
i

Objective-C 2.0 Essentials
Third Edition

ii

Objective-C 2.0 Essentials – Third Edition

ISBN-13: 978-1480262102

© 2012 Neil Smyth. This book is provided for personal use only. Unauthorized use,

reproduction and/or distribution strictly prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor

the author offers any warranties or representation, express or implied, with regard to the

accuracy of information contained in this book, nor do they accept any liability for any loss or

damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the

benefit of the respective trademark owner. The terms used within this book are not intended as

infringement of any trademarks.

Find more eBooks online at http://www.eBookFrenzy.com.

Rev. 3.0

http://www.ebookfrenzy.com/

iii

Table of Contents

1. About Objective-C Essentials .. 1

1.1 Why are you reading this? .. 1

1.2 Supported Platforms ... 2

2. The History of Objective-C .. 3

2.1 The C Programming Language .. 3

2.2 The Smalltalk programming Language .. 3

2.3 C meets Smalltalk .. 4

2.4 Objective-C and Apple ... 4

2.5 Modern Objective-C .. 5

3. Installing Xcode and Compiling Objective-C on Mac OS X .. 7

3.1 Identifying if you have an Intel or PowerPC based Mac ... 7

3.2 Installing the Xcode Development Environment .. 8

3.3 Starting Xcode ... 8

3.4 Writing an Objective-C Application with Xcode .. 11

3.5 Compiling Objective-C from the Command Line .. 12

3.6 Summary ... 14

4. Objective-C 2.0 Data Types ... 15

4.1 int Data Type ... 16

4.2 char Data Type .. 17

4.2.1 Special Characters/Escape Sequences ... 17

4.3 float Data Type .. 18

4.4 double Data Type .. 18

4.5 id Data Type ... 18

4.6 BOOL Data Type .. 18

4.7 Objective-C Data Type Qualifiers .. 19

4.7.1 long ... 19

4.7.2 long long ... 19

iv

4.7.3 short .. 19

4.7.1 signed / unsigned.. 20

4.8 Summary ... 20

5. Working with Variables and Constants in Objective-C ... 21

5.1 What is an Objective-C Variable .. 21

5.2 What is an Objective-C Constant? ... 22

5.3 Type Casting Objective-C Variables ... 23

5.4 Summary ... 24

6. Objective-C Operators and Expressions ... 25

6.1 What is an Expression? ... 25

6.2 The Basic Assignment Operator .. 25

6.3 Objective-C Arithmetic Operators ... 26

6.4 Compound Assignment Operators .. 27

6.5 Increment and Decrement Operators ... 27

6.6 Comparison Operators .. 28

6.7 Boolean Logical Operators .. 29

6.8 The Ternary Operator .. 30

6.9 Bitwise Operators .. 30

6.9.1 Bitwise AND .. 31

6.9.2 Bitwise OR ... 32

6.9.3 Bitwise XOR ... 32

6.9.4 Bitwise Left Shift ... 33

6.9.5 Bitwise Right Shift ... 33

6.10 Compound Bitwise Operators ... 34

6.11 Summary ... 34

7. Objective-C 2.0 Operator Precedence .. 35

7.1 An Example of Objective-C Operator Precedence .. 35

7.2 Objective-C Operator Precedence and Associativity .. 35

v

7.3 Overriding Operator Precedence .. 37

7.4 Summary ... 38

8. Commenting Objective-C Code ... 39

8.1 Why Comment your Code? ... 39

8.2 Single Line Comments ... 40

8.3 Multi-line Comments .. 40

8.4 Summary ... 41

9. Objective-C Flow Control with if and else ... 43

9.1 Using the if Statement... 43

9.2 Using if ... else … Statements .. 44

9.3 Using if ... else if ... Statements ... 45

9.4 Summary ... 45

10. The Objective-C switch Statement ... 47

10.1 Why Use a switch Statement? .. 47

10.2 Using the switch Statement Syntax .. 48

10.3 A switch Statement Example .. 49

10.4 Explaining the Example ... 50

10.5 Combining case Statements .. 50

10.6 Summary ... 50

11. Objective-C Looping - The for Statement ... 53

11.1 Why Use Loops? .. 53

11.2 Objective-C Loop Variable Scope .. 55

11.3 Creating an Infinite for Loop ... 56

11.4 Breaking Out of a for Loop .. 56

11.5 Nested for Loops ... 57

11.6 Breaking from Nested Loops ... 57

11.7 Continuing for Loops ... 58

11.8 Using for Loops with Multiple Variables ... 58

vi

11.9 Summary ... 59

12. Objective-C Looping with do and while Statements .. 61

12.1 The Objective-C while Loop... 61

12.2 Objective-C do ... while loops .. 62

12.3 Breaking from Loops ... 62

12.4 The continue Statement .. 63

12.5 Summary ... 64

13. An Overview of Objective-C Object Oriented Programming .. 65

13.1 What is an Object? .. 65

13.2 What is a Class? ... 65

13.3 Creating the Example Project .. 66

13.4 Declaring an Objective-C Class Interface .. 66

13.5 Adding Instance Variables to a Class ... 68

13.6 Defining Instance Methods ... 68

13.7 Controlling Access to Instance Variables .. 70

13.8 Declaring an Objective-C Class Implementation ... 71

13.9 Declaring, Initializing and Releasing a Class Instance ... 72

13.10 Calling Methods and Accessing Instance Data .. 73

13.11 Creating the Program Section ... 74

13.12 Compiling and Running the Program .. 75

13.13 Summary ... 75

14. Writing Objective-C Class Methods .. 77

14.1 Instance and Class Methods .. 77

14.2 Creating a New Class Method ... 77

14.3 The @interface Section ... 78

14.4 The @implementation Section ... 78

14.5 The main() Function .. 79

15. Objective-C - Data Encapsulation, Synthesized Accessors and Dot Notation 81

vii

15.1 Data Encapsulation .. 81

15.2 Properties, Synthesized Accessor Methods .. 81

15.3 Accessing Property Instance Variables ... 82

15.4 The Modified Bank Account Example ... 83

