
SwiftUI Essentials

iOS 14 Edition

SwiftUI Essentials – iOS 14 Edition

ISBN-13: 978-1-951442-27-9

© 2020 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

i

Contents
Table of Contents
1. Start Here ..1

1.1 For Swift Programmers ... 1
1.2 For Non-Swift Programmers ... 1
1.3 Source Code Download .. 1
1.4 Feedback ... 2
1.5 Errata ... 2

2. Joining the Apple Developer Program ...3
2.1 Downloading Xcode 12 and the iOS 14 SDK .. 3
2.2 Apple Developer Program .. 3
2.3 When to Enroll in the Apple Developer Program? ... 3
2.4 Enrolling in the Apple Developer Program ... 4
2.5 Summary .. 5

3. Installing Xcode 12 and the iOS 14 SDK ...7
3.1 Identifying Your macOS Version .. 7
3.2 Installing Xcode 12 and the iOS 14 SDK .. 7
3.3 Starting Xcode ... 8
3.4 Adding Your Apple ID to the Xcode Preferences .. 8
3.5 Developer and Distribution Signing Identities ... 9
3.6 Summary .. 9

4. An Introduction to Xcode 12 Playgrounds ..11
4.1 What is a Playground? .. 11
4.2 Creating a New Playground ... 11
4.3 A Swift Playground Example ... 12
4.4 Viewing Results ... 14
4.5 Adding Rich Text Comments .. 16
4.6 Working with Playground Pages ... 17
4.7 Working with SwiftUI and Live View in Playgrounds ... 17
4.8 Summary .. 20

5. Swift Data Types, Constants and Variables ...21
5.1 Using a Swift Playground ... 21
5.2 Swift Data Types .. 21

5.2.1 Integer Data Types .. 22
5.2.2 Floating Point Data Types.. 22
5.2.3 Bool Data Type .. 23
5.2.4 Character Data Type ... 23

ii

Table of Contents

5.2.5 String Data Type ... 23
5.2.6 Special Characters/Escape Sequences .. 24

5.3 Swift Variables .. 25
5.4 Swift Constants .. 25
5.5 Declaring Constants and Variables ... 25
5.6 Type Annotations and Type Inference ... 25
5.7 The Swift Tuple .. 26
5.8 The Swift Optional Type ... 27
5.9 Type Casting and Type Checking.. 30
5.10 Summary .. 32

6. Swift Operators and Expressions ...33
6.1 Expression Syntax in Swift ... 33
6.2 The Basic Assignment Operator .. 33
6.3 Swift Arithmetic Operators .. 33
6.4 Compound Assignment Operators ... 34
6.5 Comparison Operators ... 34
6.6 Boolean Logical Operators ... 35
6.7 Range Operators .. 35
6.8 The Ternary Operator ... 36
6.9 Nil Coalescing Operator ... 36
6.10 Bitwise Operators .. 37

6.10.1 Bitwise NOT .. 37
6.10.2 Bitwise AND .. 37
6.10.3 Bitwise OR ... 38
6.10.4 Bitwise XOR .. 38
6.10.5 Bitwise Left Shift ... 38
6.10.6 Bitwise Right Shift .. 39

6.11 Compound Bitwise Operators ... 39
6.12 Summary .. 40

7. Swift Control Flow ..41
7.1 Looping Control Flow .. 41
7.2 The Swift for-in Statement .. 41

7.2.1 The while Loop ... 42
7.3 The repeat ... while loop ... 42
7.4 Breaking from Loops .. 43
7.5 The continue Statement ... 43
7.6 Conditional Control Flow .. 44
7.7 Using the if Statement .. 44
7.8 Using if ... else … Statements ... 44
7.9 Using if ... else if ... Statements .. 45
7.10 The guard Statement ... 45

iii

Table of Contents

7.11 Summary .. 46
8. The Swift Switch Statement ..47

8.1 Why Use a switch Statement? ... 47
8.2 Using the switch Statement Syntax .. 47
8.3 A Swift switch Statement Example ... 47
8.4 Combining case Statements .. 48
8.5 Range Matching in a switch Statement ... 49
8.6 Using the where statement ... 49
8.7 Fallthrough ... 50
8.8 Summary .. 50

9. Swift Functions, Methods and Closures ..51
9.1 What is a Function? .. 51
9.2 What is a Method? .. 51
9.3 How to Declare a Swift Function .. 51
9.4 Implicit Returns from Single Expressions .. 52
9.5 Calling a Swift Function ... 52
9.6 Handling Return Values ... 52
9.7 Local and External Parameter Names .. 53
9.8 Declaring Default Function Parameters ... 53
9.9 Returning Multiple Results from a Function ... 54
9.10 Variable Numbers of Function Parameters ... 54
9.11 Parameters as Variables .. 55
9.12 Working with In-Out Parameters ... 55
9.13 Functions as Parameters ... 56
9.14 Closure Expressions .. 58
9.15 Shorthand Argument Names ... 59
9.16 Closures in Swift .. 59
9.17 Summary .. 60

10. The Basics of Swift Object-Oriented Programming ..61
10.1 What is an Instance? ... 61
10.2 What is a Class? ... 61
10.3 Declaring a Swift Class ... 61
10.4 Adding Instance Properties to a Class .. 62
10.5 Defining Methods ... 62
10.6 Declaring and Initializing a Class Instance .. 63
10.7 Initializing and De-initializing a Class Instance ... 63
10.8 Calling Methods and Accessing Properties ... 64
10.9 Stored and Computed Properties .. 65
10.10 Lazy Stored Properties .. 66
10.11 Using self in Swift .. 67

iv

Table of Contents

10.12 Understanding Swift Protocols .. 68
10.13 Opaque Return Types ... 69
10.14 Summary .. 70

11. An Introduction to Swift Subclassing and Extensions ..71
11.1 Inheritance, Classes and Subclasses .. 71
11.2 A Swift Inheritance Example ... 71
11.3 Extending the Functionality of a Subclass ... 72
11.4 Overriding Inherited Methods .. 72
11.5 Initializing the Subclass .. 73
11.6 Using the SavingsAccount Class ... 74
11.7 Swift Class Extensions .. 74
11.8 Summary .. 75

12. An Introduction to Swift Structures and Enumerations ...77
12.1 An Overview of Swift Structures ... 77
12.2 Value Types vs. Reference Types ... 78
12.3 When to Use Structures or Classes ... 80
12.4 An Overview of Enumerations .. 80
12.5 Summary .. 81

13. An Introduction to Swift Property Wrappers ..83
13.1 Understanding Property Wrappers ... 83
13.2 A Simple Property Wrapper Example .. 83
13.3 Supporting Multiple Variables and Types .. 85
13.4 Summary .. 87

14. Working with Array and Dictionary Collections in Swift ...89
14.1 Mutable and Immutable Collections .. 89
14.2 Swift Array Initialization .. 89
14.3 Working with Arrays in Swift .. 90

14.3.1 Array Item Count ... 90
14.3.2 Accessing Array Items .. 90

14.4 Random Items and Shuffling ... 90
14.5 Appending Items to an Array .. 91

14.5.1 Inserting and Deleting Array Items ... 91
14.6 Array Iteration ... 91
14.7 Creating Mixed Type Arrays .. 92
14.8 Swift Dictionary Collections .. 92
14.9 Swift Dictionary Initialization ... 92
14.10 Sequence-based Dictionary Initialization .. 93
14.11 Dictionary Item Count ... 94
14.12 Accessing and Updating Dictionary Items .. 94
14.13 Adding and Removing Dictionary Entries .. 94

v

Table of Contents

14.14 Dictionary Iteration .. 94
14.15 Summary .. 95

15. Understanding Error Handling in Swift 5 ...97
15.1 Understanding Error Handling ... 97
15.2 Declaring Error Types .. 97
15.3 Throwing an Error... 98
15.4 Calling Throwing Methods and Functions .. 98
15.5 Accessing the Error Object ..100
15.6 Disabling Error Catching ...100
15.7 Using the defer Statement ..100
15.8 Summary ..101

16. An Overview of SwiftUI ...103
16.1 UIKit and Interface Builder ...103
16.2 SwiftUI Declarative Syntax ..103
16.3 SwiftUI is Data Driven ...104
16.4 SwiftUI vs. UIKit ...104
16.5 Summary ..106

17. Using Xcode in SwiftUI Mode ..107
17.1 Starting Xcode 12 ..107
17.2 Creating a SwiftUI Project ...107
17.3 Xcode in SwiftUI Mode ..109
17.4 The Preview Canvas ..110
17.5 Preview Pinning ..112
17.6 The Preview Toolbar ...112
17.7 Modifying the Design ...113
17.8 Editor Context Menu ..116
17.9 Previewing on Multiple Device Configurations ..117
17.10 Running the App on a Simulator ..119
17.11 Running the App on a Physical iOS Device ..120
17.12 Managing Devices and Simulators ..121
17.13 Enabling Network Testing ..121
17.14 Dealing with Build Errors ..121
17.15 Monitoring Application Performance ..122
17.16 Exploring the User Interface Layout Hierarchy ..123
17.17 Summary ..125

18. SwiftUI Architecture ..127
18.1 SwiftUI App Hierarchy ...127
18.2 App ..127
18.3 Scenes ..127
18.4 Views ...128

vi

Table of Contents

18.5 Summary ..128
19. The Anatomy of a Basic SwiftUI Project ..129

19.1 Creating an Example Project ...129
19.2 Project Folders ...129
19.3 The DemoProjectApp.swift File ..130
19.4 The ContentView.swift File ..130
19.5 Assets.xcassets ...131
19.6 Info.plist ..131
19.7 Summary ..131

20. Creating Custom Views with SwiftUI ..133
20.1 SwiftUI Views ..133
20.2 Creating a Basic View ...133
20.3 Adding Additional Views ...134
20.4 Working with Subviews ..136
20.5 Views as Properties ...136
20.6 Modifying Views ...137
20.7 Working with Text Styles ..138
20.8 Modifier Ordering ...139
20.9 Custom Modifiers ..140
20.10 Basic Event Handling ..141
20.11 Building Custom Container Views ...141
20.12 Working with the Label View ..143
20.13 Summary ..144

21. SwiftUI Stacks and Frames ...145
21.1 SwiftUI Stacks ..145
21.2 Spacers, Alignment and Padding ..147
21.3 Container Child Limit ..149
21.4 Text Line Limits and Layout Priority ..150
21.5 Traditional vs. Lazy Stacks ...151
21.6 SwiftUI Frames ..152
21.7 Frames and the Geometry Reader ..154
21.8 Summary ..155

22. SwiftUI State Properties, Observable, State and Environment Objects157
22.1 State Properties ..157
22.2 State Binding ..159
22.3 Observable Objects ...160
22.4 State Objects ...161
22.5 Environment Objects ..162
22.6 Summary ..164

vii

Table of Contents

23. A SwiftUI Example Tutorial ...165
23.1 Creating the Example Project ..165
23.2 Reviewing the Project ...165
23.3 Adding a VStack to the Layout ..167
23.4 Adding a Slider View to the Stack ...168
23.5 Adding a State Property ...168
23.6 Adding Modifiers to the Text View ...169
23.7 Adding Rotation and Animation ..170
23.8 Adding a TextField to the Stack ...171
23.9 Adding a Color Picker ..172
23.10 Tidying the Layout ..174
23.11 Summary ..176

24. SwiftUI Lifecycle Event Modifiers ..177
24.1 Creating the LifecycleDemo Project ...177
24.2 Designing the App ..177
24.3 The onAppear and onDisappear Modifiers ...178
24.4 The onChange Modifier ...179
24.5 ScenePhase and the onChange Modifier ..179
24.6 Summary ..180

25. SwiftUI Observable and Environment Objects – A Tutorial ...183
25.1 About the ObservableDemo Project ...183
25.2 Creating the Project ..183
25.3 Adding the Observable Object ..183
25.4 Designing the ContentView Layout..184
25.5 Adding the Second View ..185
25.6 Adding Navigation ..187
25.7 Using an Environment Object ...187
25.8 Summary ..189

26. SwiftUI Data Persistence using AppStorage and SceneStorage191
26.1 The @SceneStorage Property Wrapper ...191
26.2 The @AppStorage Property Wrapper ...191
26.3 Creating and Preparing the StorageDemo Project ...192
26.4 Using Scene Storage ..193
26.5 Using App Storage ...195
26.6 Storing Custom Types ...196
26.7 Summary ..197

27. SwiftUI Stack Alignment and Alignment Guides ..199
27.1 Container Alignment ..199
27.2 Alignment Guides ...201

viii

Table of Contents

27.3 Using the Alignment Guides Tool...204
27.4 Custom Alignment Types ..205
27.5 Cross Stack Alignment ...208
27.6 ZStack Custom Alignment ...210
27.7 Summary ..214

28. SwiftUI Lists and Navigation ...215
28.1 SwiftUI Lists ...215
28.2 SwiftUI Dynamic Lists ..216
28.3 SwiftUI NavigationView and NavigationLink ...219
28.4 Making the List Editable ..220
28.5 Hierarchical Lists ...222
28.6 Summary ..223

29. A SwiftUI List and Navigation Tutorial ...225
29.1 About the ListNavDemo Project ...225
29.2 Creating the ListNavDemo Project ...225
29.3 Preparing the Project ..225
29.4 Adding the Car Structure ...226
29.5 Loading the JSON Data ..226
29.6 Adding the Data Store ..227
29.7 Designing the Content View ..228
29.8 Designing the Detail View ...230
29.9 Adding Navigation to the List ...232
29.10 Designing the Add Car View ...232
29.11 Implementing Add and Edit Buttons ...235
29.12 Adding the Edit Button Methods ..236
29.13 Summary ..238

30. An Overview of List, OutlineGroup and DisclosureGroup ..239
30.1 Hierarchical Data and Disclosures ..239
30.2 Hierarchies and Disclosure in SwiftUI Lists ..240
30.3 Using OutlineGroup ...242
30.4 Using DisclosureGroup ..243
30.5 Summary ..245

31. A SwiftUI List, OutlineGroup and DisclosureGroup Tutorial247
31.1 About the Example Project ..247
31.2 Creating the OutlineGroupDemo Project ...247
31.3 Adding the Data Structure ...247
31.4 Adding the List View ..249
31.5 Testing the Project ...250
31.6 Using the Sidebar List Style ..250
31.7 Using OutlineGroup ...251

ix

Table of Contents

31.8 Working with DisclosureGroups...252
31.9 Summary ..256

32. Building SwiftUI Grids with LazyVGrid and LazyHGrid ...257
32.1 SwiftUI Grids ...257
32.2 GridItems ...257
32.3 Creating the GridDemo Project ..258
32.4 Working with Flexible GridItems..259
32.5 Adding Scrolling Support to a Grid ..260
32.6 Working with Adaptive GridItems..262
32.7 Working with Fixed GridItems ...263
32.8 Using the LazyHGrid View ..265
32.9 Summary ..267

33. Building Tabbed and Paged Views in SwiftUI ...269
33.1 An Overview of SwiftUI TabView...269
33.2 Creating the TabViewDemo App ..270
33.3 Adding the TabView Container...270
33.4 Adding the Content Views ...270
33.5 Adding View Paging ...270
33.6 Adding the Tab Items ..271
33.7 Adding Tab Item Tags ...271
33.8 Summary ..272

34. Building Context Menus in SwiftUI ...273
34.1 Creating the ContextMenuDemo Project ..273
34.2 Preparing the Content View ..273
34.3 Adding the Context Menu ...273
34.4 Testing the Context Menu ..275
34.5 Summary ..275

35. Basic SwiftUI Graphics Drawing ...277
35.1 Creating the DrawDemo Project ...277
35.2 SwiftUI Shapes ...277
35.3 Using Overlays ...279
35.4 Drawing Custom Paths and Shapes ..280
35.5 Drawing Gradients ..282
35.6 Summary ..285

36. SwiftUI Animation and Transitions ...287
36.1 Creating the AnimationDemo Example Project ...287
36.2 Implicit Animation ...287
36.3 Repeating an Animation ..289
36.4 Explicit Animation ..289

x

Table of Contents

36.5 Animation and State Bindings ...290
36.6 Automatically Starting an Animation ..291
36.7 SwiftUI Transitions ...293
36.8 Combining Transitions ...295
36.9 Asymmetrical Transitions ..295
36.10 Summary ..295

37. Working with Gesture Recognizers in SwiftUI ..297
37.1 Creating the GestureDemo Example Project ..297
37.2 Basic Gestures ..297
37.3 The onChange Action Callback ...298
37.4 The updating Callback Action ...300
37.5 Composing Gestures ...301
37.6 Summary ..303

38. Creating a Customized SwiftUI ProgressView ..305
38.1 ProgressView Styles ..305
38.2 Creating the ProgressViewDemo Project ..306
38.3 Adding a ProgressView ..306
38.4 Using the Circular ProgressView Style ...306
38.5 Declaring an Indeterminate ProgressView ..307
38.6 ProgressView Customization ...307
38.7 Summary ..310

39. An Overview of SwiftUI DocumentGroup Scenes ..311
39.1 Documents in Apps ..311
39.2 Creating the DocDemo App ..312
39.3 The DocumentGroup Scene ..312
39.4 Declaring File Type Support ..313

39.4.1 Document Content Type Identifier ..313
39.4.2 Handler Rank ..313
39.4.3 Type Identifiers ...313
39.4.4 Filename Extensions ...314
39.4.5 Custom Type Document Content Identifiers ...314
39.4.6 Exported vs. Imported Type Identifiers ...314

39.5 Configuring File Type Support in Xcode ...314
39.6 The Document Structure ..315
39.7 The Content View ..317
39.8 Running the Example App ..317
39.9 Summary ..319

40. A SwiftUI DocumentGroup Tutorial ...321
40.1 Creating the ImageDocDemo Project ..321
40.2 Modifying the Info.plist File ..321

xi

Table of Contents

40.3 Adding an Image Asset ...322
40.4 Modifying the ImageDocDemoDocument.swift File ..322
40.5 Designing the Content View ..323
40.6 Filtering the Image ..325
40.7 Testing the App ..326
40.8 Summary ..326

41. An Introduction to SiriKit ...327
41.1 Siri and SiriKit ...327
41.2 SiriKit Domains ..327
41.3 Siri Shortcuts ..328
41.4 SiriKit Intents ...328
41.5 How SiriKit Integration Works..328
41.6 Resolving Intent Parameters ..329
41.7 The Confirm Method ..330
41.8 The Handle Method ..330
41.9 Custom Vocabulary...331
41.10 The Siri User Interface ..331
41.11 Summary ..331

42. A SwiftUI SiriKit Messaging Extension Tutorial ...333
42.1 Creating the Example Project ..333
42.2 Enabling the Siri Entitlement ..333
42.3 Seeking Siri Authorization ...334
42.4 Adding the Intents Extension ..335
42.5 Supported Intents ..335
42.6 Trying the Example ...336
42.7 Specifying a Default Phrase ...336
42.8 Reviewing the Intent Handler ...337
42.9 Summary ..338

43. Customizing the SiriKit Intent User Interface ...339
43.1 Adding the Intents UI Extension ..339
43.2 Modifying the UI Extension ..339
43.3 Using the configure Method ..339
43.4 Using the configureView Method ...340
43.5 Designing the Siri Snippet ...341
43.6 Implementing a configureView Method ..343
43.7 Testing the Extension ..345
43.8 Summary ..346

44. A SwiftUI SiriKit NSUserActivity Tutorial ..347
44.1 About the SiriKit Photo Search Project ..347
44.2 Creating the SiriPhoto Project ...347

xii

Table of Contents

44.3 Enabling the Siri Entitlement ..347
44.4 Seeking Siri Authorization ...348
44.5 Adding an Image Asset ...349
44.6 Adding the Intents Extension to the Project ...350
44.7 Reviewing the Default Intents Extension ...350
44.8 Modifying the Supported Intents ..351
44.9 Modifying the IntentHandler Implementation ...351
44.10 Implementing the Resolve Methods ...352
44.11 Implementing the Confirmation Method ..353
44.12 Handling the Intent ...353
44.13 Testing the App ..355
44.14 Adding a Data Class to SiriPhoto ..355
44.15 Designing the Content View ...357
44.16 Adding Supported Activity Types to SiriPhoto ...359
44.17 Handling the NSUserActivity Object ...359
44.18 Testing the Completed App ...360
44.19 Summary ..360

45. An Overview of Siri Shortcut App Integration ..361
45.1 An Overview of Siri Shortcuts ...361
45.2 An Introduction to the Intent Definition File ...361
45.3 Automatically Generated Classes ..363
45.4 Donating Shortcuts ...364
45.5 The Add to Siri Button ..364
45.6 Summary ..364

46. A SwiftUI Siri Shortcut Tutorial ..365
46.1 About the Example App ...365
46.2 App Groups and UserDefaults ...365
46.3 Preparing the Project ..365
46.4 Running the App ...366
46.5 Enabling Siri Support ..367
46.6 Seeking Siri Authorization ...367
46.7 Adding the Intents Extension ..368
46.8 Adding the SiriKit Intent Definition File ...369
46.9 Adding the Intent to the App Group ..370
46.10 Configuring the SiriKit Intent Definition File ...370
46.11 Adding Intent Parameters ..371
46.12 Declaring Shortcut Combinations ..372
46.13 Configuring the Intent Response ..373
46.14 Configuring Target Membership ..374
46.15 Modifying the Intent Handler Code ...374
46.16 Adding the Confirm Method ..377

xiii

Table of Contents

46.17 Donating Shortcuts to Siri ...378
46.18 Testing the Shortcuts ..379
46.19 Designing the Intent UI ...381
46.20 Summary ..384

47. Building Widgets with SwiftUI and WidgetKit ...385
47.1 An Overview of Widgets ..385
47.2 The Widget Extension...385
47.3 Widget Configuration Types ...386
47.4 Widget Entry View ..387
47.5 Widget Timeline Entries ..387
47.6 Widget Timeline ..388
47.7 Widget Provider ..388
47.8 Reload Policy ...388
47.9 Relevance ..389
47.10 Forcing a Timeline Reload ...389
47.11 Widget Sizes ...390
47.12 Widget Placeholder ...390
47.13 Summary ..391

48. A SwiftUI WidgetKit Tutorial ..393
48.1 About the WidgetDemo Project ..393
48.2 Creating the WidgetDemo Project ...393
48.3 Building the App ...393
48.4 Adding the Widget Extension ...395
48.5 Adding the Widget Data ..397
48.6 Creating Sample Timelines ..398
48.7 Adding Image and Color Assets ..399
48.8 Designing the Widget View ...401
48.9 Modifying the Widget Provider ..402
48.10 Configuring the Placeholder View ..403
48.11 Previewing the Widget ...403
48.12 Summary ..405

49. Supporting WidgetKit Size Families ...407
49.1 Supporting Multiple Size Families ..407
49.2 Adding Size Support to the Widget View ..408
49.3 Summary ..412

50. A SwiftUI WidgetKit Deep Link Tutorial ..413
50.1 Adding Deep Link Support to the Widget ...413
50.2 Adding Deep Link Support to the App ..416
50.3 Testing the Widget ..418
50.4 Summary ..418

xiv

Table of Contents

51. Adding Configuration Options to a WidgetKit Widget ...419
51.1 Modifying the Weather Data ...419
51.2 Configuring the Intent Definition ...419
51.3 Modifying the Widget ..422
51.4 Testing Widget Configuration ...423
51.5 Customizing the Configuration Intent UI ...425
51.6 Summary ..426

52. Integrating UIViews with SwiftUI ...427
52.1 SwiftUI and UIKit Integration ...427
52.2 Integrating UIViews into SwiftUI ...427
52.3 Adding a Coordinator ..429
52.4 Handling UIKit Delegation and Data Sources ..430
52.5 An Example Project ..431
52.6 Wrapping the UIScrolledView ..431
52.7 Implementing the Coordinator ...432
52.8 Using MyScrollView ...433
52.9 Summary ..434

53. Integrating UIViewControllers with SwiftUI ..435
53.1 UIViewControllers and SwiftUI ..435
53.2 Creating the ViewControllerDemo project ...435
53.3 Wrapping the UIImagePickerController ...435
53.4 Designing the Content View ..436
53.5 Completing MyImagePicker ..438
53.6 Completing the Content View ...440
53.7 Testing the App ..440
53.8 Summary ..441

54. Integrating SwiftUI with UIKit ..443
54.1 An Overview of the Hosting Controller ..443
54.2 A UIHostingController Example Project ...443
54.3 Adding the SwiftUI Content View ..444
54.4 Preparing the Storyboard ...445
54.5 Adding a Hosting Controller ...446
54.6 Configuring the Segue Action ...447
54.7 Embedding a Container View ..450
54.8 Embedding SwiftUI in Code ...451
54.9 Summary ..453

55. Preparing and Submitting an iOS 14 Application to the App Store455
55.1 Verifying the iOS Distribution Certificate ...455
55.2 Adding App Icons ...457

xv

Table of Contents

55.3 Assign the Project to a Team ...458
55.4 Archiving the Application for Distribution ...459
55.5 Configuring the Application in App Store Connect ...459
55.6 Validating and Submitting the Application ...460
55.7 Configuring and Submitting the App for Review ...463

Index ...465

1

Chapter 1

1. Start Here
The goal of this book is to teach the skills necessary to build iOS 14 applications using SwiftUI, Xcode 12 and
the Swift 5.3 programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an iOS development
environment together with an introduction to the use of Swift Playgrounds to learn and experiment with Swift.

