
Ubuntu 22.04 Essentials

Ubuntu 22.04 Essentials

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution
strictly prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor
the author offers any warranties or representation, express or implied, with regard to the accuracy
of information contained in this book, nor do they accept any liability for any loss or damage
arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the
benefit of the respective trademark owner. The terms used within this book are not intended as
infringement of any trademarks.

Rev: 1.0a

i

Contents
Table of Contents
1. Introduction ...1

1.1 Superuser Conventions... 1
1.2 Opening a Terminal Window .. 2
1.3 Editing Files ... 3
1.4 Feedback ... 4
1.5 Errata ... 5

2. A Brief History of Ubuntu Linux ...7
2.1 What exactly is Linux? .. 7
2.2 UNIX Origins .. 7
2.3 Who Created Linux? ... 7
2.4 The History of Ubuntu ... 8
2.5 What does the word “Ubuntu” Mean? .. 8
2.6 Summary .. 8

3. Installing Ubuntu on a Clean Disk Drive ..9
3.1 Ubuntu Installation Options .. 9
3.2 Server vs. Desktop Editions ... 10
3.3 Obtaining the Ubuntu Installation Media ... 10
3.4 Writing the ISO Installation Image to a USB Drive .. 11

3.4.1 Linux ... 11
3.4.2 macOS .. 12
3.4.3 Windows/macOS .. 13

3.5 Booting from the Ubuntu USB Image .. 14
3.6 Installing Ubuntu .. 15
3.7 Accessing the Ubuntu Desktop ... 20
3.8 Installing Updates .. 21
3.9 Displaying Boot Messages .. 22
3.10 Summary .. 23

4. Dual Booting Ubuntu with Windows ..25
4.1 Beginning the Ubuntu Installation .. 25
4.2 Booting Ubuntu for the First Time ... 31
4.3 Changing the Default Boot Option ... 31
4.4 Accessing the Windows Partition from the Command-line 32
4.5 Accessing the Windows Partition from the Desktop.. 33
4.6 Summary .. 36

5. Allocating Windows Disk Partitions to Ubuntu ...37

ii

Table of Contents

5.1 Unmounting the Windows Partition .. 37
5.2 Deleting the Windows Partitions from the Disk .. 37
5.3 Formatting the Unallocated Disk Partition .. 40
5.4 Mounting the New Partition ... 40
5.5 Editing the Boot Menu ... 41
5.6 Using GNOME Disks Utility ... 41
5.7 Summary .. 46

6. A Guided Tour of the GNOME 42 Desktop ...47
6.1 Installing the GNOME Desktop .. 47
6.2 An Overview of the GNOME 42 Desktop ... 47
6.3 Launching Activities ... 49
6.4 Managing Windows .. 51
6.5 Using Workspaces ... 52
6.6 Calendar and Notifications .. 54
6.7 Desktop Settings .. 55
6.8 Customizing the Dock .. 56
6.9 Installing Ubuntu Software .. 56
6.10 Beyond Basic Customization ... 57
6.11 Summary .. 58

7. An Overview of the Cockpit Web Interface ...59
7.1 An Overview of Cockpit ... 59
7.2 Installing and Enabling Cockpit .. 60
7.3 Accessing Cockpit ... 60
7.4 Overview .. 61
7.5 Logs ... 62
7.6 Storage ... 63
7.7 Networking ... 63
7.8 Accounts ... 64
7.9 Services ... 64
7.10 Applications ... 65
7.11 Virtual Machines ... 65
7.12 Software Updates ... 66
7.13 Terminal ... 66
7.14 Connecting to Multiple Servers .. 67
7.15 Enabling Stored Metrics ... 68
7.16 Summary .. 69

8. Using the Bash Shell on Ubuntu 22.04 ...71
8.1 What is a Shell? .. 71
8.2 Gaining Access to the Shell .. 71
8.3 Entering Commands at the Prompt .. 72

iii

Table of Contents

8.4 Getting Information about a Command .. 72
8.5 Bash Command-line Editing ... 72
8.6 Working with the Shell History ... 73
8.7 Filename Shorthand .. 74
8.8 Filename and Path Completion ... 74
8.9 Input and Output Redirection ... 74
8.10 Working with Pipes in the Bash Shell ... 75
8.11 Configuring Aliases .. 75
8.12 Environment Variables ... 76
8.13 Writing Shell Scripts ... 77
8.14 Summary .. 78

9. Managing Ubuntu 22.04 Users and Groups ...79
9.1 User Management from the Command-line ... 79
9.2 User Management with Cockpit .. 81
9.3 User Management using the Settings App ... 83
9.4 Summary .. 85

10. Managing Ubuntu 22.04 systemd Units ...87
10.1 Understanding Ubuntu systemd Targets ... 87
10.2 Understanding Ubuntu systemd Services .. 87
10.3 Ubuntu systemd Target Descriptions ... 87
10.4 Identifying and Configuring the Default Target ... 89
10.5 Understanding systemd Units and Unit Types .. 90
10.6 Dynamically Changing the Current Target ... 90
10.7 Enabling, Disabling, and Masking systemd Units .. 91
10.8 Working with systemd Units in Cockpit .. 92
10.9 Summary .. 94

11. Ubuntu Software Package Management and Updates ...95
11.1 Repositories .. 95
11.2 Managing Repositories with Software & Updates .. 96
11.3 Managing Packages with APT ... 98
11.4 Performing Updates .. 99
11.5 Enabling Automatic Updates ...100
11.6 Enabling Ubuntu Pro ..102
11.7 Summary ..104

12. Ubuntu Snap Package Management ..105
12.1 Managing Software with Snap ...105
12.2 Basic Snap Commands ...106
12.3 Working with Snap Channels ..108
12.4 Snap Refresh Schedule ..109
12.5 Snap Services ...111

iv

Table of Contents

12.6 Summary ..111
13. Ubuntu 22.04 Network Management ...113

13.1 An Introduction to NetworkManager ..113
13.2 Installing and Enabling NetworkManager ...114
13.3 Basic nmcli Commands ..114
13.4 Working with Connection Profiles ...118
13.5 Interactive Editing ...120
13.6 Configuring NetworkManager Permissions ..122
13.7 Summary ..122

14. Ubuntu 22.04 Firewall Basics ...123
14.1 Understanding Ports and Services ...123
14.2 Securing Ports and Services ...123
14.3 Ubuntu Services and iptables Rules ..124
14.4 Well-Known Ports and Services ..125
14.5 Summary ..128

15. Using gufw and ufw to Configure an Ubuntu Firewall ...129
15.1 An Overview of gufw and ufw ..129
15.2 Installing gufw on Ubuntu ..129
15.3 Running and Enabling gufw ..129
15.4 Creating a New Profile ..130
15.5 Adding Preconfigured Firewall Rules ...132
15.6 Adding Simple Firewall Rules..133
15.7 Adding Advanced Rules ...134
15.8 Configuring the Firewall from the Command Line using ufw135
15.9 Summary ..137

16. Basic Ubuntu Firewall Configuration with firewalld ..139
16.1 An Introduction to firewalld ..139

16.1.1 Zones ..139
16.1.2 Interfaces ..141
16.1.3 Services...141
16.1.4 Ports ..141

16.2 Checking firewalld Status ..141
16.3 Configuring Firewall Rules with firewall-cmd ..142

16.3.1 Identifying and Changing the Default Zone ...142
16.3.2 Displaying Zone Information ...142
16.3.3 Adding and Removing Zone Services ..143
16.3.4 Working with Port-based Rules ..144
16.3.5 Creating a New Zone ..144
16.3.6 Changing Zone/Interface Assignments ...144
16.3.7 Masquerading ...144

v

Table of Contents

16.3.8 Adding ICMP Rules ...145
16.3.9 Implementing Port Forwarding ..145

16.4 Managing firewalld using firewall-config ..146
16.5 Summary ..147

17. Configuring SSH Key-based Authentication on Ubuntu 22.04149
17.1 An Overview of Secure Shell (SSH) ..149
17.2 SSH Key-based Authentication ...149
17.3 Setting Up Key-based Authentication ..150
17.4 Installing and Starting the SSH Service ..150
17.5 SSH Key-based Authentication from Linux and macOS Clients150
17.6 Managing Multiple Keys ..152
17.7 SSH Key-based Authentication from Windows Clients153
17.8 SSH Key-based Authentication using PuTTY ..155
17.9 Generating a Private Key with PuTTYgen ..156
17.10 Summary ..157

18. Ubuntu 22.04 Remote Desktop Access with Vino ...159
18.1 Remote Desktop Access Types ..159
18.2 Secure and Insecure Remote Desktop Access ...159
18.3 Enabling Remote Desktop Access on Ubuntu ...160
18.4 Connecting to the Shared Desktop ...162
18.5 Connecting from Windows ...164
18.6 Summary ..165

19. Displaying Ubuntu 22.04 Applications Remotely (X11 Forwarding)167
19.1 Requirements for Remotely Displaying Ubuntu Applications 167
19.2 Displaying an Ubuntu Application Remotely ..168
19.3 Trusted X11 Forwarding ...169
19.4 Compressed X11 Forwarding ...169
19.5 Displaying Remote Ubuntu Apps on Windows ..169
19.6 Summary ..172

20. Using NFS on Ubuntu 22.04 to Share Files with Remote Systems173
20.1 Ensuring NFS Services are running on Ubuntu ...173
20.2 Configuring the Firewall to Allow NFS Traffic ..173
20.3 Specifying the Folders to be Shared ...174
20.4 Accessing Shared Folders ..174
20.5 Mounting an NFS Filesystem on System Startup ...175
20.6 Unmounting an NFS Mount Point ..175
20.7 Accessing NFS Filesystems in Cockpit ...175
20.8 Summary ..177

21. Sharing Files between Ubuntu 22.04 and Windows with Samba179

vi

Table of Contents

21.1 Accessing Windows Resources from the GNOME Desktop179
21.2 Samba and Samba Client ..180
21.3 Installing Samba on Ubuntu ..180
21.4 Configuring the Ubuntu Firewall to Enable Samba ..180
21.5 Configuring the smb.conf File ...181

21.5.1 Configuring the [global] Section ..181
21.5.2 Configuring a Shared Resource ..181
21.5.3 Removing Unnecessary Shares ...182

21.6 Creating a Samba User ...182
21.7 Testing the smb.conf File ..182
21.8 Starting the Samba and NetBIOS Name Services ...183
21.9 Accessing Samba Shares ...184
21.10 Accessing Windows Shares from Ubuntu ..186
21.11 Summary ..188

22. An Overview of Virtualization Techniques ...189
22.1 Guest Operating System Virtualization ...189
22.2 Hypervisor Virtualization ...190

22.2.1 Paravirtualization ...191
22.2.2 Full Virtualization ...192
22.2.3 Hardware Virtualization ...192

22.3 Virtual Machine Networking ...193
22.4 Summary ..193

23. Installing KVM Virtualization on Ubuntu 22.04 ..195
23.1 An Overview of KVM ..195
23.2 KVM Hardware Requirements ..195
23.3 Preparing Ubuntu for KVM Virtualization ..196
23.4 Verifying the KVM Installation ...196
23.5 Summary ..198

24. Creating KVM Virtual Machines on Ubuntu 22.04 using Cockpit199
24.1 Installing the Cockpit Virtual Machines Module ...199
24.2 Creating a Virtual Machine in Cockpit ..199
24.3 Starting the Installation ..201
24.4 Working with Storage Volumes and Storage Pools ...203
24.5 Summary ..205

25. Creating KVM Virtual Machines on Ubuntu 22.04 using virt-manager207
25.1 Starting the Virtual Machine Manager ...207
25.2 Configuring the KVM Virtual System ...208
25.3 Starting the KVM Virtual Machine ...212
25.4 Summary ..213

vii

Table of Contents

26. Creating KVM Virtual Machines with virt-install and virsh ..215
26.1 Running virt-install to build a KVM Guest System ..215
26.2 An Example Ubuntu virt-install Command ...215
26.3 Starting and Stopping a Virtual Machine from the Command-Line217
26.4 Creating a Virtual Machine from a Configuration File217
26.5 Summary ..217

27. Creating an Ubuntu 22.04 KVM Networked Bridge Interface219
27.1 Getting the Current Network Manager Settings ...219
27.2 Creating a Network Manager Bridge from the Command-Line221
27.3 Declaring the KVM Bridged Network ...222
27.4 Using a Bridge Network in a Virtual Machine ..223
27.5 Creating a Bridge Network using nm-connection-editor225
27.6 Summary ..228

28. Managing KVM using the virsh Command-Line Tool ..229
28.1 The virsh Shell and Command-Line ...229
28.2 Listing Guest System Status ..230
28.3 Starting a Guest System ...231
28.4 Shutting Down a Guest System ..231
28.5 Suspending and Resuming a Guest System ..231
28.6 Saving and Restoring Guest Systems ...231
28.7 Rebooting a Guest System ...232
28.8 Configuring the Memory Assigned to a Guest OS ..232
28.9 Summary ..232

29. An Introduction to Linux Containers ..233
29.1 Linux Containers and Kernel Sharing ..233
29.2 Container Uses and Advantages ..234
29.3 Ubuntu Container Tools ..235
29.4 The Ubuntu Docker Registry ...235
29.5 Container Networking ..236
29.6 Summary ..236

30. Working with Containers on Ubuntu ..237
30.1 Installing the Container Tools ...237
30.2 Pulling a Container Image ...237
30.3 Running the Image in a Container ...239
30.4 Managing a Container ..240
30.5 Saving a Container to an Image ..241
30.6 Removing an Image from Local Storage ..241
30.7 Removing Containers ...241
30.8 Building a Container with Buildah ...242

viii

Table of Contents

30.9 Summary ..242
31. Setting Up an Ubuntu 22.04 Web Server ...243

31.1 Requirements for Configuring an Ubuntu Web Server 243
31.2 Installing the Apache Web Server Packages ..243
31.3 Configuring the Firewall ..244
31.4 Port Forwarding ...244
31.5 Starting the Apache Web Server ...244
31.6 Testing the Web Server ..245
31.7 Configuring the Apache Web Server for Your Domain 245
31.8 The Basics of a Secure Website ..247
31.9 Configuring Apache for HTTPS ...248
31.10 Obtaining an SSL Certificate ...248
31.11 Summary ..251

32. Configuring an Ubuntu 22.04 Postfix Email Server ..253
32.1 The Structure of the Email System ...253

32.1.1 Mail User Agent ...253
32.1.2 Mail Transfer Agent ...253
32.1.3 Mail Delivery Agent ..253
32.1.4 SMTP ...254
32.1.5 SMTP Relay ...254

32.2 Configuring an Ubuntu Email Server ...254
32.3 Postfix Pre-Installation Steps ..254
32.4 Firewall/Router Configuration ..255
32.5 Installing Postfix on Ubuntu ..255
32.6 Configuring Postfix ..255
32.7 Configuring DNS MX Records ...257
32.8 Starting Postfix on an Ubuntu System ..257
32.9 Testing Postfix ..257
32.10 Sending Mail via an SMTP Relay Server ..258
32.11 Summary ..259

33. Adding a New Disk Drive to an Ubuntu 22.04 System ..261
33.1 Mounted File Systems or Logical Volumes ...261
33.2 Finding the New Hard Drive ...261
33.3 Creating Linux Partitions ..262
33.4 Creating a File System on an Ubuntu Disk Partition ..263
33.5 An Overview of Journaled File Systems ...263
33.6 Mounting a File System ...264
33.7 Configuring Ubuntu to Mount a File System Automatically 265
33.8 Adding a Disk Using Cockpit ..265
33.9 Summary ..267

ix

Table of Contents

34. Adding a New Disk to an Ubuntu 22.04 Volume Group and Logical Volume269
34.1 An Overview of Logical Volume Management (LVM) 269

34.1.1 Volume Group (VG) ...269
34.1.2 Physical Volume (PV) ...270
34.1.3 Logical Volume (LV) ...270
34.1.4 Physical Extent (PE) ..270
34.1.5 Logical Extent (LE) ..270

34.2 Getting Information about Logical Volumes ..270
34.3 Adding Additional Space to a Volume Group from the Command-Line 272
34.4 Summary ..274

35. Adding and Managing Ubuntu Swap Space ...275
35.1 What is Swap Space? ...275
35.2 Recommended Swap Space for Ubuntu ...275
35.3 Identifying Current Swap Space Usage ..276
35.4 Adding a Swap File to an Ubuntu System ..276
35.5 Adding Swap as a Partition ..277
35.6 Adding Space to an Ubuntu LVM Swap Volume ..277
35.7 Adding Swap Space to the Volume Group ...279
35.8 Summary ..280

36. Ubuntu 22.04 System and Process Monitoring ..281
36.1 Managing Processes ..281
36.2 Real-time System Monitoring with top ..285
36.3 Command-Line Disk and Swap Space Monitoring ..286
36.4 Summary ..287

Index ...289

1

Chapter 1
1. Introduction
Ubuntu is arguably one of the most highly regarded and widely used Linux distributions available
today. Praised both for its ease of use and reliability, Ubuntu also has a loyal following of Linux
users and an active community of developers.