15.5 Objective-C and Dot Notation ... 84

15.6 Summary ... 85

16. Objective-C Inheritance .. 87

16.1 Inheritance, Classes and Subclasses .. 87

16.2 An Objective-C Inheritance Example... 87

16.3 Modifying the BankAccount Project ... 89

16.4 Extending the Functionality of a Subclass ... 89

16.5 Overriding Inherited Methods .. 91

16.6 Testing the Program .. 92

16.7 Summary ... 93

17. Pointers and Indirection in Objective-C .. 95

17.1 How Variables are Stored .. 95

17.2 An Overview of Indirection ... 96

17.3 Indirection and Objects ... 98

17.4 Indirection and Object Copying... 99

17.5 Summary ... 99

18. Objective-C Dynamic Binding and Typing with the id Type .. 101

18.1 Static Typing vs. Dynamic Typing .. 101

18.2 Dynamic Binding .. 102

18.3 Polymorphism ... 103

18.4 Summary ... 104

19. Objective-C Variable Scope and Storage Class ... 105

19.1 Variable Scope ... 105

19.2 Block Scope ... 105

viii

19.3 Function Scope .. 107

19.4 Global Scope .. 109

19.5 File Scope ... 111

19.6 Variable Storage Class ... 112

19.7 Summary ... 112

20. An Overview of Objective-C Functions ... 113

20.1 What is a Function? ... 113

20.2 How to Declare an Objective-C Function .. 113

20.3 The main() Function .. 114

20.4 Calling an Objective-C Function .. 115

20.5 Function Prototypes .. 115

20.6 Function Scope and the static Specifier .. 118

20.7 Static Variables in Functions ... 118

20.8 Summary ... 120

21. Objective-C Enumerators .. 121

21.1 Why Use Enumerators .. 121

21.2 Declaring an Enumeration ... 121

21.3 Creating and Using an Enumeration ... 122

21.4 Enumerators and Variable Names .. 122

21.5 Summary ... 123

22. An Overview of the Objective-C Foundation Framework ... 125

22.1 The Foundation Framework .. 125

22.2 Including the Foundation Headers .. 125

22.3 Finding the Foundation Framework Documentation ... 126

23. Working with String Objects in Objective-C ... 127

23.1 Strings without NSString ... 127

23.2 Declaring Constant String Objects .. 128

23.3 Creating Mutable and Immutable String Objects ... 129

ix

23.4 Getting the Length of a String ... 129

23.5 Copying a String ... 130

23.6 Searching for a Substring .. 132

23.7 Replacing Parts of a String... 133

23.8 String Search and Replace ... 133

23.9 Deleting Sections of a String ... 134

23.10 Extracting a Subsection of a String .. 134

23.11 Inserting Text into a String .. 135

23.12 Appending Text to the End of a String .. 135

23.13 Comparing Strings ... 135

23.14 Checking for String Prefixes and Suffixes .. 136

23.15 Converting to Upper or Lower Case .. 136

23.16 Converting Strings to Numbers ... 137

23.17 Converting a String Object to ASCII ... 138

23.18 Summary ... 138

24. Understanding Objective-C Number Objects ... 139

24.1 Creating and Initializing NSNumber Objects ... 139

24.2 Initialization using NSNumber Literals .. 140

24.3 Getting the Value of a Number Object ... 141

24.4 Comparing Number Objects .. 142

24.5 Getting the Number Object Value as a String ... 143

24.6 Summary ... 144

25. Working with Objective-C Array Objects .. 145

25.1 Mutable and Immutable Arrays .. 145

25.2 Creating an Array Object using Class Methods ... 145

25.3 Creating an Array Object using Literal Syntax ... 146

25.4 Finding out the Number of Elements in an Array ... 146

25.5 Accessing the Elements of an Array Object using Methods ... 147

x

25.6 Accessing Array Elements using Index Subscripting ... 147

25.7 Accessing Array Elements using Fast Enumeration .. 148

25.8 Adding Elements to an Array Object ... 148

25.9 Inserting Elements into an Array ... 149

25.10 Deleting Elements from an Array Object .. 149

25.11 Sorting Array Objects .. 150

25.12 Summary ... 150

26. Objective-C Dictionary Objects ... 151

26.1 What are Dictionary Objects? ... 151

26.2 Creating Dictionary Objects using Methods ... 151

26.3 Initializing and Adding Entries to a Dictionary Object .. 151

26.4 Initializing Dictionaries using Literal Syntax .. 152

26.5 Getting an Entry Count .. 153

26.6 Accessing Dictionary Entries ... 153

26.7 Removing Entries from a Dictionary Object .. 154

26.8 Summary ... 155

27. Working with Directories in Objective-C .. 157

27.1 The Objective-C NSFileManager, NSFileHandle and NSData Classes 157

27.2 Understanding Pathnames in Objective-C .. 158

27.3 Obtaining a Reference to the Default NSFileManager Object .. 158

27.4 Identifying the Current Working Directory ... 158

27.5 Changing to a Different Directory ... 159

27.6 Creating a New Directory .. 159

27.7 Deleting a Directory .. 160

27.8 Renaming or Moving a File or Directory ... 160

27.9 Getting a Directory File Listing .. 160

27.10 Getting the Attributes of a File or Directory ... 161

27.11 Summary ... 162

xi

28. Working with Files in Objective-C ... 163

28.1 Getting the NSFileManager Reference ... 163

28.2 Checking if a File Exists .. 163

28.3 Comparing the Contents of Two Files ... 164

28.4 Checking if a File is Readable/Writable/Executable/Deletable 164

28.5 Moving/Renaming a File ... 165

28.6 Copying a File .. 165

28.7 Removing a File ... 165

28.8 Creating a Symbolic Link ... 166

28.9 Reading and Writing Files with NSFileManager .. 166

28.10 Working with Files using the NSFileHandle Class ... 167

28.11 Creating an NSFileHandle Object .. 167