The book also includes in-depth chapters introducing the Swift 5.3 programming language including data types,
control flow, functions, object-oriented programming, property wrappers and error handling.

An introduction to the key concepts of SwiftUI and project architecture is followed by a guided tour of Xcode in
SwiftUI development mode. The book also covers the creation of custom SwiftUI views and explains how these
views are combined to create user interface layouts including the use of stacks, frames and forms.

Other topics covered include data handling using state properties in addition to observable, state and
environment objects, as are key user interface design concepts such as modifiers, lists, tabbed views, context
menus, user interface navigation, and outline groups.

The book also includes chapters covering graphics drawing, user interface animation, view transitions and
gesture handling, WidgetKit, document-based apps and SiriKit integration.

Chapters are also provided explaining how to integrate SwiftUI views into existing UIKit-based projects and
explains the integration of UIKit code into SwiftUI.

Finally, the book explains how to package up a completed app and upload it to the App Store for publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code
for which is also available for download.

The aim of this book, therefore, is to teach you the skills necessary to build your own apps for iOS 14 using
SwiftUI. Assuming you are ready to download the iOS 14 SDK and Xcode 12 and have an Apple Mac system you
are ready to get started.

1.1 For Swift Programmers
This book has been designed to address the needs of both existing Swift programmers and those who are new
to both Swift and iOS app development. If you are familiar with the Swift 5.3 programming language, you
can probably skip the Swift specific chapters. If you are not yet familiar with the SwiftUI specific language
features of Swift, however, we recommend that you at least read the sections covering implicit returns from single
expressions, opaque return types and property wrappers. These features are central to the implementation and
understanding of SwiftUI.

1.2 For Non-Swift Programmers
If you are new to programming in Swift then the entire book is appropriate for you. Just start at the beginning
and keep going.

1.3 Source Code Download
The source code and Xcode project files for the examples contained in this book are available for download at:

2

Start Here

https://www.ebookfrenzy.com/retail/swiftui-ios14/

1.4 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book, or have any
comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.5 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that a book
covering a subject area of this size and complexity may include some errors and oversights. Any known issues
with the book will be outlined, together with solutions at the following URL:

https://www.ebookfrenzy.com/errata/swiftui-ios14.html

In the event that you find an error not listed in the errata, please let us know by emailing our technical support
team at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/swiftui-ios14/
https://www.ebookfrenzy.com/errata/swiftui-ios14.html

3

Chapter 2

2. Joining the Apple Developer
Program
The first step in the process of learning to develop iOS 14 based applications involves gaining an understanding
of the advantages of enrolling in the Apple Developer Program and deciding the point at which it makes sense
to pay to join. With these goals in mind, this chapter will outline the costs and benefits of joining the developer
program and, finally, walk through the steps involved in enrolling.

2.1 Downloading Xcode 12 and the iOS 14 SDK
The latest versions of both the iOS SDK and Xcode can be downloaded free of charge from the macOS App
Store. Since the tools are free, this raises the question of whether to enroll in the Apple Developer Program, or
to wait until it becomes necessary later in your app development learning curve.

2.2 Apple Developer Program
Membership in the Apple Developer Program currently costs $99 per year to enroll as an individual developer.
Organization level membership is also available.

Prior to the introduction of iOS 9 and Xcode 7, one of the key advantages of the developer program was that it
permitted the creation of certificates and provisioning profiles to test your applications on physical iOS devices.
Fortunately, this is no longer the case and all that is now required to test apps on physical iOS devices is an Apple
ID.

Clearly much can be achieved without the need to pay to join the Apple Developer program. There are, however,
areas of app development which cannot be fully tested without program membership. Of particular significance
is the fact that Siri integration, iCloud access, Apple Pay, Game Center and In-App Purchasing can only be
enabled and tested with Apple Developer Program membership.

Of further significance is the fact that Apple Developer Program members have access to technical support
from Apple’s iOS support engineers (though the annual fee initially covers the submission of only two support
incident reports, more can be purchased). Membership also includes access to the Apple Developer forums;
an invaluable resource both for obtaining assistance and guidance from other iOS developers, and for finding
solutions to problems that others have encountered and subsequently resolved.

Program membership also provides early access to the pre-release Beta versions of Xcode, macOS and iOS.

By far the most important aspect of the Apple Developer Program is that membership is a mandatory requirement
in order to publish an application for sale or download in the App Store.

Clearly, program membership is going to be required at some point before your application reaches the App
Store. The only question remaining is when exactly to sign up.

2.3 When to Enroll in the Apple Developer Program?
Clearly, there are many benefits to Apple Developer Program membership and, eventually, membership will
be necessary to begin selling your apps. As to whether to pay the enrollment fee now or later will depend on
individual circumstances. If you are still in the early stages of learning to develop iOS apps or have yet to come

4

Joining the Apple Developer Program

up with a compelling idea for an app to develop then much of what you need is provided without program
membership. As your skill level increases and your ideas for apps to develop take shape you can, after all, always
enroll in the developer program later.

If, on the other hand, you are confident that you will reach the stage of having an application ready to publish,
or know that you will need access to more advanced features such as Siri support, iCloud storage, In-App
Purchasing and Apple Pay then it is worth joining the developer program sooner rather than later.

2.4 Enrolling in the Apple Developer Program
If your goal is to develop iOS apps for your employer, then it is first worth checking whether the company
already has membership. That being the case, contact the program administrator in your company and ask them
to send you an invitation from within the Apple Developer Program Member Center to join the team. Once they
have done so, Apple will send you an email entitled You Have Been Invited to Join an Apple Developer Program
containing a link to activate your membership. If you or your company is not already a program member, you
can enroll online at:

https://developer.apple.com/programs/enroll/

Apple provides enrollment options for businesses and individuals. To enroll as an individual, you will need to
provide credit card information in order to verify your identity. To enroll as a company, you must have legal
signature authority (or access to someone who does) and be able to provide documentation such as a Dun &
Bradstreet D-U-N-S number and documentation confirming legal entity status.

Acceptance into the developer program as an individual member typically takes less than 24 hours with notification
arriving in the form of an activation email from Apple. Enrollment as a company can take considerably longer
(sometimes weeks or even months) due to the burden of the additional verification requirements.

While awaiting activation you may log into the Member Center with restricted access using your Apple ID and
password at the following URL:

https://developer.apple.com/membercenter

Once logged in, clicking on the Your Account tab at the top of the page will display the prevailing status of your
application to join the developer program as Enrollment Pending. Once the activation email has arrived, log
into the Member Center again and note that access is now available to a wide range of options and resources as
illustrated in Figure 2-1

Figure 2-1

https://developer.apple.com/programs/enroll/
https://developer.apple.com/membercenter

5

Joining the Apple Developer Program

2.5 Summary
An important early step in the iOS 14 application development process involves identifying the best time to
enroll in the Apple Developer Program. This chapter has outlined the benefits of joining the program, provided
some guidance to keep in mind when considering developer program membership and walked briefly through
the enrollment process. The next step is to download and install the iOS 14 SDK and Xcode 12 development
environment.

7

Chapter 3

3. Installing Xcode 12 and the iOS 14
SDK
iOS apps are developed using the iOS SDK in conjunction with Apple’s Xcode development environment. Xcode
is an integrated development environment (IDE) within which you will code, compile, test and debug your iOS
applications.

All of the examples in this book are based on Xcode version 12.2 and make use of features unavailable in earlier
Xcode versions. In this chapter we will cover the steps involved in installing both Xcode 12.2 and the iOS 14
SDK on macOS.

3.1 Identifying Your macOS Version
When developing with SwiftUI, the Xcode 12.2 environment requires a system running macOS Big Sur (version
11.0) or later. If you are unsure of the version of macOS on your Mac, you can find this information by clicking
on the Apple menu in the top left-hand corner of the screen and selecting the About This Mac option from the
menu. In the resulting dialog check the Version line.

If the “About This Mac” dialog does not indicate that macOS 11.0 or later is running, click on the Software
Update… button to download and install the appropriate operating system upgrades.

Figure 3-1

3.2 Installing Xcode 12 and the iOS 14 SDK
The best way to obtain the latest versions of Xcode and the iOS SDK is to download them from the Apple Mac
App Store. Launch the App Store on your macOS system, enter Xcode into the search box and click on the Get
button to initiate the installation. This will install both Xcode and the iOS SDK.

8

Installing Xcode 12 and the iOS 14 SDK

3.3 Starting Xcode
Having successfully installed the SDK and Xcode, the next step is to launch it so that we are ready to start
development work. To start up Xcode, open the macOS Finder and search for Xcode. Since you will be making
frequent use of this tool take this opportunity to drag and drop it onto your dock for easier access in the future.
Click on the Xcode icon in the dock to launch the tool. The first time Xcode runs you may be prompted to install
additional components. Follow these steps, entering your username and password when prompted to do so.

Once Xcode has loaded, and assuming this is the first time you have used Xcode on this system, you will be
presented with the Welcome screen from which you are ready to proceed:

Figure 3-2

3.4 Adding Your Apple ID to the Xcode Preferences
Regardless of whether or not you choose to enroll in the Apple Developer Program it is worth adding your Apple
ID to Xcode now that it is installed and running. Select the Xcode -> Preferences… menu option followed by the
Accounts tab. On the Accounts screen, click on the + button highlighted in Figure 3-3, select Apple ID from the
resulting panel and click on the Continue button. When prompted, enter your Apple ID and password before
clicking on the Sign In button to add the account to the preferences.

Figure 3-3

9

Installing Xcode 12 and the iOS 14 SDK

3.5 Developer and Distribution Signing Identities
Once the Apple ID has been entered the next step is to generate signing identities. To view the current signing
identities, select the newly added Apple ID in the Accounts panel and click on the Manage Certificates… button
to display a list of available signing identity types. To create a signing identity, simply click on the + button
highlighted in Figure 3-4 and make the appropriate selection from the menu:

Figure 3-4
If the Apple ID has been used to enroll in the Apple Developer program, the option to create an Apple Distribution
certificate will appear in the menu which will, when clicked, generate the signing identity required to submit
the app to the Apple App Store. If you have not yet signed up for the Apple Developer program, select the Apple
Development option to allow apps to be tested during development.

3.6 Summary
This book was written using Xcode version 12.2 and the iOS 14 SDK running on macOS 11.0 (Big Sur). Before
beginning SwiftUI development, the first step is to install Xcode and configure it with your Apple ID via the
accounts section of the Preferences screen. Once these steps have been performed, a development certificate
must be generated which will be used to sign apps developed within Xcode. This will allow you to build and test
your apps on physical iOS-based devices.

When you are ready to upload your finished app to the App Store, you will also need to generate a distribution
certificate, a process requiring membership in the Apple Developer Program as outlined in the previous chapter

Having installed the iOS SDK and successfully launched Xcode 12 we can now look at Xcode in more detail,
starting with Playgrounds.

11

Chapter 4

4. An Introduction to Xcode 12
Playgrounds
Before introducing the Swift programming language in the chapters that follow, it is first worth learning about
a feature of Xcode known as Playgrounds. This is a feature of Xcode designed to make learning Swift and
experimenting with the iOS SDK much easier. The concepts covered in this chapter can be put to use when
experimenting with many of the introductory Swift code examples contained in the chapters that follow.

4.1 What is a Playground?
A playground is an interactive environment where Swift code can be entered and executed with the results
appearing in real-time. This makes an ideal environment in which to learn the syntax of Swift and the visual
aspects of iOS app development without the need to work continuously through the edit/compile/run/debug
cycle that would ordinarily accompany a standard Xcode iOS project. With support for rich text comments,
playgrounds are also a good way to document code for future reference or as a training tool.

4.2 Creating a New Playground
To create a new Playground, start Xcode and select the File -> New -> Playground… menu option. Choose the
iOS option on the resulting panel and select the Blank template.

The Blank template is useful for trying out Swift coding. The Single View template, on the other hand, provides
a view controller environment for trying out code that requires a user interface layout. The game and map
templates provide preconfigured playgrounds that allow you to experiment with the iOS MapKit and SpriteKit
frameworks respectively.

On the next screen, name the playground LearnSwift and choose a suitable file system location into which the
playground should be saved before clicking on the Create button.

Once the playground has been created, the following screen will appear ready for Swift code to be entered:

Figure 4-1
The panel on the left-hand side of the window (marked A in Figure 4-1) is the Navigator panel which provides

12

An Introduction to Xcode 12 Playgrounds

access to the folders and files that make up the playground. To hide and show this panel, click on the button
indicated by the left-most arrow. The center panel (B) is the playground editor where the lines of Swift code
are entered. The right-hand panel (C) is referred to as the results panel and is where the results of each Swift
expression entered into the playground editor panel are displayed. The tab bar (D) will contain a tab for each file
currently open within the playground editor. To switch to a different file, simply select the corresponding tab.
To close an open file, hover the mouse pointer over the tab and click on the “X” button when it appears to the
left of the file name.

The button marked by the right-most arrow in the above figure is used to hide and show the Inspectors panel
(marked A in Figure 4-2 below) where a variety of properties relating to the playground may be configured.
Clicking and dragging the bar (B) upward will display the Debug Area (C) where diagnostic output relating to
the playground will appear when code is executed:

Figure 4-2
By far the quickest way to gain familiarity with the playground environment is to work through some simple
examples.

4.3 A Swift Playground Example
Perhaps the simplest of examples in any programming language (that at least does something tangible) is to
write some code to output a single line of text. Swift is no exception to this rule so, within the playground
window, begin adding another line of Swift code so that it reads as follows:
import UIKit

var str = "Hello, playground"

print("Welcome to Swift")

All that the additional line of code does is make a call to the built-in Swift print function which takes as a
parameter a string of characters to be displayed on the console. Those familiar with other programming
languages will note the absence of a semi-colon at the end of the line of code. In Swift, semi-colons are optional
and generally only used as a separator when multiple statements occupy the same line of code.

Note that although some extra code has been entered, nothing yet appears in the results panel. This is because

13

An Introduction to Xcode 12 Playgrounds

the code has yet to be executed. One option to run the code is to click on the Execute Playground button located
in the bottom left-hand corner of the main panel as indicated by the arrow in Figure 4-3:

Figure 4-3
When clicked, this button will execute all the code in the current playground page from the first line of code to
the last. Another option is to execute the code in stages using the run button located in the margin of the code
editor as shown in Figure 4-4:

Figure 4-4
This button executes the line numbers with the shaded blue background including the line on which the button
is currently positioned. In the above figure, for example, the button will execute lines 1 through 3 and then stop.

The position of the run button can be moved by hovering the mouse pointer over the line numbers in the editor.
In Figure 4-5, for example, the run button is now positioned on line 5 and will execute lines 4 and 5 when
clicked. Note that lines 1 to 3 are no longer highlighted in blue indicating that these have already been executed
and are not eligible to be run this time:

Figure 4-5
This technique provides an easy way to execute the code in stages making it easier to understand how the code
functions and to identify problems in code execution.

To reset the playground so that execution can be performed from the start of the code, simply click on the stop
button as indicated in Figure 4-6:

14

An Introduction to Xcode 12 Playgrounds

Figure 4-6
Using this incremental execution technique, execute lines 1 through 3 and note that output now appears in the
results panel indicating that the variable has been initialized:

Figure 4-7
Next, execute the remaining lines up to and including line 5 at which point the “Welcome to Swift” output
should appear both in the results panel and debug area:

Figure 4-8

4.4 Viewing Results
Playgrounds are particularly useful when working and experimenting with Swift algorithms. This can be useful
when combined with the Quick Look feature. Remaining within the playground editor, enter the following lines
of code beneath the existing print statement:
var x = 10

for index in 1...20 {

 let y = index * x

 x -= 1

 print(y)

}

This expression repeats a loop 20 times, performing arithmetic expressions on each iteration of the loop. Once

15

An Introduction to Xcode 12 Playgrounds

the code has been entered into the editor, click on the run button positioned at line 13 to execute these new lines
of code. The playground will execute the loop and display in the results panel the number of times the loop was
performed. More interesting information, however, may be obtained by hovering the mouse pointer over the
results line so that two additional buttons appear as shown in Figure 4-9:

Figure 4-9
The left most of the two buttons is the Quick Look button which, when selected, will show a popup panel
displaying the results as shown in Figure 4-10:

Figure 4-10
The right-most button is the Show Result button which, when selected, displays the results in-line with the code:

Figure 4-11

16

An Introduction to Xcode 12 Playgrounds

4.5 Adding Rich Text Comments
Rich text comments allow the code within a playground to be documented in a way that is easy to format and
read. A single line of text can be marked as being rich text by preceding it with a //: marker. For example:
//: This is a single line of documentation text

Blocks of text can be added by wrapping the text in /*: and */ comment markers:
/*:

This is a block of documentation text that is intended

to span multiple lines

*/

The rich text uses the Markup language and allows text to be formatted using a lightweight and easy to use
syntax. A heading, for example, can be declared by prefixing the line with a ‘#’ character while text is displayed in
italics when wrapped in ‘*’ characters. Bold text, on the other hand, involves wrapping the text in ‘**’ character
sequences. It is also possible to configure bullet points by prefixing each line with a single ‘*’. Among the many
other features of Markup are the ability to embed images and hyperlinks into the content of a rich text comment.

To see rich text comments in action, enter the following markup content into the playground editor immediately
after the print(“Welcome to Swift”) line of code:
/*:

Welcome to Playgrounds

This is your *first* playground which is intended to demonstrate:

* The use of **Quick Look**

* Placing results **in-line** with the code

*/

As the comment content is added it is said to be displayed in raw markup format. To display in rendered markup
format, either select the Editor -> Show Rendered Markup menu option, or enable the Render Documentation
option located under Playground Settings in the Inspector panel (marked A in Figure 4-2). If the Inspector panel
is not currently visible, click on the button indicated by the right-most arrow in Figure 4-1 to display it. Once
rendered, the above rich text should appear as illustrated in Figure 4-12:

Figure 4-12
Detailed information about the Markup syntax can be found online at the following URL:

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/
index.html

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html

17

An Introduction to Xcode 12 Playgrounds

4.6 Working with Playground Pages
A playground can consist of multiple pages, with each page containing its own code, resources and rich text
comments. So far, the playground used in this chapter contains a single page. Add an additional page to the
playground now by selecting the LearnSwift entry at the top of the Navigator panel, right-clicking and selecting
the New Playground Page menu option. If the Navigator panel is not currently visible, click the button indicated
by the left-most arrow in Figure 4-1 above to display it. Note that two pages are now listed in the Navigator
named “Untitled Page” and “Untitled Page 2”. Select and then click a second time on the “Untitled Page 2” entry
so that the name becomes editable and change the name to SwiftUI Example as outlined in Figure 4-13:

Figure 4-13
Note that the newly added page has Markup links which, when clicked, navigate to the previous or next page in
the playground.

4.7 Working with SwiftUI and Live View in Playgrounds
In addition to allowing you to experiment with the Swift programming language, playgrounds may also be used
to work with SwiftUI. Not only does this allow SwiftUI views to be prototyped, but when combined with the
playground live view feature, it is also possible to run and interact with those views.

To try out SwiftUI and live view, begin by selecting the newly added SwiftUI Example page and modifying it to
import both the SwiftUI and PlaygroundSupport frameworks:
import SwiftUI

import PlaygroundSupport

The PlaygroundSupport module provides a number of useful features for playgrounds including the ability to
present a live view within the playground timeline.

Beneath the import statements, add the following code (rest assured, all of the techniques used in this example
will be thoroughly explained in later chapters):
struct ExampleView: View {

 var body: some View {

 VStack {

 Rectangle()

 .fill(Color.blue)

 .frame(width: 200, height: 200)

18

An Introduction to Xcode 12 Playgrounds

 Button(action: {

 }) {

 Text("Rotate")

 }

 }.padding(10)

 }

}

This declaration creates a custom SwiftUI view named ExampleView consisting of a blue Rectangle view and a
Button, both contained within a vertical stack (VStack).

The PlaygroundSupport module includes a class named PlaygroundPage which allows playground code to
interact with the pages that make up a playground. This is achieved through a range of methods and properties
of the class, one of which is the current property. This property, in turn, provides access to the current playground
page. In order to execute the code within the playground, the liveView property of the current page needs to be
set to our new container. To display the Live View panel, enable the Xcode Editor -> Live View menu option as
shown in Figure 4-14:

Figure 4-14
Once the live view panel is visible, add the code to assign the container to the live view of the current page as
follows:
.

.

 VStack {

 Rectangle()

 .fill(Color.blue)

 .frame(width: 200, height: 200)

 Button(action: {

 }) {

 Text("Rotate")

 }

 }

 .padding(10)

 }

}

PlaygroundPage.current.setLiveView(ExampleView()
 .padding(100))

With the changes made, click on the run button to start the live view. After a short delay, the view should appear

19

An Introduction to Xcode 12 Playgrounds

as shown in Figure 4-15 below:

Figure 4-15
Since the button is not yet configured to do anything when clicked, it is difficult to see that the view is live. To see
live view in action, modify the view declaration to rotate the blue square by 60° each time the button is clicked:
import SwiftUI

import PlaygroundSupport

struct ExampleView: View {

 @State private var rotation: Double = 0

 var body: some View {

 VStack {

 Rectangle()

 .fill(Color.blue)

 .frame(width: 200, height: 200)

 .rotationEffect(.degrees(rotation))
 .animation(.linear)
 Button(action: {

 rotation = (rotation < 360 ? rotation + 60 : 0)
 }) {

 Text("Rotate")

 }

 }

 .padding(10)

 }

}

PlaygroundPage.current.setLiveView(ExampleView().padding(100))

Click the run button to launch the view in the live view and note that the square rotates each time the button is
clicked.

20

An Introduction to Xcode 12 Playgrounds

4.8 Summary
This chapter has introduced the concept of playgrounds. Playgrounds provide an environment in which Swift
code can be entered and the results of that code viewed dynamically. This provides an excellent environment
both for learning the Swift programming language and for experimenting with many of the classes and APIs
included in the iOS SDK without the need to create Xcode projects and repeatedly edit, compile and run code.

21

Chapter 5

5. Swift Data Types, Constants and
Variables
If you are new to the Swift programming language then the next few chapters are recommended reading.
Although SwiftUI makes the development of apps easier, it will still be necessary to learn Swift programming
both to understand SwiftUI and develop fully functional apps.

If, on the other hand, you are familiar with the Swift programming language you can skip the Swift specific
chapters that follow (though if you are not familiar with implicit returns from single expressions, opaque return
types and property wrappers you should at least read the sections and chapters relating to these features before
moving on to the SwiftUI chapters).

Prior to the introduction of iOS 8, the stipulated programming language for the development of iOS applications
was Objective-C. When Apple announced iOS 8, however, the company also introduced an alternative to
Objective-C in the form of the Swift programming language.

Due entirely to the popularity of iOS, Objective-C had become one of the more widely used programming
languages. With origins firmly rooted in the 40-year-old C Programming Language, however, and despite recent
efforts to modernize some aspects of the language syntax, Objective-C was beginning to show its age.

Swift, on the other hand, is a relatively new programming language designed specifically to make programming
easier, faster and less prone to programmer error. Starting with a clean slate and no burden of legacy, Swift is a
new and innovative language with which to develop applications for iOS, iPadOS, macOS, watchOS and tvOS
with the advantage that much of the syntax will be familiar to those with experience of other programming
languages.

The next several chapters will provide an overview and introduction to Swift programming. The intention of
these chapters is to provide enough information so that you can begin to confidently program using Swift. For
an exhaustive and in-depth guide to all the features, intricacies and capabilities of Swift, some time spent reading
Apple’s excellent book entitled “The Swift Programming Language” (available free of charge from within the
Apple Books app) is strongly recommended.

5.1 Using a Swift Playground
Both this and the following few chapters are intended to introduce the basics of the Swift programming language.
As outlined in the previous chapter, entitled “An Introduction to Xcode 12 Playgrounds” the best way to learn
Swift is to experiment within a Swift playground environment. Before starting this chapter, therefore, create a
new playground and use it to try out the code in both this and the other Swift introduction chapters that follow.

5.2 Swift Data Types
When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on
disk drives and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each
1 or 0 is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte.
When people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can

22

Swift Data Types, Constants and Variables

be handled simultaneously by the CPU bus. A 64-bit CPU, for example, is able to handle data in 64-bit blocks,
resulting in faster performance than a 32-bit based system.

Humans, of course, don’t think in binary. We work with decimal numbers, letters and words. In order for a
human to easily (easily being a subjective term in this context) program a computer, some middle ground
between human and computer thinking is needed. This is where programming languages such as Swift come
into play. Programming languages allow humans to express instructions to a computer in terms and structures
we understand, and then compile that down to a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Swift define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Swift program, we could do so with syntax similar to the following:
var mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:
1010

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Swift.

