

SwiftUI Essentials

iOS Edition

SwiftUI Essentials – iOS Edition

ISBN-13: 978-1-951442-06-4

© 2019 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution
strictly prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the
author offers any warranties or representation, express or implied, with regard to the accuracy of
information contained in this book, nor do they accept any liability for any loss or damage arising
from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit
of the respective trademark owner. The terms used within this book are not intended as
infringement of any trademarks.

Rev: 1.0

i

Table of Contents
1. Start Here ...1

1.1 For Swift Programmers .. 1
1.2 For Non-Swift Programmers .. 2
1.3 Source Code Download .. 2
1.4 Feedback .. 2
1.5 Errata .. 2

2. Joining the Apple Developer Program ..3

2.1 Downloading Xcode 11 and the iOS 13 SDK .. 3
2.2 Apple Developer Program .. 3
2.3 When to Enroll in the Apple Developer Program? .. 4
2.4 Enrolling in the Apple Developer Program .. 4
2.5 Summary .. 5

3. Installing Xcode 11 and the iOS 13 SDK ..7

3.1 Identifying Your macOS Version .. 7
3.2 Installing Xcode 11 and the iOS 13 SDK ... 8
3.3 Starting Xcode .. 8
3.4 Adding Your Apple ID to the Xcode Preferences ... 8
3.5 Developer and Distribution Signing Identities ... 9

4. An Introduction to Xcode 11 Playgrounds .. 11

4.1 What is a Playground? ...11
4.2 Creating a New Playground..11
4.3 A Basic Swift Playground Example ...13
4.4 Viewing Results ..15
4.5 Adding Rich Text Comments ..16
4.6 Working with Playground Pages ..18
4.7 Working with UIKit in Playgrounds ..18
4.8 Adding Resources to a Playground ..20
4.9 Working with Enhanced Live Views ...21
4.10 Summary ..23

5. Swift Data Types, Constants and Variables ... 25

5.1 Using a Swift Playground ...26
5.2 Swift Data Types ...26

5.2.1 Integer Data Types ..26
5.2.2 Floating Point Data Types ...27
5.2.3 Bool Data Type ..27
5.2.4 Character Data Type ...27

ii

5.2.5 String Data Type ... 28
5.2.6 Special Characters/Escape Sequences .. 29

5.3 Swift Variables ... 30
5.4 Swift Constants .. 30
5.5 Declaring Constants and Variables .. 30
5.6 Type Annotations and Type Inference ... 30
5.7 The Swift Tuple .. 31
5.8 The Swift Optional Type ... 32
5.9 Type Casting and Type Checking .. 36
5.10 Summary .. 38

6. Swift Operators and Expressions ..39

6.1 Expression Syntax in Swift ... 39
6.2 The Basic Assignment Operator ... 39
6.3 Swift Arithmetic Operators .. 39
6.4 Compound Assignment Operators .. 40
6.5 Comparison Operators ... 41
6.6 Boolean Logical Operators ... 42
6.7 Range Operators .. 42
6.8 The Ternary Operator .. 43
6.9 Bitwise Operators .. 44

6.9.1 Bitwise NOT ... 44
6.9.2 Bitwise AND... 45
6.9.3 Bitwise OR ... 45
6.9.4 Bitwise XOR ... 45
6.9.5 Bitwise Left Shift ... 46
6.9.6 Bitwise Right Shift ... 46

6.10 Compound Bitwise Operators.. 47
6.11 Summary .. 47

7. Swift Control Flow ...49

7.1 Looping Control Flow ... 49
7.2 The Swift for-in Statement ... 49

7.2.1 The while Loop .. 50
7.3 The repeat ... while loop .. 51
7.4 Breaking from Loops .. 51
7.5 The continue Statement .. 52
7.6 Conditional Flow Control ... 52
7.7 Using the if Statement ... 53
7.8 Using if ... else … Statements ... 53
7.9 Using if ... else if ... Statements .. 54
7.10 The guard Statement ... 54
7.11 Summary .. 55

iii

8. The Swift Switch Statement ... 57

8.1 Why Use a switch Statement? ...57
8.2 Using the switch Statement Syntax ...57
8.3 A Swift switch Statement Example ..58
8.4 Combining case Statements ...58
8.5 Range Matching in a switch Statement ...59
8.6 Using the where statement ...60
8.7 Fallthrough ...60
8.8 Summary ..61

9. An Overview of Swift 5 Functions, Methods and Closures ... 63

9.1 What is a Function?..63
9.2 What is a Method? ...63
9.3 How to Declare a Swift Function..63
9.4 Implicit Returns from Single Expressions ...64
9.5 Calling a Swift Function ..65
9.6 Handling Return Values..65
9.7 Local and External Parameter Names ..65
9.8 Declaring Default Function Parameters ...66
9.9 Returning Multiple Results from a Function ..67
9.10 Variable Numbers of Function Parameters ...67
9.11 Parameters as Variables ...68
9.12 Working with In-Out Parameters ...68
9.13 Functions as Parameters ..69
9.14 Closure Expressions..71
9.15 Closures in Swift ...73
9.16 Summary ..73

10. The Basics of Object-Oriented Programming in Swift .. 75

10.1 What is an Instance? ..75
10.2 What is a Class? ..75
10.3 Declaring a Swift Class ...75
10.4 Adding Instance Properties to a Class ..76
10.5 Defining Methods...76
10.6 Declaring and Initializing a Class Instance ...78
10.7 Initializing and Deinitializing a Class Instance ..78
10.8 Calling Methods and Accessing Properties ..79
10.9 Stored and Computed Properties ..80
10.10 Lazy Stored Properties ...81
10.11 Using self in Swift ...82
10.12 Understanding Swift Protocols ..84
10.13 Opaque Return Types ..85

iv

10.14 Summary .. 86

11. An Introduction to Swift Subclassing and Extensions ..87

11.1 Inheritance, Classes and Subclasses .. 87
11.2 A Swift Inheritance Example .. 87
11.3 Extending the Functionality of a Subclass ... 88
11.4 Overriding Inherited Methods ... 89
11.5 Initializing the Subclass .. 90
11.6 Using the SavingsAccount Class ... 91
11.7 Swift Class Extensions .. 91
11.8 Summary .. 92

12. An Introduction to Swift Structures ..93

12.1 An Overview of Swift Structures .. 93
12.2 Value Types vs. Reference Types ... 94
12.3 When to use Structures or Classes .. 96
12.4 Summary .. 96

13. An Introduction to Swift Property Wrappers ..97

13.1 Understanding Property Wrappers ... 97
13.2 A Simple Property Wrapper Example .. 97
13.3 Supporting Multiple Variables and Types .. 99
13.4 Summary .. 102

14. Working with Array and Dictionary Collections in Swift .. 103

14.1 Mutable and Immutable Collections ... 103
14.2 Swift Array Initialization ... 103
14.3 Working with Arrays in Swift ... 104

14.3.1 Array Item Count ... 104
14.3.2 Accessing Array Items ... 105

14.4 Random Items and Shuffling .. 105
14.5 Appending Items to an Array ... 105

14.5.1 Inserting and Deleting Array Items ... 105
14.6 Array Iteration .. 106
14.7 Creating Mixed Type Arrays ... 106
14.8 Swift Dictionary Collections ... 107
14.9 Swift Dictionary Initialization ... 107
14.10 Sequence-based Dictionary Initialization .. 108
14.11 Dictionary Item Count .. 108
14.12 Accessing and Updating Dictionary Items ... 109
14.13 Adding and Removing Dictionary Entries .. 109
14.14 Dictionary Iteration .. 109
14.15 Summary .. 110

v

15. Understanding Error Handling in Swift 5 .. 111

15.1 Understanding Error Handling ...111
15.2 Declaring Error Types ...111
15.3 Throwing an Error ..112
15.4 Calling Throwing Methods and Functions ...113
15.5 Accessing the Error Object ...114
15.6 Disabling Error Catching ...114
15.7 Using the defer Statement ...114
15.8 Summary ..115

16. An Overview of SwiftUI ... 117

16.1 UIKit and Interface Builder ...117
16.2 SwiftUI Declarative Syntax ...118
16.3 SwiftUI is Data Driven ..118
16.4 SwiftUI vs. UIKit ..119
16.5 Summary ..120

17. Using Xcode in SwiftUI Mode ... 121

17.1 Starting Xcode 11 ...121
17.2 Creating a SwiftUI Project ..122
17.3 Xcode in SwiftUI Mode...122
17.4 The Preview Canvas ...123
17.5 Preview Pinning ..125
17.6 Modifying the Design ...125
17.7 Editor Context Menu ..129
17.8 Previewing on Multiple Device Configurations..129
17.9 Running the App on a Simulator ..131
17.10 Running the App on a Physical iOS Device ...132
17.11 Managing Devices and Simulators ...134
17.12 Enabling Network Testing ..135
17.13 Dealing with Build Errors ...135
17.14 Monitoring Application Performance ..135
17.15 Exploring the User Interface Layout Hierarchy ..136
17.16 Summary ..139

18. The Anatomy of a Basic SwiftUI Project .. 141

18.1 Creating an Example Project ..141
18.2 UIKit and SwiftUI ..141
18.3 The AppDelegate.swift File ..141
18.4 The SceneDelegate.swift File ...142
18.5 ContentView.swift File ...144
18.6 Assets.xcassets ...144
18.7 Info.plist ...144

vi

18.8 LaunchScreen.storyboard .. 144
18.9 Summary .. 144

19. Creating Custom Views with SwiftUI .. 145

19.1 SwiftUI Views ... 145
19.2 Creating a Basic View ... 145
19.3 Adding Additional Views .. 146
19.4 Working with Subviews.. 148
19.5 Views as Properties .. 149
19.6 Modifying Views... 150
19.7 Working with Text Styles ... 150
19.8 Modifier Ordering .. 152
19.9 Custom Modifiers... 153
19.10 Basic Event Handling .. 153
19.11 The onAppear and onDisappear Methods... 154
19.12 Building Custom Container Views .. 155
19.13 Summary .. 156

20. SwiftUI Stacks and Frames ... 157

20.1 SwiftUI Stacks ... 157
20.2 Spacers, Alignment and Padding ... 159
20.3 Container Child Limit.. 161
20.4 Text Line Limits and Layout Priority ... 162
20.5 SwiftUI Frames ... 164
20.6 Frames and the Geometry Reader... 166
20.7 Summary .. 167

21. Working with SwiftUI State, Observable and Environment Objects 169

21.1 State Properties ... 169
21.2 State Binding .. 171
21.3 Observable Objects .. 172
21.4 Environment Objects ... 174
21.5 Summary .. 176

22. A SwiftUI Example Tutorial .. 177

22.1 Creating the Example Project .. 177
22.2 Reviewing the Project .. 178
22.3 Adding a VStack to the Layout ... 180
22.4 Adding a Slider View to the Stack .. 180
22.5 Adding a State Property ... 181
22.6 Adding Modifiers to the Text View .. 182
22.7 Adding Rotation and Animation .. 183
22.8 Adding a TextField to the Stack ... 185

vii

22.9 Adding a Color Picker ...185
22.10 Tidying the Layout ..187
22.11 Summary ..190

23. SwiftUI Observable and Environment Objects – A Tutorial .. 191

23.1 About the ObservableDemo Project ..191
23.2 Creating the Project ...191
23.3 Adding the Observable Object ...191
23.4 Designing the ContentView Layout..192
23.5 Adding the Second View ..194
23.6 Adding Navigation ..195
23.7 Using an Environment Object ..196
23.8 Summary ..198

24. SwiftUI Stack Alignment and Alignment Guides .. 199

24.1 Container Alignment ..199
24.2 Alignment Guides ...201
24.3 Using the Alignment Guides Tool...205
24.4 Custom Alignment Types ...206
24.5 Cross Stack Alignment ..209
24.6 ZStack Custom Alignment ..212
24.7 Summary ..215

25. SwiftUI Lists and Navigation .. 217

25.1 SwiftUI Lists ..217
25.2 SwiftUI Dynamic Lists ...219
25.3 SwiftUI NavigationView and NavigationLink..221
25.4 Making the List Editable ...223
25.5 Summary ..226

26. A SwiftUI List and Navigation Tutorial .. 227

26.1 About the ListNavDemo Project ..227
26.2 Creating the ListNavDemo Project ...227
26.3 Preparing the Project ...227
26.4 Adding the Car Structure ...228
26.5 Loading the JSON Data ...229
26.6 Adding the Data Store ..230
26.7 Designing the Content View...230
26.8 Designing the Detail View ..233
26.9 Adding Navigation to the List ...235
26.10 Designing the Add Car View ...236
26.11 Implementing Add and Edit Buttons ..239
26.12 Adding the Edit Button Methods ...241

viii

26.13 Summary .. 242

27. Building Tabbed Views in SwiftUI ... 243

27.1 An Overview of SwiftUI TabView ... 243
27.2 Creating the TabViewDemo App ... 244
27.3 Adding the TabView Container .. 244
27.4 Adding the Content Views ... 244
27.5 Adding the Tab Items ... 244
27.6 Adding Tab Item Tags ... 245
27.7 Summary .. 246

28. Building Context Menus in SwiftUI ... 247

28.1 Creating the ContextMenuDemo Project .. 247
28.2 Preparing the Content View .. 247
28.3 Adding the Context Menu .. 248
28.4 Testing the Context Menu ... 249
28.5 Summary .. 250

29. Basic SwiftUI Graphics Drawing.. 251

29.1 Creating the DrawDemo Project .. 251
29.2 SwiftUI Shapes ... 251
29.3 Using Overlays.. 254
29.4 Drawing Custom Paths and Shapes ... 254
29.5 Drawing Gradients ... 257
29.6 Summary .. 260

30. SwiftUI Animation and Transitions ... 261

30.1 Creating the AnimationDemo Example Project ... 261
30.2 Implicit Animation .. 261
30.3 Repeating an Animation .. 264
30.4 Explicit Animation .. 264
30.5 Animation and State Bindings .. 265
30.6 Automatically Starting an Animation ... 266
30.7 SwiftUI Transitions ... 269
30.8 Combining Transitions ... 270
30.9 Asymmetrical Transitions... 271
30.10 Summary .. 271

31. Working with Gesture Recognizers in SwiftUI ... 273

31.1 Creating the GestureDemo Example Project ... 273
31.2 Basic Gestures .. 273
31.3 The onChange Action Callback... 275
31.4 The updating Callback Action .. 276

ix

31.5 Composing Gestures ..278
31.6 Summary ..280

32. Integrating UIViews with SwiftUI ... 281

32.1 SwiftUI and UIKit Integration ...281
32.2 Integrating UIViews into SwiftUI ..282
32.3 Adding a Coordinator ...283
32.4 Handling UIKit Delegation and Data Sources ...284
32.5 An Example Project ..286
32.6 Wrapping the UIScrolledView ..286
32.7 Implementing the Coordinator ..287
32.8 Using MyScrollView..288
32.9 Summary ..289

33. Integrating UIViewControllers with SwiftUI .. 291

33.1 UIViewControllers and SwiftUI ..291
33.2 Creating the ViewControllerDemo project ..291
33.3 Wrapping the UIImagePickerController...291
33.4 Designing the Content View...293
33.5 Completing MyImagePicker ...294
33.6 Completing the Content View ..296
33.7 Testing the App ..297
33.8 Summary ..297

34. Integrating SwiftUI with UIKit .. 299

34.1 An Overview of the Hosting Controller ..299
34.2 A UIHostingController Example Project ...300
34.3 Adding the SwiftUI Content View ..300
34.4 Preparing the Storyboard...301
34.5 Adding a Hosting Controller ...302
34.6 Configuring the Segue Action ..304
34.7 Embedding a Container View ...306
34.8 Embedding SwiftUI in Code ...308
34.9 Summary ..310

35. Preparing and Submitting an iOS 13 Application to the App Store 311

35.1 Verifying the iOS Distribution Certificate...311
35.2 Adding App Icons ...313
35.3 Designing the Launch Screen ...314
35.4 Assign the Project to a Team ...314
35.5 Archiving the Application for Distribution ...315
35.6 Configuring the Application in iTunes Connect ...316
35.7 Validating and Submitting the Application ..317

x

35.8 Configuring and Submitting the App for Review ... 320

Index .. 321

1

1. Start Here
The goal of this book is to teach the skills necessary to build iOS 13 applications using SwiftUI, Xcode
11 and the Swift 5 programming language.