28.12 NSFileHandle File Offsets and Seeking .. 168

28.13 Reading Data from a File ... 169

28.14 Writing Data to a File .. 169

28.15 Truncating a File .. 170

28.16 Summary ... 171

29. Constructing and Manipulating Paths with NSPathUtilities ... 173

29.1 The Anatomy of a Path .. 173

29.2 Finding a Temporary Directory ... 173

29.3 Getting the Current User's Home Directory ... 174

29.4 Getting the Home Directory of a Specified User ... 174

29.5 Extracting the Filename from a Path .. 174

29.6 Extracting the Filename Extension .. 175

29.7 Standardizing a Path .. 175

29.8 Extracting the Components of a Path ... 176

30. Copying Objects in Objective-C ... 177

30.1 Objects and Pointers ... 177

xii

30.2 Copying an Object in Objective-C using the <NSCopying> Protocol 177

30.3 <NSCopying> Protocol and copyWithZone Method Implementation 178

30.4 Performing a Deep Copy ... 180

31. Using Objective-C Preprocessor Directives ... 183

31.1 The #define Statement .. 183

31.2 Creating Macros with the #define Statement ... 184

31.3 Changing the Objective-C Language with #define .. 184

31.4 Undefining a Definition with #undef ... 186

31.5 Conditional Compilation ... 186

31.6 The #import Directive ... 187

Index ... 189

1

1. About Objective-C Essentials

1.1 Why are you reading this?

On the surface this sounds like an odd opening sentence for a programming book. After all, if

this were a book about JavaScript or PHP it would be safe to assume that you planned to

develop some kind of web site or web application. Similarly, if this were a Visual Basic book it

would be a good bet that you had plans to write a Windows application. Indeed, had this

question been asked a few years ago, it could have been guessed with a reasonable level of

confidence that you wanted to learn Objective-C in order to develop some software to run on

Apple's Mac OS X operating system. Now, however, there is a greater likelihood that you plan

to develop an application to run on the iPhone or iPad.

The iPhone and the iPad, after all, run a special version of Mac OS X called iOS. Given that

Objective-C is the programming language of choice for this operating system it should come as

no surprise that before you can develop iOS applications you first need to learn how to program

in Objective-C.

Fully updated for Modern Objective-C syntax, the objective of this book is to teach the skills

necessary to program in Objective-C using a style that is easy to follow, rich in examples and

accessible to those who have never used Objective-C before. Topics covered include the

fundamentals of Objective-C such as variables, looping and flow control. Also included are

details of object-oriented programming, working with files and memory and the Objective-C

Foundation framework.

Those who have developed using other programming languages such as C, C++, C# or Java will

find much about Objective-C that is familiar. That said, there are aspects of the language syntax

that are unique to Objective-C. Even experienced programmers should therefore expect to

spend some time transitioning to this increasingly popular programming language before

embarking on a major development project.

Whatever your background and experience, we have worked hard to make this book as useful

and helpful as possible as you traverse the Objective-C learning curve.

Chapter 1

About Objective-C Essentials

2

1.2 Supported Platforms

After all this talk about Mac OS X and iOS, it is important to note that Objective-C is not

confined to Apple's operating systems. In fact, Objective-C is available on a wide range of

platforms including Linux, NetBSD, OpenBSD, FreeBSD, Solaris and Windows in the form of the

open source GNUstep environment. This means that anyone with access to a GNUstep

supported platform can learn Objective-C, though if your ultimate objective is to develop for

iOS or Mac OS X, you will at some point need access to an Intel based Mac computer system.

Perhaps one key advantage to using a Mac OS X system for learning Objective-C comes in the

form of access to Apple's Xcode development environment. Another benefit of learning

Objective-C on a Mac OS X system is that as new features are added to the language, those

improvements are typically made available on Mac OS X before they make it onto other

operating system platforms. That being said, other than references to Xcode in early chapters,

the remainder of this book is intended to be as platform agnostic as possible.

3

2. The History of Objective-C

Before learning the intricacies of a new programming language it is often worth taking a little

time to learn about the history and legacy of that language. In this chapter of Objective-C 2.0

Essentials we will provide a brief overview of the origins of Objective-C and the business history

that ultimately led to it becoming the programming language of choice for both Mac OS X and

iOS.

2.1 The C Programming Language

Objective-C is based on a programming language called, quite simply, C. The origins of the C

programming language can be traced back nearly 40 years to two engineers named Dennis

Ritchie and Ken Thompson working at what is now known as AT&T Bell Labs. At the time, the

two were working on developing the UNIX operating system on PDP-7 and PDP-11 systems.