5.2.1 Integer Data Types
Swift integer data types are used to store whole numbers (in other words a number with no decimal places).
Integers can be signed (capable of storing positive, negative and zero values) or unsigned (positive and zero
values only).

Swift provides support for 8, 16, 32 and 64-bit integers (represented by the Int8, Int16, Int32 and Int64 types
respectively). The same variants are also available for unsigned integers (UInt8, UInt16, UInt32 and UInt64).

In general, Apple recommends using the Int data type rather than one of the above specifically sized data types.
The Int data type will use the appropriate integer size for the platform on which the code is running.

All integer data types contain bounds properties which can be accessed to identify the minimum and maximum
supported values of that particular type. The following code, for example, outputs the minimum and maximum
bounds for the 32-bit signed integer data type:
print("Int32 Min = \(Int32.min) Int32 Max = \(Int32.max)")

When executed, the above code will generate the following output:
Int32 Min = -2147483648 Int32 Max = 2147483647

5.2.2 Floating Point Data Types
The Swift floating point data types are able to store values containing decimal places. For example, 4353.1223
would be stored in a floating-point data type. Swift provides two floating point data types in the form of Float
and Double. Which type to use depends on the size of value to be stored and the level of precision required.
The Double type can be used to store up to 64-bit floating point numbers with a level of precision of 15 decimal
places or greater. The Float data type, on the other hand, is limited to 32-bit floating point numbers and offers
a level of precision as low as 6 decimal places depending on the native platform on which the code is running.
Alternatively, the Float16 type may be used to store 16-bit floating point values. Float16 provides greater
performance at the expense of lower precision.

23

Swift Data Types, Constants and Variables

5.2.3 Bool Data Type
Swift, like other languages, includes a data type for the purpose of handling true or false (1 or 0) conditions. Two
Boolean constant values (true and false) are provided by Swift specifically for working with Boolean data types.

5.2.4 Character Data Type
The Swift Character data type is used to store a single character of rendered text such as a letter, numerical
digit, punctuation mark or symbol. Internally characters in Swift are stored in the form of grapheme clusters.
A grapheme cluster is made of two or more Unicode scalars that are combined to represent a single visible
character.

The following lines assign a variety of different characters to Character type variables:
var myChar1 = "f"

var myChar2 = ":"

var myChar3 = "X"

Characters may also be referenced using Unicode code points. The following example assigns the ‘X’ character
to a variable using Unicode:
var myChar4 = "\u{0058}"

5.2.5 String Data Type
The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated and modified. Strings in Swift are represented internally as collections
of characters (where a character is, as previously discussed, comprised of one or more Unicode scalar values).

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string from
a variety of different sources using string interpolation before outputting it to the console:
var userName = "John"

var inboxCount = 25

let maxCount = 100

var message = "\(userName) has \(inboxCount) messages. Message capacity remaining
is \(maxCount - inboxCount)"

print(message)

When executed, the code will output the following message:
John has 25 messages. Message capacity remaining is 75 messages.

A multiline string literal may be declared by encapsulating the string within triple quotes as follows:
var multiline = """

 The console glowed with flashing warnings.

 Clearly time was running out.

 "I thought you said you knew how to fly this!" yelled Mary.

 "It was much easier on the simulator" replied her brother,

24

Swift Data Types, Constants and Variables

 trying to keep the panic out of his voice.

"""

print(multiline)

The above code will generate the following output when run:
 The console glowed with flashing warnings.

 Clearly time was running out.

 "I thought you said you knew how to fly this!" yelled Mary.

 "It was much easier on the simulator" replied her brother,

 trying to keep the panic out of his voice.

The amount by which each line is indented within a multiline literal is calculated as the number of characters
by which the line is indented minus the number of characters by which the closing triple quote line is indented.
If, for example, the fourth line in the above example had a 10-character indentation and the closing triple quote
was indented by 5 characters, the actual indentation of the fourth line within the string would be 5 characters.
This allows multiline literals to be formatted tidily within Swift code while still allowing control over indentation
of individual lines.

5.2.6 Special Characters/Escape Sequences
In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape sequences) available for specifying items such as a new line, tab or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:
var newline = "\n"

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:
var backslash = "\\"

Commonly used special characters supported by Swift are as follows:

• \n - New line

• \r - Carriage return

• \t - Horizontal tab

• \\ - Backslash

• \” - Double quote (used when placing a double quote into a string declaration)

• \’ - Single quote (used when placing a single quote into a string declaration)

• \u{nn} – Single byte Unicode scalar where nn is replaced by two hexadecimal digits representing the Unicode
character.

• \u{nnnn} – Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the
Unicode character.

25

Swift Data Types, Constants and Variables

• \U{nnnnnnnn} – Four-byte Unicode scalar where nnnnnnnn is replaced by eight hexadecimal digits
representing the Unicode character.

5.3 Swift Variables
Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable may
then be used in the Swift code to access the value assigned to that variable. This access can involve either reading
the value of the variable or changing the value. It is, of course, the ability to change the value of variables which
gives them the name variable.

5.4 Swift Constants
A constant is like a variable in that it provides a named location in memory to store a data value. Constants differ
in one significant way in that once a value has been assigned to a constant it cannot subsequently be changed.

Constants are particularly useful if there is a value which is used repeatedly throughout the application code.
Rather than use the value each time, it makes the code easier to read if the value is first assigned to a constant
which is then referenced in the code. For example, it might not be clear to someone reading your Swift code
why you used the value 5 in an expression. If, instead of the value 5, you use a constant named interestRate the
purpose of the value becomes much clearer. Constants also have the advantage that if the programmer needs to
change a widely used value, it only needs to be changed once in the constant declaration and not each time it is
referenced.

As with variables, constants have a type, a name and a value. Unlike variables, however, once a value has been
assigned to a constant, that value cannot subsequently be changed.

5.5 Declaring Constants and Variables
Variables are declared using the var keyword and may be initialized with a value at creation time. If the variable
is declared without an initial value, it must be declared as being optional (a topic which will be covered later in
this chapter). The following, for example, is a typical variable declaration:
var userCount = 10

Constants are declared using the let keyword.
let maxUserCount = 20

For greater code efficiency and execution performance, Apple recommends the use of constants rather than
variables whenever possible.

5.6 Type Annotations and Type Inference
Swift is categorized as a type safe programming language. This essentially means that once the data type of a
variable has been identified, that variable cannot subsequently be used to store data of any other type without
inducing a compilation error. This contrasts to loosely typed programming languages where a variable, once
declared, can subsequently be used to store other data types.

There are two ways in which the type of a constant or variable will be identified. One approach is to use a type
annotation at the point the variable or constant is declared in the code. This is achieved by placing a colon after
the constant or variable name followed by the type declaration. The following line of code, for example, declares
a variable named userCount as being of type Int:
var userCount: Int = 10

In the absence of a type annotation in a declaration, the Swift compiler uses a technique referred to as type
inference to identify the type of the constant or variable. When relying on type inference, the compiler looks to

26

Swift Data Types, Constants and Variables

see what type of value is being assigned to the constant or variable at the point that it is initialized and uses that
as the type. Consider, for example, the following variable and constant declarations:
var signalStrength = 2.231

let companyName = "My Company"

During compilation of the above lines of code, Swift will infer that the signalStrength variable is of type Double
(type inference in Swift defaults to Double for all floating-point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:
let bookTitle = "SwiftUI Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:
let bookTitle: String

.

.

if iosBookType {

 bookTitle = "SwiftUI Essentials"

} else {

 bookTitle = "Android Studio Development Essentials"

}

It is important to note that a value may only be assigned to a constant once. A second attempt to assign a value
to a constant will result in a syntax error.

5.7 The Swift Tuple
Before proceeding, now is a good time to introduce the Swift tuple. The tuple is perhaps one of the simplest,
yet most powerful features of the Swift programming language. A tuple is, quite simply, a way to temporarily
group together multiple values into a single entity. The items stored in a tuple can be of any type and there are
no restrictions requiring that those values all be of the same type. A tuple could, for example, be constructed to
contain an Int value, a Double value and a String as follows:
let myTuple = (10, 432.433, "This is a String")

The elements of a tuple can be accessed using a number of different techniques. A specific tuple value can be
accessed simply by referencing the index position (with the first value being at index position 0). The code below,
for example, extracts the string resource (at index position 2 in the tuple) and assigns it to a new string variable:
let myTuple = (10, 432.433, "This is a String")

let myString = myTuple.2

print(myString)

Alternatively, all the values in a tuple may be extracted and assigned to variables or constants in a single statement:
let (myInt, myFloat, myString) = myTuple

This same technique can be used to extract selected values from a tuple while ignoring others by replacing the
values to be ignored with an underscore character. The following code fragment extracts the integer and string
values from the tuple and assigns them to variables, but ignores the floating-point value:
var (myInt, _, myString) = myTuple

When creating a tuple, it is also possible to assign a name to each value:

27

Swift Data Types, Constants and Variables

let myTuple = (count: 10, length: 432.433, message: "This is a String")

The names assigned to the values stored in a tuple may then be used to reference those values in code. For
example, to output the message string value from the myTuple instance, the following line of code could be used:
print(myTuple.message)

Perhaps the most powerful use of tuples is, as will be seen in later chapters, the ability to return multiple values
from a function.

5.8 The Swift Optional Type
The Swift optional data type is a new concept that does not exist in most other programming languages. The
purpose of the optional type is to provide a safe and consistent approach to handling situations where a variable
or constant may not have any value assigned to it.

Variables are declared as being optional by placing a ? character after the type declaration. The following code
declares an optional Int variable named index:
var index: Int?

The variable index can now either have an integer value assigned to it or have nothing assigned to it. Behind the
scenes, and as far as the compiler and runtime are concerned, an optional with no value assigned to it actually
has a value of nil.

An optional can easily be tested (typically using an if statement) to identify whether it has a value assigned to it
as follows:
var index: Int?

if index != nil {

 // index variable has a value assigned to it

} else {

 // index variable has no value assigned to it

}

If an optional has a value assigned to it, that value is said to be “wrapped” within the optional. The value
wrapped in an optional may be accessed using a concept referred to as forced unwrapping. This simply means
that the underlying value is extracted from the optional data type, a procedure that is performed by placing an
exclamation mark (!) after the optional name.

To explore this concept of unwrapping optional types in more detail, consider the following code:
var index: Int?

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if index != nil {

 print(treeArray[index!])

} else {

 print("index does not contain a value")

}

The code simply uses an optional variable to hold the index into an array of strings representing the names

28

Swift Data Types, Constants and Variables

of tree species (Swift arrays will be covered in more detail in the chapter entitled “Working with Array and
Dictionary Collections in Swift”). If the index optional variable has a value assigned to it, the tree name at that
location in the array is printed to the console. Since the index is an optional type, the value has been unwrapped
by placing an exclamation mark after the variable name:
print(treeArray[index!])

Had the index not been unwrapped (in other words the exclamation mark omitted from the above line), the
compiler would have issued an error similar to the following:
Value of optional type ‘Int?’ must be unwrapped to a value of type ‘Int’

As an alternative to forced unwrapping, the value assigned to an optional may be allocated to a temporary
variable or constant using optional binding, the syntax for which is as follows:
if let constantname = optionalName {

}

if var variablename = optionalName {

}

The above constructs perform two tasks. In the first instance, the statement ascertains whether the designated
optional contains a value. Second, in the event that the optional has a value, that value is assigned to the declared
constant or variable and the code within the body of the statement is executed. The previous forced unwrapping
example could, therefore, be modified as follows to use optional binding instead:
var index: Int?

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if let myvalue = index {
 print(treeArray[myvalue])
} else {

 print("index does not contain a value")

}

In this case the value assigned to the index variable is unwrapped and assigned to a temporary constant named
myvalue which is then used as the index reference into the array. Note that the myvalue constant is described
as temporary since it is only available within the scope of the if statement. Once the if statement completes
execution, the constant will no longer exist. For this reason, there is no conflict in using the same temporary
name as that assigned to the optional. The following is, for example, valid code:
.

.

if let index = index {
 print(treeArray[index])
} else {

.

.

29

Swift Data Types, Constants and Variables

Optional binding may also be used to unwrap multiple optionals and include a Boolean test condition, the
syntax for which is as follows:
if let constname1 = optName1, let constname2 = optName2,

 let optName3 = …, <boolean statement> {

}

The following code, for example, uses optional binding to unwrap two optionals within a single statement:
var pet1: String?

var pet2: String?

pet1 = "cat"

pet2 = "dog"

if let firstPet = pet1, let secondPet = pet2 {

 print(firstPet)

 print(secondPet)

} else {

 print("insufficient pets")

}

The code fragment below, on the other hand, also makes use of the Boolean test clause condition:
if let firstPet = pet1, let secondPet = pet2, petCount > 1 {
 print(firstPet)

 print(secondPet)

} else {

 print("insufficient pets")

}

In the above example, the optional binding will not be attempted unless the value assigned to petCount is greater
than 1.

It is also possible to declare an optional as being implicitly unwrapped. When an optional is declared in this way,
the underlying value can be accessed without having to perform forced unwrapping or optional binding. An
optional is declared as being implicitly unwrapped by replacing the question mark (?) with an exclamation mark
(!) in the declaration. For example:
var index: Int! // Optional is now implicitly unwrapped

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if index != nil {

 print(treeArray[index])

} else {

 print("index does not contain a value")

}

30

Swift Data Types, Constants and Variables

With the index optional variable now declared as being implicitly unwrapped, it is no longer necessary to unwrap
the value when it is used as an index into the array in the above print call.

One final observation with regard to optionals in Swift is that only optional types are able to have no value or a
value of nil assigned to them. In Swift it is not, therefore, possible to assign a nil value to a non-optional variable
or constant. The following declarations, for instance, will all result in errors from the compiler since none of the
variables are declared as optional:
var myInt = nil // Invalid code

var myString: String = nil // Invalid Code

let myConstant = nil // Invalid code

5.9 Type Casting and Type Checking
When writing Swift code, situations will occur where the compiler is unable to identify the specific type of
a value. This is often the case when a value of ambiguous or unexpected type is returned from a method or
function call. In this situation it may be necessary to let the compiler know the type of value that your code is
expecting or requires using the as keyword (a concept referred to as type casting).

The following code, for example, lets the compiler know that the value returned from the object(forKey:) method
needs to be treated as a String type:
let myValue = record.object(forKey: "comment") as! String

In fact, there are two types of casting which are referred to as upcasting and downcasting. Upcasting occurs when
an object of a particular class is cast to one of its superclasses. Upcasting is performed using the as keyword
and is also referred to as guaranteed conversion since the compiler can tell from the code that the cast will be
successful. The UIButton class, for example, is a subclass of the UIControl class as shown in the fragment of the
UIKit class hierarchy shown in Figure 5-1:

Figure 5-1
Since UIButton is a subclass of UIControl, the object can be safely upcast as follows:
let myButton: UIButton = UIButton()

let myControl = myButton as UIControl

Downcasting, on the other hand, occurs when a conversion is made from one class to another where there is
no guarantee that the cast can be made safely or that an invalid casting attempt will be caught by the compiler.
When an invalid cast is made in downcasting and not identified by the compiler it will most likely lead to an
error at runtime.

31

Swift Data Types, Constants and Variables

Downcasting usually involves converting from a class to one of its subclasses. Downcasting is performed using
the as! keyword syntax and is also referred to as forced conversion. Consider, for example, the UIKit UIScrollView
class which has as subclasses both the UITableView and UITextView classes as shown in Figure 5-2:

Figure 5-2
In order to convert a UIScrollView object to a UITextView class a downcast operation needs to be performed.
The following code attempts to downcast a UIScrollView object to UITextView using the guaranteed conversion
or upcast approach:
let myScrollView: UIScrollView = UIScrollView()

let myTextView = myScrollView as UITextView

The above code will result in the following error:
‘UIScrollView’ is not convertible to ‘UITextView’

The compiler is indicating that a UIScrollView instance cannot be safely converted to a UITextView class
instance. This does not necessarily mean that it is incorrect to do so, the compiler is simply stating that it cannot
guarantee the safety of the conversion for you. The downcast conversion could instead be forced using the as!
annotation:
let myTextView = myScrollView as! UITextView

Now the code will compile without an error. As an example of the dangers of downcasting, however, the above
code will crash on execution stating that UIScrollView cannot be cast to UITextView. Forced downcasting
should, therefore, be used with caution.

A safer approach to downcasting is to perform an optional binding using as?. If the conversion is performed
successfully, an optional value of the specified type is returned, otherwise the optional value will be nil:
if let myTextView = myScrollView as? UITextView {
 print("Type cast to UITextView succeeded")

} else {

 print("Type cast to UITextView failed")

}

It is also possible to type check a value using the is keyword. The following code, for example, checks that a
specific object is an instance of a class named MyClass:
if myobject is MyClass {

 // myobject is an instance of MyClass

32

Swift Data Types, Constants and Variables

}

5.10 Summary
This chapter has begun the introduction to Swift by exploring data types together with an overview of how to
declare constants and variables. The chapter has also introduced concepts such as type safety, type inference and
optionals, each of which is an integral part of Swift programming and designed specifically to make code writing
less prone to error.

33

Chapter 6

6. Swift Operators and Expressions
So far we have looked at using variables and constants in Swift and also described the different data types. Being
able to create variables, however, is only part of the story. The next step is to learn how to use these variables and
constants in Swift code. The primary method for working with data is in the form of expressions.

6.1 Expression Syntax in Swift
The most basic Swift expression consists of an operator, two operands and an assignment. The following is an
example of an expression:
var myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=)
subsequently assigns the result of the addition to a variable named myresult. The operands could just have easily
been variables (or a mixture of constants and variables) instead of the actual numerical values used in the
example.

In the remainder of this chapter we will look at the basic types of operators available in Swift.

6.2 The Basic Assignment Operator
We have already looked at the most basic of assignment operators, the = operator. This assignment operator
simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands.
The left-hand operand is the variable or constant to which a value is to be assigned and the right-hand operand
is the value to be assigned. The right-hand operand is, more often than not, an expression which performs some
type of arithmetic or logical evaluation, the result of which will be assigned to the variable or constant. The
following examples are all valid uses of the assignment operator:
var x: Int? // Declare an optional Int variable

var y = 10 // Declare and initialize a second Int variable

x = 10 // Assign a value to x

x = x! + y // Assign the result of x + y to x

x = y // Assign the value of y to x

6.3 Swift Arithmetic Operators
Swift provides a range of operators for the purpose of creating mathematical expressions. These operators
primarily fall into the category of binary operators in that they take two operands. The exception is the unary
negative operator (-) which serves to indicate that a value is negative rather than positive. This contrasts with
the subtraction operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Swift arithmetic operators:

Operator Description
-(unary) Negates the value of a variable or expression

34

Swift Operators and Expressions

* Multiplication
/ Division
+ Addition
- Subtraction
% Remainder/Modulo

Table 6-1
Note that multiple operators may be used in a single expression.

For example:
x = y * 10 + z - 5 / 4

6.4 Compound Assignment Operators
In an earlier section we looked at the basic assignment operator (=). Swift provides a number of operators
designed to combine an assignment with a mathematical or logical operation. These are primarily of use when
performing an evaluation where the result is to be stored in one of the operands. For example, one might write
an expression as follows:
x = x + y

The above expression adds the value contained in variable x to the value contained in variable y and stores the
result in variable x. This can be simplified using the addition compound assignment operator:
x += y

The above expression performs exactly the same task as x = x + y but saves the programmer some typing.

Numerous compound assignment operators are available in Swift. The most frequently used of which are
outlined in the following table:

Operator Description
x += y Add x to y and place result in x
x -= y Subtract y from x and place result in x
x *= y Multiply x by y and place result in x
x /= y Divide x by y and place result in x
x %= y Perform Modulo on x and y and place result in x

Table 6-2

6.5 Comparison Operators
Swift also includes a set of logical operators useful for performing comparisons. These operators all return a
Boolean result depending on the result of the comparison. These operators are binary operators in that they work
with two operands.

Comparison operators are most frequently used in constructing program flow control logic. For example,
an if statement may be constructed based on whether one value matches another:
if x == y {

 // Perform task

}

The result of a comparison may also be stored in a Bool variable. For example, the following code will result in
a true value being stored in the variable result:

35

Swift Operators and Expressions

var result: Bool?

var x = 10

var y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full
set of Swift comparison operators:

Operator Description
x == y Returns true if x is equal to y
x > y Returns true if x is greater than y
x >= y Returns true if x is greater than or equal to y
x < y Returns true if x is less than y
x <= y Returns true if x is less than or equal to y
x != y Returns true if x is not equal to y

Table 6-3

6.6 Boolean Logical Operators
Swift also provides a set of so-called logical operators designed to return Boolean true or false values. These
operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!),
AND (&&) and OR (||).

The NOT (!) operator simply inverts the current value of a Boolean variable, or the result of an expression. For
example, if a variable named flag is currently true, prefixing the variable with a ‘!’ character will invert the value
to false:
var flag = true // variable is true

var secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true, otherwise it returns false. For
example, the following code evaluates to true because at least one of the expressions either side of the OR
operator is true:
if (10 < 20) || (20 < 10) {

 print("Expression is true")

}

The AND (&&) operator returns true only if both operands evaluate to be true. The following example will
return false because only one of the two operand expressions evaluates to true:
if (10 < 20) && (20 < 10) {

 print("Expression is true")

}

6.7 Range Operators
Swift includes several useful operators that allow ranges of values to be declared. As will be seen in later chapters,
these operators are invaluable when working with looping in program logic.

The syntax for the closed range operator is as follows:

x…y

36

Swift Operators and Expressions

This operator represents the range of numbers starting at x and ending at y where both x and y are included
within the range. The range operator 5…8, for example, specifies the numbers 5, 6, 7 and 8.

The half-open range operator, on the other hand uses the following syntax:

x..<y

In this instance, the operator encompasses all the numbers from x up to, but not including, y. A half-closed range
operator 5..<8, therefore, specifies the numbers 5, 6 and 7.

Finally, the one-sided range operator specifies a range that can extend as far as possible in a specified range
direction until the natural beginning or end of the range is reached (or until some other condition is met). A
one-sided range is declared by omitting the number from one side of the range declaration, for example:

x…

or

…y

The previous chapter, for example, explained that a String in Swift is actually a collection of individual characters.
A range to specify the characters in a string starting with the character at position 2 through to the last character
in the string (regardless of string length) would be declared as follows:

2…

Similarly, to specify a range that begins with the first character and ends with the character at position 6, the
range would be specified as follows:

…6

6.8 The Ternary Operator
Swift supports the ternary operator to provide a shortcut way of making decisions within code. The syntax of the
ternary operator (also known as the conditional operator) is as follows:
condition ? true expression : false expression

The way the ternary operator works is that condition is replaced with an expression that will return either true
or false. If the result is true then the expression that replaces the true expression is evaluated. Conversely, if the
result was false then the false expression is evaluated. Let’s see this in action:
let x = 10

let y = 20

print("Largest number is \(x > y ? x : y)")

The above code example will evaluate whether x is greater than y. Clearly this will evaluate to false resulting in y
being returned to the print call for display to the user:
Largest number is 20

6.9 Nil Coalescing Operator
The nil coalescing operator (??) allows a default value to be used in the event that an optional has a nil value. The
following example will output text which reads “Welcome back, customer” because the customerName optional
is set to nil:
let customerName: String? = nil

37

Swift Operators and Expressions

print("Welcome back, \(customerName ?? "customer")")

If, on the other hand, customerName is not nil, the optional will be unwrapped and the assigned value displayed:
let customerName: String? = "John"

print("Welcome back, \(customerName ?? "customer")")

On execution, the print statement output will now read “Welcome back, John”.

6.10 Bitwise Operators
As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros,
each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Swift
provides a range of bit operators.

Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C and Java will find
nothing new in this area of the Swift language syntax. For those unfamiliar with binary numbers, now may be a
good time to seek out reference materials on the subject in order to understand how ones and zeros are formed
into bytes to form numbers. Other authors have done a much better job of describing the subject than we can
do within the scope of this book.