Ubuntu 22.04 Essentials is intended to provide detailed information on the installation, use,
and administration of the Ubuntu distribution. For beginners, the book covers topics such as
operating system installation, the basics of the GNOME desktop environment, configuring email
and web servers, and installing packages and system updates. Additional installation topics, such
as dual booting with Microsoft Windows, are also covered, together with all important security
topics, such as configuring a firewall and user and group administration.

For the experienced user, topics such as remote desktop access, the Cockpit web interface, logical
volume management (LVM), disk partitioning, swap management, KVM virtualization, Secure
Shell (SSH), Linux Containers, and file sharing using both Samba and NFS are covered in detail
to provide a thorough overview of this enterprise class operating system.

1.1 Superuser Conventions
Ubuntu, in common with Linux in general, has two types of user accounts, one being a standard
user account with restricted access to many of the administrative files and features of the operating
system and the other a superuser (root) account with elevated privileges. Typically, a user can gain
root access either by logging in as the root user or using the su - command and entering the root
password. In the following example, a user is gaining root access via the su - command:
[demo@demo-server ~]$ su -

Password:

[demo@demo-server ~]#

Note that the command prompt for a regular user ends with a $ sign while the root user has a #
character. When working with the command line, this is a useful indication of whether you are
currently issuing commands as the root user.

If the su - command fails, the root account on the system has most likely been disabled for security
reasons. In this case, the sudo command can be used instead, as outlined below.

Using sudo, a single command requiring root privileges may be executed by a non-root user.
Consider the following attempt to update the operating system with the latest patches and
packages:
$ apt update

Reading package lists... Done

E: Could not open lock file /var/lib/apt/lists/lock - open (13: Permission denied)

2

Introduction

Optionally, user accounts may be configured so that they have access to root-level privileges.
Instead of using the su - command to first gain root access, user accounts with administrative
privileges are able to run otherwise restricted commands using sudo:
$ sudo apt update

[sudo] password for demo:

Hit:1 http://us.archive.ubuntu.com/ubuntu bionic InRelease

.

.

To perform multiple commands without repeatedly using the sudo command, a command
prompt with persistent super-user privileges may be accessed as follows:
[demo@demo-server]$ sudo su -

[demo@demo-server]#

The reason for raising this issue so early in the book is that many of the command-line examples
outlined in this book will require root privileges. Rather than repetitively preface every command-
line example with directions to run the command as root, the command prompt at the start of the
line will be used to indicate whether or not the command needs to be performed as root. If the
command can be run as a regular user, the command will be prefixed with a $ command prompt
as follows:
$ date

If, on the other hand, the command requires root privileges, the command will be preceded by a
command prompt:
apt install openssh-server

1.2 Opening a Terminal Window
If you are using the GNOME desktop and need to access a command prompt, you will need to
open a Terminal window. This can be achieved by right-clicking on the desktop background and
selecting the Open in Terminal menu option as shown in Figure 1-1:

Figure 1-1

3

Introduction

A terminal window may also be opened within the GNOME desktop using the Ctrl-Alt-T
keyboard accelerator.

1.3 Editing Files
Configuring a Linux system typically involves editing files. For those new to Linux, it can be
unclear which editor to use. If you are running a terminal session and do not already have a
preferred editor, we recommend using the nano editor. To launch nano in a terminal window,
enter the following command:
nano <file>

Where <file> is replaced by the path to the file you wish to edit. For example:
nano /etc/passwd

Once loaded, nano will appear as illustrated in Figure 1-2:

Figure 1-2

To create a new file run nano as follows:
nano

When you have finished editing the file, type Ctrl-S to save the file, followed by Ctrl-X to exit. To
open an existing file, use the Ctrl-R keyboard shortcut.

If you prefer to use a graphical editor within the GNOME desktop environment, gedit is a useful
starting point for basic editing tasks. To launch gedit from the desktop press Alt-F2 to display the
Enter a Command window as shown in Figure 1-3:

4

Introduction

Figure 1-3

Enter gedit into the text field and press the Enter key. After a short delay, gedit will load ready to
open, create, and edit files:

Figure 1-4

Alternatively, launch gedit from a terminal window either with or without the path to the file to
open:
gedit

gedit /etc/passwd

1.4 Feedback
We want you to be satisfied with your purchase of this book. If you find any errors in the book or
have any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

5

Introduction

1.5 Errata
While we make every effort to ensure the accuracy of the content of this book, it is inevitable that
a book covering a subject area of this size and complexity may include some errors and oversights.
Any known issues with the book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/Ubuntu2204.html

In the event that you find an error not listed in the errata, please let us know by emailing our
support team at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/errata/ubuntu2204.html

7

Chapter 2
2. A Brief History of Ubuntu Linux
Ubuntu Linux is one of a number of variants (also referred to as distributions) of the Linux
operating system and is the product of a U.K. company named Canonical Ltd. The company was
founded in 1994 by Mark Shuttleworth. The origins of Linux, however, go back even further. This
chapter will outline the history of both the Linux operating system and Ubuntu.

2.1 What exactly is Linux?
Linux is an operating system in much the same way that Windows is an operating system (and
there any similarities between Linux and Windows end). The term operating system is used to
describe the software that acts as a layer between the hardware in a computer and the applications
that we all run on a daily basis. When programmers write applications, they interface with the
operating system to perform such tasks as writing files to the hard disk drive and displaying
information on the screen. Without an operating system, every programmer would have to write
code to access the hardware of the system directly. In addition, the programmer would have to
be able to support every single piece of hardware ever created to be sure the application would
work on every possible hardware configuration. Because the operating system handles all of this
hardware complexity, application development becomes a much easier task. Linux is just one of a
number of different operating systems available today.

2.2 UNIX Origins
To understand the history of Linux, we first have to go back to AT&T Bell Laboratories in the
late 1960s. During this time, AT&T had discontinued involvement in developing a new operating
system named Multics. However, two AT&T engineers, Ken Thompson, and Dennis Ritchie,
decided to take what they had learned from the Multics project and create a new operating system
named UNIX which quickly gained popularity and wide adoption both with corporations and
academic institutions.

A variety of proprietary UNIX implementations eventually came to market, including those
created by IBM (AIX), Hewlett-Packard (HP-UX), and Sun Microsystems (SunOS and Solaris).
In addition, a UNIX-like operating system named MINIX was created by Andrew S. Tanenbaum
and designed for educational use with source code access provided to universities.

2.3 Who Created Linux?
The origins of Linux can be traced back to the work and philosophies of two people. At the heart of
the Linux operating system is something called the kernel. This is the core set of features necessary
for the operating system to function. The kernel manages the system’s resources and handles
communication between the hardware and the applications. The Linux kernel was developed by
Linus Torvalds, who, taking a dislike to MS-DOS and impatient for the availability of MINIX for
the new Intel 80386 microprocessor, decided to write his own UNIX-like kernel. When he had

8

A Brief History of Ubuntu Linux

finished the first version of the kernel, he released it under an open-source license that enabled
anyone to download the source code and freely use and modify it without having to pay Linus
any money.

Around the same time, Richard Stallman at the Free Software Foundation, a strong advocate of
free and open-source software, was working on an open-source operating system of his own.
Rather than focusing initially on the kernel, however, Stallman began by developing open-source
versions of all the UNIX tools, utilities, and compilers necessary to use and maintain an operating
system. By the time he had finished developing this infrastructure, the obvious solution was
to combine his work with the kernel Linus had written to create a complete operating system.
This combination became known as GNU/Linux. Purists insist that Linux always be referred
to as GNU/Linux (in fact, at one time, Richard Stallman refused to give press interviews to any
publication which failed to refer to Linux as GNU/Linux). This is not unreasonable, given that
the GNU tools developed by the Free Software Foundation make up a significant and vital part
of GNU/Linux. Unfortunately, most people and publications refer to Linux as Linux, which will
probably always continue to be the case.

2.4 The History of Ubuntu
As mentioned previously, Ubuntu is one of a number of Linux distributions. The source code that
makes up the Ubuntu distribution originates from a highly regarded Linux distribution known as
Debian, created by Ian Murdoch.

A South African internet mogul named Mark Shuttleworth (who made his fortune selling his
company to VeriSign for around $500 million) decided it was time for a more user-friendly Linux.
He took the Debian distribution and worked to make it a more human-friendly distribution
which he called Ubuntu. He subsequently formed a company called Canonical Ltd to promote
and provide support for Ubuntu.

If you are new to Linux or already use Linux and want to try a different Linux distribution, it is
unlikely you will find a better option than Ubuntu.

2.5 What does the word “Ubuntu” Mean?
The word “Ubuntu” is an ancient Zulu and Xhosa word that means “humanity to others”. Ubuntu
also means “I am what I am because of who we all are”. It was chosen because these sentiments
precisely describe the spirit of the Ubuntu distribution.

2.6 Summary
The origins of the Linux operating system can be traced back to the work of Linus Torvalds and
Richard Stallman in the form of the Linux kernel combined with the tools and compilers built by
the GNU project.

Over the years, the open-source nature of Linux has resulted in the release of a wide range of
different Linux distributions. One such distribution is Ubuntu, based on the Debian Linux
distribution created by Canonical Ltd, a company founded by Mark Shuttleworth

9

Chapter 3
3. Installing Ubuntu on a Clean Disk
Drive
There are now three ways in which an Ubuntu system can be deployed. One method is to either
purchase new hardware or re-purpose an existing computer system on which to install and run the
operating system. Alternatively, a virtualization platform such as VirtualBox or VMware can be
used to install and run Ubuntu inside a virtual machine on an existing operating system. Another
option is to create a cloud-based operating system instance using services such as Amazon AWS,
Google Cloud, or Microsoft Azure (to name but a few). Since cloud-based instances are typically
created by selecting a pre-configured, ready to run operating system image that is already
optimized for the cloud platform and using that as the basis for the Ubuntu system, there is no
need to perform a manual operating system installation in this situation.

If, on the other hand, you plan to install Ubuntu on your own hardware or make use of a
virtualization environment, the first step on the path to learning about Ubuntu involves installing
the operating system.

Ubuntu can be installed either in a clean disk environment (where an entire disk is cleared of
any existing partitions and dedicated entirely to Ubuntu) or in a dual boot environment where
Ubuntu co-exists with another operating system on the disk (typically a member of the Microsoft
Windows family of operating systems).

In this chapter, we will cover the clean disk approach to installation from local or remote
installation media. Dual boot installation with a Windows 10 system will be covered in ”Dual
Booting Ubuntu with Windows”.

3.1 Ubuntu Installation Options
Ubuntu can be downloaded free of charge from the following web page:

https://ubuntu.com/download

This page provides a number of download options depending on how the operating system is to
be installed and used:

• Ubuntu Desktop - Downloads the installation media for the desktop edition of the operating
system. This edition is intended for use on desktop and laptop systems where a graphical desktop
environment is needed and is only available for 64-bit x86 systems. The desktop edition can be
downloaded in the form of an ISO image which you can then write to a USB drive using the
steps outlined later in this chapter. When booted, the desktop media will allow you to test out
Ubuntu by running a Live Ubuntu session prior to performing the installation.

https://ubuntu.com/download

10

Installing Ubuntu on a Clean Disk Drive

• Ubuntu Server - Downloads the Live Server ISO installation media for the server edition of the
operating system. This image is intended for performing an installation on servers on which
the graphical desktop environment is not required and is available for x86, ARM, IBM POWER
(PowerPC), and s390x (IBM System z mainframe) systems. The installation media does not
include the option to try Ubuntu before installing and uses the text-based installer instead of
the graphical installer used for Ubuntu Desktop. This allows Ubuntu to be installed on systems
without a graphical console.

The Ubuntu Server image may also be used to perform Preboot Execution Environment (PXE)
network installations. When using PXE to install Ubuntu, the Ubuntu image is installed on a
specially configured server (referred to as a PXE boot server). The client system on which Ubuntu
is to be installed is then configured to boot over the network from the image on the PXE boot
server (assuming the client hardware supports PXE) to initiate the installation.

3.2 Server vs. Desktop Editions
Clearly, a decision between the Desktop and the Server Edition images needs to be made before
installation can begin. If you would like to try Ubuntu before installing it, then the Desktop option
is the best solution since it allows you to boot Ubuntu from the installation media without first
installing it on a disk drive. This option also allows the installation to be initiated from within the
live session.

If the graphical desktop environment is not required, and the destination system does not have
internet access or a graphical console, then the Live Server ISO image is recommended since this
allows a fully functional server to be built without the need to download any additional packages.

Regardless of the chosen installation method, packages can be added to and removed from the
system after installation to configure the system to specific needs.

3.3 Obtaining the Ubuntu Installation Media
For the purposes of this chapter, the Ubuntu Desktop environment will be installed using the
graphical installer. Begin, therefore, by downloading the Ubuntu Desktop 22.04 ISO image from
the following URL:

https://ubuntu.com/download/desktop

The DVD ISO image is self-contained, including all of the packages necessary to install an Ubuntu
system, and is named using the following convention:
ubuntu-<version>-<edition>-<architecture>.iso

For example, the Ubuntu 22.04 Desktop ISO image for 64-bit Intel/AMD systems is named as
follows:
ubuntu-22.04-desktop-amd64.iso

Having downloaded the image, either burn it to disk or use the steps in the next section to write
the media to a USB drive and configure your virtualization environment to treat it as a DVD
drive.

https://ubuntu.com/download/desktop

11

Installing Ubuntu on a Clean Disk Drive

3.4 Writing the ISO Installation Image to a USB Drive
These days it is more likely that an operating system installation will be performed from a USB
drive than from a DVD. Having downloaded the ISO installation image for Ubuntu, the steps to
write that image to a USB drive will differ depending on whether the drive is attached to a Linux,
macOS, or Windows system. The steps outlined in the remainder of this section assume that the
USB drive is new or has been reformatted to remove any existing data or partitions:

3.4.1 Linux
The first step in writing an ISO image to a USB drive on Linux is identifying the device name.
Before inserting the USB drive, identify the storage devices already detected on the system by
listing the devices in /dev as follows:
ls /dev/sd*

/dev/sda /dev/sda1 /dev/sda2

Attach the USB drive to the Linux system and run the dmesg command to get a list of recent
system messages, one of which will be a report that the USB drive was detected and will be similar
to the following:
[445597.988045] sd 6:0:0:0: [sdb] Attached SCSI removable disk

This output tells us that we should expect the device name to include “sdb” which we can confirm
by listing device names in /dev again:
ls /dev/sd*

/dev/sda /dev/sda1 /dev/sda2 /dev/sdb

From this output, we can tell that the USB drive has been assigned to /dev/sdb. The next step
before writing the ISO image to the device is to run the findmnt command to make sure it has not
been auto-mounted:
findmnt /dev/sdb?

TARGET SOURCE FSTYPE OPTIONS

/media/demo/C24E-6727 /dev/sdb1 vfat rw,nosuid,nodev, ...

If the findmnt command indicates that the USB drive has been mounted, unmount it before
continuing:
umount /media/demo/C24E-6727

Once the filesystem has been unmounted, use the dd command as follows to write the ISO image
to the drive:
dd if=/path/to/iso/<image name>.iso of=/dev/sdb bs=512k

The writing process can take some time (as long as 10 - 15 minutes) to complete depending on
the image size and speed of the system on which it is running. Once the image has been written,
output similar to the following will appear and the USB drive is ready to be used to install Ubuntu:
4056+1 records in

4056+1 records out

2126544896 bytes (2.1 GB, 2.0 GiB) copied, 625.911 s, 3.4 MB/s

12

Installing Ubuntu on a Clean Disk Drive

3.4.2 macOS
The first step in writing an ISO image to a USB drive attached to a macOS system is to identify
the device using the diskutil tool. Before attaching the USB device, open a Terminal window and
run the following command:
$ diskutil list

/dev/disk0 (internal, physical):

 #: TYPE NAME SIZE IDENTIFIER

 0: GUID_partition_scheme *1.0 TB disk0

 1: EFI EFI 209.7 MB disk0s1

 2: Apple_APFS Container disk2 1000.0 GB disk0s2

/dev/disk1 (internal):

 #: TYPE NAME SIZE IDENTIFIER

 0: GUID_partition_scheme 28.0 GB disk1

 1: EFI EFI 314.6 MB disk1s1

 2: Apple_APFS Container disk2 27.7 GB disk1s2

/dev/disk2 (synthesized):

 #: TYPE NAME SIZE IDENTIFIER

 0: APFS Container Scheme - +1.0 TB disk2

 Physical Stores disk1s2, disk0s2

 1: APFS Volume Macintosh HD 473.6 GB disk2s1

 2: APFS Volume Preboot 42.1 MB disk2s2

 3: APFS Volume Recovery 517.0 MB disk2s3

 4: APFS Volume VM 1.1 GB disk2s4

Having established a baseline of detected devices, insert the USB drive into a port on the macOS
system and run the command again. The same results should appear with one additional entry for
the USB drive resembling the following:
/dev/disk3 (external, physical):

 #: TYPE NAME SIZE IDENTIFIER

 0: *16.0 GB disk3

In the above example, the USB drive has been assigned to /dev/disk3. Before proceeding, unmount
the disk as follows:
$ diskutil unmountDisk /dev/disk3

Unmount of all volumes on disk3 was successful

Finally, use the dd command to write the ISO image to the device, taking care to reference the raw
disk device (/dev/rdisk3) and entering your user password when prompted:
$ sudo dd if=/path/to/iso/image.iso of=/dev/rdisk3 bs=1m

Once the image has been written, the USB drive is ready.