Beginning with the basics, this book provides an outline of the steps necessary to set up an iOS
development environment together with an introduction to the use of Swift Playgrounds to learn
and experiment with Swift.

The book also includes in depth chapters introducing the Swift 5 programming language including
data types, control flow, functions, object-oriented programming, property wrappers and error
handling.

An introduction to the key concepts of SwiftUI and project architecture is followed by a guided tour
of Xcode in SwiftUI development mode. The book also covers the creation of custom SwiftUI views
and explains how these views are combined to create user interface layouts including the use of
stacks, frames and forms.

Other topics covered include data handling using state properties and both observable and
environment objects, as are key user interface design concepts such as modifiers, lists, tabbed
views, context menus and user interface navigation.

The book also includes chapters covering graphics drawing, user interface animation, view
transitions and gesture handling.

Chapters are also provided explaining how to integrate SwiftUI views into existing UIKit-based
projects and explains the integration of UIKit code into SwiftUI.

Finally, the book explains how to package up a completed app and upload it to the App Store for
publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the
source code for which is also available for download.

The aim of this book, therefore, is to teach you the skills necessary to build your own apps for iOS
13 using SwiftUI. Assuming you are ready to download the iOS 13 SDK and Xcode 11 and have an
Intel-based Mac you are ready to get started.

1.1 For Swift Programmers

This book has been designed to address the needs of both existing Swift programmers and those
who are new to both Swift and iOS app development. If you are familiar with the Swift 5.1
programming language, you can probably skip the Swift specific chapters. If you are not yet familiar

Chapter 1

Start Here

2

with the new language features of Swift 5.1, however, we recommend that you at least read the
sections covering implicit returns from single expressions, opaque return types and property
wrappers. These features are central to the implementation and understanding of SwiftUI.

1.2 For Non-Swift Programmers

If you are new to programming in Swift (or programming in general) then the entire book is
appropriate for you. Just start at the beginning and keep going.

1.3 Source Code Download

The source code and Xcode project files for the examples contained in this book are available for
download at:

https://www.ebookfrenzy.com/retail/swiftui/

1.4 Feedback

We want you to be satisfied with your purchase of this book. If you find any errors in the book, or
have any comments, questions or concerns please contact us at feedback@ebookfrenzy.com.

1.5 Errata

While we make every effort to ensure the accuracy of the content of this book, it is inevitable that
a book covering a subject area of this size and complexity may include some errors and oversights.
Any known issues with the book will be outlined, together with solutions at the following URL:

https://www.ebookfrenzy.com/errata/swiftui.html

In the event that you find an error not listed in the errata, please let us know by emailing our
technical support team at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/swiftui/
mailto:feedback@ebookfrenzy.com
https://www.ebookfrenzy.com/errata/swiftui.html
mailto:feedback@ebookfrenzy.com

3

2. Joining the Apple Developer Program
The first step in the process of learning to develop iOS 13 based applications involves gaining an
understanding of the advantages of enrolling in the Apple Developer Program and deciding the
point at which it makes sense to pay to join. With these goals in mind, this chapter will outline the
costs and benefits of joining the developer program and, finally, walk through the steps involved in
enrolling.

2.1 Downloading Xcode 11 and the iOS 13 SDK

The latest versions of both the iOS SDK and Xcode can be downloaded free of charge from the Mac
App Store. Since the tools are free, this raises the question of whether to enroll in the Apple
Developer Program, or to wait until it becomes necessary later in your app development learning
curve.

2.2 Apple Developer Program

Membership in the Apple Developer Program currently costs $99 per year to enroll as an individual
developer. Organization level membership is also available.

Prior to the introduction of iOS 9 and Xcode 7, one of the key advantages of the developer program
was that it permitted the creation of certificates and provisioning profiles to test your applications
on physical iOS devices. Fortunately, this is no longer the case and all that is now required to test
apps on physical iOS devices is an Apple ID.

Clearly much can be achieved without the need to pay to join the Apple Developer program. There
are, however, areas of app development which cannot be fully tested without program
membership. Of particular significance is the fact that iCloud access, Apple Pay, Game Center and
In-App Purchasing can only be enabled and tested with Apple Developer Program membership.

Of further significance is the fact that Apple Developer Program members have access to technical
support from Apple’s iOS support engineers (though the annual fee initially covers the submission
of only two support incident reports more can be purchased) and membership of the Apple
Developer forums which can be an invaluable resource for obtaining assistance and guidance from
other iOS developers and for finding solutions to problems that others have encountered and
subsequently resolved.

Program membership also provides early access to the pre-release Beta versions of both Xcode and
iOS.

By far the most important aspect of the Apple Developer Program is that membership is a
mandatory requirement in order to publish an application for sale or download in the App Store.

Chapter 2

Joining the Apple Developer Program

4

Clearly, program membership is going to be required at some point before your application reaches
the App Store. The only question remaining is when exactly to sign up.

2.3 When to Enroll in the Apple Developer Program?

Clearly, there are many benefits to Apple Developer Program membership and, eventually,
membership will be necessary to begin selling applications. As to whether to pay the enrollment fee
now or later will depend on individual circumstances. If you are still in the early stages of learning
to develop iOS applications or have yet to come up with a compelling idea for an application to
develop then much of what you need is provided without program membership. As your skill level
increases and your ideas for applications to develop take shape you can, after all, always enroll in
the developer program later.

If, on the other hand, you are confident that you will reach the stage of having an application ready
to publish or know that you will need access to more advanced features such as iCloud, In-App
Purchasing and Apple Pay then it is worth joining the developer program sooner rather than later.

2.4 Enrolling in the Apple Developer Program

If your goal is to develop iOS applications for your employer, then it is first worth checking whether
the company already has membership. That being the case, contact the program administrator in
your company and ask them to send you an invitation from within the Apple Developer Program
Member Center to join the team. Once they have done so, Apple will send you an email entitled
You Have Been Invited to Join an Apple Developer Program containing a link to activate your
membership. If you or your company is not already a program member, you can enroll online at:

https://developer.apple.com/programs/enroll/

Apple provides enrollment options for businesses and individuals. To enroll as an individual, you will
need to provide credit card information in order to verify your identity. To enroll as a company, you
must have legal signature authority (or access to someone who does) and be able to provide
documentation such as a Dun & Bradstreet D-U-N-S number and documentation confirming legal
entity status.

Acceptance into the developer program as an individual member typically takes less than 24 hours
with notification arriving in the form of an activation email from Apple. Enrollment as a company
can take considerably longer (sometimes weeks or even months) due to the burden of the
additional verification requirements.

While awaiting activation you may log into the Member Center with restricted access using your
Apple ID and password at the following URL:

 https://developer.apple.com/membercenter

Once logged in, clicking on the Your Account tab at the top of the page will display the prevailing
status of your application to join the developer program as Enrollment Pending. Once the activation
email has arrived, log into the Member Center again and note that access is now available to a wide
range of options and resources as illustrated in Figure 2-1:

https://developer.apple.com/programs/enroll/
https://developer.apple.com/membercenter

Joining the Apple Developer Program

5

Figure 2-1

2.5 Summary

An important early step in the iOS 13 application development process involves identifying the best
time to enroll in the Apple Developer Program. This chapter has outlined the benefits of joining the
program, provided some guidance to keep in mind when considering developer program
membership and walked briefly through the enrollment process. The next step is to download and
install the iOS 13 SDK and Xcode 11 development environment.

7

3. Installing Xcode 11 and the iOS 13
SDK
iOS apps are developed using the iOS SDK in conjunction with Apple’s Xcode development
environment. Xcode is an integrated development environment (IDE) within which you will code,
compile, test and debug your iOS applications.

In this chapter we will cover the steps involved in installing both Xcode 11 and the iOS 13 SDK on
macOS.

3.1 Identifying Your macOS Version

When developing with SwiftUI, the Xcode 11 environment requires that the version of macOS
running on the system be version 10.15 or later. If you are unsure of the version of macOS on your
Mac, you can find this information by clicking on the Apple menu in the top left-hand corner of the
screen and selecting the About This Mac option from the menu. In the resulting dialog check the
Version line.

If the “About This Mac” dialog does not indicate that macOS 10.15 or later is running, click on the
Software Update… button to download and install the appropriate operating system upgrades.

Figure 3-1

Chapter 3

Installing Xcode 11 and the iOS 13 SDK

8

3.2 Installing Xcode 11 and the iOS 13 SDK

The best way to obtain the latest versions of Xcode and the iOS SDK is to download them from the
Apple Mac App Store. Launch the App Store on your macOS system, enter Xcode into the search
box and click on the Get button to initiate the installation.

3.3 Starting Xcode

Having successfully installed the SDK and Xcode, the next step is to launch it so that we are ready
to start development work. To start up Xcode, open the Finder and search for Xcode. Since you will
be making frequent use of this tool take this opportunity to drag and drop it into your dock for
easier access in the future. Click on the Xcode icon in the dock to launch the tool. The first time
Xcode runs you may be prompted to install additional components. Follow these steps, entering
your username and password when prompted to do so.

Once Xcode has loaded, and assuming this is the first time you have used Xcode on this system, you
will be presented with the Welcome screen from which you are ready to proceed:

Figure 3-2

3.4 Adding Your Apple ID to the Xcode Preferences

Regardless of whether or not you choose to enroll in the Apple Developer Program it is worth adding
your Apple ID to Xcode now that it is installed and running. Select the Xcode -> Preferences… menu
option followed by the Accounts tab. On the Accounts screen, click on the + button highlighted in
Figure 3-3, select Apple ID from the resulting panel and click on the Continue button. When
prompted, enter your Apple ID and associated password and click on the Sign In button to add the
account to the preferences.

Installing Xcode 11 and the iOS 13 SDK

9

Figure 3-3

3.5 Developer and Distribution Signing Identities

Once the Apple ID has been entered the next step is to generate signing identities. To view the
current signing identities, select the newly added Apple ID in the Accounts panel and click on the
Manage Certificates… button at which point a list of available signing identities will be listed. To
create a signing identity, simply click on the + button highlighted in Figure 3-4 and make the
appropriate selection from the menu:

Figure 3-4

Installing Xcode 11 and the iOS 13 SDK

10

If the Apple ID has been used to enroll in the Apple Developer program, the option to create an
Apple Distribution certificate will appear in the menu which will, when clicked, generate the signing
identity required to submit the app to the Apple App Store. If you have not yet signed up for the
Apple Developer program, select the Apple Development option to allow apps to be tested during
development.

Having installed the iOS SDK and successfully launched Xcode 11 we can now look at Xcode in more
detail, starting with Playgrounds.

11

4. An Introduction to Xcode 11
Playgrounds
Before introducing the Swift programming language in the chapters that follow, it is first worth
learning about a feature of Xcode known as Playgrounds. This is a feature of Xcode designed to
make learning Swift and experimenting with the iOS SDK much easier. The concepts covered in this
chapter can be put to use when experimenting with many of the introductory Swift code examples
contained in the chapters that follow.

4.1 What is a Playground?

A playground is an interactive environment where Swift code can be entered and executed with the
results appearing in real-time. This makes an ideal environment in which to learn the syntax of Swift
and the visual aspects of iOS app development without the need to work continuously through the
edit/compile/run/debug cycle that would ordinarily accompany a standard Xcode iOS project. With
support for rich text comments, playgrounds are also a good way to document code for future
reference or as a training tool.

4.2 Creating a New Playground

To create a new Playground, start Xcode and select the Get started with a playground option from
the welcome screen or select the File -> New -> Playground… menu option. Choose the iOS option
on the resulting panel and select the Blank template.

The Blank template is useful for trying out Swift coding. The Single View template, on the other
hand, provides a view controller environment for trying out code that requires a user interface
layout. The game and map templates provide preconfigured playgrounds that allow you to
experiment with the iOS MapKit and SpriteKit frameworks respectively.

On the next screen, name the playground LearnSwift and choose a suitable file system location into
which the playground should be saved before clicking on the Create button.

Once the playground has been created, the following screen will appear ready for Swift code to be
entered:

Chapter 4

An Introduction to Xcode 11 Playgrounds

12

Figure 4-1

The panel on the left-hand side of the window (marked A in Figure 4-1) is the playground editor
where the lines of Swift code are entered. The right-hand panel (marked B) is referred to as the
results panel and is where the results of each Swift expression entered into the playground editor
panel are displayed.

The cluster of three buttons at the right-hand side of the toolbar (marked C) are used to hide and
display other panels within the playground window. The left most button displays the Navigator
panel which provides access to the folders and files that make up the playground (marked A in
Figure 4-2 below). The middle button, on the other hand, displays the Debug view (B) which displays
code output and information about coding or runtime errors. The right most button displays the
Utilities panel (C) where a variety of properties relating to the playground may be configured.

Figure 4-2

By far the quickest way to gain familiarity with the playground environment is to work through some
simple examples.

An Introduction to Xcode 11 Playgrounds

13

4.3 A Basic Swift Playground Example

Perhaps the simplest of examples in any programming language (that at least does something
tangible) is to write some code to output a single line of text. Swift is no exception to this rule so,
within the playground window, begin adding another line of Swift code so that it reads as follows:

import UIKit

var str = "Hello , playground"

print("Welcome to Swift")

All that the additional line of code does is make a call to the built-in Swift print function which takes
as a parameter a string of characters to be displayed on the console. Those familiar with other
programming languages will note the absence of a semi-colon at the end of the line of code. In
Swift, semi-colons are optional and generally only used as a separator when multiple statements
occupy the same line of code.

Note that although some extra code has been entered, nothing yet appears in the results panel.
This is because the code has yet to be executed. One option to run the code is to click on the Execute
Playground button located in the bottom left-hand corner of the main panel as indicated by the
arrow in Figure 4-3:

Figure 4-3

When clicked, this button will execute all the code in the current playground page from the first line
of code to the last. Another option is to execute the code in stages using the run button located in
the margin of the code editor as shown in Figure 4-4:

Figure 4-4

An Introduction to Xcode 11 Playgrounds

14

This button executes the line numbers with the shaded blue background including the line on which
the button is currently positioned. In the above figure, for example, the button will execute lines 1
through 3 and then stop.

The position of the run button can be moved by hovering the mouse pointer over the line numbers
in the editor. In Figure 4-5, for example, the run button is now positioned on line 5 and will execute
lines 4 and 5 when clicked. Note that lines 1 to 3 are no longer highlighted in blue indicating that
these have already been executed and are not eligible to be run this time:

Figure 4-5

This technique provides an easy way to execute the code in stages making it easier to understand
how the code functions and to identify problems in code execution.