For the purposes of this exercise we will be working with the binary representation of two numbers (for the sake
of brevity we will be using 8-bit values in the following examples). First, the decimal number 171 is represented
in binary as:
10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to look at the Swift bitwise operators:

6.10.1 Bitwise NOT
The Bitwise NOT is represented by the tilde (~) character and has the effect of inverting all of the bits in a
number. In other words, all the zeros become ones and all the ones become zeros. Taking our example 3 number,
a Bitwise NOT operation has the following result:
00000011 NOT

========

11111100

The following Swift code, therefore, results in a value of -4:
let y = 3

let z = ~y

print("Result is \(z)")

6.10.2 Bitwise AND
The Bitwise AND is represented by a single ampersand (&). It makes a bit by bit comparison of two numbers.
Any corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing
in the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result.
Taking our two example numbers, this would appear as follows:
10101011 AND

00000011

38

Swift Operators and Expressions

========

00000011

As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in
Swift code, therefore, we should find that the result is 3 (00000011):
let x = 171

let y = 3

let z = x & y

print("Result is \(z)")

6.10.3 Bitwise OR
The bitwise OR also performs a bit by bit comparison of two binary sequences. Unlike the AND operation, the
OR places a 1 in the result if there is a 1 in the first or second operand. The operator is represented by a single
vertical bar character (|). Using our example numbers, the result will be as follows:
10101011 OR

00000011

========

10101011

If we perform this operation in a Swift example the result will be 171:
let x = 171

let y = 3

let z = x | y

print("Result is \(z)")

6.10.4 Bitwise XOR
The bitwise XOR (commonly referred to as exclusive OR and represented by the caret ‘^’ character) performs a
similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions
in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For
example:
10101011 XOR

00000011

========

10101000

The result in this case is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some
Swift code:
let x = 171

let y = 3

let z = x ^ y

print("Result is \(z)")

6.10.5 Bitwise Left Shift
The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an
integer one position to the left has the effect of doubling the value.

39

Swift Operators and Expressions

As the bits are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that
once the left most (high order) bits are shifted beyond the size of the variable containing the value, those high
order bits are discarded:
10101011 Left Shift one bit

========

101010110

In Swift the bitwise left shift operator is represented by the ‘<<’ sequence, followed by the number of bit positions
to be shifted. For example, to shift left by 1 bit:
let x = 171

let z = x << 1

print("Result is \(z)")

When compiled and executed, the above code will display a message stating that the result is 342 which, when
converted to binary, equates to 101010110.

6.10.6 Bitwise Right Shift
A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite
direction. Shifting an integer one position to the right has the effect of halving the value.

Note that since we are shifting to the right there is no opportunity to retain the lower most bits regardless of the
data type used to contain the result. As a result, the low order bits are discarded. Whether or not the vacated high
order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive and
negative numbers is set or not.
10101011 Right Shift one bit

========

01010101

The bitwise right shift is represented by the ‘>>’ character sequence followed by the shift count:
let x = 171

let z = x >> 1

print("Result is \(z)")

When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

6.11 Compound Bitwise Operators
As with the arithmetic operators, each bitwise operator has a corresponding compound operator that allows the
operation and assignment to be performed using a single operator:

Operator Description
x &= y Perform a bitwise AND of x and y and assign result to x
x |= y Perform a bitwise OR of x and y and assign result to x
x ^= y Perform a bitwise XOR of x and y and assign result to x
x <<= n Shift x left by n places and assign result to x
x >>= n Shift x right by n places and assign result to x

Table 6-4

40

Swift Operators and Expressions

6.12 Summary
Operators and expressions provide the underlying mechanism by which variables and constants are manipulated
and evaluated within Swift code. This can take the simplest of forms whereby two numbers are added using the
addition operator in an expression and the result stored in a variable using the assignment operator. Operators
fall into a range of categories, details of which have been covered in this chapter.

41

Chapter 7

7. Swift Control Flow
Regardless of the programming language used, application development is largely an exercise in applying logic,
and much of the art of programming involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed, how many times it is executed and, conversely, which code gets
by-passed when the program is executing. This is often referred to as control flow since it controls the flow of
program execution. Control flow typically falls into the categories of looping control (how often code is executed)
and conditional control flow (whether code is executed). This chapter is intended to provide an introductory
overview of both types of control flow in Swift.

7.1 Looping Control Flow
This chapter will begin by looking at control flow in the form of loops. Loops are essentially sequences of Swift
statements which are to be executed repeatedly until a specified condition is met. The first looping statement we
will explore is the for-in loop.

7.2 The Swift for-in Statement
The for-in loop is used to iterate over a sequence of items contained in a collection or number range and provides
a simple to use looping option.

The syntax of the for-in loop is as follows:
for constant name in collection or range {

 // code to be executed

}

In this syntax, constant name is the name to be used for a constant that will contain the current item from the
collection or range through which the loop is iterating. The code in the body of the loop will typically use this
constant name as a reference to the current item in the loop cycle. The collection or range references the item
through which the loop is iterating. This could, for example, be an array of string values, a range operator or
even a string of characters (the topic of collections will be covered in greater detail within the chapter entitled
“Working with Array and Dictionary Collections in Swift”).

Consider, for example, the following for-in loop construct:
for index in 1...5 {

 print("Value of index is \(index)")

}

The loop begins by stating that the current item is to be assigned to a constant named index. The statement then
declares a closed range operator to indicate that the for loop is to iterate through a range of numbers, starting at
1 and ending at 5. The body of the loop simply prints out a message to the console panel indicating the current
value assigned to the index constant, resulting in the following output:
Value of index is 1

Value of index is 2

Value of index is 3

Value of index is 4

Value of index is 5

42

Swift Control Flow

As will be demonstrated in the Working with Array and Dictionary Collections in Swift chapter of this book, the
for-in loop is of particular benefit when working with collections such as arrays and dictionaries.

The declaration of a constant name in which to store a reference to the current item is not mandatory. In the
event that a reference to the current item is not required in the body of the for loop, the constant name in the for
loop declaration can be replaced by an underscore character. For example:
var count = 0

for _ in 1...5 {

 // No reference to the current value is required.

 count += 1

}

7.2.1 The while Loop
The Swift for loop described previously works well when it is known in advance how many times a particular
task needs to be repeated in a program. There will, however, be instances where code needs to be repeated until
a certain condition is met, with no way of knowing in advance how many repetitions are going to be needed to
meet that criteria. To address this need, Swift provides the while loop.

Essentially, the while loop repeats a set of tasks while a specified condition is met. The while loop syntax is
defined as follows:
while condition {

 // Swift statements go here

}

In the above syntax, condition is an expression that will return either true or false and the // Swift statements go
here comment represents the code to be executed while the condition expression is true. For example:
var myCount = 0

while myCount < 100 {

 myCount += 1

}

In the above example, the while expression will evaluate whether the myCount variable is less than 100. If it is
already greater than 100, the code in the braces is skipped and the loop exits without performing any tasks.

If, on the other hand, myCount is not greater than 100 the code in the braces is executed and the loop returns to
the while statement and repeats the evaluation of myCount. This process repeats until the value of myCount is
greater than 100, at which point the loop exits.

7.3 The repeat ... while loop
The repeat … while loop replaces the Swift 1.x do .. while loop. It is often helpful to think of the repeat ... while
loop as an inverted while loop. The while loop evaluates an expression before executing the code contained in the
body of the loop. If the expression evaluates to false on the first check then the code is not executed. The repeat ...
while loop, on the other hand, is provided for situations where you know that the code contained in the body of
the loop will always need to be executed at least once. For example, you may want to keep stepping through the
items in an array until a specific item is found. You know that you have to at least check the first item in the array
to have any hope of finding the entry you need. The syntax for the repeat ... while loop is as follows:
repeat {

 // Swift statements here

43

Swift Control Flow

} while conditional expression

In the repeat ... while example below the loop will continue until the value of a variable named i equals 0:
var i = 10

repeat {

 i -= 1

} while (i > 0)

7.4 Breaking from Loops
Having created a loop, it is possible that under certain conditions you might want to break out of the loop before
the completion criteria have been met (particularly if you have created an infinite loop). One such example
might involve continually checking for activity on a network socket. Once activity has been detected it will most
likely be necessary to break out of the monitoring loop and perform some other task.

For the purpose of breaking out of a loop, Swift provides the break statement which breaks out of the current
loop and resumes execution at the code directly after the loop. For example:
var j = 10

for _ in 0 ..< 100

{

 j += j

 if j > 100 {

 break

 }

 print("j = \(j)")

}

In the above example the loop will continue to execute until the value of j exceeds 100 at which point the loop
will exit and execution will continue with the next line of code after the loop.

7.5 The continue Statement
The continue statement causes all remaining code statements in a loop to be skipped, and execution to be
returned to the top of the loop. In the following example, the print function is only called when the value of
variable i is an even number:
var i = 1

while i < 20

{

 i += 1

 if (i % 2) != 0 {

 continue

 }

 print("i = \(i)")

44

Swift Control Flow

}

The continue statement in the above example will cause the print call to be skipped unless the value of i can be
divided by 2 with no remainder. If the continue statement is triggered, execution will skip to the top of the while
loop and the statements in the body of the loop will be repeated (until the value of i exceeds 19).

7.6 Conditional Control Flow
In the previous chapter we looked at how to use logical expressions in Swift to determine whether something
is true or false. Since programming is largely an exercise in applying logic, much of the art of programming
involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets
executed and, conversely, which code gets by-passed when the program is executing.

7.7 Using the if Statement
The if statement is perhaps the most basic of control flow options available to the Swift programmer. Programmers
who are familiar with C, Objective-C, C++ or Java will immediately be comfortable using Swift if statements.

The basic syntax of the Swift if statement is as follows:
if boolean expression {

 // Swift code to be performed when expression evaluates to true

}

Unlike some other programming languages, it is important to note that the braces ({}) are mandatory in Swift,
even if only one line of code is executed after the if expression.

Essentially if the Boolean expression evaluates to true then the code in the body of the statement is executed. The
body of the statement is enclosed in braces ({}). If, on the other hand, the expression evaluates to false the code
in the body of the statement is skipped.

For example, if a decision needs to be made depending on whether one value is greater than another, we would
write code similar to the following:
let x = 10

if x > 9 {

 print("x is greater than 9!")

}

Clearly, x is indeed greater than 9 causing the message to appear in the console panel.

7.8 Using if ... else … Statements
The next variation of the if statement allows us to also specify some code to perform if the expression in the if
statement evaluates to false. The syntax for this construct is as follows:
if boolean expression {

 // Code to be executed if expression is true

} else {

 // Code to be executed if expression is false

}

Using the above syntax, we can now extend our previous example to display a different message if the comparison
expression evaluates to be false:
let x = 10

45

Swift Control Flow

if x > 9 {

 print("x is greater than 9!")

} else {

 print("x is less than 9!")

}

In this case, the second print statement would execute if the value of x was less than 9.

7.9 Using if ... else if ... Statements
So far we have looked at if statements which make decisions based on the result of a single logical expression.
Sometimes it becomes necessary to make decisions based on a number of different criteria. For this purpose, we
can use the if ... else if ... construct, an example of which is as follows:
let x = 9;

if x == 10 {

 print("x is 10")

} else if x == 9 {

 print("x is 9")

} else if x == 8 {

 print("x is 8")

}

This approach works well for a moderate number of comparisons but can become cumbersome for a larger
volume of expression evaluations. For such situations, the Swift switch statement provides a more flexible and
efficient solution. For more details on using the switch statement refer to the next chapter entitled “The Swift
Switch Statement”.

7.10 The guard Statement
The guard statement is a Swift language feature introduced as part of Swift 2. A guard statement contains a
Boolean expression which must evaluate to true in order for the code located after the guard statement to
be executed. The guard statement must include an else clause to be executed in the event that the expression
evaluates to false. The code in the else clause must contain a statement to exit the current code flow (i.e. a return,
break, continue or throw statement). Alternatively, the else block may call any other function or method that does
not itself return.

The syntax for the guard statement is as follows:
guard <boolean expressions> else {

 // code to be executed if expression is false

 <exit statement here>

}

// code here is executed if expression is true

The guard statement essentially provides an “early exit” strategy from the current function or loop in the event
that a specified requirement is not met.

The following code example implements a guard statement within a function:
func multiplyByTen(value: Int?) {

46

Swift Control Flow

 guard let number = value, number < 10 else {
 print("Number is too high")
 return
 }

 let result = number * 10

 print(result)

}

The function takes as a parameter an integer value in the form of an optional. The guard statement uses
optional binding to unwrap the value and verify that it is less than 10. In the event that the variable could not
be unwrapped, or that its value is greater than 9, the else clause is triggered, the error message printed, and the
return statement executed to exit the function.

If the optional contains a value less than 10, the code after the guard statement executes to multiply the value by
10 and print the result. A particularly important point to note about the above example is that the unwrapped
number variable is available to the code outside of the guard statement. This would not have been the case had
the variable been unwrapped using an if statement.

7.11 Summary
The term control flow is used to describe the logic that dictates the execution path that is taken through the
source code of an application as it runs. This chapter has looked at the two types of control flow provided by
Swift (looping and conditional) and explored the various Swift constructs that are available to implement both
forms of control flow logic.

47

Chapter 8

8. The Swift Switch Statement
In “Swift Control Flow” we looked at how to control program execution flow using the if and else statements.
While these statement constructs work well for testing a limited number of conditions, they quickly become
unwieldy when dealing with larger numbers of possible conditions. To simplify such situations, Swift has
inherited the switch statement from the C programming language. Those familiar with the switch statement
from other programming languages should be aware, however, that the Swift switch statement has some key
differences from other implementations. In this chapter we will explore the Swift implementation of the switch
statement in detail.

8.1 Why Use a switch Statement?
For a small number of logical evaluations of a value the if ... else if ... construct is perfectly adequate. Unfortunately,
any more than two or three possible scenarios can quickly make such a construct both time consuming to write
and difficult to read. For such situations, the switch statement provides an excellent alternative.

8.2 Using the switch Statement Syntax
The syntax for a basic Swift switch statement implementation can be outlined as follows:
switch expression

{

 case match1:

 statements

 case match2:

 statements

 case match3, match4:

 statements

 default:

 statements

}

In the above syntax outline, expression represents either a value, or an expression which returns a value. This is
the value against which the switch operates.

For each possible match a case statement is provided, followed by a match value. Each potential match must be
of the same type as the governing expression. Following on from the case line are the Swift statements that are
to be executed in the event of the value matching the case condition.

Finally, the default section of the construct defines what should happen if none of the case statements present a
match to the expression.

8.3 A Swift switch Statement Example
With the above information in mind we may now construct a simple switch statement:

48

The Swift Switch Statement

let value = 4

switch (value)

{

 case 0:

 print("zero")

 case 1:

 print("one")

 case 2:

 print("two")

 case 3:

 print("three")

 case 4:

 print("four")

 case 5:

 print("five")

 default:

 print("Integer out of range")

}

8.4 Combining case Statements
In the above example, each case had its own set of statements to execute. Sometimes a number of different
matches may require the same code to be executed. In this case, it is possible to group case matches together
with a common set of statements to be executed when a match for any of the cases is found. For example, we can
modify the switch construct in our example so that the same code is executed regardless of whether the value
is 0, 1 or 2:
let value = 1

switch (value)

{

 case 0, 1, 2:

 print("zero, one or two")

 case 3:

 print("three")

 case 4:

 print("four")

 case 5:

49

The Swift Switch Statement

 print("five")

 default:

 print("Integer out of range")

}

8.5 Range Matching in a switch Statement
The case statements within a switch construct may also be used to implement range matching. The following
switch statement, for example, checks a temperature value for matches within three number ranges:
let temperature = 83

switch (temperature)

{

 case 0...49:

 print("Cold")

 case 50...79:

 print("Warm")

 case 80...110:

 print("Hot")

 default:

 print("Temperature out of range")

}

8.6 Using the where statement
The where statement may be used within a switch case match to add additional criteria required for a positive
match. The following switch statement, for example, checks not only for the range in which a value falls, but also
whether the number is odd or even:
let temperature = 54

switch (temperature)

{

 case 0...49 where temperature % 2 == 0:

 print("Cold and even")

 case 50...79 where temperature % 2 == 0:

 print("Warm and even")

 case 80...110 where temperature % 2 == 0:

 print("Hot and even")

 default:

 print("Temperature out of range or odd")

}

50

The Swift Switch Statement

8.7 Fallthrough
Those familiar with switch statements in other languages such as C and Objective-C will notice that it is no
longer necessary to include a break statement after each case declaration. Unlike other languages, Swift
automatically breaks out of the statement when a matching case condition is met. The fallthrough effect of other
switch implementations (whereby the execution path continues through the remaining case statements) can be
emulated using the fallthrough statement:
let temperature = 10

switch (temperature)

{

 case 0...49 where temperature % 2 == 0:

 print("Cold and even")

 fallthrough

 case 50...79 where temperature % 2 == 0:

 print("Warm and even")

 fallthrough

 case 80...110 where temperature % 2 == 0:

 print("Hot and even")

 fallthrough

 default:

 print("Temperature out of range or odd")

}

Although break is less commonly used in Swift switch statements, it is useful when no action needs to be taken
for the default case. For example:
.

.

.

default:

 break

}

8.8 Summary
While the if.. else.. construct serves as a good decision-making option for small numbers of possible outcomes,
this approach can become unwieldy in more complex situations. As an alternative method for implementing
flow control logic in Swift when many possible outcomes exist as the result of an evaluation, the switch statement
invariably makes a more suitable option. As outlined in this chapter, however, developers familiar with switch
implementations from other programming languages should be aware of some subtle differences in the way that
the Swift switch statement works.

51

Chapter 9

9. Swift Functions, Methods and
Closures
Swift functions, methods and closures are a vital part of writing well-structured and efficient code and provide a
way to organize programs while avoiding code repetition. In this chapter we will look at how functions, methods
and closures are declared and used within Swift.

9.1 What is a Function?
A function is a named block of code that can be called upon to perform a specific task. It can be provided data
on which to perform the task and is capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Swift program, the code to perform the arithmetic
can be placed in a function. The function can be programmed to accept the values on which the arithmetic
is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the
program code where the calculation is required the function is simply called, parameter values passed through
as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however,
a subtle difference. The values that a function is able to accept when it is called are referred to as parameters. At
the point that the function is actually called and passed those values, however, they are referred to as arguments.

9.2 What is a Method?
A method is essentially a function that is associated with a particular class, structure or enumeration. If, for
example, you declare a function within a Swift class (a topic covered in detail in the chapter entitled “The Basics
of Swift Object-Oriented Programming”), it is considered to be a method. Although the remainder of this chapter
refers to functions, the same rules and behavior apply equally to methods unless otherwise stated.

9.3 How to Declare a Swift Function
A Swift function is declared using the following syntax:
func <function name> (<para name>: <para type>,

 <para name>: <para type>, ...) -> <return type> {

 // Function code
}

This combination of function name, parameters and return type are referred to as the function signature.
Explanations of the various fields of the function declaration are as follows:

• func – The prefix keyword used to notify the Swift compiler that this is a function.

• <function name> - The name assigned to the function. This is the name by which the function will be
referenced when it is called from within the application code.

• <para name> - The name by which the parameter is to be referenced in the function code.

• <para type> - The type of the corresponding parameter.

52

 Swift Functions, Methods and Closures

• <return type> - The data type of the result returned by the function. If the function does not return a result
then no return type is specified.

• Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result and simply displays a message:
func sayHello() {

 print("Hello")

}

The following sample function, on the other hand, takes an integer and a string as parameters and returns a
string result:
func buildMessageFor(name: String, count: Int) -> String {

 return("\(name), you are customer number \(count)")

}

9.4 Implicit Returns from Single Expressions
In the previous example, the return statement was used to return the string value from within the buildMessageFor()
function. It is worth noting that if a function contains a single expression (as was the case in this example), the
return statement may be omitted. The buildMessageFor() method could, therefore, be rewritten as follows:
func buildMessageFor(name: String, count: Int) -> String {

 "\(name), you are customer number \(count)"

}

The return statement can only be omitted if the function contains a single expression. The following code,
for example, will fail to compile since the function contains two expressions requiring the use of the return
statement:
func buildMessageFor(name: String, count: Int) -> String {

 let uppername = name.uppercased()

 "\(uppername), you are customer number \(count)" // Invalid expression

}

9.5 Calling a Swift Function
Once declared, functions are called using the following syntax:
<function name> (<arg1>, <arg2>, ...)

Each argument passed through to a function must match the parameters the function is configured to accept.
For example, to call a function named sayHello that takes no parameters and returns no value, we would write
the following code:
sayHello()

9.6 Handling Return Values
To call a function named buildMessageFor that takes two parameters and returns a result, on the other hand, we
might write the following code:
let message = buildMessageFor(name: "John", count: 100)

In the above example, we have created a new variable called message and then used the assignment operator (=)
to store the result returned by the function.

When developing in Swift, situations may arise where the result returned by a method or function call is not

53

 Swift Functions, Methods and Closures

used. When this is the case, the return value may be discarded by assigning it to ‘_’. For example:
_ = buildMessageFor(name: "John", count: 100)

9.7 Local and External Parameter Names
When the preceding example functions were declared, they were configured with parameters that were assigned
names which, in turn, could be referenced within the body of the function code. When declared in this way,
these names are referred to as local parameter names.

In addition to local names, function parameters may also have external parameter names. These are the names
by which the parameter is referenced when the function is called. By default, function parameters are assigned
the same local and external parameter names. Consider, for example, the previous call to the buildMessageFor
method:
let message = buildMessageFor(name: "John", count: 100)

As declared, the function uses “name” and “count” as both the local and external parameter names.

The default external parameter names assigned to parameters may be removed by preceding the local parameter
names with an underscore (_) character as follows:
func buildMessageFor(_ name: String, _ count: Int) -> String {

 return("\(name), you are customer number \(count)")

}

With this change implemented, the function may now be called as follows:
let message = buildMessageFor("John", 100)

Alternatively, external parameter names can be added simply by declaring the external parameter name before
the local parameter name within the function declaration. In the following code, for example, the external
names of the first and second parameters have been set to “username” and “usercount” respectively:
func buildMessageFor(username name: String, usercount count: Int)
 -> String {

 return("\(name), you are customer number \(count)")

}

When declared in this way, the external parameter name must be referenced when calling the function:
let message = buildMessageFor(username: "John", usercount: 100)

Regardless of the fact that the external names are used to pass the arguments through when calling the function,
the local names are still used to reference the parameters within the body of the function. It is important to also
note that when calling a function using external parameter names for the arguments, those arguments must still
be placed in the same order as that used when the function was declared.

9.8 Declaring Default Function Parameters
Swift provides the ability to designate a default parameter value to be used in the event that the value is not
provided as an argument when the function is called. This simply involves assigning the default value to
the parameter when the function is declared. Swift also provides a default external name based on the local
parameter name for defaulted parameters (unless one is already provided) which must then be used when
calling the function.

To see default parameters in action the buildMessageFor function will be modified so that the string “Customer”
is used as a default in the event that a customer name is not passed through as an argument:
func buildMessageFor(_ name: String = "Customer", count: Int) -> String

54

 Swift Functions, Methods and Closures

{

 return ("\(name), you are customer number \(count)")

}

The function can now be called without passing through a name argument:
let message = buildMessageFor(count: 100)

print(message)

When executed, the above function call will generate output to the console panel which reads:
Customer, you are customer 100

9.9 Returning Multiple Results from a Function
A function can return multiple result values by wrapping those results in a tuple. The following function takes as
a parameter a measurement value in inches. The function converts this value into yards, centimeters and meters,
returning all three results within a single tuple instance:
func sizeConverter(_ length: Float) -> (yards: Float, centimeters: Float,

 meters: Float) {

 let yards = length * 0.0277778

 let centimeters = length * 2.54

 let meters = length * 0.0254

 return (yards, centimeters, meters)

}

The return type for the function indicates that the function returns a tuple containing three values named yards,
centimeters and meters respectively, all of which are of type Float:
-> (yards: Float, centimeters: Float, meters: Float)

Having performed the conversion, the function simply constructs the tuple instance and returns it.

Usage of this function might read as follows:
let lengthTuple = sizeConverter(20)

print(lengthTuple.yards)

print(lengthTuple.centimeters)

print(lengthTuple.meters)

9.10 Variable Numbers of Function Parameters
It is not always possible to know in advance the number of parameters a function will need to accept when it
is called within application code. Swift handles this possibility through the use of variadic parameters. Variadic
parameters are declared using three periods (…) to indicate that the function accepts zero or more parameters
of a specified data type. Within the body of the function, the parameters are made available in the form of an
array object. The following function, for example, takes as parameters a variable number of String values and
then outputs them to the console panel:
func displayStrings(_ strings: String...)

{

 for string in strings {

 print(string)

55

 Swift Functions, Methods and Closures

 }

}

displayStrings("one", "two", "three", "four")

9.11 Parameters as Variables
All parameters accepted by a function are treated as constants by default. This prevents changes being made to
those parameter values within the function code. If changes to parameters need to be made within the function
body, therefore, shadow copies of those parameters must be created. The following function, for example, is
passed length and width parameters in inches, creates shadow variables of the two values and converts those
parameters to centimeters before calculating and returning the area value:
func calcuateArea(length: Float, width: Float) -> Float {

 var length = length

 var width = width

 length = length * 2.54

 width = width * 2.54

 return length * width

}

print(calcuateArea(length: 10, width: 20))

9.12 Working with In-Out Parameters
When a variable is passed through as a parameter to a function, we now know that the parameter is treated as a
constant within the body of that function. We also know that if we want to make changes to a parameter value
we have to create a shadow copy as outlined in the above section. Since this is a copy, any changes made to the
variable are not, by default, reflected in the original variable. Consider, for example, the following code:
var myValue = 10

func doubleValue (_ value: Int) -> Int {

 var value = value

 value += value

 return(value)

}

print("Before function call myValue = \(myValue)")

print("doubleValue call returns \(doubleValue(myValue))")

print("After function call myValue = \(myValue)")

The code begins by declaring a variable named myValue initialized with a value of 10. A new function is then
declared which accepts a single integer parameter. Within the body of the function, a shadow copy of the value
is created, doubled and returned.

