

The appearance of constraint connections in both views can be changed using the View Options menu shown
in Figure 26-3:

Figure 26-3

In addition to the two modes of displaying the user interface layout, the Layout Editor tool provides three ways
of establishing the constraints required for a specific layout design.

206

A Guide to Using ConstraintLayout in Android Studio
26.2 Autoconnect Mode

Autoconnect, as the name suggests, automatically establishes constraint connections as items are added to the
layout. Autoconnect mode may be turned on and off using the toolbar button indicated in Figure 26-4:

Figure 26-4

Autoconnect mode uses algorithms to decide the best constraints to establish based on the widgets position
and the widget’s proximity to both the sides of the parent layout and other elements. If any of the automatic
constraint connections fail to provide the desired behavior, these may be changed manually, as outlined later in
this chapter.

26.3 Inference Mode

Inference mode uses a heuristic approach involving algorithms and probabilities to automatically implement
constraint connections after widgets have already been added to the layout. This mode is usually used when
the Autoconnect feature has been turned off, and objects have been added to the layout without any constraint
connections. This allows the layout to be designed by dragging and dropping objects from the palette onto the
layout canvas and making size and positioning changes until the layout appears as required. Essentially, this
involves “painting” the layout without worrying about constraints. Inference mode may also be used during the
design process to fill in missing constraints within a layout.

Constraints are automatically added to a layout when the Infer constraints button (Figure 26-5) is clicked:

Figure 26-5
As with Autoconnect mode, there is always the possibility that the Layout Editor tool will infer incorrect
constraints, though these may be modified and corrected manually.
26.4 Manipulating Constraints Manually

The third option for implementing constraint connections is to do so manually. When doing so, it will be helpful
to understand the various handles that appear around a widget within the Layout Editor tool. Consider, for
example, the widget shown in Figure 26-6:

207

A Guide to Using ConstraintLayout in Android Studio

Figure 26-6

The spring-like lines (A) represent established constraint connections leading from the sides of the widget to
the targets. The small square markers (B) in each corner of the object are resizing handles which, when clicked
and dragged, serve to resize the widget. The small circle handles (C) located on each side of the widget are the
side constraint anchors. To create a constraint connection, click on the handle and drag the resulting line to the
element to which the constraint is to be connected (such as a guideline or the side of either the parent layout or
another widget), as outlined in Figure 26-7. When connecting to the side of another widget, drag the line to the
side constraint handle of that widget and release the line when the widget and handle are highlighted:

Figure 26-7

If the constraint line is dragged to a widget and released but not attached to a constraint handle, the layout editor
will display a menu containing a list of the sides to which the constraint may be attached. In Figure 26-8, for
example, the constraint can be attached to the top or bottom edge of the destination button widget:

Figure 26-8

An additional marker indicates the anchor point for baseline constraints whereby the content within the widget
(as opposed to outside edges) is used as the alignment point. To display this marker, right-click on the widget
and select the Show Baseline menu option. To establish a constraint connection from a baseline constraint
handle, hover the mouse pointer over the handle until it highlights before clicking and dragging to the target
(such as the baseline anchor of another widget, as shown in Figure 26-9).

208

A Guide to Using ConstraintLayout in Android Studio

Figure 26-9

To hide the baseline anchors, right-click on the widget again and select the Hide Baseline menu option.

26.5 Adding Constraints in the Inspector

Constraints may also be added to a view within the Android Studio Layout Editor tool using the Inspector
panel in the Attributes tool window, as shown in Figure 26-10. The square in the center represents the currently
selected view, and the areas around the square the constraints, if any, applied to the corresponding sides of the
view:

Figure 26-10

The absence of a constraint on the side of the view is represented by a dotted line leading to a blue circle
containing a plus sign (as is the case with the view’s bottom edge in the above figure). To add a constraint,
click on this blue circle, and the layout editor will add a constraint connected to what it considers the most
appropriate target within the layout.

26.6 Viewing Constraints in the Attributes Window

A list of constraints configured on the currently selected widget can be viewed by displaying the Constraints
section of the Attributes tool window, as shown in Figure 26-11 below:

209

A Guide to Using ConstraintLayout in Android Studio

Figure 26-11

Clicking on a constraint in the list will select that constraint within the design layout.

26.7 Deleting Constraints

To delete an individual constraint, select the constraint either within the design layout or the Attributes tool
window so that it highlights (in Figure 26-12, for example, the right-most constraint has been selected) and tap
the keyboard delete key. The constraint will then be removed from the layout.

Figure 26-12

Another option is to hover the mouse pointer over the constraint anchor while holding down the Ctrl (Cmd on
macOS) key and clicking on the anchor after it turns red:

Figure 26-13

Alternatively, remove all of the constraints on a widget by right-clicking on it and selecting the Clear Constraints
of Selection menu option.

To remove all of the constraints from every widget in a layout, use the toolbar button highlighted in Figure 26-
14:

210

A Guide to Using ConstraintLayout in Android Studio

Figure 26-14
26.8 Adjusting Constraint Bias

The previous chapter outlined the concept of using bias settings to favor one opposing constraint over another.
Bias within the Android Studio Layout Editor tool is adjusted using the Inspector located in the Attributes tool
window and shown in Figure 26-15. The two sliders indicated by the arrows in the figure are used to control the
bias of the currently selected widget’s vertical and horizontal opposing constraints.

Figure 26-15
26.9 Understanding ConstraintLayout Margins

Constraints can be used with margins to implement fixed gaps between a widget and another element (such as
another widget, a guideline, or the side of the parent layout). Consider, for example, the horizontal constraints
applied to the Button object in Figure 26-16:

Figure 26-16

As currently configured, horizontal constraints run to the left and right edges of the parent ConstraintLayout.
As such, the widget has opposing horizontal constraints indicating that the ConstraintLayout layout engine
has some discretion in terms of the actual positioning of the widget at runtime. This allows the layout some
flexibility to accommodate different screen sizes and device orientations. The horizontal bias setting can also
control the widget’s position right up to the right-hand side of the layout. Figure 26-17, for example, shows the
same button with 100% horizontal bias applied:

211

A Guide to Using ConstraintLayout in Android Studio

Figure 26-17

ConstraintLayout margins can appear at the end of constraint connections and represent a fixed gap into which
the widget cannot be moved, even when adjusting bias or responding to layout changes elsewhere in the activity.
In Figure 26-18, the right-hand constraint now includes a 50dp margin into which the widget cannot be moved
even though the bias is still set at 100%.

Figure 26-18

Existing margin values on a widget can be modified from within the Inspector. As shown in Figure 26-19, a
drop-down menu is being used to change the right-hand margin on the currently selected widget to 16dp.
Alternatively, clicking on the current value also allows a number to be typed into the field.

Figure 26-19

The default margin for new constraints can be changed at any time using the option in the toolbar highlighted
in Figure 26-20:

212

A Guide to Using ConstraintLayout in Android Studio

Figure 26-20
26.10 The Importance of Opposing Constraints and Bias

As discussed in the previous chapter, opposing constraints, margins, and bias form the cornerstone of responsive
layout design in Android when using the ConstraintLayout. When a widget is constrained without opposing
constraint connections, those constraints are essentially margin constraints. This is indicated visually within
the Layout Editor tool by solid straight lines accompanied by margin measurements, as shown in Figure 26-21.

Figure 26-21

The above constraints fix the widget at that position. The result is that if the device is rotated to landscape
orientation, the widget will no longer be visible since the vertical constraint pushes it beyond the top edge of the
device screen (as is the case in Figure 26-22). A similar problem will arise if the app is run on a device with a
smaller screen than that used during the design process.

213

A Guide to Using ConstraintLayout in Android Studio

Figure 26-22

When opposing constraints are implemented, the constraint connection is represented by the jagged spring-like
line (the spring metaphor is intended to indicate that the position of the widget is not fixed to absolute X and Y
coordinates):

Figure 26-23

In the above layout, vertical and horizontal bias settings have been configured such that the widget will always
be positioned 90% of the distance from the bottom and 35% from the left-hand edge of the parent layout. When
rotated, therefore, the widget is still visible and positioned in the same location relative to the dimensions of the
screen:

214

A Guide to Using ConstraintLayout in Android Studio

Figure 26-24
When designing a responsive and adaptable user interface layout, it is important to consider bias and opposing
constraints when manually designing a user interface layout and correcting automatically created constraints.
26.11 Configuring Widget Dimensions

The inner dimensions of a widget within a ConstraintLayout can also be configured using the Inspector. As
outlined in the previous chapter, widget dimensions can be set to wrap content, fixed, or match constraint
modes. The prevailing settings for each dimension on the currently selected widget are shown within the square
representing the widget in the Inspector, as illustrated in Figure 26-25:

Figure 26-25

The above figure sets the horizontal and vertical dimensions to wrap content mode (indicated by the inward-
pointing chevrons). The inspector uses the following visual indicators to represent the three dimension modes:

Fixed Size

Match Constraint

Wrap Content

Table 26-1

To change the current setting, click on the indicator to cycle through the three settings.

215

A Guide to Using ConstraintLayout in Android Studio

In addition, a widget’s size can be expanded horizontally or vertically to the maximum amount allowed by
the constraints and other widgets in the layout using the Expand Horizontally and Expand Vertically options.
These are accessible by right-clicking on a widget within the layout and selecting the Organize option from the
resulting menu (Figure 26-26). When used, the currently selected widget will increase in size horizontally or
vertically to fill the available space around it.

Figure 26-26

26.12 Design Time Tools Positioning

The chapter entitled “A Guide to the Android Studio Layout Editor Tool” introduced the concept of the tools
namespace and explained how it can be used to set visibility attributes that only take effect within the layout
editor. Behind the scenes, Android Studio also uses tools attributes to hold widgets in position when placed on
the layout without constraints. Imagine, for example, a Button placed onto the layout while autoconnect mode is
disabled. While the widget will appear to be in the correct position within the preview canvas, when the app is
run, it will appear in the top left-hand corner of the screen. This is because the widget has no constraints to tell
the ConstraintLayout parent where to position it.

The widget appears to be in the correct location in the layout editor because Android Studio has set absolute X
and Y positioning tools attributes to keep it in the correct location until constraints can be added. Within the
XML layout file, this might read as follows:
<Button

android:id="@+id/buttond"

android:layout width="wrap_ content"

android:layout height="wrap content"”

android:text="Button"

tools:layout editor_ absoluteX="11l1ldp"

tools:layout editor_ absoluteY="88dp" />

Once adequate constraints have been added to the widget, the layout editor will remove these tools attributes.
A useful technique to quickly identify which widgets lack constraints without waiting until the app runs is to
click on the button highlighted in Figure 26-27 to toggle tools position visibility. Any widgets that jump to the
top left-hand corner are not fully constrained and are being held in place by temporary tools absolute X and Y
positioning attributes.

216

A Guide to Using ConstraintLayout in Android Studio

Figure 26-27
26.13 Adding Guidelines

Guidelines provide additional elements to which constraints may be anchored. Guidelines are added by right-
clicking on the layout and selecting either the Vertical Guideline or Horizontal Guideline menu option or using
the toolbar menu options as shown in Figure 26-28:

Figure 26-28

Alternatively, horizontal and vertical Guidelines may be dragged from the Helpers section of the Palette and
dropped either onto the layout canvas or Component Tree panel as indicated by the arrows in Figure 26-29:

Figure 26-29

217

A Guide to Using ConstraintLayout in Android Studio

Once added, a guideline will appear as a dashed line in the layout and may be moved by clicking and dragging
the line. To establish a constraint connection to a guideline, click on the constraint handler of a widget and drag
it to the guideline before releasing. In Figure 26-30, the left sides of two Buttons are connected by constraints to
a vertical guideline.

The position of a vertical guideline can be specified as an absolute distance from either the left or the right of the
parent layout (or the top or bottom for a horizontal guideline). For example, the vertical guideline in the figure
below is positioned at 97dp from the left-hand edge of the parent:

Figure 26-30

Alternatively, the guideline may be positioned as a percentage of the overall width or height of the parent layout.
To switch between these three modes, select the guideline and click on the circle at the bottom or end of the
guideline (depending on whether the guideline is vertical or horizontal). Figure 26-31, for example, shows a
guideline positioned based on percentage:

Figure 26-31

218

A Guide to Using ConstraintLayout in Android Studio
26.14 Adding Barriers

Barriers are added by right-clicking on the layout and selecting either the Vertical or Horizontal Barrier option
from the Add helpers menu or using the toolbar menu options, as shown in Figure 26-28. Alternatively, locate
the Barrier types in the Helpers section of the Palette and drag and drop them either onto the layout canvas or
the Component Tree panel.

Once a barrier has been added to the layout, it will appear as an entry in the Component Tree panel:

Figure 26-32

To add views as reference views (in other words, the views that control the position of the barrier), drag the
widgets from within the Component Tree onto the barrier entry. In Figure 26-33, for example, widgets named
textView2 and textView3 have been assigned as the reference widgets for the barrier:

Figure 26-33

After the reference views have been added, the barrier needs to be configured to specify the direction of the
barrier relative to those views. This is the barrier direction setting and is defined within the Attributes tool
window when the barrier is selected in the Component Tree panel:

Figure 26-34

219

A Guide to Using ConstraintLayout in Android Studio

The following figure shows a layout containing a barrier declared with textView1 and textView2 acting as the
reference views and textview3 as the constrained view. Since the barrier is pushing from the end of the reference
views towards the constrained view, the barrier direction has been set to end:

Figure 26-35
26.15 Adding a Group

To add a Group to a layout, right-click on the layout and select the Group option from the Add helpers menu or
use the toolbar menu options shown in Figure 26-28. Alternatively, locate the Group item in the Helpers section
of the Palette and drag and drop it either onto the layout canvas or Component Tree panel.

To add widgets to the group, select them in the Component Tree and drag and drop them onto the Group entry.
Figure 26-36, for example, shows three selected widgets being added to a group:

Figure 26-36

Any widgets referenced by the group will appear italicized beneath the group entry in the Component Tree, as
shown in Figure 26-37. To remove a widget from the group, select it and tap the keyboard delete key:

Figure 26-37
220

A Guide to Using ConstraintLayout in Android Studio

Once widgets have been assigned to the group, use the Constraints section of the Attributes tool window to
modify the visibility setting:

Figure 26-38
26.16 Working with the Flow Helper

Flow helpers may be added using either the menu or Palette, as outlined previously for the other helpers. As with
the Group helper (Figure 26-36), widgets are added to a Flow instance by dragging them within the Component
Tree onto the Flow entry. Having added a Flow helper and assigned widgets to it, select it in the Component
Tree and use the Common Attributes section of the Attribute tool window to configure the flow layout behavior:

Figure 26-39
26.17 Widget Group Alignment and Distribution

The Android Studio Layout Editor tool provides a range of alignment and distribution actions that can be
performed when two or more widgets are selected in the layout. Shift-click on each of the widgets to be included
in the action, right-click on the layout and make a selection from the many options displayed in the Align menu:

221

A Guide to Using ConstraintLayout in Android Studio

Figure 26-40

As shown in Figure 26-41 below, these options are also accessible via the Align button located in the Layout
Editor toolbar:

Figure 26-41

Similarly, the Pack menu (Figure 26-42) can be used to collectively reposition the selected widgets so that they
are packed tightly together, either vertically or horizontally. It achieves this by changing the widgets’ absolute
x and y coordinates but does not apply any constraints. The two distribution options in the Pack menu, on the
other hand, move the selected widgets so that they are spaced evenly apart in either vertical or horizontal axis
and apply constraints between the views to maintain this spacing:

222

A Guide to Using ConstraintLayout in Android Studio

Figure 26-42
26.18 Converting other Layouts to ConstraintLayout

For existing user interface layouts that use one or more of the other Android layout classes (such as
RelativeLayout or LinearLayout), the Layout Editor tool provides an option to convert the user interface to use
the ConstraintLayout.

The Component Tree panel is displayed beneath the Palette when the Layout Editor tool is open and in Design
mode. To convert a layout to ConstraintLayout, locate it within the Component Tree, right-click on it, and select
the Convert <current layout> to Constraint Layout menu option:

Figure 26-43
When this menu option is selected, Android Studio will convert the selected layout to a ConstraintLayout and
use inference to establish constraints designed to match the layout behavior of the original layout type.
26.19 Summary

A redesigned Layout Editor tool combined with ConstraintLayout makes designing complex user interface
layouts with Android Studio a relatively fast and intuitive process. This chapter has covered the concepts of
constraints, margins, and bias in more detail while also exploring how ConstraintLayout-based design has been
integrated into the Layout Editor tool.

223

Chapter 27

27. Working with ConstraintLayout
Chains and Ratios in Android Studio

The previous chapters have introduced the key features of the ConstraintLayout class and outlined the best
practices for ConstraintLayout-based user interface design within the Android Studio Layout Editor. Although
the concepts of ConstraintLayout chains and ratios were outlined in the chapter entitled “A Guide to the Android
ConstraintLayout”, we have not yet addressed how to use these features within the Layout Editor. Therefore,
this chapter’s focus is to provide practical steps on how to create and manage chains and ratios when using the
ConstraintLayout class.

27.1 Creating a Chain

Chains may be implemented by adding a few lines to an activity’s XML layout resource file or by using some
chain-specific features of the Layout Editor.

Consider a layout consisting of three Button widgets constrained to be positioned in the top-left, top-center, and
top-right of the ConstraintLayout parent, as illustrated in Figure 27-1:

Figure 27-1
To represent such a layout, the XML resource layout file might contain the following entries for the button
widgets:
<Button
android:id="@+id/buttonl”
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintStart toStartOf="parent"
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"

android:layout height="wrap content"

225

Working with ConstraintLayout Chains and Ratios in Android Studio

android:layout marginkEnd="8dp"

android:layout marginStart="8dp"

android:layout marginTop="16dp"
android:text="Button"

app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”
app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent" />

As currently configured, there are no bi-directional constraints to group these widgets into a chain. To address
this, additional constraints need to be added from the right-hand side of button1 to the left side of button2 and
from the left side of button3 to the right side of button2 as follows:
<Button

android:id="@+id/buttonl"

android:layout width="wrap content"

android:layout height="wrap content"

android:layout marginStart="8dp"

android:layout marginTop="16dp"

android:text="Button"

app:layout constraintHorizontal bias="0.5"

app:layout constraintStart toStartOf="parent"

app:layout constraintTop toTopOf="parent"

app:layout_constraintEnd toStartOf="@+id/button2" />

<Button
android:id="@+id/button2"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginStart="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toStartOf="@+id/button3”
app:layout constraintStart toEndOf="@+id/buttonl”

226

Working with ConstraintLayout Chains and Ratios in Android Studio

app:layout constraintTop toTopOf="parent" />

<Button
android:id="@+id/button3"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout marginEnd="8dp"
android:layout marginTop="16dp"
android:text="Button"
app:layout constraintHorizontal bias="0.5"
app:layout constraintEnd toEndOf="parent"
app:layout constraintTop toTopOf="parent"
app:layout constraintStart toEndOf="@+id/button2" />

With these changes, the widgets now have bi-directional horizontal constraints configured. This constitutes a
ConstraintLayout chain represented visually within the Layout Editor by chain connections, as shown in Figure
27-2 below. Note that the chain has defaulted to the spread chain style in this configuration.

Figure 27-2

A chain may also be created by right-clicking on one of the views and selecting the Chains -> Create Horizontal
Chain or Chains -> Create Vertical Chain menu options.

27.2 Changing the Chain Style

If no chain style is configured, the ConstraintLayout will default to the spread chain style. The chain style can be
altered by right-clicking any of the widgets in the chain and selecting the Cycle Chain Mode menu option. Each
time the menu option is clicked, the style will switch to another setting in the order of spread, spread inside, and
packed.

Alternatively, the style may be specified in the Attributes tool window unfolding the layout_constraints property
and changing either the horizontal_chainStyle or vertical_chainStyle property depending on the orientation of
the chain:

Figure 27-3

227

Working with ConstraintLayout Chains and Ratios in Android Studio

27.3 Spread Inside Chain Style

Figure 27-4 illustrates the effect of changing the chain style to the spread inside chain style using the above
techniques:

Figure 27-4
27.4 Packed Chain Style

Using the same technique, changing the chain style property to packed causes the layout to change, as shown in
Figure 27-5:

Figure 27-5
27.5 Packed Chain Style with Bias

The positioning of the packed chain may be influenced by applying a bias value. The bias can be between 0.0 and
1.0, with 0.5 representing the parent’s center. Bias is controlled by selecting the chain head widget and assigning
a value to the layout_constraintHorizontal_bias or layout_constraintVertical_bias attribute in the Attributes
panel. Figure 27-6 shows a packed chain with a horizontal bias setting of 0.2:

Figure 27-6
27.6 Weighted Chain

The final area of chains to explore involves weighting the individual widgets to control how much space each
widget in the chain occupies within the available space. A weighted chain may only be implemented using
the spread chain style, and any widget within the chain that responds to the weight property must have the
corresponding dimension property (height for a vertical chain and width for a horizontal chain) configured
for match constraint mode. Match constraint mode for a widget dimension may be configured by selecting the
widget, displaying the Attributes panel, and changing the dimension to match_constraint (equivalent to 0dp).
In Figure 27-7, for example, the layout_width constraint for a button has been set to match_constraint (0dp) to
indicate that the width of the widget is to be determined based on the prevailing constraint settings:

228

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 27-7

Assuming that the spread chain style has been selected and all three buttons have been configured such that the
width dimension is set to match the constraints, the widgets in the chain will expand equally to fill the available
space:

Figure 27-8

The amount of space occupied by each widget relative to the other widgets in the chain can be controlled by
adding weight properties to the widgets. Figure 27-9 shows the effect of setting the layout_constraintHorizontal_
weight property to 4 on buttonl, and to 2 on both button2 and button3:

Figure 27-9

As a result of these weighting values, button1 occupies half of the space (4/8), while button2 and button3 each
occupy one-quarter (2/8) of the space.

27.7 Working with Ratios

ConstraintLayout ratios allow one widget dimension to be sized relative to the widget’s other dimension (also
referred to as aspect ratio). For example, an aspect ratio setting could be applied to an ImageView to ensure that
its width is always twice its height.

229

Working with ConstraintLayout Chains and Ratios in Android Studio

A dimension ratio constraint is configured by setting the constrained dimension to match constraint mode
and configuring the layout_constraintDimensionRatio attribute on that widget to the required ratio. This ratio
value may be specified as a float value or a width:height ratio setting. The following XML excerpt, for example,
configures a ratio of 2:1 on an ImageView widget:
<ImageView

android:layout width="0dp"

android:layout height="100dp"

android:i1d="@+id/imageView"

app:layout constraintDimensionRatio="2:1" />

The above example demonstrates how to configure a ratio when only one dimension is set to match constraint. A
ratio may also be applied when both dimensions are set to match constraint mode. This involves specifying the
ratio preceded with either an H or a W to indicate which of the dimensions is constrained relative to the other.

Consider, for example, the following XML excerpt for an ImageView object:
<ImageView
android:layout width="0dp"
android:layout height="0dp"
android:1d="@+id/imageView"
app:layout constraintBottom toBottomOf="parent"
app:layout constraintRight toRightOf="parent"
app:layout constraintLeft toLeftOf="parent"
app:layout constraintTop toTopOf="parent"

app:layout constraintDimensionRatio="W,1:3" />

In the above example, the height will be defined subject to the constraints applied to it. In this case, constraints
have been configured such that it is attached to the top and bottom of the parent view, essentially stretching the
widget to fill the entire height of the parent. On the other hand, the width dimension has been constrained to
be one-third of the ImageView’s height dimension. Consequently, whatever size screen or orientation the layout
appears on, the ImageView will always be the same height as the parent and the width one-third of that height.

The same results may also be achieved without manually editing the XML resource file. Whenever a widget
dimension is set to match constraint mode, a ratio control toggle appears in the Inspector area of the property
panel. Figure 27-10, for example, shows the layout width and height attributes of a button widget set to match
constraint mode and 100dp respectively, and highlights the ratio control toggle in the widget sizing preview:

Figure 27-10

By default, the ratio sizing control is toggled off. Clicking on the control enables the ratio constraint and displays
an additional field where the ratio may be changed:

230

Working with ConstraintLayout Chains and Ratios in Android Studio

Figure 27-11
27.8 Summary

Both chains and ratios are powerful features of the ConstraintLayout class intended to provide additional
options for designing flexible and responsive user interface layouts within Android applications. As outlined in
this chapter, the Android Studio Layout Editor has been enhanced to make it easier to use these features during
the user interface design process.

231

Chapter 38

38. Using Fragments in Android
Studio - An Example

As outlined in the previous chapter, fragments provide a convenient mechanism for creating reusable modules
of application functionality consisting of both sections of a user interface and the corresponding behavior. Once
created, fragments can be embedded within activities.

Having explored the general theory of fragments in the previous chapter, this chapter aims to create an example
Android application using Android Studio designed to demonstrate the actual steps involved in creating and
using fragments and implementing communication between one fragment and another within an activity.

38.1 About the Example Fragment Application

The application created in this chapter will consist of a single activity and two fragments. The user interface for
the first fragment will contain a toolbar consisting of an EditText view, a SeekBar, and a Button, all contained
within a ConstraintLayout view. The second fragment will consist solely of a TextView object within a
ConstraintLayout view.

The two fragments will be embedded within the main activity of the application and communication
implemented such that when the button in the first fragment is pressed, the text entered into the EditText view
will appear on the TextView of the second fragment using a font size dictated by the position of the SeekBar in
the first fragment.

Since this application is intended to work on earlier versions of Android, we will need to use the appropriate
Android support library.

38.2 Creating the Example Project

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the

Empty Views Activity template before clicking on the Next button.

Enter FragmentExample into the Name field and specify com.ebookfrenzy.fragmentexample as the package name.
Before clicking the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin. Modify the project to use view binding using the steps outlined in 18.8 Migrating a
Project to View Binding.

Return to the Gradle Scripts -> build.gradle.kts (Module :app) file and add the following directive to the
dependencies section (keeping in mind that a more recent version of the library may now be available):

implementation ("androidx.navigation:navigation-fragment-ktx:2.6.0")

38.3 Creating the First Fragment Layout

The next step is to create the user interface for the first fragment used within our activity.