After attempts to write this operating system using assembly language (essentially using

sequences of instruction codes understood by the processor), it was decided that a higher level,

more programmer friendly programming language was required to handle the complexity of an

operating system such as UNIX. The first attempt was a language called B. The B language,

which was based on a language called BCPL, was found to be lacking. Taking the next initial

from the BCPL name, the C language was created and subsequently used to write much of the

UNIX operating system kernel and infrastructure. As far as we can tell, C was so successful that

new languages named P and L never needed to be created.

2.2 The Smalltalk programming Language

The C programming language is what is known as a procedural language. As such, this means

that it lacks features such as object oriented programming. Object oriented programming

advocates the creation of small, clearly defined code objects that can be assembled and reused

to create more complex systems.

An early attempt at an object-oriented programming language was developed by a team

including Alan Kay (who later went to work for Apple) and Dan Ingalls at Xerox PARC (Palo Alto

Research Center) in the 1970s. This language is known as Smalltalk.

Chapter 2

The History of Objective-C

4

2.3 C meets Smalltalk

An interesting history lesson so far, but what does this have to with Objective-C? Well, in the

1980s, two developers named Brad Cox and Tom Love extended the C programming language

to support the object oriented features of Smalltalk. This melding of languages ultimately

culminated in the creation of Objective-C. Objective-C was subsequently adopted by the Free

Software Foundation and released under the terms of the GNU Public License (GPL).

2.4 Objective-C and Apple

To understand how Objective-C, a language based on two 40 year old programming languages,

ended up being the language of choice on Mac OS X and the latest cutting edge smart phones

and tablets from Apple it is necessary to move away from technology for a while and talk about

business.

In the 1980s Steve Jobs and Steve Wozniak founded Apple Computer. After many years of

success, Steve Jobs hired a marketing wizard from PepsiCo called John Sculley to help take

Apple to the next level of business success. To cut a long story short, a boardroom battle

ensued and Steve Jobs got pushed out of the company (for the long version of the story pick up

a used copy of John Sculley's book Odyssey: From Pepsi to Apple) leaving John Sculley in charge.

After leaving Apple, Jobs started a new company called NeXT to design an entirely new

generation of computer system. The operating system developed by NeXT to run on these

computers was called NeXTstep. In order to develop NeXTstep, NeXT licensed Objective-C.

NeXT subsequently joined forces with Sun Microsystems to create a standardized version of

NeXTstep named OPENstep which the Free Software Foundation then adopted as GNUstep.

During the 1990s, John Sculley left Apple and a procession of new CEOs came and went. During

this time, Apple had been losing market share and struggling to come out with a new operating

system to replace the aging Mac OS. After a number of failed attempts and partnerships, it was

eventually decided that rather than try to write a new operating system, Apple should acquire a

company that already had one. During Gil Amelio's brief reign as CEO, a shortlist of two

companies was drawn up. One was a company called Be, Inc. founded by a former Apple

employee named Jean-Louis Gassée, and the other was NeXT.

Ultimately, NeXT was selected and Steve Jobs once again joined Apple. In another boardroom

struggle (another long story as outlined in Gil Amelio's book On the Firing Line: My 500 Days at

Apple) Steve Jobs pushed out Gil Amelio and once again became CEO of the company he had

founded all those years ago.

The History of Objective-C

5

The rest, as they say, is history. NeXTStep formed the foundation of what became Mac OS X,

bringing with it Objective-C. Mac OS X was subsequently modified to provide the iOS operating

system for the spectacularly successful iPhone and iPad devices.

2.5 Modern Objective-C

As the decades passed by, aspects of Objective-C such as some elements of language syntax
and memory management began to appear somewhat dated, particularly when compared to
more contemporary languages such Java and C#. In recognition of this fact Objective-C has
continued to evolve and, in recent years in particular, a number of additions and improvements
have been made to the language to make the task of writing code easier and less error prone
for the programmer. These improvements have combined to create what is typically referred to
as “Modern Objective-C”.

7

3. Installing Xcode and Compiling

Objective-C on Mac OS X

Although Objective-C is available on a range of platforms via the GNUstep environment, if you

are planning to develop iOS or Mac OS X applications you are going to need to use an Intel

based Mac OS X system at some point in the future.

Perhaps the biggest advantage of using Mac OS X as your Objective-C learning platform (aside

from the ability to develop iOS and Mac OS X applications) is the fact that you get to use Apple's

Xcode development tool. Xcode is an integrated development environment (IDE) within which

you will code, compile, test and debug your iOS and Mac OS X applications.

In this chapter we will cover the steps involved in installing Xcode and writing and compiling a

simple Objective-C program in this environment.

3.1 Identifying if you have an Intel or PowerPC based Mac

Only Intel based Mac OS X systems can be used to run the latest versions of Xcode. If you have

an older, PowerPC based Mac then you will need to purchase a new system before you can

begin your app development project. If you are unsure of the processor type inside your Mac,

you can find this information by clicking on the Apple logo in the top left hand corner of the

screen and selecting the About This Mac option from the menu. In the resulting dialog, check

the Processor line. Figure 3-1 illustrates the results obtained on an Intel based system.

If the dialog on your Mac does not reflect the presence of an Intel based processor then your

current system is, sadly, unsuitable as a platform for running latest versions of Xcode.

In addition, the current edition of the Xcode environment requires that the version of Mac OS X

running on the system be version 10.7.4 or later. If the “About This Mac” dialog does not

indicate that Mac OS X 10.7.4 or later is running, click on the Software Update… button to

download and install the appropriate operating system upgrades.