13

Installing Ubuntu on a Clean Disk Drive

3.4.3 Windows/macOS
Several free tools are available for Windows and macOS that will write an ISO image to a USB
drive, but one written specifically for writing Linux ISO images is the Fedora Media Writer tool
which can be downloaded from the following URL:

https://getfedora.org/en/workstation/download/

Once installed, insert the destination USB drive, launch the writer tool, and choose the Select .iso
file option as highlighted in Figure 3-1:

Figure 3-1

Click Next to proceed to the Write Options screen and select the USB Drive before clicking on
the Select... button:

Figure 3-2

In the resulting file selection dialog, navigate to and select the Ubuntu installation ISO image and

https://getfedora.org/en/workstation/download/

14

Installing Ubuntu on a Clean Disk Drive

click the Open button. Finally, click the Write button to start writing the image to the USB drive:

Figure 3-3

Once the image has been written, the device is ready to perform the installation.

3.5 Booting from the Ubuntu USB Image
Insert the Ubuntu installation media into the appropriate drive and power on the system. If the
system tries to boot from the hard disk drive, you will need to enter the BIOS set up for your
computer and change the boot order so that it boots from the installation media drive first. After
the initial boot sequence completes, the GRUB menu shown in Figure 3-4 will appear:

Figure 3-4

Use the arrow keys to select the Try or Install Ubuntu menu option, then press Enter to boot into
an Ubuntu Live session. After Ubuntu has booted completely, the screen shown in Figure 3-5
below will appear:

15

Installing Ubuntu on a Clean Disk Drive

Figure 3-5

Options are provided to either try the Ubuntu Live session or to begin the installation process. If
you experience a black screen when attempting to start or install Ubuntu, reboot the system and
try again using the safe graphics options. If you are not ready to install Ubuntu, click on the Try
Ubuntu button to safely explore the operating system without making changes to any installed
hard drives.

3.6 Installing Ubuntu
From within Install dialog, select the option to begin the Ubuntu installation and wait for the
initial screen of the installer to appear. Select your preferred language before clicking on the
Continue button to proceed to the next screen:

Figure 3-6

Either select your keyboard layout or, if you are unsure, click on the Detect Keyboard Layout

71

Chapter 8
8. Using the Bash Shell on Ubuntu
22.04
An essential part of learning to work with Ubuntu and Linux distributions generally involves
gaining proficiency in working in the shell environment. While graphical desktop environments
such as GNOME, included with Linux, provide a user-friendly interface to the operating system,
the shell environment provides far greater capabilities, flexibility, and automation than can ever
be achieved using graphical desktop tools. The shell environment also provides a means for
interacting with the operating system when a desktop environment is unavailable, a common
occurrence when working with a server-based operating system such as Ubuntu or a damaged
system that will not fully boot.

Therefore, this chapter aims to provide an overview of the default shell environment on Ubuntu
(specifically the Bash shell).

8.1 What is a Shell?
The shell is an interactive command interpreter environment within which commands may be
typed at a prompt or entered into a file as a script and executed. The origins of the shell can be
traced back to the early days of the UNIX operating system. In fact, in the early days of Linux,
before the introduction of graphical desktops, the shell was the only way for a user to interact with
the operating system.

A variety of shell environments have been developed over the years. The first widely used shell
was the Bourne shell, written by Stephen Bourne at Bell Labs.

Yet another early creation was the C shell which shared some syntax similarities with the C
Programming Language and introduced usability enhancements such as command-line editing
and history.

The Korn shell (developed by David Korn at Bell Labs) is based on features provided by both the
Bourne and C shells.

The default shell on Ubuntu is the Bash shell (shorthand for Bourne Again SHell). This shell,
which began life as an open-source version of the Bourne shell, was developed for the GNU
Project by Brian Fox and is based on features provided by both the Bourne shell and the C shell.

8.2 Gaining Access to the Shell
From within the GNOME desktop environment, the shell prompt may be accessed from a
Terminal window by selecting the Activities option in the top bar, entering Terminal into the
search bar, and clicking the Terminal icon.

72

Using the Bash Shell on Ubuntu 22.04

When remotely logging into an Ubuntu server, for example, using SSH, the user is presented with
a shell prompt. The chapter entitled “Configuring SSH Key-based Authentication on Ubuntu 22.04”
will cover details on accessing a remote server using SSH. When booting a server-based system
in which a desktop environment has not been installed, the shell is entered immediately after the
user completes the login procedure at the physical console terminal or remote login session.

8.3 Entering Commands at the Prompt
Commands are entered at the shell command prompt simply by typing the command and pressing
the Enter key. While some commands perform tasks silently, most will display some form of
output before returning to the prompt. For example, the ls command can be used to display the
files and directories in the current working directory:
$ ls

Desktop Documents Downloads Music Pictures Public Templates Videos

The available commands are either built into the shell itself or reside on the physical file system.
The location on the file system of a command may be identified using the which command. For
example, to find out where the ls executable resides on the file system:
$ which ls

alias ls=’ls --color=auto’

 /usr/bin/ls

Clearly, the ls command resides in the /usr/bin directory. Note also that an alias is configured, a
topic that will be covered later in this chapter. Using the which command to locate the path to
commands built into the shell will result in a message indicating the executable cannot be found.
For example, attempting to find the location of the history command (which is built into the
shell rather than existing as an executable on the file system) will result in output similar to the
following:
$ which history

/usr/bin/which: no history in (/home/demo/.local/bin:/home/demo/bin:/usr/share/
Modules/bin:/usr/local/bin:/usr/bin:/usr/local/sbin:/usr/sbin)

8.4 Getting Information about a Command
Many of the commands available to the Linux shell can seem cryptic. To find out detailed
information about what a command does and how to use it, use the man command specifying
the name of the command as an argument. For example, to learn more about the pwd command:
$ man pwd

A detailed description of the pwd command will be displayed when the above command is
executed. Many commands will also provide additional information when run with the --help
command-line option:
$ wc --help

8.5 Bash Command-line Editing
Early shell environments did not provide any form of line editing capabilities. This meant that if
you spotted an error at the beginning of a long command-line, you were typing, you had to delete

73

Using the Bash Shell on Ubuntu 22.04

all the following characters, correct the error and then re-enter the remainder of the command.
Fortunately, Bash provides a wide range of command-line editing options, as outlined in the
following table:

Key Sequence Action
Ctrl-b or Left Arrow Move the cursor back one position
Ctrl-f or Right Arrow Move the cursor forward one position
Delete Delete the character currently beneath the cursor
Backspace Delete the character to the left of the cursor
Ctrl-_ Undo previous change (can be repeated to undo all previous

changes)
Ctrl-a Move the cursor to the start of the line
Ctrl-e Move the cursor to the end of the line
Meta-f or Esc then f Move cursor forward one word
Meta-b or Esc then b Move the cursor back one word
Ctrl-l Clear the screen of everything except the current command
Ctrl-k Delete to the end of the line from the current cursor position
Meta-d or Esc then d Delete to end of the current word
Meta-DEL or Esc then DEL Delete beginning to the current word
Ctrl-w Delete from the current cursor position to the previous white

space

Table 8-1

8.6 Working with the Shell History
In addition to command-line editing features, the Bash shell provides command-line history
support. A list of previously executed commands may be viewed using the history command:
$ history

 1 ps

 2 ls

 3 ls –l /

 4 ls

 5 man pwd

 6 man apropos

In addition, Ctrl-p (or up arrow) and Ctrl-n (or down arrow) may be used to scroll back and forth
through previously entered commands. Finally, when the desired command from the history is
displayed, press the Enter key to execute it.

Another option is to enter the ‘!’ character, followed by the first few characters of the command to
be repeated, followed by the Enter key.

87

Chapter 10
10. Managing Ubuntu 22.04 systemd
Units
To gain proficiency in Ubuntu system administration, it is essential to understand the concepts of
systemd units with a particular emphasis on two specific types known as targets and services. This
chapter provides a basic overview of the different systemd units supported by Ubuntu and how to
configure the many services that run in the background of a running Linux system.

10.1 Understanding Ubuntu systemd Targets
Ubuntu can be configured to boot into one of several states (referred to as targets), each designed
to provide a specific level of operating system functionality. The system administrator configures
the target to which a system will boot by default based on the purpose for which the system is
being used. A desktop system, for example, will likely be configured to boot using the graphical
user interface target. In contrast, a cloud-based server system would be more likely to boot to the
multi-user target level.

During the boot sequence, a process named systemd looks in the /etc/systemd/system folder to
find the default target setting. Having identified the default target, it proceeds to start the systemd
units associated with that target so that the system boots with all the necessary processes running.

For those familiar with older Ubuntu versions, systemd targets replace the older runlevel system.

10.2 Understanding Ubuntu systemd Services
A service is a process, typically running in the background, that provides specific functionality. The
sshd service, for example, is the background process (also referred to as a daemon) that provides
secure shell access to the system. Different systemd targets are configured to automatically launch
different collections of services, depending on the functionality to be provided by that target.

Targets and services are types of systemd unit, a topic that will be covered later in this chapter.

10.3 Ubuntu systemd Target Descriptions
As previously outlined, Ubuntu can be booted into one of several target levels. The default target
to which the system is configured to boot will, in turn, dictate which systemd units are started.
The targets that relate specifically to system startup and shutdown can be summarized as follows:

• poweroff.target - This target shuts down the system. It is unlikely you would want this as your
default target.

• rescue.target – Causes the system to start in a single-user mode under which only the root
user can log in. The system does not start any networking, graphical user interface, or multi-
user services in this mode. This run level is ideal for system administrators to perform system

88

Managing Ubuntu 22.04 systemd Units

maintenance or repair activities.

• multi-user.target - Boots the system into a multi-user mode with text-based console login
capability.

• graphical.target - Boots the system into a networked, multi-user state with X Window System
capability. By default, the graphical desktop environment will start at the end of the boot process.
This is the most common run level for desktop or workstation use.

• reboot.target - Reboots the system. Another target that, for obvious reasons, you are unlikely
to want as your default.

In addition to the above targets, the system includes about 70 other targets, many of which are
sub-targets used by the above main targets. Behind the scenes, for example, multi-user.target will
also start a target named basic.target which will, in turn, start the sockets.target unit, which is
required for communication between different processes. This ensures that all the services on
which the multi-user target depends are also started during the boot process.

A list of the targets and services on which a specified target is dependent can be viewed by running
the following command in a terminal window:
systemctl list-dependencies <target>

Figure 11-1, for example, shows a partial listing of the systemd unit dependencies for the graphical
target (the complete listing contains over 140 targets and services required for a fully functional
multi-user system):

Figure 10-1

The listing is presented as a hierarchical tree illustrating how some dependencies have sub-
dependencies of their own. Scrolling to the bottom of the list, for example, would reveal that the
graphical target depends on a cloud-related service called cloud-init.target, which, in turn, has its
own service dependencies:

89

Managing Ubuntu 22.04 systemd Units

Figure 10-2

The colored dots to the left of each entry in the list indicate the current status of that service or
target as follows:

• Green - The service or target is active and running.

• White - The service or target is inactive (dead). Typically because the service or target has yet
to be enabled, has been stopped for some reason, or a condition on which the service or target
depends has not been met.

• Red - The service or target failed to start due to a fatal error.

To find out more details about the status of a systemd unit, use the systemctl status command
followed by the unit name as follows:
systemctl status systemd-machine-id-commit.service

○ systemd-machine-id-commit.service - Commit a transient machine-id on disk

 Loaded: loaded (/usr/lib/systemd/system/systemd-machine-id-commit.service;
static)

 Active: inactive (dead)

 Condition: start condition failed at Thu 2023-03-30 08:41:05 EDT; 16min ago

 └─ ConditionPathIsMountPoint=/etc/machine-id was not met

 Docs: man:systemd-machine-id-commit.service(8)

10.4 Identifying and Configuring the Default Target
The current default target for an Ubuntu system can be identified using the systemctl command
as follows:
systemctl get-default

multi-user.target

In the above case, the system is configured to boot using the multi-user target by default. The
default setting can be changed anytime using the systemctl command with the set-default option.
The following example changes the default target to start the graphical user interface the next
time the system boots:
systemctl set-default graphical.target

Removed /etc/systemd/system/default.target.

Created symlink /etc/systemd/system/default.target → /usr/lib/systemd/system/
graphical.target.

90

Managing Ubuntu 22.04 systemd Units

The output from the default change operation reveals the steps performed in the background
by the systemctl command to implement the change. The current default is configured by
establishing a symbolic link from the default.target file located in /etc/systemd/system to point
to the corresponding target file located in the /usr/lib/systemd/system folder (in this case the
graphical.target file).

10.5 Understanding systemd Units and Unit Types
As previously mentioned, targets and services are both types of systemd unit. All the files within
the /usr/lib/systemd/system folder are called systemd unit configuration files, each representing a
systemd unit. Each unit is, in turn, categorized as being of a particular unit type. Ubuntu supports
12 different unit types, including the target and service unit types already covered in this chapter.

The type of a unit file is represented by the filename extension as outlined in Table 10-1 below:

Unit Type Filename Extension Type Description
Service .service System service.
Target .target Group of systemd units.
Automount .automount File system auto-mount point.
Device .device Device file recognized by the

kernel.
Mount .mount File system mount point.
Path .path File or directory in a file

system.
Scope .scope Externally created process.
Slice .slice Group of hierarchically

organized units that manage
system processes.

Snapshot .snapshot Saved state of the systemd
manager.

Socket .socket Inter-process communication
socket.

Swap .swap Swap device or a swap file.
Timer .timer Systemd timer.

Table 10-1

Note that the target unit type differs from other types in that it comprises a group of systemd units
such as services or other targets.

10.6 Dynamically Changing the Current Target
The systemctl set-default command outlined previously specifies the target that will be used the
next time the system starts but does not change the current system’s state. To change to a different

95

Chapter 11
11. Ubuntu Software Package
Management and Updates
It is highly unlikely that a newly installed Ubuntu system will contain all of the software packages
necessary to perform the tasks for which it is intended. Even once all the required software has
been installed, it is almost certain that newer versions of many of those packages will be released
during the lifespan of the system. In some cases, you will need to ensure that these latest package
releases are installed on the system so that bugs and security vulnerabilities are fixed.

This chapter introduces the basic concepts of software management on Ubuntu, explains how
these issues are addressed, and explores the concepts of repositories and software packages
while exploring how to list, install and remove the software packages that make up a functioning
Ubuntu system.

11.1 Repositories
Linux is essentially comprised of a set of base packages that provide the core functionality of the
operating system together with a range of other packages and modules that add functionality and
features on top of the base operating system.

When Ubuntu is first installed, a number of different packages will be installed depending on
the software options selected during the installation phase. Once the system is up and running,
however, additional software can be installed as needed. Typically, all software that is part of
Ubuntu (in other words, software that is not provided by a third-party vendor) is downloaded
and installed on the system using the Advanced Package Tool (apt) command. As we have seen in
earlier chapters, this typically consists of a command similar to the following being issued at the
command prompt:
apt install apache2

When such a command is issued, the requested software is downloaded from a remote repository
and installed on the local system. By default, Ubuntu is configured to download software from a
number of different repositories:

• main - Contains the core set of packages that are officially supported, tested and updated by
Ubuntu.

• restricted - Proprietary drivers for hardware devices for which no open source equivalent exists.

• universe - Contains packages that are not officially supported by the Ubuntu team at Canonical.
These packages are, however, maintained by the Ubuntu community and include packages not
available within the main repository.

96

Ubuntu Software Package Management and Updates

• multiverse - Packages that may not conform to the open-source licensing terms under which
Ubuntu is released due to copyright or other legal issues.

The list of currently enabled repositories on an Ubuntu system is contained within the /etc/
apt/sources.list file which can be loaded into an editor to be viewed and modified. The file may be
manually loaded into an editor, or edited using a choice of available editors using the following
command:
apt edit-sources

The first few lines of this file usually reference the main and restricted repositories, for example:
deb http://ports.ubuntu.com/ubuntu-ports/ jammy main restricted

In the above example the list is configured to allow packages to be downloaded from the main and
restricted repositories. Entries for the universe and multiverse repositories will also be included
in the file:
N.B. software from this repository may not have been tested as

extensively as that contained in the main release, although it includes

newer versions of some applications which may provide useful features.