This user interface will consist of an XML layout file and a fragment class. While these could be added manually,
it is quicker to ask Android Studio to create them for us. Within the project tool window, locate the app -> java
-> com.ebookfrenzy.fragmentexample entry and right-click on it. From the resulting menu, select the New ->

299

Using Fragments in Android Studio - An Example

Fragment -> Gallery... option to display the dialog shown in Figure 38-1 below:

Figure 38-1

Select the Fragment (Blank) template before clicking the Next button. On the subsequent screen, name the
fragment ToolbarFragment with a layout file named fragment_toolbar:

Figure 38-2

Load the fragment_toolbar.xml file into the layout editor using Design mode. Next, right-click on the FrameLayout
entry in the Component Tree panel and select the Convert FrameLayout to ConstraintLayout menu option,
accepting the default settings in the confirmation dialog. Change the id from to constraintLayout. Ensure that
Autoconnect mode is enabled, then select and delete the default TextView and add Plain Text, Seekbar, and
Button widgets to the layout so that their positions match those shown in Figure 38-3. Finally, change the view
ids to editText1, seekBar1, and buttonl, respectively.

Change the text on the button to read “Change Text”, extract the text to a string resource named change_text,

300

Using Fragments in Android Studio - An Example

and remove the Name text from the EditText view. Finally, set the layout_width property of the Seekbar to

match_constraint with margins set to 16dp on the left and right edges.

Use the Infer constraints toolbar button to add any missing constraints, at which point the layout should match

that shown in Figure 38-3 below:

Figure 38-3
38.4 Migrating a Fragment to View Binding

As with the Empty Views Activity template, Android Studio does not enable view binding support when new
fragments are added to a project. Therefore, we will need to perform this migration before moving to the next
step of this tutorial. Begin by editing the ToolbarFragment.kt file and importing the binding for the fragment as

follows:

import com.ebookfrenzy.fragmentexample.databinding.FragmentToolbarBinding

Next, locate the onCreateView() method and make the following declarations and changes (which also include
adding the onDestroyView() method to ensure that the binding reference is removed when the fragment is

destroyed):

private var _binding: FragmentToolbarBinding? = null
private val binding get() = _binding!!

override fun onCreateView (

inflater: LayoutInflater, container: ViewGroup?,

savedInstanceState: Bundle?

) : View? {

_binding = FragmentToolbarBinding.inflate (inflater, container, false)

return binding.root

override fun onDestroyView() {
super .onDestroyView ()
_binding = null

301

Using Fragments in Android Studio - An Example
Once these changes are complete, the fragment is ready to use view binding.

38.5 Adding the Second Fragment

Repeating the steps to create the toolbar fragment, add another empty fragment named TextFragment with
a layout file named fragment_text. Once again, convert the FrameLayout container to a ConstraintLayout
(changing the id to constraintLayout2) and remove the default TextView.

Drag a drop a TextView widget from the palette and position it in the center of the layout, using the Infer
constraints button to add any missing constraints. Change the id of the TextView to textView2, the text to read
“Fragment Two” and modify the fextSize attribute to 24sp.

On completion, the layout should match that shown in Figure 38-4:

Figure 38-4

Repeat the steps performed in the previous section to migrate the TextFragment class to use view binding as
follows:

import com.ebookfrenzy.fragmentexample.databinding.FragmentTextBinding

private var _binding: FragmentTextBinding? = null
private val binding get() = _binding!!

override fun onCreateView (
inflater: LayoutInflater, container: ViewGroup?,
savedInstanceState: Bundle?

) : View? {

_binding = FragmentTextBinding.inflate (inflater, container, false)
return binding.root

302

Using Fragments in Android Studio - An Example

38.6 Adding the Fragments to the Activity

The main activity for the application has associated with it an XML layout file named activity_main.xml. For this
example, the fragments will be added to the activity using the <fragment> element within this file. Using the
Project tool window, navigate to the app -> res -> layout section of the FragmentExample project and double-
click on the activity_main.xml file to load it into the Android Studio Layout Editor tool.

With the Layout Editor tool in Design mode, select and delete the default TextView object from the layout and
select the Common category in the palette. Drag the FragmentContainerView component from the list of views
and drop it onto the layout so that it is centered horizontally and positioned such that the dashed line appears,
indicating the top layout margin:

Figure 38-5

On dropping the fragment onto the layout, a dialog will appear displaying a list of Fragments available within
the current project, as illustrated in Figure 38-6:

Figure 38-6

Select the ToolbarFragment entry from the list and click OK to dismiss the Fragments dialog. Once added, click
the red warning button in the top right-hand corner of the layout editor to display the Problems tool window.
An unknown fragments message will indicate that the Layout Editor tool needs to know which fragment to
display during the preview session. Select the Unknown fragment item, then click on the Pick Layout... link in
the right-hand panel as shown in Figure 38-7:

Figure 38-7
In the resulting dialog (Figure 38-8), select the fragment_toolbar entry and then click OK:

303

Using Fragments in Android Studio - An Example

Figure 38-8

With the fragment selected, change the layout_width property to match_constraint so that it occupies the full
width of the screen. Click and drag another FragmentContainerView entry from the palette and position it so
that it is centered horizontally and located beneath the bottom edge of the first fragment. When prompted,
select the TextFragment entry from the fragment dialog before clicking OK. Display the Problems tool window
and repeat the previous steps, this time selecting the fragment_text layout. Use the Infer constraints button to
establish any missing layout constraints.

Note that the fragments are now visible in the layout, as demonstrated in Figure 38-9:

Figure 38-9

Before proceeding to the next step, select the TextFragment instance in the layout and, within the Attributes tool
window, change the ID of the fragment to text_fragment.

38.7 Making the Toolbar Fragment Talk to the Activity

When the user touches the button in the toolbar fragment, the fragment class will need to extract the text from
the EditText view and the current value of the SeekBar and send them to the text fragment. As outlined in An
Introduction to Android Fragments”, fragments should not communicate with each other directly, instead using

304

Using Fragments in Android Studio - An Example

the activity in which they are embedded as an intermediary.

The first step in this process is ensuring that the toolbar fragment responds to the clicked button. We also need
to implement some code to keep track of the value of the SeekBar view. For this example, we will implement
these listeners within the ToolbarFragment class. Select the ToolbarFragment.kt file and modify it so that it reads
as shown in the following listing:

package com.ebookfrenzy.fragmentexample

import android.os.Bundle

import androidx.fragment.app.Fragment
import android.view.LayoutInflater
import android.view.View

import android.view.ViewGroup

import android.widget.SeekBar

import android.content.Context

class ToolbarFragment : Fragment (), SeekBar.OnSeekBarChangelListener {

var seekvalue = 10

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {
super.onViewCreated (view, savedInstanceState)
binding.seekBarl.setOnSeekBarChangeListener (this)

binding.buttonl.setOnClickListener { v: View -> buttonClicked(v) }

private fun buttonClicked (view: View) {

override fun onProgressChanged (seekBar: SeekBar, progress: Int,
fromUser: Boolean) {
seekvalue = progress

override fun onStartTrackingTouch(arg0: SeekBar) {

}

override fun onStopTrackingTouch (arg0: SeekBar) {

}

305

Using Fragments in Android Studio - An Example
}

Before moving on, we need to take some time to explain the above code changes. First, the class is declared
as implementing the OnSeekBarChangeListener interface. This is because the user interface contains a
SeekBar instance, and the fragment needs to receive notifications when the user slides the bar to change the
font size. Implementation of the OnSeekBarChangeListener interface requires that the onProgressChanged(),
onStartTrackingTouch(), and onStopTrackingTouch() methods be implemented. These methods have been
implemented, but only the onProgressChanged() method is required to perform a task, in this case, storing the
new value in a variable named seekvalue, which was declared at the start of the class. Also declared is a variable
to store a reference to the EditText object.

The onViewCreated() method has been added to set up an onClickListener on the button, which is configured
to call a method named buttonClicked() when a click event is detected. This method is also then implemented,
though it does not do anything at this point.

The next phase of this process is to set up the listener that will allow the fragment to call the activity when the
button is clicked. This follows the mechanism outlined in the previous chapter:

class ToolbarFragment : Fragment (), SeekBar.OnSeekBarChangeListener {

var seekvalue = 10
var activityCallback: ToolbarFragment.ToolbarListener? = null

interface ToolbarListener ({
fun onButtonClick (fontSize: Int, text: String)

override fun onAttach(context: Context) {
super.onAttach (context)
try {
activityCallback = context as ToolbarListener
} catch (e: ClassCastException) {
throw ClassCastException (context.toString()

+ " must implement ToolbarListener")

private fun buttonClicked(view: View) {
activityCallback?.onButtonClick (seekvalue,
binding.editTextl. text.toString())

}
The above implementation will result in a method named onButtonClick() belonging to the activity class being

306

Using Fragments in Android Studio - An Example

called when the user clicks the button. All that remains, therefore, is to declare that the activity class implements
the newly created ToolbarListener interface and to implement the onButtonClick() method.

Since the Android Support Library is being used for fragment support in earlier Android versions, the activity
also needs to be changed to subclass from FragmentActivity instead of AppCompatActivity. Bringing these
requirements together results in the following modified MainActivity.kt file:

package com.ebookfrenzy.fragmentexample

import androidx.fragment.app.FragmentActivity

import android.os.Bundle

class MainActivity : FragmentActivity(),

ToolbarFragment.ToolbarListener {
override fun onButtonClick (fontSize: Int, text: String) {

}

With the code changes as they currently stand, the toolbar fragment will detect when the user clicks the button
and call a method on the activity passing through the content of the EditText field and the current setting of the
SeekBar view. It is now the job of the activity to communicate with the Text Fragment and to pass along these
values so that the fragment can update the TextView object accordingly.

38.8 Making the Activity Talk to the Text Fragment

As “An Introduction to Android Fragments” outlined, an activity can communicate with a fragment by obtaining
a reference to the fragment class instance and then calling public methods on the object. As such, within the
TextFragment class, we will now implement a public method named changeTextProperties() which takes as
arguments an integer for the font size and a string for the new text to be displayed. The method will then use
these values to modify the TextView object. Within the Android Studio editing panel, locate and modify the
TextFragment.kt file to add this new method:

package com.ebookfrenzy.fragmentexample
class TextFragment : Fragment () {

fun changeTextProperties (fontSize: Int, text: String)

{
binding. textView2.textSize = fontSize.toFloat()
binding. textView2.text = text

307

Using Fragments in Android Studio - An Example

When the TextFragment fragment was placed in the activity’s layout, it was given an ID of text_fragment.
Using this ID, it is now possible for the activity to obtain a reference to the fragment instance and call the
changeTextProperties() method on the object. Edit the MainActivity.kt file and modify the onButtonClick()
method as follows:

override fun onButtonClick(fontSize: Int, text: String) {

val textFragment = supportFragmentManager.findFragmentById (
R.id.text fragment) as TextFragment

textFragment.changeTextProperties (fontSize, text)
}

38.9 Testing the Application

With the coding for this project now complete, the last remaining task is to run the application. When the
application is launched, the main activity will start and will, in turn, create and display the two fragments.
When the user touches the button in the toolbar fragment, the onButtonClick() method of the activity will be
called by the toolbar fragment and passed the text from the EditText view and the current value of the SeekBar.
The activity will then call the changeTextProperties() method of the second fragment, which will modify the
TextView to reflect the new text and font size:

Figure 38-10
38.10 Summary

The goal of this chapter was to work through creating an example project to demonstrate the steps involved in
using fragments within an Android application. Topics covered included using the Android Support Library for
compatibility with Android versions predating the introduction of fragments, including fragments within an
activity layout, and implementing inter-fragment communication.

308

Chapter 39

39. Modern Android App
Architecture with Jetpack

For many years, Google did not recommend a specific approach to building Android apps other than to provide
tools and development kits while letting developers decide what worked best for a particular project or individual
programming style. That changed in 2017 with the introduction of the Android Architecture Components,
which, in turn, became part of Android Jetpack when it was released in 2018.

This chapter provides an overview of the concepts of Jetpack, Android app architecture recommendations, and
some key architecture components. Once the basics have been covered, these topics will be covered in more
detail and demonstrated through practical examples in later chapters.

39.1 What is Android Jetpack?

Android Jetpack consists of Android Studio, the Android Architecture Components, the Android Support
Library, and a set of guidelines recommending how an Android App should be structured. The Android
Architecture Components are designed to make it quicker and easier to perform common tasks when developing
Android apps while also conforming to the key principle of the architectural guidelines.

While all Android Architecture Components will be covered in this book, this chapter will focus on the key
architectural guidelines and the ViewModel, LiveData, and Lifecycle components while introducing Data
Binding and Repositories.

Before moving on, it is important to understand that the Jetpack approach to app development is optional.
While highlighting some of the shortcomings of other techniques that have gained popularity over the years,
Google stopped short of completely condemning those approaches to app development. Google is taking the
position that while there is no right or wrong way to develop an app, there is a reccommended way.

39.2 The “Old” Architecture

In the chapter entitled “Creating an Example Android App in Android Studio”, an Android project was created
consisting of a single activity that contained all of the code for presenting and managing the user interface
together with the back-end logic of the app. Until the introduction of Jetpack, the most common architecture
followed this paradigm with apps consisting of multiple activities (one for each screen within the app), with each
activity class to some degree mixing user interface and back-end code.

This approach led to a range of problems related to the lifecycle of an app (for example, an activity is destroyed
and recreated each time the user rotates the device leading to the loss of any app data that had not been saved
to some form of persistent storage) as well as issues such as inefficient navigation involving launching a new
activity for each app screen accessed by the user.

39.3 Modern Android Architecture

At the most basic level, Google now advocates single-activity apps where different screens are loaded as content
within the same activity.

Modern architecture guidelines also recommend separating different areas of responsibility within an app into
entirely separate modules (a concept referred to as “separation of concerns”). One of the keys to this approach

309

Modern Android App Architecture with Jetpack

is the ViewModel component.

39.4 The ViewModel Component

The purpose of ViewModel is to separate the user interface-related data model and logic of an app from the
code responsible for displaying and managing the user interface and interacting with the operating system.
When designed this way, an app will consist of one or more UI Controllers, such as an activity, together with
ViewModel instances responsible for handling the data those controllers need.

The ViewModel only knows about the data model and corresponding logic. It knows nothing about the user
interface and does not attempt to directly access or respond to events relating to views within the user interface.
When a Ul controller needs data to display, it asks the ViewModel to provide it. Similarly, when the user enters
data into a view within the user interface, the UI controller passes it to the ViewModel for handling.

This separation of responsibility addresses the issues relating to the lifecycle of UI controllers. Regardless of how
often the UT controller is recreated during the lifecycle of an app, the ViewModel instances remain in memory,
thereby maintaining data consistency. For example, a ViewModel used by an activity will remain in memory
until the activity finishes, which, in the single activity app, is not until the app exits.

Figure 39-1
39.5 The LiveData Component

Consider an app that displays real-time data, such as the current price of a financial stock. The app could
use a stock price web service to continuously update the data model within the ViewModel with the latest
information. This real-time data is of use only if it is displayed to the user promptly. There are only two ways that
the UI controller can ensure that the latest data is displayed in the user interface. One option is for the controller
to continuously check with the ViewModel to determine if the data has changed since it was last displayed.
However, the problem with this approach is that it could be more efficient. To maintain the real-time nature of
the data feed, the UI controller would have to run on a loop, continuously checking for the data to change.

A better solution would be for the UI controller to receive a notification when a specific data item within a
ViewModel changes. This is made possible by using the LiveData component. LiveData is a data holder that
allows a value to become observable. In basic terms, an observable object can notify other objects when changes
to its data occur, thereby solving the problem of ensuring that the user interface always matches the data within
the ViewModel.

This means, for example, that a UI controller interested in a ViewModel value can set up an observer, which will,
in turn, be notified when that value changes. In our hypothetical application, for example, the stock price would

310

Modern Android App Architecture with Jetpack

be wrapped in a LiveData object within the ViewModel, and the UI controller would assign an observer to the
value, declaring a method to be called when the value changes. When triggered by data change, this method will
read the updated value from the ViewModel and use it to update the user interface.

Figure 39-2

A LiveData instance may also be declared as mutable, allowing the observing entity to update the underlying
value held within the LiveData object. The user might, for example, enter a value in the user interface that needs
to overwrite the value stored in the ViewModel.

Another of the key advantages of using LiveData is that it is aware of the lifecycle state of its observers. If,
for example, an activity contains a LiveData observer, the corresponding LiveData object will know when the
activity’s lifecycle state changes and respond accordingly. If the activity is paused (perhaps the app is put into the
background), the LiveData object will stop sending events to the observer. Suppose the activity has just started
or resumes after being paused. In that case, the LiveData object will send a LiveData event to the observer so
that the activity has the most up-to-date value. Similarly, the LiveData instance will know when the activity is
destroyed and remove the observer to free up resources.

So far, we've only talked about UI controllers using observers. In practice, however, an observer can be used
within any object that conforms to the Jetpack approach to lifecycle management.

39.6 ViewModel Saved State

Android allows the user to place an active app in the background and return to it after performing other tasks
on the device (including running other apps). When a device runs low on resources, the operating system will
rectify this by terminating background app processes, starting with the least recently used app. However, when
the user returns to the terminated background app, it should appear in the same state as when it was placed in
the background, regardless of whether it was terminated. In terms of the data associated with a ViewModel, this
can be implemented using the ViewModel Saved State module. This module allows values to be stored in the
app’s saved state and restored in case of system-initiated process termination. This topic will be covered later in
the “An Android ViewModel Saved State Tutorial” chapter.

39.7 LiveData and Data Binding

Android Jetpack includes the Data Binding Library, which allows data in a ViewModel to be mapped directly to
specific views within the XML user interface layout file. In the AndroidSample project created earlier, code had
to be written to obtain references to the EditText and TextView views and to set and get the text properties to

311

Modern Android App Architecture with Jetpack

reflect data changes. Data binding allows the LiveData value stored in the ViewModel to be referenced directly
within the XML layout file avoiding the need to write code to keep the layout views updated.

Figure 39-3

Data binding will be covered in greater detail, starting with the chapter “An Overview of Android Jetpack Data
Binding”.

39.8 Android Lifecycles

The duration from when an Android component is created to the point that it is destroyed is called the lifecycle.
During this lifecycle, the component will change between different lifecycle states, usually under the operating
systemy’s control and in response to user actions. An activity, for example, will begin in the initialized state before
transitioning to the created state. Once the activity runs, it will switch to the started state, from which it will cycle
through various states, including created, started, resumed, and destroyed.

Many Android Framework classes and components allow other objects to access their current state. Lifecycle
observers may also be used so that an object receives a notification when the lifecycle state of another object
changes. The ViewModel component uses this technique behind the scenes to identify when an observer
has restarted or been destroyed. This functionality is not limited to Android framework and architecture
components. It may also be built into any other classes using a set of lifecycle components included with the
architecture components.

Objects that can detect and react to lifecycle state changes in other objects are said to be lifecycle-aware. In
contrast, objects that provide access to their lifecycle state are called lifecycle owners. The chapter entitled
“Working with Android Lifecycle-Aware Components” will cover Lifecycles in greater detail.

39.9 Repository Modules

If a ViewModel obtains data from one or more external sources (such as databases or web services, it is important
to separate the code involved in handling those data sources from the ViewModel class. Failure to do this would,
after all, violate the separation of concerns guidelines. To avoid mixing this functionality with the ViewModel,
Google’s architecture guidelines recommend placing this code in a separate Repository module.

A repository is not an Android architecture component but a Kotlin class created by the app developer that is
responsible for interfacing with the various data sources. The class then provides an interface to the ViewModel,
allowing that data to be stored in the model.

312

Modern Android App Architecture with Jetpack

Figure 39-4
39.10 Summary

Until recently, Google has tended not to recommend any particular approach to structuring an Android app.
That has now changed with the introduction of Android Jetpack, consisting of tools, components, libraries, and
architecture guidelines. Google now recommends that an app project be divided into separate modules, each
responsible for a particular area of functionality, otherwise known as “separation of concerns”.

In particular, the guidelines recommend separating the view data model of an app from the code responsible
for handling the user interface. In addition, the code responsible for gathering data from data sources such as
web services or databases should be built into a separate repository module instead of being bundled with the
view model.

Android Jetpack includes the Android Architecture Components, designed to make developing apps that
conform to the recommended guidelines easier. This chapter has introduced the ViewModel, LiveData, and
Lifecycle components. These will be covered in more detail, starting with the next chapter. Other architecture
components not mentioned in this chapter will be covered later in the book.

313

Chapter 41

41. An Android Jetpack LiveData
Tutorial

The previous chapter began building an app to conform to the recommended Jetpack architecture guidelines.
These initial steps involved implementing the data model for the app user interface within a ViewModel instance.

This chapter will further enhance the app design using the LiveData architecture component. Once LiveData
support has been added to the project in this chapter, the next chapters (starting with “An Overview of Android
Jetpack Data Binding”) will use the Jetpack Data Binding library to eliminate even more code from the project.

41.1 LiveData - A Recap

LiveData was previously introduced in the “Modern Android App Architecture with Jetpack” chapter. As described
earlier, the LiveData component can be used as a wrapper around data values within a view model. Once
contained in a LiveData instance, those variables become observable to other objects within the app, typically
Ul controllers such as Activities and Fragments. This allows the UTI controller to receive a notification whenever
the underlying LiveData value changes. An observer is set up by creating an instance of the Observer class and
defining an onChange() method to be called when the LiveData value changes. Once the Observer instance has
been created, it is attached to the LiveData object via a call to the LiveData object’s observe() method.

LiveData instances can be declared mutable using the MutableLiveData class, allowing both the ViewModel and
UI controller to change the underlying data value.

41.2 Adding LiveData to the ViewModel

Launch Android Studio, open the ViewModelDemo project created in the previous chapter, and open the
MainViewModel.kt file, which should currently read as follows:

package com.ebookfrenzy.viewmodeldemo
import androidx.lifecycle.ViewModel
class MainViewModel : ViewModel () {

private val rate = 0.74f
private var dollarText = ""

private var result: Float = 0f

fun setAmount (value: String) {
this.dollarText = value

result = value.toFloat () * rate

fun getResult(): Float {

return result

321

An Android Jetpack LiveData Tutorial

}
}

This stage in the chapter aims to wrap the result variable in a MutableLiveData instance (the object will need
to be mutable so that the value can be changed each time the user requests a currency conversion). Begin by
modifying the class so that it now reads as follows, noting that an additional package needs to be imported when
making use of LiveData:

package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel

import androidx.lifecycle.MutableLiveData
class MainViewModel : ViewModel () {

private val rate = 0.74f

private var dollarText = ""

s + T+ ™1 4 ne
pPLIvatcT al Lo urty Toat — UL

private var result: MutablelLiveData<Float> = MutableliveData ()

fun setAmount (value: String) {
this.dollarText = value

result = value.toFloat () * rate

fun getResult(): Float {

return result

}

Now that the result variable is contained in a mutable LiveData instance, both the setAmount() and getResult()
methods must be modified. In the case of the setAmount() method, a value can no longer be assigned to the
result variable using the assignment (=) operator. Instead, the LiveData setValue() method must be called,
passing through the new value as an argument. As currently implemented, the getResult() method is declared to
return a Float value and must be changed to return a MutableLiveData object. Making these remaining changes
results in the following class file:

package com.ebookfrenzy.viewmodeldemo

import androidx.lifecycle.ViewModel

import androidx.lifecycle.MutableLiveData
class MainViewModel : ViewModel () {

private val rate = 0.74f

private var dollarText = ""

private var result: MutablelLiveData<Float> = MutableLiveData ()

fun setAmount (value: String) {

322

An Android Jetpack LiveData Tutorial

this.dollarText = value
resutt—vatuvetoFtoatt)—*—rate
result.value = value.toFloat() * rate

}

fur—getResuttti——Float—F

fun getResult(): MutableLiveData<Float> ({
return result

)
41.3 Implementing the Observer

Now that the conversion result is contained within a LiveData instance, the next step is configuring an observer
within the UI controller, which, in this example, is the FirstFragment class. Locate the FirstFragment.kt class
(app -> java -> <package name> -> FirstFragment), double-click on it to load it into the editor, and modify the
onViewCreated() method to create a new Observer instance named resultObserver:

import androidx.lifecycle.Observer

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

super.onViewCreated (view, savedInstanceState)
binding.resultText.text = viewModel.getResult () .toString/()

val resultObserver = Observer<Float> {

result -> binding.resultText.text = result.toString()

}

The resultObserver instance declares lambda code which, when called, is passed the current result value, which
it then converts to a string and displays on the resultText TextView object. The next step is to add the observer to
the result LiveData object, a reference that can be obtained via a call to the getResult() method of the ViewModel
object. Since updating the result TextView is now the responsibility of the onChanged() callback method, the
existing lines of code to perform this task can now be deleted:

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

super.onViewCreated (view, savedInstanceState)

val resultObserver = Observer<Float> {

result -> binding.resultText.text = result.toString()

viewModel.getResult () .observe (viewLifecycleOwner, resultObserver)
323

An Android Jetpack LiveData Tutorial

binding.convertButton.setOnClickListener ({
if (binding.dollarText.text.isNotEmpty()) {
viewModel.setAmount (binding.dollarText.text.toString())

} else {

binding.resultText.text = "No Value"

}

Compile and run the app, enter a value into the dollar field, click on the Convert button, and verify that the
converted euro amount appears on the TextView. This confirms that the observer received notification that the
result value had changed and called the onChanged() method to display the latest data.

Note in the above implementation of the on ViewCreated() method that the line of code responsible for displaying
the current result value each time the method was called was removed. This was originally put in place to ensure
that the displayed value was recovered if the Fragment was recreated for any reason. Because LiveData monitors
the lifecycle status of its observers, this step is no longer necessary. When LiveData detects that the UI controller
was recreated, it automatically triggers any associated observers and provides the latest data. Verify this by
rotating the device while a euro value is displayed on the TextView object and confirming that the value is not
lost.

Before moving on to the next chapter, close the project, copy the ViewModelDemo project folder, and save it as
ViewModelDemo_LiveData to be used later when saving the ViewModel state.

41.4 Summary

This chapter demonstrated the use of the Android LiveData component to ensure that the data displayed to
the user always matches that stored in the ViewModel. This relatively simple process consisted of wrapping a
ViewModel data value within a LiveData object and setting up an observer within the UT controller subscribed
to the LiveData value. Each time the LiveData value changes, the observer is notified, and the onChanged()
method is called and passed the updated value.