Chapter 3

Installing Xcode and Compiling Objective-C on Mac OS X

8

Figure 3-1

3.2 Installing the Xcode Development Environment

The best way to obtain the latest version of Xcode development environment is to download it

from the Apple Developer Center web site at:

 https://developer.apple.com/xcode/

The download is over 1.6GB in size and may take a number of hours to complete depending on

the speed of your internet connection.

3.3 Starting Xcode

Having successfully installed Xcode, the next step is to launch it so that we can write and then

run a sample Objective-C application. To start up Xcode, open the Finder and search for

Xcode.app. Since you will be making frequent use of this tool, take this opportunity to drag and

drop it into your dock for easier access in the future. Click on the Xcode icon in the dock to

launch the tool.

Once Xcode has loaded, and assuming this is the first time you have used Xcode on this system,

you will be presented with the Welcome screen from which you are ready to proceed:

https://developer.apple.com/xcode/

Installing Xcode and Compiling Objective-C on Mac OS X

9

Figure 3-2

Click on the option to Create a new Xcode project to display the template selection screen.

Within the template selection screen, select the Application entry listed beneath MacOS X in

the left hand panel followed by Command Line Tool in the main panel:

Figure 3-3

Installing Xcode and Compiling Objective-C on Mac OS X

10

Click Next and on the resulting options panel name the project SampleApp and select

Foundation from the Type menu. Also verify that the Use Automatic Reference Counting option

is selected.

Before Automatic Reference Counting (ARC) support was introduced to recent versions of

Apple’s compiler, an Objective-C programmer was responsible for retaining and releasing

objects in application code. This typically entailed manually adding retain and release method

calls to code in order to manage memory usage. Failing to release an object would result in

memory leaks (whereby a running application’s memory usage increases over time), whilst

releasing an object too soon typically caused an application to crash. ARC is implemented by

Apple’s LLVM compiler which scans the source code and automatically inserts appropriate

retain and release calls prior to compiling the code, thereby making the life of the Objective-C

programmer much easier. Throughout the remainder of this book the assumption will be made

that automatic reference counting is enabled when sample code is compiled.

Click Next and on the subsequent screen choose a suitable location on the local file system for

the project to be created before clicking on the Create button.

Xcode will subsequently create the new project and open the main Xcode window:

Figure 3-4

Before proceeding we should take some time to look at what Xcode has done for us. Firstly it

has created a group of files that we will need to create our command-line based application.

Some of these are Objective-C source code files (with a .m extension) where we will enter the

Installing Xcode and Compiling Objective-C on Mac OS X

11

code to make our application work, whilst others are header or interface files (.h) that are

included by the source files and are where we will also need to put our own declarations and

definitions.

The list of files is displayed in the Project Navigator located in the left hand panel of the main
Xcode project window. A toolbar at the top of this panel contains tabs to change the
information displayed in this panel including options to display debugging information, log
history and issues such as complication warnings and errors. In Figure 3-5, for example, the
option has been selected to display the Issues Navigator (which in this case displays some
complication errors):

Figure 3-5

By default, the center panel of the window shows the build settings for the application. This
includes, amongst other settings, the project identifier specified during the project creation
process and the target architecture and operating system (in this case Mac OS X and Intel 64-
bit).

In addition to the Build Settings screen, tabs are provided to view and modify additional
settings consisting of Build Phases and Build Rules. To return to these panels at any future point
in time, make sure the Project Navigator is selected in the left hand panel (selected using the
folder icon in the toolbar at the top of the panel) and select the top item (the project name) in
the navigator list.

When a source file is selected from the list in the navigator panel, the contents of that file will

appear in the center panel where it may then be edited. To open the file in a separate editing

window, simply double click on the file in the list.

3.4 Writing an Objective-C Application with Xcode

As previously outlined, Objective-C source files are identified by the .m filename extension. In

the case of our example, Xcode has pre-created a main source file named main.m and

populated it with some basic code ready for us to edit. To view the code, select main.m from

the list of files located in the Project Navigator so that the code appears in the editor area. The

skeleton code reads as follows:

Installing Xcode and Compiling Objective-C on Mac OS X

12

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])

{

 @autoreleasepool {

 // insert code here...

 NSLog(@"Hello, World!");

 }

 return 0;

}

Modify the NSLog line so that it reads:

NSLog(@"This is my first Objective-C App!");

With the change made, the next step is to compile and run the application. Since the code is

intended to display a message in the console, the first step is to make sure the Xcode console

window is displayed by selecting the View -> Debug Area -> Activate Console menu option.

Next, run the application by selecting the Run option located in the Xcode toolbar. Once this

option has been selected, Xcode will compile the source code and run the application,

displaying the message in the Xcode console panel:

3.5 Compiling Objective-C from the Command Line

While Xcode provides a powerful environment that will prove invaluable for larger scale

projects, for compiling and running such a simple application as the one we have been working

with in this chapter it is a little bit of overkill. It is also a fact that some developers feel that

development environments like Xcode just get in the way and prefer to use a basic editor and

command line tools to develop applications. After all, in the days before integrated

development environments came into favor, this was how all applications were developed.

Whilst we are not suggesting that everyone abandon Xcode in favor of the vi editor and GNU

compiler, it is useful to know that the option to work from the command line is available.

Before attempting to compile code from the command line, the first step is to ensure that the

Xcode Command Line Tools are installed. To achieve this, select the Xcode -> Preferences menu

Installing Xcode and Compiling Objective-C on Mac OS X

13

option and in the preferences dialog, select the Downloads category. If the Command Line

Tools are not yet installed, click on the Install button to begin the installation process.