Also, please note that software in backports WILL NOT receive any review

or updates from the Ubuntu security team.

deb http://us.archive.ubuntu.com/ubuntu/ jammy-backports main restricted universe
multiverse

To disable a repository so that it will no longer be used to download packages, simply comment
out the line by prefixing it with a ‘#’ character:
#deb http://ports.ubuntu.com/ubuntu-ports/ jammy-backports main restricted
universe multiverse

In addition to the standard repositories there are also many third-party repositories. In the event
that you need to use one of these, simply add an entry for it to the sources.list file. One such
example is the partners repository, which can be added to the sources.list file as follows:
deb http://archive.canonical.com/ubuntu jammy partner

After making the change, run the following command to commit the changes:
apt update

11.2 Managing Repositories with Software & Updates
As an alternative to using the command-line, repositories may be configured from within the
GNOME desktop environment using the Software & Updates app. To launch this app, press the
special key on the keyboard (on Windows keyboards this is the Windows key, on macOS the
Command key and on Chromebooks the key displaying a magnifying glass) and enter Software
& Updates into the search bar. In the results panel click on the corresponding icon to launch the
app. Alternatively, open a terminal window and run the following command:
$ update-manager

When the app loads, click on the Settings button as shown in Figure 11-1:

97

Ubuntu Software Package Management and Updates

Figure 11-1

From the settings screen, enable or disable the required repositories listed under the Downloadable
from the Internet heading:

Figure 11-2

To enable partner repositories, select the Other Software tab as shown in Figure 11-3:

Figure 11-3

123

Chapter 14
14. Ubuntu 22.04 Firewall Basics
A firewall is a vital component in protecting an individual computer system or network of
computers from external attacks (typically from an internet connection). Any computer
connected directly to an internet connection should ideally run a firewall to protect against
malicious activity. Similarly, any internal network must have some form of firewall between it and
an external internet connection.

Ubuntu is supplied with powerful firewall technology known as iptables built-in. Entire books
can, and indeed have, been written about configuring iptables. If you would like to learn about
iptables, we recommend the following:

https://www.linuxtopia.org/Linux_Firewall_iptables/index.html

This chapter will cover some basic concepts of firewalls, TCP/IP ports, and services. Firewall
configuration on Ubuntu will be covered in the chapters entitled “Ubuntu 22.04 Firewall
Configuration with firewalld” and “Using gufw and ufw to Configure an Ubuntu Firewall”.

14.1 Understanding Ports and Services
The predominant network communications protocol in use these days is TCP/IP. It is the protocol
used by the internet and, as such, has swept away most of the formerly popular protocols used for
local area networks (LANs).

TCP/IP defines a total of 65,535 ports, of which 1023 are considered well-known ports. It is
essential to understand that these are not physical ports into which network cables are connected
but rather virtual ports on each network connection which can be used by applications and
services to communicate over a TCP/IP network connection. In reality, the number of ports used
by popular network clients and services comprises an even smaller subset of the well-known
group of ports.

An operating system can provide several different TCP/IP services. A comprehensive list of such
services is provided in the table at the end of this chapter. Still, such services include HTTPS for
running a secure web server, FTP for allowing file transfers, SSH for providing secure remote
login access and file transfer, and SMTP for transporting email messages. Each service is, in turn,
assigned to a standard TCP/IP port. For example, HTTPS is assigned to port 443, while SSH
communication occurs on port 22.

14.2 Securing Ports and Services
A large part of securing servers involves defining roles and, based on the roles, defining which
services and ports should be enabled. For example, a server that acts solely as a web server should
only run the HTTPS service (in addition to perhaps SSH for remote administration access).
All other services should be disabled and, ideally, removed entirely from the operating system

https://www.linuxtopia.org/Linux_Firewall_iptables/index.html

124

Ubuntu 22.04 Firewall Basics

(thereby making it harder for an intruder to re-enable the service).

Securing a system involves removing any unnecessary services from the operating system and
ensuring that the ports associated with the non-essential services are blocked using a firewall. The
rules that define which ports are accessible and under what circumstances are determined using
iptables.

Many operating systems are installed with several services installed and activated by default.
Before installing a new operating system, the installation must be carefully planned. This
planning involves deciding which services are not required and identifying which services have
been installed and enabled by default. Deployment of new operating system installations should
never be rushed. The fewer services and open ports available on a system, the smaller the surface
area and opportunities for attackers.

14.3 Ubuntu Services and iptables Rules
By default, a newly installed Ubuntu system has no iptables rules defined to restrict access to
ports. The following command may be executed in a terminal window to view the current iptables
settings:
iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

As illustrated in the above output, no rules are currently defined. While this may appear to be an
unsafe configuration, it is essential to remember that a newly installed Ubuntu system also has
few services running by default, making the ports useless to a potential attacker. For example,
accessing a web server on a newly installed Ubuntu system is impossible because no web server
services are installed or running by default. Once services begin to be activated on the system, it
will be important to establish a firewall strategy by defining iptables rules.

Several methods are available for defining iptables rules, including using command line tools
and configuration files. For example, to block access to port 25 (used by the SMTP mail transfer
protocol) from IP address 192.168.2.76, the following command could be issued in a terminal
window:
iptables -A INPUT -s 192.168.2.76 -p tcp --destination-port 25 -j DROP

If we now check the current rules, we will see that this one is currently listed:
iptables -L

Chain INPUT (policy ACCEPT)

target prot opt source destination

125

Ubuntu 22.04 Firewall Basics
DROP tcp -- 192.168.2.76 anywhere tcp dpt:smtp

Chain FORWARD (policy ACCEPT)

target prot opt source destination

Chain OUTPUT (policy ACCEPT)

target prot opt source destination

The rule may subsequently be removed as follows:
iptables -D INPUT -s 192.168.2.76 -p tcp --destination-port 25 -j DROP

Given the complexity of iptables it is unsurprising that several user-friendly configuration tools
have been created to ease the rule creation process. One such tool is the firewall-cmd command-
line tool which will be covered in the chapter “Ubuntu 22.04 Firewall Configuration with firewalld”.

14.4 Well-Known Ports and Services
Before moving on to cover more complex firewall rules, it is first worth taking time to outline some
of the key services that can be provided by a Ubuntu system, together with the corresponding
port numbers:

Port Assignment Description
20 FTP File Transfer Protocol (Data) - The File Transfer protocol

provides a mechanism for transferring specific files between
network-connected computer systems. The transfer is typically
performed using the ftp client. Most modern web browsers
can also browse and download files on a remote FTP server.
FTP uses TCP (rather than UDP) to transfer files, which is
considered a highly reliable transport mechanism. FTP does
not encrypt data and is not considered a secure file transfer
protocol. Secure Copy Protocol (SCP) and Secure File Transfer
Protocol (SFTP) are strongly recommended in place of FTP.

21 FTP File Transfer (Control) - Traditionally, FTP has two
ports assigned (port 20 and port 21). Port 20 was initially
considered the data transfer port, while port 21 was assigned
to communicate control information. However, in modern
implementations, port 20 is rarely used, with all communication
taking place on port 21.

126

Ubuntu 22.04 Firewall Basics

22 SSH Secure Shell - The Secure Shell provides a safe, encrypted,
remote login session to a host over a TCP/IP network. The
original mechanism for remote access was the Telnet protocol.
However, because Telnet transmits data in plain text, its use
is strongly discouraged in favor of the secure shell, which
encrypts all communications, including login and password
credentials. SSH also provides the mechanism by which files
can be securely transferred using the Secure Copy Protocol
(SCP) and is also the basis for the Secure File Transfer Protocol
(SFTP). SSH also replaces both the rsh and rlogin clients.

23 Telnet Telnet - Telnet is a terminal emulation protocol that can log
into a remote system over a TCP/IP connection. The access is
text-based, allowing the user to type into a command prompt
on the remote host, and text displayed by the remote host is
displayed on the local Telnet client. Telnet encrypts neither
the password nor the text communicated between the client
and server. As such, the use of telnet is strongly discouraged.
Most modern systems will have port 23 closed and the telnet
service disabled to prevent its use. SSH should be used in place
of Telnet.

25 SMTP Simple Mail Transfer Protocol - SMTP defines the mechanism
by which email messages are sent from one network host to
another. SMTP is a straightforward protocol requiring the mail
service to always be available at the receiving host. Typically
the receiving host will store incoming messages in a spool for
subsequent access by the recipient using the POP3 or IMAP
protocols. In addition, SMTP uses the TCP transport protocol
to ensure error-free message delivery.

53 DNS Domain Name Server - The service used by TCP/IP networks
to translate host names and Fully Qualified Domain Names
(FQDN) to IP addresses.

69 TFTP Trivial File Transfer Protocol - TFTP is a stripped-down
version of the File Transfer Protocol (FTP). It has a reduced
command set and lacks authentication. The most significant
feature of TFTP is that it uses UDP to transfer data. This results
in high-speed transfer speeds but, consequently, lacks data
reliability. TFTP is typically used in network-based booting for
diskless workstations.

127

Ubuntu 22.04 Firewall Basics

80 HTTP Hypertext Text Transfer Protocol - HTTP is used to download
text, graphics, and multimedia from a web server to a web
browser. It defines the command and control mechanism
between the browser and server, defining client requests
and server responses. HTTP is based on the TCP transport
protocol and, as such, is a connection-oriented protocol.

110 POP3 Post Office Protocol - The POP3 protocol is a mechanism for
storing and retrieving incoming email messages from a server.
In most corporate environments, incoming email is stored
on an email server and then downloaded to an email client
running on the user’s desktop or laptop when the user checks
email. However, POP3 downloads all new messages to the
client and does not allow the user to choose which messages to
download, view headers, or download only parts of messages.
For this reason, the IMAP protocol is increasingly being used
in place of POP3.

119 NNTP Network News Transfer Protocol - The protocol responsible
for posting and retrieving messages to and from Usenet News
Servers (i.e., newsgroups and discussion forums hosted on
remote servers). NNTP operates at the Application layer of the
OSI stack and uses TCP to ensure error-free message retrieval
and transmission.

123 NTP Network Time Protocol - A protocol designed to synchronize
computer clocks with an external time source. Using this
protocol, an operating system or application can request the
current time from a remote NTP server. The remote NTP server
is usually based on the time provided by a nuclear clock. NTP
is useful for ensuring that all systems in a network are set to
the same, accurate time of day. This is of particular importance
in security situations when, for example, the time a file was
accessed or modified on a client or server is in question.

143 IMAP4 Internet Message Access Protocol, Version 4 - IMAP4 is an
advanced and secure email retrieval protocol. IMAP is similar
to POP3, allowing users to access email messages stored on
an email server. However, IMAP includes many additional
features, such as the ability to selectively download messages,
view message headers, search messages, and download part of
a message. In addition, IMAP4 uses authentication and fully
supports Kerberos authentication.

128

Ubuntu 22.04 Firewall Basics

161 SNMP Simple Network Management Protocol - Provides a
mechanism whereby network administrators can collect
information about network devices (such as hubs, bridges,
routers, and switches). The SNMP protocol enables agents
running on network devices to communicate their status to
a central manager and, in turn, allows the manager to send
new configuration parameters to the device agent. The agents
can further be configured to notify the manager when certain
events, known as traps, occur. SNMP uses UDP to send and
receive data.

443 HTTPS Hypertext Transfer Protocol Secure - The standard HTTP
(non-secure) protocol transfers data in clear text (i.e., with
no encryption and visible to anyone who might intercept
the traffic). While this is acceptable for most web browsing
purposes, it poses a severe security risk when confidential
information such as credit card details needs to be transmitted
from the browser to the web server. HTTPS addresses this
using the Secure Sockets Layer (SSL) to send encrypted data
between the client and server.

2049 NFS Network File System - Originally developed by Sun
Microsystems and subsequently widely adopted throughout
the industry, NFS allows a file system on a remote system
to be accessed over the network by another system as if the
file system were on a local disk drive. NFS is widely used on
UNIX and LINUX-based systems. Later versions of Microsoft
Windows can also access NFS-shared file systems on UNIX
and LINUX-based systems.

Table 14-1

14.5 Summary
A newly installed Ubuntu system is generally considered secure due to the absence of services
running on the system ports. Once the system begins to be configured for use, however, it is
important to ensure that it is protected by implementing a firewall. When configuring firewalls, it
is important to understand the various ports and the corresponding services.

Several firewall options are available, the most basic being the command-line configuration of the
iptables firewall interface. More intuitive and advanced options are available via firewalld, which
will be covered in the next chapter.

129

Chapter 15
15. Using gufw and ufw to Configure
an Ubuntu Firewall
In the previous chapter, we looked at ports and services on an Ubuntu system. We also briefly
looked at iptables firewall rules on Ubuntu including the creation of a few very simple rules from
the command line. In this chapter, we will look at a more user-friendly approach to iptables
configuration using two tools named gufw and ufw. As we will see, gufw and ufw provide a high
level of control over both inbound and outbound network traffic and connections without the
need to understand the lower-level iptables syntax.

15.1 An Overview of gufw and ufw
Included with Ubuntu is a package called ufw which is an acronym for Uncomplicated Firewall.
This package provides a command line interface for managing and configuring rules for the
Netfilter iptables-based firewall. The gufw tool provides a user-friendly graphical interface to ufw
designed to make firewall management possible without the need to issue ufw commands at the
command line.

15.2 Installing gufw on Ubuntu
Whilst ufw is installed on Ubuntu by default, the gufw package is not. To install gufw, therefore,
open a Terminal window (Ctrl-Alt-T) and enter the following command at the resulting prompt:
apt install gufw

15.3 Running and Enabling gufw
Once installed, launch gufw by pressing Alt-F2 within the GNOME desktop and entering gufw
into the Run a command text box. When invoked for the first time, it is likely that the firewall will
be disabled, as illustrated in Figure 15-1.

To enable the firewall, move the Status switch (A) to the on position. By default, the main panel
(D) will be displaying the gufw home page containing some basic information about the tool.
Selecting options from the row of buttons (C) will change the information displayed in the panel.
For example, select the Rules button to add, remove and view rules.

The gufw tool is provided with a small set of pre-configured profiles for work, home, and public
environments. To change the profile and view the settings, select the profile from the menu (B).
To modify an existing profile, select it from the menu and use the Incoming and Outgoing menus
to change the selections. To configure specific rules, display the Rules screen and add, remove,
and modify rules as required. These will then be applied to the currently selected profile.

130

Using gufw and ufw to Configure an Ubuntu Firewall

Figure 15-1

The currently selected profile dictates how the firewall handles traffic in the absence of any specific
policy rules. By default, the Home profile, for example, is configured to deny all incoming traffic
and allow all outgoing traffic. These default policy settings are changed using the Incoming: and
Outgoing: menus (E).

Exceptions to the default policy are defined through the creation of additional rules. With the
Home profile denying incoming traffic, for example, rules would need to be added to enable
certain acceptable types of incoming connections. Such rules are referred to in the security
community as a whitelist.

If, on the other hand, the incoming policy was changed to Allow all traffic, then all incoming
traffic would be permitted unless rules were created for specific types of connections that must be
blocked. These rules, unsurprisingly, are referred to as a blacklist. The blacklist/whitelist approach
applies equally to incoming and outgoing connections.

15.4 Creating a New Profile
While it is possible to modify the pre-defined profiles, it will typically make more sense to create
one or more profiles to configure the firewall for your specific needs. New profiles are created by
selecting the Edit -> Preferences... menu option to display the dialog shown in Figure 15-2:

131

Using gufw and ufw to Configure an Ubuntu Firewall

Figure 15-2

To add a new profile, click on the ‘+’ button located beneath the list of profiles. A new profile
named Profile 1 will appear in the list. To give the profile a more descriptive name, double-click
on the entry to enter edit mode and enter a new name:

Figure 15-3

Once the profile has been created and named, click on the Close button to return to the main
screen, select it from the Profile menu and turn on the Status switch:

Figure 15-4

139

Chapter 16
16. Basic Ubuntu Firewall
Configuration with firewalld
All Linux distributions are provided with a firewall solution of some form. In the case of Ubuntu
this takes the form of the Uncomplicated Firewall outlined in the previous chapter. This chapter
will introduce a more advanced firewall solution available for Ubuntu in the form of firewalld.

16.1 An Introduction to firewalld
Originally developed for Red Hat-based Linux distributions, the firewalld service uses a set of
rules to control incoming network traffic and define which traffic is to be blocked and which is
to be allowed to pass through to the system and is built on top of a more complex firewall tool
named iptables.

The firewalld system provides a flexible way to manage incoming traffic. The firewall could, for
example, be configured to block traffic arriving from a specific external IP address or to prevent all
traffic arriving on a particular TCP/IP port. Rules may also be defined to forward incoming traffic
to different systems or to act as an internet gateway to protect other computers on a network.

In keeping with common security practices, a default firewalld installation is configured to block
all access with the exception of SSH remote login and the DHCP service used by the system to
obtain a dynamic IP address (both of which are essential if the system administrator is to be able
to gain access to the system after completing the installation).

The key elements of firewall configuration on Ubuntu are zones, interfaces, services, and ports.

16.1.1 Zones
By default, firewalld is installed with a range of pre-configured zones. A zone is a preconfigured set
of rules which can be applied to the system at any time to quickly implement firewall configurations
for specific scenarios. The block zone, for example, blocks all incoming traffic, while the home
zone imposes less strict rules on the assumption that the system is running in a safer environment
where a greater level of trust is expected. New zones may be added to the system, and existing
zones modified to add or remove rules. Zones may also be deleted entirely from the system. Table
16-1 lists the set of zones available by default on an Ubuntu system:

Zone Description
drop The most secure zone. Only outgoing connections are permitted and

all incoming connections are dropped without any notification to the
connecting client.