Adding LiveData support to the project has gone some way towards simplifying the design of the project.
Additional and significant improvements are also possible using the Data Binding Library, details of which will
be covered in the next chapter.

324

Chapter 52

52. Working with the Floating Action
Button and Snackbar

One of the objectives of this chapter is to provide an overview of the concepts of material design. Originally
introduced as part of Android 5.0, material design is a set of design guidelines that dictate how the Android user
interface, and that of the apps running on Android, appear and behave.

As part of implementing the material design concepts, Google also introduced the Android Design Support
Library. This library contains several components that allow many of the key features of material design to be
built into Android applications. Two of these components, the floating action button and the Snackbar, will also
be covered in this chapter before introducing many of the other components in subsequent chapters.

52.1 The Material Design

The principles of material design define the overall appearance of the Android environment. Material design was
created by the Android team at Google and dictates that the elements that make up the user interface of Android
and the apps that run on it appear and behave in a certain way in terms of behavior, shadowing, animation, and
style. One of the tenets of the material design is that the elements of a user interface appear to have physical
depth and a sense that items are constructed in layers of physical material. A button, for example, appears to be
raised above the surface of the layout where it resides through shadowing effects. Pressing the button causes the
button to flex and lift as though made of a thin material that ripples when released.

Material design also dictates the layout and behavior of many standard user interface elements. A key example is
how the app bar located at the top of the screen should appear and how it should behave in relation to scrolling
activities taking place within the main content of the activity.

Material design covers a wide range of areas, from recommended color styles to how objects are animated. A
full description of the material design concepts and guidelines can be found online at the following link and is
recommended reading for all Android developers:

https://material.io/design/introduction

52.2 The Design Library

Many of the building blocks needed to implement Android applications that adopt material design principles
are contained within the Android Design Support Library. This library contains a collection of user interface
components that can be included in Android applications to implement much of the look, feel, and behavior
of material design. Two of the components from this library, the floating action button and Snackbar, will be
covered in this chapter, while others will be introduced in later chapters.

52.3 The Floating Action Button (FAB)

The floating action button appears to float above the surface of the user interface of an app. It generally promotes
the most common action within a user interface screen. A floating action button could be placed on a screen
to allow the user to add an entry to a list of contacts or to send an email from within the app. Figure 52-1, for
example, highlights the floating action button that allows the user to add a new contact within the standard
Android Contacts app:

413

https://material.io/design/introduction

Working with the Floating Action Button and Snackbar

Figure 52-1

Several rules should be followed when using floating action buttons to conform with the material design
guidelines. Floating action buttons must be circular and can be either 56 x 56dp (Default) or 40 x 40dp (Mini) in
size. The button should be positioned a minimum of 16dp from the edge of the screen on phones and 24dp on
desktops and tablet devices. Regardless of the size, the button must contain an interior icon that is 24x24dp in
size, and it is recommended that each user interface screen have only one floating action button.

Floating action buttons can be animated or designed to morph into other items when touched. For example,
a floating action button could rotate when tapped or morph into another element, such as a toolbar or panel
listing related actions.

52.4 The Snackbar

The Snackbar component provides a way to present the user with information as a panel at the bottom of the
screen, as shown in Figure 52-2. Snackbar instances contain a brief text message and an optional action button
that will perform a task when tapped by the user. Once displayed, a Snackbar will either timeout automatically
or can be removed manually by the user via a swiping action. During the appearance of the Snackbar, the app
will continue to function and respond to user interactions normally.

Figure 52-2

In the remainder of this chapter, an example application will be created that uses the basic features of the floating

414

Working with the Floating Action Button and Snackbar

action button and Snackbar to add entries to a list of items.

52.5 Creating the Example Project

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Basic Views Activity template before clicking on the Next button.

Enter FabExample into the Name field and specify com.ebookfrenzy.fabexample as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin.

52.6 Reviewing the Project
Since the Basic Views Activity template was selected, the activity contains four layout files. The activity_main.

xml file consists of a CoordinatorLayout manager containing entries for an app bar, a Material toolbar, and a
floating action button.

The content_main.xmlfile represents the layout of the content area of the activity and contains a NavHostFragment
instance. This file is embedded into the activity_main.xml file via the following include directive:

<include layout="@layout/content main" />

The floating action button element within the activity_main.xml file reads as follows:

<com.google.android.material.floatingactionbutton.FloatingActionButton
android:id="@+id/fab"
android:layout width="wrap content"
android:layout height="wrap content"
android:layout gravity="bottom|end"
android:layout marginEnd="@dimen/fab margin"
android:layout marginBottom="16dp"

app:srcCompat="@android:drawable/ic_dialog email"™ />

This declares that the button is to appear in the bottom right-hand corner of the screen with margins represented
by the fab_margin identifier in the values/dimens.xml file (which, in this case, is set to 16dp). The XML further
declares that the interior icon for the button is to take the form of the standard drawable built-in email icon.

The blank template has also configured the floating action button to display a Snackbar instance when tapped
by the user. The code to implement this can be found in the onCreate() method of the MainActivity.kt file and
reads as follows:
binding.fab.setOnClickListener { view ->
Snackbar.make (view, "Replace with your own action", Snackbar.LENGTH LONG)
.setAction ("Action", null) .show ()

}

The code accesses the floating action button via the view binding and adds an onClickListener handler to be
called when the button is tapped. This method displays a Snackbar instance configured with a message but no
actions.

When the project is compiled and run, the floating action button will appear at the bottom of the screen, as
shown in Figure 52-3:

415

Working with the Floating Action Button and Snackbar

Figure 52-3

Tapping the floating action button will trigger the onClickListener handler method causing the Snackbar to
appear at the bottom of the screen:

Figure 52-4
52.7 Removing Navigation Features

As ‘A Guide to the Android Studio Layout Editor Tool” outlines, the Basic Views Activity template contains
multiple fragments and buttons to navigate from one fragment to the other. These features are unnecessary for
this tutorial and will cause problems later if not removed. Before moving ahead with the tutorial, modify the
project as follows:

1. Within the Project tool window, navigate to and double-click on the app -> res -> navigation -> nav_graph.
xml file to load it into the navigation editor.

2. Select the SecondFragment entry in the Component Tree panel within the editor and tap the keyboard
delete key to remove it from the graph.

3. Locate and delete the SecondFragment.kt (app -> java -> <package name> -> SecondFragment) and
fragment_second.xml (app -> res -> layout -> fragment_second.xml) files.

4. Locate the FirstFragment.kt file, double-click on it to load it into the editor, and remove the code from the
onViewCreated() method so that it reads as follows:

override fun onViewCreated(view: View, savedInstanceState: Bundle?) {

super.onViewCreated(view, savedInstanceState)

52.8 Changing the Floating Action Button

Since the objective of this example is to configure the floating action button to add entries to a list, the email
icon currently displayed on the button needs to be changed to something more indicative of the action being

416

Working with the Floating Action Button and Snackbar

performed. The icon that will be used for the button is named ic_add_entry.png and can be found in the project_
icons folder of the sample code download available from the following URL:

https://www.ebookfrenzy.com/retail/giraffekotlin/index.php

Locate this image in the file system navigator for your operating system and copy the image file. Right-click on
the app -> res -> drawable entry in the Project tool window and select Paste from the menu to add the file to the
folder:

Figure 52-5

Next, edit the activity_main.xml file and change the image source for the icon from @android:drawable/ic_
dialog_email to @drawable/ic_add_entry as follows:
<com.google.android.material.floatingactionbutton.FloatingActionButton

android:id="@+id/fab"

android:layout width="wrap content"

android:layout height="wrap content"

android:layout gravity="bottom|end"

android:layout margin="@dimen/fab margin"

android:layout marginBottom="16dp"

app:srcCompat="@drawable/ic_add entry" />

Within the layout preview, the interior icon for the button will have changed to a plus sign.

We can also make the floating action button do just about anything when clicked by adding code to the
OnClickListener. The following changes to the MainActivity.kt file, for example, calls a method named
displayMessage() to display a toast message each time the button is clicked:

import android.widget.Toast

binding.fab.setOnClickListener { view ->
displayMessage ("Fab clicked")
Snackbar.make (view, "Replace with your own action", Snackbar.LENGTH LONG)

.setAction ("Action", null) .show ()

fun displayMessage (message: String) ({
Toast.makeText (this@MainActivity,message,Toast.LENGTH_SHORT) .show ()

417

https://www.ebookfrenzy.com/retail/giraffekotlin/index.php

Working with the Floating Action Button and Snackbar

52.9 Adding an Action to the Snackbar

An action may also be added to the Snackbar, which performs a task when tapped by the user. Edit the
MainActivity.kt file and modify the Snackbar creation code to add an action titled “My Action” configured with
an onClickListener named actionOnClickListener which, in turn, displays a toast message:
binding.fab.setOnClickListener { view ->
displayMessage ("FAB clicked")
Snackbar.make (view, "Action complete", Snackbar.LENGTH LONG)
.setAction ("My Action", actionOnClickListener) .show ()

}
Within the MainActivity.kt file, add the listener handler:

import android.view.View

var actionOnClickListener: View.OnClickListener = View.OnClickListener { view ->
displayMessage ("Action clicked")
Snackbar.make (view, "Action complete", Snackbar.LENGTH_LONG)
.setAction ("My Action", null) .show()
}

Run the app and tap the floating action button, at which point both the toast message and Snackbar should
appear. While the Snackbar is visible, tap the My Action button in the Snackbar and verify that the text on the
Snackbar changes to “Action Complete™:

Figure 52-6
52.10 Summary
Before working through an example project that uses these features, this chapter has provided a general overview

of material design, the floating action button, and the Snackbar.

The floating action button and the Snackbar are part of Android’s material design approach to user interface
implementation. The floating action button provides a way to promote the most common action within
a particular screen of an Android application. The Snackbar provides a way for an application to present
information to the user and allow the user to act upon it.

418

Chapter 60

60. Android Broadcast Intents and
Broadcast Receivers

In addition to providing a mechanism for launching application activities, intents are also used to broadcast
system-wide messages to other components on the system. This involves the implementation of Broadcast
Intents and Broadcast Receivers, both of which are the topic of this chapter.

60.1 An Overview of Broadcast Intents

Broadcast intents are Intent objects that are broadcast via a call to the sendBroadcast(), sendStickyBroadcast(), or
sendOrderedBroadcast() methods of the Activity class (the latter being used when results are required from the
broadcast). In addition to providing a messaging and event system between application components, broadcast
intents are also used by the Android system to notify interested applications about key system events (such as
the external power supply or headphones being connected or disconnected).

When a broadcast intent is created, it must include an action string, optional data, and a category string. As with
standard intents, data is added to a broadcast intent using key-value pairs in conjunction with the putExtra()
method of the intent object. The optional category string may be assigned to a broadcast intent via a call to the
addCategory() method.

The action string, which identifies the broadcast event, must be unique and typically uses the application’s
package name syntax. For example, the following code fragment creates and sends a broadcast intent, including
a unique action string and data:

val intent = Intent()

intent.action = "com.example.Broadcast"

intent.putExtra ("MyData", 1000)

sendBroadcast (intent)

The above code would successfully launch the corresponding broadcast receiver on an Android device earlier
than 3.0. On more recent versions of Android, however, the broadcast receiver would not receive the intent.
This is because Android 3.0 introduced a launch control security measure that prevents components of stopped
applications from being launched via an intent. An application is considered to be in a stopped state if the
application has either just been installed and not previously launched or been manually stopped by the user
using the application manager on the device. To get around this, however, a flag can be added to the intent before
it is sent to indicate that the intent is to be allowed to start a component of a stopped application. This flag is
FLAG_INCLUDE_STOPPED_PACKAGES and would be used as outlined in the following adaptation of the
previous code fragment:

val intent = Intent /()

intent.action = "com.example.Broadcast"

intent.putExtra ("MyData", 1000)

intent.flags = Intent.FLAG_INCLUDE_ STOPPED_ PACKAGES

sendBroadcast (intent)

483

Android Broadcast Intents and Broadcast Receivers

60.2 An Overview of Broadcast Receivers

An application listens for specific broadcast intents by registering a broadcast receiver. Broadcast receivers are
implemented by extending the Android BroadcastReceiver class and overriding the onReceive() method. The
broadcast receiver may then be registered within code (for example, within an activity) or a manifest file. Part
of the registration implementation involves the creation of intent filters to indicate the specific broadcast intents
the receiver is required to listen for. This is achieved by referencing the action string of the broadcast intent.
When a matching broadcast is detected, the onReceive() method of the broadcast receiver is called, at which
point the method has 5 seconds to perform any necessary tasks before returning. It is important to note that
a broadcast receiver does not need to run continuously. If a matching intent is detected, the Android runtime
system automatically starts the broadcast receiver before calling the onReceive() method.

The following code outlines a template Broadcast Receiver subclass:

package com.ebookfrenzy.sendbroadcast

import android.content.BroadcastReceiver
import android.content.Context

import android.content.Intent
class MyReceiver : BroadcastReceiver () {

override fun onReceive (context: Context, intent: Intent) {
// TODO: This method is called when the BroadcastReceiver is receiving
// an Intent broadcast.

throw UnsupportedOperationException ("Not yet implemented")

}

When registering a broadcast receiver within a manifest file, a <receiver> entry must be added for the receiver.

The following example manifest file registers the above example broadcast receiver:

<?xml version="1.0" encoding="utf-8"7?>

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
package="com.example.broadcastdetector.broadcastdetector"
android:versionCode="1"

android:versionName="1.0" >
<uses-sdk android:minSdkVersion="17" />

<application
android:icon="@mipmap/ic_launcher"
android:label="@string/app name" >
<receiver android:name="MyReceiver" >
</receiver>
</application>
</manifest>

When running on versions of Android older than Android 8.0, the intent filters associated with a receiver can
be placed within the receiver element of the manifest file as follows:

484

Chapter 61

61. An Introduction to Kotlin
Coroutines

When an Android application is first started, the runtime system creates a single thread in which all components
will run by default. This thread is generally referred to as the main thread. The primary role of the main thread
is to handle the user interface in terms of event handling and interaction with views in the user interface. Any
additional components started within the application will, by default, also run on the main thread.

Any code within an application that performs a time-consuming task using the main thread will cause the
entire application to appear to lock up until the task is completed. This typically results in the operating system
displaying an “Application is not responding” warning to the user. This is far from the desired behavior for
any application. Fortunately, Kotlin provides a lightweight alternative in the form of Coroutines. This chapter
will introduce Coroutines, including terminology such as dispatchers, coroutine scope, suspend functions,
coroutine builders, and structured concurrency. The chapter will also explore channel-based communication
between coroutines.

61.1 What are Coroutines?

Coroutines are blocks of code that execute asynchronously without blocking the thread from which they
are launched. Coroutines can be implemented without worrying about building complex AsyncTask
implementations or directly managing multiple threads. Because of the way they are implemented, coroutines
are much more efficient and less resource intensive than using traditional multi-threading options. Coroutines
also make for code that is much easier to write, understand and maintain since it allows code to be written
sequentially without having to write callbacks to handle thread-related events and results.

Although a relatively recent addition to Kotlin, there is nothing new or innovative about coroutines. Coroutines,
in one form or another, have existed in programming languages since the 1960s and are based on a model
known as Communicating Sequential Processes (CSP). Though it does so efficiently, Kotlin still uses multi-
threading behind the scenes.

61.2 Threads vs. Coroutines

A problem with threads is that they are a finite resource and expensive in terms of CPU capabilities and system
overhead. In the background, much work is involved in creating, scheduling, and destroying a thread. Although
modern CPUs can run large numbers of threads, the actual number of threads that can be run in parallel at
any one time is limited by the number of CPU cores (though newer CPUs have 8 cores, most Android devices
contain CPUs with 4 cores). When more threads are required than there are CPU cores, the system has to
perform thread scheduling to decide how the execution of these threads is to be shared between the available
cores.

To avoid these overheads, instead of starting a new thread for each coroutine and destroying it when the
coroutine exits, Kotlin maintains a pool of active threads and manages how coroutines are assigned to those
threads. When an active coroutine is suspended, the Kotlin runtime saves it, and another coroutine resumes to
take its place. When the coroutine is resumed, it is restored to an existing unoccupied thread within the pool to
continue executing until it either completes or is suspended. Using this approach, a limited number of threads
are used efficiently to execute asynchronous tasks with the potential to perform large numbers of concurrent

491

An Introduction to Kotlin Coroutines

tasks without the inherent performance degeneration that would occur using standard multi-threading.

61.3 Coroutine Scope

All coroutines must run within a specific scope, allowing them to be managed as groups instead of as individual
ones. This is particularly important when canceling and cleaning up coroutines, for example, when a Fragment
or Activity is destroyed, and ensuring that coroutines do not “leak” (in other words, continue running in the
background when the app no longer needs them). By assigning coroutines to a scope, they can, for example, all
be canceled in bulk when they are no longer needed.

Kotlin and Android provide built-in scopes and the option to create custom scopes using the CoroutineScope
class. The built-in scopes can be summarized as follows:

+ GlobalScope - GlobalScope is used to launch top-level coroutines tied to the entire application lifecycle.
Since this has the potential for coroutines in this scope to continue running when not needed (for example,
when an Activity exits), use of this scope is not recommended for Android applications. Coroutines running
in GlobalScope are considered to be using unstructured concurrency.

» ViewModelScope - Provided specifically for ViewModel instances when using the Jetpack architecture
ViewModel component. Coroutines launched in this scope from within a ViewModel instance are automatically
canceled by the Kotlin runtime system when the corresponding ViewModel instance is destroyed.

LifecycleScope - Every lifecycle owner has associated with it a LifecycleScope. This scope is canceled when
the corresponding lifecycle owner is destroyed, making it particularly useful for launching coroutines from
within activities and fragments.

For all other requirements, a custom scope will likely be used. The following code, for example, creates a custom
scope named myCoroutineScope:

private val myCoroutineScope = CoroutineScope (Dispatchers.Main)

The coroutineScope declares the dispatcher that will be used to run coroutines (though this can be overridden)

and must be referenced each time a coroutine is started if it is to be included within the scope. All of the running
coroutines in a scope can be canceled via a call to the cancel() method of the scope instance:

myCoroutineScope.cancel ()

61.4 Suspend Functions
A suspend function is a special type of Kotlin function that contains the code of a coroutine. It is declared
using the Kotlin suspend keyword, which indicates to Kotlin that the function can be paused and resumed later,
allowing long-running computations to execute without blocking the main thread.
The following is an example suspend function:
suspend fun mySlowTask() {
// Perform long-running tasks here
}
61.5 Coroutine Dispatchers
Kotlin maintains threads for different types of asynchronous activity, and when launching a coroutine, it will be
necessary to select the appropriate dispatcher from the following options:

« Dispatchers.Main - Runs the coroutine on the main thread and is suitable for coroutines that need to make
changes to the UT and as a general-purpose option for performing lightweight tasks.

« Dispatchers.IO - Recommended for coroutines that perform network, disk, or database operations.

492

An Introduction to Kotlin Coroutines

o Dispatchers.Default - Intended for CPU-intensive tasks such as sorting data or performing complex
calculations.

The dispatcher is responsible for assigning coroutines to appropriate threads and suspending and resuming the
coroutine during its lifecycle. In addition to the predefined dispatchers, it is also possible to create dispatchers
for your own custom thread pools.

61.6 Coroutine Builders

The coroutine builders bring together all of the components covered so far and launch the coroutines so that
they start executing. For this purpose, Kotlin provides the following six builders:

« launch - Starts a coroutine without blocking the current thread and does not return a result to the caller. Use
this builder when calling a suspend function from within a traditional function and when the results of the
coroutine do not need to be handled (sometimes referred to as “fire and forget” coroutines).

o async - Starts a coroutine and allows the caller to wait for a result using the await() function without blocking
the current thread. Use async when you have multiple coroutines that need to run in parallel. The async
builder can only be used from within another suspend function.

withContext — Allows a coroutine to be launched in a different context from that used by the parent coroutine.
Using this builder, a coroutine running using the Main context could launch a child coroutine in the Default
context. The withContext builder also provides a useful alternative to async when returning results from a
coroutine.

coroutineScope — The coroutineScope builder is ideal for situations where a suspend function launches
multiple coroutines that will run in parallel and where some action must occur only when all the coroutines
reach completion. If those coroutines are launched using the coroutineScope builder, the calling function will
not return until all child coroutines have completed. When using coroutineScope, a failure in any coroutine
will cancel all other coroutines.

supervisorScope — Similar to the coroutineScope outlined above, except that a failure in one child does not
result in the cancellation of the other coroutines.

runBlocking - Starts a coroutine and blocks the current thread until the coroutine reaches completion. This
is typically the exact opposite of what is wanted from coroutines but is useful for testing code and when
integrating legacy code and libraries. Otherwise to be avoided.

61.7 Jobs

Each call to a coroutine builder, such as launch or async, returns a Job instance which can, in turn, be used
to track and manage the lifecycle of the corresponding coroutine. Subsequent builder calls from within the
coroutine create new Job instances, which will become children of the immediate parent Job, forming a parent-
child relationship tree where canceling a parent Job will recursively cancel all its children. Canceling a child does
not, however, cancel the parent, though an uncaught exception within a child created using the launch builder
may result in the cancellation of the parent (this is not the case for children created using the async builder,
which encapsulates the exception in the result returned to the parent).

The status of a coroutine can be identified by accessing the isActive, isCompleted, and isCancelled properties of
the associated Job object. In addition to these properties, several methods are also available on a Job instance.
For example, a Job and all of its children may be canceled by calling the cancel() method of the Job object, while
a call to the cancelChildren() method will cancel all child coroutines.

The join() method can be called to suspend the coroutine associated with the job until all of its child jobs have
completed. To perform this task and cancel the Job once all child jobs have completed, call the cancelAndjoin()

493

An Introduction to Kotlin Coroutines
method.

This hierarchical Job structure, together with coroutine scopes, form the foundation of structured concurrency,
which aims to ensure that coroutines do not run longer than required without manually keeping references to
each coroutine.

61.8 Coroutines — Suspending and Resuming

It helps to see some coroutine examples in action to understand coroutine suspension better. To start with, let’s
assume a simple Android app containing a button that, when clicked, calls a function named startTask(). This
function calls a suspend function named performSlowTask() using the Main coroutine dispatcher. The code for
this might read as follows:

private val myCoroutineScope = CoroutineScope (Dispatchers.Main)

fun startTask (view: View) {
myCoroutineScope.launch (Dispatchers.Main) {

performSlowTask ()

}

In the above code, a custom scope is declared and referenced in the call to the launch builder, which, in turn,
calls the performSlowTask() suspend function. Since startTask() is not a suspend function, the coroutine must be
started using the launch builder instead of the async builder.

Next, we can declare the performSlowTask() suspend function as follows:
suspend fun performSlowTask () {
Log.1i(TAG, "performSlowTask before")
delay (5 000) // simulates long-running task
Log.1(TAG, "performSlowTask after")
}

As implemented, all the function does is output diagnostic messages before and after performing a 5-second
delay, simulating a long-running task. While the 5-second delay is in effect, the user interface will continue
to be responsive because the main thread is not being blocked. To understand why it helps to explore what is
happening behind the scenes.

First, the startTask() function is executed and launches the performSlowTask() suspend function as a coroutine.
This function then calls the Kotlin delay() function passing through a time value. The built-in Kotlin delay()
function is implemented as a suspend function, so it is also launched as a coroutine by the Kotlin runtime
environment. The code execution has now reached what is referred to as a suspend point which will cause the
performSlowTask() coroutine to be suspended while the delay coroutine is running. This frees up the thread on
which performSlowTask() was running and returns control to the main thread so that the Ul is unaffected.

Once the delay() function reaches completion, the suspended coroutine will be resumed and restored to a thread
from the pool where it can display the Log message and return to the startTask() function.

When working with coroutines in Android Studio suspend points within the code editor are marked as shown
in the figure below:

494

Chapter 70

70. An Android TableLayout and
TableRow Tutorial

When the work began on the next chapter of this book (“An Android Room Database and Repository Tutorial”),
it was originally intended to include the steps to design the user interface layout for the Room database example
application. It quickly became evident, however, that the best way to implement the user interface was to use the
Android TableLayout and TableRow views and that this topic area deserved a self-contained chapter. As a result,
this chapter will focus solely on the user interface design of the database application to be completed in the next
chapter, and in doing so, take some time to introduce the basic concepts of table layouts in Android Studio.

70.1 The TableLayout and TableRow Layout Views

The TableLayout container view allows user interface elements to be organized on the screen in a table format
consisting of rows and columns. Each row within a TableLayout is occupied by a TableRow instance which, in
turn, is divided into cells, with each cell containing a single child view (which may be a container with multiple
view children).

The number of columns in a table is dictated by the row with the most columns, and, by default, the width
of each column is defined by the widest cell in that column. Columns may be configured to be shrinkable or
stretchable (or both) such that they change in size relative to the parent TableLayout. In addition, a single cell
may be configured to span multiple columns.

Consider the user interface layout shown in Figure 70-1:

Figure 70-1

563

An Android TableLayout and TableRow Tutorial

From the visual appearance of the layout, it is difficult to identify the TableLayout structure used to design
the interface. The hierarchical tree illustrated in Figure 70-2, however, makes the structure a little easier to
understand:

Figure 70-2

The layout comprises a parent LinearLayout view with TableLayout, LinearLayout, and RecyclerView children.
The TableLayout contains three TableRow children representing three rows in the table. The TableRows contain
two child views, each representing the contents of a table column cell. The LinearLayout child view contains
three Button children.

The layout shown in Figure 70-2 is the exact layout required for the database example that will be completed in
the next chapter. Therefore, the remainder of this chapter will be used to work step by step through the design
of this user interface using the Android Studio Layout Editor tool.

70.2 Creating the Room Database Project

Select the New Project menu option from the welcome screen and, within the resulting new project dialog,

choose the Empty Views Activity template before clicking on the Next button.

Enter RoomDemo into the Name field and specify com.ebookfrenzy.roomdemo as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 26: Android 8.0 (Oreo) and the
Language menu to Kotlin.

Migrate the project to view binding using the steps outlined in section 18.8 Migrating a Project to View Binding.

70.3 Converting to a LinearLayout

Locate the activity_main.xml file in the Project tool window (app -> res -> layout) and double-click on it to load
it into the Layout Editor tool. By default, Android Studio has used a ConstraintLayout as the root layout element
in the user interface. This needs to be converted to a vertically oriented LinearLayout.