Using your favorite text or programming editor, create a file named hello.m containing the

following Objective-C code:

#import <Foundation/Foundation.h>

int main(int argc, const char * argv[])

{

 @autoreleasepool {

 // insert code here...

 NSLog(@"Hello, World!");

 }

return 0;

}

Save the file and then open a Terminal window (if you aren't already working in one), change

directory to the folder containing the source file and compile the application with the following

command:

clang -fobjc-arc -framework Foundation hello.m -o hello

This instructs the clang compiler front end to initiate the compilation of the source code located

in hello.m and output the resulting executable binary to a file named hello. The clang tool is

referred to as a compiler “front end” because it does not perform that actual compilation work.

Instead it calls a back end compiler to perform the compilation work. In the case of Objective-C,

this role is filled by the LLVM compiler.

The –framework directive (also referred to as a build flag or compilation option) instructs the

compiler to include the Foundation framework in the compilation process. It is this framework

on which all Objective-C applications are built. Failure to include this directive will result in

compilation errors relating to undefined symbols.

Finally, the –fobjc_arc option instructs the compiler to use automatic reference counting (ARC).

Assuming the code compiles without error it can be run as follows:

./hello

2012-04-18 13:27:11.621 hello[275:707] Hello, World!

Installing Xcode and Compiling Objective-C on Mac OS X

14

Compared to using Xcode that seems much simpler, but keep in mind that the power of Xcode

really becomes evident when you start developing larger scale projects. In addition, Xcode

includes a powerful user interface design tool called Interface Builder that will be essential

when developing either iOS apps or Mac OS X applications that require a graphical user

interface.

3.6 Summary

The goal of this chapter has been to outline the steps involved in installing the Xcode

development environment on Mac OS X. Objective-C programs can be written and compiled

both from within Xcode and via the command prompt in a Terminal window. A brief overview

of memory management and Automatic Reference Counting has been provided followed by the

creation, compilation and execution of a simple Objective-C program.

15

4. Objective-C 2.0 Data Types

When we look at the different types of software that run on computer systems, from financial

applications to graphics intensive games, it is easy to forget that computers are really just

binary machines. Binary systems work in terms of 0 and 1, true or false, set and unset. All the

data sitting in RAM, stored on disk drives and flowing through circuit boards and buses are

nothing more than sequences of 1s and 0s. Each 1 or 0 is referred to as a bit and bits are

grouped together in blocks of 8, each group being referred to as a byte. When people talk about

32-bit and 64-bit computer systems they are talking about the number of bits that can be

handled simultaneously by the CPU bus. A 64-bit CPU, for example, is able to handle data in 64-

bit blocks, resulting in faster performance than a 32-bit based system.

Humans, of course, don't think in binary. We work with decimal numbers, letters and words. In

order for a human to easily (easily being a relative term in this context) program a computer,

some middle ground between human and computer thinking is needed. This is where

programming languages such as Objective-C come into play. Programming languages allow

humans to express instructions to a computer in terms and structures we understand, and then

compile it down to a format that can be executed by a computer.

One of the fundamentals of any program involves data, and programming languages such as

Objective-C define a set of data types that allow us to work with data in a format we

understand when writing a computer program. For example, if we want to store a number in an

Objective-C program we could do so with syntax similar to the following:

int mynumber = 10;

In the above example, we have created a variable named mynumber of data type integer by

using the keyword int. We then assigned the value of 10 to this variable. Once we know

that int means we are specifying a variable of integer data type we have an understanding of

what is happening in this particular line of an Objective-C program. When we compile the

source code down to the machine code used by the CPU, the number 10 is seen by the

computer in binary as:

1010

Chapter 4

Objective-C 2.0 Data Types

16

Similarly, we can express a letter, the visual representation of a digit ('0' through to '9') or

punctuation mark (referred to in computer terminology as characters) using the following

syntax:

char myletter = 'c';

Once again, this is understandable by a human programmer, but gets compiled down to a

binary sequence for the CPU to understand. In this case, the letter 'c' is represented by the

decimal number 99 using the ASCII table (an internationally recognized standard that assigns

numeric values to human readable characters). When converted to binary, it is stored as:

10101100011

Now that we have a basic understanding of the concept of data types and why they are

necessary we can take a closer look at the different data types and qualifiers supported by

Objective-C.

4.1 int Data Type

The Objective-C int data type can store a positive or negative whole number (in other words a

number with no decimal places). The actual size or range of integer that can be handled by

the int data type is machine and compiler implementation dependent. Typically the amount of

storage allocated to int values is either 32-bit or 64-bit depending on the implementation of

Objective-C on that platform or the CPU on which the compiler is running. It is important to

note, however, that the operating system also plays a role in whether int values are 32 or 64-

bit. For example the CPU in a computer may be 64-bit but the operating system running on it

may only be 32-bit.

For example, on a 32-bit implementation, the maximum range of an unsigned int is 0 to

4294967295. On a 64-bit system this range would be 0 to 18,446,744,073,709,551,615. When

dealing with signed int values, the ranges are −2,147,483,648 to +2,147,483,647 and

−9,223,372,036,854,775,808 to +9,223,372,036,854,775,807 for 32-bit and 64-bit

implementations respectively.

When writing an Objective-C program, the only guarantee you have is that an int will be at

least 32-bits wide. To avoid future problems when compiling the code on other platforms it is

safer to limit int values to the 32-bit range, rather than assume that 64-bit will be available.