The remaining lines of code display the value of the myValue variable before and after the function call is made.
When executed, the following output will appear in the console:

56

 Swift Functions, Methods and Closures

Before function call myValue = 10

doubleValue call returns 20

After function call myValue = 10

Clearly, the function has made no change to the original myValue variable. This is to be expected since the
mathematical operation was performed on a copy of the variable, not the myValue variable itself.

In order to make any changes made to a parameter persist after the function has returned, the parameter must
be declared as an in-out parameter within the function declaration. To see this in action, modify the doubleValue
function to include the inout keyword, and remove the creation of the shadow copy as follows:
func doubleValue (_ value: inout Int) -> Int {
 var value = value

 value += value

 return(value)

}

Finally, when calling the function, the inout parameter must now be prefixed with an & modifier:
print("doubleValue call returned \(doubleValue(&myValue))")

Having made these changes, a test run of the code should now generate output clearly indicating that the
function modified the value assigned to the original myValue variable:
Before function call myValue = 10

doubleValue call returns 20

After function call myValue = 20

9.13 Functions as Parameters
An interesting feature of functions within Swift is that they can be treated as data types. It is perfectly valid, for
example, to assign a function to a constant or variable as illustrated in the declaration below:
func inchesToFeet (_ inches: Float) -> Float {

 return inches * 0.0833333

}

let toFeet = inchesToFeet

The above code declares a new function named inchesToFeet and subsequently assigns that function to a constant
named toFeet. Having made this assignment, a call to the function may be made using the constant name instead
of the original function name:
let result = toFeet(10)

On the surface this does not seem to be a particularly compelling feature. Since we could already call the function
without assigning it to a constant or variable data type it does not seem that much has been gained.

The possibilities that this feature offers become more apparent when we consider that a function assigned to
a constant or variable now has the capabilities of many other data types. In particular, a function can now be
passed through as an argument to another function, or even returned as a result from a function.

Before we look at what is, essentially, the ability to plug one function into another, it is first necessary to explore
the concept of function data types. The data type of a function is dictated by a combination of the parameters
it accepts and the type of result it returns. In the above example, since the function accepts a floating-point
parameter and returns a floating-point result, the function’s data type conforms to the following:
(Float) -> Float

57

 Swift Functions, Methods and Closures

A function which accepts an Int and a Double as parameters and returns a String result, on the other hand,
would have the following data type:
(Int, Double) -> String

In order to accept a function as a parameter, the receiving function simply declares the data type of the function
it is able to accept.

For the purposes of an example, we will begin by declaring two unit conversion functions and assigning them
to constants:
func inchesToFeet (_ inches: Float) -> Float {

 return inches * 0.0833333

}

func inchesToYards (_ inches: Float) -> Float {

 return inches * 0.0277778

}

let toFeet = inchesToFeet

let toYards = inchesToYards

The example now needs an additional function, the purpose of which is to perform a unit conversion and print
the result in the console panel. This function needs to be as general purpose as possible, capable of performing
a variety of different measurement unit conversions. In order to demonstrate functions as parameters, this
new function will take as a parameter a function type that matches both the inchesToFeet and inchesToYards
function data type together with a value to be converted. Since the data type of these functions is equivalent to
(Float) -> Float, our general-purpose function can be written as follows:
func outputConversion(_ converterFunc: (Float) -> Float, value: Float) {

 let result = converterFunc(value)

 print("Result of conversion is \(result)")

}

When the outputConversion function is called, it will need to be passed a function matching the declared data
type. That function will be called to perform the conversion and the result displayed in the console panel. This
means that the same function can be called to convert inches to both feet and yards, simply by “plugging in” the
appropriate converter function as a parameter. For example:
outputConversion(toYards, value: 10) // Convert to Yards

outputConversion(toFeet, value: 10) // Convert to Inches

Functions can also be returned as a data type simply by declaring the type of the function as the return type. The
following function is configured to return either our toFeet or toYards function type (in other words a function
which accepts and returns a Float value) based on the value of a Boolean parameter:
func decideFunction(_ feet: Bool) -> (Float) -> Float

{

 if feet {

 return toFeet

58

 Swift Functions, Methods and Closures

 } else {

 return toYards

 }

}

9.14 Closure Expressions
Having covered the basics of functions in Swift it is now time to look at the concept of closures and closure
expressions. Although these terms are often used interchangeably there are some key differences.

Closure expressions are self-contained blocks of code. The following code, for example, declares a closure
expression and assigns it to a constant named sayHello and then calls the function via the constant reference:
let sayHello = { print("Hello") }

sayHello()

Closure expressions may also be configured to accept parameters and return results. The syntax for this is as
follows:
{(<para name>: <para type>, <para name> <para type>, ...) ->

 <return type> in
 // Closure expression code here
}

The following closure expression, for example, accepts two integer parameters and returns an integer result:
let multiply = {(_ val1: Int, _ val2: Int) -> Int in

 return val1 * val2

}

let result = multiply(10, 20)

Note that the syntax is similar to that used for declaring Swift functions with the exception that the closure
expression does not have a name, the parameters and return type are included in the braces and the in keyword
is used to indicate the start of the closure expression code. Functions are, in fact, just named closure expressions.

Closure expressions are often used when declaring completion handlers for asynchronous method calls. In
other words, when developing iOS applications, it will often be necessary to make calls to the operating system
where the requested task is performed in the background allowing the application to continue with other tasks.
Typically, in such a scenario, the system will notify the application of the completion of the task and return any
results by calling the completion handler that was declared when the method was called. Frequently the code for
the completion handler will be implemented in the form of a closure expression. Consider the following code
example:
eventstore.requestAccess(to: .reminder, completion: {(granted: Bool,
 error: Error?) -> Void in
 if !granted {
 print(error!.localizedDescription)
 }
})

When the tasks performed by the requestAccess(to:) method call are complete it will execute the closure
expression declared as the completion: parameter. The completion handler is required by the method to accept a
Boolean value and an Error object as parameters and return no results, hence the following declaration:
{(granted: Bool, error: Error?) -> Void in

59

 Swift Functions, Methods and Closures

In actual fact, the Swift compiler already knows about the parameter and return value requirements for the
completion handler for this method call and is able to infer this information without it being declared in the
closure expression. This allows a simpler version of the closure expression declaration to be written:
eventstore.requestAccess(to: .reminder, completion: {(granted, error) in
 if !granted {

 print(error!.localizedDescription)

 }

})

9.15 Shorthand Argument Names
A useful technique for simplifying closures involves using shorthand argument names. This allows the parameter
names and “in” keyword to be omitted from the declaration and the arguments to be referenced as $0, $1, $2 etc.

Consider, for example, a closure expression designed to concatenate two strings:
let join = { (string1: String, string2: String) -> String in

 string1 + string2

}

Using shorthand argument names, this declaration can be simplified as follows:
let join: (String, String) -> String = {

 $0 + $1

}

Note that the type declaration ((String, String) -> String) has been moved to the left of the assignment operator
since the closure expression no longer defines the argument or return types.

9.16 Closures in Swift
A closure in computer science terminology generally refers to the combination of a self-contained block of code
(for example a function or closure expression) and one or more variables that exist in the context surrounding
that code block. Consider, for example the following Swift function:
func functionA() -> () -> Int {

 var counter = 0

 func functionB() -> Int {
 return counter + 10
 }
 return functionB

}

let myClosure = functionA()

let result = myClosure()

In the above code, functionA returns a function named functionB. In actual fact functionA is returning a closure
since functionB relies on the counter variable which is declared outside the functionB’s local scope. In other
words, functionB is said to have captured or closed over (hence the term closure) the counter variable and, as
such, is considered a closure in the traditional computer science definition of the word.

To a large extent, and particularly as it relates to Swift, the terms closure and closure expression have started to be

60

 Swift Functions, Methods and Closures

used interchangeably. The key point to remember, however, is that both are supported in Swift.

9.17 Summary
Functions, closures and closure expressions are self-contained blocks of code that can be called upon to perform
a specific task and provide a mechanism for structuring code and promoting reuse. This chapter has introduced
the concepts of functions and closures in terms of declaration and implementation.

61

Chapter 10

10. The Basics of Swift Object-
Oriented Programming
Swift provides extensive support for developing object-oriented applications. The subject area of object-oriented
programming is, however, large. It is not an exaggeration to state that entire books have been dedicated to the
subject. As such, a detailed overview of object-oriented software development is beyond the scope of this book.
Instead, we will introduce the basic concepts involved in object-oriented programming and then move on to
explaining the concept as it relates to Swift application development. Once again, while we strive to provide the
basic information you need in this chapter, we recommend reading a copy of Apple’s The Swift Programming
Language book for more extensive coverage of this subject area.

10.1 What is an Instance?
Objects (also referred to as class instances) are self-contained modules of functionality that can be easily used
and re-used as the building blocks for a software application.

Instances consist of data variables (called properties) and functions (called methods) that can be accessed and
called on the instance to perform tasks and are collectively referred to as class members.

10.2 What is a Class?
Much as a blueprint or architect’s drawing defines what an item or a building will look like once it has been
constructed, a class defines what an instance will look like when it is created. It defines, for example, what
the methods will do and what the properties will be.

10.3 Declaring a Swift Class
Before an instance can be created, we first need to define the class ‘blueprint’ for the instance. In this chapter we
will create a bank account class to demonstrate the basic concepts of Swift object-oriented programming.

In declaring a new Swift class we specify an optional parent class from which the new class is derived and also
define the properties and methods that the class will contain. The basic syntax for a new class is as follows:
class NewClassName: ParentClass {

 // Properties

 // Instance Methods

 // Type methods

}

The Properties section of the declaration defines the variables and constants that are to be contained within the
class. These are declared in the same way that any other variable or constant would be declared in Swift.

The Instance methods and Type methods sections define the methods that are available to be called on the class
and instances of the class. These are essentially functions specific to the class that perform a particular operation
when called upon and will be described in greater detail later in this chapter.

To create an example outline for our BankAccount class, we would use the following:
class BankAccount {

62

The Basics of Swift Object-Oriented Programming

}

Now that we have the outline syntax for our class, the next step is to add some instance properties to it.

When naming classes, note that the convention is for the first character of each word to be declared in uppercase
(a concept referred to as UpperCamelCase). This contrasts with property and function names where lower case
is used for the first character (referred to as lowerCamelCase).

10.4 Adding Instance Properties to a Class
A key goal of object-oriented programming is a concept referred to as data encapsulation. The idea behind data
encapsulation is that data should be stored within classes and accessed only through methods defined in that
class. Data encapsulated in a class are referred to as properties or instance variables.

Instances of our BankAccount class will be required to store some data, specifically a bank account number and
the balance currently held within the account. Properties are declared in the same way any other variables and
constants are declared in Swift. We can, therefore, add these variables as follows:
class BankAccount {

 var accountBalance: Float = 0
 var accountNumber: Int = 0
}

Having defined our properties, we can now move on to defining the methods of the class that will allow us to
work with our properties while staying true to the data encapsulation model.

10.5 Defining Methods
The methods of a class are essentially code routines that can be called upon to perform specific tasks within the
context of that class.

Methods come in two different forms, type methods and instance methods. Type methods operate at the level of
the class, such as creating a new instance of a class. Instance methods, on the other hand, operate only on the
instances of a class (for example performing an arithmetic operation on two property variables and returning
the result).

Instance methods are declared within the opening and closing braces of the class to which they belong and are
declared using the standard Swift function declaration syntax.

Type methods are declared in the same way as instance methods with the exception that the declaration is
preceded by the class keyword.

For example, the declaration of a method to display the account balance in our example might read as follows:
class BankAccount {

 var accountBalance: Float = 0

 var accountNumber: Int = 0

 func displayBalance()
 {
 print("Number \(accountNumber)")
 print("Current balance is \(accountBalance)")
 }

63

The Basics of Swift Object-Oriented Programming

}

The method is an instance method so it is not preceded by the class keyword.

When designing the BankAccount class it might be useful to be able to call a type method on the class itself
to identify the maximum allowable balance that can be stored by the class. This would enable an application
to identify whether the BankAccount class is suitable for storing details of a new customer without having
to go through the process of first creating a class instance. This method will be named getMaxBalance and is
implemented as follows:
class BankAccount {

 var accountBalance: Float = 0

 var accountNumber: Int = 0

 func displayBalance()

 {

 print("Number \(accountNumber)")

 print("Current balance is \(accountBalance)")

 }

 class func getMaxBalance() -> Float {
 return 100000.00
 }
}

10.6 Declaring and Initializing a Class Instance
So far all we have done is define the blueprint for our class. In order to do anything with this class, we need to
create instances of it. The first step in this process is to declare a variable to store a reference to the instance when
it is created. We do this as follows:
var account1: BankAccount = BankAccount()

When executed, an instance of our BankAccount class will have been created and will be accessible via the
account1 variable.

10.7 Initializing and De-initializing a Class Instance
A class will often need to perform some initialization tasks at the point of creation. These tasks can be
implemented by placing an init method within the class. In the case of the BankAccount class, it would be useful
to be able to initialize the account number and balance properties with values when a new class instance is
created. To achieve this, the init method could be written in the class as follows:
class BankAccount {

 var accountBalance: Float = 0

 var accountNumber: Int = 0

 init(number: Int, balance: Float)
 {
 accountNumber = number
 accountBalance = balance

64

The Basics of Swift Object-Oriented Programming

 }

 func displayBalance()

 {

 print("Number \(accountNumber)")

 print("Current balance is \(accountBalance)")

 }

}

When creating an instance of the class, it will now be necessary to provide initialization values for the account
number and balance properties as follows:
var account1 = BankAccount(number: 12312312, balance: 400.54)

Conversely, any cleanup tasks that need to be performed before a class instance is destroyed by the Swift runtime
system can be performed by implementing the de-initializer within the class definition:
class BankAccount {

 var accountBalance: Float = 0

 var accountNumber: Int = 0

 init(number: Int, balance: Float)

 {

 accountNumber = number

 accountBalance = balance

 }

 deinit {
 // Perform any necessary clean up here
 }

 func displayBalance()

 {

 print("Number \(accountNumber)")

 print("Current balance is \(accountBalance)")

 }

}

10.8 Calling Methods and Accessing Properties
Now is probably a good time to recap what we have done so far in this chapter. We have now created a new
Swift class named BankAccount. Within this new class we declared some properties to contain the bank account
number and current balance together with an initializer and a method to display the current balance information.
In the preceding section we covered the steps necessary to create and initialize an instance of our new class. The
next step is to learn how to call the instance methods and access the properties we built into our class. This is
most easily achieved using dot notation.

Dot notation involves accessing an instance variable, or calling an instance method by specifying a class instance
followed by a dot followed in turn by the name of the property or method:
classInstance.propertyName

65

The Basics of Swift Object-Oriented Programming

classInstance.instanceMethod()

For example, to get the current value of our accountBalance instance variable:
var balance1 = account1.accountBalance

Dot notation can also be used to set values of instance properties:
account1.accountBalance = 6789.98

The same technique is used to call methods on a class instance. For example, to call the displayBalance method
on an instance of the BankAccount class:
account1.displayBalance()

Type methods are also called using dot notation, though they must be called on the class type instead of a class
instance:
ClassName.typeMethod()

For example, to call the previously declared getMaxBalance type method, the BankAccount class is referenced:
var maxAllowed = BankAccount.getMaxBalance()

10.9 Stored and Computed Properties
Class properties in Swift fall into two categories referred to as stored properties and computed properties. Stored
properties are those values that are contained within a constant or variable. Both the account name and number
properties in the BankAccount example are stored properties.

A computed property, on the other hand, is a value that is derived based on some form of calculation or logic
at the point at which the property is set or retrieved. Computed properties are implemented by creating getter
and optional corresponding setter methods containing the code to perform the computation. Consider, for
example, that the BankAccount class might need an additional property to contain the current balance less any
recent banking fees. Rather than use a stored property, it makes more sense to use a computed property which
calculates this value on request. The modified BankAccount class might now read as follows:
class BankAccount {

 var accountBalance: Float = 0

 var accountNumber: Int = 0;

 let fees: Float = 25.00

 var balanceLessFees: Float {
 get {
 return accountBalance - fees
 }
 }

 init(number: Int, balance: Float)

 {

 accountNumber = number

 accountBalance = balance

 }

.

.

66

The Basics of Swift Object-Oriented Programming

.

}

The above code adds a getter that returns a computed property based on the current balance minus a fee amount.
An optional setter could also be declared in much the same way to set the balance value less fees:
var balanceLessFees: Float {

 get {

 return accountBalance - fees

 }

 set(newBalance)
 {
 accountBalance = newBalance - fees
 }
}

The new setter takes as a parameter a floating-point value from which it deducts the fee value before assigning
the result to the current balance property. Although these are computed properties, they are accessed in the
same way as stored properties using dot-notation. The following code gets the current balance less the fees value
before setting the property to a new value:
var balance1 = account1.balanceLessFees

account1.balanceLessFees = 12123.12

10.10 Lazy Stored Properties
There are several different ways in which a property can be initialized, the most basic being direct assignment
as follows:
var myProperty = 10

Alternatively, a property may be assigned a value within the initializer:
class MyClass {

 let title: String

 init(title: String) {

 self.title = title

 }

}

For more complex requirements, a property may be initialized using a closure:
class MyClass {

 var myProperty: String = {

 var result = resourceIntensiveTask()

 result = processData(data: result)

 return result

 }()

.

.

}

67

The Basics of Swift Object-Oriented Programming

Particularly in the case of a complex closure, there is the potential for the initialization to be resource intensive
and time consuming. When declared in this way, the initialization will be performed every time an instance
of the class is created, regardless of when (or even if) the property is actually used within the code of the app.
Also, situations may arise where the value assigned to the property may not be known until a later stage in the
execution process, for example after data has been retrieved from a database or user input has been obtained
from the user. A far more efficient solution in such situations would be for the initialization to take place only
when the property is first accessed. Fortunately, this can be achieved by declaring the property as lazy as follows:
class MyClass {

 lazy var myProperty: String = {
 var result = resourceIntensiveTask()

 result = processData(data: result)

 return result

 }()

.

.

}

When a property is declared as being lazy, it is only initialized when it is first accessed, allowing any resource
intensive activities to be deferred until the property is needed and any initialization on which the property is
dependent to be completed.

Note that lazy properties must be declared as variables (var).

10.11 Using self in Swift
Programmers familiar with other object-oriented programming languages may be in the habit of prefixing
references to properties and methods with self to indicate that the method or property belongs to the current
class instance. The Swift programming language also provides the self property type for this purpose and it is,
therefore, perfectly valid to write code which reads as follows:
class MyClass {

 var myNumber = 1

 func addTen() {

 self.myNumber += 10

 }

}

In this context, the self prefix indicates to the compiler that the code is referring to a property named myNumber
which belongs to the MyClass class instance. When programming in Swift, however, it is no longer necessary to
use self in most situations since this is now assumed to be the default for references to properties and methods.
To quote The Swift Programming Language guide published by Apple, “in practice you don’t need to write self
in your code very often”. The function from the above example, therefore, can also be written as follows with the
self reference omitted:
func addTen() {

 myNumber += 10

}

In most cases, use of self is optional in Swift. That being said, one situation where it is still necessary to use
self is when referencing a property or method from within a closure expression. The use of self, for example, is

68

The Basics of Swift Object-Oriented Programming

mandatory in the following closure expression:
document?.openWithCompletionHandler({(success: Bool) -> Void in

 if success {

 self.ubiquityURL = resultURL
 }

})

It is also necessary to use self to resolve ambiguity such as when a function parameter has the same name as a
class property. In the following code, for example, the first print statement will output the value passed through
to the function via the myNumber parameter while the second print statement outputs the number assigned to
the myNumber class property (in this case 10):
class MyClass {

 var myNumber = 10 // class property

 func addTen(myNumber: Int) {

 print(myNumber) // Output the function parameter value

 print(self.myNumber) // Output the class property value

 }

}

Whether or not to use self in most other situations is largely a matter of programmer preference. Those who prefer
to use self when referencing properties and methods can continue to do so in Swift. Code that is written without
use of the self property type (where doing so is not mandatory) is, however, just as valid when programming in
Swift.

10.12 Understanding Swift Protocols
By default, there are no specific rules to which a Swift class must conform as long as the class is syntactically
correct. In some situations, however, a class will need to meet certain criteria in order to work with other classes.
This is particularly common when writing classes that need to work with the various frameworks that comprise
the iOS SDK. A set of rules that define the minimum requirements which a class must meet is referred to as a
Protocol. A protocol is declared using the protocol keyword and simply defines the methods and properties that
a class must contain in order to be in conformance. When a class adopts a protocol, but does not meet all of the
protocol requirements, errors will be reported stating that the class fails to conform to the protocol.

Consider the following protocol declaration. Any classes that adopt this protocol must include both a readable
String value called name and a method named buildMessage() which accepts no parameters and returns a String
value.
protocol MessageBuilder {

 var name: String { get }

 func buildMessage() -> String

}

Below, a class has been declared which adopts the MessageBuilder protocol:
class MyClass: MessageBuilder {

}

69

The Basics of Swift Object-Oriented Programming

Unfortunately, as currently implemented, MyClass will generate a compilation error because it contains neither
the name variable nor the buildMessage() method as required by the protocol it has adopted. To conform to the
protocol, the class would need to meet both requirements, for example:
class MyClass: MessageBuilder {

 var name: String

 init(name: String) {

 self.name = name

 }

 func buildMessage() -> String {

 "Hello " + name

 }

}

10.13 Opaque Return Types
Now that protocols have been explained it is a good time to introduce the concept of opaque return types. As
we have seen in previous chapters, if a function returns a result, the type of that result must be included in the
function declaration. The following function, for example, is configured to return an Int result:
func doubleFunc1 (value: Int) -> Int {

 return value * 2

}

Instead of specifying a specific return type (also referred to as a concrete type), opaque return types allow a
function to return any type as long as it conforms to a specified protocol. Opaque return types are declared by
preceding the protocol name with the some keyword. The following changes to the doubleFunc1() function, for
example, declare that a result will be returned of any type that conforms to the Equitable protocol:
func doubleFunc1(value: Int) -> some Equatable {
 value * 2

}

To conform to the Equatable protocol, which is a standard protocol provided with Swift, a type must allow the
underlying values to be compared for equality. Opaque return types can, however, be used for any protocol,
including those you create yourself.

Given that both the Int and String concrete types are in conformance with the Equatable protocol, it is possible
to also create a function that returns a String result:
func doubleFunc2(value: String) -> some Equatable {
 value + value

}

Although these two methods return entirely different concrete types, the only thing known about these types is
that they conform to the Equatable protocol. We therefore know the capabilities of the type, but not the actual
type.

In fact, we only know the concrete type returned in these examples because we have access to the source code
of the functions. If these functions resided in a library or API framework for which the source is not available
to us, we would not know the exact type being returned. This is intentional and designed to hide the underlying

70

The Basics of Swift Object-Oriented Programming

return type used within public APIs. By masking the concrete return type, programmers will not come to rely
on a function returning a specific concrete type or risk accessing internal objects which were not intended
to be accessed. This also has the benefit that the developer of the API can make changes to the underlying
implementation (including returning a different protocol compliant type) without having to worry about
breaking dependencies in any code that uses the API.

This raises the question of what happens when an incorrect assumption is made when working with the opaque
return type. Consider, for example, that the assumption could be made that the results from the doubleFunc1()
and doubleFunc2() functions can be compared for equality:
let intOne = doubleFunc1(value: 10)

let stringOne = doubleFunc2(value: "Hello")

if (intOne == stringOne) {

 print("They match")

}

Working on the premise that we do not have access to the source code for these two functions there is no way
to know whether the above code is valid. Fortunately, although we, as programmers, have no way of knowing
the concrete type returned by the functions, the Swift compiler has access to this hidden information. The above
code will, therefore, generate the following syntax error long before we get to the point of trying to execute
invalid code:
Binary operator ‘==’ cannot be applied to operands of type ‘some

 Equatable’ (result of ‘doubleFunc1(value:)’) and ‘some Equatable’

(result of ‘doubleFunc2(value:)’)

Opaque return types are a fundamental foundation of the implementation of the SwiftUI APIs and are used
widely when developing apps in SwiftUI (the some keyword will appear frequently in SwiftUI View declarations).
SwiftUI advocates the creation of apps by composing together small, reusable building blocks and refactoring
large view declarations into collections of small, lightweight subviews. Each of these building blocks will typically
conform to the View protocol. By declaring these building blocks as returning opaque types that conform to the
View protocol, these building blocks become remarkably flexible and interchangeable, resulting in code that is
cleaner and easier to reuse and maintain.