With the Layout Editor tool in Design mode, locate the ConstraintLayout component in the Component Tree
panel, right-click on it to display the menu shown in Figure 70-3, and select the Convert view... option:

564

An Android TableLayout and TableRow Tutorial

Figure 70-3

In the resulting dialog (Figure 70-4), select the option to convert to a LinearLayout before clicking on the Apply
button:

Figure 70-4

By default, the layout editor will have converted the ConstraintLayout to a horizontal LinearLayout, so select
the layout component in the Component Tree window, refer to the Attributes tool window, and change the
orientation property to vertical:

Figure 70-5

With the conversion complete, select and delete the default TextView widget from the layout.

70.4 Adding the TableLayout to the User Interface

Remaining in the activity_main.xml file and referring to the Layouts category of the Palette, drag a TableLayout
view to position it at the top of the LinearLayout canvas area.

565

An Android TableLayout and TableRow Tutorial

Once these initial steps are complete, the Component Tree for the layout should resemble that shown in Figure
70-6.

Figure 70-6

Android Studio has automatically added four TableRow instances to the TableLayout. Since only three rows are
required for this example, select and delete the fourth TableRow instance. Additional rows may be added to the
TableLayout at any time by dragging the TableRow object from the palette and dropping it onto the TableLayout
entry in the Component Tree tool window.

With the TableLayout selected, use the Attributes tool window to change the layout_height property to wrap_
content and layout_width to match_parent.

70.5 Configuring the TableRows

From within the Text section of the palette, drag two TextView objects onto the uppermost TableRow entry in
the Component Tree (Figure 70-7):

Figure 70-7

Select the left-most TextView within the screen layout and change the text property to “Product ID” in the
Attributes tool window. Repeat this step for the rightmost TextView, changing the text to “Not assigned” and
specifying an ID value of productID.

Drag and drop another TextView widget onto the second TableRow entry in the Component Tree and change
the text on the view to read “Product Name”. Locate the Plain Text object in the palette and drag and drop it to
position it beneath the Product Name TextView within the Component Tree as outlined in Figure 70-8. Next,

566

An Android TableLayout and TableRow Tutorial

delete the “Name” string from the text property and set the ID to productName.

Figure 70-8

Drag and drop another TextView and a Number (Decimal) Text Field onto the third TableRow to position the
TextView above the EditText in the hierarchy. Change the text on the TextView to “Product Quantity” and the
ID of the EditText object to productQuantity.

Shift-click to select all of the widgets in the layout as shown in Figure 70-9 below, and use the Attributes tool
window to set the textSize property on all of the objects to 18sp:

Figure 70-9
70.6 Adding the Button Bar to the Layout

The next step is to add a LinearLayout (Horizontal) view to the parent LinearLayout view, positioned immediately
below the TableLayout view. Begin by clicking on the small disclosure arrow to the left of the TableLayout entry
in the Component Tree so that the TableRows are folded away from view. Drag a LinearLayout (horizontal)
instance from the Layouts section of the Layout Editor palette, drop it immediately beneath the TableLayout
entry in the Component Tree panel, and change the layout_height property to wrap_content:

Figure 70-10

Drag three Button objects onto the new LinearLayout and assign string resources for each button that read
“Add’, “Find” and “Delete” respectively. Buttons in this type of button bar arrangement should generally be
displayed with a borderless style. Use the Attributes tool window for each button to change the style setting to
Widget. AppCompat.Button.Borderless and the textColor attribute to 2attr/colorPrimary. Change the IDs for the

buttons to addButton, findButton, and deleteButton, respectively.

567

An Android TableLayout and TableRow Tutorial

Figure 70-11

With the new horizontal LinearLayout view selected in the Component Tree, change the gravity property to
center_horizontal so that the buttons are centered horizontally within the display. Before proceeding, extract all
of the text properties added in the above steps to string resources.

70.7 Adding the RecyclerView

In the Component Tree, click on the disclosure arrow to the left of the newly added horizontal LinearLayout
entry to fold all the children from view.

From the Containers section of the Palette, drag a RecyclerView instance onto the Component Tree to position
it beneath the button bar LinearLayout as shown in Figure 70-12. Ensure the RecyclerView is added as a direct
child of the parent vertical LinearLayout view and not as a child of the horizontal button bar LinearLayout.

Figure 70-12

With the RecyclerView selected in the layout, change the ID of the view to product_recycler and set the layout_
height property to match_parent. Before proceeding, check that the hierarchy of the layout in the Component
Tree panel matches that shown in the following figure:

568

An Android TableLayout and TableRow Tutorial

Figure 70-13
70.8 Adjusting the Layout Margins

All that remains is to adjust some of the layout settings. Begin by clicking on the first TableRow entry in the
Component Tree panel so that it is selected. Hold down the Cmd/Ctrl-key on the keyboard and click on the
second and third TableRows, the horizontal LinearLayout, and the RecyclerView so that all five items are
selected. In the Attributes panel, locate the layout_margin attributes category and, once located, change the
value to 10dp as shown in Figure 70-14:

Figure 70-14

With margins set, the user interface should appear as illustrated in Figure 70-1.

70.9 Summary

The Android TableLayout container view provides a way to arrange view components in a row and column
configuration. While the TableLayout view provides the overall container, each row and the cells contained
therein are implemented via instances of the TableRow view. In this chapter, a user interface has been designed
in Android Studio using the TableLayout and TableRow containers. The next chapter will add the functionality
behind this user interface to implement the SQLite database capabilities using a repository and the Room

persistence library.
569

Chapter 72

72. Video Playback on Android using
the VideoView and MediaController
Classes

One of the primary uses for smartphones and tablets is to provide access to online content. Video is a key form
of content widely used, especially on tablet devices.

The Android SDK includes two classes that make implementing video playback on Android devices extremely
easy to implement when developing applications. This chapter will provide an overview of these two classes,
VideoView and MediaController, creating a video playback application.

72.1 Introducing the Android VideoView Class

The simplest way to display video within an Android application is to use the VideoView class. This visual
component provides a surface on which a video may be played when added to the layout of an activity. Android
currently supports the following video formats:

« H.263

« H264 AVC
« H.265 HEVC
« MPEG-4 SP
« VP8

« VP9

The VideoView class has a wide range of methods that may be called to manage video playback. Some of the
more commonly used methods are as follows:

« setVideoPath(String path) - Specifies the video media path (as a string) to be played. This can be either a
remote video file URL or a video file local to the device.

o setVideoUri(Uri uri) - Performs the same task as the setVideoPath() method but takes a Uri object as an
argument instead of a string.

o start() - Starts video playback.

« stopPlayback() - Stops the video playback.

o pause() — Pauses video playback.

« isPlaying() — Returns a Boolean value indicating whether a video is playing.

o setOnPreparedListener(MediaPlayer.OnPreparedListener) — Allows a callback method to be called when
the video is ready to play.
587

Video Playback on Android using the VideoView and MediaController Classes

o setOnErrorListener(MediaPlayer.OnErrorListener) - Allows a callback method to be called when an error
occurs during the video playback.

setOnCompletionListener(MediaPlayer.OnCompletionListener) - Allows a callback method to be called
when the end of the video is reached.

getDuration() - Returns the duration of the video. Will typically return -1 unless called from within the
OnPreparedListener() callback method.

getCurrentPosition() — Returns an integer value indicating the current position of playback.

setMediaController(MediaController) - Designates a MediaController instance allowing playback controls
to be displayed to the user.

72.2 Introducing the Android MediaController Class

If a video is played using the VideoView class, the user will not be given any control over the playback, which
will run until the end of the video is reached. This issue can be addressed by attaching an instance of the
MediaController class to the VideoView instance. The MediaController will then provide a set of controls
allowing the user to manage the playback (such as pausing and seeking backward/forwards in the video timeline).

The position of the controls is designated by anchoring the controller instance to a specific view in the user
interface layout. Once attached and anchored, the controls will appear briefly when playback starts and may
subsequently be restored at any point by the user tapping on the view to which the instance is anchored.

Some of the key methods of this class are as follows:

« setAnchorView(View view) — Designates the view to which the controller will be anchored. This designates
the location of the controls on the screen.

o show() - Displays the controls.

« show(int timeout) — Controls are displayed for the designated duration (in milliseconds).

« hide() - Hides the controller from the user.

o isShowing() - Returns a Boolean value indicating whether the controls are currently visible to the user.

72.3 Creating the Video Playback Example

The remainder of this chapter will create an example application that uses the VideoView and MediaController
classes to play an MPEG-4 video file.

Select the New Project option from the welcome screen and, within the resulting new project dialog, choose the
Empty Views Activity template before clicking on the Next button.

Enter VideoPlayer into the Name field and specify com.ebookfrenzy.videoplayer as the package name. Before
clicking on the Finish button, change the Minimum API level setting to API 33: Android 13 (Tiramisu) and
the Language menu to Kotlin. Use the steps in section 18.8 Migrating a Project to View Binding to enable view
binding for the project.

72.4 Designing the VideoPlayer Layout

The user interface for the main activity will consist solely of an instance of the VideoView class. Use the Project
tool window to locate the app -> res -> layout -> activity_main.xml file, double-click on it, switch the Layout
Editor tool to Design mode, and delete the default TextView widget.

588

Video Playback on Android using the VideoView and MediaController Classes

From the Widgets category of the Palette panel, drag and drop a VideoView instance onto the layout to fill the
available canvas area, as shown in Figure 72-1. Using the Attributes panel, change the layout_width and layout_
height attributes to match_constraint and wrap_content, respectively. Also, remove the constraint connecting the
bottom of the VideoView to the bottom of the parent ConstraintLayout. Finally, change the ID of the component
to videoViewl.

Figure 72-1
72.5 Downloading the Video File

The video that will be played by the VideoPlayer app is a short animated movie clip encoded in MPEG-4 format.
Using a web browser, navigate to the following URL to play the video:

https://www.ebookfrenzy.com/android_book/demo.mp4

Staying within the browser window, right-click on the video playback, select the option to save or download the
video to a local file, and choose a suitable temporary filesystem location, naming the file demo.mp4.

Within Android Studio, locate the res folder in the Project tool window, right-click on it, select the New ->
Directory menu option, and enter raw into the name field before pressing the Return key. Using the filesystem
navigator for your operating system, locate the demo.mp4 file downloaded above and copy it. Returning to
Android Studio, right-click on the newly created raw directory and select the Paste option to copy the video file
into the project. Once added, the raw folder should match Figure 72-2 within the Project tool window:

Figure 72-2
72.6 Configuring the VideoView

The next step is configuring the VideoView with the video path to be played and then starting the playback.
This will be performed when the main activity has initialized, so load the MainActivity.kt file into the editor and

589

https://www.ebookfrenzy.com/android_book/demo.mp4

Video Playback on Android using the VideoView and MediaController Classes

modify it as outlined in the following listing:

package com.ebookfrenzy.videoplayer

import android.net.Uri
class MainActivity : AppCompatActivity() {
private lateinit var binding: ActivityMainBinding
override fun onCreate (savedInstanceState: Bundle?) {
super.onCreate (savedInstanceState)
binding = ActivityMainBinding.inflate (layoutInflater)

setContentView (binding.root)

configureVideoView ()

private fun configureVideoView() {

binding.videoViewl.setVideoURI (Uri.parse ("android.resource://"
+ packageName + "/" + R.raw.demo))

binding.videoViewl.start()

}

This code obtains a reference to the VideoView instance in the layout, assigns to it a URI object referencing the
movie file located in the raw resource directory, and then starts the video playing.

Test the application by running it on an emulator or physical Android device. After the application launches,
there may be a short delay while video content is buffered before the playback begins (Figure 72-3).

Figure 72-3

This shows how easy it can be to integrate video playback into an Android application. Everything in this
example has been achieved using a VideoView instance and three lines of code.

590

Video Playback on Android using the VideoView and MediaController Classes
72.7 Adding the MediaController to the Video View

As the VideoPlayer application currently stands, there is no way for the user to control playback. As previously
outlined, this can be achieved using the MediaController class. To add a controller to the VideoView, modify the
configureVideoView() method once again:

package com.ebookfrenzy.videoplayer
import android.widget.MediaController

class MainActivity : AppCompatActivity() {

private var mediaController: MediaController? = null

private fun configureVideoView () {

binding.videoViewl.setVideoURI (Uri.parse ("android.resource://"

+ packageName + "/" + R.raw.demo))

mediaController = MediaController (this)
mediaController?.setAnchorView (binding.videoViewl)
binding.videoViewl.setMediaController (mediaController)

binding.videoViewl.start ()

}

When the application is launched with these changes implemented, tapping the VideoView canvas will cause
the media controls to appear over the video playback. These controls should include a Seekbar and fast forward,
rewind, and play/pause buttons. After the controls recede from view, they can be restored anytime by tapping
on the VideoView canvas again. With just three more lines of code, our video player application now has media
controls, as shown in Figure 72-4:

Figure 72-4
72.8 Setting up the onPreparedListener

As a final example of working with video-based media, the activity will be extended further to demonstrate the
mechanism for configuring a listener. In this case, a listener will be implemented that is intended to output the
duration of the video as a message in the Android Studio Logcat panel. The listener will also configure video
playback to loop continuously:

package com.ebookfrenzy.videoplayer

591

Video Playback on Android using the VideoView and MediaController Classes

import android.util.Log

class MainActivity : AppCompatActivity() {

private var TAG = "VideoPlayer"

private fun configureVideoView () {

binding.videoViewl.setVideoURI (Uri.parse ("android.resource://"

+ packageName + "/" + R.raw.demo))

mediaController = MediaController (this)
mediaController?.setAnchorView (binding.videoViewl)

binding.videoViewl.setMediaController (mediaController)

binding.videoViewl.setOnPreparedListener { mp ->
mp.isLooping = true
Log.i(TAG, "Duration = " + binding.videoViewl.duration)

}

binding.videoViewl.start ()

}
Now just before the video playback begins, a message will appear in the Android Studio Logcat panel that reads
along the lines of the following, and the video will restart after playback ends:

2023-06-27 09:25:41.313 3050-3050 VideoPlayer com.ebookfrenzy.videoplayer
I Duration = 25365

72.9 Summary

Android devices make excellent platforms for the delivery of content to users, particularly in the form of
video media. As outlined in this chapter, the Android SDK provides two classes, namely VideoView and
MediaController, which combine to make video playback integration into Android applications quick and easy,
often involving just a few lines of Kotlin code.

592

Chapter 73

73. Android Picture-in-Picture Mode

When multitasking in Android was covered in earlier chapters, Picture-in-picture (PiP) mode was mentioned
briefly but not covered in any detail. Intended primarily for video playback, PiP mode allows an activity screen
to be reduced in size and positioned at any location on the screen. While in this state, the activity continues to
run, and the window remains visible regardless of any other activities running on the device. This allows the user
to, for example, continue watching video playback while performing tasks such as checking email or working
on a spreadsheet.

This chapter will provide an overview of Picture-in-Picture mode before Picture-in-Picture support is added to
the VideoPlayer project in the next chapter.

73.1 Picture-in-Picture Features

As explained later in the chapter and demonstrated in the next chapter, an activity is placed into PiP mode via an
API call from within the running app. When placed into PiP mode, configuration options may be specified that
control the aspect ratio of the PiP window and also define the area of the activity screen to be included. Figure
73-1, for example, shows a video playback activity in PiP mode:

Figure 73-1

Figure 73-2 shows a PiP mode window after the user has tapped it. When in this mode, the window appears
larger and includes a full-screen action in the center which, when tapped, restores the window to full-screen
mode and an exit button in the top right-hand corner to close the window and place the app in the background.
When displayed in this mode, any custom actions added to the PiP window will appear on the screen. In the case
of Figure 73-2, the PiP window includes custom play and pause action buttons:

593

Android Picture-in-Picture Mode

Figure 73-2

The remainder of this chapter will outline how PiP mode is enabled and managed from within an Android app.

73.2 Enabling Picture-in-Picture Mode

PiP mode is currently only supported on devices running API 26: Android 8.0 (Oreo) or newer. The first step in
implementing PiP mode is to enable it within the project’s manifest file. PiP mode is configured on a per-activity
basis by adding the following lines to each activity element for which PiP support is required:
<activity android:name=".MyActivity"
android:supportsPictureInPicture="true"
android:configChanges=
"screenSize|smallestScreenSize|screenlLayout|orientation"
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

The android:supportsPicturelnPicture entry enables PiP for the activity, while the android:configChanges property
notifies Android that the activity can handle layout configuration changes. Without this setting, each time the
activity moves in and out of PiP mode, the activity will be restarted, resulting in playback restarting from the
beginning of the video during the transition.

73.3 Configuring Picture-in-Picture Parameters

PiP behavior is defined through the use of the PictureInPictureParams class, instances of which can be created
using the Builder class as follows:

val params = PictureInPictureParams.Builder () .build()

The above code creates a default PictureInPictureParams instance with special parameters defined. The following
optional method calls may also be used to customize the parameters:

o setActions() - Used to define actions that can be performed within the PiP window while the activity is in PiP
mode. Actions will be covered in more detail later in this chapter.

o setAspectRatio() - Declares the preferred aspect ratio for the appearance of the PiP window. This method
takes as an argument a Rational object containing the height width/height ratio.

594

Android Picture-in-Picture Mode

o setSourceRectHint() — Takes as an argument a Rect object defining the area of the activity screen to be
displayed within the PiP window.

The following code, for example, configures aspect ratio and action parameters within a PictureInPictureParams
object. In the case of the aspect ratio, this is defined using the width and height dimensions of a VideoView
instance:

val rational = Rational (videoView.width,

videoView.height)

val params = PictureInPictureParams.Builder ()
.setAspectRatio(rational)
.setActions (actions)
.build()

Once defined, PiP parameters may be set at any time using the setPicturelnPictureParams() method as follows:

setPictureInPictureParams (params)

Parameters may also be specified when entering PiP mode.

73.4 Entering Picture-in-Picture Mode
An activity is placed into Picture-in-Picture mode via a call to the enterPicturelnPictureMode() method, passing
through a PictureInPictureParams object:

enterPicturelInPictureMode (params)

If no parameters are required, create a default PictureInPictureParams object as outlined in the previous section.
If parameters have previously been set using the setPicturelnPictureParams() method, these parameters are
combined with those specified during the enterPictureInPictureMode() method call.

73.5 Detecting Picture-in-Picture Mode Changes
When an activity enters PiP mode, it is important to hide unnecessary views so that only the video playback
is visible within the PiP window. When an activity enters PiP mode, it is important to hide unnecessary views
so that only the video playback is visible within the PiP window. When the activity re-enters full-screen mode,
hidden user interface components must be reinstated. These and other app-specific tasks can be performed by
overriding theonPicturelnPictureModeChanged() method. When added to the activity, this method is called
each time the activity transitions between PiP and full-screen modes and is passed a Boolean value indicating
whether the activity is currently in PiP mode:
override fun onPicturelInPictureModeChanged (
isInPictureInPictureMode: Boolean, newConfig: Configuration) ({
super.onPictureInPictureModeChanged (isInPictureInPictureMode, newConfig)
if (isInPictureInPictureMode) {
// Activity entered Picture-in-Picture mode
} else {

// Activity entered full-screen mode

}
73.6 Adding Picture-in-Picture Actions

Picture-in-Picture actions appear as icons within the PiP window when the user taps it. Implementing PiP
actions is a multi-step process that begins with implementing a way for the PiP window to notify the activity

595

Android Picture-in-Picture Mode

that an action has been selected. This is achieved by setting up a broadcast receiver within the activity and then
creating a pending intent within the PiP action, which, in turn, is configured to broadcast an intent for which
the broadcast receiver is listening. When the intent triggers the broadcast receiver, the data stored in the intent
can be used to identify the action performed and to take the necessary action within the activity.

PiP actions are declared using the RemoteAction instances, initialized with an icon, a title, a description, and the
PendingIntent object. Once one or more actions have been created, they are added to an ArrayList and passed
through to the setActions() method while building a PictureInPictureParams object.

The following code fragment demonstrates the creation of the Intent, PendingIntent, and RemoteAction objects
together with a PictureInPictureParams instance which is then applied to the activity’s PiP settings:

val actions = ArrayList<RemoteAction> ()
val actionIntent = Intent("MY PIP ACTION")

val pendingIntent = PendingIntent.getBroadcast (this@MyActivity,
REQUEST CODE, actionIntent,
FLAG IMMUTABLE)

val icon = Icon.createWithResource (this, R.drawable.action icon)

val remoteAction = RemoteAction (icon,
"My Action Title",
"My Action Description",

pendingIntent)
actions.add (remoteAction)

val params = PictureInPictureParams.Builder ()
.setActions (actions)
.build()

setPictureInPictureParams (params)

73.7 Summary

Picture-in-Picture mode is a multitasking feature introduced with Android 8.0 designed specifically to allow
video playback to continue in a small window while the user performs tasks in other apps and activities. Before
PiP mode can be used, it must first be enabled within the manifest file for those activities that require PiP
support.

PiP mode behavior is configured using instances of the PictureInPictureParams class and initiated via a call to the
enterPictureInPictureMode() method from within the activity. When in PiP mode, only the video playback should
be visible, requiring that any other user interface elements be hidden until full-screen mode is selected. These
and other mode transition-related tasks can be performed by overriding the onPicturelnPictureModeChanged()
method.

PiP actions appear as icons overlaid onto the PiP window when the user taps it. When selected, these actions
trigger behavior within the activity. The PiP window uses broadcast receivers and pending intents to notify the
activity of an action.

596

Chapter 74

74. An Android Picture-in-Picture
Tutorial

Following the previous chapters, this chapter will take the existing VideoPlayer project and enhance it to add
Picture-in-Picture support, including detecting PiP mode changes and adding a PiP action designed to display
information about the currently running video.

74.1 Adding Picture-in-Picture Support to the Manifest

The first step in adding PiP support to an Android app project is to enable it within the project Manifest file.
Open the manifests -> AndroidManifest.xml file and modify the activity element to enable PiP support:

<activity
android:name=".MainActivity"
android:supportsPictureInPicture="true"
android:configChanges="screenSize|smallestScreenSize|screenlLayout|orientation"
android:exported="true">
<intent-filter>
<action android:name="android.intent.action.MAIN" />
<category android:name="android.intent.category.LAUNCHER" />
</intent-filter>
</activity>

74.2 Adding a Picture-in-Picture Button

As currently designed, the layout for the VideoPlayer activity consists solely of a VideoView instance. As
currently designed, the layout for the VideoPlayer activity consists solely of a VideoView instance. A button will
now be added to the layout to switch to PiP mode. Load the activity_main.xml file into the layout editor and drag
a Button object from the palette onto the layout so that it is positioned as shown in Figure 74-1:

Figure 74-1

Change the text on the button to read “Enter PiP Mode” and extract the string to a resource named enter_pip_
mode. Before moving on to the next step, change the ID of the button to pipButton and configure the onClick
attribute to call a method named enterPipMode.

597

An Android Picture-in-Picture Tutorial

74.3 Entering Picture-in-Picture Mode

The enterPipMode onClick callback method must now be added to the MainActivity.kt class file. Locate this file,
open it in the code editor, and add this method as follows:

import android.app.PicturelInPictureParams
import android.util.Rational
import android.view.View

import android.content.res.Configuration

fun enterPipMode (view: View) {

val rational = Rational (binding.videoViewl.width,
binding.videoViewl.height)

val params = PicturelInPictureParams.Builder ()
.setAspectRatio (rational)
.build()

binding.pipButton.visibility = View.INVISIBLE
binding.videoViewl.setMediaController (null)
enterPictureInPictureMode (params)

}

The method begins by obtaining a reference to the Button view, then creates a Rational object containing
the width and height of the VideoView. A set of Picture-in-Picture parameters is then created using the
PictureInPictureParams Builder, passing through the Rational object as the aspect ratio for the video playback.
Since the button does not need to be visible while the video is in PiP mode, it is invisible. The video playback
controls are also hidden, so the video view will be unobstructed while in PiP mode.

Compile and run the app on a device or emulator running Android version 8 or newer and wait for video
playback to begin before clicking on the PiP mode button. The video playback should minimize and appear in
the PiP window as shown in :

Figure 74-2
598

An Android Picture-in-Picture Tutorial

Click in the PiP window, then click within the full-screen mode markers that appear in the center of the window.
Although the activity returns to full-screen mode, the button and media playback controls remain hidden.

Clearly, some code must be added to the project to detect when PiP mode changes occur within the activity.

74.4 Detecting Picture-in-Picture Mode Changes

As discussed in the previous chapter, PiP mode changes are detected by overriding the
onPicturelnPictureModeChanged() method within the affected activity. n this case, the method must be written
to detect whether the activity is entering or exiting PiP mode and to take appropriate action to re-activate the
PiP button and the playback controls. Remaining within the MainActivity.kt file, add this method now:
override fun onPicturelInPictureModeChanged (
isInPictureInPictureMode: Boolean, newConfig: Configuration) {
super.onPictureInPictureModeChanged (isInPictureInPictureMode, newConfig)

if (isInPictureInPictureMode) {

} else {
binding.pipButton.visibility = View.VISIBLE

binding.videoViewl.setMediaController (mediaController)

}

When the method is called, it is passed a Boolean value indicating whether the activity is now in PiP mode.
The code in the above method checks this value to decide whether to show the PiP button and to re-activate the
playback controls.

74.5 Adding a Broadcast Receiver

The final step in the project is to add an action to the PiP window. The purpose of this action is to display
a Toast message containing the name of the currently playing video. This will require some communication
between the PiP window and the activity. One of the simplest ways to achieve this is to implement a broadcast
receiver within the activity and use a pending intent to broadcast a message from the PiP window to the
activity. Each time the activity enters PiP mode, these steps must be performed, so code must be added to the
onPictureInPictureModeChanged() method. Locate this method now and begin by adding some code to create
an intent filter and initialize the broadcast receiver:

import android.content.BroadcastReceiver
import android.content.Context

import android.content.Intent

import android.content.IntentFilter
import android.widget.Toast

class MainActivity : AppCompatActivity() {

private val receiver: BroadcastReceiver? = null

override fun onPicturelInPictureModeChanged (
599

An Android Picture-in-Picture Tutorial
isInPictureInPictureMode: Boolean, newConfig: Configuration) {
super.onPictureInPictureModeChanged (isInPictureInPictureMode, newConfig)
if (isInPicturelInPictureMode) {
val filter = IntentFilter ()
filter.addAction (
"com.ebookfrenzy.videoplayer.VIDEO_ INFO")

val receiver = object : BroadcastReceiver () {
override fun onReceive (context: Context,
intent: Intent) {
Toast.makeText (context,
"Favorite Home Movie Clips",
Toast.LENGTH_LONG) . show ()

registerReceiver (receiver, filter, Context.RECEIVER EXPORTED)
} else {
binding.pipButton.visibility = View.VISIBLE

binding.videoViewl.setMediaController (mediaController)

receiver?.let {

unregisterReceiver (it)

}
74.6 Adding the PiP Action

With the broadcast receiver implemented, the next step is to create a RemoteAction object configured with an
image to represent the action within the PiP window.