140

Basic Ubuntu Firewall Configuration with firewalld

Zone Description
block Similar to the drop zone with the exception that incoming connections

are rejected with an icmp-host-prohibited or icmp6-adm-prohibited
notification.

public Intended for use when connected to public networks or the internet
where other computers are not known to be trustworthy. Allows select
incoming connections.

external When a system is acting as the internet gateway for a network of
computers, the external zone is applied to the interface that is connected
to the internet.

This zone is used in conjunction with the internal zone when
implementing masquerading or network address translation (NAT) as
outlined later in this chapter. Allows select incoming connections

internal Used with the external zone and applied to the interface that is connected
to the internal network. Assumes that the computers on the internal
network are trusted. Allows select incoming connections.

dmz For use when the system is running in the demilitarized zone (DMZ).
These are generally computers that are publicly accessible but isolated
from other parts of your internal network. Allows select incoming
connections.

work For use when running a system on a network in a work environment
where other computers are trusted. Allows select incoming connections.

home For use when running a system on a home network where other
computers are trusted. Allows select incoming connections.

trusted The least secure zone. All incoming connections are accepted.

Table 16-1

To review specific settings for a zone, refer to the corresponding XML configuration file located
on the system in the /usr/lib/firewalld/zones directory. The following, for example, lists the content
of the public.xml zone configuration file:
<?xml version=”1.0” encoding=”utf-8”?>

<zone>

 <short>Public</short>

 <description>For use in public areas. You do not trust the other computers
on networks to not harm your computer. Only selected incoming connections are
accepted.</description>

 <service name=”ssh”/>

 <service name=”mdns”/>

 <service name=”dhcpv6-client”/>

</zone>

141

Basic Ubuntu Firewall Configuration with firewalld

16.1.2 Interfaces
Any Ubuntu system connected to the internet or a network (or both) will contain at least one
interface in the form of either a physical or virtual network device. When firewalld is active, each
of these interfaces is assigned to a zone allowing different levels of firewall security to be assigned
to different interfaces. Consider a server containing two interfaces, one connected externally to
the internet and the other to an internal network. In such a scenario, the external facing interface
would most likely be assigned to the more restrictive external zone, while the internal interface
might use the internal zone.

16.1.3 Services
TCP/IP defines a set of services that communicate on standard ports. Secure HTTPS web
connections, for example, use port 443, while the SMTP email service uses port 25. To selectively
enable incoming traffic for specific services, firewalld rules can be added to zones. The home zone,
for example, does not permit incoming HTTPS connections by default. This traffic can be enabled
by adding rules to a zone to allow incoming HTTPS connections without having to reference the
specific port number.

16.1.4 Ports
Although common TCP/IP services can be referenced when adding firewalld rules, situations
will arise where incoming connections need to be allowed on a specific port that is not allocated
to a service. This can be achieved by adding rules that reference specific ports instead of services.

16.2 Checking firewalld Status
The firewalld service is not usually installed and enabled by default on all Ubuntu installations.
The status of the service can be checked via the following command:
systemctl status firewalld

● firewalld.service - firewalld - dynamic firewall daemon

 Loaded: loaded (/lib/systemd/system/firewalld.service; enabled; vendor
preset: enabled)

 Active: active (running) since Mon 2023-07-17 19:21:53 UTC; 16s ago

 Docs: man:firewalld(1)

 Main PID: 27151 (firewalld)

 Tasks: 2 (limit: 4517)

 Memory: 24.0M

 CPU: 244ms

 CGroup: /system.slice/firewalld.service

 └─27151 /usr/bin/python3 /usr/sbin/firewalld --nofork --nopid

Jul 17 19:21:53 demoserver systemd[1]: Starting firewalld - dynamic firewall
daemon...

Jul 17 19:21:53 demoserver systemd[1]: Started firewalld - dynamic firewall daemon.

If necessary, the firewalld service may be installed as follows:
apt install firewalld

159

Chapter 18
18. Ubuntu 22.04 Remote Desktop
Access with Vino
Ubuntu can be configured to provide remote access to the graphical desktop environment over a
network or internet connection. Although not enabled by default, it is relatively straightforward to
display and access an Ubuntu desktop from a system anywhere else on a network or the internet.
This can be achieved regardless of whether that system is running Linux, Windows, or macOS. In
fact, there are even apps available for Android and iOS that will allow you to access your Ubuntu
desktop from just about anywhere that a data signal is available.

Remote desktop access can be useful in a number of scenarios. It enables you or another person,
for example, to view and interact with your Ubuntu desktop environment from another computer
system either on the same network or over the internet. This is useful if you need to work on your
computer when you are away from your desk, such as while traveling. It is also useful in situations
where a co-worker or IT support technician needs access to your desktop to resolve a problem.

The Ubuntu remote desktop supports connections using either Virtual Network Computing
(VNC) or Microsoft’s Remote Desktop Protocol (RDP). An advantage of using RDP is that it
makes the Ubuntu desktop easily accessible from Windows clients. In this chapter, therefore, we
will cover the key aspects of configuring and using remote desktops within Ubuntu using RDP.

18.1 Remote Desktop Access Types
Before starting, it is important to understand that there are essentially two types of remote desktop
access. The approach covered in this chapter is useful if you primarily use Ubuntu as a desktop
operating system and require remote access to your usual desktop session. When configured, you
will take over your desktop session and view and control it remotely.

The second option is intended for situations where you need to start and access one or more
remote desktop sessions on a remote server-based system, regardless of whether the remote
system has a graphical console attached. This allows you to launch multiple desktop sessions in
the background on the remote system and view and control those desktops over a network or
internet connection.

18.2 Secure and Insecure Remote Desktop Access
In this chapter, we will cover both secure and insecure remote desktop access methods. Assuming
that you are accessing one system from another within the context of a secure internal network
then it is generally safe to use the insecure access method. If, on the other hand, you plan to access
your desktop remotely over any kind of public network, you must use the secure method of access
to avoid your system and data being compromised.

160

Ubuntu 22.04 Remote Desktop Access with Vino

18.3 Enabling Remote Desktop Access on Ubuntu
Remote desktop access on Ubuntu is provided by the Vino package. Vino is a remote desktop
server that was developed specifically for use with the GNOME desktop.

The first step in enabling remote access is to install this package:
apt install vino

Once Vino has been installed, the next step is to enable remote desktop access from within
GNOME. Begin by opening the settings app as shown in Figure 18-1:

Figure 18-1

From within the Settings application, select the Sharing option (marked A in Figure 18-2):

Figure 18-2

Turn on the Sharing switch (B) and click on the Remote Desktop option (C) to display the dialog

161

Ubuntu 22.04 Remote Desktop Access with Vino

shown in Figure 18-3 below:

Figure 18-3

The Remote Desktop dialog provides the following configuration options to manage remote
desktop access:

• Remote Control - If enabled, the remote session will be able to use the mouse and keyboard
to interact with the desktop environment. If this option disabled, the remote session will only
allow the desktop to be viewed.

• Enable Legacy VNC Protocol - Ubuntu supports remote desktop via VNC and Microsoft’s
Remote Desktop Protocol (RDP). When enabled, two additional options are available within
the menu shown in Figure 18-4 below:

179

Chapter 21
21. Sharing Files between Ubuntu
22.04 and Windows with Samba
Although Linux has made some inroads into the desktop market, its origins and future are very
much server based. It is unsurprising, therefore, that Ubuntu can act as a file server. It is also
common for Ubuntu and Windows systems to be used side by side in networked environments.
Therefore, it is a common requirement that files on an Ubuntu system be accessible to Linux,
UNIX, and Windows-based systems over network connections. Similarly, shared folders and
printers residing on Windows systems may also need to be accessible from Ubuntu-based systems.

Windows systems share resources such as file systems and printers using the Server Message Block
(SMB) protocol. For an Ubuntu system to serve such resources over a network to a Windows
system and vice versa, it must support SMB. This is achieved using a technology called Samba. In
addition to providing integration between Linux and Windows systems, Samba may also provide
folder sharing between Linux systems (as an alternative to NFS covered in the previous chapter).

In this chapter, we will look at the steps necessary to share file system resources and printers on
an Ubuntu system with remote Windows and Linux systems and to access Windows resources
from Ubuntu.

21.1 Accessing Windows Resources from the GNOME Desktop
Before getting into more details of Samba sharing, it is worth noting that if all you want to do
is access Windows shared folders from within the GNOME desktop, then support is already
provided within the GNOME Files application. The Files application is located in the dash as
highlighted in Figure 21-1:

Figure 21-1

Once launched, select the Other Locations option in the left-hand navigation panel, followed by

180

Sharing Files between Ubuntu 22.04 and Windows with Samba

the Windows Network icon in the main panel to browse available Windows resources:

Figure 21-2

21.2 Samba and Samba Client
Samba allows both Ubuntu resources to be shared with Windows systems and Windows resources
to be shared with Ubuntu systems. Ubuntu accesses Windows resources using the Samba client.
On the other hand, Ubuntu resources are shared with Windows systems by installing and
configuring the Samba service.

21.3 Installing Samba on Ubuntu
The default settings used during the Ubuntu installation do not typically install the necessary
Samba packages. Unless you specifically requested that Samba be installed, it is unlikely that
you have Samba installed on your system. To check whether Samba is installed, open a terminal
window and run the following command and check for the [installed] indicator for each package:
apt -qq list samba-common samba smbclient

Any missing packages can be installed using the apt command-line tool:
apt install samba-common samba smbclient

21.4 Configuring the Ubuntu Firewall to Enable Samba
Next, the firewall protecting the Ubuntu system must be configured to allow Samba traffic. If you
are using the Uncomplicated Firewall (ufw) run the following command:
ufw allow samba

Alternatively, if you are using firewalld, run the firewall-cmd command as follows:
firewall-cmd --permanent --add-port={139/tcp,445/tcp}

firewall-cmd --reload

Before starting the Samba service, some configuration steps are necessary to define how the
Ubuntu system will appear to Windows systems and the resources to be shared with remote

181

Sharing Files between Ubuntu 22.04 and Windows with Samba

clients. Most configuration tasks occur within the /etc/samba/smb.conf file.

21.5 Configuring the smb.conf File
Samba is a highly flexible and configurable system that provides many options for controlling how
resources are shared on Windows networks. Unfortunately, this flexibility can lead to the sense
that Samba is overly complex. In reality, however, the typical installation does not need many
configuration options, and the learning curve to set up a basic configuration is relatively short.

For this chapter, we will look at joining an Ubuntu system to a Windows workgroup and setting
up a directory as a shared resource that a specific user can access. This is a configuration known
as a standalone Samba server. More advanced configurations, such as integrating Samba within an
Active Directory environment, are also available, though these are outside the scope of this book.

The first step in configuring Samba is to edit the /etc/samba/smb.conf file.

21.5.1 Configuring the [global] Section
The smb.conf file is divided into sections. The first section is the [global] section, where settings
that apply to the entire Samba configuration can be specified. While these settings are global, each
option may be overridden within other configuration file sections.

The first task is defining the Windows workgroup name on which the Ubuntu resources will be
shared. This is controlled via the workgroup = directive of the [global] section, which by default
is configured as follows:
workgroup = WORKGROUP

Begin by changing this to the actual name of the workgroup if necessary.

In addition to the workgroup setting, the other settings indicate that this is a standalone server
on which user passwords will protect the shared resources. Before moving on to configuring the
resources to be shared, other parameters also need to be added to the [global] section as follows:
[global]

.

.

 netbios name = LinuxServer

The “netbios name” property specifies the name by which the server will be visible to other
systems on the network.

21.5.2 Configuring a Shared Resource
The next step is configuring the shared resources (in other words, the resources that will be
accessible from other systems on the Windows network). To achieve this, the section is given a
name by which it will be referred when shared. For example, if we plan to share the /sampleshare
directory of our Ubuntu system, we might entitle the section [sampleshare]. In this section,
a variety of configuration options are possible. For this example, however, we will define the
directory that is to be shared, indicate that the directory is both browsable and writable, and
declare the resource public so that guest users can gain access:

182

Sharing Files between Ubuntu 22.04 and Windows with Samba
[sampleshare]

 comment = Example Samba share

 path = /sampleshare

 browseable = Yes

 public = yes

 writable = yes

To restrict access to specific users, the “valid users” property may be used, for example:
valid users = demo, bobyoung, marcewing

21.5.3 Removing Unnecessary Shares
The smb.conf file is pre-configured with sections for sharing printers and the home folders of the
users on the system. If these resources do not need to be shared, the corresponding sections can
be commented out so that Samba ignores them. In the following example, the [homes] section
has been commented out:
.

.

#[homes]

comment = Home Directories

valid users = %S, %D%w%S

browseable = No

read only = No

inherit acls = Yes

.

.

21.6 Creating a Samba User
Any user that requires access to a Samba shared resource must be configured as a Samba User and
assigned a password. This task is achieved using the smbpasswd command-line tool. Consider, for
example, that a user named demo is required to be able to access the /sampleshare directory of
our Ubuntu system from a Windows system. To fulfill this requirement, we must add demo as a
Samba user as follows:
smbpasswd -a demo

New SMB password:

Retype new SMB password:

Added user demo.

Now that we have completed the configuration of an elementary Samba server, it is time to test
our configuration file and then start the Samba services.

21.7 Testing the smb.conf File
The settings in the smb.conf file may be checked for errors using the testparm command-line tool
as follows:
testparm

Load smb config files from /etc/samba/smb.conf

183

Sharing Files between Ubuntu 22.04 and Windows with Samba
Loaded services file OK.

Weak crypto is allowed

Server role: ROLE_STANDALONE

Press enter to see a dump of your service definitions

Global parameters

[global]

 log file = /var/log/samba/%m.log

 netbios name = LINUXSERVER

 printcap name = cups

 security = USER

 wins support = Yes

 idmap config * : backend = tdb

 cups options = raw

[sampleshare]

 comment = Example Samba share

 guest ok = Yes

 path = /sampleshare

 read only = No

[homes]

 browseable = No

 comment = Home Directories

 inherit acls = Yes

 read only = No

 valid users = %S %D%w%S

[printers]

 browseable = No

 comment = All Printers

 create mask = 0600

 path = /var/tmp

 printable = Yes

.

.

21.8 Starting the Samba and NetBIOS Name Services
For an Ubuntu server to operate within a Windows network, the Samba (SMB) and NetBIOS
nameservice (NMB) services must be started. Optionally, also enable the services so that they
start each time the system boots:
systemctl enable smbd nmbd

systemctl start smbd nmbd

184

Sharing Files between Ubuntu 22.04 and Windows with Samba

Before attempting to connect from a Windows system, use the smbclient utility to verify that the
share is configured:
smbclient -U demo -L localhost

Password for [WORKGROUP\demo]:

 Sharename Type Comment

 --------- ---- -------

 sampleshare Disk Example Samba share

 print$ Disk Printer Drivers

 IPC$ IPC IPC Service (demoserver server (Samba, Ubuntu))

 demo Disk Home Directories

 HP_OfficeJet_Pro_9020_series_9F6907 Printer HP_OfficeJet_Pro_9020_series

21.9 Accessing Samba Shares
Now that the Samba resources are configured and the services are running, it is time to access the
shared resource from a Windows system. On a suitable Windows system on the same workgroup
as the Ubuntu system, open Windows Explorer and right-click on the Network entry in the side
panel to display the menu shown in Figure 21-3:

Figure 21-3

Select the Map network drive... menu option to display the dialog illustrated in Figure 21-4:

185

Sharing Files between Ubuntu 22.04 and Windows with Samba

Figure 21-4

Select a drive letter and enter the path to a samba share. For example, assuming that the server
name is LinuxServer and the samba user name is demo, the path to the user’s home folder would
be as follows:
\\LINUXSERVER\demo

Enable the Connect using different credentials checkbox and click finish. When the network
credentials dialog appears, enter the Samba user name and the password that was assigned earlier
using the smbpasswd command:

Figure 21-5

186

Sharing Files between Ubuntu 22.04 and Windows with Samba

After the connection is established, a new Windows Explorer dialog will appear containing the
contents of the shared Ubuntu folder:

Figure 21-6

21.10 Accessing Windows Shares from Ubuntu
As previously mentioned, Samba is a two-way street, allowing not only Windows systems to access
files and printers hosted on an Ubuntu system but also allowing the Ubuntu system to access
shared resources on Windows systems. This is achieved using the samba-client package, installed
at this chapter’s start. If it is not currently installed, install it from a terminal window as follows:
apt install smbclient

Shared resources on a Windows system can be accessed from the Ubuntu desktop using the Files
application or the command-line prompt using the smbclient and mount tools. The steps in this
section assume that the Windows system has enabled appropriate network-sharing settings.