To reset the playground so that execution can be performed from the start of the code, simply click
on the stop button as indicated in Figure 4-6:

Figure 4-6

Using this incremental execution technique, execute lines 1 through 3 and note that output now
appears in the results panel indicating that the variable has been initialized:

Figure 4-7

Next, execute the remaining lines up to and including line 5 at which point the “Welcome to Swift”
output should appear both in the results panel and Debug panel:

An Introduction to Xcode 11 Playgrounds

15

Figure 4-8

4.4 Viewing Results

Playgrounds are particularly useful when working and experimenting with Swift algorithms. This can
be useful when combined with the Quick Look feature. Remaining within the playground editor,
enter the following lines of code beneath the existing print statement:

var x = 10

for index in 1...20 {

 let y = index * x

 x -= 1

 print(y)

}

This expression repeats a loop 20 times, performing arithmetic expressions on each iteration of the
loop. Once the code has been entered into the editor, click on the run button positioned at line 13
to execute these new lines of code. The playground will execute the loop and display in the results
panel the number of times the loop was performed. More interesting information, however, may
be obtained by hovering the mouse pointer over the results line so that two additional buttons
appear as shown in Figure 4-9:

Figure 4-9

An Introduction to Xcode 11 Playgrounds

16

The left most of the two buttons is the Quick Look button which, when selected, will show a popup
panel displaying the results as shown in Figure 4-10:

Figure 4-10

The right-most button is the Show Result button which, when selected, displays the results in-line
with the code:

Figure 4-11

4.5 Adding Rich Text Comments

Rich text comments allow the code within a playground to be documented in a way that is easy to

format and read. A single line of text can be marked as being rich text by preceding it with a //:

marker. For example:

//: This is a single line of documentation text

Blocks of text can be added by wrapping the text in /*: and */ comment markers:

/*:

This is a block of documentation text that is intended

An Introduction to Xcode 11 Playgrounds

17

to span multiple lines

*/

The rich text uses the Markup language and allows text to be formatted using a lightweight and

easy to use syntax. A heading, for example, can be declared by prefixing the line with a ‘#’ character

while text is displayed in italics when wrapped in ‘*’ characters. Bold text, on the other hand,

involves wrapping the text in ‘**’ character sequences. It is also possible to configure bullet points

by prefixing each line with a single ‘*’. Among the many other features of Markup are the ability to

embed images and hyperlinks into the content of a rich text comment.

To see rich text comments in action, enter the following markup content into the playground editor

immediately after the print(“Welcome to Swift”) line of code:

/*:

Welcome to Playgrounds

This is your *first* playground which is intended to demonstrate:

* The use of **Quick Look**

* Placing results **in-line** with the code

*/

As the comment content is added it is said to be displayed in raw markup format. To display in

rendered markup format, either select the Editor -> Show Rendered Markup menu option, or enable

the Render Documentation option located under Playground Settings in the Inspector panel

(marked C in Figure 4-2). If the Inspector panel is not currently visible, click on the right most of the

three view buttons (marked C in Figure 4-1) to display it. Once rendered, the above rich text should

appear as illustrated in Figure 4-12:

Figure 4-12

Detailed information about the Markup syntax can be found online at the following URL:

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_for

matting_ref/index.html

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html

An Introduction to Xcode 11 Playgrounds

18

4.6 Working with Playground Pages

A playground can consist of multiple pages, with each page containing its own code, resources and
rich text comments. So far, the playground used in this chapter contains a single page. Add an
additional page to the playground now by selecting the LearnSwift entry at the top of the Navigator
panel, right-clicking and selecting the New Playground Page menu option. If the Navigator panel is
not currently visible, click on the left most of the three view buttons (marked C in Figure 4-1) to
display it. Note that two pages are now listed in the Navigator named “Untitled Page” and “Untitled
Page 2”. Select and then click a second time on the “Untitled Page 2” entry so that the name
becomes editable and change the name to UIKit Examples as outlined in Figure 4-13:

Figure 4-13

Note that the newly added page has Markup links which, when clicked, navigate to the previous or
next page in the playground.

4.7 Working with UIKit in Playgrounds

Prior to the introduction of SwiftUI, iOS apps were developed using UIKit and a range of UIKit-based
frameworks. Unsurprisingly, UIKit can be used within Xcode playgrounds.

While it is also possible to use SwiftUI within a playground, this requires some additional steps that
involve integrating SwiftUI into UIKit (a topic which is not covered until much later in this book). In
practice, however, Xcode provides a Live Preview canvas which provides many of the features of
playgrounds when developing with SwiftUI. As will be discussed later, it may still be necessary to
use UIKit when working with SwiftUI, so for completeness, the use of UIKit in a playground will be
covered in this section.

When working with UIKit within a playground page it is necessary to import the iOS UIKit
Framework. The UIKit Framework contains most of the classes necessary to implement user
interfaces for iOS applications when not using SwiftUI. An extremely powerful feature of
playgrounds is that it is also possible to work with UIKit along with many of the other frameworks
that comprise the iOS SDK.

The following code, for example, imports the UIKit framework, creates a UILabel instance and sets
color, text and font properties on it:

An Introduction to Xcode 11 Playgrounds

19

import UIKit

let myLabel = UILabel(frame: CGRect(x: 0, y: 0, width: 200, height: 50))

myLabel.backgroundColor = UIColor.red

myLabel.text = "Hello Swift"

myLabel.textAlignment = .center

myLabel.font = UIFont(name: "Georgia", size: 24)

myLabel

Enter this code into the playground editor on the UIKit Examples page (the existing code can be
removed) and run the code. This code provides a good example of how the Quick Look feature can
be useful. Each line of the example Swift code configures a different aspect of the appearance of
the UILabel instance. Clicking on the Quick Look button for the first line of code will display an empty
view (since the label exists but has yet to be given any visual attributes). Clicking on the Quick Look
button in the line of code which sets the background color, on the other hand, will show the red
label:

Figure 4-14

Similarly, the quick look view for the line where the text property is set will show the red label with
the “Hello Swift” text left aligned:

Figure 4-15

The font setting quick look view on the other hand displays the UILabel with centered text and the
larger Georgia font:

Figure 4-16

An Introduction to Xcode 11 Playgrounds

20

4.8 Adding Resources to a Playground

Another useful feature of playgrounds is the ability to bundle and access resources such as image
files in a playground. Within the Navigator panel, click on the right facing arrow (known as a
disclosure arrow) to the left of the UIKit Examples page entry to unfold the page contents (Figure
4-17) and note the presence of a folder named Resources:

Figure 4-17

If you have not already done so, download and unpack the code samples archive from the
following URL:

https://www.ebookfrenzy.com/retail/swiftui/

Open a Finder window, navigate to the playground_images folder within the code samples folder
and drag and drop the image file named waterfall.png onto the Resources folder beneath the UIKit
Examples page in the Playground Navigator panel:

Figure 4-18

With the image added to the resources, add code to the page to create an image object and display
the waterfall image on it:

let image = UIImage(named: "waterfall")

https://www.ebookfrenzy.com/retail/swiftui/

An Introduction to Xcode 11 Playgrounds

21

With the code added, run the new statement and use either the Quick Look or inline option to
view the results of the code:

Figure 4-19

4.9 Working with Enhanced Live Views

So far in this chapter, all of the UIKit examples have involved presenting static user interface
elements using the Quick Look and in-line features. It is, however, also possible to test dynamic user
interface behavior within a playground using the Xcode Enhanced Live Views feature. To
demonstrate live views in action, create a new page within the playground named Live View
Example. Within the newly added page, remove the existing lines of Swift code before adding
import statements for the UIKit framework and an additional playground module named
PlaygroundSupport:

import UIKit

import PlaygroundSupport

The PlaygroundSupport module provides a number of useful features for playgrounds including the
ability to present a live view within the playground timeline.

Beneath the import statements, add the following code:

import UIKit

import PlaygroundSupport

let container = UIView(frame: CGRect(x: 0,y: 0,width: 200,height: 200))

container.backgroundColor = UIColor.white

let square = UIView(frame: CGRect(x: 50,y: 50,width: 100,height: 100))

square.backgroundColor = UIColor.red

container.addSubview(square)

UIView.animate(withDuration: 5.0, animations: {

 square.backgroundColor = UIColor.blue

 let rotation = CGAffineTransform(rotationAngle: 3.14)

 square.transform = rotation

})

An Introduction to Xcode 11 Playgrounds

22

The code creates a UIView object to act as a container view and assigns it a white background color.
A smaller view is then drawn positioned in the center of the container view and colored red. The
second view is then added as a child of the container view. An animation is then used to change the
color of the smaller view to blue and to rotate it through 360 degrees.

Once the code has been executed, clicking on any of the Quick Look buttons will show a snapshot
of the views at each stage in the code sequence. None of the quick look views, however, show the
dynamic animation. To see how the animation code works it will be necessary to use the live view
playground feature.

The PlaygroundSupport module includes a class named PlaygroundPage that allows playground
code to interact with the pages that make up a playground. This is achieved through a range of
methods and properties of the class, one of which is the current property. This property, in turn,
provides access to the current playground page. In order to execute the code within the playground,
the liveView property of the current page needs to be set to our new container. To display the Live
View panel, enable the Xcode Editor -> Live View menu option as shown in Figure 4-20:

Figure 4-20

Once the live view panel is visible, add the code to assign the container to the live view of the current
page as follows:

import UIKit

import PlaygroundSupport

let container = UIView(frame: CGRect(x: 0,y: 0,width: 200,height: 200))

PlaygroundPage.current.liveView = container

container.backgroundColor = UIColor.white

let square = UIView(frame: CGRect(x: 50,y: 50,width: 100,height: 100))

square.backgroundColor = UIColor.red

container.addSubview(square)

UIView.animate(withDuration: 5.0, animations: {

An Introduction to Xcode 11 Playgrounds

23

 square.backgroundColor = UIColor.blue

 let rotation = CGAffineTransform(rotationAngle: 3.14)

 square.transform = rotation

})

Once the call has been added, re-execute the code at which point the views should appear in the
timeline (Figure 4-21). During the 5 second animation duration, the red square should rotate
through 360 degrees while gradually changing color to blue:

Figure 4-21

To repeat the execution of the code in the playground page, click on the stop button highlighted in
Figure 4-6 to reset the playground and change the stop button into the run button (Figure 4-3). Click
the run button to repeat the execution.

4.10 Summary

This chapter has introduced the concept of playgrounds. Playgrounds provide an environment in
which Swift code can be entered and the results of that code viewed dynamically. This provides an
excellent environment both for learning the Swift programming language and for experimenting
with many of the classes and APIs included in the iOS SDK without the need to create Xcode projects
and repeatedly edit, compile and run code.

25

5. Swift Data Types, Constants and
Variables
If you are new to the Swift programming language then the next few chapters are recommended
reading. Although SwiftUI makes the development of apps easier, it will still be necessary to learn
Swift programming both to understand SwiftUI and develop fully functional apps.

If, on the other hand, you are familiar with the Swift programming language you can skip the Swift
specific chapters that follow (though if you are not familiar with the new features of Swift 5.1 you
should at least read the sections and chapters relating to implicit returns from single expressions,
opaque return types and property wrappers before moving on to the SwiftUI chapters).

Prior to the introduction of iOS 8, the stipulated programming language for the development of iOS
applications was Objective-C. When Apple announced iOS 8, however, the company also introduced
an alternative to Objective-C in the form of the Swift programming language.

Due entirely to the popularity of iOS, Objective-C had become one of the more widely used
programming languages. With origins firmly rooted in the 40-year-old C Programming Language,
however, and despite recent efforts to modernize some aspects of the language syntax, Objective-
C was beginning to show its age.

Swift, on the other hand, is a relatively new programming language designed specifically to make
programming easier, faster and less prone to programmer error. Starting with a clean slate and no
burden of legacy, Swift is a new and innovative language with which to develop applications for iOS,
macOS, watchOS and tvOS with the advantage that much of the syntax will be familiar to those with
experience of other programming languages.

The introduction of Swift aside, it is still perfectly acceptable to continue to develop applications
using Objective-C. Indeed, it is also possible to mix both Swift and Objective-C within the same
application code base. That being said, Apple clearly sees the future of development in terms of
Swift rather than Objective-C. In recognition of this fact, all of the examples in this book are
implemented using Swift. Before moving on to those examples, however, the next several chapters
will provide an overview and introduction to Swift programming. The intention of these chapters is
to provide enough information so that you can begin to confidently program using Swift. For an
exhaustive and in-depth guide to all the features, intricacies and capabilities of Swift, some time
spent reading Apple’s excellent book entitled “The Swift Programming Language” (available free of
charge from within the Apple Books app) is strongly recommended.

Chapter 5

Swift Data Types, Constants and Variables

26

5.1 Using a Swift Playground

Both this and the following few chapters are intended to introduce the basics of the Swift
programming language. As outlined in the previous chapter, entitled An Introduction to Swift
Playgrounds the best way to learn Swift is to experiment within a Swift playground environment.
Before starting this chapter, therefore, create a new playground and use it to try out the code in
both this and the other Swift introduction chapters that follow.

5.2 Swift Data Types

When we look at the different types of software that run on computer systems and mobile devices,
from financial applications to graphics intensive games, it is easy to forget that computers are really
just binary machines. Binary systems work in terms of 0 and 1, true or false, set and unset. All the
data sitting in RAM, stored on disk drives and flowing through circuit boards and buses are nothing
more than sequences of 1s and 0s. Each 1 or 0 is referred to as a bit and bits are grouped together
in blocks of 8, each group being referred to as a byte. When people talk about 32-bit and 64-bit
computer systems they are talking about the number of bits that can be handled simultaneously by
the CPU bus. A 64-bit CPU, for example, is able to handle data in 64-bit blocks, resulting in faster
performance than a 32-bit based system.

Humans, of course, don't think in binary. We work with decimal numbers, letters and words. In
order for a human to easily (easily being a relative term in this context) program a computer, some
middle ground between human and computer thinking is needed. This is where programming
languages such as Swift come into play. Programming languages allow humans to express
instructions to a computer in terms and structures we understand, and then compile that down to
a format that can be executed by a CPU.

One of the fundamentals of any program involves data, and programming languages such as Swift
define a set of data types that allow us to work with data in a format we understand when
programming. For example, if we want to store a number in a Swift program, we could do so with
syntax similar to the following:

var mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the
value of 10. When we compile the source code down to the machine code used by the CPU, the
number 10 is seen by the computer in binary as:

1010

Now that we have a basic understanding of the concept of data types and why they are necessary
we can take a closer look at some of the more commonly used data types supported by Swift.

5.2.1 Integer Data Types

Swift integer data types are used to store whole numbers (in other words a number with no decimal
places). Integers can be signed (capable of storing positive, negative and zero values) or unsigned
(positive and zero values only).

Swift Data Types, Constants and Variables

27

Swift provides support for 8, 16, 32 and 64-bit integers (represented by the Int8, Int16, Int32 and
Int64 types respectively). The same variants are also available for unsigned integers (UInt8, UInt16,
UInt32 and UInt64).

In general, Apple recommends using the Int data type rather than one of the above specifically sized
data types. The Int data type will use the appropriate integer size for the platform on which the
code is running.

All integer data types contain bounds properties which can be accessed to identify the minimum
and maximum supported values of that particular type. The following code, for example, outputs
the minimum and maximum bounds for the 32-bit signed integer data type:

print("Int32 Min = \(Int32.min) Int32 Max = \(Int32.max)")

When executed, the above code will generate the following output:

Int32 Min = -2147483648 Int32 Max = 2147483647

5.2.2 Floating Point Data Types

The Swift floating point data types are able to store values containing decimal places. For example,
4353.1223 would be stored in a floating-point data type. Swift provides two floating point data
types in the form of Float and Double. Which type to use depends on the size of value to be stored
and the level of precision required. The Double type can be used to store up to 64-bit floating point
numbers with a level of precision of 15 decimal places or greater. The Float data type, on the other
hand, is limited to 32-bit floating point numbers and offers a level of precision as low as 6 decimal
places depending on the native platform on which the code is running.

5.2.3 Bool Data Type

Swift, like other languages, includes a data type for the purpose of handling true or false (1 or 0)
conditions. Two Boolean constant values (true and false) are provided by Swift specifically for
working with Boolean data types.