For this example, an image icon file named ic_info_24dp.xml will be used. This file can be found in the project
icons folder of the source code download archive available from the following URL:

https://www.ebookfrenzy.com/retail/giraffekotlin/index.php

Locate this icon file and copy and paste it into the app -> res -> drawables folder within the Project tool window:

Figure 74-3

600

https://www.ebookfrenzy.com/retail/giraffekotlin/index.php

An Android Picture-in-Picture Tutorial

The next step is to create an Intent that will be sent to the broadcast receiver. This intent then needs to be
wrapped up within a PendingIntent object, allowing the intent to be triggered later when the user taps the action
button in the PiP window.

Edit the MainActivity.kt file to add a method to create the Intent and PendingIntent objects as follows:

import android.app.PendingIntent
import android.app.PendingIntent.FLAG_ IMMUTABLE
class MainActivity : AppCompatActivity() {

private val REQUEST CODE = 101

private fun createPipAction() {
val actionIntent = Intent("com.ebookfrenzy.videoplayer.VIDEO INFO")

val pendingIntent = PendingIntent.getBroadcast (this@MainActivity,
REQUEST CODE, actionIntent, FLAG_IMMUTABLE)

}
Now that both the Intent object and the PendingIntent instance in which it is contained have been created, a

RemoteAction object needs to be created containing the icon to appear in the PiP window and the PendingIn-
tent object. Remaining within the createPipAction() method, add this code as follows:

import android.app.RemoteAction
import android.graphics.drawable.Icon
private fun createPipAction() {
val actions = ArrayList<RemoteAction> ()
val actionIntent = Intent ("com.ebookfrenzy.videoplayer.VIDEO INFO")

val pendingIntent = PendingIntent.getBroadcast (this@MainActivity,
REQUEST CODE, actionIntent, FLAG IMMUTABLE)

val icon = Icon.createWithResource(this, R.drawable.ic_info_24dp)

val remoteAction = RemoteAction(icon, "Info", "Video Info", pendingIntent)

601

An Android Picture-in-Picture Tutorial

actions.add (remoteAction)

}
Now a PictureInPictureParams object containing the action needs to be created and the parameters applied so
that the action appears within the PiP window:

private fun createPipAction() {
val actions = ArrayList<RemoteAction> ()
val actionIntent = Intent ("com.ebookfrenzy.videoplayer.VIDEO INFO")

val pendingIntent = PendingIntent.getBroadcast (this@MainActivity,
REQUEST CODE, actionIntent, FLAG IMMUTABLE)

val icon =
Icon.createWithResource (this,
R.drawable.ic_info 24dp)

val remoteAction = RemoteAction(icon, "Info",

"Video Info", pendingIntent)
actions.add (remoteAction)

val params = PictureInPictureParams.Builder ()
.setActions (actions)
.build()

setPictureInPictureParams (params)

}

The final task before testing the action is to make a call to the createPipAction() method when the activity enters
PiP mode:
override fun onPictureInPictureModeChanged (

isInPictureInPictureMode: Boolean, newConfig: Configuration) {

super.onPicturelInPictureModeChanged (isInPictureInPictureMode, newConfig)

registerReceiver (receiver, filter, Context.RECEIVER EXPORTED)
createPipAction ()

} else {
pipButton.visibility = View.VISIBLE

videoViewl.setMediaController (mediaController)

602

An Android Picture-in-Picture Tutorial

74.7 Testing the Picture-in-Picture Action

Rerun the app and place the activity into PiP mode. Tap on the PiP window so that the new action button
appears, as shown in Figure 74-4:

Figure 74-4

Click on the action button and wait for the Toast message to appear, displaying the name of the video:

Figure 74-5
74.8 Summary

This chapter has demonstrated the addition of Picture-in-Picture support to an Android Studio app project,
including enabling and entering PiP mode and implementing a PiP action. This included using a broadcast
receiver and pending intents to implement communication between the PiP window and the activity.

603

Chapter 83

83. An Introduction to Android App
Links

As technology evolves, the traditional distinction between web and mobile content is beginning to blur. One
area where this is particularly true is the growing popularity of progressive web apps, where web apps look and
behave much like traditional mobile apps.

Another trend involves making the content within mobile apps discoverable through web searches and via URL
links. In the context of Android app development, the App Links feature is designed to make it easier for users
to discover and access content stored within an Android app, even if the user does not have the app installed.

83.1 An Overview of Android App Links

An app link is a standard HTTP URL that is an easy way to link directly to a particular place in your app from
an external source such as a website or app. App links (also called deep links) are used primarily to encourage
users to engage with an app and to allow users to share app content.

App link implementation is a multi-step process that involves the addition of intent filters to the project manifest,
implementing link handling code within the associated app activities, and the use of digital asset links files to
associate app and web-based content.

These steps can be performed manually by making changes within the project or automatically using the
Android Studio App Links Assistant.

These steps can be performed manually by making project changes or automatically using the Android Studio
App Links Assistant.

The remainder of this chapter will outline app links implementation in terms of the changes that must be made
to a project. The next chapter (“An Android Studio App Links Tutorial”) will demonstrate the use of the App Links
Assistant to achieve the same results.

83.2 App Link Intent Filters

An app link URL needs to be mapped to a specific activity within an app project. This is achieved by adding intent
filters to the project’s AndroidManifest.xml file designed to launch an activity in response to an android.intent.
action.VIEW action. The intent filters are declared within the element for the activity to be launched and must
contain the data outlining the scheme, host, and path of the app link URL. The following manifest fragment,
for example, declares an intent filter to launch an activity named MyActivity when an app link matching http://
www.example.com/welcome is detected:

<activity android:name="com.ebookfrenzy.myapp.MyActivity">

<intent-filter android:autoVerify="true">
<action android:name="android.intent.action.VIEW" />
<category android:name="android.intent.category.DEFAULT" />
<category android:name="android.intent.category.BROWSABLE" />

695

An Introduction to Android App Links

<data
android:scheme="http"
android:host="www.example.com"
android:pathPrefix="/welcome" />
</intent-filter>
</activity>

The order in which ambiguous intent filters are handled can be specified using the order property of the intent
filter tag as follows:
<application>

<activity android:name=" com.ebookfrenzy.myapp.MyActivity">

<intent-filter android:autoVerify="true" android:order="1">

The intent filter will cause the app link to launch the correct activity, but code must still be added to the target
activity to handle the intent appropriately.

83.3 Handling App Link Intents

In most cases, the launched activity will need to gain access to the app link URL and take specific action based
on how the URL is structured. Continuing from the above example, the activity will likely display different
content when launched via a URL containing a path of /welcome/newuser than one with the path set to /welcome/
existinguser.

When the link launches the activity, it is passed an intent object containing data about the action which launched
the activity, including a Uri object containing the app link URL. Within the initialization stages of the activity,
code can be added to extract this data as follows:

val applLinkIntent = intent

val applinkAction = appLinkIntent.action

val applLinkData = appLinkIntent.data

Having obtained the Uri for the app link, the various components that make up the URL path can be used to
decide the actions to perform within the activity. In the following code example, the last component of the URL
is used to identify whether content should be displayed for a new or existing user:

val userType = applinkData.lastPathSegment

if (userType == "newuser") {
// display new user content
} else {
// display existing user content

)
83.4 Associating the App with a Website

Before an app link will work, an app link URL must be associated with the website on which the app link is
based. This is achieved by creating a Digital Asset Links file named assetlinks.json and installing it within the
website’s .well-known folder. Note that digital asset linking is only possible for websites that are HTTPS based.

A digital asset links file comprises a relation statement granting permission for a target app to be launched
using the website’s link URLs and a target statement declaring the companion app package name and SHA-256
certificate fingerprint for that project. A typical asset link file might, for example, read as follows:

696

An Introduction to Android App Links

"relation": ["delegate permission/common.handle all urls"],
"target" : { "namespace": "android app",
"package name": "<app package name here>",
"sha256 cert fingerprints": ["<app certificate here>"] }

H

The assetlinks.json file can contain multiple digital asset links, allowing a single website to be associated with
more than one companion app.

83.5 Summary

Android App Links allow app activities to be launched via URL links from external websites and other apps. App
links are implemented using intent filters within the project manifest file and intent handling code within the
launched activity. Using a Digital Asset Links file, it is also possible to associate the domain name used in an app
link with the corresponding website. Once the association has been established, Android no longer needs to ask
the user to select the target app when an app link is used.

697

Chapter 87

87. An Overview of Android In-App
Billing

n the early days of mobile applications for operating systems such as Android and iOS, the most common
method for earning revenue was to charge an upfront fee to download and install the application. Another
revenue opportunity was soon introduced by embedding advertising within applications. The most common
and lucrative option is to charge the user for purchasing items from within the application after installing it. This

typically takes the form of access to a higher level in a game, acquiring virtual goods or currency, or subscribing
to premium content in the digital edition of a magazine or newspaper.

Google supports integrating in-app purchasing through the Google Play In-App Billing API and the Play
Console. This chapter will provide an overview of in-app billing and outline how to integrate in-app billing into
your Android projects. Once these topics have been explored, the next chapter will walk you through creating
an example app that includes in-app purchasing features.

87.1 Preparing a Project for In-App Purchasing

Building in-app purchasing into an app will require a Google Play Developer Console account, details of which
were covered previously in the “Creating, Testing and Uploading an Android App Bundle” chapter. You must also
register a Google merchant account. These settings can be found by navigating to Setup -> Payments profile
in the Play Console. Note that merchant registration is not available in all countries. For details, refer to the
following page:

https://support.google.com/googleplay/android-developer/answer/9306917

The app must then be uploaded to the console and enabled for in-app purchasing. However, the console will
not activate in-app purchasing support for an app unless the Google Play Billing Library has been added to the
module-level build.gradle.kts file. When working with Kotlin, the Google Play Kotlin Extensions Library is also
recommended:

dependencies {

implementation ("com.android.billingclient:billing:<latest version>")

implementation ("com.android.billingclient:billing-ktx:<latest version>")

}
Once the build file has been modified and the app bundle uploaded to the console, the next step is to add in-app
products or subscriptions for the user to purchase.

87.2 Creating In-App Products and Subscriptions

Products and subscriptions are created and managed using the options listed beneath the Monetize section of
the Play Console navigation panel, as highlighted in Figure 87-1 below:

731

https://support.google.com/googleplay/android-developer/answer/9306917

An Overview of Android In-App Billing

Figure 87-1
Each product or subscription needs an ID, title, description, and pricing information. Purchases fall into the
categories of consumable (the item must be purchased each time it is required by the user, such as virtual
currency in a game), non-consumable (only needs to be purchased once by the user, such as content access), and
subscription-based. Consumable and non-consumable products are collectively referred to as managed products.

Subscriptions are useful for selling an item that needs to be renewed regularly, such as access to news content
or the premium features of an app. When creating a subscription, a base plan specifies the price, renewal period
(monthly, annually, etc.), and whether the subscription auto-renews. Users can also be given discount offers and
the option of pre-purchasing a subscription.

87.3 Billing Client Initialization

Communication between your app and the Google Play Billing Library is handled by a BillingClient instance.
In addition, BillingClient includes a set of methods that can be called to perform both synchronous and
asynchronous billing-related activities. When the billing client is initialized, it will need to be provided with a
reference to a PurchasesUpdatedListener callback handler. The client will call this handler to notify your app
of the results of any purchasing activity. To avoid duplicate notifications, it is recommended to have only one
BillingClient instance per app.

A BillingClient instance can be created using the newBuilder() method, passing through the current activity or
fragment context. The purchase update handler is then assigned to the client via the setListener() method:
private val purchasesUpdatedListener =
PurchasesUpdatedListener { billingResult, purchases ->
if (billingResult.responseCode ==
BillingClient.BillingResponseCode.OK
&& purchases != null

for (purchase in purchases) {
// Process the purchases

}
} else if (billingResult.responseCode ==
BillingClient.BillingResponseCode.USER CANCELED

// Purchase canceled by the user

} else {

732

An Overview of Android In-App Billing

// Handle errors here

billingClient = BillingClient.newBuilder (this)
.setlistener (purchasesUpdatedListener)
.enablePendingPurchases ()
.build()

87.4 Connecting to the Google Play Billing Library

After successfully creating the Billing Client, the next step is initializing a connection to the Google Play
Billing Library. A call must be made to the startConnection() method of the billing client instance to establish
this connection. Since the connection is performed asynchronously, a BillingClientStateListener must be
implemented to receive a callback indicating whether the connection was successful. Code should also be added
to override the onBillingServiceDisconnected() method. This is called if the connection to the Billing Library is
lost and can be used to report the problem to the user and retry the connection.

Once the setup and connection tasks are complete, the BillingClient instance will make a call to the
onBillingSetupFinished() method, which can be used to check that the client is ready:
billingClient.startConnection (object : BillingClientStatelListener {
override fun onBillingSetupFinished (
billingResult: BillingResult

if (billingResult.responseCode ==

BillingClient.BillingResponseCode.OK

// Connection successful
} else {

// Connection failed

override fun onBillingServiceDisconnected() {

// Connection to billing service lost

)
87.5 Querying Available Products

Once the billing environment is initialized and ready to go, the next step is to request the details of the products
or subscriptions available for purchase. This is achieved by making a call to the queryProductDetailsAsync()
method of the BillingClient and passing through an appropriately configured QueryProductDetailsParams
instance containing the product ID and type (ProductType.SUBS for a subscription or ProductType.INAPP for
a managed product):

val queryProductDetailsParams = QueryProductDetailsParams.newBuilder ()

.setProductList (
ImmutablelList.of (

QueryProductDetailsParams.Product.newBuilder ()

733

An Overview of Android In-App Billing

.setProductId(productId)

.setProductType (
BillingClient.ProductType.INAPP

)

.build()

)
Lbuild()

billingClient.queryProductDetailsAsync (
queryProductDetailsParams
) { billingResult, productDetailsList ->
if (!productDetailsList.isEmpty()) {
// Process list of matching products
} else {

// No product matches found

}

The queryProductDetailsAsync() method is passed a ProductDetailsResponseListener handler (in this case, in
the form of a lambda code block) which, in turn, is called and passed a list of ProductDetail objects containing
information about the matching products. For example, we can call methods on these objects to get information
such as the product name, title, description, price, and offer details.

87.6 Starting the Purchase Process

Once a product or subscription has been queried and selected for purchase by the user, the purchase process is
ready to be launched. We do this by calling the launchBillingFlow() method of the BillingClient, passing through
as arguments the current activity and a BillingFlowParams instance configured with the ProductDetail object
for the purchased item.
val billingFlowParams = BillingFlowParams.newBuilder ()
.setProductDetailsParamsList (
ImmutableList.of (
BillingFlowParams.ProductDetailsParams.newBuilder ()
.setProductDetails (productDetails)
Lbuild()

)
.build()

pbillingClient.launchBillingFlow (this, billingFlowParams)

The success or otherwise of the purchase operation will be reported via a call to the PurchasesUpdatedListener
callback handler outlined earlier in the chapter.

87.7 Completing the Purchase

When purchases are successful, the PurchasesUpdatedListener handler will be passed a list containing a Purchase
object for each item. You can verify that the item has been purchased by calling the getPurchaseState() method
of the Purchase instance as follows:

734

An Overview of Android In-App Billing

if (purchase.getPurchaseState () == Purchase.PurchaseState.PURCHASED) {
// Purchase completed.

} else if (purchase.getPurchaseState() == Purchase.PurchaseState.PENDING) {
// Payment is still pending

}

Note that your app will only support pending purchases if a call is made to the enablePendingPurchases() method
during initialization. A pending purchase will remain so until the user completes the payment process.

When the purchase of a non-consumable item is complete, it must be acknowledged to prevent a refund
from being issued to the user. This requires the purchase token for the item, which is obtained via a call to the
getPurchaseToken() method of the Purchase object. This token is used to create an AcknowledgePurchaseParams
instance and an AcknowledgePurchaseResponseListener handler. Managed product purchases and subscriptions
are acknowledged by calling the BillingClient’s acknowledgePurchase() method as follows:
billingClient.acknowledgePurchase (acknowledgePurchaseParams,
acknowledgePurchaseResponselListener) ;
val acknowledgePurchaseParams = AcknowledgePurchaseParams.newBuilder ()
.setPurchaseToken (purchase.purchaseToken)
.build()

val acknowledgePurchaseResponselListener = AcknowledgePurchaseResponselistener {

// Check acknowledgement result

billingClient.acknowledgePurchase (

acknowledgePurchaseParams,

acknowledgePurchaseResponselistener
)
For consumable purchases, you will need to notify Google Play when the item has been consumed so that it
is available to be repurchased by the user. This requires a configured ConsumeParams instance containing a
purchase token and a call to the billing client’s consumePurchase() method:
val consumeParams = ConsumeParams.newBuilder ()

.setPurchaseToken (purchase.purchaseToken)

.build()

coroutineScope.launch {
val result = billingClient.consumePurchase (consumeParams)

if (result.billingResult.responseCode ==
BillingClient.BillingResponseCode.OK) {

// Purchase successfully consumed

)
87.8 Querying Previous Purchases

When working with in-app billing, checking whether a user has already purchased a product or subscription is a
common requirement. A list of all the user’s previous purchases of a specific type can be generated by calling the

735

An Overview of Android In-App Billing

queryPurchasesAsync() method of the BillingClient instance and implementing a PurchaseResponseListener.
The following code, for example, obtains a list of all previously purchased items that have not yet been consumed:

val queryPurchasesParams = QueryPurchasesParams.newBuilder ()
.setProductType (BillingClient.ProductType.INAPP)
.build()

billingClient.queryPurchasesAsync (
queryPurchasesParams,

purchasesListener

private val purchasesListener =

PurchasesResponselListener { billingResult, purchases ->

if (!purchases.isEmpty()) {

// Access existing active purchases
} else {

// No

}
To obtain a list of active subscriptions, change the ProductType value from INAPP to SUBS.

Alternatively, to obtain a list of the most recent purchases for each product, make a call to the BillingClient
queryPurchaseHistoryAsync() method:

val queryPurchaseHistoryParams = QueryPurchaseHistoryParams.newBuilder ()
.setProductType (BillingClient.ProductType.INAPP)
.build()

billingClient.queryPurchaseHistoryAsync (queryPurchaseHistoryParams) {
billingResult, historyList ->
// Process purchase history list

}
87.9 Summary

In-app purchases provide a way to generate revenue from within Android apps by selling virtual products and
subscriptions to users. This chapter explored managed products and subscriptions and explained the difference
between consumable and non-consumable products. In-app purchasing support is added to an app using the
Google Play In-app Billing Library. It involves creating and initializing a billing client on which methods are
called to perform tasks such as making purchases, listing available products, and consuming existing purchases.
The next chapter contains a tutorial demonstrating the addition of in-app purchases to an Android Studio
project.

736

Chapter 91

91. An Overview of Gradle in
Android Studio

Up until this point, it has been taken for granted that Android Studio will take the necessary steps to compile and
run the application projects that have been created. Android Studio has been achieving this in the background
using a system known as Gradle.

It is time to look at how Gradle is used to compile and package an application project’s various elements and
begin exploring how to configure this system when more advanced requirements are needed for building
projects in Android Studio.

91.1 An Overview of Gradle

Gradle is an automated build toolkit that allows how projects are built to be configured and managed through a
set of build configuration files. This includes defining how a project will be built, what dependencies need to be
fulfilled to build successfully, and what the build process’s end result (or results) should be.

The strength of Gradle lies in the flexibility that it provides to the developer. The Gradle system is a self-contained,
command-line-based environment that can be integrated into other environments using plugins. In the case of
Android Studio, Gradle integration is provided through the appropriately named Android Studio Plugin.

Although the Android Studio Plug-in allows Gradle tasks to be initiated and managed from within Android
Studio, the Gradle command-line wrapper can still be used to build Android Studio-based projects, including
on systems on which Android Studio is not installed.

The configuration rules to build a project are declared in Gradle build files and scripts based on the Groovy
programming language.

91.2 Gradle and Android Studio

Gradle brings many powerful features to building Android application projects. Some of the key features are as
follows:

91.2.1 Sensible Defaults

Gradle implements a concept referred to as convention over configuration. This means that Gradle has a predefined
set of sensible default configuration settings that will be used unless settings in the build files override them. This
means that builds can be performed with the minimum configuration required by the developer. Changes to the
build files are only needed when the default configuration does not meet your build needs.

91.2.2 Dependencies

Another key area of Gradle functionality is that of dependencies. Consider, for example, a module within an
Android Studio project which triggers an intent to load another module in the project. The first module has, in
effect, a dependency on the second module since the application will fail to build if the second module cannot
be located and launched at runtime. This dependency can be declared in the Gradle build file for the first module
so that the second module is included in the application build, or an error flagged if the second module cannot
be found or built. Other examples of dependencies are libraries and JAR files on which the project depends to
compile and run.

761

An Overview of Gradle in Android Studio

Gradle dependencies can be categorized as local or remote. A local dependency references an item that is present
on the local file system of the computer system on which the build is being performed. A remote dependency
refers to an item that is present on a remote server (typically referred to as a repository).

Remote dependencies are handled for Android Studio projects using another project management tool named
Maven. If a remote dependency is declared in a Gradle build file using Maven syntax, then the dependency will
be downloaded automatically from the designated repository and included in the build process. The following
dependency declaration, for example, causes the AppCompat library to be added to the project from the Google
repository:

implementation ("androidx.appcompat:appcompat:1.6.1")

91.2.3 Build Variants

In addition to dependencies, Gradle also provides build variant support for Android Studio projects. This allows
multiple variations of an application to be built from a single project. Android runs on many different devices
encompassing a range of processor types and screen sizes. To target as wide a range of device types and sizes
as possible, it will often be necessary to build several variants of an application (for example, one with a user
interface for phones and another for tablet-sized screens). Through the use of Gradle, this is now possible in
Android Studio.

91.2.4 Manifest Entries

Each Android Studio project has associated with it an AndroidManifest.xml file containing configuration details
about the application. Several manifest entries can be specified in Gradle build files which are then auto-
generated into the manifest file when the project is built. This capability complements the build variants feature,
allowing elements such as the application version number, application ID, and SDK version information to be
configured differently for each build variant.

91.2.5 APK Signing

The chapter “Creating, Testing, and Uploading an Android App Bundle” covered creating a signed release APK file
using the Android Studio environment. It is also possible to include the signing information entered through the
Android Studio user interface within a Gradle build file to generate signed APK files from the command line.

91.2.6 ProGuard Support

ProGuard is a tool included with Android Studio that optimizes, shrinks, and obfuscates Java byte code to
make it more efficient and harder to reverse engineer (the method by which others can identify the logic of an
application through analysis of the compiled Java byte code). The Gradle build files allow you to control whether
or not ProGuard is run on your application when it is built.

91.3 The Property and Settings Gradle Build File

The gradle build configuration consists of configuration, property, and settings files. The gradle. properties file, for
example, contains mostly esoteric settings relating to the command-line flags used by the Java Virtual Machine
(JVM), whether or not the project uses the AndroidX libraries and Kotlin coding style support. As a typical user,
it is unlikely that you will need to change any of these settings in this file.

The settings.gradle.kts file, on the other hand, defines which online repositories are to be searched when the build
system needs to download and install any additional libraries and plugins required to build the project and the
project name. A typical settings.gradle.kts file will read as follows:
pluginManagement {
repositories {
google ()
mavenCentral ()

762

An Overview of Gradle in Android Studio

gradlePluginPortal ()

}
dependencyResolutionManagement {
repositoriesMode.set (RepositoriesMode.FAIL ON PROJECT REPOS)
repositories {
google ()

mavenCentral ()

rootProject.name = "ThemeDemo"

include (":app")

As with the gradle.properties file, it is unlikely that changes will need to be made to this file.

91.4 The Top-level Gradle Build File

A completed Android Studio project contains everything needed to build an Android application and consists
of modules, libraries, manifest files, and Gradle build files.

Each project contains one top-level Gradle build file. This file is listed as build.gradle.kts (Project: <project
name>) and can be found in the project tool window as highlighted in Figure 91-1:

Figure 91-1
By default, the contents of the top-level Gradle build file reads as follows:

// Top-level build file where you can add configuration options common to all sub-
projects/modules.
plugins {

id("com.android.application") version "8.1.0" apply false

id("org.jetbrains.kotlin.android") version "1.8.0" apply false

763

An Overview of Gradle in Android Studio

As it stands, all the file does is declare that remote libraries are to be obtained using the jcenter repository, and
that builds depend on the Android plugin for Gradle. In most situations, making any changes to this build file
is unnecessary.