10.14 Summary
Object-oriented programming languages such as Swift encourage the creation of classes to promote code reuse
and the encapsulation of data within class instances. This chapter has covered the basic concepts of classes and
instances within Swift together with an overview of stored and computed properties and both instance and type
methods. The chapter also introduced the concept of protocols which serve as templates to which classes must
conform and explained how they form the basis of opaque return types.

71

Chapter 11

11. An Introduction to Swift
Subclassing and Extensions
In “The Basics of Swift Object-Oriented Programming” we covered the basic concepts of object-oriented
programming and worked through an example of creating and working with a new class using Swift. In that
example, our new class was not derived from any base class and, as such, did not inherit any traits from a parent
or super class. In this chapter we will introduce the concepts of subclassing, inheritance and extensions in Swift.

11.1 Inheritance, Classes and Subclasses
The concept of inheritance brings something of a real-world view to programming. It allows a class to be defined
that has a certain set of characteristics (such as methods and properties) and then other classes to be created
which are derived from that class. The derived class inherits all of the features of the parent class and typically
then adds some features of its own.

By deriving classes we create what is often referred to as a class hierarchy. The class at the top of the hierarchy is
known as the base class or root class and the derived classes as subclasses or child classes. Any number of subclasses
may be derived from a class. The class from which a subclass is derived is called the parent class or super class.

Classes need not only be derived from a root class. For example, a subclass can also inherit from another subclass
with the potential to create large and complex class hierarchies.

In Swift a subclass can only be derived from a single direct parent class. This is a concept referred to as single
inheritance.

11.2 A Swift Inheritance Example
As with most programming concepts, the subject of inheritance in Swift is perhaps best illustrated with an
example. In “The Basics of Swift Object-Oriented Programming” we created a class named BankAccount designed
to hold a bank account number and corresponding current balance. The BankAccount class contained both
properties and instance methods. A simplified declaration for this class is reproduced below:
class BankAccount {

 var accountBalance: Float

 var accountNumber: Int

 init(number: Int, balance: Float)

 {

 accountNumber = number

 accountBalance = balance

 }

 func displayBalance()

 {

 print("Number \(accountNumber)")

72

An Introduction to Swift Subclassing and Extensions

 print("Current balance is \(accountBalance)")

 }

}

Though this is a somewhat rudimentary class, it does everything necessary if all you need it to do is store an
account number and account balance. Suppose, however, that in addition to the BankAccount class you also
needed a class to be used for savings accounts. A savings account will still need to hold an account number
and a current balance and methods will still be needed to access that data. One option would be to create an
entirely new class, one that duplicates all of the functionality of the BankAccount class together with the new
features required by a savings account. A more efficient approach, however, would be to create a new class that is
a subclass of the BankAccount class. The new class will then inherit all the features of the BankAccount class but
can then be extended to add the additional functionality required by a savings account.

To create a subclass of BankAccount that we will call SavingsAccount, we simply declare the new class, this time
specifying BankAccount as the parent class:
class SavingsAccount: BankAccount {

}

Note that although we have yet to add any instance variables or methods, the class has actually inherited all
the methods and properties of the parent BankAccount class. We could, therefore, create an instance of the
SavingsAccount class and set variables and call methods in exactly the same way we did with the BankAccount
class in previous examples. That said, we haven’t really achieved anything unless we take steps to extend the class.

11.3 Extending the Functionality of a Subclass
So far we have been able to create a subclass that contains all the functionality of the parent class. For this
exercise to make sense, however, we now need to extend the subclass so that it has the features we need to make
it useful for storing savings account information. To do this, we simply add the properties and methods that
provide the new functionality, just as we would for any other class we might wish to create:
class SavingsAccount: BankAccount {

 var interestRate: Float = 0.0

 func calculateInterest() -> Float
 {
 return interestRate * accountBalance
 }
}

11.4 Overriding Inherited Methods
When using inheritance, it is not unusual to find a method in the parent class that almost does what you need,
but requires modification to provide the precise functionality you require. That being said, it is also possible
you’ll inherit a method with a name that describes exactly what you want to do, but it actually does not come
close to doing what you need. One option in this scenario would be to ignore the inherited method and write
a new method with an entirely new name. A better option is to override the inherited method and write a new
version of it in the subclass.

Before proceeding with an example, there are two rules that must be obeyed when overriding a method. First, the
overriding method in the subclass must take exactly the same number and type of parameters as the overridden
method in the parent class. Second, the new method must have the same return type as the parent method.

73

An Introduction to Swift Subclassing and Extensions

In our BankAccount class we have a method named displayBalance that displays the bank account number
and current balance held by an instance of the class. In our SavingsAccount subclass we might also want to
output the current interest rate assigned to the account. To achieve this, we simply declare a new version of the
displayBalance method in our SavingsAccount subclass, prefixed with the override keyword:
class SavingsAccount: BankAccount {

 var interestRate: Float

 func calculateInterest() -> Float

 {

 return interestRate * accountBalance

 }

 override func displayBalance()
 {
 print("Number \(accountNumber)")
 print("Current balance is \(accountBalance)")
 print("Prevailing interest rate is \(interestRate)")
 }
}

It is also possible to make a call to the overridden method in the super class from within a subclass. The
displayBalance method of the super class could, for example, be called to display the account number and
balance, before the interest rate is displayed, thereby eliminating further code duplication:
override func displayBalance()

{

 super.displayBalance()
 print("Prevailing interest rate is \(interestRate)")

}

11.5 Initializing the Subclass
As the SavingsAccount class currently stands, it inherits the init initializer method from the parent BankAccount
class which was implemented as follows:
init(number: Int, balance: Float)

{

 accountNumber = number

 accountBalance = balance

}

Clearly this method takes the necessary steps to initialize both the account number and balance properties of
the class. The SavingsAccount class, however, contains an additional property in the form of the interest rate
variable. The SavingsAccount class, therefore, needs its own initializer to ensure that the interestRate property
is initialized when instances of the class are created. This method can perform this task and then make a call to
the init method of the parent class to complete the initialization of the remaining variables:
class SavingsAccount: BankAccount {

 var interestRate: Float

74

An Introduction to Swift Subclassing and Extensions

 init(number: Int, balance: Float, rate: Float)
 {
 interestRate = rate
 super.init(number: number, balance: balance)
 }
.

.

.

}

Note that to avoid potential initialization problems, the init method of the superclass must always be called after
the initialization tasks for the subclass have been completed.

11.6 Using the SavingsAccount Class
Now that we have completed work on our SavingsAccount class, the class can be used in some example code in
much the same way as the parent BankAccount class:
let savings1 = SavingsAccount(number: 12311, balance: 600.00,

 rate: 0.07)

print(savings1.calculateInterest())

savings1.displayBalance()

11.7 Swift Class Extensions
Another way to add new functionality to a Swift class is to use an extension. Extensions can be used to add
features such as methods, initializers, computed properties and subscripts to an existing class without the need
to create and reference a subclass. This is particularly powerful when using extensions to add functionality to the
built-in classes of the Swift language and iOS SDK frameworks.

A class is extended using the following syntax:
extension ClassName {

 // new features here

}

For the purposes of an example, assume that we need to add some additional properties to the standard Double
class that will return the value raised to the power 2 and 3. This functionality can be added using the following
extension declaration:
extension Double {

 var squared: Double {

 return self * self

 }

 var cubed: Double {

 return self * self * self

 }

}

Having extended the Double class with two new computed properties we can now make use of the properties as

75

An Introduction to Swift Subclassing and Extensions

we would any other properties of the Double class:
let myValue: Double = 3.0

print(myValue.squared)

When executed, the print statement will output the value of 9.0. Note that when declaring the myValue constant
we were able to declare it as being of type Double and access the extension properties without the need to use a
subclass. In fact, because these properties were added as an extension, rather than using a subclass, we can now
access these properties directly on Double values:
print(3.0.squared)

print(6.0.cubed)

Extensions provide a quick and convenient way to extend the functionality of a class without the need to use
subclasses. Subclasses, however, still have some advantages over extensions. It is not possible, for example, to
override the existing functionality of a class using an extension and extensions cannot contain stored properties.

11.8 Summary
Inheritance extends the concept of object re-use in object-oriented programming by allowing new classes to be
derived from existing classes, with those new classes subsequently extended to add new functionality. When an
existing class provides some, but not all, of the functionality required by the programmer, inheritance allows
that class to be used as the basis for a new subclass. The new subclass will inherit all the capabilities of the parent
class, but may then be extended to add the missing functionality.

Swift extensions provide a useful alternative option to adding functionality to existing classes without the need
to create a subclass.

77

Chapter 12

12. An Introduction to Swift
Structures and Enumerations
Having covered Swift classes in the preceding chapters, this chapter will introduce the use of structures in Swift.
Although at first glance structures and classes look similar, there are some important differences that need to be
understood when deciding which to use. This chapter will outline how to declare and use structures, explore the
differences between structures and classes and introduce the concepts of value and reference types.

12.1 An Overview of Swift Structures
As with classes, structures form the basis of object-oriented programming and provide a way to encapsulate data
and functionality into re-usable instances. Structure declarations resemble classes with the exception that the
struct keyword is used in place of the class keyword. The following code, for example, declares a simple structure
consisting of a String variable, initializer and method:
struct SampleStruct {

 var name: String

 init(name: String) {

 self.name = name

 }

 func buildHelloMsg() {

 "Hello " + name

 }

}

Consider the above structure declaration in comparison to the equivalent class declaration:
class SampleClass {

 var name: String

 init(name: String) {

 self.name = name

 }

 func buildHelloMsg() {

 "Hello " + name

 }

}

Other than the use of the struct keyword instead of class, the two declarations are identical. Instances of each

78

An Introduction to Swift Structures and Enumerations

type are also created using the same syntax:
let myStruct = SampleStruct(name: "Mark")

let myClass = SampleClass(name: "Mark")

In common with classes, structures may be extended and are also able to adopt protocols and contain initializers.

Given the commonality between classes and structures, it is important to gain an understanding of how the two
differ. Before exploring the most significant difference it is first necessary to understand the concepts of value
types and reference types.

12.2 Value Types vs. Reference Types
While on the surface structures and classes look alike, major differences in behavior occur when structure
and class instances are copied or passed as arguments to methods or functions. This occurs because structure
instances are value type while class instances are reference type.

When a structure instance is copied or passed to a method, an actual copy of the instance is created, together
with any data contained within the instance. This means that the copy has its own version of the data which
is unconnected with the original structure instance. In effect, this means that there can be multiple copies of a
structure instance within a running app, each with its own local copy of the associated data. A change to one
instance has no impact on any other instances.

In contrast, when a class instance is copied or passed as an argument, the only thing duplicated or passed is a
reference to the location in memory where that class instance resides. Any changes made to the instance using
those references will be performed on the same instance. In other words, there is only one class instance but
multiple references pointing to it. A change to the instance data using any one of those references changes the
data for all other references.

To demonstrate reference and value types in action, consider the following code:
struct SampleStruct {

 var name: String

 init(name: String) {

 self.name = name

 }

 func buildHelloMsg() {

 "Hello " + name

 }

}

let myStruct1 = SampleStruct(name: "Mark")

print(myStruct1.name)

When the code executes, the name “Mark” will be displayed. Now change the code so that a copy of the myStruct1
instance is made, the name property changed and the names from each instance displayed:
let myStruct1 = SampleStruct(name: "Mark")

var myStruct2 = myStruct1

myStruct2.name = "David"

79

An Introduction to Swift Structures and Enumerations

print(myStruct1.name)

print(myStruct2.name)

When executed, the output will read as follows:
Mark

David

Clearly, the change of name only applied to myStruct2 since this is an actual copy of myStruct1 containing its
own copy of the data as shown in Figure 12-1:

Figure 12-1
Contrast this with the following class example:
class SampleClass {

 var name: String

 init(name: String) {

 self.name = name

 }

 func buildHelloMsg() {

 "Hello " + name

 }

}

let myClass1 = SampleClass(name: "Mark")

var myClass2 = myClass1

myClass2.name = "David"

print(myClass1.name)

print(myClass2.name)

When this code executes, the following output will be generated:
David

David

In this case, the name property change is reflected for both myClass1 and myClass2 because both are references
pointing to the same class instance as illustrated in Figure 12-2 below:

80

An Introduction to Swift Structures and Enumerations

Figure 12-2
In addition to these value and reference type differences, structures do not support inheritance and sub-classing
in the way that classes do. In other words, it is not possible for one structure to inherit from another structure.
Unlike classes, structures also cannot contain a de-initializer (deinit) method. Finally, while it is possible to
identify the type of a class instance at runtime, the same is not true of a struct.

12.3 When to Use Structures or Classes
In general, structures are recommended whenever possible because they are both more efficient than classes
and safer to use in multi-threaded code. Classes should be used when inheritance is needed, only one instance
of the encapsulated data is required, or extra steps need to be taken to free up resources when an instance is
de-initialized.

12.4 An Overview of Enumerations
Enumerations (typically referred to as enums) are used to create custom data types consisting of pre-defined sets
of values. Enums are typically used for making decisions within code such as when using switch statements. An
enum might, for example be declared as follows:
enum Temperature {

 case hot

 case warm

 case cold

}

Note that in this example, none of the cases are assigned a value. An enum of this type is essentially used to
reference one of a pre-defined set of states (in this case the current temperature being hot, warm or cold). Once
declared, the enum may, for example, be used within a switch statement as follows:
func displayTempInfo(temp: Temperature) {

 switch temp {

 case .hot:

 print("It is hot.")

 case .warm:

 print("It is warm.")

 case .cold:

 print("It is cold.")

 }

}

It is also worth noting that because an enum has a definitive set of valid member values, the switch statement
does not need to include a default case. An attempt to pass an invalid enum case through the switch will be

81

An Introduction to Swift Structures and Enumerations

caught by the compiler long before it has a chance to cause a runtime error.

To test out the enum, the displayTempInfo() function must be passed an instance of the Temperature enum with
one of the following three possible states selected:
Temperature.hot

Temperature.warm

Temperature.cold

For example:
displayTempInfo(temp: Temperature.warm)

When executed, the above function call will output the following information:
It is warm.

Individual cases within an enum may also have associated values. Assume, for example, that the “cold” enum
case needs to have associated with it a temperature value so that the app can differentiate between cold and
freezing conditions. This can be defined within the enum declaration as follows:
enum Temperature {

 case hot

 case warm

 case cold(centigrade: Int)
}

This allows the switch statement to also check for the temperature for the cold case as follows:
func displayTempInfo(temp: Temperature) {

 switch temp {

 case .hot:

 print("It is hot")

 case .warm:

 print("It is warm")

 case.cold(let centigrade) where centigrade <= 0:
 print("Ice warning: \(centigrade) degrees.")
 case .cold:

 print("It is cold but not freezing.")
 }

}

When the cold enum value is passed to the function, it now does so with a temperature value included:
displayTempInfo(temp: Temperature.cold(centigrade: -10))

The output from the above function all will read as follows:
Ice warning: -10 degrees

12.5 Summary
Swift structures and classes both provide a mechanism for creating instances that define properties, store
values and define methods. Although the two mechanisms appear to be similar, there are significant behavioral
differences when structure and class instances are either copied or passed to a method. Classes are categorized
as being reference type instances while structures are value type. When a structure instance is copied or passed,
an entirely new copy of the instance is created containing its own data. Class instances, on the other hand, are
passed and copied by reference, with each reference pointing to the same class instance. Other features unique

82

An Introduction to Swift Structures and Enumerations

to classes include support for inheritance and deinitialization and the ability to identify the class type at runtime.
Structures should typically be used in place of classes unless specific class features are required.

Enumerations are used to create custom types consisting of a pre-defined set of state values and are of particular
use in identifying state within switch statements.

83

Chapter 13

13. An Introduction to Swift Property
Wrappers
Now that the topics of Swift classes and structures have been covered, this chapter will introduce a related
topic in the form of property wrappers. Introduced in Swift 5.1, property wrappers provide a way to reduce the
amount of duplicated code involved in writing getters, setters and computed properties in class and structure
implementations.

13.1 Understanding Property Wrappers
When values are assigned or accessed via a property within a class or structure instance it is sometimes necessary
to perform some form of transformation or validation on that value before it is stored or read. As outlined in the
chapter entitled “The Basics of Swift Object-Oriented Programming”, this type of behavior can be implemented
through the creation of computed properties. Frequently, patterns emerge where a computed property is
common to multiple classes or structures. Prior to the introduction of Swift 5.1, the only way to share the logic
of a computed property was to duplicate the code and embed it into each class or structure implementation. Not
only is this inefficient, but a change in the behavior of the computation must be manually propagated across all
the entities that use it.

To address this shortcoming, Swift 5.1 introduced a feature known as property wrappers. Property wrappers
essentially allow the capabilities of computed properties to be separated from individual classes and structures
and reused throughout the app code base.

13.2 A Simple Property Wrapper Example
Perhaps the best way to understand property wrappers is to study a very simple example. Imagine a structure
with a String property intended to contain a city name. Such a structure might read as follows:
struct Address {

 var city: String

}

If the class was required to store the city name in uppercase, regardless of how it was entered by the user, a
computed property such as the following might be added to the structure:
struct Address {

 private var cityname: String = ""

 var city: String {

 get { cityname }

 set { cityname = newValue.uppercased() }

 }

}

When a city name is assigned to the property, the setter within the computed property converts it to uppercase
before storing it in the private cityname variable. This structure can be tested using the following code:

84

An Introduction to Swift Property Wrappers

var address = Address()

address.city = "London"

print(address.city)

When executed, the output from the above code would read as follows:
LONDON

Clearly the computed property performs the task of converting the city name string to uppercase, but if the same
behavior is needed in other structures or classes the code would need to be duplicated in those declarations.
In this example this is only a small amount of code, but that won’t necessarily be the case for more complex
computations.

Instead of using a computed property, this logic can instead be implemented as a property wrapper. The
following declaration, for example, implements a property wrapper named FixCase designed to convert a string
to uppercase:
@propertyWrapper

struct FixCase {

 private(set) var value: String = ""

 var wrappedValue: String {

 get { value }

 set { value = newValue.uppercased() }

 }

 init(wrappedValue initialValue: String) {

 self.wrappedValue = initialValue

 }

}

Property wrappers are declared using the @propertyWrapper directive and are implemented in a class or
structure (with structures being the preferred choice). All property wrappers must include a wrappedValue
property containing the getter and setter code that changes or validates the value. An optional initializer may
also be included which is passed the value being assigned. In this case, the initial value is simply assigned to the
wrappedValue property where it is converted to uppercase and stored in the private variable.

Now that this property wrapper has been defined, it can be reused by applying it to other property variables
wherever the same behavior is needed. To use this property wrapper, simply prefix property declarations with
the @FixCase directive in any class or structure declarations where the behavior is needed, for example:
 struct Contact {

 @FixCase var name: String

 @FixCase var city: String

 @FixCase var country: String

}

var contact = Contact(name: "John Smith", city: "London", country: "United
Kingdom")

print("\(contact.name), \(contact.city), \(contact.country)")

When executed, the following output will appear:

85

An Introduction to Swift Property Wrappers

JOHN SMITH, LONDON, UNITED KINGDOM

13.3 Supporting Multiple Variables and Types
In the above example, the property wrapper accepted a single value in the form of the value to be assigned to the
property being wrapped. More complex property wrappers may also be implemented that accept other values
that can be used when performing the computation. These additional values are placed within parentheses after
the property wrapper name. A property wrapper designed to restrict a value within a specified range might read
as follows:
struct Demo {

 @MinMaxVal(min: 10, max: 150) var value: Int = 100

}

The code to implement the above MinMaxVal property wrapper could be written as follows:
@propertyWrapper

struct MinMaxVal {

 var value: Int

 let max: Int

 let min: Int

 init(wrappedValue: Int, min: Int, max: Int) {

 value = wrappedValue

 self.min = min

 self.max = max

 }

 var wrappedValue: Int {

 get { return value }

 set {

 if newValue > max {

 value = max

 } else if newValue < min {

 value = min

 } else {

 value = newValue

 }

 }

 }

}

Note that the init() method has been implemented to accept the min and max values in addition to the wrapped
value. The wrappedValue setter checks the value and modifies it to the min or max number if it falls above or
below the specified range.

The above property wrapper can be tested using the following code:
struct Demo {

 @MinMaxVal(min: 100, max: 200) var value: Int = 100

}

86

An Introduction to Swift Property Wrappers

var demo = Demo()

demo.value = 150

print(demo.value)

demo.value = 250

print(demo.value)

When executed, the first print statement will output 150 because it falls within the acceptable range, while the
second print statement will show that the wrapper restricted the value to the maximum permitted value (in this
case 200).

As currently implemented, the property wrapper will only work with integer (Int) values. The wrapper would be
more useful if it could be used with any variable type which can be compared with another value of the same type.
Fortunately, protocol wrappers can be implemented to work with any types that conform to a specific protocol.
Since the purpose of this wrapper is to perform comparisons, it makes sense to modify it to support any data
types that conform to the Comparable protocol which is included with the Foundation framework. Types that
conform to the Comparable protocol are able to be used in equality, greater-than and less-than comparisons. A
wide range of types such as String, Int, Date, Date Interval and Character conform to this protocol.

To implement the wrapper so that it can be used with any types that conform to the Comparable protocol, the
declaration needs to be modified as follows:
@propertyWrapper

struct MinMaxVal<V: Comparable> {
 var value: V
 let max: V
 let min: V

 init(wrappedValue: V, min: V, max: V) {
 value = wrappedValue

 self.min = min

 self.max = max

 }

 var wrappedValue: V {
 get { return value }

 set {

 if newValue > max {

 value = max

 } else if newValue < min {

 value = min

 } else {

 value = newValue

 }

 }

 }

}

The modified wrapper will still work with Int values as before but can now also be used with any of the other

87

An Introduction to Swift Property Wrappers

types that conform to the Comparable protocol. In the following example, a string value is evaluated to ensure
that it fits alphabetically within the min and max string values:
struct Demo {

 @MinMaxVal(min: "Apple", max: "Orange") var value: String = ""

}

var demo = Demo()

demo.value = "Banana"

print(demo.value)

// Banana <--- Value fits within alphabetical range and is stored.

demo.value = "Pear"

print(demo.value)

// Orange <--- Value is outside of the alphabetical range so is changed to the
max value.

Similarly, this same wrapper will also work with Date instances, as in the following example where the value is
limited to a date between the current date and one month in the future:
struct DateDemo {

 @MinMaxVal(min: Date(), max: Calendar.current.date(byAdding: .month,

 value: 1, to: Date())!) var value: Date = Date()

}

The following code and output demonstrate the wrapper in action using Date values:
var dateDemo = DateDemo()

print(dateDemo.value)

// 2019-08-23 20:05:13 +0000. <--- Property set to today by default.

dateDemo.value = Calendar.current.date(byAdding: .day, value: 10, to: Date())! //
<--- Property is set to 10 days into the future.
print(dateDemo.value)

// 2019-09-02 20:05:13 +0000 <--- Property is within acceptable range and is
stored.
dateDemo.value = Calendar.current.date(byAdding: .month, value: 2, to: Date())!
// <--- Property is set to 2 months into the future.

print(dateDemo.value)

// 2019-09-23 20:08:54 +0000 <--- Property is outside range and set to max date
(i.e. 1 month into the future).

13.4 Summary
Introduced with Swift 5.1, property wrappers allow the behavior that would normally be placed in the getters
and setters of a property implementation to be extracted and reused through the codebase of an app project
avoiding the duplication of code within the class and structure declarations. Property wrappers are declared in
the form of structures using the @propertyWrapper directive.

Property wrappers are a powerful Swift feature and allow you to add your own custom behavior to the Swift

88

An Introduction to Swift Property Wrappers

language. In addition to creating your own property wrappers, you will also encounter them when working with
the iOS SDK. In fact, pre-defined property wrappers are used extensively when working with SwiftUI as will be
covered in later chapters.

89

Chapter 14

14. Working with Array and
Dictionary Collections in Swift
Arrays and dictionaries in Swift are objects that contain collections of other objects. In this chapter, we will cover
some of the basics of working with arrays and dictionaries in Swift.

14.1 Mutable and Immutable Collections
Collections in Swift come in mutable and immutable forms. The contents of immutable collection instances
cannot be changed after the object has been initialized. To make a collection immutable, assign it to a constant
when it is created. Collections are mutable, on the other hand, if assigned to a variable.

14.2 Swift Array Initialization
An array is a data type designed specifically to hold multiple values in a single ordered collection. An array, for
example, could be created to store a list of String values. Strictly speaking, a single Swift based array is only able
to store values that are of the same type. An array declared as containing String values, therefore, could not also
contain an Int value. As will be demonstrated later in this chapter, however, it is also possible to create mixed
type arrays. The type of an array can be specified specifically using type annotation or left to the compiler to
identify using type inference.

An array may be initialized with a collection of values (referred to as an array literal) at creation time using the
following syntax:

var variableName: [type] = [value 1, value2, value3, …….]