5.2.4 Character Data Type

The Swift Character data type is used to store a single character of rendered text such as a letter,
numerical digit, punctuation mark or symbol. Internally characters in Swift are stored in the form of
grapheme clusters. A grapheme cluster is made of two or more Unicode scalars that are combined
to represent a single visible character.

The following lines assign a variety of different characters to Character type variables:

var myChar1 = "f"

var myChar2 = ":"

var myChar3 = "X"

Characters may also be referenced using Unicode code points. The following example assigns the
‘X’ character to a variable using Unicode:

Swift Data Types, Constants and Variables

28

var myChar4 = "\u{0058}"

5.2.5 String Data Type

The String data type is a sequence of characters that typically make up a word or sentence. In
addition to providing a storage mechanism, the String data type also includes a range of string
manipulation features allowing strings to be searched, matched, concatenated and modified.
Strings in Swift are represented internally as collections of characters (where a character is, as
previously discussed, comprised of one or more Unicode scalar values).

Strings can also be constructed using combinations of strings, variables, constants, expressions, and
function calls using a concept referred to as string interpolation. For example, the following code
creates a new string from a variety of different sources using string interpolation before outputting
it to the console:

var userName = "John"

var inboxCount = 25

let maxCount = 100

var message = "\(userName) has \(inboxCount) messages. Message capacity

remaining is \(maxCount - inboxCount)"

print(message)

When executed, the code will output the following message:

John has 25 messages. Message capacity remaining is 75 messages.

A multiline string literal may be declared by encapsulating the string within triple quotes as follows:

var multiline = """

 The console glowed with flashing warnings.

 Clearly time was running out.

 "I thought you said you knew how to fly this!" yelled Mary.

 "It was much easier on the simulator" replied her brother,

 trying to keep the panic out of his voice.

"""

print(multiline)

The above code will generate the following output when run:

 The console glowed with flashing warnings.

 Clearly time was running out.

Swift Data Types, Constants and Variables

29

 "I thought you said you knew how to fly this!" yelled Mary.

 "It was much easier on the simulator" replied her brother,

 trying to keep the panic out of his voice.

The amount by which each line is indented within a multiline literal is calculated as the number of
characters by which the line is indented minus the number of characters by which the closing triple
quote line is indented. If, for example, the fourth line in the above example had a 10-character
indentation and the closing triple quote was indented by 5 characters, the actual indentation of the
fourth line within the string would be 5 characters. This allows multiline literals to be formatted
tidily within Swift code while still allowing control over indentation of individual lines.

5.2.6 Special Characters/Escape Sequences

In addition to the standard set of characters outlined above, there is also a range of special
characters (also referred to as escape sequences) available for specifying items such as a new line,
tab or a specific Unicode value within a string. These special characters are identified by prefixing
the character with a backslash (a concept referred to as escaping). For example, the following
assigns a new line to the variable named newline:

var newline = "\n"

In essence, any character that is preceded by a backslash is considered to be a special character and
is treated accordingly. This raises the question as to what to do if you actually want a backslash
character. This is achieved by escaping the backslash itself:

var backslash = "\\"

Commonly used special characters supported by Swift are as follows:

• \n - New line

• \r - Carriage return

• \t - Horizontal tab

• \\ - Backslash

• \" - Double quote (used when placing a double quote into a string declaration)

• \' - Single quote (used when placing a single quote into a string declaration)

• \u{nn} – Single byte Unicode scalar where nn is replaced by two hexadecimal digits representing
the Unicode character.

• \u{nnnn} – Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits
representing the Unicode character.

• \U{nnnnnnnn} – Four-byte Unicode scalar where nnnnnnnn is replaced by eight hexadecimal

digits representing the Unicode character.

Swift Data Types, Constants and Variables

30

5.3 Swift Variables

Variables are essentially locations in computer memory reserved for storing the data used by an
application. Each variable is given a name by the programmer and assigned a value. The name
assigned to the variable may then be used in the Swift code to access the value assigned to that
variable. This access can involve either reading the value of the variable or changing the value. It is,
of course, the ability to change the value of variables which gives them the name variable.

5.4 Swift Constants

A constant is like a variable in that it provides a named location in memory to store a data value.
Constants differ in one significant way in that once a value has been assigned to a constant it cannot
subsequently be changed.

Constants are particularly useful if there is a value which is used repeatedly throughout the
application code. Rather than use the value each time, it makes the code easier to read if the value
is first assigned to a constant which is then referenced in the code. For example, it might not be
clear to someone reading your Swift code why you used the value 5 in an expression. If, instead of
the value 5, you use a constant named interestRate the purpose of the value becomes much clearer.
Constants also have the advantage that if the programmer needs to change a widely used value, it
only needs to be changed once in the constant declaration and not each time it is referenced.

As with variables, constants have a type, a name and a value. Unlike variables, however, once a
value has been assigned to a constant, that value cannot subsequently be changed.

5.5 Declaring Constants and Variables

Variables are declared using the var keyword and may be initialized with a value at creation time. If
the variable is declared without an initial value, it must be declared as being optional (a topic which
will be covered later in this chapter). The following, for example, is a typical variable declaration:

var userCount = 10

Constants are declared using the let keyword.

let maxUserCount = 20

For greater code efficiency and execution performance, Apple recommends the use of constants
rather than variables whenever possible.

5.6 Type Annotations and Type Inference

Swift is categorized as a type safe programming language. This essentially means that once the data
type of a variable has been identified, that variable cannot subsequently be used to store data of
any other type without inducing a compilation error. This contrasts to loosely typed programming
languages where a variable, once declared, can subsequently be used to store other data types.

There are two ways in which the type of a constant or variable will be identified. One approach is
to use a type annotation at the point the variable or constant is declared in the code. This is achieved

Swift Data Types, Constants and Variables

31

by placing a colon after the constant or variable name followed by the type declaration. The
following line of code, for example, declares a variable named userCount as being of type Int:

var userCount: Int = 10

In the absence of a type annotation in a declaration, the Swift compiler uses a technique referred
to as type inference to identify the type of the constant or variable. When relying on type inference,
the compiler looks to see what type of value is being assigned to the constant or variable at the
point that it is initialized and uses that as the type. Consider, for example, the following variable and
constant declarations:

var signalStrength = 2.231

let companyName = "My Company"

During compilation of the above lines of code, Swift will infer that the signalStrength variable is of
type Double (type inference in Swift defaults to Double for all floating-point numbers) and that the
companyName constant is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of
declaration:

let bookTitle = "SwiftUI Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later
in the code. For example:

let bookTitle: String

.

.

if iosBookType {

 bookTitle = "SwiftUI Essentials"

} else {

 bookTitle = "Android Studio Development Essentials"

}

It is important to note that a value may only be assigned to a constant once. A second attempt to
assign a value to a constant will result in a syntax error.

5.7 The Swift Tuple

Before proceeding, now is a good time to introduce the Swift tuple. The tuple is perhaps one of the
simplest, yet most powerful features of the Swift programming language. A tuple is, quite simply, a
way to temporarily group together multiple values into a single entity. The items stored in a tuple
can be of any type and there are no restrictions requiring that those values all be of the same type.
A tuple could, for example, be constructed to contain an Int value, a Float value and a String as
follows:

let myTuple = (10, 432.433, "This is a String")

Swift Data Types, Constants and Variables

32

The elements of a tuple can be accessed using a number of different techniques. A specific tuple
value can be accessed simply by referencing the index position (with the first value being at index
position 0). The code below, for example, extracts the string resource (at index position 2 in the
tuple) and assigns it to a new string variable:

let myTuple = (10, 432.433, "This is a String")

let myString = myTuple.2

print(myString)

Alternatively, all the values in a tuple may be extracted and assigned to variables or constants in a
single statement:

let (myInt, myFloat, myString) = myTuple

This same technique can be used to extract selected values from a tuple while ignoring others by
replacing the values to be ignored with an underscore character. The following code fragment
extracts the integer and string values from the tuple and assigns them to variables, but ignores the
floating-point value:

var (myInt, _, myString) = myTuple

When creating a tuple, it is also possible to assign a name to each value:

let myTuple = (count: 10, length: 432.433, message: "This is a String")

The names assigned to the values stored in a tuple may then be used to reference those values in
code. For example, to output the message string value from the myTuple instance, the following
line of code could be used:

print(myTuple.message)

Perhaps the most powerful use of tuples is, as will be seen in later chapters, the ability to return
multiple values from a function.

5.8 The Swift Optional Type

The Swift optional data type is a new concept that does not exist in most other programming
languages. The purpose of the optional type is to provide a safe and consistent approach to handling
situations where a variable or constant may not have any value assigned to it.

Variables are declared as being optional by placing a ? character after the type declaration. The
following code declares an optional Int variable named index:

var index: Int?

The variable index can now either have an integer value assigned to it or have nothing assigned to
it. Behind the scenes, and as far as the compiler and runtime are concerned, an optional with no
value assigned to it actually has a value of nil.

An optional can easily be tested (typically using an if statement) to identify whether it has a value
assigned to it as follows:

Swift Data Types, Constants and Variables

33

var index: Int?

if index != nil {

 // index variable has a value assigned to it

} else {

 // index variable has no value assigned to it

}

If an optional has a value assigned to it, that value is said to be “wrapped” within the optional. The
value wrapped in an optional may be accessed using a concept referred to as forced unwrapping.
This simply means that the underlying value is extracted from the optional data type, a procedure
that is performed by placing an exclamation mark (!) after the optional name.

To explore this concept of unwrapping optional types in more detail, consider the following code:

var index: Int?

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if index != nil {

 print(treeArray[index!])

} else {

 print("index does not contain a value")

}

The code simply uses an optional variable to hold the index into an array of strings representing the
names of tree types (Swift arrays will be covered in more detail in the chapter entitled Working with
Array and Dictionary Collections in Swift). If the index optional variable has a value assigned to it,
the tree name at that location in the array is printed to the console. Since the index is an optional
type, the value has been unwrapped by placing an exclamation mark after the variable name:

print(treeArray[index!])

Had the index not been unwrapped (in other words the exclamation mark omitted from the above
line), the compiler would have issued an error similar to the following:

Value of optional type 'Int?' must be unwrapped to a value of type 'Int'

As an alternative to forced unwrapping, the value assigned to an optional may be allocated to a
temporary variable or constant using optional binding, the syntax for which is as follows:

if let constantname = optionalName {

}

if var variablename = optionalName {

Swift Data Types, Constants and Variables

34

}

The above constructs perform two tasks. In the first instance, the statement ascertains whether the
designated optional contains a value. Second, in the event that the optional has a value, that value
is assigned to the declared constant or variable and the code within the body of the statement is
executed. The previous forced unwrapping example could, therefore, be modified as follows to use
optional binding instead:

var index: Int?

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if let myvalue = index {

 print(treeArray[myvalue])

} else {

 print("index does not contain a value")

}

In this case the value assigned to the index variable is unwrapped and assigned to a temporary
constant named myvalue which is then used as the index reference into the array. Note that the
myvalue constant is described as temporary since it is only available within the scope of the if
statement. Once the if statement completes execution, the constant will no longer exist. For this
reason, there is no conflict in using the same temporary name as that assigned to the optional. The
following is, for example, valid code:

.

.

if let index = index {

 print(treeArray[index])

} else {

.

.

Optional binding may also be used to unwrap multiple optionals and include a Boolean test
condition, the syntax for which is as follows:

if let constname1 = optName1, let constname2 = optName2,

 let optName3 = …, <boolean statement> {

}

The following code, for example, uses optional binding to unwrap two optionals within a single
statement:

Swift Data Types, Constants and Variables

35

var pet1: String?

var pet2: String?

pet1 = "cat"

pet2 = "dog"

if let firstPet = pet1, let secondPet = pet2 {

 print(firstPet)

 print(secondPet)

} else {

 print("insufficient pets")

}

The code fragment below, on the other hand, also makes use of the Boolean test clause condition:

if let firstPet = pet1, let secondPet = pet2, petCount > 1 {

 print(firstPet)

 print(secondPet)

} else {

 print("insufficient pets")

}

In the above example, the optional binding will not be attempted unless the value assigned to
petCount is greater than 1.

It is also possible to declare an optional as being implicitly unwrapped. When an optional is declared
in this way, the underlying value can be accessed without having to perform forced unwrapping or
optional binding. An optional is declared as being implicitly unwrapped by replacing the question
mark (?) with an exclamation mark (!) in the declaration. For example:

var index: Int! // Optional is now implicitly unwrapped

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if index != nil {

 print(treeArray[index])

} else {

 print("index does not contain a value")

}

With the index optional variable now declared as being implicitly unwrapped, it is no longer
necessary to unwrap the value when it is used as an index into the array in the above print call.

Swift Data Types, Constants and Variables

36

One final observation with regard to optionals in Swift is that only optional types are able to have
no value or a value of nil assigned to them. In Swift it is not, therefore, possible to assign a nil value
to a non-optional variable or constant. The following declarations, for instance, will all result in
errors from the compiler since none of the variables are declared as optional:

var myInt = nil // Invalid code

var myString: String = nil // Invalid Code

let myConstant = nil // Invalid code

5.9 Type Casting and Type Checking

When writing Swift code, situations will occur where the compiler is unable to identify the specific
type of a value. This is often the case when a value of ambiguous or unexpected type is returned
from a method or function call. In this situation it may be necessary to let the compiler know the
type of value that your code is expecting or requires using the as keyword (a concept referred to as
type casting).

The following code, for example, lets the compiler know that the value returned from the
object(forKey:) method needs to be treated as a String type:

let myValue = record.object(forKey: "comment") as! String

In fact, there are two types of casting which are referred to as upcasting and downcasting. Upcasting
occurs when an object of a particular class is cast to one of its superclasses. Upcasting is performed
using the as keyword and is also referred to as guaranteed conversion since the compiler can tell
from the code that the cast will be successful. The UIButton class, for example, is a subclass of the
UIControl class as shown in the fragment of the UIKit class hierarchy shown in Figure 5-1:

Figure 5-1

Since UIButton is a subclass of UIControl, the object can be safely upcast as follows:

let myButton: UIButton = UIButton()

let myControl = myButton as UIControl

Swift Data Types, Constants and Variables

37

Downcasting, on the other hand, occurs when a conversion is made from one class to another where
there is no guarantee that the cast can be made safely or that an invalid casting attempt will be
caught by the compiler. When an invalid cast is made in downcasting and not identified by the
compiler it will most likely lead to an error at runtime.

Downcasting usually involves converting from a class to one of its subclasses. Downcasting is
performed using the as! keyword syntax and is also referred to as forced conversion. Consider, for
example, the UIKit UIScrollView class which has as subclasses both the UITableView and UITextView
classes as shown in Figure 5-2:

Figure 5-2

In order to convert a UIScrollView object to a UITextView class a downcast operation needs to be
performed. The following code attempts to downcast a UIScrollView object to UITextView using the
guaranteed conversion or upcast approach:

let myScrollView: UIScrollView = UIScrollView()

let myTextView = myScrollView as UITextView

The above code will result in the following error:

‘UIScrollView’ is not convertible to ‘UITextView’

The compiler is indicating that a UIScrollView instance cannot be safely converted to a UITextView
class instance. This does not necessarily mean that it is incorrect to do so, the compiler is simply
stating that it cannot guarantee the safety of the conversion for you. The downcast conversion could
instead be forced using the as! annotation:

let myTextView = myScrollView as! UITextView

Now the code will compile without an error. As an example of the dangers of downcasting, however,
the above code will crash on execution stating that UIScrollView cannot be cast to UITextView.
Forced downcasting should, therefore, be used with caution.