To access any shared resources on a Windows system using the GNOME desktop, launch the Files
application and select the Other Locations option. This will display the screen shown in Figure
21-7 below, including an icon for the Windows Network (if one is detected):

187

Sharing Files between Ubuntu 22.04 and Windows with Samba

Figure 21-7

Selecting the Windows Network option will display the Windows systems detected on the network
and allow access to any shared resources.

Figure 21-8

Alternatively, the Connect to Server option may be used to connect to a specific system. Note that
the name or IP address of the remote system must be prefixed by smb:// and may be followed by
the path to a specific shared resource, for example:
smb://WinServer/Documents

Without a desktop environment, a remote Windows share may be mounted from the command
line using the mount command and specifying the cifs filesystem type. The following command,
for example, mounts a share named Documents located on a Windows system named WinServer
at a local mount point named /winfiles:
mount -t cifs //WinServer/Documents /winfiles -o user=demo

188

Sharing Files between Ubuntu 22.04 and Windows with Samba

21.11 Summary
In this chapter, we have looked at how to configure an Ubuntu system to act as both a Samba client
and server, allowing the sharing of resources with Windows systems. Topics covered included the
installation of Samba client and server packages and configuring Samba as a standalone server. In
addition, the basic concepts of SELinux were introduced together with the steps to provide Samba
access to a shared resource.

189

Chapter 22
22. An Overview of Virtualization
Techniques
Virtualization is the ability to run multiple operating systems simultaneously on a single computer
system. While not necessarily a new concept, Virtualization has come to prominence in recent
years because it provides a way to fully utilize the CPU and resource capacity of a server system
while providing stability (in that if one virtualized guest system crashes, the host and any other
guest systems continue to run).

Virtualization is also helpful in trying out different operating systems without configuring dual boot
environments. For example, you can run Windows in a virtual machine without re-partitioning
the disk, shut down Ubuntu, and boot from Windows. Instead, you start up a virtualized version
of Windows as a guest operating system. Similarly, virtualization allows you to run other Linux
distributions within an Ubuntu system, providing concurrent access to both operating systems.

When deciding on the best approach to implementing virtualization, clearly understanding the
different virtualization solutions currently available is essential. Therefore, this chapter’s purpose
is to describe in general terms the virtualization techniques in common use today.

22.1 Guest Operating System Virtualization
Guest OS virtualization, also called application-based virtualization, is the most straightforward
concept to understand. In this scenario, the physical host computer runs a standard unmodified
operating system such as Windows, Linux, UNIX, or macOS. Running on this operating system is
a virtualization application that executes in much the same way as any other application, such as
a word processor or spreadsheet, would run on the system. Within this virtualization application,
one or more virtual machines are created to run the guest operating systems on the host computer.

The virtualization application is responsible for starting, stopping, and managing each virtual
machine and essentially controlling access to physical hardware resources on behalf of the
individual virtual machines. The virtualization application also engages in a process known as
binary rewriting, which involves scanning the instruction stream of the executing guest system
and replacing any privileged instructions with safe emulations. This makes the guest system
think it is running directly on the system hardware rather than in a virtual machine within an
application.

The following figure illustrates guest OS-based virtualization:

190

An Overview of Virtualization Techniques

Figure 22-1

As outlined in the above diagram, the guest operating systems operate in virtual machines within
the virtualization application, which, in turn, runs on top of the host operating system in the
same way as any other application. The multiple layers of abstraction between the guest operating
systems and the underlying host hardware are not conducive to high levels of virtual machine
performance. However, this technique has the advantage that no changes are necessary to host or
guest operating systems, and no special CPU hardware virtualization support is required.

22.2 Hypervisor Virtualization
In hypervisor virtualization, the task of a hypervisor is to handle resource and memory allocation
for the virtual machines and provide interfaces for higher-level administration and monitoring
tools. Hypervisor-based solutions are categorized as being either Type-1 or Type-2.

Type-2 hypervisors (sometimes called hosted hypervisors) are installed as software applications
that run on top of the host operating system, providing virtualization capabilities by coordinating
access to resources such as the CPU, memory, and network for guest virtual machines. Figure
21-2 illustrates the typical architecture of a system using Type-2 hypervisor virtualization:

191

An Overview of Virtualization Techniques

Figure 22-2

To understand how Type-1 hypervisors work, it helps to understand Intel x86 processor
architecture. The x86 family of CPUs provides a range of protection levels known as rings in which
code can execute. Ring 0 has the highest level privilege, and it is in this ring that the operating
system kernel normally runs. Code executing in ring 0 is said to be running in system space,
kernel mode, or supervisor mode. All other code, such as applications running on the operating
system, operate in less privileged rings, typically ring 3.

In contrast to Type-2 hypervisors, Type-1 hypervisors (also referred to as metal or native
hypervisors) run directly on the hardware of the host system in ring 0. With the hypervisor
occupying ring 0 of the CPU, the kernels for any guest operating systems running on the system
must run in less privileged CPU rings. Unfortunately, most operating system kernels are written
explicitly to run in ring 0 because they need to perform tasks only available in that ring, such
as the ability to execute privileged CPU instructions and directly manipulate memory. Several
different solutions to this problem have been devised in recent years, each of which is described
below:

22.2.1 Paravirtualization
Under paravirtualization, the kernel of the guest operating system is modified specifically to run
on the hypervisor. This typically involves replacing privileged operations that only run in ring 0
of the CPU with calls to the hypervisor (known as hypercalls). The hypervisor, in turn, performs

192

An Overview of Virtualization Techniques

the task on behalf of the guest kernel. Unfortunately, this typically limits support to open-source
operating systems such as Linux, which may be freely altered, and proprietary operating systems
where the owners have agreed to make the necessary code modifications to target a specific
hypervisor. These issues notwithstanding, the ability of the guest kernel to communicate directly
with the hypervisor results in greater performance levels than other virtualization approaches.

22.2.2 Full Virtualization
Full virtualization provides support for unmodified guest operating systems. The term unmodified
refers to operating system kernels that have not been altered to run on a hypervisor and, therefore,
still execute privileged operations as though running in ring 0 of the CPU. In this scenario,
the hypervisor provides CPU emulation to handle and modify privileged and protected CPU
operations made by unmodified guest operating system kernels. Unfortunately, this emulation
process requires both time and system resources to operate, resulting in inferior performance
levels when compared to those provided by paravirtualization.

22.2.3 Hardware Virtualization
Hardware virtualization leverages virtualization features built into the latest generations of CPUs
from both Intel and AMD. These technologies, called Intel VT and AMD-V, respectively, provide
extensions necessary to run unmodified guest virtual machines without the overheads inherent in
full virtualization CPU emulation. In very simplistic terms, these processors provide an additional
privilege mode (ring -1) above ring 0 in which the hypervisor can operate, thereby leaving ring 0
available for unmodified guest operating systems.

The following figure illustrates the Type-1 hypervisor approach to virtualization:

Figure 22-3

As outlined in the above illustration, in addition to the virtual machines, an administrative

193

An Overview of Virtualization Techniques

operating system or management console also runs on top of the hypervisor allowing the virtual
machines to be managed by a system administrator.

22.3 Virtual Machine Networking
Virtual machines will invariably need to be connected to a network to be of any practical use. One
option is for the guest to be connected to a virtual network running within the host computer’s
operating system. In this configuration, any virtual machines on the virtual network can see each
other, but Network Address Translation (NAT) provides access to the external network. When
using the virtual network and NAT, each virtual machine is represented on the external network
(the network to which the host is connected) using the IP address of the host system. This is
the default behavior for KVM virtualization on Ubuntu and generally requires no additional
configuration. Typically, a single virtual network is created by default, represented by the name
default and the device virbr0.

For guests to appear as individual and independent systems on the external network (i.e., with
their own IP addresses), they must be configured to share a physical network interface on the host.
The quickest way to achieve this is to configure the virtual machine to use the “direct connection”
network configuration option (also called MacVTap), which will provide the guest system with
an IP address on the same network as the host. Unfortunately, while this gives the virtual machine
access to other systems on the network, it is not possible to establish a connection between the
guest and the host when using the MacVTap driver.

A better option is to configure a network bridge interface on the host system to which the guests
can connect. This provides the guest with an IP address on the external network while also
allowing the guest and host to communicate, a topic covered in the chapter entitled “Creating an
Ubuntu 22.04 KVM Networked Bridge Interface”.

22.4 Summary
Virtualization is the ability to run multiple guest operating systems within a single host operating
system. Several approaches to virtualization have been developed, including a guest operating
system and hypervisor virtualization. Hypervisor virtualization falls into two categories known
as Type-1 and Type-2. Type-2 virtualization solutions are categorized as paravirtualization, full
virtualization, and hardware virtualization, the latter using special virtualization features of some
Intel and AMD processor models.

Virtual machine guest operating systems have several options in terms of networking, including
NAT, direct connection (MacVTap), and network bridge configurations.

233

Chapter 29
29. An Introduction to Linux
Containers
The preceding chapters covered the concept of virtualization, emphasizing creating and managing
virtual machines using KVM. This chapter will introduce a related technology in the form of
Linux Containers. While there are some similarities between virtual machines and containers,
key differences will be outlined in this chapter, along with an introduction to the concepts
and advantages of Linux Containers. The chapter will also introduce some Ubuntu container
management tools. Once the basics of containers have been covered in this chapter, the next
chapter will work through some practical examples of creating and running containers on Ubuntu.

29.1 Linux Containers and Kernel Sharing
In simple terms, Linux containers are a lightweight alternative to virtualization. A virtual machine
contains and runs the entire guest operating system in a virtualized environment. The virtual
machine, in turn, runs on top of an environment such as a hypervisor that manages access to the
physical resources of the host system.

Containers work by using a concept referred to as kernel sharing, which takes advantage of the
architectural design of Linux and UNIX-based operating systems.

To understand how kernel sharing and containers work, it helps first to understand the two main
components of Linux or UNIX operating systems. At the core of the operating system is the
kernel. In simple terms, the kernel handles all the interactions between the operating system
and the physical hardware. The second key component is the root file system which contains all
the libraries, files, and utilities necessary for the operating system to function. Taking advantage
of this structure, containers each have their own root file system but share the host operating
system’s kernel. This structure is illustrated in the architectural diagram in Figure 29-1 below.

This type of resource sharing is made possible by the ability of the kernel to dynamically change
the current root file system (a concept known as change root or chroot) to a different root file
system without having to reboot the entire system. Linux containers are essentially an extension
of this capability combined with a container runtime, the responsibility of which is to provide
an interface for executing and managing the containers on the host system. Several container
runtimes are available, including Docker, lxd, containerd, and CRI-O.

234

An Introduction to Linux Containers

Figure 29-1

29.2 Container Uses and Advantages
The main advantage of containers is that they require considerably less resource overhead than
virtualization allowing many container instances to be run simultaneously on a single server.
They can be started and stopped rapidly and efficiently in response to demand levels. In addition,
containers run natively on the host system providing a level of performance that a virtual machine
cannot match.

Containers are also highly portable and can be easily migrated between systems. Combined with
a container management system such as Docker, OpenShift, and Kubernetes, it is possible to
deploy and manage containers on a vast scale spanning multiple servers and cloud platforms,
potentially running thousands of containers.

Containers are frequently used to create lightweight execution environments for applications. In
this scenario, each container provides an isolated environment containing the application together
with all of the runtime and supporting files required by that application to run. The container can
then be deployed to any other compatible host system that supports container execution and runs
without any concerns that the target system may not have the necessary runtime configuration for
the application - all of the application’s dependencies are already in the container.

Containers are also helpful when bridging the gap between development and production
environments. By performing development and QA work in containers, they can be passed to
production and launched safely because the applications run in the same container environments
in which they were developed and tested.

Containers also promote a modular approach to deploying large and complex solutions. Instead of
developing applications as single monolithic entities, containers can be used to design applications

235

An Introduction to Linux Containers

as groups of interacting modules, each running in a separate container.

One possible drawback of containers is that the guest operating systems must be compatible with
the shared kernel version. It is not, for example, possible to run Microsoft Windows in a container
on a Linux system. Nor is it possible for a Linux guest system designed for the 2.6 version of
the kernel to share a 2.4 version kernel. These requirements are not, however, what containers
were designed for. Rather than being seen as limitations, these restrictions should be considered
some of the key advantages of containers in providing a simple, scalable, and reliable deployment
platform.

29.3 Ubuntu Container Tools
Ubuntu provides several tools for creating, inspecting, and managing containers. The main tools
are as follows:

• buildah – A command-line tool for building container images.

• podman – A command-line based container runtime and management tool. Performs tasks
such as downloading container images from remote registries and inspecting, starting, and
stopping images.

• skopeo – A command-line utility used to convert container images, copy images between
registries and inspect images stored in registries without downloading them.

• runc – A lightweight container runtime for launching and running containers from the
command line.

• OpenShift – An enterprise-level container application management platform consisting of
command-line and web-based tools.

All of the above tools comply with the Open Container Initiative (OCI), a set of specifications
designed to ensure that containers conform to the same standards between competing tools and
platforms.

29.4 The Ubuntu Docker Registry
Although Ubuntu is provided with a set of tools designed to be used in place of those provided by
Docker, those tools still need access to Ubuntu images for use when building containers. For this
purpose, the Ubuntu team maintains a set of Ubuntu container images within the Docker Hub.
The Docker Hub is an online container registry made of multiple repositories, each containing a
wide range of container images available for download when building containers. The images
within a repository are each assigned a repository tag (for example, 21.04, 20.10, 22.04, latest etc.)
which can be referenced when performing an image download. The following, for example, is the
URL of the Ubuntu 22.04 image contained within the Docker Hub:

docker://docker.io/library/ubuntu:22.04

In addition to downloading (referred to as “pulling” in container terminology) container images

236

An Introduction to Linux Containers

from Docker and other third party hosts registries, you can also use registries to store your own
images. This can be achieved either by hosting your own registry, or by making use of existing
services such as those provided by Docker, Amazon AWS, Google Cloud, Microsoft Azure and
IBM Cloud to name a few of the many options.

29.5 Container Networking
By default, containers are connected to a network using a Container Networking Interface (CNI)
bridged network stack. In the bridged configuration, all the containers running on a server
belong to the same subnet and, as such, can communicate with each other. The containers are also
connected to the external network by bridging the host system’s network connection. Similarly,
the host can access the containers via a virtual network interface (usually named podman0) which
will have been created as part of the container tool installation.

29.6 Summary
Linux Containers offer a lightweight alternative to virtualization and take advantage of the
structure of the Linux and Unix operating systems. Linux Containers share the host operating
system’s kernel, with each container having its own root file system containing the files, libraries,
and applications. As a result, containers are highly efficient and scalable and provide an ideal
platform for building and deploying modular enterprise-level solutions. In addition, several tools
and platforms are available for building, deploying, and managing containers, including third-
party solutions and those provided with Ubuntu.

281

Chapter 36
36. Ubuntu 22.04 System and Process
Monitoring
An essential part of running and administering an Ubuntu system involves monitoring the overall
system health regarding memory, swap, storage, and processor usage. This includes knowing how
to inspect and manage the system and user processes running in the background. This chapter
will outline some tools and utilities that can be used to monitor system resources and processes
on an Ubuntu system.

36.1 Managing Processes
Even when an Ubuntu system appears idle, many system processes will run silently in the background
to keep the operating system functioning. For example, when you execute a command or launch
an app, user processes are started, running until the associated task is completed.

To obtain a list of active user processes you are currently running within the context of a single
terminal or command-prompt session, use the ps command as follows:
$ ps

 PID TTY TIME CMD

10395 pts/1 00:00:00 bash

13218 pts/1 00:00:00 ps

The output from the ps command shows that two user processes are running within the context
of the current terminal window or command prompt session, the bash shell into which the
command was entered and the ps command itself.

To list all active processes running for the current user, use the ps command with the -a flag. This
command will list all running processes that are associated with the user regardless of where they
are running (for example, processes running in other terminal windows):
$ ps -a

 PID TTY TIME CMD

 5442 tty2 00:00:00 gnome-session-b

 6350 pts/0 00:00:00 sudo

 6354 pts/0 00:00:00 su

 6355 pts/0 00:00:00 bash

 9849 pts/2 00:00:00 nano

 9850 pts/1 00:00:00 ps

As shown in the above output, the user is running processes related to the GNOME desktop, the
shell session, the nano text editor, and the ps command.

To list the processes for a specific user, run ps with the -u flag followed by the user name:

282

Ubuntu 22.04 System and Process Monitoring
ps -u john

 PID TTY TIME CMD

 914 ? 00:00:00 systemd

 915 ? 00:00:00 (sd-pam)

 970 ? 00:00:00 gnome-keyring-d

 974 tty1 00:00:00 gdm-x-session

.

.

Note that each process is assigned a unique process ID which can be used to stop the process by
sending it a termination (TERM) signal via the kill command. For example:
$ kill 13217

The advantage of ending a process with the TERM signal is that it allows the process to exit
gracefully, potentially saving any data that might otherwise be lost.