The following code creates a new array assigned to a variable (thereby making it mutable) that is initialized with
three string values:
var treeArray = ["Pine", "Oak", "Yew"]

Alternatively, the same array could have been created immutably by assigning it to a constant:
let treeArray = ["Pine", "Oak", "Yew"]

In the above instance, the Swift compiler will use type inference to decide that the array contains values of String
type and prevent values of other types being inserted into the array elsewhere within the application code.

Alternatively, the same array could have been declared using type annotation:
var treeArray: [String] = ["Pine", "Oak", "Yew"]

Arrays do not have to have values assigned at creation time. The following syntax can be used to create an empty
array:
var variableName = [type]()

Consider, for example, the following code which creates an empty array designated to store floating point values
and assigns it to a variable named priceArray:
var priceArray = [Float]()

Another useful initialization technique allows an array to be initialized to a certain size with each array element

90

Working with Array and Dictionary Collections in Swift

pre-set with a specified default value:
var nameArray = [String](repeating: "My String", count: 10)

When compiled and executed, the above code will create a new 10 element array with each element initialized
with a string that reads “My String”.

Finally, a new array may be created by adding together two existing arrays (assuming both arrays contain values
of the same type). For example:
let firstArray = ["Red", "Green", "Blue"]

let secondArray = ["Indigo", "Violet"]

let thirdArray = firstArray + secondArray

14.3 Working with Arrays in Swift
Once an array exists, a wide range of methods and properties are provided for working with and manipulating
the array content from within Swift code, a subset of which is as follows:

14.3.1 Array Item Count
A count of the items in an array can be obtained by accessing the array’s count property:
var treeArray = ["Pine", "Oak", "Yew"]

var itemCount = treeArray.count

print(itemCount)

Whether or not an array is empty can be identified using the array’s Boolean isEmpty property as follows:
var treeArray = ["Pine", "Oak", "Yew"]

if treeArray.isEmpty {

 // Array is empty

}

14.3.2 Accessing Array Items
A specific item in an array may be accessed or modified by referencing the item’s position in the array index
(where the first item in the array has index position 0) using a technique referred to as index subscripting. In the
following code fragment, the string value contained at index position 2 in the array (in this case the string value
“Yew”) is output by the print call:
var treeArray = ["Pine", "Oak", "Yew"]

print(treeArray[2])

This approach can also be used to replace the value at an index location:
treeArray[1] = "Redwood"

The above code replaces the current value at index position 1 with a new String value that reads “Redwood”.

14.4 Random Items and Shuffling
A call to the shuffled() method of an array object will return a new version of the array with the item ordering
randomly shuffled, for example:
let shuffledTrees = treeArray.shuffled()

91

Working with Array and Dictionary Collections in Swift

To access an array item at random, simply make a call to the randomElement() method:
let randomTree = treeArray.randomElement()

14.5 Appending Items to an Array
Items may be added to an array using either the append method or + and += operators. The following, for
example, are all valid techniques for appending items to an array:
treeArray.append("Redwood")

treeArray += ["Redwood"]

treeArray += ["Redwood", "Maple", "Birch"]

14.5.1 Inserting and Deleting Array Items
New items may be inserted into an array by specifying the index location of the new item in a call to the array’s
insert(at:) method. An insertion preserves all existing elements in the array, essentially moving them to the right
to accommodate the newly inserted item:
treeArray.insert("Maple", at: 0)

Similarly, an item at a specific array index position may be removed using the remove(at:) method call:
treeArray.remove(at: 2)

To remove the last item in an array, simply make a call to the array’s removeLast method as follows:
treeArray.removeLast()

14.6 Array Iteration
The easiest way to iterate through the items in an array is to make use of the for-in looping syntax. The following
code, for example, iterates through all of the items in a String array and outputs each item to the console panel:
let treeArray = ["Pine", "Oak", "Yew", "Maple", "Birch", "Myrtle"]

for tree in treeArray {

 print(tree)

}

Upon execution, the following output would appear in the console:
Pine

Oak

Yew

Maple

Birch

Myrtle

The same result can be achieved by calling the forEach() array method. When this method is called on an array,
it will iterate through each element and execute specified code. For example:
treeArray.forEach { tree in

 print(tree)

}

Note that since the task to be performed for each array element is declared in a closure expression, the above
example may be modified as follows to take advantage of shorthand argument names:
treeArray.forEach {

 print($0)

92

Working with Array and Dictionary Collections in Swift

}

14.7 Creating Mixed Type Arrays
A mixed type array is an array that can contain elements of different class types. Clearly an array that is either
declared or inferred as being of type String cannot subsequently be used to contain non-String class object
instances. Interesting possibilities arise, however, when taking into consideration that Swift includes the Any
type. Any is a special type in Swift that can be used to reference an object of a non-specific class type. It follows,
therefore, that an array declared as containing Any object types can be used to store elements of mixed types.
The following code, for example, declares and initializes an array containing a mixture of String, Int and Double
elements:
let mixedArray: [Any] = ["A String", 432, 34.989]

The use of the Any type should be used with care since the use of Any masks from Swift the true type of the
elements in such an array thereby leaving code prone to potential programmer error. It will often be necessary,
for example, to manually cast the elements in an Any array to the correct type before working with them in
code. Performing the incorrect cast for a specific element in the array will most likely cause the code to compile
without error but crash at runtime. Consider, for the sake of an example, the following mixed type array:
let mixedArray: [Any] = [1, 2, 45, "Hello"]

Assume that, having initialized the array, we now need to iterate through the integer elements in the array and
multiply them by 10. The code to achieve this might read as follows:
for object in mixedArray {

 print(object * 10)

}

When entered into Xcode, however, the above code will trigger a syntax error indicating that it is not possible to
multiply operands of type Any and Int. In order to remove this error it will be necessary to downcast the array
element to be of type Int:
for object in mixedArray {

 print(object as! Int * 10)
}

The above code will compile without error and work as expected until the final String element in the array is
reached at which point the code will crash with the following error:
Could not cast value of type ‘Swift.String’ to ‘Swift.Int’

The code will, therefore, need to be modified to be aware of the specific type of each element in the array. Clearly,
there are both benefits and risks to using Any arrays in Swift.

14.8 Swift Dictionary Collections
String dictionaries allow data to be stored and managed in the form of key-value pairs. Dictionaries fulfill a
similar purpose to arrays, except each item stored in the dictionary has associated with it a unique key (to be
precise, the key is unique to the particular dictionary object) which can be used to reference and access the
corresponding value. Currently only String, Int, Double and Bool data types are suitable for use as keys within
a Swift dictionary.

14.9 Swift Dictionary Initialization
A dictionary is a data type designed specifically to hold multiple values in a single unordered collection. Each
item in a dictionary consists of a key and an associated value. The data types of the key and value elements type
may be specified specifically using type annotation, or left to the compiler to identify using type inference.

93

Working with Array and Dictionary Collections in Swift

A new dictionary may be initialized with a collection of values (referred to as a dictionary literal) at creation time
using the following syntax:

var variableName: [key type: value type] = [key 1: value 1, key 2: value2 ….]

The following code creates a new array assigned to a variable (thereby making it mutable) that is initialized with
four key-value pairs in the form of ISBN numbers acting as keys for corresponding book titles:
var bookDict = ["100-432112" : "Wind in the Willows",

 "200-532874" : "Tale of Two Cities",

 "202-546549" : "Sense and Sensibility",

 "104-109834" : "Shutter Island"]

In the above instance, the Swift compiler will use type inference to decide that both the key and value elements
of the dictionary are of String type and prevent values or keys of other types being inserted into the dictionary.

Alternatively, the same array could have been declared using type annotation:
var bookDict: [String: String] =

 ["100-432112" : "Wind in the Willows",

 "200-532874" : "Tale of Two Cities",

 "202-546549" : "Sense and Sensibility",

 "104-109834" : "Shutter Island"]

As with arrays, it is also possible to create an empty dictionary, the syntax for which reads as follows:

var variableName = [key type: value type]()

The following code creates an empty dictionary designated to store integer keys and string values:
var myDictionary = [Int: String]()

14.10 Sequence-based Dictionary Initialization
Dictionaries may also be initialized using sequences to represent the keys and values. This is achieved using the
Swift zip() function, passing through the keys and corresponding values. In the following example, a dictionary
is created using two arrays:
let keys = ["100-432112", "200-532874", "202-546549", "104-109834"]

let values = ["Wind in the Willows", "Tale of Two Cities",

 "Sense and Sensibility", "Shutter Island"]

let bookDict = Dictionary(uniqueKeysWithValues: zip(keys, values))

This approach allows keys and values to be generated programmatically. In the following example, a number
range starting at 1 is being specified for the keys instead of using an array of predefined keys:
let values = ["Wind in the Willows", "Tale of Two Cities",

 "Sense and Sensibility", "Shutter Island"]

var bookDict = Dictionary(uniqueKeysWithValues: zip(1..., values))

The above code is a much cleaner equivalent to the following dictionary declaration:
var bookDict = [1 : "Wind in the Willows",

 2 : "Tale of Two Cities",

 3 : "Sense and Sensibility",

94

Working with Array and Dictionary Collections in Swift

 4 : "Shutter Island"]

14.11 Dictionary Item Count
A count of the items in a dictionary can be obtained by accessing the dictionary’s count property:
print(bookDict.count)

14.12 Accessing and Updating Dictionary Items
A specific value may be accessed or modified using key subscript syntax to reference the corresponding key. The
following code references a key known to be in the bookDict dictionary and outputs the associated value (in this
case the book entitled “A Tale of Two Cities”):
print(bookDict["200-532874"])

When accessing dictionary entries in this way, it is also possible to declare a default value to be used in the event
that the specified key does not return a value:
print(bookDict["999-546547", default: "Book not found"])

Since the dictionary does not contain an entry for the specified key, the above code will output text which reads
“Book not found”.

Indexing by key may also be used when updating the value associated with a specified key, for example, to
change the title of the same book from “A Tale of Two Cities” to “Sense and Sensibility”):
bookDict["200-532874"] = "Sense and Sensibility"

The same result is also possible by making a call to the updateValue(forKey:) method, passing through the key
corresponding to the value to be changed:
bookDict.updateValue("The Ruins", forKey: "200-532874")

14.13 Adding and Removing Dictionary Entries
Items may be added to a dictionary using the following key subscripting syntax:

dictionaryVariable[key] = value

For example, to add a new key-value pair entry to the books dictionary:
bookDict["300-898871"] = "The Overlook"

Removal of a key-value pair from a dictionary may be achieved either by assigning a nil value to the entry, or
via a call to the removeValueForKey method of the dictionary instance. Both code lines below achieve the same
result of removing the specified entry from the books dictionary:
bookDict["300-898871"] = nil

bookDict.removeValue(forKey: "300-898871")

14.14 Dictionary Iteration
As with arrays, it is possible to iterate through dictionary entries by making use of the for-in looping syntax. The
following code, for example, iterates through all of the entries in the books dictionary, outputting both the key
and value for each entry:
for (bookid, title) in bookDict {

 print("Book ID: \(bookid) Title: \(title)")

}

Upon execution, the following output would appear in the console:
Book ID: 100-432112 Title: Wind in the Willows

95

Working with Array and Dictionary Collections in Swift

Book ID: 200-532874 Title: The Ruins

Book ID: 104-109834 Title: Shutter Island

Book ID: 202-546549 Title: Sense and Sensibility

14.15 Summary
Collections in Swift take the form of either dictionaries or arrays. Both provide a way to collect together multiple
items within a single object. Arrays provide a way to store an ordered collection of items where those items are
accessed by an index value corresponding to the item position in the array. Dictionaries provide a platform for
storing key-value pairs, where the key is used to gain access to the stored value. Iteration through the elements
of Swift collections can be achieved using the for-in loop construct.

97

Chapter 15

15. Understanding Error Handling in
Swift 5
In a perfect world, a running iOS app would never encounter an error. The reality, however, is that it is impossible
to guarantee that an error of some form or another will not occur at some point during the execution of the app.
It is essential, therefore, to ensure that the code of an app is implemented such that it gracefully handles any
errors that may occur. Since the introduction of Swift 2, the task of handling errors has become much easier for
the iOS app developer.

This chapter will cover the handling of errors using Swift and introduce topics such as error types, throwing
methods and functions, the guard and defer statements and do-catch statements.

15.1 Understanding Error Handling
No matter how carefully Swift code is designed and implemented, there will invariably be situations that are
beyond the control of the app. An app that relies on an active internet connection cannot, for example, control
the loss of signal on an iPhone device, or prevent the user from enabling “airplane mode”. What the app can do,
however, is to implement robust handling of the error (for example displaying a message indicating to the user
that the app requires an active internet connection to proceed).

There are two sides to handling errors within Swift. The first involves triggering (or throwing) an error when the
desired results are not achieved within the method of an iOS app. The second involves catching and handling
the error after it is thrown by a method.

When an error is thrown, the error will be of a particular error type which can be used to identify the specific
nature of the error and to decide on the most appropriate course of action to be taken. The error type value can
be any value that conforms to the ErrorType protocol.

In addition to implementing methods in an app to throw errors when necessary, it is important to be aware that
a number of API methods in the iOS SDK (particularly those relating to file handling) will throw errors which
will need to be handled within the code of the app.

15.2 Declaring Error Types
As an example, consider a method that is required to transfer a file to a remote server. Such a method might
fail to transfer the file for a variety of reasons such as there being no network connection, the connection being
too slow or the failure to find the file to be transferred. All these possible errors could be represented within an
enumeration that conforms to the Error protocol as follows:
enum FileTransferError: Error {

 case noConnection

 case lowBandwidth

 case fileNotFound

}

Once an error type has been declared, it can be used within a method when throwing errors.

98

Understanding Error Handling in Swift 5

15.3 Throwing an Error
A method or function declares that it can throw an error using the throws keyword. For example:
func transferFile() throws {

}

In the event that the function or method returns a result, the throws keyword is placed before the return type as
follows:
func transferFile() throws -> Bool {

}

Once a method has been declared as being able to throw errors, code can then be added to throw the errors
when they are encountered. This is achieved using the throw statement in conjunction with the guard statement.
The following code declares some constants to serve as status values and then implements the guard and throw
behavior for the method:
let connectionOK = true
let connectionSpeed = 30.00
let fileFound = false

enum FileTransferError: Error {

 case noConnection

 case lowBandwidth

 case fileNotFound

}

func fileTransfer() throws {

 guard connectionOK else {
 throw FileTransferError.noConnection
 }

 guard connectionSpeed > 30 else {
 throw FileTransferError.lowBandwidth
 }

 guard fileFound else {
 throw FileTransferError.fileNotFound
 }
}

Within the body of the method, each guard statement checks a condition for a true or false result. In the event of
a false result, the code contained within the else body is executed. In the case of a false result, the throw statement
is used to throw one of the error values contained in the FileTransferError enumeration.

15.4 Calling Throwing Methods and Functions
Once a method or function is declared as throwing errors, it can no longer be called in the usual manner. Calls
to such methods must now be prefixed by the try statement as follows:
try fileTransfer()

99

Understanding Error Handling in Swift 5

In addition to using the try statement, the call must also be made from within a do-catch statement to catch and
handle any errors that may be thrown. Consider, for example, that the fileTransfer method needs to be called
from within a method named sendFile. The code within this method might be implemented as follows:
func sendFile() -> String {

 do {

 try fileTransfer()

 } catch FileTransferError.noConnection {

 return("No Network Connection")

 } catch FileTransferError.lowBandwidth {

 return("File Transfer Speed too Low")

 } catch FileTransferError.fileNotFound {

 return("File not Found")

 } catch {

 return("Unknown error")

 }

 return("Successful transfer")

}

The method calls the fileTransfer method from within a do-catch statement which, in turn, includes catch
conditions for each of the three possible error conditions. In each case, the method simply returns a string value
containing a description of the error. In the event that no error was thrown, a string value is returned indicating
a successful file transfer. Note that a fourth catch condition is included with no pattern matching. This is a “catch
all” statement that ensures that any errors not matched by the preceding catch statements are also handled.
This is required because do-catch statements must be exhaustive (in other words constructed so as to catch all
possible error conditions).

Swift also allows multiple matches to be declared within a single catch statement, with the list of matches
separated by commas. For example, a single catch declaration could be used to handle both the noConnection
and lowBandwidth errors as follows:
func sendFile() -> String {

 do {

 try fileTransfer()

 } catch FileTransferError.noConnection, FileTransferError.lowBandwidth {
 return("Connection problem")

 } catch FileTransferError.fileNotFound {

 return("File not Found")

 } catch {

 return("Unknown error")

 }

 return("Successful transfer")

}

100

Understanding Error Handling in Swift 5

15.5 Accessing the Error Object
When a method call fails, it will invariably return an Error object identifying the nature of the failure. A common
requirement within the catch statement is to gain access to this object so that appropriate corrective action can
be taken within the app code. The following code demonstrates how such an error object is accessed from within
a catch statement when attempting to create a new file system directory:
do {

 try filemgr.createDirectory(atPath: newDir,

 withIntermediateDirectories: true,

 attributes: nil)

 } catch let error {
 print("Error: \(error.localizedDescription)")

}

15.6 Disabling Error Catching
A throwing method may be forced to run without the need to enclose the call within a do-catch statement by
using the try! statement as follows:
try! fileTransfer

In using this approach we are informing the compiler that we know with absolute certainty that the method call
will not result in an error being thrown. In the event that an error is thrown when using this technique, the code
will fail with a runtime error. As such, this approach should be used sparingly.

15.7 Using the defer Statement
The previously implemented sendFile method demonstrated a common scenario when handling errors. Each
of the catch clauses in the do-catch statement contained a return statement that returned control to the calling
method. In such a situation, however, it might be useful to be able to perform some other task before control is
returned and regardless of the type of error that was encountered. The sendFile method might, for example, need
to remove temporary files before returning. This behavior can be achieved using the defer statement.

The defer statement allows a sequence of code statements to be declared as needing to be run as soon as the
method returns. In the following code, the sendFile method has been modified to include a defer statement:
func sendFile() -> String {

 defer {
 removeTmpFiles()
 closeConnection()
 }

 do {

 try fileTransfer()

 } catch FileTransferError.NoConnection {

 return("No Network Connection")

 } catch FileTransferError.LowBandwidth {

 return("File Transfer Speed too Low")

 } catch FileTransferError.FileNotFound {

 return("File not Found")

 } catch {

101

Understanding Error Handling in Swift 5

 return("Unknown error")

 }

 return("Successful transfer")

}

With the defer statement now added, the calls to the removeTmpFiles and closeConnection methods will always
be made before the method returns, regardless of which return call gets triggered.

15.8 Summary
Error handling is an essential part of creating robust and reliable iOS apps. Since the introduction of Swift 2 it
is now much easier to both trigger and handle errors. Error types are created using values that conform to the
ErrorType protocol and are most commonly implemented as enumerations. Methods and functions that throw
errors are declared as such using the throw keyword. The guard and throw statements are used within the body
of these methods or functions to throw errors based on the error type.

A throwable method or function is called using the try statement which must be encapsulated within a do-catch
statement. A do-catch statement consists of an exhaustive list of catch pattern constructs, each of which contains
the code to be executed in the event of a particular error being thrown. Cleanup tasks can be defined to be
executed when a method returns through the use of the defer statement.

103

Chapter 16

16. An Overview of SwiftUI
Now that Xcode has been installed and the basics of the Swift programing language covered, it is time to start
introducing SwiftUI.

First announced at Apple’s Worldwide Developer Conference in 2019, SwiftUI is an entirely new approach to
developing apps for all Apple operating system platforms. The basic goals of SwiftUI are to make app development
easier, faster and less prone to the types of bugs that typically appear when developing software projects. These
elements have been combined with SwiftUI specific additions to Xcode that allow SwiftUI projects to be tested
in near real-time using a live preview of the app during the development process.

Many of the advantages of SwiftUI originate from the fact that it is both declarative and data driven, topics which
will be explained in this chapter.

The discussion in this chapter is intended as a high-level overview of SwiftUI and does not cover the practical
aspects of implementation within a project. Implementation and practical examples will be covered in detail in
the remainder of the book.

16.1 UIKit and Interface Builder
To understand the meaning and advantages of SwiftUI’s declarative syntax, it helps to understand how user
interface layouts were designed before the introduction of SwiftUI. Up until the introduction of SwiftUI, iOS
apps were built entirely using UIKit together with a collection of associated frameworks that make up the iOS
Software Development Kit (SDK).

To aid in the design of the user interface layouts that make up the screens of an app, Xcode includes a tool called
Interface Builder. Interface Builder is a powerful tool that allows storyboards to be created which contain the
individual scenes that make up an app (with a scene typically representing a single app screen).

The user interface layout of a scene is designed within Interface Builder by dragging components (such as
buttons, labels, text fields and sliders) from a library panel to the desired location on the scene canvas. Selecting
a component in a scene provides access to a range of inspector panels where the attributes of the components
can be changed.

The layout behavior of the scene (in other words how it reacts to different device screen sizes and changes
to device orientation between portrait and landscape) is defined by configuring a range of constraints that
dictate how each component is positioned and sized in relation to both the containing window and the other
components in the layout.

Finally, any components that need to respond to user events (such as a button tap or slider motion) are connected
to methods in the app source code where the event is handled.

At various points during this development process, it is necessary to compile and run the app on a simulator or
device to test that everything is working as expected.

16.2 SwiftUI Declarative Syntax
SwiftUI introduces a declarative syntax that provides an entirely different way of implementing user interface
layouts and behavior from the UIKit and Interface Builder approach. Instead of manually designing the intricate
details of the layout and appearance of components that make up a scene, SwiftUI allows the scenes to be

104

An Overview of SwiftUI

described using a simple and intuitive syntax. In other words, SwiftUI allows layouts to be created by declaring
how the user interface should appear without having to worry about the complexity of how the layout is actually
built.

This essentially involves declaring the components to be included in the layout, stating the kind of layout
manager in which they are to be contained (vertical stack, horizontal stack, form, list etc.) and using modifiers to
set attributes such as the text on a button, the foreground color of a label, or the method to be called in the event
of a tap gesture. Having made these declarations, all the intricate and complicated details of how to position,
constrain and render the layout are handled automatically by SwiftUI.

SwiftUI declarations are structured hierarchically, which also makes it easy to create complex views by composing
together small, re-usable custom subviews.

While the view layout is being declared and tested, Xcode provides a preview canvas which changes in real-
time to reflect the appearance of the layout. Xcode also includes a live preview mode which allows the app to be
launched within the preview canvas and fully tested without the need to build and run on a simulator or device.

Coverage of the SwiftUI declaration syntax begins with the chapter entitled “Creating Custom Views with
SwiftUI”.

16.3 SwiftUI is Data Driven
When we say that SwiftUI is data driven, this is not to say that it is no longer necessary to handle events generated
by the user (in other words the interaction between the user and the app user interface). It is still necessary, for
example, to know when the user taps a button and to react in some app specific way. Being data driven relates
more to the relationship between the underlying app data and the user interface and logic of the app.

Prior to the introduction of SwiftUI, an iOS app would contain code responsible for checking the current values
of data within the app. If data is likely to change over time, code has to be written to ensure that the user interface
always reflects the latest state of the data (perhaps by writing code to frequently check for changes to the data,
or by providing a refresh option for the user to request a data update). Similar problems arise when keeping
the user interface state consistent and making sure issues like toggle button settings are stored appropriately.
Requirements such as these can become increasingly complex when multiple areas of an app depend on the
same data sources.

SwiftUI addresses this complexity by providing several ways to bind the data model of an app to the user interface
components and logic that provide the app functionality.

When implemented, the data model publishes data variables to which other parts of the app can then subscribe.
Using this approach, changes to the published data are automatically reported to all subscribers. If the binding is
made from a user interface component, any data changes will automatically be reflected within the user interface
by SwiftUI without the need to write any additional code.

16.4 SwiftUI vs. UIKit
With the choice of using UIKit and SwiftUI now available, the obvious question arises as to which is the best
option. When making this decision it is important to understand that SwiftUI and UIKit are not mutually
exclusive. In fact, several integration solutions are available (a topic area covered starting with the chapter
entitled “Integrating UIViews with SwiftUI”).

The first factor to take into consideration during the decision process is that any app that includes SwiftUI-based
code that takes advantage of the latest features (such as WidgetKit) will only run on devices running iOS 14 or
later. This means, for example, that your app will only be available to users with the following iPhone models:

• iPhone 11

105

An Overview of SwiftUI

• iPhone 11

• iPhone 11 Pro

• iPhone 11 Pro Max

• iPhone XS

• iPhone XS Max

• iPhone XR

• iPhone X

• iPhone 8

• iPhone 8 Plus

• iPhone 7

• iPhone 7 Plus

• iPhone 6s

• iPhone 6s Plus

• iPhone SE (1st generation)

• iPhone SE (2nd generation)

• iPod touch (7th generation)

Analytics company Mixpanel estimated that, by November 2020, over 70% of all iPhone devices were running
iOS 14, a percentage that will continue to increase with the passage of time. The latest adoption numbers can be
viewed at the following URL:

https://mixpanel.com/trends/#report/ios_14

If supporting devices running older versions of iOS is not of concern and you are starting a new project, it makes
sense to use SwiftUI wherever possible. Not only does SwiftUI provide a faster, more efficient app development
environment, it also makes it easier to make the same app available on multiple Apple platforms (iOS, iPadOS,
macOS, watchOS and tvOS) without making significant code changes.