Swift Data Types, Constants and Variables

38

A safer approach to downcasting is to perform an optional binding using as?. If the conversion is
performed successfully, an optional value of the specified type is returned, otherwise the optional
value will be nil:

if let myTextView = myScrollView as? UITextView {

 print("Type cast to UITextView succeeded")

} else {

 print("Type cast to UITextView failed")

}

It is also possible to type check a value using the is keyword. The following code, for example, checks
that a specific object is an instance of a class named MyClass:

if myobject is MyClass {

 // myobject is an instance of MyClass

}

5.10 Summary

This chapter has begun the introduction to Swift by exploring data types together with an overview
of how to declare constants and variables. The chapter has also introduced concepts such as type
safety, type inference and optionals, each of which is an integral part of Swift programming and
designed specifically to make code writing less prone to error.

93

12. An Introduction to Swift Structures
Having covered Swift classes in the preceding chapters, this chapter will introduce the use of
structures in Swift. Although at first glance structures and classes look similar, there are some
important differences that need to be understood when deciding which to use. This chapter will
outline how to declare and use structures, explore the differences between structures and classes
and introduce the concepts of value and reference types.

12.1 An Overview of Swift Structures

As with classes, structures form the basis of object-oriented programming and provide a way to
encapsulate data and functionality into re-usable instances. Structure declarations resemble classes
with the exception that the struct keyword is used in place of the class keyword. The following code,
for example, declares a simple structure consisting of a String variable, initializer and method:

struct SampleStruct {

 var name: String

 init(name: String) {

 self.name = name

 }

 func buildHelloMsg() {

 "Hello " + name

 }

}

Consider the above structure declaration in comparison to the equivalent class declaration:

class SampleClass {

 var name: String

 init(name: String) {

 self.name = name

 }

 func buildHelloMsg() {

 "Hello " + name

Chapter 12

An Introduction to Swift Structures

94

 }

}

Other than the use of the struct keyword instead of class, the two declarations are identical.
Instances of each type are also created using the same syntax:

let myStruct = SampleStruct(name: "Mark")

let myClass = SampleClass(name: "Mark")

In common with classes, structures may be extended and are also able to adopt protocols and
contain initializers.

Given the commonality between classes and structures, it is important to gain an understanding of
how the two differ. Before exploring the most significant difference it is first necessary to
understand the concepts of value types and reference types.

12.2 Value Types vs. Reference Types

While on the surface structures and classes look alike, major differences in behavior occur when
structure and class instances are copied or passed as arguments to methods or functions. This
occurs because structure instances are value type while class instances are reference type.

When a structure instance is copied or passed to a method, an actual copy of the instance is created,
together with any data contained within the instance. This means that the copy has its own version
of the data which is unconnected with the original structure instance. In effect, this means that
there can be multiple copies of a structure instance within a running app, each with its own local
copy of the associated data. A change to one instance has no impact on any other instances.

In contrast, when a class instance is copied or passed as an argument, the only thing duplicated or
passed is a reference to the location in memory where that class instance resides. Any changes
made to the instance using those references will be performed on the same instance. In other
words, there is only one class instance but multiple references pointing to it. A change to the
instance data using any one of those references changes the data for all other references.

To demonstrate reference and value types in action, consider the following code:

struct SampleStruct {

 var name: String

 init(name: String) {

 self.name = name

 }

 func buildHelloMsg() {

 "Hello " + name

 }

}

An Introduction to Swift Structures

95

let myStruct1 = SampleStruct(name: "Mark")

print(myStruct1.name)

When the code executes, the name “Mark” will be displayed. Now change the code so that a copy
of the myStruct1 instance is made, the name property changed and the names from each instance
displayed:

let myStruct1 = SampleStruct(name: "Mark")

var myStruct2 = myStruct1

myStruct2.name = "David"

print(myStruct1.name)

print(myStruct2.name)

When executed, the output will read as follows:

Mark

David

Clearly, the change of name only applied to myStruct2 since this is an actual copy of myStruct1
containing its own copy of the data as shown in Figure 12-1:

Figure 12-1

Contrast this with the following class example:

class SampleClass {

 var name: String

 init(name: String) {

 self.name = name

 }

 func buildHelloMsg() {

 "Hello " + name

 }

}

let myClass1 = SampleClass(name: "Mark")

var myClass2 = myClass1

An Introduction to Swift Structures

96

myClass2.name = "David"

print(myClass1.name)

print(myClass2.name)

When this code executes, the following output will be generated:

David

David

In this case, the name property change is reflected for both myClass1 and myClass2 because both
are references pointing to the same class instance as illustrated in Figure 12-2 below:

Figure 12-2

In addition to these value and reference type differences, structures do not support inheritance and
sub-classing in the way that classes do. In other words, it is not possible for one structure to inherit
from another structure. Unlike classes, structures also cannot contain a de-initializer (deinit)
method. Finally, while it is possible to identify the type of a class instance at runtime, the same is
not true of a struct.

12.3 When to use Structures or Classes

In general, structures are recommended whenever possible because they are both more efficient
than classes and safer to use in multi-threaded code. Classes should be used when inheritance is
needed, only one instance of the encapsulated data is required, or extra steps need to be taken to
free up resources when an instance is de-initialized.

12.4 Summary

Swift structures and classes both provide a mechanism for creating instances that define properties,
store values and define methods. Although the two mechanisms appear to be similar, there are
significant behavioral differences when structure and class instances are either copied or passed to
a method. Classes are categorized as being reference type instances while structures are value type.
When a structure instance is copied or passed, an entirely new copy of the instance is created
containing its own data. Class instances, on the other hand, are passed and copied by reference,
with each reference pointing to the same class instance. Other features unique to classes include
support for inheritance and deinitialization and the ability to identify the class type at runtime.
Structures should typically be used in place of classes unless specific class features are required.

117

16. An Overview of SwiftUI
Now that Xcode has been installed and the basics of the Swift programing language covered, it is
time to start introducing SwiftUI.

First announced at Apple’s Worldwide Developer Conference in 2019, SwiftUI is an entirely new
approach to developing apps for all Apple operating system platforms. The basic goals of SwiftUI
are to make app development easier, faster and less prone to the types of bugs that typically appear
when developing software projects. These elements have been combined with SwiftUI specific
additions to Xcode that allow SwiftUI projects to be tested in near real-time using a live preview of
the app during the development process.

Many of the advantages of SwiftUI originate from the fact that it is both declarative and data driven,
topics which will be explained in this chapter.

The discussion in this chapter is intended as a high-level overview of SwiftUI and does not cover the
practical aspects of implementation within a project. Implementation and practical examples will
be covered in detail in the remainder of the book.

16.1 UIKit and Interface Builder

To understand the meaning and advantages of SwiftUI’s declarative syntax, it helps to understand
how user interface layouts were designed before the introduction of SwiftUI. Up until the
introduction of SwiftUI, iOS apps were built entirely using UIKit together with a collection of
associated frameworks that make up the iOS Software Development Kit (SDK).

To aid in the design of the user interface layouts that make up the screens of an app, Xcode includes
a tool called Interface Builder. Interface Builder is a powerful tool that allows storyboards to be
created which contain the individual scenes that make up an app (with a scene typically
representing a single app screen).

The user interface layout of a scene is designed within Interface Builder by dragging components
(such as buttons, labels, text fields and sliders) from a library panel to the desired location on the
scene canvas. Selecting a component in a scene provides access to a range of inspector panels
where the attributes of the components can be changed.

The layout behavior of the scene (in other words how it reacts to different device screen sizes and
changes to device orientation between portrait and landscape) is defined by configuring a range of
constraints that dictate how each component is positioned and sized in relation to both the
containing window and the other components in the layout.

Chapter 16

An Overview of SwiftUI

118

Finally, any components that need to respond to user events (such as a button tap or slider motion)
are connected to methods in the app source code where the event is handled.

At various points during this development process, it is necessary to compile and run the app on a
simulator or device to test that everything is working as expected.

16.2 SwiftUI Declarative Syntax

SwiftUI introduces a declarative syntax that provides an entirely different way of implementing user
interface layouts and behavior from the UIKit and Interface Builder approach. Instead of manually
designing the intricate details of the layout and appearance of components that make up a scene,
SwiftUI allows the scenes to be described using a simple and intuitive syntax. In other words, SwiftUI
allows layouts to be created by declaring how the user interface should appear without having to
worry about the complexity of how the layout is actually built.

This essentially involves declaring the components to be included in the layout, stating the kind of
layout manager in which they to be contained (vertical stack, horizontal stack, form, list etc.) and
using modifiers to set attributes such as the text on a button, the foreground color of a label, or the
method to be called in the event of a tap gesture. Having made these declarations, all the intricate
and complicated details of how to position, constrain and render the layout are handled
automatically by SwiftUI.

SwiftUI declarations are structured hierarchically, which also makes it easy to create complex views
by composing together small, re-usable custom subviews.

While the view layout is being declared and tested, Xcode provides a preview canvas which changes
in real-time to reflect the appearance of the layout. Xcode also includes a live preview mode which
allows the app to be launched within the preview canvas and fully tested without the need to build
and run on a simulator or device.

Coverage of the SwiftUI declaration syntax begins with the chapter entitled Creating Custom Views
with SwiftUI.

16.3 SwiftUI is Data Driven

When we say that SwiftUI is data driven, this is not to say that it is no longer necessary to handle
events generated by the user (in other words the interaction between the user and the app user
interface). It is still necessary, for example, to know when the user taps a button and to react in
some app specific way. Being data driven relates more to the relationship between the underlying
app data and the user interface and logic of the app.

Prior to the introduction of SwiftUI, an iOS app would contain code responsible for checking the
current values of data within the app. If data is likely to change over time, code has to be written to
ensure that the user interface always reflects the latest state of the data (perhaps by writing code
to frequently check for changes to the data, or by providing a refresh option for the user to request
a data update). Similar problems arise when keeping the user interface state consistent and making
sure issues like toggle button settings are stored appropriately. Requirements such as these can
become increasingly complex when multiple areas of an app depend on the same data sources.

An Overview of SwiftUI

119

SwiftUI addresses this complexity by providing several ways to bind the data model of an app to the
user interface components and logic that provide the app functionality.

When implemented, the data model publishes data variables to which other parts of the app can
then subscribe. Using this approach, changes to the published data are automatically reported to
all subscribers. If the binding is made from a user interface component, any data changes will
automatically be reflected within the user interface by SwiftUI without the need to write any
additional code.

16.4 SwiftUI vs. UIKit

With the choice of using UIKit and SwiftUI now available, the obvious question arises as to which is
the best option. When making this decision it is important to understand that SwiftUI and UIKit are
not mutually exclusive. In fact, several integration solutions are available (a topic area covered
starting with the chapter entitled Integrating UIViews with SwiftUI).

The first factor to take into consideration during the decision process is that any app that includes
SwiftUI-based code will only run on devices running iOS 13 or later. This means, for example, that
your app will only be available to users with the following iPhone models:

• iPhone 11

• iPhone 11 Pro

• iPhone 11 Pro Max

• iPhone Xs

• iPhone Xs Max

• iPhone XR

• iPhone X

• iPhone 8

• iPhone 8 Plus

• iPhone 7

• iPhone 7 Plus

• iPhone 6s

• iPhone 6s Plus

• iPhone SE

Apple reported on October 15, 2019 that, based on App Store measurements, 50% of all iPhone
devices were running iOS 13, a percentage that will continue to increase with the passage of time.

If supporting devices running older versions of iOS is not of concern and you are starting a new
project, it makes sense to use SwiftUI wherever possible. Not only does SwiftUI provide a faster,
more efficient app development environment, it also makes it easier to make the same app
available on multiple Apple platforms (iOS, iPadOS, macOS, watchOS and tvOS) without making
significant code changes.

If you have an existing app developed using UIKit there is no easy migration path to convert that
code to SwiftUI, so it probably makes sense to keep using UIKit for that part of the project. UIKit will

An Overview of SwiftUI

120

continue to be a valuable part of the app development toolset and will be extended, supported and
enhanced by Apple for the foreseeable future. When adding new features to an existing project,
however, consider doing so using SwiftUI and integrating it into the existing UIKit codebase.

When adopting SwiftUI for new projects, it will probably not be possible to avoid using UIKit entirely.
Although SwiftUI comes with a wide array of user interface components, it will still be necessary to
use UIKit for certain functionality such as map and web view integration.

In addition, for extremely complex user interface layout designs, it may also be necessary to use
Interface Builder in situations where layout needs cannot be satisfied using the SwiftUI layout
container views.

16.5 Summary

SwiftUI introduces a different approach to app development than that offered by UIKit and Interface
Builder. Rather than directly implement the way in which a user interface is to be rendered, SwiftUI
allows the user interface to be declared in descriptive terms and then does all the work of deciding
the best way to perform the rendering when the app runs.

SwiftUI is also data driven in that data change drives the behavior and appearance of the app. This
is achieved through a publisher and subscriber model.

This chapter has provided a very high-level view of SwiftUI. The remainder of this book will explore
SwiftUI in greater depth.

121

17. Using Xcode in SwiftUI Mode
When creating a new project, Xcode now provides a choice of creating either a Storyboard or
SwiftUI based user interface for the project. When creating a SwiftUI project, Xcode appears and
behaves significantly differently when designing the user interface for an app project compared to
the UIKit Storyboard mode.

When working in SwiftUI mode, most of your time as an app developer will be spent in the code
editor and preview canvas, both of which will be explored in detail in this chapter.

17.1 Starting Xcode 11
As with all iOS examples in this book, the development of our example will take place within the
Xcode 11 development environment. If you have not already installed this tool together with the
latest iOS SDK refer first to the Installing Xcode 11 and the iOS 13 SDK chapter of this book. Assuming
the installation is complete, launch Xcode either by clicking on the icon on the dock (assuming you
created one) or use the macOS Finder to locate Xcode in the Applications folder of your system.

When launched for the first time, and until you turn off the Show this window when Xcode launches
toggle, the screen illustrated in Figure 17-1 will appear by default:

Figure 17-1

Chapter 17

Using Xcode in SwiftUI Mode

122

If you do not see this window, simply select the Window -> Welcome to Xcode menu option to
display it. From within this window, click on the option to Create a new Xcode project.

17.2 Creating a SwiftUI Project

When creating a new project, the project options screen includes an option to select how the user
interface is to be implemented. To use SwiftUI, simply change the menu option highlighted in Figure
17-2 to SwiftUI:

Figure 17-2

Once a new project has been created with SwiftUI selected, the main Xcode panel will appear with
the default layout for SwiftUI development displayed.

17.3 Xcode in SwiftUI Mode

Before beginning work on a SwiftUI user interface, it is worth taking some time to gain familiarity
with how Xcode works in SwiftUI mode. A newly created project includes a single SwiftUI View file
named ContentView.swift which, when selected from the project navigation panel, will appear
within Xcode as shown in Figure 17-3 below:

Using Xcode in SwiftUI Mode

123

Figure 17-3

Located to the right of the project navigator (A) is the code editor (B). To the right of this is the
preview canvas (C) where any changes made to the SwiftUI layout declaration will appear in real-
time.

Selecting a view in the canvas will automatically select and highlight the corresponding entry in the
code editor, and vice versa. Attributes for the currently selected item will appear in the attributes
inspector panel (D).

During debugging, the debug panel (E) will appear containing debug output from both the iOS
frameworks and any diagnostic print statements you have included in your code.

The three panels (A, D and E) can be displayed and hidden using the three buttons located on the
right-hand side of the toolbar as shown in Figure 17-4:

Figure 17-4

17.4 The Preview Canvas

The preview canvas provides both a visual representation of the user interface design and a tool for
adding and modifying views within the layout design. The canvas may also be used to perform live
testing of the running app without the need to launch an iOS simulator. Figure 17-5 illustrates a
typical preview canvas for a newly created project:

Using Xcode in SwiftUI Mode

124

Figure 17-5

If the canvas is not visible it can be displayed using the Xcode Editor -> Canvas menu option.