If the standard termination signal does not terminate the process, repeat the kill command with
the -9 option. This command sends a KILL signal which should cause even frozen processes to
exit but does not give the process a chance to exit gracefully, possibly resulting in data loss:
$ kill -9 13217

To list all of the processes running on a system (including all user and system processes), execute
the following command:
$ ps -ax

 PID TTY STAT TIME COMMAND

 1 ? Ss 0:22 /usr/lib/systemd/systemd rhgb --switched-root

 2 ? S 0:00 [kthreadd]

 3 ? I< 0:00 [rcu_gp]

 4 ? I< 0:00 [rcu_par_gp]

 5 ? I< 0:00 [netns]

To list all processes and include information about process ownership, CPU, and memory use,
execute the ps command with the -aux option:
$ ps -aux

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

root 2 0.0 0.0 0 0 ? S 09:59 0:00 [kthreadd]

root 3 0.0 0.0 0 0 ? I< 09:59 0:00 [rcu_gp]

root 4 0.0 0.0 0 0 ? I< 09:59 0:00 [rcu_par_gp]

root 5 0.0 0.0 0 0 ? I< 09:59 0:00 [netns]

root 7 0.0 0.0 0 0 ? I< 09:59 0:00 [kworker/0:0H-
events_highpri]

root 9 0.0 0.0 0 0 ? I< 09:59 0:00 [kworker/0:1H-
events_highpri]

.

.

demo 9788 0.1 1.4 763248 50480 ? Ssl 15:05 0:00 /usr/libexec/

283

Ubuntu 22.04 System and Process Monitoring
gnome-terminal-serv

demo 9814 0.0 0.1 224108 5664 pts/2 Ss 15:05 0:00 bash

demo 9849 0.0 0.0 222412 3588 pts/2 S+ 15:06 0:00 nano

demo 9873 0.0 0.1 233416 6280 pts/1 R+ 15:08 0:00 ps -aux

A Linux process can start its own sub-processes (referred to as spawning), resulting in a hierarchical
parent-child relationship between processes. To view the process tree, use the ps command and
include the -H option. Below is part of the tree output for a ps -aH command execution:
$ ps -aH

 PID TTY TIME CMD

 10036 pts/3 00:00:00 ps

 6350 pts/0 00:00:00 sudo

 6354 pts/0 00:00:00 su

 6355 pts/0 00:00:00 bash

 5442 tty2 00:00:00 gnome-session-b

Process information may also be viewed via the System Monitor tool from the GNOME
desktop. This tool can either be launched by searching for “System Monitor” within the desktop
environment or from the command line as follows:
$ gnome-system-monitor

Once the System Monitor has launched, select the Processes button located in the toolbar to list
the processes running on the system, as shown in Figure 36-1 below:

Figure 36-1

To change the processes listed (for example, to list all processes or just your own processes), use
the menu as illustrated in Figure 36-2:

284

Ubuntu 22.04 System and Process Monitoring

Figure 36-2

To filter the list of processes, click on the search button in the title bar and enter the process name
into the search field:

Figure 36-3

To display additional information about a specific process, select it from the list and click on the
button located in the bottom right-hand corner (marked A in Figure 36-4) of the dialog:

Figure 36-4

285

Ubuntu 22.04 System and Process Monitoring

A dialog similar to that marked B in the above figure will appear when the button is clicked. Select
a process from the list and click the End Process button (C) to terminate it.

To monitor CPU, memory, swap, and network usage, click on the Resources button in the title bar
to display the screen shown in Figure 36-5:

Figure 36-5

Similarly, a summary of storage space used on the system can be viewed by selecting the File
Systems toolbar button:

Figure 36-6

36.2 Real-time System Monitoring with top
As the chapter “An Overview of the Cockpit Web Interface” outlined, the Cockpit web interface can
perform basic system monitoring. The previous section also explained how the GNOME System
Monitor tool could be used to monitor processes and system resources. This chapter also explored
how the ps command can provide a snapshot of the processes running on an Ubuntu system.
However, the ps command does not provide a real-time view of the processes and resource usage
on the system. The top command is an ideal tool for real-time monitoring of system resources and
processes from the command prompt.

When running, top will list the processes running on the system ranked by system resource usage
(with the most demanding process in the top position). The upper section of the screen displays

286

Ubuntu 22.04 System and Process Monitoring

memory and swap usage information together with CPU data for all CPU cores. All of this output
is constantly updated, allowing the system to be monitored in real-time:

Figure 36-7

To limit the information displayed to the processes belonging to a specific user, start top with the
-u option followed by the user name:
$ top -u john

For a complete listing of the features available in top, press the keyboard ‘h’ key or refer to the
man page:
$ man top

36.3 Command-Line Disk and Swap Space Monitoring
Disk space can be monitored from within Cockpit and using the GNOME System Monitor. To
identify disk usage from the command line, however, the df command provides a helpful and
quick overview:

To review current swap space and memory usage, run the free command:
free

 total used free shared buff/cache available

Mem: 3823720 879916 1561108 226220 1382696 2476300

To continuously monitor memory and swap levels, use the free command with the -s option,
specifying the delay in seconds between each update (keeping in mind that the top tool may
provide a better way to view this data in real-time):
$ free -s 1

Mem: 3823720 879472 1561532 226220 1382716 2476744

Swap: 2097148 0 2097148

 total used free shared buff/cache available

287

Ubuntu 22.04 System and Process Monitoring
Mem: 3823720 879140 1559940 228144 1384640 2475152

Swap: 2097148 0 2097148

.

.

To monitor disk I/O from the command line, consider using the iotop command, which can be
installed as follows:
apt install iotop

Once installed and executed (iotop must be run with system administrator privileges), the tool
will display a real-time list of disk I/O on a per-process basis:

Figure 36-8

36.4 Summary
Even a system that appears to be doing nothing will have many system processes running in the
background. Activities performed by users on the system will result in additional processes being
started. Processes can also spawn their own child processes. Each process will use some system
resources, including memory, swap space, processor cycles, disk storage, and network bandwidth.
This chapter has explored a set of tools that can be used to monitor both process and system
resources on a running system and, when necessary, kill errant processes that may be impacting
the performance of a system.