By default, int values are decimal (i.e. based on number base 10). To express an int in Octal

(number base 8) simply precede the number with a zero (0). For example:

Objective-C 2.0 Data Types

17

int myoctal = 024;

Similarly, an int may be expressed in number base 16 (hexadecimal) by preceding the number

with 0x, for example:

int myhex = 0xFFA2;

4.2 char Data Type

The Objective-C char data type is used to store a single character such as a letter, numerical

digit or punctuation mark or space character. For example, the following lines assign a variety

of different characters to char type variables:

char myChar = 'w';

char myChar = '2';

char myChar = ':';

4.2.1 Special Characters/Escape Sequences

In addition to the standard set of characters outlined above, there is also a range of special

characters (also referred to as escape sequences) available for specifying items such as a new

line or tab. These special characters are identified by prefixing the character with a backslash (a

concept referred to as escaping). For example, the following assigns a new line to the variable

named newline:

char newline = '\n';

In essence, any character that is preceded by a backslash is considered to be a special character

and is treated accordingly. This raises the question as to what to do if you actually want a

backslash character. This is achieved by escaping the backslash itself:

char myslash = '\\'; Assign a backslash to a variable

Commonly used special characters supported by Objective-C are as follows:

\a - Sound alert

\b - Backspace

\f - Form feed

\n - New line

\r - Carriage return

\t - Horizontal tab

\v - Vertical tab

Objective-C 2.0 Data Types

18

\\ - Backslash

\" - Double quote (used when placing a double quote into a string declaration)

\' - Single quote (used when placing a single quote into a string declaration)

4.3 float Data Type

The Objective-C float data type is used to store floating point values, in other words values

containing decimal places. For example, 456.12 would be stored in a float data type. In practice,

all floating point values are stored as a different data type (called double) by default. We will be

covering the double data type next, but if you specifically want to use a float data type, you

must append an f onto the end of the value. For example:

float myfloat = 123.432f

For convenience when working with exceptionally large numbers, both floating point and

double data type values can be specified using scientific notation (also known as standard form

or exponential notation). For example, we can express 67.7 x 104
 in Objective-C as:

float myfloat = 67.7e4

4.4 double Data Type

The Objective-C double data type is used to store larger values than can be handled by

the float data type. The term double comes from the fact that a double can handle values twice

the size of a float. As previously mentioned, all floating point values are stored as double data

types unless the value is followed by an 'f' to specifically specify a float rather than as a double.

4.5 id Data Type

As we will see in later chapters of this book, Objective-C is an object oriented language. As such

much of the way a program will be structured is in the form of reusable objects. These objects

are called upon to perform tasks and return results. Often, the information passed into an

object and the results returned will be in the form of yet another object. The id data type is a

general purpose data type that can be used to store a reference to any object, regardless of its

type.

4.6 BOOL Data Type

Objective-C, like other languages, includes a data type for the purpose of handling true or false

(1 or 0) conditions. Such a data type is declared using either the _Bool or BOOL keywords

(named after famed mathematician George Boole). Both of the following expressions are valid:

Objective-C 2.0 Data Types

19

_Bool flag = 0;

BOOL secondflag = 1;

4.7 Objective-C Data Type Qualifiers

So far we have looked at the basic data types offered within the context of the Objective-C

programming language. We have seen that data types are provided for a number of different

data declaration and storage needs and that each data type has associated with it some

constraints in terms of what kind of data it can hold. In fact, it is possible to modify some of

these constraints by using qualifiers. A number of such qualifiers are available and we will look

at each one in turn in the remainder of this chapter.

4.7.1 long

The long qualifier is used to extend the value range of a data type. For example, to increase the

range of an integer variable, the declaration is prefixed by the qualifier:

long int mylargeint;

The amount by which a data type's range is increased through the use of the long qualifier is

system dependent, though on many modern systems int and long int both have the same range,

making use of the qualifier unnecessary. The long qualifier may also be applied to

the double data type. For example:

long double mydouble;

4.7.2 long long

It is safe to think of the long long qualifier as being equivalent to extra long. In the case of

an int data type, the application of a long long qualifier typically will change the range from 32-

bit up to 64-bit:

long long int mylargeint;

4.7.3 short

So far we have looked at qualifiers that increase the storage space, and thereby the value

range, of data types. The short qualifier can be used to reduce the storage space and range of

the int data type. This effectively reduces the integer to 16-bits in width, limiting

the signed value range to −32,768 to +32,767:

short int myshort;

Objective-C 2.0 Data Types

20

4.7.1 signed / unsigned

By default, an integer is assumed to be signed. In other words, the compiler assumes that an

integer variable will be called upon to store either a negative or a positive number. This limits

the extent that the range can reach in either direction. For example, a 32-bit int has a range of

4,294,967,295. In practice, because the value could be positive or negative the range is actually

−2,147,483,648 to +2,147,483,647. If we know that a variable will never be called upon to store

a negative value, we can declare it as unsigned, thereby extending the (positive) range to 0 to

+4,294,967,295. An unsigned int is specified as follows:

unsigned int myint;

Qualifiers may also be combined, for example to declare an unsigned, short integer:

unsigned short int myint = 10;

Note that when using unsigned, signed, short and long with integer values, the int keyword is

optional. The following are all valid:

short myint;

long myint;

unsigned myint;

signed myint;

4.8 Summary

Data types are the basic building blocks of just about every programming language and

Objective-C is no exception. Now that we have covered these basics we will move on to the

next chapter and begin talking about the use of variables.