The main canvas area (A) represents the current view as it will appear when running on a physical
device. When changes are made to the code in the editor, those changes are reflected within the
preview canvas. To avoid continually updating the canvas, and depending on the nature of the
changes being made, the preview will occasionally pause live updates. When this happens, the
Resume button (B) will appear which, when clicked, will once again begin updating the preview.

By default, the preview displays a static representation of the user interface. To test the user
interface in a running version of the app, simply click on the Live Preview button (C). Xcode will then
build the app and run it within the preview canvas where you can interact with it as you would in a
simulator or on a physical device. When in Live Preview mode, the button changes to a stop button
which can be used to exit live mode.

The current version of the app may also be previewed on an attached physical device by clicking on
the Preview on Device button (D). As with the preview canvas, the running app on the device will
update dynamically as changes are made to the code in the editor.

Right-clicking on either the Live Preview or Preview on Device buttons will provide the option to run
in debug mode, attaching the process to the debugger and allowing diagnostic output to appear in
the debug area (marked E in Figure 17-3 above).

Using Xcode in SwiftUI Mode

125

Figure 17-6

17.5 Preview Pinning

When building an app in Xcode it is likely that it will consist of several SwiftUI View files in addition
to the default ContentView.swift file. When a SwiftUI View file is selected from the project
navigator, both the code editor and preview canvas will change to reflect the currently selected file.
Sometimes you may want the user interface layout for one SwiftUI file to appear in the preview
canvas while editing the code in a different file. This can be particularly useful if the layout from one
file is dependent on or embedded in another view. The pin button (labelled F in Figure 17-5 above)
pins the current preview to the canvas so that it remains visible on the canvas after navigating to a
different view. The view to which you have navigated will appear beneath the pinned view in the
canvas and can be viewed by scrolling.

Finally, the size buttons (E) can be used to zoom in and out of the canvas.

17.6 Modifying the Design

Working with SwiftUI primarily involves adding additional views, customizing those views using
modifiers, adding logic and interacting with state and other data instance bindings. All of these tasks
can be performed exclusively by modifying the structure in the code editor. The font used to display
the “Hello World” Text view, for example, can be changed by adding the appropriate modifier in the
editor:

Text("Hello World")

 .font(.largeTitle)

An alternative to this is to make changes to the SwiftUI views by dragging and dropping items from
the Library panel. The Library panel is displayed by clicking on the toolbar button highlighted in
Figure 17-7:

Figure 17-7

Using Xcode in SwiftUI Mode

126

When displayed, the Library panel will appear as shown in Figure 17-8:

Figure 17-8

When launched in this way, the Library panel is transient and will disappear either after a selection
has been made, or a click is performed outside of the panel. To keep the panel displayed, hold down
the Option key when clicking on the Library button.

When first opened, the panel displays a list of views available for inclusion in the user interface
design. The list can be browsed, or the search bar used to narrow the list to specific views. The
toolbar (highlighted in the above figure) can be used to switch to other categories such as modifiers,
commonly used code snippets, images and color resources.

An item within the library can be applied to the user interface design in a number of ways. To apply
a font modifier to the “Hello World” Text view, one option is to select the view in either the code
or preview canvas, locate the font modifier in the Library panel and double-click on it. Xcode will
then automatically apply the font modifier.

Another option is to locate the Library item and then drag and drop it onto the desired location
either in the code editor or the preview canvas. In Figure 17-9 below, for example, the font modifier
is being dragged to the Text view within the editor:

Using Xcode in SwiftUI Mode

127

Figure 17-9

The same result can be achieved by dragging an item from the library onto the preview canvas. In
the case of Figure 17-10, a Button view is being added to the layout beneath the existing Text view:

Figure 17-10

Using Xcode in SwiftUI Mode

128

In this example, the side along which the view will be placed if released highlights and the preview
canvas displays a notification that the Button and existing Text view will automatically be placed in
a Vertical Stack container view (stacks will be covered later in the chapter entitled SwiftUI Stacks
and Frames).

Once a view or modifier has been added to the SwiftUI view file it is highly likely that some
customization will be necessary, such as specifying the color for a foreground modifier. One option
is, of course, to simply make the changes within the editor, for example:

Text("Hello World")

 .font(.largeTitle)

 .foregroundColor(.red)

Another option is to select the view in either the editor or preview panel and then make the
necessary changes within the Attributes inspector panel:

Figure 17-11

The Attributes inspector will provide the option to make changes to any modifiers already applied
to the selected view.

Before moving on to the next topic, it is also worth noting that the Attributes inspector provides yet
another way to add modifiers to a view via the Add Modifier menu located at the bottom of the

Using Xcode in SwiftUI Mode

129

panel. When clicked, this menu will display a long list of modifiers available for the current view
type. To apply a modifier, simply select it from the menu. An entry for the new modifier will
subsequently appear in the inspector where it can be configured with the required properties.

17.7 Editor Context Menu

Holding down the Command key while clicking on the item in the code editor will display the menu
shown in Figure 17-12:

Figure 17-12

This menu provides a list of options which will vary depending on the type of item selected. Options
typically include a shortcut to a popup version of the Attributes inspector for the current view,
together with options to embed the current view in a stack or list container. This menu is also useful
for extracting part of a view into its own self-contained subview. Creating subviews is strongly
encouraged to promote reuse, improve performance and unclutter complex design structures.

17.8 Previewing on Multiple Device Configurations

Every newly created SwiftUI View file includes an additional declaration at the bottom of the file
that resembles the following:

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView()

 }

}

Using Xcode in SwiftUI Mode

130

This structure, which conforms to the PreviewProvider protocol, returns an instance of the primary
view within the file. This instructs Xcode to display the preview for that view within the preview
canvas (without this declaration, nothing will appear in the canvas).

By default, the preview canvas shows the user interface on a single device based on the current
selection in the run target menu to the right of the run and stop button in the Xcode toolbar. To
preview on other device models, one option is to simply change the run target and wait for the
preview canvas to change.

A better option, however, is to modify the previews structure to specify a different device. In the
following example, the canvas previews the user interface on an iPhone SE:

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView()

 .previewDevice(PreviewDevice(rawValue: "iPhone SE"))

 .previewDisplayName("iPhone SE")

 }

}

In fact, it is possible using this technique to preview multiple device types simultaneously by placing
them into a Group view as follows:

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 Group {

 ContentView()

 .previewDevice(PreviewDevice(rawValue: "iPhone SE"))

 .previewDisplayName("iPhone SE")

 ContentView()

 .previewDevice(PreviewDevice(rawValue: "iPhone 11"))

 .previewDisplayName("iPhone 11")

 }

 }

}

When multiple devices are previewed, they appear in a scrollable list within the preview canvas as
shown in Figure 17-13:

Using Xcode in SwiftUI Mode

131

Figure 17-13

The environment modifier may also be used to preview the layout in other configurations, for
example, to preview in dark mode:

ContentView()

 .previewDevice(PreviewDevice(rawValue: "iPhone SE"))

 .previewDisplayName("iPhone SE")

 .environment(\.colorScheme, .dark)

This preview structure is also useful for passing sample data into the enclosing view for testing
purposes within the preview canvas, a technique that will be used in later chapters. For example:

struct ContentView_Previews: PreviewProvider {

 static var previews: some View {

 ContentView(sampleData: mySampleData)

 }

}

17.9 Running the App on a Simulator

Although much can be achieved using the preview canvas, there is no substitute for running the app
on physical devices and simulators during testing.

Within the main Xcode project window, the menu located in the top left-hand corner of the window
(marked C in Figure 17-14) is used to choose a target simulator. This menu will include both
simulators that have been configured and any physical devices connected to the development
system:

Using Xcode in SwiftUI Mode

132

Figure 17-14

Clicking on the Run toolbar button (A) will compile the code and run the app on the selected target.
The small panel in the center of the Xcode toolbar (D) will report the progress of the build process
together with any problems or errors that cause the build process to fail. Once the app is built, the
simulator will start and the app will run. Clicking on the stop button (B) will terminate the running
app.

The simulator includes a number of options not available in the live preview for testing different
aspects of the app. The Hardware and Debug menus, for example, include options for rotating the
simulator through portrait and landscape orientations, testing Face ID authentication and
simulating geographical location changes for navigation and map-based apps.

17.10 Running the App on a Physical iOS Device

Although the Simulator environment provides a useful way to test an app on a variety of different
iOS device models, it is important to also test on a physical iOS device.

If you have entered your Apple ID in the Xcode preferences screen as outlined in the Joining the
Apple Developer Program chapter and selected a development team for the project, it is possible
to run the app on a physical device simply by connecting it to the development Mac system with a
USB cable and selecting it as the run target within Xcode.

With a device connected to the development system, and an application ready for testing, refer to
the device menu located in the Xcode toolbar. There is a reasonable chance that this will have
defaulted to one of the iOS Simulator configurations. Switch to the physical device by selecting this
menu and changing it to the device name as shown in Figure 17-5:

Figure 17-15

Using Xcode in SwiftUI Mode

133

With the target device selected, make sure the device is unlocked and click on the run button at
which point Xcode will install and launch the app on the device. If you have not yet joined the Apple
Developer Program, the following dialog may appear within Xcode indicating that you need to
configure your device to trust the developer certificate used to build the app:

Figure 17-16

Following the instructions in the dialog, open the Settings app on the device, navigate to General -
> Profiles and Device Management and select the developer certificate on the resulting screen:

Figure 17-17

In the subsequent certificate screen, tap the Trust “Apple Development: <email address>” button
followed by the Trust button in the confirmation dialog:

Using Xcode in SwiftUI Mode

134

Figure 17-18

Once the certificate is trusted, it should be possible to install and run the app on the device.

As will be discussed later in this chapter, a physical device may also be configured for network
testing, whereby apps are installed and tested on the device via a network connection without the
need to have the device connected by a USB cable.

17.11 Managing Devices and Simulators

Currently connected iOS devices and the simulators configured for use with Xcode can be viewed
and managed using the Xcode Devices window which is accessed via the Window -> Devices and
Simulators menu option. Figure 17-19 for example, shows a typical Device screen on a system where
an iPhone has been detected:

Figure 17-19

A wide range of simulator configurations are set up within Xcode by default and can be viewed by
selecting the Simulators tab at the top of the dialog. Other simulator configurations can be added

Using Xcode in SwiftUI Mode

135

by clicking on the + button located in the bottom left-hand corner of the window. Once selected, a
dialog will appear allowing the simulator to be configured in terms of device, iOS version and name.

17.12 Enabling Network Testing

In addition to testing an app on a physical device connected to the development system via a USB
cable, Xcode also supports testing via a network connection. This option is enabled on a per device
basis within the Devices and Simulators dialog introduced in the previous section. With the device
connected via the USB cable, display this dialog, select the device from the list and enable the
Connect via network option as highlighted in Figure 17-20:

Figure 17-20

Once the setting has been enabled, the device may continue to be used as the run target for the
app even when the USB cable is disconnected. The only requirement being that both the device and
development computer be connected to the same Wi-Fi network. Assuming this requirement has
been met, clicking on the run button with the device selected in the run menu will install and launch
the app over the network connection.

17.13 Dealing with Build Errors

If for any reason a build fails, the status window in the Xcode toolbar will report that an error has
been detected by displaying “Build” together with the number of errors detected and any warnings.
In addition, the left-hand panel of the Xcode window will update with a list of the errors. Selecting
an error from this list will take you to the location in the code where corrective action needs to be
taken.

17.14 Monitoring Application Performance

Another useful feature of Xcode is the ability to monitor the performance of an application while it
is running, either on a device or simulator or within the live preview canvas. This information is
accessed by displaying the Debug Navigator.

When Xcode is launched, the project navigator is displayed in the left-hand panel by default. Along
the top of this panel is a bar with a range of other options. The seventh option from the left displays
the debug navigator when selected as illustrated in Figure 17-21. When displayed, this panel shows
a number of real-time statistics relating to the performance of the currently running application
such as memory, CPU usage, disk access, energy efficiency, network activity and iCloud storage
access.

Using Xcode in SwiftUI Mode

136

Figure 17-21

When one of these categories is selected, the main panel (Figure 17-22) updates to provide
additional information about that particular aspect of the application’s performance:

Figure 17-22

Yet more information can be obtained by clicking on the Profile in Instruments button in the top
right-hand corner of the panel.

17.15 Exploring the User Interface Layout Hierarchy

Xcode also provides an option to break the user interface layout out into a rotatable 3D view that
shows how the view hierarchy for a user interface is constructed. This can be particularly useful for
identifying situations where one view instance is obscured by another appearing on top of it or a
layout is not appearing as intended. This is also useful for learning how SwiftUI works behind the

Using Xcode in SwiftUI Mode

137

scenes to construct a SwiftUI layout, if only to appreciate how much work SwiftUI is saving us from
having to do.

To access the view hierarchy in this mode, begin by previewing the view in debug mode as illustrated
in Figure 17-6 above. Once the preview is live, click on the Debug View Hierarchy button indicated
in Figure 17-23:

Figure 17-23

Once activated, a 3D “exploded” view of the layout will appear. Clicking and dragging within the
view will rotate the hierarchy allowing the layers of views that make up the user interface to be
inspected:

Figure 17-24

Moving the slider in the bottom left-hand corner of the panel will adjust the spacing between the
different views in the hierarchy. The two markers in the right-hand slider (Figure 17-25) may also

Using Xcode in SwiftUI Mode

138

be used to narrow the range of views visible in the rendering. This can be useful, for example, to
focus on a subset of views located in the middle of the hierarchy tree:

Figure 17-25

While the hierarchy is being debugged, the left-hand panel will display the entire view hierarchy
tree for the layout as shown in Figure 17-26 below:

Figure 17-26

Selecting an object in the hierarchy tree will highlight the corresponding item in the 3D rendering
and vice versa. The far right-hand panel will also display the attributes of the selected object. If the
panel is not currently visible it can be displayed by clicking on the toolbar button indicated in Figure
17-27:

Figure 17-27

Using Xcode in SwiftUI Mode

139

Figure 17-28, for example, shows the inspector panel while a Text view is selected within the view
hierarchy.

Figure 17-28

17.16 Summary

When creating a new project, Xcode provides the option to use either UIKit Storyboards or SwiftUI
as the basis of the user interface of the app. When in SwiftUI mode, most of the work involved in
developing an app takes place in the code editor and the preview canvas. New views can be added
to the user interface layout and configured either by typing into the code editor or dragging and
dropping components from the Library either onto the editor or the preview canvas.

The preview canvas will usually update in real time to reflect code changes as they are typed into
the code editor, though will frequently pause updates in response to larger changes. When in the
paused state, clicking the Resume button will restart updates. The Attribute inspector allows the
properties of a selected view to be changed and new modifiers added. Holding down the Command
key while clicking on a view in the editor or canvas displays the context menu containing a range of
options such as embedding the view in a container or extracting the selection to a subview.

The preview structure at the end of the SwiftUI View file allows previewing to be performed on
multiple device models simultaneously and with different environment settings.

141

18. The Anatomy of a Basic SwiftUI
Project
When a new SwiftUI project is created in Xcode using the Single View App template, Xcode
generates a number of different files and folders which form the basis of the project, and on which
the finished app will eventually be built.

Although it is not necessary to know in detail about the purpose of each of these files when
beginning with SwiftUI development, each of them will become useful as you progress to developing
more complex applications.

The goal of this chapter, therefore, is to provide a brief overview of each element of a basic project
structure.

18.1 Creating an Example Project

It may be useful to create a sample project to review while working through this chapter. To do so,
launch Xcode and, on the welcome screen, select the option to create a new project. On the
resulting template selection panel, choose the Single View App option before proceeding to the
next screen. On the project options screen, name the project ProjectDemo and change the User
Interface menu to SwiftUI. Click Next to proceed to the final screen, choose a suitable filesystem
location for the project and click on the Create button.