91.5 Module Level Gradle Build Files

An Android Studio application project is made up of one or more modules. Take, for example, a hypothetical
application project named GradleDemo which contains modules named Modulel and Module2, respectively. In
this scenario, each module will require its own Gradle build file. In terms of the project structure, these would
be located as follows:

o Modulel/build.gradle.kts
» Module2/build.gradle.kts

By default, the Modulel build.gradle.kts file would resemble that of the following listing:
plugins {
id("com.android.application")

id("org.jetbrains.kotlin.android")

android {
namespace = "com.example.gradlesample"
compileSdk = 33

defaultConfig {
applicationId = "com.example.gradlesample"
minSdk = 26
targetSdk = 33

versionCode = 1
versionName = "1.0"
testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner"

buildTypes {
release {
isMinifyEnabled = false
proguardFiles (
getDefaultProguardFile ("proguard-android-optimize.txt"),

"proguard-rules.pro"

}

compileOptions {
sourceCompatibility = JavaVersion.VERSION 1 8
targetCompatibility = JavaVersion.VERSION 1 8

764

An Overview of Gradle in Android Studio

kotlinOptions {
jvmTarget = "1.8"

dependencies {

implementation ("androidx.core:core-ktx:1.9.0")

implementation ("androidx.appcompat:appcompat:1.6.1")
implementation ("com.google.android.material:material:1.9.0")
implementation ("androidx.constraintlayout:constraintlayout:2.1.4")
testImplementation ("junit:junit:4.13.2")

androidTestImplementation ("androidx.test.ext:junit:1.1.5")

androidTestImplementation ("androidx.test.espresso:espresso-core:3.5.1")

As is evident from the file content, the build file begins by declaring the use of the Gradle Android application
and Kotlin plug-ins:
plugins {

id("com.android.application")

id("org.jetbrains.kotlin.android")

The android section of the file declares the project namespace and then states the version of the SDK to be used
when building Modulel.
android {

namespace = "com.example.gradlesample"

compileSdk = 33

Theitems declared in the defaultConfig section define elements to be generated into the module’s Android Manifest.
xml file during the build. These settings, which may be modified in the build file, are taken from the settings
entered within Android Studio when the module was first created:
defaultConfig {

applicationId = "com.example.gradlesample"

minSdk = 26

targetSdk = 33

versionCode = 1
versionName = "1.0"
testInstrumentationRunner = "androidx.test.runner.AndroidJUnitRunner"

}
The buildTypes section contains instructions on whether and how to run ProGuard on the APK file when a
release version of the application is built:
buildTypes {
release {
765

An Overview of Gradle in Android Studio

isMinifyEnabled = false
proguardFiles (
getDefaultProguardFile ("proguard-android-optimize.txt"),

"proguard-rules.pro"

}

As currently configured, ProGuard will not be run when Modulel is built. To enable ProGuard, the minifyEnabled
entry must be changed from false to true. The proguard-rules.pro file can be found in the module directory of the
project. Changes made to this file override the default settings in the proguard-android.txt file, which is located
in the Android SDK installation directory under sdk/tools/proguard.

Since no debug buildType is declared in this file, the defaults will be used (built without ProGuard, signed with
a debug key, and debug symbols enabled).

An additional section, entitled productFlavors, may also be included in the module build file to enable multiple
build variants to be created.

Next, directives are included to specify the version of the Java compiler to be used when building the project:
compileOptions {
sourceCompatibility JavaVersion.VERSION 1 8
targetCompatibility JavaVersion.VERSION 1 8
}
kotlinOptions {
jvmTarget = "1.8"
}

Finally, the dependencies section lists any local and remote dependencies on which the module depends. The
dependency lines in the above example file designate the Android libraries that need to be included from the
Android Repository:

dependencies {

implementation ("androidx.core:core-ktx:1.9.0")
implementation ("androidx.appcompat:appcompat:1.6.1")

implementation ("com.google.android.material:material:1.9.0")

}
Note that the dependency declarations include version numbers to indicate which library version should be
included.

91.6 Configuring Signing Settings in the Build File

The “Creating, Testing, and Uploading an Android App Bundle” chapter of this book covered the steps involved in
setting up keys and generating a signed release APK file using the Android Studio user interface. These settings
may also be declared within a signingConfigs section of the build.gradle.kts file. For example:

766

An Overview of Gradle in Android Studio

defaultConfig {

}
signingConfigs {
release {
storeFile file ("keystore.release")
storePassword "your keystore password here"
keyAlias "your key alias here"
keyPassword "your key password here"

}
buildTypes {

}
The above example embeds the key password information directly into the build file. An alternative to this
approach is to extract these values from system environment variables:

signingConfigs {
release {
storeFile file ("keystore.release")
storePassword System.getenv ("KEYSTOREPASSWD")
keyAlias "your key alias here"
keyPassword System.getenv ("KEYPASSWD")

}
Yet another approach is to configure the build file so that Gradle prompts for the passwords to be entered during
the build process:
signingConfigs {
release {
storeFile file ("keystore.release")
storePassword System.console() .readLine
("\nEnter Keystore password: ")

keyAlias "your key alias here"
keyPassword System.console() .readLIne ("\nEnter Key password: ")

}
91.7 Running Gradle Tasks from the Command Line
Each Android Studio project contains a Gradle wrapper tool to invoke Gradle tasks from the command line.
This tool is located in the root directory of each project folder. While this wrapper is executable on Windows
systems, it may need to have execute permission enabled on Linux and macOS before it can be used. To enable
execute permission, open a terminal window, change directory to the project folder for which the wrapper is
needed, and execute the following command:

767

An Overview of Gradle in Android Studio

chmod +x gradlew

Once the file has execute permissions, the location of the file will either need to be added to your $PATH
environment variable or the name prefixed by ./ to run. For example:

./gradlew tasks

Gradle views project building in terms of several different tasks. A full listing of tasks that are available for

the current project can be obtained by running the following command from within the project directory
(remembering to prefix the command with a ./ if running on macOS or Linux):

gradlew tasks

To build a debug release of the project suitable for device or emulator testing, use the assembleDebug option:

gradlew assembleDebug

Alternatively, to build a release version of the application:

gradlew assembleRelease

91.8 Summary

For the most part, Android Studio performs application builds in the background without any intervention
from the developer. This build process is handled using the Gradle system, an automated build toolkit designed
to allow how projects are built to be configured and managed through a set of build configuration files. While
the default behavior of Gradle is adequate for many basic project build requirements, the need to configure the
build process is inevitable with more complex projects. This chapter has provided an overview of the Gradle
build system and configuration files within the context of an Android Studio project.

768

Index

Symbols

2. 101

<application> 506

<fragment> 293

<fragment> element 293
<receiver> 484

<service> 506, 512, 519

:: operator 103

.well-known folder 457, 480, 696

A

AbsoluteLayout 174
ACCESS_COARSE_LOCATION permission 606
ACCESS_FINE_LOCATION permission 606
acknowledgePurchase() method 735
ACTION_DOWN 270
ACTION_MOVE 270
ACTION_POINTER_DOWN 270
ACTION_POINTER_UP 270
ACTION_UP 270
ACTION_VIEW 475
Active / Running state 150
Activity 87,153

adding views in Java code 251

class 153

creation 16

Entire Lifetime 157

Foreground Lifetime 157

lifecycle methods 155

lifecycles 147

returning data from 454

state change example 161

state changes 153

states 150

Visible Lifetime 157

Activity Lifecycle 149
Activity Manager 86
ActivityResultLauncher 455
Activity Stack 149
Actual screen pixels 242
adb

command-line tool 63

connection testing 69

device pairing 67

enabling on Android devices 63

Linux configuration 66

list devices 63

macOS configuration 64

overview 63

restart server 64

testing connection 69

WiFi debugging 67

Windows configuration 65

Wireless debugging 67

Wireless pairing 67
addCategory() method 483
addMarker() method 659
addView() method 245
ADD_VOICEMAIL permission 606
android

exported 507

gestureColor 286

layout_behavior property 447

onClick 295

process 507, 519

uncertainGestureColor 286
Android

Activity 87

architecture 83

events 263

intents 88

onClick Resource 263

runtime 84

SDK Packages 6

769

Index

android.app 84

Android Architecture Components 309
android.content 84
android.content.Intent 453

android.database 84

Android Debug Bridge. See ADB
Android Development

System Requirements 3
Android Devices

designing for different 173
android.graphics 84
android.hardware 84
android.intent.action 489
android.intent.action.BOOT_COMPLETED 507
android.intent.action.MAIN 475
android.intent.category. LAUNCHER 475
Android Libraries 84
android.media 85
Android Monitor tool window 36
Android Native Development Kit 85
android.net 85
android.opengl 84
android.os 85
android.permission.RECORD_AUDIO 615
android.print 85
Android Project

create new 15
android.provider 85
Android SDK Location

identifying 10
Android SDK Manager 8, 10
Android SDK Packages

version requirements 8
Android SDK Tools

command-line access 9

Linux 11

macOS 11

Windows 7 10

Windows 8 10
Android Software Stack 83
Android Studio

changing theme 61

770

downloading 3

Editor Window 56

installation 4

Linux installation 5

macOS installation 4

Navigation Bar 55

Project tool window 56

setup wizard 5

Status Bar 56

Toolbar 55

Tool window bars 56

tool windows 56

updating 12

Welcome Screen 53

Windows installation 4
android.text 85
android.util 85
android.view 85
android.view.View 176

android.view.ViewGroup 173,176

Android Virtual Device. See AVD
overview 31
Android Virtual Device Manager 31
android.webkit 85
android.widget 85
AndroidX libraries 762
API Key 651
APK analyzer 728
APK file 721
APK File
analyzing 728
APK Signing 762
APK Wizard dialog 720
App Architecture
modern 309
AppBar
anatomy of 445
appbar_scrolling_view_behavior 447
App Bundles 717
creating 721
overview 717

revisions 727

uploading 724
AppCompatActivity class 154
App Inspector 57
Application

stopping 36
Application Context 89
Application Framework 85
Application Manifest 89
Application Resources 89
App Link

Adding Intent Filter 704

Digital Asset Links file 696, 457

Intent Filter Handling 704

Intent Filters 695

Intent Handling 696

Testing 708

URL Mapping 701
App Links 695

auto verification 456

autoVerify 457

overview 695
Apply Changes 259

Apply Changes and Restart Activity 259

Apply Code Changes 259

fallback settings 261

options 259

Run App 259

tutorial 261
applyToActivitiesIfAvailable() method 757
Architecture Components 309
ART 84
as 103
as? 103
asFlow() builder 524
assetlinks.json , 696, 457
asSharedFlow() 534
asStateFlow() 533
async 493
Attribute Keyframes 380
Audio

supported formats 613
Audio Playback 613

Index
Audio Recording 613
Autoconnect Mode 207
Automatic Link Verification 456, 479
autoVerify 457, 704
AVD
cold boot 48
command-line creation 31
creation 31
device frame 40
Display mode 51
launch in tool window 40
overview 31
quickboot 48
Resizable 50
running an application 34
Snapshots 47
standalone 37
starting 33

Startup size and orientation 34

B

Background Process 148
Barriers 200
adding 219
constrained views 200
Baseline Alignment 199
beginTransaction() method 294
BillingClient 736
acknowledgePurchase() method 735
consumeAsync() method 735
getPurchaseState() method 734
initialization 732, 740
launchBillingFlow() method 734
queryProductDetailsAsync() method 733
queryPurchasesAsync() method 736
BillingResult 747
getDebugMessage() 747
Binding Expressions 329
one-way 329
two-way 330
BIND_JOB_SERVICE permission 507
bindService() method 505, 509, 513

771

Index

Biometric Authentication 709
callbacks 713
overview 709
tutorial 709
Biometric Prompt 714
Bitwise AND 109
Bitwise Inversion 108
Bitwise Left Shift 110
Bitwise OR 109
Bitwise Right Shift 110
Bitwise XOR 109
black activity 16
Blank template 177
Blueprint view 205
BODY_SENSORS permission 606
Boolean 96
Bound Service 505, 509
adding to a project 510
Implementing the Binder 510
Interaction options 509
BoundService class 511
Broadcast Intent 483
example 485
overview 88, 483
sending 486
Sticky 485
Broadcast Receiver 483
adding to manifest file 488
creation 487
overview 88, 484
BroadcastReceiver class 484
BroadcastReceiver superclass 487
buffer() operator 527
Build tool window 58
Build Variants , 58
tool window 58
Bundle class 170
Bundled Notifications 634

C

Calendar permissions 606

CALL_PHONE permission 606

772

CAMERA permission 606
Camera permissions 606
CameraUpdateFactory class
methods 660
cancelAndJoin() 493
cancelChildren() 493
CancellationSignal 714
Canvas class 690
CardView
layout file 433
responding to selection of 441
CardView class 433
C/C++ Libraries 85
Chain bias 228
chain head 198
chains 198
Chains
creation of 225
Chain style
changing 227
chain styles 198
Char 96
CheckBox 173
checkSelfPermission() method 610
Circle class 647
Code completion 74
Code Editor
basics 71
Code completion 74
Code Generation 76
Code Reformatting 79
Document Tabs 72
Editing area 72
Gutter Area 72
Live Templates 80
Splitting 74
Statement Completion 76
Status Bar 73
Code Generation 76
Code Reformatting 79
code samples

download 1

cold boot 48
Cold flows 532
CollapsingToolbarLayout

example 448

introduction 448

parallax mode 448

pin mode 448

setting scrim color 451

setting title 451

with image 448
collectLatest() operator 526
Color class 691
COLOR_MODE_COLOR 666, 686
COLOR_MODE_MONOCHROME 666, 686
combine() operator 531
Common Gestures 275

detection 275
Communicating Sequential Processes 491
Companion Objects 133
Component tree 20
conflate() operator 526
Constraint Bias 197

adjusting 211
ConstraintLayout

advantages of 203

Availability 204

Barriers 200

Baseline Alignment 199

chain bias 228

chain head 198

chains 198

chain styles 198

Constraint Bias 197

Constraints 195

conversion to 223

convert to MotionLayout 387

deleting constraints 210

guidelines 217

Guidelines 200

manual constraint manipulation 207

Margins 196, 211

Opposing Constraints 196, 213

Index

overview of 195
Packed chain 199, 228
ratios 203, 229
Spread chain 198
Spread inside 228
Spread inside chain 198
tutorial 233
using in Android Studio 205
Weighted chain 198, 228
Widget Dimensions 199, 215
Widget Group Alignment 221
ConstraintLayout chains
creation of 225
in layout editor 225
ConstraintLayout Chain style
changing 227
Constraints
deleting 210
ConstraintSet
addToHorizontalChain() method 248
addToVerticalChain() method 248
alignment constraints 247
apply to layout 246
applyTo() method 246
centerHorizontally() method 247
centerVertically() method 247
chains 247
clear() method 248
clone() method 247
connect() method 246
connect to parent 246
constraint bias 247
copying constraints 247
create 246
create connection 246
createHorizontalChain() method 247
createVerticalChain() method 247
guidelines 248
removeFromHorizontalChain() method 248
removeFromVerticalChain() method 248
removing constraints 248

rotation 249

773

Index

scaling 248 suspending 494
setGuidelineBegin() method 248 tutorial 499

setGuidelineEnd() method 248 ViewModelScope 492
setGuidelinePercent() method 248 vs. Threads 491
setHorizonalBias() method 247 coroutineScope 493

setRotationX() method 249 Coroutine Scope 492

setRotationY() method 249 createPrintDocumentAdapter() method 681
setScaleX() method 248 Custom Accessors 131

setScaleY() method 248 Custom Attribute 377
setTransformPivot() method 249 Custom Document Printing 669, 681
setTransformPivotX() method 249 Custom Gesture
setTransformPivotY() method 249 recognition 281

setVerticalBias() method 247

sizing constraints 247

tutorial 251

view IDs 253
ConstraintSet class 245, 246
Constraint Sets 246
ConstraintSets

configuring 376
consumeAsync() method 735
ConsumeParams 745
Contacts permissions 606
container view 173
Content Provider 86

overview 89
Context class 89
CoordinatorLayout 174, 447
Coroutine Builders 493

async 493

coroutineScope 493

launch 493

runBlocking 493

supervisorScope 493

withContext 493
Coroutine Dispatchers 492
Coroutines 491, 523

adding libraries 499

channel communication 497

GlobalScope 492

returning results 495

Suspend Functions 492

774

Custom Print Adapter
implementation 683
Custom Print Adapters 681
Custom Theme
building 751
Cycle Editor 405
Cycle Keyframe 385
Cycle Keyframes

overview 401

D

dangerous permissions
list of 606
Dark Theme 36
enable on device 36
Data Access Object (DAO) 554
Database Inspector 560, 584
live updates 584
SQL query 584
Database Rows 548
Database Schema 547
Database Tables 547
Data binding
binding expressions 329
Data Binding 311
binding classes 328
enabling 334
event and listener binding 330
key components 325

overview 325

tutorial 333
variables 328
with LiveData 311
DDMS 36
Debugging
enabling on device 63
debug keystore file 457, 479
Default Function Parameters 123
DefaultLifecycleObserver 346, 349
deltaRelative 381
Density-independent pixels 241
Density Independent Pixels
converting to pixels 256
Device Definition
custom 191
Device File Explorer 58
device frame 40
Device Mirroring 69
enabling 69
device pairing 67
Digital Asset Links file 696, 457, 457
Direct Reply Input 643
Dispatchers.Default 493
Dispatchers.IO 492
Dispatchers.Main 492
dp 241
DROP_LATEST 534
DROP_OLDEST 534
Dynamic Colors
applyToActivitiesIfAvailable() method 757
enabling in Android 757
Dynamic State 155
saving 169

E

Elvis Operator 103
Empty Process 149
Empty template 177
Emulator
battery 46
cellular configuration 46

configuring fingerprints 48

Index

directional pad 46
extended control options 45
Extended controls 45
fingerprint 46
location configuration 46
phone settings 46
Resizable 50
resize 45
rotate 44
Screen Record 47
Snapshots 47
starting 33
take screenshot 44
toolbar 43
toolbar options 43
tool window mode 50
Virtual Sensors 47
zoom 44
enablePendingPurchases() method 735
enabling ADB support 63
Escape Sequences 97
ettings.gradle file 762
Event Handling 263
example 264
Event Listener 265
Event Listeners 264
Events
consuming 267
explicit
intent 88
explicit intent 453
Explicit Intent 453
Extended Control

options 45

F

Files

switching between 72
filter() operator 528
findPointerIndex() method 270
findViewByld() 143

Fingerprint

775

Index

emulation 48
Fingerprint authentication

device configuration 710

permission 710

steps to implement 709
Fingerprint Authentication

overview 709

tutorial 709

FLAG_INCLUDE_STOPPED_PACKAGES 483

flatMapConcat() operator 531
flatMapMerge() operator 531
flexible space area 445
Float 96
floating action button 16, 178
changing appearance of 416
margins 414
removing 179
sizes 414
Flow 523
asFlow() builder 524
asSharedFlow() 534
asStateFlow() 533
backgroudn handling 542
buffering 526
buffer() operator 527
cold 532
collect() 525
collecting data 525
collectLatest() operator 526
combine() operator 531
conflate() operator 526
declaring 524
emit() 525
emitting data 525
filter() operator 528
flatMapConcat() operator 531
flatMapMerge() operator 531
flattening 530
flowOf() builder 524
flow of flows 530
fold() operator 530
hot 532

776

intermediate operators 528
library requirements 524
map() operator 528
MutableSharedFlow 534
MutableStateFlow 533
onEach() operator 532
reduce() operator 529, 530
repeatOnLifecycle 544
SharedFlow 534
single() operator 526
StateFlow 533
terminal flow operators 529
transform() operator 529
try/finally 526
zip() operator 531
flowOf() builder 524
flow of flows 530
Flow operators 528
Flows
combining 531
Introduction to 523
Foldable Devices 158
multi-resume 158
Foreground Process 148
Forward-geocoding 653
Fragment
creation 291
event handling 295
XML file 292
FragmentActivity class 154
Fragment Communication 295
Fragments 291
adding in code 294
duplicating 422
example 299
overview 291
FragmentStateAdapter class 425
FrameLayout 174
Function Parameters
variable number of 123

Functions 121

G

Geocoder object 654
Geocoding 652
Gesture Builder Application 281
building and running 281
Gesture Detector class 275
GestureDetectorCompat 278
instance creation 278
GestureDetectorCompat class 275
GestureDetector.OnDoubleTapListener 275, 276
GestureDetector.OnGestureListener 276
GestureLibrary 281
GestureOverlayView 281
configuring color 286
configuring multiple strokes 286
GestureOverlayView class 281
GesturePerformedListener 281
Gestures
interception of 287
Gestures File
creation 282
extract from SD card 282
loading into application 284
GET_ACCOUNTS permission 606
getAction() method 489
getDebugMessage() 747
getFromLocation() method 654
getld() method 246
getIntent() method 454
getPointerCount() method 270
getPointerId() method 270
getPurchaseState() method 734
getService() method 513
GlobalScope 492
GNU/Linux 84
Google Cloud
billing account 648
new project 649
Google Cloud Print 664
Google Drive
printing to 664
GoogleMap 647

Index
map types 657
GoogleMap.MAP_TYPE_HYBRID 657
GoogleMap.MAP_TYPE_NONE 657
GoogleMap.MAP_TYPE_NORMAL 657
GoogleMap.MAP_TYPE_SATELLITE 657
GoogleMap.MAP_TYPE_TERRAIN 657
Google Maps Android APT 647
Controlling the Map Camera 660
displaying controls 658
Map Markers 659
overview 647
Google Maps SDK 647
API Key 651
Credentials 651
enabling 650
Maps SDK for Android 651
Google Play App Signing 720
Google Play Console 738
Creating an in-app product 738
License Testers 739
Google Play Developer Console 718
Gradle
APK signing settings 766
Build Variants 762
command line tasks 767
dependencies 761
Manifest Entries 762
overview 761
sensible defaults 761
Gradle Build File
top level 763
Gradle Build Files
module level 764
gradle.properties file 762
GridLayout 174
GridLayoutManager 431

H

Handler class 518
Higher-order Functions 125
Hot flows 532

HP Print Services Plugin 663

777

Index

HTML printing 667

PurchasesUpdatedListener 734

HTML Printing PurchaseUpdatedListener 743
example 671 purchase updates 743
queryProductDetailsAsync() 742
I queryProductDetailsAsync() method 733
IBinder 505, 511 queryPurchasesAsync() 745
IBinder object 509, 518 queryPurchasesAsync() method 736
Image Printing 666 runOnUiThread() 743
Immutable Variables 98 subscriptions 731
implicit tutorial 737
intent 88 Initializer Blocks 131
implicit intent 453 In-Memory Database 560
Implicit Intent 455 Inner Classes 132
Implicit Intents Intelli] IDEA 91
example 471 Intent 88
importance hierarchy 147 explicit 88
in 241 implicit 88
INAPP 736 Intent Availability
In-App Products 731 checking for 460
In-App Purchasing 737 Intent Filters 456
acknowledgePurchase() method 735 App Link 695
BillingClient 732 Intents 453
BillingResult 747 ActivityResultLauncher 455
consumeAsync() method 735 overview 453
ConsumeParams 745 registerForActivityResult() 455, 468
Consuming purchases 744 Intent Service 505
enablePendingPurchases() method 735 Intent URL 474
getPurchaseState() method 734 intermediate flow operators 528
launchBillingFlow() method 734 is 103
Libraries 737 isInitialized property 103
newBuilder() method 732
onBillingServiceDisconnected() callback 741]
onBillingServiceDisconnected() method 733 Java
onBillingSetupFinished() listener 741 convert to Kotlin 91
onProductDetailsResponse() callback 742 Java Native Interface 85
Overview 731 JetBrains 91
ProductDetail 734 Jetpack 309
ProductDetails 742 overview 309
products 731 JoblntentService 505
ProductType 736 BIND_JOB_SERVICE permission 507
Purchase Flow 743 onHandleWork() method 505
PurchaseResponseListener 736 join() 493

778

K

KeyAttribute 380
Keyboard Shortcuts 59
KeyCycle 401
Cycle Editor 405
tutorial 401
Keyframe 394
Keyframes 380
KeyFrameSet 410
KeyPosition 381
deltaRelative 381
parentRelative 381
pathRelative 382
Keystore File
creation 720
KeyTimeCycle 401
keytool 457
KeyTrigger 384
Killed state 150
Kotlin
accessing class properties 131
and Java 91
arithmetic operators 105
assignment operator 105
augmented assignment operators 106
bitwise operators 108
Boolean 96
break 116
breaking from loops 115
calling class methods 131
Char 96
class declaration 127
class initialization 128
class properties 128
Companion Objects 133
conditional control flow 117
continue labels 116
continue statement 116
control flow 113
convert from Java 91
Custom Accessors 131

data types 95

Index

decrement operator 106
Default Function Parameters 123
defining class methods 128
do ... while loop 115

Elvis Operator 103

equality operators 107
Escape Sequences 97
expression syntax 105

Float 96

Flow 523

for-in statement 113
function calling 122
Functions 121

Higher-order Functions 125
if ... else ... expressions 118
if expressions 117
Immutable Variables 98
increment operator 106
inheritance 137

Initializer Blocks 131

Inner Classes 132
introduction 91

Lambda Expressions 124
let Function 101

Local Functions 122

logical operators 107
looping 113

Mutable Variables 98
Not-Null Assertion 101
Nullable Type 100
Overriding inherited methods 140
playground 92

Primary Constructor 128
properties 131

range operator 108

Safe Call Operator 100
Secondary Constructors 128
Single Expression Functions 122
String 96

subclassing 137

Type Annotations 99

Type Casting 103

779

Index

Type Checking 103
Type Inference 99
variable parameters 123
when statement 118

while loop 114

L

Lambda Expressions 124
lateinit 102
Late Initialization 102
launch 493
launchBillingFlow() method 734
layout_collapseMode

parallax 450

pin 450

layout_constraintDimentionRatio 230

layout_constraintHorizontal_bias 228

layout_constraintVertical_bias 228
layout editor
ConstraintLayout chains 225
Layout Editor 19, 233
Autoconnect Mode 207
code mode 184
Component Tree 181
design mode 181
device screen 181
example project 233
Inference Mode 207
palette 181
properties panel 182
Sample Data 190
Setting Properties 186
toolbar 182
user interface design 233
view conversion 189
Layout Editor Tool
changing orientation 20
overview 181
Layout Inspector 58
Layout Managers 173
LayoutResultCallback object 687
Layouts 173