If you have an existing app developed using UIKit there is no easy migration path to convert that code to
SwiftUI, so it probably makes sense to keep using UIKit for that part of the project. UIKit will continue to be
a valuable part of the app development toolset and will be extended, supported and enhanced by Apple for the
foreseeable future. When adding new features to an existing project, however, consider doing so using SwiftUI
and integrating it into the existing UIKit codebase.

When adopting SwiftUI for new projects, it will probably not be possible to avoid using UIKit entirely. Although
SwiftUI comes with a wide array of user interface components, it will still be necessary to use UIKit for certain
functionality not yet available in SwiftUI.

In addition, for extremely complex user interface layout designs, it may also be necessary to use Interface Builder
in situations where layout needs cannot be satisfied using the SwiftUI layout container views.

https://mixpanel.com/trends/#report/ios_14

106

An Overview of SwiftUI

16.5 Summary
SwiftUI introduces a different approach to app development than that offered by UIKit and Interface Builder.
Rather than directly implement the way in which a user interface is to be rendered, SwiftUI allows the user
interface to be declared in descriptive terms and then does all the work of deciding the best way to perform the
rendering when the app runs.

SwiftUI is also data driven in that data changes drive the behavior and appearance of the app. This is achieved
through a publisher and subscriber model.

This chapter has provided a very high-level view of SwiftUI. The remainder of this book will explore SwiftUI in
greater depth.

	1. Start Here
	1.1 For Swift Programmers
	1.2 For Non-Swift Programmers
	1.3 Source Code Download
	1.4 Feedback
	1.5 Errata

	2. Joining the Apple Developer Program
	2.1 Downloading Xcode 12 and the iOS 14 SDK
	2.2 Apple Developer Program
	2.3 When to Enroll in the Apple Developer Program?
	2.4 Enrolling in the Apple Developer Program
	2.5 Summary

	3. Installing Xcode 12 and the iOS 14 SDK
	3.1 Identifying Your macOS Version
	3.2 Installing Xcode 12 and the iOS 14 SDK
	3.3 Starting Xcode
	3.4 Adding Your Apple ID to the Xcode Preferences
	3.5 Developer and Distribution Signing Identities
	3.6 Summary

	4. An Introduction to Xcode 12 Playgrounds
	4.1 What is a Playground?
	4.2 Creating a New Playground
	4.3 A Swift Playground Example
	4.4 Viewing Results
	4.5 Adding Rich Text Comments
	4.6 Working with Playground Pages
	4.7 Working with SwiftUI and Live View in Playgrounds
	4.8 Summary

	5. Swift Data Types, Constants and Variables
	5.1 Using a Swift Playground
	5.2 Swift Data Types
	5.2.1 Integer Data Types
	5.2.2 Floating Point Data Types
	5.2.3 Bool Data Type
	5.2.4 Character Data Type
	5.2.5 String Data Type
	5.2.6 Special Characters/Escape Sequences

	5.3 Swift Variables
	5.4 Swift Constants
	5.5 Declaring Constants and Variables
	5.6 Type Annotations and Type Inference
	5.7 The Swift Tuple
	5.8 The Swift Optional Type
	5.9 Type Casting and Type Checking
	5.10 Summary

	6. Swift Operators and Expressions
	6.1 Expression Syntax in Swift
	6.2 The Basic Assignment Operator
	6.3 Swift Arithmetic Operators
	6.4 Compound Assignment Operators
	6.5 Comparison Operators
	6.6 Boolean Logical Operators
	6.7 Range Operators
	6.8 The Ternary Operator
	6.9 Nil Coalescing Operator
	6.10 Bitwise Operators
	6.10.1 Bitwise NOT
	6.10.2 Bitwise AND
	6.10.3 Bitwise OR
	6.10.4 Bitwise XOR
	6.10.5 Bitwise Left Shift
	6.10.6 Bitwise Right Shift

	6.11 Compound Bitwise Operators
	6.12 Summary

	7. Swift Control Flow
	7.1 Looping Control Flow
	7.2 The Swift for-in Statement
	7.2.1 The while Loop

	7.3 The repeat ... while loop
	7.4 Breaking from Loops
	7.5 The continue Statement
	7.6 Conditional Control Flow
	7.7 Using the if Statement
	7.8 Using if ... else … Statements
	7.9 Using if ... else if ... Statements
	7.10 The guard Statement
	7.11 Summary

	8. The Swift Switch Statement
	8.1 Why Use a switch Statement?
	8.2 Using the switch Statement Syntax
	8.3 A Swift switch Statement Example
	8.4 Combining case Statements
	8.5 Range Matching in a switch Statement
	8.6 Using the where statement
	8.7 Fallthrough
	8.8 Summary

	9. Swift Functions, Methods and Closures
	9.1 What is a Function?
	9.2 What is a Method?
	9.3 How to Declare a Swift Function
	9.4 Implicit Returns from Single Expressions
	9.5 Calling a Swift Function
	9.6 Handling Return Values
	9.7 Local and External Parameter Names
	9.8 Declaring Default Function Parameters
	9.9 Returning Multiple Results from a Function
	9.10 Variable Numbers of Function Parameters
	9.11 Parameters as Variables
	9.12 Working with In-Out Parameters
	9.13 Functions as Parameters
	9.14 Closure Expressions
	9.15 Shorthand Argument Names
	9.16 Closures in Swift
	9.17 Summary

	10. The Basics of Swift Object-Oriented Programming
	10.1 What is an Instance?
	10.2 What is a Class?
	10.3 Declaring a Swift Class
	10.4 Adding Instance Properties to a Class
	10.5 Defining Methods
	10.6 Declaring and Initializing a Class Instance
	10.7 Initializing and De-initializing a Class Instance
	10.8 Calling Methods and Accessing Properties
	10.9 Stored and Computed Properties
	10.10 Lazy Stored Properties
	10.11 Using self in Swift
	10.12 Understanding Swift Protocols
	10.13 Opaque Return Types
	10.14 Summary

	11. An Introduction to Swift Subclassing and Extensions
	11.1 Inheritance, Classes and Subclasses
	11.2 A Swift Inheritance Example
	11.3 Extending the Functionality of a Subclass
	11.4 Overriding Inherited Methods
	11.5 Initializing the Subclass
	11.6 Using the SavingsAccount Class
	11.7 Swift Class Extensions
	11.8 Summary

	12. An Introduction to Swift Structures and Enumerations
	12.1 An Overview of Swift Structures
	12.2 Value Types vs. Reference Types
	12.3 When to Use Structures or Classes
	12.4 An Overview of Enumerations
	12.5 Summary

	13. An Introduction to Swift Property Wrappers
	13.1 Understanding Property Wrappers
	13.2 A Simple Property Wrapper Example
	13.3 Supporting Multiple Variables and Types
	13.4 Summary

	14. Working with Array and Dictionary Collections in Swift
	14.1 Mutable and Immutable Collections
	14.2 Swift Array Initialization
	14.3 Working with Arrays in Swift
	14.3.1 Array Item Count
	14.3.2 Accessing Array Items

	14.4 Random Items and Shuffling
	14.5 Appending Items to an Array
	14.5.1 Inserting and Deleting Array Items

	14.6 Array Iteration
	14.7 Creating Mixed Type Arrays
	14.8 Swift Dictionary Collections
	14.9 Swift Dictionary Initialization
	14.10 Sequence-based Dictionary Initialization
	14.11 Dictionary Item Count
	14.12 Accessing and Updating Dictionary Items
	14.13 Adding and Removing Dictionary Entries
	14.14 Dictionary Iteration
	14.15 Summary

	15. Understanding Error Handling in Swift 5
	15.1 Understanding Error Handling
	15.2 Declaring Error Types
	15.3 Throwing an Error
	15.4 Calling Throwing Methods and Functions
	15.5 Accessing the Error Object
	15.6 Disabling Error Catching
	15.7 Using the defer Statement
	15.8 Summary

	16. An Overview of SwiftUI
	16.1 UIKit and Interface Builder
	16.2 SwiftUI Declarative Syntax
	16.3 SwiftUI is Data Driven
	16.4 SwiftUI vs. UIKit
	16.5 Summary

	17. Using Xcode in SwiftUI Mode
	17.1 Starting Xcode 12
	17.2 Creating a SwiftUI Project
	17.3 Xcode in SwiftUI Mode
	17.4 The Preview Canvas
	17.5 Preview Pinning
	17.6 The Preview Toolbar
	17.7 Modifying the Design
	17.8 Editor Context Menu
	17.9 Previewing on Multiple Device Configurations
	17.10 Running the App on a Simulator
	17.11 Running the App on a Physical iOS Device
	17.12 Managing Devices and Simulators
	17.13 Enabling Network Testing
	17.14 Dealing with Build Errors
	17.15 Monitoring Application Performance
	17.16 Exploring the User Interface Layout Hierarchy
	17.17 Summary

	18. SwiftUI Architecture
	18.1 SwiftUI App Hierarchy
	18.2 App
	18.3 Scenes
	18.4 Views
	18.5 Summary

	19. The Anatomy of a Basic SwiftUI Project
	19.1 Creating an Example Project
	19.2 Project Folders
	19.3 The DemoProjectApp.swift File
	19.4 The ContentView.swift File
	19.5 Assets.xcassets
	19.6 Info.plist
	19.7 Summary

	20. Creating Custom Views with SwiftUI
	20.1 SwiftUI Views
	20.2 Creating a Basic View
	20.3 Adding Additional Views
	20.4 Working with Subviews
	20.5 Views as Properties
	20.6 Modifying Views
	20.7 Working with Text Styles
	20.8 Modifier Ordering
	20.9 Custom Modifiers
	20.10 Basic Event Handling
	20.11 Building Custom Container Views
	20.12 Working with the Label View
	20.13 Summary

	21. SwiftUI Stacks and Frames
	21.1 SwiftUI Stacks
	21.2 Spacers, Alignment and Padding
	21.3 Container Child Limit
	21.4 Text Line Limits and Layout Priority
	21.5 Traditional vs. Lazy Stacks
	21.6 SwiftUI Frames
	21.7 Frames and the Geometry Reader
	21.8 Summary

	22. SwiftUI State Properties, Observable, State and Environment Objects
	22.1 State Properties
	22.2 State Binding
	22.3 Observable Objects
	22.4 State Objects
	22.5 Environment Objects
	22.6 Summary

	23. A SwiftUI Example Tutorial
	23.1 Creating the Example Project
	23.2 Reviewing the Project
	23.3 Adding a VStack to the Layout
	23.4 Adding a Slider View to the Stack
	23.5 Adding a State Property
	23.6 Adding Modifiers to the Text View
	23.7 Adding Rotation and Animation
	23.8 Adding a TextField to the Stack
	23.9 Adding a Color Picker
	23.10 Tidying the Layout
	23.11 Summary

	24. SwiftUI Lifecycle Event Modifiers
	24.1 Creating the LifecycleDemo Project
	24.2 Designing the App
	24.3 The onAppear and onDisappear Modifiers
	24.4 The onChange Modifier
	24.5 ScenePhase and the onChange Modifier
	24.6 Summary

	25. SwiftUI Observable and Environment Objects – A Tutorial
	25.1 About the ObservableDemo Project
	25.2 Creating the Project
	25.3 Adding the Observable Object
	25.4 Designing the ContentView Layout
	25.5 Adding the Second View
	25.6 Adding Navigation
	25.7 Using an Environment Object
	25.8 Summary

	26. SwiftUI Data Persistence using AppStorage and SceneStorage
	26.1 The @SceneStorage Property Wrapper
	26.2 The @AppStorage Property Wrapper
	26.3 Creating and Preparing the StorageDemo Project
	26.4 Using Scene Storage
	26.5 Using App Storage
	26.6 Storing Custom Types
	26.7 Summary

	27. SwiftUI Stack Alignment and Alignment Guides
	27.1 Container Alignment
	27.2 Alignment Guides
	27.3 Using the Alignment Guides Tool
	27.4 Custom Alignment Types
	27.5 Cross Stack Alignment
	27.6 ZStack Custom Alignment
	27.7 Summary

	28. SwiftUI Lists and Navigation
	28.1 SwiftUI Lists
	28.2 SwiftUI Dynamic Lists
	28.3 SwiftUI NavigationView and NavigationLink
	28.4 Making the List Editable
	28.5 Hierarchical Lists
	28.6 Summary

	29. A SwiftUI List and Navigation Tutorial
	29.1 About the ListNavDemo Project
	29.2 Creating the ListNavDemo Project
	29.3 Preparing the Project
	29.4 Adding the Car Structure
	29.5 Loading the JSON Data
	29.6 Adding the Data Store
	29.7 Designing the Content View
	29.8 Designing the Detail View
	29.9 Adding Navigation to the List
	29.10 Designing the Add Car View
	29.11 Implementing Add and Edit Buttons
	29.12 Adding the Edit Button Methods
	29.13 Summary

	30. An Overview of List, OutlineGroup and DisclosureGroup
	30.1 Hierarchical Data and Disclosures
	30.2 Hierarchies and Disclosure in SwiftUI Lists
	30.3 Using OutlineGroup
	30.4 Using DisclosureGroup
	30.5 Summary

	31. A SwiftUI List, OutlineGroup and DisclosureGroup Tutorial
	31.1 About the Example Project
	31.2 Creating the OutlineGroupDemo Project
	31.3 Adding the Data Structure
	31.4 Adding the List View
	31.5 Testing the Project
	31.6 Using the Sidebar List Style
	31.7 Using OutlineGroup
	31.8 Working with DisclosureGroups
	31.9 Summary

	32. Building SwiftUI Grids with LazyVGrid and LazyHGrid
	32.1 SwiftUI Grids
	32.2 GridItems
	32.3 Creating the GridDemo Project
	32.4 Working with Flexible GridItems
	32.5 Adding Scrolling Support to a Grid
	32.6 Working with Adaptive GridItems
	32.7 Working with Fixed GridItems
	32.8 Using the LazyHGrid View
	32.9 Summary

	33. Building Tabbed and Paged Views in SwiftUI
	33.1 An Overview of SwiftUI TabView
	33.2 Creating the TabViewDemo App
	33.3 Adding the TabView Container
	33.4 Adding the Content Views
	33.5 Adding View Paging
	33.6 Adding the Tab Items
	33.7 Adding Tab Item Tags
	33.8 Summary

	34. Building Context Menus in SwiftUI
	34.1 Creating the ContextMenuDemo Project
	34.2 Preparing the Content View
	34.3 Adding the Context Menu
	34.4 Testing the Context Menu
	34.5 Summary

	35. Basic SwiftUI Graphics Drawing
	35.1 Creating the DrawDemo Project
	35.2 SwiftUI Shapes
	35.3 Using Overlays
	35.4 Drawing Custom Paths and Shapes
	35.5 Drawing Gradients
	35.6 Summary

	36. SwiftUI Animation and Transitions
	36.1 Creating the AnimationDemo Example Project
	36.2 Implicit Animation
	36.3 Repeating an Animation
	36.4 Explicit Animation
	36.5 Animation and State Bindings
	36.6 Automatically Starting an Animation
	36.7 SwiftUI Transitions
	36.8 Combining Transitions
	36.9 Asymmetrical Transitions
	36.10 Summary

	37. Working with Gesture Recognizers in SwiftUI
	37.1 Creating the GestureDemo Example Project
	37.2 Basic Gestures
	37.3 The onChange Action Callback
	37.4 The updating Callback Action
	37.5 Composing Gestures
	37.6 Summary

	38. Creating a Customized SwiftUI ProgressView
	38.1 ProgressView Styles
	38.2 Creating the ProgressViewDemo Project
	38.3 Adding a ProgressView
	38.4 Using the Circular ProgressView Style
	38.5 Declaring an Indeterminate ProgressView
	38.6 ProgressView Customization
	38.7 Summary

	39. An Overview of SwiftUI DocumentGroup Scenes
	39.1 Documents in Apps
	39.2 Creating the DocDemo App
	39.3 The DocumentGroup Scene
	39.4 Declaring File Type Support
	39.4.1 Document Content Type Identifier
	39.4.2 Handler Rank
	39.4.3 Type Identifiers
	39.4.4 Filename Extensions
	39.4.5 Custom Type Document Content Identifiers
	39.4.6 Exported vs. Imported Type Identifiers

	39.5 Configuring File Type Support in Xcode
	39.6 The Document Structure
	39.7 The Content View
	39.8 Running the Example App
	39.9 Summary

	40. A SwiftUI DocumentGroup Tutorial
	40.1 Creating the ImageDocDemo Project
	40.2 Modifying the Info.plist File
	40.3 Adding an Image Asset
	40.4 Modifying the ImageDocDemoDocument.swift File
	40.5 Designing the Content View
	40.6 Filtering the Image
	40.7 Testing the App
	40.8 Summary

	41. An Introduction to SiriKit
	41.1 Siri and SiriKit
	41.2 SiriKit Domains
	41.3 Siri Shortcuts
	41.4 SiriKit Intents
	41.5 How SiriKit Integration Works
	41.6 Resolving Intent Parameters
	41.7 The Confirm Method
	41.8 The Handle Method
	41.9 Custom Vocabulary
	41.10 The Siri User Interface
	41.11 Summary

	42. A SwiftUI SiriKit Messaging Extension Tutorial
	42.1 Creating the Example Project
	42.2 Enabling the Siri Entitlement
	42.3 Seeking Siri Authorization
	42.4 Adding the Intents Extension
	42.5 Supported Intents
	42.6 Trying the Example
	42.7 Specifying a Default Phrase
	42.8 Reviewing the Intent Handler
	42.9 Summary

	43. Customizing the SiriKit Intent User Interface
	43.1 Adding the Intents UI Extension
	43.2 Modifying the UI Extension
	43.3 Using the configure Method
	43.4 Using the configureView Method
	43.5 Designing the Siri Snippet
	43.6 Implementing a configureView Method
	43.7 Testing the Extension
	43.8 Summary

	44. A SwiftUI SiriKit NSUserActivity Tutorial
	44.1 About the SiriKit Photo Search Project
	44.2 Creating the SiriPhoto Project
	44.3 Enabling the Siri Entitlement
	44.4 Seeking Siri Authorization
	44.5 Adding an Image Asset
	44.6 Adding the Intents Extension to the Project
	44.7 Reviewing the Default Intents Extension
	44.8 Modifying the Supported Intents
	44.9 Modifying the IntentHandler Implementation
	44.10 Implementing the Resolve Methods
	44.11 Implementing the Confirmation Method
	44.12 Handling the Intent
	44.13 Testing the App
	44.14 Adding a Data Class to SiriPhoto
	44.15 Designing the Content View
	44.16 Adding Supported Activity Types to SiriPhoto
	44.17 Handling the NSUserActivity Object
	44.18 Testing the Completed App
	44.19 Summary

	45. An Overview of Siri Shortcut App Integration
	45.1 An Overview of Siri Shortcuts
	45.2 An Introduction to the Intent Definition File
	45.3 Automatically Generated Classes
	45.4 Donating Shortcuts
	45.5 The Add to Siri Button
	45.6 Summary

	46. A SwiftUI Siri Shortcut Tutorial
	46.1 About the Example App
	46.2 App Groups and UserDefaults
	46.3 Preparing the Project
	46.4 Running the App
	46.5 Enabling Siri Support
	46.6 Seeking Siri Authorization
	46.7 Adding the Intents Extension
	46.8 Adding the SiriKit Intent Definition File
	46.9 Adding the Intent to the App Group
	46.10 Configuring the SiriKit Intent Definition File
	46.11 Adding Intent Parameters
	46.12 Declaring Shortcut Combinations
	46.13 Configuring the Intent Response
	46.14 Configuring Target Membership
	46.15 Modifying the Intent Handler Code
	46.16 Adding the Confirm Method
	46.17 Donating Shortcuts to Siri
	46.18 Testing the Shortcuts
	46.19 Designing the Intent UI
	46.20 Summary

	47. Building Widgets with SwiftUI and WidgetKit
	47.1 An Overview of Widgets
	47.2 The Widget Extension
	47.3 Widget Configuration Types
	47.4 Widget Entry View
	47.5 Widget Timeline Entries
	47.6 Widget Timeline
	47.7 Widget Provider
	47.8 Reload Policy
	47.9 Relevance
	47.10 Forcing a Timeline Reload
	47.11 Widget Sizes
	47.12 Widget Placeholder
	47.13 Summary

	48. A SwiftUI WidgetKit Tutorial
	48.1 About the WidgetDemo Project
	48.2 Creating the WidgetDemo Project
	48.3 Building the App
	48.4 Adding the Widget Extension
	48.5 Adding the Widget Data
	48.6 Creating Sample Timelines
	48.7 Adding Image and Color Assets
	48.8 Designing the Widget View
	48.9 Modifying the Widget Provider
	48.10 Configuring the Placeholder View
	48.11 Previewing the Widget
	48.12 Summary

	49. Supporting WidgetKit Size Families
	49.1 Supporting Multiple Size Families
	49.2 Adding Size Support to the Widget View
	49.3 Summary

	50. A SwiftUI WidgetKit Deep Link Tutorial
	50.1 Adding Deep Link Support to the Widget
	50.2 Adding Deep Link Support to the App
	50.3 Testing the Widget
	50.4 Summary

	51. Adding Configuration Options to a WidgetKit Widget
	51.1 Modifying the Weather Data
	51.2 Configuring the Intent Definition
	51.3 Modifying the Widget
	51.4 Testing Widget Configuration
	51.5 Customizing the Configuration Intent UI
	51.6 Summary

	52. Integrating UIViews with SwiftUI
	52.1 SwiftUI and UIKit Integration
	52.2 Integrating UIViews into SwiftUI
	52.3 Adding a Coordinator
	52.4 Handling UIKit Delegation and Data Sources
	52.5 An Example Project
	52.6 Wrapping the UIScrolledView
	52.7 Implementing the Coordinator
	52.8 Using MyScrollView
	52.9 Summary

	53. Integrating UIViewControllers with SwiftUI
	53.1 UIViewControllers and SwiftUI
	53.2 Creating the ViewControllerDemo project
	53.3 Wrapping the UIImagePickerController
	53.4 Designing the Content View
	53.5 Completing MyImagePicker
	53.6 Completing the Content View
	53.7 Testing the App
	53.8 Summary

	54. Integrating SwiftUI with UIKit
	54.1 An Overview of the Hosting Controller
	54.2 A UIHostingController Example Project
	54.3 Adding the SwiftUI Content View
	54.4 Preparing the Storyboard
	54.5 Adding a Hosting Controller
	54.6 Configuring the Segue Action
	54.7 Embedding a Container View
	54.8 Embedding SwiftUI in Code
	54.9 Summary

	55. Preparing and Submitting an iOS 14 Application to the App Store
	55.1 Verifying the iOS Distribution Certificate
	55.2 Adding App Icons
	55.3 Assign the Project to a Team
	55.4 Archiving the Application for Distribution
	55.5 Configuring the Application in App Store Connect
	55.6 Validating and Submitting the Application
	55.7 Configuring and Submitting the App for Review

	Index
	_Ref302558096
	OLE_LINK88
	OLE_LINK89
	_Ref302558124
	Starting_Xcode
	_Ref429746122
	_Ref429746723
	_Ref425931386
	_Ref401906475
	_Ref492369664
	_Ref425929488
	_Ref522543368
	_Ref522609575
	_Ref522609705
	_Ref414371717
	_Ref414371110
	What_is_an_Expression.3F
	The_Basic_Assignment_Operator
	Objective-C_Arithmetic_Operators
	Compound_Assignment_Operators
	Increment_and_Decrement_Operators
	Comparison_Operators
	Bitwise_Operators
	Bitwise_AND
	Bitwise_OR
	Bitwise_Left_Shift
	Bitwise_Right_Shift
	Compound_Bitwise_Operators
	Objective-C_Loop_Variable_Scope
	Breaking_Out_of_a_for_Loop
	Nested_for_Loops
	Using_for_Loops_with_Multiple_Variables
	Objective-C_do_..._while_loops
	Breaking_from_Loops
	The_continue_Statement
	Using_if_..._else_.._Statements
	Using_the_switch_Statement_Syntax
	A_switch_Statement_Example
	Explaining_the_Example
	Combining_case_Statements
	_Ref21950614
	What_is_a_Function.3F
	How_to_Declare_an_Objective-C_Function
	Calling_an_Objective-C_Function
	_Ref21949892
	Inheritance.2C_Classes_and_Subclasses
	An_Objective-C_Inheritance_Example
	Extending_the_Functionality_of_a_Subclas
	Overriding_Inherited_Methods
	_Ref21943410