289

Index
Index

Symbols
! 73

#! 77

>> 75

| 75

$DISPLAY variable 168

.bashrc 77

/etc/exports 174

/etc/fstab 33, 37, 175, 177, 265

/etc/gdm/custom.conf 168

/etc/group 81

/etc/httpd 245

/etc/passwd 81

/etc/samba/smb.conf 181

/etc/shadow 81

/etc/sshd_config 168

/etc/ssh/sshd_config.d 168

/etc/sudoers 81

/etc/systemd/system 92

/home 79

/proc/swaps file 276

.requires 92

.ssh 150, 151

/usr/lib/systemd/system 92

/var/log/maillog 258

.wants 92

A
access control list 202

ACL 202

Advanced Package Tool 95

AIX 7

alias 75

Aliases 75

AMD-V 192

Andrew S. Tanenbaum 7

Apache

mod_ssl 248

Apache web server 243

apt 95

edit-sources 96

install 98

package management 98

purge 98

remove 98

search 99

show 99

sources list 96

update 98

upgrade 100

apt-file 99

apt list 98

authorized_keys file 154

B
Bash

scripts 77

Bash shell 71

aliases 75

.bashrc 77

chmod 78

command-line editing 72

do loops 77

echo 76

environment variables 76

filename completion 74

Filename shorthand 74

for loop 77

history 73

HOME 76

input and output redirection 74

PATH 76

path completion 74

pipes 75

290

Index
sh 78

stderr 75

stdin 74

stdout 74

basic.target 88

Bell Labs 71

Boot Menu

editing 41

Bourne Again SHell 71

Bourne shell 71

Brian Fox 71

buildah 235

C
CA 248

Canonical Ltd 7, 8

cat 74

CentOS

history of 7

certbot 249

Certificate Authority 248

change root 233

chmod 78

chroot 233

cifs filesystem 187

CNI 236

Cockpit 92

accessing 60

account management 64

applications 65

cockpit-machines 199

cockpit-storaged 176

create VM 199

Drives 266

enabling 60

extensions 59, 65

installing 60

logs 62

Multiple Servers 67

networking 63

NFS 175

overview 59

persistent metrics 68

port 60

select bridge 223

services 64, 92

storage 63, 265

system 61

systemd 92

terminal access 66

user management 81

virtual machines 65

cockpit-machines 199

cockpit.socket 60

cockpit-storaged 176

Compressed X11 Forwarding 169

Connection Profiles 118

containerd 233

Container Networking Interface 236

Containers

overview 233

pull image 237

running image 239

save to image 241

CRI-O 233

C shell 71

D
daemon 87

David Korn 71

dd 11, 276

DDNS 243

Debian 8

default.target 90

df 274, 286

disk drive

detecting 261

disk I/O 287

Disk partition

formatting 40

disk usage 286

diskutil 12

291

Index
DISPLAY variable 168

dmesg 11

DNS 126

DNS MX Records 257

Docker 233, 234

do loops 77

Domain Name Server 126

dual boot 37

Dynamic DNS 243

DynDNS 243

E
echo 76

Email Server 253

env 76

Environment Variables 76

Errata 5

Exim 253

export 76

exportfs 174

ext2 274

ext3 274

ext4 274

F
fdisk 37, 262, 272

create partition 262

list partitions 262

Fedora Media Writer 13

Fetchmail 253

Filename Shorthand 74

File System

creating 263

mounting 264

File Transfer (Control) 125

File Transfer Protocol (Data) 125

findmnt 11

firewall

gufw 129

ufw 129

Firewall

overview 123, 139

web server settings 244

firewall-cmd 125, 142

mail settings 255

NFS settings 173

firewall-config 146

firewalld

default zone 142

display zone information 142

firewall-cmd 142

firewall-config 146

ICMP rules 145

interfaces 139, 141

list services 143

overview 139

permanent settings 142

port forwarding 145

port rules 143, 144

ports 139, 141

reload 142

runtime settings 142

services 139

status 141

zone creation 144

zone/interface assignments 144

zones 139

zone services 143

for 77

ForwardX11Trusted 169

FQDN 126

free 276

-s flag 286

Free Software Foundation 8

fsck 264

fstab 175, 265

FTP 123, 125

Full Virtualization 192

G
GDM 20

gedit 169

292

Index
getfacl 202

GNOME 3 47

GNOME desktop

installing 47

GNOME Desktop 47

installation 47

starting 47

GNOME Display Manager 20

gnome-system-monitor 283

GNU/Linux 8

GNU project 8

graphical.target 88

groupadd 80

groupdel 80

groups 80

Guest OS virtualization 189

gufw 129

adding simple rules 133

advanced rules 134

allow 132

deny 132

enabling 129

installing 129

limit 133

preconfigured rules 132

profiles 130

reject 132

running 129

H
Hardware Virtualization 192

Hewlett-Packard 7

hibernation 276

history 72, 73

HOME 76

HP-UX 7

HTTP 127, 247

httpd.conf 249

httpd-le-ssl.conf 249

HTTPS 123, 128, 248

hypercalls 191

Hypertext Text Transfer Protocol 127

Hypertext Transfer Protocol Secure 128

Hypervisor 190

hypercalls 191

type-1 190

type-2 190

Hypervisor Virtualization 190

I
Ian Murdoch 8

IBM 7

id_rsa file 150, 151, 153

id_rsa.pub file 150, 154

if statements 77

IMAP 126

IMAP4 127

Input and Output Redirection 74

Installation

clean disk 9

Intel VT 192

Intel x86

Rings 191

Internet Message Access Protocol, Version 4 127

internet service provider 243

I/O redirection 75

iotop 287

installing 287

iptables 123, 125, 139

rules 124

tool 124

ip tool 116

ISO image

write to USB drive 11

ISP 243

J
Journaled File Systems 263

K
Kerberos 127

kernel 7

293

Index
kill 282

-9 flag 282

KMail 253

Korn shell 71

Kubernetes 234

KVM

hardware requirements 195

installation 196

overview 195

virt-manager 196

kvm_amd 196

kvm_intel 196

KVM virtualization 193

L
LE 270

Let’s Encrypt 248

libvirtd 207

libvirtd daemon 197

Linus Torvalds 7

Linux Containers. See Containers

Livepatch 102

enabling 102

Logical Extent 270

Logical Volume 270

Logical Volume Management 269

loopback interface 115

lost+found 264

ls 72, 75

lscpu 195

lsmod 196

LV 270

lvdisplay 271, 274, 277

lvextend 274

LVM 269

lxd 233

M
macOS

writing ISO to USB drive 12

MacVTap 193

Mail Delivery Agent 253

Mail Exchanger 257

Mail Transfer Agent 253

Mail User Agent 253

main.cf 255

man 72

Mark Shuttleworth 7, 8

Martin Hellman 149

MDA 253

MINIX 7

mkfs.xfs 40, 263

mkswap 276, 277

mod_ssl 248

mount 33, 175, 186, 264, 270

MTA 253

MUA 253

multi-user.target 88

MX 257

N
NAT 193, 201

NetBIOS 183

NetBIOS nameservice 183

Network Address Translation 193

Networked Bridge Interface 219

Network File System 128

NetworkManager

Connection Profiles 118

enabling 114

installing 114

permissions 122

Network News Transfer Protocol 127

Network Time Protocol 127

NFS 128

Cockpit 175

firewall settings 173

nfs-utils 174

NMB 183

nmcli 113, 221

activate connection 117

add bridge 221

294

Index
add connections 119

command line options 114

deactivate connection 117

delete connection 119

device status 115

general status 115

interactive 120

modify connection 118

permissions 122

reload 118

show connections 116

switch connection 117

wifi scan 117

nm-connection-editor 113

create bridge 225

nmtui 113

NNTP 127

NTP 127

nvme 261

O
OCI 235

Open Container Initiative 235

OpenShift 234, 235

OSI stack 127

P
Paravirtualization 191, 192

Partition

mounting 40

passwd 79

PATH 76

Path Completion 74

PE 270

Physical Extent 270

Physical Volume 270

Pipes 75

podman 235

attach 240

exec 239

list images 238

pause 241

ps -a 240

rm 241

start 240

unpause 241

POP3 127

Port Forwarding 145, 244

Ports

securing 123

Postfix 253, 254

configuring 255

installing 255

main.cf 255

postmap 259

sasl_passwd 258

starting 257

testing 257

postmap 259

Post Office Protocol 127

poweroff.target 87

PowerShell 153

Preboot Execution Environment 10

private key 149

ps 75, 281

-a flag 281

-aux flags 282

-H flag 283

TERM signal 282

-u flag 281

public key 149

public key encryption 149

PuTTY 155

X11 Forwarding 170

PuTTYgen 155

PuTTY Key Generator 155

PV 270

pvcreate 273

pvdisplay 272

pwd 72

PXE 10, 208

295

Index

Q
QEMU 208

QEMU/KVM Hypervisor 197

Qmail 254

R
reboot.target 88

Red Hat, Inc. 7

Remmina Desktop Client 162

Remote Desktop Access 159, 160

enabling 160

secure vs. insecure 159

Repositories 95

disabling 96

main 95

managing 96

multiverse 96

restricted 95

sources list 96

universe 95

rescue.target 87

resize2fs 274

RFC 3339 110

Richard Stallman 8

rlogin 126

root user 1

rsh 126

runc 235

S
safe graphics 15

Samba 173, 180

add user 182

firewall settings 180

installing 180

NetBIOS 183

smbclient 184, 186

smb.conf 181

smbpasswd 182

testparm 183

Samba Client 180

sasl_passwd 258

SATA 261

Secure File Transfer Protocol 125

Secure Shell 126, 149

Secure Socket Layer 248

Secure Sockets Layer 128

Sendmail 253, 254

Server Message Block 179

Services

securing 123

setfacl 202

Settings App 83

users 83

SFTP 125

sh 78

Shell Scripts 77

Simple Mail Transfer Protocol 126

Simple Mail Transport Protocol 254

Simple Network Management Protocol 128

skopeo 235, 237

get image info 237

SMB 179

smbclient 184, 186

smb.conf 181

testing 182

testparm 182

smbpasswd 182

SMTP 123, 126, 254

SMTP Relay 254, 258

snap

channels 108

commands 106

disable 111

enable 111

find 106

info 106, 109

install 108

list 107

logs 111

overview 105

packages 105

296

Index
refresh 109

refresh.hold 109

refresh.metered 109

refresh.retain 109

refresh.timer 109

remove 108

services 111

set system 110

start 111

stop 111

switch 108

SNMP 128

sockets.target 88

Solaris 7

sources.list file 96

spawning 283

ssh

-C flag 169

X11 Forwarding 168

-X flag 168

SSH 123, 126, 149

Microsoft Windows 153

Multiple Keys 152

ssh client 151

ssh-copy-id 151, 154

sshd_config.d 168

sshd_config.d directory 152

sshd_config file 152

sshd service 152

ssh-keygen 150

SSH Service

installing 150

starting 150

SSL 128, 248

SSL certificate 248

SSL Labs 250

stderr 75

stdin 74

stdout 74

storage devices

identify 11

Storage Pools 203

Storage Volumes 203

su - command 1

sudo 2

wheel group 80

SunOS 7

Superuser 1

swapoff 277

swapoff u 279

swapon 276, 280

swap space

add partition 277

add swap file 276

add to volume group 279

current usage 276

extend logical swap volume 277

recommended 275

system

units 90

unit types 90

systemctl 89

systemd 87

services 87

targets 87

System Monitor 283

system processes 281

T
TCP/IP 123

Well-Known Ports 125

Telnet 126

Terminal window 2

TERM signal 282

testparm

smb.conf 182

TFTP 126

TLS 248

top 285

-u flag 286

Transport Layer Security 248

Trivial File Transfer Protocol 126

297

Index
Trusted X11 Forwarding 169

Type-1 hypervisors 191

Type-2 hypervisors 191

U
Ubuntu

history of 8

meaning 8

Ubuntu Pro

enabling 102

UDP 125

ufw 129, 135

command-line options 135

disabling 135

enabling 135

logging 137

reload 137

resetting 137

status 135

umount 11, 175

Uncomplicated Firewall 129

UNIX 7, 71

origins of 7

update-manager 96

Updates 99

automatic 100

USB drive

device name 11

userdel 79

usermod 80

user processes 281

Users and Groups 79

V
VcXsrv 169

VG 269

vgdisplay 270

vgextend 274

vgs 271

Vino 160

installing 160

virbr0 219, 220

virsh 215, 217, 222, 229

destroy 217, 231

dumpxml 217

edit 224

help 230

list 230

reboot 232

restore 231

resume 231

save 231

setmem 232

setmemmax 232

shell 229

shutdown 217, 231

start 217, 231

suspend 231

virt-install 199, 215, 223

virt-manager 196, 207, 224

installation 196

New VM wizard 208

storage pools 210

VirtualBox 195

Virtualization 189

AMD-V 192

full 192

guest 189

hardware 192

hypercalls 191

hypervisor 190

Intel VT 192

KVM virtualization 193

MacVTap 193

Type-1 190

Type-2 190

virt-manager 196

Virtual Machine Networking 193

virt-viewer 202, 215

vmdk 209

VMware 195

Volume Group 269

298

Index

W
Wayland 167

WaylandEnable 168

wc 75

Web Server 243

testing 245

Well-Known Ports 125

wheel group 80

which 72

Whitfield Diffie 149

wildcard character 74

wildcards 74

Windows partition

filesystem access 32

reclaiming 37

unmounting 37

Windows PowerShell 153

wipefs 273

X
X11 Forwarding 167

compressed 169

X11Forwarding 168

x86 family 191

Xen 196

XFS file system 263

XFS filesystem 274

xfs_growfs 274

XLaunch 169

X.org 167

X Window System 167

Z
ZFS filesystem 18

	1. Introduction
	1.1 Superuser Conventions
	1.2 Opening a Terminal Window
	1.3 Editing Files
	1.4 Feedback
	1.5 Errata

	2. A Brief History of Ubuntu Linux
	2.1 What exactly is Linux?
	2.2 UNIX Origins
	2.3 Who Created Linux?
	2.4 The History of Ubuntu
	2.5 What does the word “Ubuntu” Mean?
	2.6 Summary

	3. Installing Ubuntu on a Clean Disk Drive
	3.1 Ubuntu Installation Options
	3.2 Server vs. Desktop Editions
	3.3 Obtaining the Ubuntu Installation Media
	3.4 Writing the ISO Installation Image to a USB Drive
	3.4.1 Linux
	3.4.2 macOS
	3.4.3 Windows/macOS

	3.5 Booting from the Ubuntu USB Image
	3.6 Installing Ubuntu
	3.7 Accessing the Ubuntu Desktop
	3.8 Installing Updates
	3.9 Displaying Boot Messages
	3.10 Summary

	4. Dual Booting Ubuntu with Windows
	4.1 Beginning the Ubuntu Installation
	4.2 Booting Ubuntu for the First Time
	4.3 Changing the Default Boot Option
	4.4 Accessing the Windows Partition from the Command-line
	4.5 Accessing the Windows Partition from the Desktop
	4.6 Summary

	5. Allocating Windows Disk Partitions to Ubuntu
	5.1 Unmounting the Windows Partition
	5.2 Deleting the Windows Partitions from the Disk
	5.3 Formatting the Unallocated Disk Partition
	5.4 Mounting the New Partition
	5.5 Editing the Boot Menu
	5.6 Using GNOME Disks Utility
	5.7 Summary

	6. A Guided Tour of the GNOME 42 Desktop
	6.1 Installing the GNOME Desktop
	6.2 An Overview of the GNOME 42 Desktop
	6.3 Launching Activities
	6.4 Managing Windows
	6.5 Using Workspaces
	6.6 Calendar and Notifications
	6.7 Desktop Settings
	6.8 Customizing the Dock
	6.9 Installing Ubuntu Software
	6.10 Beyond Basic Customization
	6.11 Summary

	7. An Overview of the Cockpit Web Interface
	7.1 An Overview of Cockpit
	7.2 Installing and Enabling Cockpit
	7.3 Accessing Cockpit
	7.4 Overview
	7.5 Logs
	7.6 Storage
	7.7 Networking
	7.8 Accounts
	7.9 Services
	7.10 Applications
	7.11 Virtual Machines
	7.12 Software Updates
	7.13 Terminal
	7.14 Connecting to Multiple Servers
	7.15 Enabling Stored Metrics
	7.16 Summary

	8. Using the Bash Shell on Ubuntu 22.04
	8.1 What is a Shell?
	8.2 Gaining Access to the Shell
	8.3 Entering Commands at the Prompt
	8.4 Getting Information about a Command
	8.5 Bash Command-line Editing
	8.6 Working with the Shell History
	8.7 Filename Shorthand
	8.8 Filename and Path Completion
	8.9 Input and Output Redirection
	8.10 Working with Pipes in the Bash Shell
	8.11 Configuring Aliases
	8.12 Environment Variables
	8.13 Writing Shell Scripts
	8.14 Summary

	9. Managing Ubuntu 22.04 Users and Groups
	9.1 User Management from the Command-line
	9.2 User Management with Cockpit
	9.3 User Management using the Settings App
	9.4 Summary

	10. Managing Ubuntu 22.04 systemd Units
	10.1 Understanding Ubuntu systemd Targets
	10.2 Understanding Ubuntu systemd Services
	10.3 Ubuntu systemd Target Descriptions
	10.4 Identifying and Configuring the Default Target
	10.5 Understanding systemd Units and Unit Types
	10.6 Dynamically Changing the Current Target
	10.7 Enabling, Disabling, and Masking systemd Units
	10.8 Working with systemd Units in Cockpit
	10.9 Summary

	11. Ubuntu Software Package Management and Updates
	11.1 Repositories
	11.2 Managing Repositories with Software & Updates
	11.3 Managing Packages with APT
	11.4 Performing Updates
	11.5 Enabling Automatic Updates
	11.6 Enabling Ubuntu Pro
	11.7 Summary

	12. Ubuntu Snap Package Management
	12.1 Managing Software with Snap
	12.2 Basic Snap Commands
	12.3 Working with Snap Channels
	12.4 Snap Refresh Schedule
	12.5 Snap Services
	12.6 Summary

	13. Ubuntu 22.04 Network Management
	13.1 An Introduction to NetworkManager
	13.2 Installing and Enabling NetworkManager
	13.3 Basic nmcli Commands
	13.4 Working with Connection Profiles
	13.5 Interactive Editing
	13.6 Configuring NetworkManager Permissions
	13.7 Summary

	14. Ubuntu 22.04 Firewall Basics
	14.1 Understanding Ports and Services
	14.2 Securing Ports and Services
	14.3 Ubuntu Services and iptables Rules
	14.4 Well-Known Ports and Services
	14.5 Summary

	15. Using gufw and ufw to Configure an Ubuntu Firewall
	15.1 An Overview of gufw and ufw
	15.2 Installing gufw on Ubuntu
	15.3 Running and Enabling gufw
	15.4 Creating a New Profile
	15.5 Adding Preconfigured Firewall Rules
	15.6 Adding Simple Firewall Rules
	15.7 Adding Advanced Rules
	15.8 Configuring the Firewall from the Command Line using ufw
	15.9 Summary

	16. Basic Ubuntu Firewall Configuration with firewalld
	16.1 An Introduction to firewalld
	16.1.1 Zones
	16.1.2 Interfaces
	16.1.3 Services
	16.1.4 Ports

	16.2 Checking firewalld Status
	16.3 Configuring Firewall Rules with firewall-cmd
	16.3.1 Identifying and Changing the Default Zone
	16.3.2 Displaying Zone Information
	16.3.3 Adding and Removing Zone Services
	16.3.4 Working with Port-based Rules
	16.3.5 Creating a New Zone
	16.3.6 Changing Zone/Interface Assignments
	16.3.7 Masquerading
	16.3.8 Adding ICMP Rules
	16.3.9 Implementing Port Forwarding

	16.4 Managing firewalld using firewall-config
	16.5 Summary

	17. Configuring SSH Key-based Authentication on Ubuntu 22.04
	17.1 An Overview of Secure Shell (SSH)
	17.2 SSH Key-based Authentication
	17.3 Setting Up Key-based Authentication
	17.4 Installing and Starting the SSH Service
	17.5 SSH Key-based Authentication from Linux and macOS Clients
	17.6 Managing Multiple Keys
	17.7 SSH Key-based Authentication from Windows Clients
	17.8 SSH Key-based Authentication using PuTTY
	17.9 Generating a Private Key with PuTTYgen
	17.10 Summary

	18. Ubuntu 22.04 Remote Desktop Access with Vino
	18.1 Remote Desktop Access Types
	18.2 Secure and Insecure Remote Desktop Access
	18.3 Enabling Remote Desktop Access on Ubuntu
	18.4 Connecting to the Shared Desktop
	18.5 Connecting from Windows
	18.6 Summary

	19. Displaying Ubuntu 22.04 Applications Remotely (X11 Forwarding)
	19.1 Requirements for Remotely Displaying Ubuntu Applications
	19.2 Displaying an Ubuntu Application Remotely
	19.3 Trusted X11 Forwarding
	19.4 Compressed X11 Forwarding
	19.5 Displaying Remote Ubuntu Apps on Windows
	19.6 Summary

	20. Using NFS on Ubuntu 22.04 to Share Files with Remote Systems
	20.1 Ensuring NFS Services are running on Ubuntu
	20.2 Configuring the Firewall to Allow NFS Traffic
	20.3 Specifying the Folders to be Shared
	20.4 Accessing Shared Folders
	20.5 Mounting an NFS Filesystem on System Startup
	20.6 Unmounting an NFS Mount Point
	20.7 Accessing NFS Filesystems in Cockpit
	20.8 Summary

	21. Sharing Files between Ubuntu 22.04 and Windows with Samba
	21.1 Accessing Windows Resources from the GNOME Desktop
	21.2 Samba and Samba Client
	21.3 Installing Samba on Ubuntu
	21.4 Configuring the Ubuntu Firewall to Enable Samba
	21.5 Configuring the smb.conf File
	21.5.1 Configuring the [global] Section
	21.5.2 Configuring a Shared Resource
	21.5.3 Removing Unnecessary Shares

	21.6 Creating a Samba User
	21.7 Testing the smb.conf File
	21.8 Starting the Samba and NetBIOS Name Services
	21.9 Accessing Samba Shares
	21.10 Accessing Windows Shares from Ubuntu
	21.11 Summary

	22. An Overview of Virtualization Techniques
	22.1 Guest Operating System Virtualization
	22.2 Hypervisor Virtualization
	22.2.1 Paravirtualization
	22.2.2 Full Virtualization
	22.2.3 Hardware Virtualization

	22.3 Virtual Machine Networking
	22.4 Summary

	23. Installing KVM Virtualization on Ubuntu 22.04
	23.1 An Overview of KVM
	23.2 KVM Hardware Requirements
	23.3 Preparing Ubuntu for KVM Virtualization
	23.4 Verifying the KVM Installation
	23.5 Summary

	24. Creating KVM Virtual Machines on Ubuntu 22.04 using Cockpit
	24.1 Installing the Cockpit Virtual Machines Module
	24.2 Creating a Virtual Machine in Cockpit
	24.3 Starting the Installation
	24.4 Working with Storage Volumes and Storage Pools
	24.5 Summary

	25. Creating KVM Virtual Machines on Ubuntu 22.04 using virt-manager
	25.1 Starting the Virtual Machine Manager
	25.2 Configuring the KVM Virtual System
	25.3 Starting the KVM Virtual Machine
	25.4 Summary

	26. Creating KVM Virtual Machines with virt-install and virsh
	26.1 Running virt-install to build a KVM Guest System
	26.2 An Example Ubuntu virt-install Command
	26.3 Starting and Stopping a Virtual Machine from the Command-Line
	26.4 Creating a Virtual Machine from a Configuration File
	26.5 Summary

	27. Creating an Ubuntu 22.04 KVM Networked Bridge Interface
	27.1 Getting the Current Network Manager Settings
	27.2 Creating a Network Manager Bridge from the Command-Line
	27.3 Declaring the KVM Bridged Network
	27.4 Using a Bridge Network in a Virtual Machine
	27.5 Creating a Bridge Network using nm-connection-editor
	27.6 Summary

	28. Managing KVM using the virsh Command-Line Tool
	28.1 The virsh Shell and Command-Line
	28.2 Listing Guest System Status
	28.3 Starting a Guest System
	28.4 Shutting Down a Guest System
	28.5 Suspending and Resuming a Guest System
	28.6 Saving and Restoring Guest Systems
	28.7 Rebooting a Guest System
	28.8 Configuring the Memory Assigned to a Guest OS
	28.9 Summary

	29. An Introduction to Linux Containers
	29.1 Linux Containers and Kernel Sharing
	29.2 Container Uses and Advantages
	29.3 Ubuntu Container Tools
	29.4 The Ubuntu Docker Registry
	29.5 Container Networking
	29.6 Summary

	30. Working with Containers on Ubuntu
	30.1 Installing the Container Tools
	30.2 Pulling a Container Image
	30.3 Running the Image in a Container
	30.4 Managing a Container
	30.5 Saving a Container to an Image
	30.6 Removing an Image from Local Storage
	30.7 Removing Containers
	30.8 Building a Container with Buildah
	30.9 Summary

	31. Setting Up an Ubuntu 22.04 Web Server
	31.1 Requirements for Configuring an Ubuntu Web Server
	31.2 Installing the Apache Web Server Packages
	31.3 Configuring the Firewall
	31.4 Port Forwarding
	31.5 Starting the Apache Web Server
	31.6 Testing the Web Server
	31.7 Configuring the Apache Web Server for Your Domain
	31.8 The Basics of a Secure Website
	31.9 Configuring Apache for HTTPS
	31.10 Obtaining an SSL Certificate
	31.11 Summary

	32. Configuring an Ubuntu 22.04 Postfix Email Server
	32.1 The Structure of the Email System
	32.1.1 Mail User Agent
	32.1.2 Mail Transfer Agent
	32.1.3 Mail Delivery Agent
	32.1.4 SMTP
	32.1.5 SMTP Relay

	32.2 Configuring an Ubuntu Email Server
	32.3 Postfix Pre-Installation Steps
	32.4 Firewall/Router Configuration
	32.5 Installing Postfix on Ubuntu
	32.6 Configuring Postfix
	32.7 Configuring DNS MX Records
	32.8 Starting Postfix on an Ubuntu System
	32.9 Testing Postfix
	32.10 Sending Mail via an SMTP Relay Server
	32.11 Summary

	33. Adding a New Disk Drive to an Ubuntu 22.04 System
	33.1 Mounted File Systems or Logical Volumes
	33.2 Finding the New Hard Drive
	33.3 Creating Linux Partitions
	33.4 Creating a File System on an Ubuntu Disk Partition
	33.5 An Overview of Journaled File Systems
	33.6 Mounting a File System
	33.7 Configuring Ubuntu to Mount a File System Automatically
	33.8 Adding a Disk Using Cockpit
	33.9 Summary

	34. Adding a New Disk to an Ubuntu 22.04 Volume Group and Logical Volume
	34.1 An Overview of Logical Volume Management (LVM)
	34.1.1 Volume Group (VG)
	34.1.2 Physical Volume (PV)
	34.1.3 Logical Volume (LV)
	34.1.4 Physical Extent (PE)
	34.1.5 Logical Extent (LE)

	34.2 Getting Information about Logical Volumes
	34.3 Adding Additional Space to a Volume Group from the Command-Line
	34.4 Summary

	35. Adding and Managing Ubuntu Swap Space
	35.1 What is Swap Space?
	35.2 Recommended Swap Space for Ubuntu
	35.3 Identifying Current Swap Space Usage
	35.4 Adding a Swap File to an Ubuntu System
	35.5 Adding Swap as a Partition
	35.6 Adding Space to an Ubuntu LVM Swap Volume
	35.7 Adding Swap Space to the Volume Group
	35.8 Summary

	36. Ubuntu 22.04 System and Process Monitoring
	36.1 Managing Processes
	36.2 Real-time System Monitoring with top
	36.3 Command-Line Disk and Swap Space Monitoring
	36.4 Summary

	Index