18.2 UIKit and SwiftUI

As discussed previously, before the introduction of SwiftUI, iOS apps were developed using UIKit. In
recognition of this reality, Apple has provided a number of ways in which SwiftUI and UIKit code can
be integrated within the same project.

It may not be obvious initially, but when creating a new SwiftUI based project, Xcode actually
creates a UIKit-based app which uses these integration techniques to host the SwiftUI views that
ultimately make up the app. Some of the files described in this chapter are, therefore, UIKit-based
and all class names prefixed with “UI“ are UIKit classes.

18.3 The AppDelegate.swift File

Every iOS app has one instance of the UIApplication class which is responsible for handling events
and managing the different UIWindow objects that will be used by the app to display user interfaces
to the user. UIWindow instances are not visible to the user but instead provide containers to hold
the visible objects that make up the user interface.

Chapter 18

The Anatomy of a Basic SwiftUI Project

142

The UIApplication instance has associated with it a delegate which it notifies via method calls of
significant events relating to the lifecycle of the app such as the app launching, incoming
notifications, low device memory, the pending termination of the app and the creation of new
scenes within the app.

By default, the AppDelegate.swift file generated by Xcode contains only the methods that are
mandatory to comply with the AppDelegate protocol but others can be added for the app to receive
notification of other app lifecycle events. These methods can be useful for implementing early app
specific initialization tasks such as establishing a network connection or setting up database access.
The didFinishLaunchingWithOptions method is particularly useful for adding initialization code since
it is the first method to be called after the app has finished launching.

18.4 The SceneDelegate.swift File

The entire user interface of an app is represented as a scene in the form of a UIWindowScene object
with a UIWindow child. It is important not to confuse this with a UIKit Storyboard scene which
represents only a single screen within an app user interface. By default, an app will have only one
scene, but with the introduction of multi-window support with iOS 13 it is also possible to configure
an app to allow the creation of multiple instances of its user interface. On iPhone devices, the user
switches between user interface copies using the app switcher while on the iPad, copies of the user
interface can also appear side by side.

While multiple scenes all share the same UIApplication object, each of the UIWindowScene
instances in a multi-window configuration has its own scene delegate instance.

The SceneDelegate class file implements the UIWindowSceneDelegate protocol and contains
methods to handle events such as a new scene object connecting to the current session, the scene
transitioning between background and foreground or a scene disconnecting from the app.

All of the SceneDelegate methods are useful for performing initialization and deinitialization tasks
during the lifecycle of the app. The most important delegate method in this file, however, is the
willConnectTo method which is called each time a new scene object is added to the app.

By default, the willConnectTo delegate method will have been implemented by Xcode to create an
instance of the SwiftUI ContentView view declared in the ContentView.swift file and make it visible
to the user. It is within this method that the gap between the UIKit architecture and SwiftUI is
bridged.

In order to embed a SwiftUI view into a UIKit project, the SwiftUI view is embedded into a
UIHostingController instance (a topic covered in detail starting with the chapter entitled Integrating
UIViews with SwiftUI). To achieve this, the willConnectTo delegate method performs the following
tasks:

1. Creates an instance of ContentView.
2. Creates a new UIWindow instance.
3. Embeds the ContentView instance into a UIHostingController instance.
4. Assigns the UIHostingController as the root view controller for the newly created UIWindow

instance.

The Anatomy of a Basic SwiftUI Project

143

5. Replaces the scene’s current UIWindow instance with the new one.
6. Makes the window visible to the user.

Figure 18-1 illustrates the hierarchy of a single window app:

Figure 18-1

A multi-window app hierarchy, on the other hand, can be represented as shown in Figure 18-2
below. Note that while there is only one AppDelegate, each scene has its own SceneDelegate
instance:

Figure 18-2

The Anatomy of a Basic SwiftUI Project

144

18.5 ContentView.swift File

This is a SwiftUI View file that contains the content of the first screen to appear when the app starts.
This file and others like it are where most of the work is performed when developing apps in SwiftUI.
By default, it contains a single Text view displaying the words “Hello World”.

18.6 Assets.xcassets

The Assets.xcassets folder contains the asset catalog that is used to store resources used by the app
such as images, icons and colors.

18.7 Info.plist

The information property list file is an XML file containing key-value pairs used to configure the app.
The setting to enable multi-window support, for example, is contained within this file.

18.8 LaunchScreen.storyboard

Contains the storyboard file containing the user interface layout for the screen displayed to the user
while the app is launching. Since this is a UIKit Storyboard scene, it is designed using the Interface
Builder tool rather than SwiftUI.

18.9 Summary

When a new SwiftUI project is created in Xcode using the Single View App template, Xcode
automatically generates a number of files required for the app to function. All of these files and
folders can be modified to add functionality to the app, both in terms of adding resource assets,
performing initialization and deinitialization tasks and building the user interface and logic of the
app. This chapter has provided a high-level overview of each of these files together with an outline
of the internal architecture of a SwiftUI-based iOS app.

Creating Custom Views with SwiftUI

156

 }

 .font(.largeTitle)

 }

}

Note that this declaration still returns an instance that complies with the View protocol and that
the body contains the VStack declaration from the previous subview. Instead of including static
views to be included in the stack, however, the child views of the stack will be passed to the
initializer, handled by ViewBuilder and embedded into the VStack as child views. The custom
MyVStack view can now be initialized with different child views wherever it is used in a layout, for
example:

MyVStack {

 Text("Text 1")

 Text("Text 2")

 HStack {

 Image(systemName: "star.fill")

 Image(systemName: "star.fill")

 Image(systemName: "star")

 }

}

19.13 Summary

SwiftUI user interfaces are declared in SwiftUI View files and are composed of components that
conform to the View protocol. To conform with the View protocol a structure must contain a
property named body which is itself a View.

SwiftUI provides a library of built-in components that can be used to design user interface layouts.
The appearance and behavior of a view can be configured by applying modifiers and views can be
modified and grouped together to create custom views and subviews. Similarly, custom container
views can be created using the ViewBuilder closure property.

When a modifier is applied to a view, a new modified view is returned and subsequent modifiers
are then applied to this modified view. This can have significant implications for the order in which
modifiers are applied to a view.

157

20. SwiftUI Stacks and Frames
User interface design is largely a matter of selecting the appropriate interface components, deciding
how those views will be positioned on the screen, and then implementing navigation between the
different screens and views of the app.

As is to be expected, SwiftUI includes a wide range of user interface components to be used when
developing an app such as button, label, slider and toggle views. SwiftUI also provides a set of layout
views for the purpose of defining both how the user interface is organized and the way in which the
layout responds to changes in screen orientation and size.

This chapter will introduce the Stack container views included with SwiftUI and explain how they
can be used to create user interface designs with relative ease.

Once stack views have been explained, this chapter will cover the concept of flexible frames and
explain how they can be used to control the sizing behavior of views in a layout.

20.1 SwiftUI Stacks

SwiftUI includes three stack layout views in the form of VStack (vertical), HStack (horizontal) and
ZStack (views are layered on top of each other).

A stack is declared by embedding child views into a stack view within the SwiftUI View file. In the
following view, for example, three Image views have been embedded within an HStack:

struct ContentView: View {

 var body: some View {

 HStack {

 Image(systemName: "goforward.10")

 Image(systemName: "goforward.15")

 Image(systemName: "goforward.30")

 }

 }

}

Within the preview canvas, the above layout will appear as illustrated in Figure 20-1:

Figure 20-1

Chapter 20

SwiftUI Stacks and Frames

158

A similarly configured example using a VStack would accomplish the same results with the images
stacked vertically:

VStack {

 Image(systemName: "goforward.10")

 Image(systemName: "goforward.15")

 Image(systemName: "goforward.30")

}

To embed an existing component into a stack, either wrap it manually within a stack declaration, or
hover the mouse pointer over the component in the editor so that it highlights, hold down the
Command key on the keyboard and left-click on the component. From the resulting menu (Figure
20-2) select the appropriate option:

Figure 20-2

Layouts of considerable complexity can be designed simply by embedding stacks within other
stacks, for example:

VStack {

 Text("Financial Results")

 .font(.title)

 HStack {

 Text("Q1 Sales")

 .font(.headline)

 VStack {

 Text("January")

SwiftUI Stacks and Frames

159

 Text("February")

 Text("March")

 }

 VStack {

 Text("$1000")

 Text("$200")

 Text("$3000")

 }

 }

}

The above layout will appear as shown in Figure 20-3:

Figure 20-3

As currently configured the layout clearly needs some additional work, particularly in terms of
alignment and spacing. The layout can be improved in this regard using a combination of alignment
settings, the Spacer component and the padding modifier.

20.2 Spacers, Alignment and Padding

To add space between views, SwiftUI includes the Spacer component. When used in a stack layout,
the spacer will flexibly expand and contract along the axis of the containing stack (in other words
either horizontally or vertically) to provide a gap between views positioned on either side, for
example:

HStack(alignment: .top) {

 Text("Q1 Sales")

 .font(.headline)

 Spacer()

 VStack(alignment: .leading) {

 Text("January")

 Text("February")

 Text("March")

 }

 Spacer()

SwiftUI Stacks and Frames

160

.

.

In terms of aligning the content of a stack, this can be achieved by specifying an alignment value
when the stack is declared, for example:

VStack(alignment: .center) {

 Text("Financial Results")

 .font(.title)

Alignments may also be specified with a corresponding spacing value:

VStack(alignment: .center, spacing: 15) {

 Text("Financial Results")

 .font(.title)

Spacing around the sides of any view may also be implemented using the padding() modifier. When
called without a parameter SwiftUI will automatically use the best padding for the layout, content
and screen size (referred to as adaptable padding). The following example sets adaptable padding
on all four sides of a Text view:

Text("Hello World!")

 .padding()

Alternatively, a specific amount of padding may be passed as a parameter to the modifier as follows:

Text("Hello World!")

 .padding(15)

Padding may also be applied to a specific side of a view with or without a specific value. In the
following example a specific padding size is applied to the top edge of a Text view:

Text("Hello World!")

 .padding(.top, 10)

Making use of these options, the example layout created earlier in the chapter can be modified as
follows:

VStack(alignment: .center, spacing: 15) {

 Text("Financial Results")

 .font(.title)

 HStack(alignment: .top) {

 Text("Q1 Sales")

 .font(.headline)

 Spacer()

 VStack(alignment: .leading) {

 Text("January")

 Text("February")

SwiftUI Stacks and Frames

161

 Text("March")

 }

 Spacer()

 VStack(alignment: .leading) {

 Text("$10000")

 Text("$200")

 Text("$3000")

 }

 .padding(5)

 }

 .padding(5)

 }

 .padding(5)

}

With the alignments, spacers and padding modifiers added, the layout should now resemble the
following figure:

Figure 20-4

More advanced stack alignment topics will be covered in a later chapter entitled SwiftUI Stack
Alignment and Alignment Guides.

20.3 Container Child Limit

Container views are limited to 10 direct descendent views. If a stack contains more than 10 direct
children, Xcode will likely display the following syntax error:

Argument passed to call that takes no arguments

If a stack exceeds the 10 direct children limit, the views will need to be embedded into multiple
containers. This can, of course, be achieved by adding stacks as subviews, but another useful
container is the Group view. In the following example, a VStack can contain 12 Text views by splitting
the views between Group containers giving the VStack only two direct descendants:

VStack {

 Group {

SwiftUI Stacks and Frames

162

 Text("Sample Text")

 Text("Sample Text")

 Text("Sample Text")

 Text("Sample Text")

 Text("Sample Text")

 Text("Sample Text")

 }

 Group {

 Text("Sample Text")

 Text("Sample Text")

 Text("Sample Text")

 Text("Sample Text")

 Text("Sample Text")

 Text("Sample Text")

 }

}

In addition to providing a way to avoid the 10-view limit, groups are also useful when performing
an operation on multiple views (for example, a set of related views can all be hidden in a single
operation by embedding them in a Group and hiding that view).

20.4 Text Line Limits and Layout Priority

By default, an HStack will attempt to display the text within its Text view children on a single line.
Take, for example, the following HStack declaration containing an Image view and two Text views:

HStack {

 Image(systemName: "airplane")

 Text("Flight times:")

 Text("London")

}

.font(.largeTitle)

If the stack has enough room, the above layout will appear as follows:

Figure 20-5

If a stack has insufficient room (for example if it is constrained by a frame or is competing for space
with sibling views) the text will automatically wrap onto multiple lines when necessary:

SwiftUI Stacks and Frames

163

Figure 20-6

While this may work for some situations, it may become an issue if the user interface is required to
display this text in a single line. The number of lines over which text can flow can be restricted using
the lineCount() modifier. The example HStack could, therefore, be limited to 1 line of text with the
following change:

HStack {

 Image(systemName: "airplane")

 Text("Flight times:")

 Text("London")

}

.font(.largeTitle)

.lineLimit(1)

When an HStack has insufficient space to display the full text and is not permitted to wrap the text
over enough lines, the view will resort to truncating the text, as is the case in Figure 20-7:

Figure 20-7

In the absence of any priority guidance, the stack view will decide how to truncate the Text views
based on the available space and the length of the views. Obviously, the stack has no way of knowing
whether the text in one view is more important than the text in another unless the text view
declarations include some priority information. This is achieved by making use of the layoutPriority()
modifier. This modifier can be added to the views in the stack and passed values indicating the level
of priority for the corresponding view. The higher the number, the greater the layout priority and
the less the view will be subjected to truncation.

Assuming the flight destination city name is more important than the “Flight times:” text, the
example stack could be modified as follows:

HStack {

 Image(systemName: "airplane")

SwiftUI Stacks and Frames

164

 Text("Flight times:")

 Text("London").layoutPriority(1)

}

.font(.largeTitle)

.lineLimit(1)

With a higher priority assigned to the city Text view (in the absence of a layout priority the other
text view defaults to a priority of 0) the layout will now appear as illustrated in Figure 20-8:

Figure 20-8

20.5 SwiftUI Frames

By default, a view will be sized automatically based on its content and the requirements of any
layout in which it may be embedded. Although much can be achieved using the stack layouts to
control the size and positioning of a view, sometimes a view is required to be a specific size or to fit
within a range of size dimensions. To address this need, SwiftUI includes the flexible frame modifier.

Consider the following Text view which has been modified to display a border:

Text("Hello World")

 .font(.largeTitle)

 .border(Color.black)

Within the preview canvas, the above text view will appear as follows:

Figure 20-9

In the absence of a frame, the text view has been sized to accommodate its content. If the Text view
was required to have height and width dimensions of 100, however, a frame could be applied as
follows:

Text("Hello World")

 .font(.largeTitle)

 .border(Color.black)

 .frame(width: 100, height: 100, alignment: .center)

SwiftUI Stacks and Frames

165

Now that the Text view is constrained within a frame, the view will appear as follows:

Figure 20-10

In many cases, fixed dimensions will provide the required behavior. In other cases, such as when
the content of a view changes dynamically, this can cause problems. Increasing the length of the
text, for example, might cause the content to be truncated:

Figure 20-11

This can be resolved by creating a frame with minimum and maximum dimensions:

Text("Hello World, how are you?")

 .font(.largeTitle)

 .border(Color.black)

 .frame(minWidth: 100, maxWidth: 300, minHeight: 100,

 maxHeight: 100, alignment: .center)

Now that the frame has some flexibility, the view will be sized to accommodate the content within
the defined minimum and maximum limits. When the text is short enough, the view will appear as
shown in Figure 20-10 above. Longer text, however, will be displayed as follows:

SwiftUI Stacks and Frames

166

Figure 20-12

Frames may also be configured to take up all the available space by setting the minimum and
maximum values to 0 and infinity respectively:

.frame(minWidth: 0, maxWidth: .infinity, minHeight: 0,

 maxHeight: .infinity)

Remember that the order in which modifiers are chained often impacts the appearance of a view.
In this case, if the border is to be drawn at the edges of the available space it will need to be applied
to the frame:

Text("Hello World, how are you?")