21

5. Working with Variables and Constants

in Objective-C

In the previous chapter we looked at the basic data types supported by Objective-C. Perhaps

the second most basic aspect of programming involves the use of variables and constants. Even

the most advanced and impressive programs use variables in one form or another. In this

chapter of Objective-C 2.0 Essentials we will cover everything that an Objective-C programmer

needs to know about variables.

5.1 What is an Objective-C Variable

Variables are essentially locations in computer memory reserved for storing the data used by an

application. Each variable is given a name by the programmer and assigned a value. The name

assigned to the variable may then be used in the Objective-C code to access the value assigned

to the variable. This access can involve either reading the value of the variable, or changing the

value. It is, of course, the ability to change the value of variables which gives them the

name variable.

A variable must be declared as a particular type such as an integer, a character, a float or

double. Objective-C is what is known as a strongly typed language in that once a variable has

been declared as a particular type it cannot subsequently be changed to a different type. While

this may come as a shock to those familiar with loosely typed languages such as Ruby it will be

familiar to Java, C, C++ or C# programmers. Whilst it is not possible to change the type of a

variable it is possible to disguise the variable as another type under certain circumstances. This

involves a concept known as type casting and will be covered later in this chapter.

Variable declarations require a type, a name and, optionally a value assignment. The following

example declares an integer variable called interestRate but does not initialize it:

int interestRate;

The following example declares and initializes a variable using the assignment operator (=):

int interestRate = 10;

Chapter 5

Working with Variables and Constants in Objective-C

22

Similarly, a new value may be assigned to a variable at any point after it has been declared.

double interestRate = 5.5456; //Declare the variable and initialize it

to 5.5456

interestRate = 10.98; // variable now equals 10.98

interestRate = 20.87; // variable now equals 20.87

5.2 What is an Objective-C Constant?

A constant is similar to a variable in that it provides a named location in memory to store a data

value. Constants differ in one significant way in that once a value has been assigned to a

constant it cannot subsequently be changed.

Constants are particularly useful if there is a value which is used repeatedly throughout the

application code. Rather than use the value each time, it makes the code easier to read if the

value is first assigned to a constant which is then referenced in the code. For example, it might

not be clear to someone reading your Objective-C code why you used the value 5 in an

expression. If, instead of the value 5, you use a constant named interestRate the purpose of the

value becomes much clearer. Constants also have the advantage that if the programmer needs

to change a widely used value, it only needs to be changed once in the constant declaration and

not each time it is referenced.

As with variables, constants have a type, a name and a value. Unlike variables, however,

constants must be initialized at the same time that they are declared and must be prefixed with

the const keyword:

const int interestRate = 10;

Once declared, it is not possible to assign a new value to the constant. The following code will

cause the Objective-C compiler to report an error that reads "error: assignment of read-only

variable":

const int interestRate = 10;

interestRate = 5; // invalid attempt to assign new value to read-only

const

Note that the value of a constant, unlike a variable, must be assigned at the point it is declared.

For example, the following code will not compile:

const int interestRate;

interestRate = 10; // invalid attempt to initialize constant after

declaration

Working with Variables and Constants in Objective-C

23

The above code will, once again, result in a compilation error.

5.3 Type Casting Objective-C Variables

As previously mentioned, Objective-C is a strongly typed language. In other words, once a

variable has been declared as a specific data type, that type cannot be changed. It is possible,

however, to make a variable behave as a different type using a concept known as type casting.

Suppose we have two variables declared as doubles. We need to multiply these together and

display the result:

double balance = 100.54;

double interestRate = 5.78;

double result = 0;

result = balance * interestRate;

NSLog(@"The result is %f", result);

When executed, we will get the following output:

The result is 581.121200

Now, suppose that we wanted the result to the nearest whole number. We can achieve this by

casting the type of both double values to type int within the arithmetic expression:

double balance = 100.54;

double interestRate = 5.78;

double result;

result = (int) balance * (int) interestRate;

NSLog(@"The result is %f", result);

When compiled and run, the output will now read:

The result is 500.000000

It is important to note that type casting only changes the way the value is read from the

variable on that one occasion. It does not change the variable type or the value stored in any

way. After the type cast, balance is still a double and still contains the value 100.54.

	1. About Objective-C Essentials
	1.1 Why are you reading this?
	1.2 Supported Platforms

	2. The History of Objective-C
	2.1 The C Programming Language
	2.2 The Smalltalk programming Language
	2.3 C meets Smalltalk
	2.4 Objective-C and Apple
	2.5 Modern Objective-C

	3. Installing Xcode and Compiling Objective-C on Mac OS X
	3.1 Identifying if you have an Intel or PowerPC based Mac
	3.2 Installing the Xcode Development Environment
	3.3 Starting Xcode
	3.4 Writing an Objective-C Application with Xcode
	3.5 Compiling Objective-C from the Command Line
	3.6 Summary

	4. Objective-C 2.0 Data Types
	4.1 int Data Type
	4.2 char Data Type
	4.2.1 Special Characters/Escape Sequences

	4.3 float Data Type
	4.4 double Data Type
	4.5 id Data Type
	4.6 BOOL Data Type
	4.7 Objective-C Data Type Qualifiers
	4.7.1 long
	4.7.2 long long
	4.7.3 short
	4.7.1 signed / unsigned

	4.8 Summary

	5. Working with Variables and Constants in Objective-C
	5.1 What is an Objective-C Variable
	5.2 What is an Objective-C Constant?
	5.3 Type Casting Objective-C Variables