780

layout_scrollFlags
enterAlwaysCollapsed mode 447
enterAlways mode 447
exitUntilCollapsed mode 447
scroll mode 447
Layout Validation 192
let Function 101
libc 85
License Testers 739
Lifecycle
awareness 345
components 312
observers 346
owners 345
states and events 346
tutorial 349
Lifecycle-Aware Components 345
Lifecycle library 524
Lifecycle Methods 155
Lifecycle Observer 349
creating a 349
Lifecycle Owner
creatinga 351
Lifecycles
modern 312
Lifecycle.State. CREATED 544
Lifecycle.State. DESTROYED 544
Lifecycle.State.INITIALIZED 544
Lifecycle.State. RESUMED 544
Lifecycle.State.STARTED 544
LinearLayout 174
LinearLayoutManager 431
LinearLayoutManager layout 439
Linux Kernel 84
list devices 63
LiveData 310, 321
adding to ViewModel 321
observer 323
tutorial 321
Live Templates 80
Local Bound Service 509

example 509

Local Functions 122
Location Manager 86
Location permission 606
Logcat

tool window 57
LogCat

enabling 165

M

MANAGE_EXTERNAL_STORAGE 607
adb enabling 607
testing 607
Manifest File
permissions 475
map() operator 528
Maps 647
MapView 647
adding to a layout 654
Marker class 647
match_parent properties 241
Material design 413
Material Design 2 749
Material Design 2 Theming 749
Material Design 3 749
Material Theme Builder 751
Material You 749
measureTimeMillis() function 527
MediaController
adding to VideoView instance 591
MediaController class 588
methods 588
MediaPlayer class 613
methods 613
MediaRecorder class 613
methods 614
recording audio 614
Memory Indicator 73
Messenger object 518
Microphone
checking for availability 616
Microphone permissions 606

mm 241

Index

MotionEvent 269, 270, 289

getActionMasked() 270
MotionLayout 375

arc motion 380

Attribute Keyframes 380

ConstraintSets 376

Custom Attribute 396

Custom Attributes 377

Cycle Editor 405

Editor 387

KeyAttribute 380

KeyCycle 401

Keyframes 380

KeyFrameSet 410

KeyPosition 381

KeyTimeCycle 401

KeyTrigger 384

OnClick 379, 392

OnSwipe 379

overview 375

Position Keyframes 381

previewing animation 392

Trigger Keyframe 384

Tutorial 387
MotionScene

ConstraintSets 376

Custom Attributes 377

file 376

overview 375

transition 376
moveCamera() method 660
multiple devices

testing app on 35
Multiple Touches

handling 270
multi-resume 158
Multi-Touch

example 271
Multi-touch Event Handling 269
multi-window support 158
MutableSharedFlow 534
MutableStateFlow 533

781

Index

Mutable Variables 98 implementing a LiveData 323
My Location Layer 647 onAttach() method 296
onBillingServiceDisconnected() callback 741
N onBillingServiceDisconnected() method 733
Navigation 355 onBillingSetupFinished() listener 741
adding destinations 364 onBind() method 506, 509
overview 355 onBindViewHolder() method 439
pass data with safeargs 371 OnClick 379
passing arguments 360 onClickListener 264, 265, 268
stack 355 onClick() method 263
tutorial 361 onCreateContextMenuListener 264
Navigation Action onCreate() method 148, 155, 506
triggering 359 onCreateView() method 156
Navigation Architecture Component 355 onDestroy() method 156, 506
Navigation Component onDoubleTap() method 275
tutorial 361 onDown() method 275
Navigation Controller onEach() operator 532
accessing 359 onFling() method 275
Navigation Graph 358, 362 onFocusChangeListener 264
adding actions 367 OnFragmentInteractionListener
creating a 362 implementation 369
Navigation Host 356 onGesturePerformed() method 281
declaring 363 onHandleWork() method 506
newBuilder() method 732 onKeyListener 264
normal permissions 605 onLayoutFailed() method 687
Notification onLayoutFinished() method 687
adding actions 634 onLongClickListener 264

Direct Reply Input 643
issuing a basic 630

launch activity from a 632

onLongPress() method 275
onMapReady() method 656
onPageFinished() callback 672

PendingIntent 640 onPause() method 156
Reply Action 642 onProductDetailsResponse() callback 742
updating direct reply 644 onReceive() method 148, 484, 485, 487
Notifications onRequestPermissionsResult() method 609, 620, 628, 638
bundled 634 onRestart() method 155
overview 623 onRestorelnstanceState() method 156
Notifications Manager 86 onResume() method 148, 156
Not-Null Assertion 101 onSavelnstanceState() method 156
Nullable Type 100 onScaleBegin() method 287
onScaleEnd() method 287
0 onScale() method 287
Observer onScroll() method 275

782

OnSeekBarChangeListener 306
onServiceConnected() method 509, 512, 519
onServiceDisconnected() method 509, 512, 519
onShowPress() method 275
onSingleTapUp() method 275
onStartCommand() method 506

onStart() method 155

onStop() method 156

onTouchEvent() method 275, 287
onTouchListener 264

onTouch() method 270

onViewCreated() method 156
onViewStatusRestored() method 156
OpenJDK 3

P

Package Explorer 18
Package Manager 86
PackageManager class 616
PackageManager. FEATURE_MICROPHONE 616
PackageManager. PERMISSION_DENIED 607
PackageManager. PERMISSION_GRANTED 607
Package Name 16
Packed chain 199, 228
PageRange 688, 689
Paint class 691
parentRelative 381
parent view 175
pathRelative 382
Paused state 150
PdfDocument 669
PdfDocument.Page 681, 688
PendingIntent class 640
Permission
checking for 607
permissions
normal 605
Persistent State 155
Phone permissions 606
Pinch Gesture
detection 287

example 287

Index

Pinch Gesture Recognition 281
Position Keyframes 381
POST_NOTIFICATIONS permission 606, 638
Primary Constructor 128
PrintAttributes 686
PrintDocumentAdapter 669, 681
Printing

color 666

monochrome 666
Printing framework

architecture 663
Printing Framework 663
Print Job

starting 692
PrintManager service 673
Problems

tool window 58
process

priority 147

state 147
PROCESS_OUTGOING_CALLS permission 606
Process States 147
ProductDetail 734
ProductDetails 742
ProductType 736
Profiler

tool window 58
ProgressBar 173
proguard-rules.pro file 766
ProGuard Support 762
Project Name 16
Project tool window 18, 57
pt 241
PurchaseResponseListener 736
PurchasesUpdatedListener 734
PurchaseUpdatedListener 743
putExtra() method 453, 483
px 242

Q

queryProductDetailsAsync() 742
queryProductDetailsAsync() method 733

783

Index

queryPurchaseHistoryAsync() method 736
queryPurchasesAsync() 745
queryPurchasesAsync() method 736
quickboot snapshot 48

Quick Documentation 79

R

RadioButton 173
Range Operator 108
ratios 229
READ_CALENDAR permission 606
READ_CALL_LOG permission 606
READ_CONTACTS permission 606
READ_EXTERNAL_STORAGE permission 607
READ_PHONE_STATE permission 606
READ_SMS permission 606
RECEIVE_MMS permission 606
RECEIVE_SMS permission 606
RECEIVE_WAP_PUSH permission 606
Recent Files Navigation 60
RECORD_AUDIO permission 606
Recording Audio
permission 615
RecyclerView 431
adding to layout file 432
GridLayoutManager 431
initializing 439
LinearLayoutManager 431
StaggeredGridLayoutManager 431
RecyclerView Adapter
creation of 437
RecyclerView.Adapter 432, 438
getltemCount() method 432
onBindViewHolder() method 432
onCreateViewHolder() method 432
RecyclerView.ViewHolder
getAdapterPosition() method 442
reduce() operator 529, 530
registerForActivityResult() 455
registerForActivityResult() method 454, 468
registerReceiver() method 485
RelativeLayout 174

784

Release Preparation 717
Remote Bound Service 517
client communication 517
implementation 517
manifest file declaration 519
Remotelnput.Builder() method 640
Remotelnput Object 640
Remote Service
launching and binding 519
sending a message 521
repeatOnLifecycle 544
Repository
tutorial 571
Repository Modules 312
Resizable Emulator 50
Resource
string creation 23
Resource File 25
Resource Management 147
Resource Manager , 57
result receiver 485
Reverse-geocoding 653
Reverse Geocoding 652
Room
Data Access Object (DAO) 554
entities 554, 555
In-Memory Database 560
Repository 554
Room Database 554
tutorial 571
Room Database Persistence 553
Room Persistence Library 550, 553
root element 173
root view 175
Run
tool window 57
runBlocking 493
Running Devices
tool window 69

runOnUiThread() 743

S

safeargs
Safe Call Operator 100
Sample Data 190
Saved State 311, 341

library dependencies 343
SavedStateHandle 342

contains() method 343

keys() method 343

remove() method 343
Saved State module 341
SavedStateViewModelFactory 342
ScaleGestureDetector class 287
Scale-independent 241
SDK Packages 6
Secondary Constructors 128
Secure Sockets Layer (SSL) 85
SeekBar 299
sendBroadcast() method 483, 485
sendOrderedBroadcast() method 483, 485
SEND_SMS permission 606
sendStickyBroadcast() method 483
Sensor permissions 606
Service

anatomy 506

launch at system start 507

manifest file entry 506

overview 88

run in separate process 507
ServiceConnection class 519
Service Process 148
Service Restart Options 506
setAudioEncoder() method 614
setAudioSource() method 614
setBackgroundColor() 246
setCompassEnabled() method 658
setContentView() method 245, 251
setld() method 246
setMyLocationButtonEnabled() method 658
setOnClickListener() method 263, 265
setOnDoubleTapListener() method 275, 278
setOutputFile() method 614
setOutputFormat() method 614

Index
setResult() method 455
setText() method 172
settings.gradle.kts file 762
setTransition() 385
setVideoSource() method 614
SHA-256 certificate fingerprint 457
SharedFlow 534, 537
backgroudn handling 542
DROP_LATEST 534
DROP_OLDEST 534
in ViewModel 539
repeatOnLifecycle 544
SUSPEND 535
tutorial 537
shouldOverrideUrlLoading() method 672
SimpleOnScaleGestureListener 287
SimpleOnScaleGestureListener class 288
single() operator 526
SMS permissions 606
Snackbar 413, 414, 415
Snapshots
emulator 47
sp 241
Spread chain 198
Spread inside 228
Spread inside chain 198
SQL 548
SQLite 547
AVD command-line use 549
Columns and Data Types 547
overview 548
Primary keys 548
StaggeredGridLayoutManager 431
startActivity() method 453
startForeground() method 148
START_NOT_STICKY 506
START_REDELIVER_INTENT 506
START_STICKY 506
State
restoring 172
State Change
handling 151

785

Index

StateFlow 533

Statement Completion 76

Status Bar Widgets 73
Memory Indicator 73

Sticky Broadcast Intents 485

Stopped state 150

Storage permissions 607

String 96

strings.xml file 27

Structure

tool window 58

Structured Query Language 548

Structure tool window 58
SUBS 736
subscriptions 731

supervisorScope 493

SupportMapFragment class 647

SUSPEND 535
Suspend Functions 492
Switcher 60

System Broadcasts 489

system requirements 3

T

TabLayout
adding to layout 423
app
tabGravity property 428
tabMode property 428
example 420
fixed mode 427

getltemCount() method 419

overview 419
TableLayout 174, 563
TableRow 563
Telephony Manager 86
Templates

blank vs. empty 177
Terminal

tool window 58
terminal flow operators 529

Theme

786

building a custom 751
Theming 749

tutorial 753
Time Cycle Keyframes 385
TODO

tool window 59
ToolbarListener 296
tools

layout 293
Tool window bars 56
Tool windows 56
Touch Actions 270
Touch Event Listener

implementation 271
Touch Events

intercepting 269
Touch handling 269
transform() operator 529
try/finally 526
Type Annotations 99
Type Casting 103
Type Checking 103
Type Inference 99

U

UiSettings class 647
unbindService() method 505

unregisterReceiver() method 485

upload key 720

URL Mapping 701

USB connection issues
resolving 66

USE_BIOMETRIC 710

user interface state 155

USE_SIP permission 606

\"

Video Playback 587

VideoView class 587
methods 587
supported formats 587

view bindings

enabling 144
using 144
View class
setting properties 252
view conversion 189
ViewGroup 173
View Groups 173
View Hierarchy 175
ViewHolder class 432
sample implementation 438
ViewModel
adding LiveData 321
data access 319
overview 310
saved state 341
Saved State 311, 341
tutorial 315
ViewModelProvider 318
ViewModel Saved State 341
ViewModelScope 492
ViewPager
adding to layout 423
example 420
Views 173
Java creation 245

View System 86

Virtual Device Configuration dialog 32

Virtual Sensors 47

Visible Process 148

w

WebViewClient 667, 672
WebView view 473
Weighted chain 198, 228
Welcome screen 53
while Loop 114

Widget Dimensions 199
Widget Group Alignment 221
Widgets palette 234
WiFi debugging 67
Wireless debugging 67
Wireless pairing 67

withContext 493, 495

wrap_content properties 243

WRITE_CALENDAR permission 606
WRITE_CALL_LOG permission 606
WRITE_CONTACTS permission 606
WRITE_EXTERNAL_STORAGE permission 607

X

XML Layout File
manual creation 241

vs. Java Code 245

Z

zip() operator 531

Index

787

	1. Introduction
	1.1 Downloading the Code Samples
	1.2 Feedback
	1.3 Errata

	2. Setting up an Android Studio Development Environment
	2.1 System requirements
	2.2 Downloading the Android Studio package
	2.3 Installing Android Studio
	2.3.1 Installation on Windows
	2.3.2 Installation on macOS
	2.3.3 Installation on Linux

	2.4 The Android Studio setup wizard
	2.5 Installing additional Android SDK packages
	2.6 Installing the Android SDK Command-line Tools
	2.6.1 Windows 8.1
	2.6.2 Windows 10
	2.6.3 Windows 11
	2.6.4 Linux
	2.6.5 macOS

	2.7 Android Studio memory management
	2.8 Updating Android Studio and the SDK
	2.9 Summary

	3. Creating an Example Android App in Android Studio
	3.1 About the Project
	3.2 Creating a New Android Project
	3.3 Creating an Activity
	3.4 Defining the Project and SDK Settings
	3.5 Enabling the New Android Studio UI
	3.6 Modifying the Example Application
	3.7 Modifying the User Interface
	3.8 Reviewing the Layout and Resource Files
	3.9 Adding Interaction
	3.10 Summary

	4. Creating an Android Virtual Device (AVD) in Android Studio
	4.1 About Android Virtual Devices
	4.2 Starting the Emulator
	4.3 Running the Application in the AVD
	4.4 Running on Multiple Devices
	4.5 Stopping a Running Application
	4.6 Supporting Dark Theme
	4.7 Running the Emulator in a Separate Window
	4.8 Enabling the Device Frame
	4.9 Summary

	5. Using and Configuring the Android Studio AVD Emulator
	5.1 The Emulator Environment
	5.2 Emulator Toolbar Options
	5.3 Working in Zoom Mode
	5.4 Resizing the Emulator Window
	5.5 Extended Control Options
	5.5.1 Location
	5.5.2 Displays
	5.5.3 Cellular
	5.5.4 Battery
	5.5.5 Camera
	5.5.6 Phone
	5.5.7 Directional Pad
	5.5.8 Microphone
	5.5.9 Fingerprint
	5.5.10 Virtual Sensors
	5.5.11 Snapshots
	5.5.12 Record and Playback
	5.5.13 Google Play
	5.5.14 Settings
	5.5.15 Help

	5.6 Working with Snapshots
	5.7 Configuring Fingerprint Emulation
	5.8 The Emulator in Tool Window Mode
	5.9 Creating a Resizable Emulator
	5.10 Summary

	6. A Tour of the Android Studio User Interface
	6.1 The Welcome Screen
	6.2 The Menu Bar
	6.3 The Main Window
	6.4 The Tool Windows
	6.5 The Tool Window Menus
	6.6 Android Studio Keyboard Shortcuts
	6.7 Switcher and Recent Files Navigation
	6.8 Changing the Android Studio Theme
	6.9 Summary

	7. Testing Android Studio Apps on a Physical Android Device
	7.1 An Overview of the Android Debug Bridge (ADB)
	7.2 Enabling USB Debugging ADB on Android Devices
	7.2.1 macOS ADB Configuration
	7.2.2 Windows ADB Configuration
	7.2.3 Linux adb Configuration

	7.3 Resolving USB Connection Issues
	7.4 Enabling Wireless Debugging on Android Devices
	7.5 Testing the adb Connection
	7.6 Device Mirroring
	7.7 Summary

	8. The Basics of the Android Studio Code Editor
	8.1 The Android Studio Editor
	8.2 Splitting the Editor Window
	8.3 Code Completion
	8.4 Statement Completion
	8.5 Parameter Information
	8.6 Parameter Name Hints
	8.7 Code Generation
	8.8 Code Folding
	8.9 Quick Documentation Lookup
	8.10 Code Reformatting
	8.11 Finding Sample Code
	8.12 Live Templates
	8.13 Summary

	9. An Overview of the Android Architecture
	9.1 The Android Software Stack
	9.2 The Linux Kernel
	9.3 Android Runtime – ART
	9.4 Android Libraries
	9.4.1 C/C++ Libraries

	9.5 Application Framework
	9.6 Applications
	9.7 Summary

	10. The Anatomy of an Android App
	10.1 Android Activities
	10.2 Android Fragments
	10.3 Android Intents
	10.4 Broadcast Intents
	10.5 Broadcast Receivers
	10.6 Android Services
	10.7 Content Providers
	10.8 The Application Manifest
	10.9 Application Resources
	10.10 Application Context
	10.11 Summary

	11. An Introduction to Kotlin
	11.1 What is Kotlin?
	11.2 Kotlin and Java
	11.3 Converting from Java to Kotlin
	11.4 Kotlin and Android Studio
	11.5 Experimenting with Kotlin
	11.6 Semi-colons in Kotlin
	11.7 Summary

	12. Kotlin Data Types, Variables, and Nullability
	12.1 Kotlin Data Types
	12.1.1 Integer Data Types
	12.1.2 Floating-Point Data Types
	12.1.3 Boolean Data Type
	12.1.4 Character Data Type
	12.1.5 String Data Type
	12.1.6 Escape Sequences

	12.2 Mutable Variables
	12.3 Immutable Variables
	12.4 Declaring Mutable and Immutable Variables
	12.5 Data Types are Objects
	12.6 Type Annotations and Type Inference
	12.7 Nullable Type
	12.8 The Safe Call Operator
	12.9 Not-Null Assertion
	12.10 Nullable Types and the let Function
	12.11 Late Initialization (lateinit)
	12.12 The Elvis Operator
	12.13 Type Casting and Type Checking
	12.14 Summary

	13. Kotlin Operators and Expressions
	13.1 Expression Syntax in Kotlin
	13.2 The Basic Assignment Operator
	13.3 Kotlin Arithmetic Operators
	13.4 Augmented Assignment Operators
	13.5 Increment and Decrement Operators
	13.6 Equality Operators
	13.7 Boolean Logical Operators
	13.8 Range Operator
	13.9 Bitwise Operators
	13.9.1 Bitwise Inversion
	13.9.2 Bitwise AND
	13.9.3 Bitwise OR
	13.9.4 Bitwise XOR
	13.9.5 Bitwise Left Shift
	13.9.6 Bitwise Right Shift

	13.10 Summary

	14. Kotlin Control Flow
	14.1 Looping Control flow
	14.1.1 The Kotlin for-in Statement
	14.1.2 The while Loop
	14.1.3 The do ... while loop
	14.1.4 Breaking from Loops
	14.1.5 The continue Statement
	14.1.6 Break and Continue Labels

	14.2 Conditional Control Flow
	14.2.1 Using the if Expressions
	14.2.2 Using if ... else … Expressions
	14.2.3 Using if ... else if ... Expressions
	14.2.4 Using the when Statement

	14.3 Summary

	15. An Overview of Kotlin Functions and Lambdas
	15.1 What is a Function?
	15.2 How to Declare a Kotlin Function
	15.3 Calling a Kotlin Function
	15.4 Single Expression Functions
	15.5 Local Functions
	15.6 Handling Return Values
	15.7 Declaring Default Function Parameters
	15.8 Variable Number of Function Parameters
	15.9 Lambda Expressions
	15.10 Higher-order Functions
	15.11 Summary

	16. The Basics of Object Oriented Programming in Kotlin
	16.1 What is an Object?
	16.2 What is a Class?
	16.3 Declaring a Kotlin Class
	16.4 Adding Properties to a Class
	16.5 Defining Methods
	16.6 Declaring and Initializing a Class Instance
	16.7 Primary and Secondary Constructors
	16.8 Initializer Blocks
	16.9 Calling Methods and Accessing Properties
	16.10 Custom Accessors
	16.11 Nested and Inner Classes
	16.12 Companion Objects
	16.13 Summary

	17. An Introduction to Kotlin Inheritance and Subclassing
	17.1 Inheritance, Classes and Subclasses
	17.2 Subclassing Syntax
	17.3 A Kotlin Inheritance Example
	17.4 Extending the Functionality of a Subclass
	17.5 Overriding Inherited Methods
	17.6 Adding a Custom Secondary Constructor
	17.7 Using the SavingsAccount Class
	17.8 Summary

	18. An Overview of Android View Binding
	18.1 Find View by Id
	18.2 View Binding
	18.3 Converting the AndroidSample project
	18.4 Enabling View Binding
	18.5 Using View Binding
	18.6 Choosing an Option
	18.7 View Binding in the Book Examples
	18.8 Migrating a Project to View Binding
	18.9 Summary

	19. Understanding Android Application and Activity Lifecycles
	19.1 Android Applications and Resource Management
	19.2 Android Process States
	19.2.1 Foreground Process
	19.2.2 Visible Process
	19.2.3 Service Process
	19.2.4 Background Process
	19.2.5 Empty Process

	19.3 Inter-Process Dependencies
	19.4 The Activity Lifecycle
	19.5 The Activity Stack
	19.6 Activity States
	19.7 Configuration Changes
	19.8 Handling State Change
	19.9 Summary

	20. Handling Android Activity State Changes
	20.1 New vs. Old Lifecycle Techniques
	20.2 The Activity and Fragment Classes
	20.3 Dynamic State vs. Persistent State
	20.4 The Android Lifecycle Methods
	20.5 Lifetimes
	20.6 Foldable Devices and Multi-Resume
	20.7 Disabling Configuration Change Restarts
	20.8 Lifecycle Method Limitations
	20.9 Summary

	21. Android Activity State Changes by Example
	21.1 Creating the State Change Example Project
	21.2 Designing the User Interface
	21.3 Overriding the Activity Lifecycle Methods
	21.4 Filtering the Logcat Panel
	21.5 Running the Application
	21.6 Experimenting with the Activity
	21.7 Summary

	22. Saving and Restoring the State of an Android Activity
	22.1 Saving Dynamic State
	22.2 Default Saving of User Interface State
	22.3 The Bundle Class
	22.4 Saving the State
	22.5 Restoring the State
	22.6 Testing the Application
	22.7 Summary

	23. Understanding Android Views, View Groups and Layouts
	23.1 Designing for Different Android Devices
	23.2 Views and View Groups
	23.3 Android Layout Managers
	23.4 The View Hierarchy
	23.5 Creating User Interfaces
	23.6 Summary

	24. A Guide to the Android Studio Layout Editor Tool
	24.1 Basic vs. Empty Views Activity Templates
	24.2 The Android Studio Layout Editor
	24.3 Design Mode
	24.4 The Palette
	24.5 Design Mode and Layout Views
	24.6 Night Mode
	24.7 Code Mode
	24.8 Split Mode
	24.9 Setting Attributes
	24.10 Transforms
	24.11 Tools Visibility Toggles
	24.12 Converting Views
	24.13 Displaying Sample Data
	24.14 Creating a Custom Device Definition
	24.15 Changing the Current Device
	24.16 Layout Validation
	24.17 Summary

	25. A Guide to the Android ConstraintLayout
	25.1 How ConstraintLayout Works
	25.1.1 Constraints
	25.1.2 Margins
	25.1.3 Opposing Constraints
	25.1.4 Constraint Bias
	25.1.5 Chains
	25.1.6 Chain Styles

	25.2 Baseline Alignment
	25.3 Configuring Widget Dimensions
	25.4 Guideline Helper
	25.5 Group Helper
	25.6 Barrier Helper
	25.7 Flow Helper
	25.8 Ratios
	25.9 ConstraintLayout Advantages
	25.10 ConstraintLayout Availability
	25.11 Summary

	26. A Guide to Using ConstraintLayout in Android Studio
	26.1 Design and Layout Views
	26.2 Autoconnect Mode
	26.3 Inference Mode
	26.4 Manipulating Constraints Manually
	26.5 Adding Constraints in the Inspector
	26.6 Viewing Constraints in the Attributes Window
	26.7 Deleting Constraints
	26.8 Adjusting Constraint Bias
	26.9 Understanding ConstraintLayout Margins
	26.10 The Importance of Opposing Constraints and Bias
	26.11 Configuring Widget Dimensions
	26.12 Design Time Tools Positioning
	26.13 Adding Guidelines
	26.14 Adding Barriers
	26.15 Adding a Group
	26.16 Working with the Flow Helper
	26.17 Widget Group Alignment and Distribution
	26.18 Converting other Layouts to ConstraintLayout
	26.19 Summary

	27. Working with ConstraintLayout Chains and Ratios in Android Studio
	27.1 Creating a Chain
	27.2 Changing the Chain Style
	27.3 Spread Inside Chain Style
	27.4 Packed Chain Style
	27.5 Packed Chain Style with Bias
	27.6 Weighted Chain
	27.7 Working with Ratios
	27.8 Summary

	28. An Android Studio Layout Editor ConstraintLayout Tutorial
	28.1 An Android Studio Layout Editor Tool Example
	28.2 Preparing the Layout Editor Environment
	28.3 Adding the Widgets to the User Interface
	28.4 Adding the Constraints
	28.5 Testing the Layout
	28.6 Using the Layout Inspector
	28.7 Summary

	29. Manual XML Layout Design in Android Studio
	29.1 Manually Creating an XML Layout
	29.2 Manual XML vs. Visual Layout Design
	29.3 Summary

	30. Managing Constraints using Constraint Sets
	30.1 Kotlin Code vs. XML Layout Files
	30.2 Creating Views
	30.3 View Attributes
	30.4 Constraint Sets
	30.4.1 Establishing Connections
	30.4.2 Applying Constraints to a Layout
	30.4.3 Parent Constraint Connections
	30.4.4 Sizing Constraints
	30.4.5 Constraint Bias
	30.4.6 Alignment Constraints
	30.4.7 Copying and Applying Constraint Sets
	30.4.8 ConstraintLayout Chains
	30.4.9 Guidelines
	30.4.10 Removing Constraints
	30.4.11 Scaling
	30.4.12 Rotation

	30.5 Summary

	31. An Android ConstraintSet Tutorial
	31.1 Creating the Example Project in Android Studio
	31.2 Adding Views to an Activity
	31.3 Setting View Attributes
	31.4 Creating View IDs
	31.5 Configuring the Constraint Set
	31.6 Adding the EditText View
	31.7 Converting Density Independent Pixels (dp) to Pixels (px)
	31.8 Summary