 .font(.largeTitle)

 .frame(minWidth: 0, maxWidth: .infinity, minHeight: 0,

 maxHeight: .infinity)

 .border(Color.black, width: 5)

By default, the frame will honor the safe areas on the screen when filling the display. Areas
considered to be outside the safe area include those occupied by the camera notch on some device
models and the bar across the top of the screen displaying the time and Wi-Fi and cellular signal
strength icons. To configure the frame to extend beyond the safe area, simply use the
edgesIgnoringSafeArea() modifier, specifying the safe area edges to ignore:

.edgesIgnoringSafeArea(.all)

20.6 Frames and the Geometry Reader

Frames can also be implemented so that they are sized relative to the size of the container within
which the corresponding view is embedded. This is achieved by wrapping the view in a
GeometryReader and using the reader to identify the container dimensions. These dimensions can
then be used to calculate the frame size. The following example uses a frame to set the dimensions
of two Text views relative to the size of the containing VStack:

GeometryReader { geometry in

 VStack {

 Text("Hello World, how are you?")

 .font(.largeTitle)

SwiftUI Stacks and Frames

167

 .frame(width: geometry.size.width / 2,

 height: (geometry.size.height / 4) * 3)

 Text("Goodbye World")

 .font(.largeTitle)

 .frame(width: geometry.size.width / 3,

 height: geometry.size.height / 4)

 }

}

The topmost Text view is configured to occupy half the width and three quarters of the height of
the VStack while the lower Text view occupies one third of the width and one quarter of the height.

20.7 Summary

User interface design mostly involves gathering together components and laying them out on the
screen in a way that provides a pleasant and intuitive user experience. User interface layouts must
also be responsive so that they appear correctly on any device regardless of screen size and, ideally,
device orientation. To ease the process of user interface layout design, SwiftUI provides several
layout views and components. In this chapter we have looked at layout stack views and the flexible
frame.

By default, a view will be sized according to its content and the restrictions imposed on it by any
view in which it may be contained. When insufficient space is available, a view may be restricted in
size resulting in truncated content. Priority settings can be used to control the amount by which
views are reduced in size relative to container sibling views.

For greater control of the space allocated to a view, a flexible frame can be applied to the view. The
frame can be fixed in size, constrained within a range of minimum and maximum values or, using a
Geometry Reader, sized relative to the containing view.

Index

322

.linear · 262
automatically starting · 266
autoreverse · 264
explicit · 264
implicit · 261
repeating · 264

animation() modifier · 262
AnyObject · 106
AnyTransition · 270
App Icons · 313
App Store

creating archive · 315
submission · 311

AppDelegate · 143
AppDelegate.swift file · 141
Apple Developer Program · 3
Application Performance · 135
Array

mixed type · 106
Array Initialization · 103
Array Item Count · 104
Array Items

accessing · 105
appending · 105
inserting and deleting · 105

Array Iteration · 106
Arrays

immutable · 103
mutable · 103

as! keyword · 37
Assets.xcassets · 144
Assistant Editor · 304
Attributes inspector · 128

B

Bézier curves · 254
binary operators · 39
bit operators · 44
Bitcode · 317
Bitwise AND · 45
Bitwise Left Shift · 46
bitwise OR · 45
bitwise right shift · 46
bitwise XOR · 45
body · 151
Boolean Logical Operators · 42
break statement · 51
Build Errors · 135

C

callout · 151
Capsule() · 252
caption · 151
case Statement · 58
CGRect · 254, 256
Character data type · 27
Child Limit · 161
Class Extensions · 91
closed range operator · 42
closeSubPath() · 255
closure expressions · 71
Closure Expressions · 71
closures · 63
Closures · 73
code editor · 123

context menu · 129
Combine framework · 173
Comparable protocol · 100
Comparison Operators · 41
Compound Assignment Operators · 40
Compound Bitwise Operators · 47
concrete type · 85
Conditional Control Flow · 52
constants · 30
Container Alignment · 199
Container Child Limit · 161
Container Views · 155
ContentView.swift file · 122, 144
Context Menus · 247
continue Statement · 52
Coordinator · 283
Custom Alignment Types · 206
Custom Container Views · 155
custom fonts · 151
Custom Paths · 254
Custom Shapes · 254

D

dark mode
previewing · 131

data encapsulation · 76
Debug Navigator · 135
debug panel · 123
Debug View Hierarchy · 137
Declarative Syntax · 118
Default Function Parameters · 66
defer statement · 114

Index

323

Developer Program · 3
Devices

managing · 134
Dictionary Collections · 107
Dictionary Entries

adding and removing · 109
Dictionary Initialization · 107
Dictionary Item Count · 108
Dictionary Items

accessing and updating · 109
Dictionary Iteration · 109
dismantleUIView() · 282
Divider view · 189
do-catch statement · 113
Double · 27
downcasting · 36
DragGesture.Value · 277
Dynamic Lists · 219

E

EditButton view · 241
Embed in VStack · 180
Environment Object

example · 169, 191, 196
Environment Objects · 174
EnvironmentObject · 169
Errata · 2
Error

throwing · 112
Error Catching

disabling · 114
Error Object

accessing · 114
ErrorType protocol · 111
Event handling · 153
exclusive OR · 45
Explicit Animation · 264
Expression Syntax · 39
external parameter names · 65

F

fallthrough statement · 60
fill() modifier · 251
Flexible frames · See Frames
Float · 27
flow control · 49
font

create custom · 151

footnote · 151
for loop · 49
forced unwrapping · 33
ForEach · 186, 190, 220, 231, 232
foregroundColor() modifier · 252
Form container · 234
Frames · 157, 164

Geometry Reader · 166
infinity · 166

function
arguments · 63
parameters · 63

Function Parameters
variable number of · 67

functions · 63
as parameters · 69
default function parameters · 66
external parameter names · 65
In-Out Parameters · 68
parameters as variables · 68
return multiple results · 67

G

GeometryReader · 166
gesture recognizer

removal of · 275
Gesture Recognizers · 273

exclusive · 278
onChanged · 275
sequenced · 278
simultaneous · 278
updating · 276

gesture() modifier · 273
Gestures

composing · 278
Gradients

drawing · 257
LinearGradient · 259
RadialGradient · 259

Graphics
drawing · 251
overlays · 254

Graphics Drawing · 251
guard statement · 54

H

half-closed range operator · 43
headline · 151

Index

324

HorizontalAlignment · 204, 207
Hosting Controller · 299

adding · 302
HStack · 148, 157

I

if ... else … Statements · 53
if ... else if ... Statements · 54
if Statement · 53
Image view · 157
implicit alignment · 199
Implicit Animation · 261
implicitly unwrapped · 35
Info.plist · 144
Inheritance, Classes and Subclasses · 87
init method · 78
inout keyword · 69
In-Out Parameters · 68
Instance Properties · 76
Interface Builder · 117
iOS 13

adoption rate · 119
iOS 13 SDK

installation · 7
system requirements · 7

iOS Distribution Certificate · 311
is keyword · 38
iTunes Connect · 316

J

JSON · 229
loading · 229

L

Launch Screen · 314
LaunchScreen.storyboard · 144, 314
Layout Hierarchy · 136
Layout Priority · 162
lazy

keyword · 82
Lazy properties · 81
Left Shift Operator · 46
Library panel · 125
LinearGradient · 259
List view · 217

adding navigation · 235
dynamic · 219
making editable · 223

List view
tutorial · 227

Live Preview · 124
local parameter names · 65
Loops

breaking from · 51

M

Main.storyboard file · 301
makeUIView() · 282
mathematical expressions · 39
Methods

declaring · 77
Mixed Type Arrays · 106
modifier() method · 153
Modifiers · 153
Multiple Device Configurations · 129

N

Navigation · 217
implementing · 195
tutorial · 227

navigationBarItems() modifier · 224, 239
navigationBarTitle() modifier · 239
NavigationLink · 221, 240
NavigationView · 221
Network Testing · 135
new line · 29
NOT (!) operator · 42

O

Objective-C · 25
Observable Object

example · 191
ObservableObject · 169, 172
ObservableObject protocol · 172
onAppear() · 154, 267, 268
onChanged() · 275
onDelete() · 223, 241
onDisappear() · 154
onMove() · 224, 241
Opaque Return Types · 85

Index

325

operands · 39
optional

implicitly unwrapped · 35
optional binding · 33
Optional Type · 32
OR (||) operator · 42
OR operator · 45
Overlays · 254

P

Padding · 159
padding() modifier · 160
parent class · 75
Path object · 254
Paths · 254
Performance

monitoring · 135
Physical iOS Device · 132

running app on · 132
Picker view · 169

example · 185
playground

quick look · 16
results panel · 12

Playground · 11
adding resources · 20
creating a · 11
Enhanced Live Views · 21
pages · 18
Rich Text Comments · 16

playground editor · 12
Playground Timelines · 15
preferred text size · 150
Preview Canvas · 123
Preview on Device · 124
Preview Pinning · 125
PreviewProvider protocol · 130
Profile in Instruments · 136
Property Wrappers · 97

example · 97
Multiple Variables and Types · 99

Protocols · 84
published properties · 172

R

Range Operators · 42
Rectangle() · 251
Reference Types · 94

repeat ... while loop · 51
repeatCount() modifier · 264
repeatForever() modifier · 264
Resume button · 124
Right Shift Operator · 46
root view controller · 179
Rotation · 183
running an app · 131

S

SceneDelegate · 142, 143
SceneDelegate.swift file · 142, 175
Segue Action · 304
self · 82
SF Symbols · 171

macOS app · 171
Shapes · 254

drawing · 251
sign bit · 46
Signing Identities · 9
Simulator

running app · 131
Simulators

managing · 134
Slider view · 180
some

keyword · 85
source code

download · 2
Spacer view · 188
Spacer View · 159
Spacers · 159
spring() modifier · 263
Stack

embed views in a · 180
Stacks · 157

alignment · 199
alignment guides · 199
child limit · 161
cross stack alignment · 209
implicit alignment · 199
Layout Priority · 162

State Binding · 171
State properties · 169

binding · 170
example · 181

Stored and Computed Properties · 80
String

data type · 28
stroke() modifier · 252

Index

326

StrokeStyle · 252
struct keyword · 93
Structures · 93
subheadline · 151
subtraction operator · 40
Subviews · 148
Swift

Arithmetic Operators · 39
array interation · 106
arrays · 103
Assignment Operator · 39
base class · 87
Binary Operators · 41
Bitwise AND · 45
Bitwise Left Shift · 46
Bitwise NOT · 44
Bitwise Operators · 44
Bitwise OR · 45
Bitwise Right Shift · 46
Bitwise XOR · 45
Bool · 27
Boolean Logical Operators · 42
break statement · 51
calling a function · 65
case statement · 58
character data type · 27
child class · 87
class declaration · 75
class deinitialization · 78
class extensions · 91
class hierarchy · 87
class initialization · 78
Class Methods · 76
class properties · 75
closed range operator · 42
Closure Expressions · 71
Closures · 73
Comparison Operators · 41
Compound Assignment Operators · 40
Compound Bitwise Operators · 47
Conditional Operator · 43
constant declaration · 30
constants · 30
continue statement · 52
control flow · 49
data types · 25, 26
Dictionaries · 107
do ... while loop · 51
error handling · 111
Escape Sequences · 29
exclusive OR · 45
expressions · 39

floating point · 27
flow control · 53
for Statement · 49
function declaration · 63
functions · 63
guard statement · 54
half-closed range operator · 43
if ... else … Statements · 53
if Statement · 53
implicit returns · 2, 25, 64
Inheritance, Classes and Subclasses · 87
Instance Properties · 76
instance variables · 76
integers · 26
methods · 75
object oriented programming · 75
opaque return types · 85
operators · 39
optional binding · 33
optional type · 32
Overriding · 89
parent class · 87
Property Wrappers · 97
protocols · 84
Range Operators · 42
Reference Types · 94
root class · 87
single expression functions · 64
single expression returns · 64
single inheritance · 87
Special Characters · 29
Stored and Computed Properties · 80
String data type · 28
structures · 93
subclass · 87
switch fallthrough · 60
switch statement · 57

syntax · 57
Ternary Operator · 43
tuples · 31
type annotations · 30
type casting · 36
type checking · 36
type inference · 30
Value Types · 94
variable declaration · 30
variables · 30
while loop · 50

Swift Playground · 11
Swift Structures · 93
SwiftUI

create project · 122

Index

327

custom views · 145
data driven · 118
Declarative Syntax · 118
example project · 177
overview · 117
Subviews · 148
Views · 145

SwiftUI Project
anatomy of · 141
creating · 122

SwiftUI View template · 194
SwiftUI Views · 145
SwiftUI vs. UIKit · 119
switch statement · 57

example · 58
switch Statement · 57

example · 58
range matching · 59

T

Tab Item Tags · 245
Tab Items · 244
Tabbed Views · 243
tabItem() · 245
TabView · 243

tab items · 244
tag() · 245
ternary operator · 43
Text Styles

body · 151
callout · 151
caption · 151
footnote · 151
headline · 151
subheadline · 151

Text Styles · 150
Text view

adding modifiers · 182
line limits · 162

TextField view · 185
throw statement · 112
ToggleButton view · 171
transition() modifier · 269
Transitions · 261, 269

.move(edge: edge) · 269

.opacity · 269

.scale · 269

.slide · 269
asymmetrical · 271
combining · 270

try statement · 113
try! statement · 114
Tuple · 31
type annotation · 30
Type Annotations · 30
type casting · 36
Type Casting · 36
Type Checking · 36
type inference · 31
Type Inference · 30
type safe programming · 30

U

UIApplication · 142
UIHostingController · 142, 299
UIImagePickerController · 291
UIKit · 117

in playgrounds · 18
UIKit integration

data sources · 284
delegates · 284

UIKit Integration · 281
Coordinator · 283

UILabel
set color · 18

UInt16 · 27
UInt32 · 27
UInt64 · 27
UInt8 · 27
UIScrolledView · 284
UIView · 281

SwifgUI integration · 281
UIViewController · 291

SwiftUI integration · 291
UIViewControllerRepresentable protocol · 291
UIViewRepresentable protocol · 283

makeCoordinator() · 283
UIWindow · 142, 143
UIWindowScene · 142
UIWindowSceneDelegate protocol · 142
unary negative operator · 40
Unicode scalar · 29
upcasting · 36
updateView() · 282
UUID() method · 219

V

Value Types · 94

Index

328

variables · 30
variadic parameters · 67
VerticalAlignment · 204, 207
View Hierarchy

exploring the · 137
ViewBuilder · 155
ViewDimensions · 207
ViewDimensions object · 203
ViewModifier protocol · 153
Views

adding · 194
as properties · 149
modifying · 150

VStack · 146, 157
adding to layout · 180

W

where clause · 35
where statement · 60
while Loop · 50
willConnectTo · 142, 179
withAnimation() closure · 264

X

Xcode

account configuration · 8
Attributes inspector · 128
code editor · 123
create project · 122
debug panel · 123
Library panel · 125
Live Preview · 124
preferences · 8
preview canvas · 123
Preview on Device · 124
Preview Resume button · 124
project navigation panel · 122
starting · 121
SwiftUi mode · 121

Xcode 11
installation · 7
system requirements · 7

XCPlayground module · 21
XCPShowView · 22
XOR operator · 45

Z

ZStack · 157, 199
alignment · 212

ZStack Custom Alignment · 212