	32. A Guide to Using Apply Changes in Android Studio
	32.1 Introducing Apply Changes
	32.2 Understanding Apply Changes Options
	32.3 Using Apply Changes
	32.4 Configuring Apply Changes Fallback Settings
	32.5 An Apply Changes Tutorial
	32.6 Using Apply Code Changes
	32.7 Using Apply Changes and Restart Activity
	32.8 Using Run App
	32.9 Summary

	33. An Overview and Example of Android Event Handling
	33.1 Understanding Android Events
	33.2 Using the android:onClick Resource
	33.3 Event Listeners and Callback Methods
	33.4 An Event Handling Example
	33.5 Designing the User Interface
	33.6 The Event Listener and Callback Method
	33.7 Consuming Events
	33.8 Summary

	34. Android Touch and Multi-touch Event Handling
	34.1 Intercepting Touch Events
	34.2 The MotionEvent Object
	34.3 Understanding Touch Actions
	34.4 Handling Multiple Touches
	34.5 An Example Multi-Touch Application
	34.6 Designing the Activity User Interface
	34.7 Implementing the Touch Event Listener
	34.8 Running the Example Application
	34.9 Summary

	35. Detecting Common Gestures Using the Android Gesture Detector Class
	35.1 Implementing Common Gesture Detection
	35.2 Creating an Example Gesture Detection Project
	35.3 Implementing the Listener Class
	35.4 Creating the GestureDetectorCompat Instance
	35.5 Implementing the onTouchEvent() Method
	35.6 Testing the Application
	35.7 Summary

	36. Implementing Custom Gesture and Pinch Recognition on Android
	36.1 The Android Gesture Builder Application
	36.2 The GestureOverlayView Class
	36.3 Detecting Gestures
	36.4 Identifying Specific Gestures
	36.5 Installing and Running the Gesture Builder Application
	36.6 Creating a Gestures File
	36.7 Creating the Example Project
	36.8 Extracting the Gestures File from the SD Card
	36.9 Adding the Gestures File to the Project
	36.10 Designing the User Interface
	36.11 Loading the Gestures File
	36.12 Registering the Event Listener
	36.13 Implementing the onGesturePerformed Method
	36.14 Testing the Application
	36.15 Configuring the GestureOverlayView
	36.16 Intercepting Gestures
	36.17 Detecting Pinch Gestures
	36.18 A Pinch Gesture Example Project
	36.19 Summary

	37. An Introduction to Android Fragments
	37.1 What is a Fragment?
	37.2 Creating a Fragment
	37.3 Adding a Fragment to an Activity using the Layout XML File
	37.4 Adding and Managing Fragments in Code
	37.5 Handling Fragment Events
	37.6 Implementing Fragment Communication
	37.7 Summary

	38. Using Fragments in Android Studio - An Example
	38.1 About the Example Fragment Application
	38.2 Creating the Example Project
	38.3 Creating the First Fragment Layout
	38.4 Migrating a Fragment to View Binding
	38.5 Adding the Second Fragment
	38.6 Adding the Fragments to the Activity
	38.7 Making the Toolbar Fragment Talk to the Activity
	38.8 Making the Activity Talk to the Text Fragment
	38.9 Testing the Application
	38.10 Summary

	39. Modern Android App Architecture with Jetpack
	39.1 What is Android Jetpack?
	39.2 The “Old” Architecture
	39.3 Modern Android Architecture
	39.4 The ViewModel Component
	39.5 The LiveData Component
	39.6 ViewModel Saved State
	39.7 LiveData and Data Binding
	39.8 Android Lifecycles
	39.9 Repository Modules
	39.10 Summary

	40. An Android ViewModel Tutorial
	40.1 About the Project
	40.2 Creating the ViewModel Example Project
	40.3 Removing Unwanted Project Elements
	40.4 Designing the Fragment Layout
	40.5 Implementing the View Model
	40.6 Associating the Fragment with the View Model
	40.7 Modifying the Fragment
	40.8 Accessing the ViewModel Data
	40.9 Testing the Project
	40.10 Summary

	41. An Android Jetpack LiveData Tutorial
	41.1 LiveData - A Recap
	41.2 Adding LiveData to the ViewModel
	41.3 Implementing the Observer
	41.4 Summary

	42. An Overview of Android Jetpack Data Binding
	42.1 An Overview of Data Binding
	42.2 The Key Components of Data Binding
	42.2.1 The Project Build Configuration
	42.2.2 The Data Binding Layout File
	42.2.3 The Layout File Data Element
	42.2.4 The Binding Classes
	42.2.5 Data Binding Variable Configuration
	42.2.6 Binding Expressions (One-Way)
	42.2.7 Binding Expressions (Two-Way)
	42.2.8 Event and Listener Bindings

	42.3 Summary

	43. An Android Jetpack Data Binding Tutorial
	43.1 Removing the Redundant Code
	43.2 Enabling Data Binding
	43.3 Adding the Layout Element
	43.4 Adding the Data Element to Layout File
	43.5 Working with the Binding Class
	43.6 Assigning the ViewModel Instance to the Data Binding Variable
	43.7 Adding Binding Expressions
	43.8 Adding the Conversion Method
	43.9 Adding a Listener Binding
	43.10 Testing the App
	43.11 Summary

	44. An Android ViewModel Saved State Tutorial
	44.1 Understanding ViewModel State Saving
	44.2 Implementing ViewModel State Saving
	44.3 Saving and Restoring State
	44.4 Adding Saved State Support to the ViewModelDemo Project
	44.5 Summary

	45. Working with Android Lifecycle-Aware Components
	45.1 Lifecycle Awareness
	45.2 Lifecycle Owners
	45.3 Lifecycle Observers
	45.4 Lifecycle States and Events
	45.5 Summary

	46. An Android Jetpack Lifecycle Awareness Tutorial
	46.1 Creating the Example Lifecycle Project
	46.2 Creating a Lifecycle Observer
	46.3 Adding the Observer
	46.4 Testing the Observer
	46.5 Creating a Lifecycle Owner
	46.6 Testing the Custom Lifecycle Owner
	46.7 Summary

	47. An Overview of the Navigation Architecture Component
	47.1 Understanding Navigation
	47.2 Declaring a Navigation Host
	47.3 The Navigation Graph
	47.4 Accessing the Navigation Controller
	47.5 Triggering a Navigation Action
	47.6 Passing Arguments
	47.7 Summary

	48. An Android Jetpack Navigation Component Tutorial
	48.1 Creating the NavigationDemo Project
	48.2 Adding Navigation to the Build Configuration
	48.3 Creating the Navigation Graph Resource File
	48.4 Declaring a Navigation Host
	48.5 Adding Navigation Destinations
	48.6 Designing the Destination Fragment Layouts
	48.7 Adding an Action to the Navigation Graph
	48.8 Implement the OnFragmentInteractionListener
	48.9 Adding View Binding Support to the Destination Fragments
	48.10 Triggering the Action
	48.11 Passing Data Using Safeargs
	48.12 Summary

	49. An Introduction to MotionLayout
	49.1 An Overview of MotionLayout
	49.2 MotionLayout
	49.3 MotionScene
	49.4 Configuring ConstraintSets
	49.5 Custom Attributes
	49.6 Triggering an Animation
	49.7 Arc Motion
	49.8 Keyframes
	49.8.1 Attribute Keyframes
	49.8.2 Position Keyframes

	49.9 Time Linearity
	49.10 KeyTrigger
	49.11 Cycle and Time Cycle Keyframes
	49.12 Starting an Animation from Code
	49.13 Summary

	50. An Android MotionLayout Editor Tutorial
	50.1 Creating the MotionLayoutDemo Project
	50.2 ConstraintLayout to MotionLayout Conversion
	50.3 Configuring Start and End Constraints
	50.4 Previewing the MotionLayout Animation
	50.5 Adding an OnClick Gesture
	50.6 Adding an Attribute Keyframe to the Transition
	50.7 Adding a CustomAttribute to a Transition
	50.8 Adding Position Keyframes
	50.9 Summary

	51. A MotionLayout KeyCycle Tutorial
	51.1 An Overview of Cycle Keyframes
	51.2 Using the Cycle Editor
	51.3 Creating the KeyCycleDemo Project
	51.4 Configuring the Start and End Constraints
	51.5 Creating the Cycles
	51.6 Previewing the Animation
	51.7 Adding the KeyFrameSet to the MotionScene
	51.8 Summary

	52. Working with the Floating Action Button and Snackbar
	52.1 The Material Design
	52.2 The Design Library
	52.3 The Floating Action Button (FAB)
	52.4 The Snackbar
	52.5 Creating the Example Project
	52.6 Reviewing the Project
	52.7 Removing Navigation Features
	52.8 Changing the Floating Action Button
	52.9 Adding an Action to the Snackbar
	52.10 Summary

	53. Creating a Tabbed Interface using the TabLayout Component
	53.1 An Introduction to the ViewPager2
	53.2 An Overview of the TabLayout Component
	53.3 Creating the TabLayoutDemo Project
	53.4 Creating the First Fragment
	53.5 Duplicating the Fragments
	53.6 Adding the TabLayout and ViewPager2
	53.7 Performing the Initialization Tasks
	53.8 Testing the Application
	53.9 Customizing the TabLayout
	53.10 Summary

	54. Working with the RecyclerView and CardView Widgets
	54.1 An Overview of the RecyclerView
	54.2 An Overview of the CardView
	54.3 Summary

	55. An Android RecyclerView and CardView Tutorial
	55.1 Creating the CardDemo Project
	55.2 Modifying the Basic Views Activity Project
	55.3 Designing the CardView Layout
	55.4 Adding the RecyclerView
	55.5 Adding the Image Files
	55.6 Creating the RecyclerView Adapter
	55.7 Initializing the RecyclerView Component
	55.8 Testing the Application
	55.9 Responding to Card Selections
	55.10 Summary

	56. Working with the AppBar and Collapsing Toolbar Layouts
	56.1 The Anatomy of an AppBar
	56.2 The Example Project
	56.3 Coordinating the RecyclerView and Toolbar
	56.4 Introducing the Collapsing Toolbar Layout
	56.5 Changing the Title and Scrim Color
	56.6 Summary

	57. An Overview of Android Intents
	57.1 An Overview of Intents
	57.2 Explicit Intents
	57.3 Returning Data from an Activity
	57.4 Implicit Intents
	57.5 Using Intent Filters
	57.6 Automatic Link Verification
	57.7 Manually Enabling Links
	57.8 Checking Intent Availability
	57.9 Summary

	58. Android Explicit Intents – A Worked Example
	58.1 Creating the Explicit Intent Example Application
	58.2 Designing the User Interface Layout for MainActivity
	58.3 Creating the Second Activity Class
	58.4 Designing the User Interface Layout for SecondActivity
	58.5 Reviewing the Application Manifest File
	58.6 Creating the Intent
	58.7 Extracting Intent Data
	58.8 Launching SecondActivity as a Sub-Activity
	58.9 Returning Data from a Sub-Activity
	58.10 Testing the Application
	58.11 Summary

	59. Android Implicit Intents – A Worked Example
	59.1 Creating the Android Studio Implicit Intent Example Project
	59.2 Designing the User Interface
	59.3 Creating the Implicit Intent
	59.4 Adding a Second Matching Activity
	59.5 Adding the Web View to the UI
	59.6 Obtaining the Intent URL
	59.7 Modifying the MyWebView Project Manifest File
	59.8 Installing the MyWebView Package on a Device
	59.9 Testing the Application
	59.10 Manually Enabling the Link
	59.11 Automatic Link Verification
	59.12 Summary

	60. Android Broadcast Intents and Broadcast Receivers
	60.1 An Overview of Broadcast Intents
	60.2 An Overview of Broadcast Receivers
	60.3 Obtaining Results from a Broadcast
	60.4 Sticky Broadcast Intents
	60.5 The Broadcast Intent Example
	60.6 Creating the Example Application
	60.7 Creating and Sending the Broadcast Intent
	60.8 Creating the Broadcast Receiver
	60.9 Registering the Broadcast Receiver
	60.10 Testing the Broadcast Example
	60.11 Listening for System Broadcasts
	60.12 Summary

	61. An Introduction to Kotlin Coroutines
	61.1 What are Coroutines?
	61.2 Threads vs. Coroutines
	61.3 Coroutine Scope
	61.4 Suspend Functions
	61.5 Coroutine Dispatchers
	61.6 Coroutine Builders
	61.7 Jobs
	61.8 Coroutines – Suspending and Resuming
	61.9 Returning Results from a Coroutine
	61.10 Using withContext
	61.11 Coroutine Channel Communication
	61.12 Summary

	62. An Android Kotlin Coroutines Tutorial
	62.1 Creating the Coroutine Example Application
	62.2 Adding Coroutine Support to the Project
	62.3 Designing the User Interface
	62.4 Implementing the SeekBar
	62.5 Adding the Suspend Function
	62.6 Implementing the launchCoroutines Method
	62.7 Testing the App
	62.8 Summary

	63. An Overview of Android Services
	63.1 Intent Service
	63.2 Bound Service
	63.3 The Anatomy of a Service
	63.4 Controlling Destroyed Service Restart Options
	63.5 Declaring a Service in the Manifest File
	63.6 Starting a Service Running on System Startup
	63.7 Summary

	64. Android Local Bound Services – A Worked Example
	64.1 Understanding Bound Services
	64.2 Bound Service Interaction Options
	64.3 A Local Bound Service Example
	64.4 Adding a Bound Service to the Project
	64.5 Implementing the Binder
	64.6 Binding the Client to the Service
	64.7 Completing the Example
	64.8 Testing the Application
	64.9 Summary

	65. Android Remote Bound Services – A Worked Example
	65.1 Client to Remote Service Communication
	65.2 Creating the Example Application
	65.3 Designing the User Interface
	65.4 Implementing the Remote Bound Service
	65.5 Configuring a Remote Service in the Manifest File
	65.6 Launching and Binding to the Remote Service
	65.7 Sending a Message to the Remote Service
	65.8 Summary

	66. An Introduction to Kotlin Flow
	66.1 Understanding Flows
	66.2 Creating the Sample Project
	66.3 Adding the Kotlin Lifecycle Library
	66.4 Declaring a Flow
	66.5 Emitting Flow Data
	66.6 Collecting Flow Data
	66.7 Adding a Flow Buffer
	66.8 Transforming Data with Intermediaries
	66.9 Terminal Flow Operators
	66.10 Flow Flattening
	66.11 Combining Multiple Flows
	66.12 Hot and Cold Flows
	66.13 StateFlow
	66.14 SharedFlow
	66.15 Summary

	67. An Android SharedFlow Tutorial
	67.1 About the Project
	67.2 Creating the SharedFlowDemo Project
	67.3 Designing the User Interface Layout
	67.4 Adding the List Row Layout
	67.5 Adding the RecyclerView Adapter
	67.6 Adding the ViewModel
	67.7 Configuring the ViewModelProvider
	67.8 Collecting the Flow Values
	67.9 Testing the SharedFlowDemo App
	67.10 Handling Flows in the Background
	67.11 Summary

	68. An Overview of Android SQLite Databases
	68.1 Understanding Database Tables
	68.2 Introducing Database Schema
	68.3 Columns and Data Types
	68.4 Database Rows
	68.5 Introducing Primary Keys
	68.6 What is SQLite?
	68.7 Structured Query Language (SQL)
	68.8 Trying SQLite on an Android Virtual Device (AVD)
	68.9 The Android Room Persistence Library
	68.10 Summary

	69. The Android Room Persistence Library
	69.1 Revisiting Modern App Architecture
	69.2 Key Elements of Room Database Persistence
	69.2.1 Repository
	69.2.2 Room Database
	69.2.3 Data Access Object (DAO)
	69.2.4 Entities
	69.2.5 SQLite Database

	69.3 Understanding Entities
	69.4 Data Access Objects
	69.5 The Room Database
	69.6 The Repository
	69.7 In-Memory Databases
	69.8 Database Inspector
	69.9 Summary

	70. An Android TableLayout and TableRow Tutorial
	70.1 The TableLayout and TableRow Layout Views
	70.2 Creating the Room Database Project
	70.3 Converting to a LinearLayout
	70.4 Adding the TableLayout to the User Interface
	70.5 Configuring the TableRows
	70.6 Adding the Button Bar to the Layout
	70.7 Adding the RecyclerView
	70.8 Adjusting the Layout Margins
	70.9 Summary

	71. An Android Room Database and Repository Tutorial
	71.1 About the RoomDemo Project
	71.2 Modifying the Build Configuration
	71.3 Building the Entity
	71.4 Creating the Data Access Object
	71.5 Adding the Room Database
	71.6 Adding the Repository
	71.7 Adding the ViewModel
	71.8 Creating the Product Item Layout
	71.9 Adding the RecyclerView Adapter
	71.10 Preparing the Main Activity
	71.11 Adding the Button Listeners
	71.12 Adding LiveData Observers
	71.13 Initializing the RecyclerView
	71.14 Testing the RoomDemo App
	71.15 Using the Database Inspector
	71.16 Summary

	72. Video Playback on Android using the VideoView and MediaController Classes
	72.1 Introducing the Android VideoView Class
	72.2 Introducing the Android MediaController Class
	72.3 Creating the Video Playback Example
	72.4 Designing the VideoPlayer Layout
	72.5 Downloading the Video File
	72.6 Configuring the VideoView
	72.7 Adding the MediaController to the Video View
	72.8 Setting up the onPreparedListener
	72.9 Summary

	73. Android Picture-in-Picture Mode
	73.1 Picture-in-Picture Features
	73.2 Enabling Picture-in-Picture Mode
	73.3 Configuring Picture-in-Picture Parameters
	73.4 Entering Picture-in-Picture Mode
	73.5 Detecting Picture-in-Picture Mode Changes
	73.6 Adding Picture-in-Picture Actions
	73.7 Summary

	74. An Android Picture-in-Picture Tutorial
	74.1 Adding Picture-in-Picture Support to the Manifest
	74.2 Adding a Picture-in-Picture Button
	74.3 Entering Picture-in-Picture Mode
	74.4 Detecting Picture-in-Picture Mode Changes
	74.5 Adding a Broadcast Receiver
	74.6 Adding the PiP Action
	74.7 Testing the Picture-in-Picture Action
	74.8 Summary

	75. Making Runtime Permission Requests in Android
	75.1 Understanding Normal and Dangerous Permissions
	75.2 Creating the Permissions Example Project
	75.3 Checking for a Permission
	75.4 Requesting Permission at Runtime
	75.5 Providing a Rationale for the Permission Request
	75.6 Testing the Permissions App
	75.7 Summary

	76. Android Audio Recording and Playback using MediaPlayer and MediaRecorder
	76.1 Playing Audio
	76.2 Recording Audio and Video using the MediaRecorder Class
	76.3 About the Example Project
	76.4 Creating the AudioApp Project
	76.5 Designing the User Interface
	76.6 Checking for Microphone Availability
	76.7 Initializing the Activity
	76.8 Implementing the recordAudio() Method
	76.9 Implementing the stopAudio() Method
	76.10 Implementing the playAudio() method
	76.11 Configuring and Requesting Permissions
	76.12 Testing the Application
	76.13 Summary

	77. An Android Notifications Tutorial
	77.1 An Overview of Notifications
	77.2 Creating the NotifyDemo Project
	77.3 Designing the User Interface
	77.4 Creating the Second Activity
	77.5 Creating a Notification Channel
	77.6 Requesting Notification Permission
	77.7 Creating and Issuing a Notification
	77.8 Launching an Activity from a Notification
	77.9 Adding Actions to a Notification
	77.10 Bundled Notifications
	77.11 Summary

	78. An Android Direct Reply Notification Tutorial
	78.1 Creating the DirectReply Project
	78.2 Designing the User Interface
	78.3 Requesting Notification Permission
	78.4 Creating the Notification Channel
	78.5 Building the RemoteInput Object
	78.6 Creating the PendingIntent
	78.7 Creating the Reply Action
	78.8 Receiving Direct Reply Input
	78.9 Updating the Notification
	78.10 Summary

	79. Working with the Google Maps Android API in Android Studio
	79.1 The Elements of the Google Maps Android API
	79.2 Creating the Google Maps Project
	79.3 Creating a Google Cloud Billing Account
	79.4 Creating a New Google Cloud Project
	79.5 Enabling the Google Maps SDK
	79.6 Generating a Google Maps API Key
	79.7 Adding the API Key to the Android Studio Project
	79.8 Testing the Application
	79.9 Understanding Geocoding and Reverse Geocoding
	79.10 Adding a Map to an Application
	79.11 Requesting Current Location Permission
	79.12 Displaying the User’s Current Location
	79.13 Changing the Map Type
	79.14 Displaying Map Controls to the User
	79.15 Handling Map Gesture Interaction
	79.15.1 Map Zooming Gestures
	79.15.2 Map Scrolling/Panning Gestures
	79.15.3 Map Tilt Gestures
	79.15.4 Map Rotation Gestures

	79.16 Creating Map Markers
	79.17 Controlling the Map Camera
	79.18 Summary

	80. Printing with the Android Printing Framework
	80.1 The Android Printing Architecture
	80.2 The Print Service Plugins
	80.3 Google Cloud Print
	80.4 Printing to Google Drive
	80.5 Save as PDF
	80.6 Printing from Android Devices
	80.7 Options for Building Print Support into Android Apps
	80.7.1 Image Printing
	80.7.2 Creating and Printing HTML Content
	80.7.3 Printing a Web Page
	80.7.4 Printing a Custom Document

	80.8 Summary

	81. An Android HTML and Web Content Printing Example
	81.1 Creating the HTML Printing Example Application
	81.2 Printing Dynamic HTML Content
	81.3 Creating the Web Page Printing Example
	81.4 Removing the Floating Action Button
	81.5 Removing Navigation Features
	81.6 Designing the User Interface Layout
	81.7 Accessing the WebView from the Main Activity
	81.8 Loading the Web Page into the WebView
	81.9 Adding the Print Menu Option
	81.10 Summary

	82. A Guide to Android Custom Document Printing
	82.1 An Overview of Android Custom Document Printing
	82.1.1 Custom Print Adapters

	82.2 Preparing the Custom Document Printing Project
	82.3 Creating the Custom Print Adapter
	82.4 Implementing the onLayout() Callback Method
	82.5 Implementing the onWrite() Callback Method
	82.6 Checking a Page is in Range
	82.7 Drawing the Content on the Page Canvas
	82.8 Starting the Print Job
	82.9 Testing the Application
	82.10 Summary

	83. An Introduction to Android App Links
	83.1 An Overview of Android App Links
	83.2 App Link Intent Filters
	83.3 Handling App Link Intents
	83.4 Associating the App with a Website
	83.5 Summary

	84. An Android Studio App Links Tutorial
	84.1 About the Example App
	84.2 The Database Schema
	84.3 Loading and Running the Project
	84.4 Adding the URL Mapping
	84.5 Adding the Intent Filter
	84.6 Adding Intent Handling Code
	84.7 Testing the App
	84.8 Creating the Digital Asset Links File
	84.9 Testing the App Link
	84.10 Summary

	85. An Android Biometric Authentication Tutorial
	85.1 An Overview of Biometric Authentication
	85.2 Creating the Biometric Authentication Project
	85.3 Configuring Device Fingerprint Authentication
	85.4 Adding the Biometric Permission to the Manifest File
	85.5 Designing the User Interface
	85.6 Adding a Toast Convenience Method
	85.7 Checking the Security Settings
	85.8 Configuring the Authentication Callbacks
	85.9 Adding the CancellationSignal
	85.10 Starting the Biometric Prompt
	85.11 Testing the Project
	85.12 Summary

	86. Creating, Testing, and Uploading an Android App Bundle
	86.1 The Release Preparation Process
	86.2 Android App Bundles
	86.3 Register for a Google Play Developer Console Account
	86.4 Configuring the App in the Console
	86.5 Enabling Google Play App Signing
	86.6 Creating a Keystore File
	86.7 Creating the Android App Bundle
	86.8 Generating Test APK Files
	86.9 Uploading the App Bundle to the Google Play Developer Console
	86.10 Exploring the App Bundle
	86.11 Managing Testers
	86.12 Rolling the App Out for Testing
	86.13 Uploading New App Bundle Revisions
	86.14 Analyzing the App Bundle File
	86.15 Summary

	87. An Overview of Android In-App Billing
	87.1 Preparing a Project for In-App Purchasing
	87.2 Creating In-App Products and Subscriptions
	87.3 Billing Client Initialization
	87.4 Connecting to the Google Play Billing Library
	87.5 Querying Available Products
	87.6 Starting the Purchase Process
	87.7 Completing the Purchase
	87.8 Querying Previous Purchases
	87.9 Summary

	88. An Android In-App Purchasing Tutorial
	88.1 About the In-App Purchasing Example Project
	88.2 Creating the InAppPurchase Project
	88.3 Adding Libraries to the Project
	88.4 Designing the User Interface
	88.5 Adding the App to the Google Play Store
	88.6 Creating an In-App Product
	88.7 Enabling License Testers
	88.8 Initializing the Billing Client
	88.9 Querying the Product
	88.10 Launching the Purchase Flow
	88.11 Handling Purchase Updates
	88.12 Consuming the Product
	88.13 Restoring a Previous Purchase
	88.14 Testing the App
	88.15 Troubleshooting
	88.16 Summary

	89. Working with Material Design 3 Theming
	89.1 Material Design 2 vs. Material Design 3
	89.2 Understanding Material Design Theming
	89.3 Material Design 3 Theming
	89.4 Building a Custom Theme
	89.5 Summary

	90. A Material Design 3 Theming and Dynamic Color Tutorial
	90.1 Creating the ThemeDemo Project
	90.2 Designing the User Interface
	90.3 Building a New Theme
	90.4 Adding the Theme to the Project
	90.5 Enabling Dynamic Color Support
	90.6 Previewing Dynamic Colors
	90.7 Summary

	91. An Overview of Gradle in Android Studio
	91.1 An Overview of Gradle
	91.2 Gradle and Android Studio
	91.2.1 Sensible Defaults
	91.2.2 Dependencies
	91.2.3 Build Variants
	91.2.4 Manifest Entries
	91.2.5 APK Signing
	91.2.6 ProGuard Support

	91.3 The Property and Settings Gradle Build File
	91.4 The Top-level Gradle Build File
	91.5 Module Level Gradle Build Files
	91.6 Configuring Signing Settings in the Build File
	91.7 Running Gradle Tasks from the Command Line
	91.8 Summary

	Index

