
iOS 16 App Development
Essentials

UIKit Edition
Title

iOS 16 App Development Essentials – UIKit Edition

ISBN-13: 978-1-951442-62-0

© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0
Copyright

i

Contents
Table of Contents
1. Start Here

1.1 Source Code Download
1.2 Feedback
1.3 Errata

2. Joining the Apple Developer Program
2.1 Downloading Xcode 14 and the iOS 16 SDK
2.2 Apple Developer Program
2.3 When to Enroll in the Apple Developer Program?
2.4 Enrolling in the Apple Developer Program
2.5 Summary

3. Installing Xcode 14 and the iOS 16 SDK
3.1 Identifying Your macOS Version
3.2 Installing Xcode 14 and the iOS 16 SDK
3.3 Starting Xcode
3.4 Adding Your Apple ID to the Xcode Preferences
3.5 Developer and Distribution Signing Identities

4. A Guided Tour of Xcode 14
4.1 Starting Xcode 14
4.2 Creating the iOS App User Interface
4.3 Changing Component Properties
4.4 Adding Objects to the User Interface
4.5 Building and Running an iOS App in Xcode
4.6 Running the App on a Physical iOS Device
4.7 Managing Devices and Simulators
4.8 Enabling Network Testing
4.9 Dealing with Build Errors
4.10 Monitoring Application Performance
4.11 Exploring the User Interface Layout Hierarchy
4.12 Summary

5. An Introduction to Xcode 14 Playgrounds
5.1 What is a Playground?
5.2 Creating a New Playground
5.3 A Swift Playground Example
5.4 Viewing Results
5.5 Adding Rich Text Comments
5.6 Working with Playground Pages
5.7 Working with UIKit in Playgrounds
5.8 Adding Resources to a Playground
5.9 Working with Enhanced Live Views
5.10 When to Use Playgrounds
5.11 Summary

Contents

ii

Table of Contents

6. Swift Data Types, Constants and Variables
6.1 Using a Swift Playground
6.2 Swift Data Types

6.2.1 Integer Data Types
6.2.2 Floating Point Data Types
6.2.3 Bool Data Type
6.2.4 Character Data Type
6.2.5 String Data Type
6.2.6 Special Characters/Escape Sequences

6.3 Swift Variables
6.4 Swift Constants
6.5 Declaring Constants and Variables
6.6 Type Annotations and Type Inference
6.7 The Swift Tuple
6.8 The Swift Optional Type
6.9 Type Casting and Type Checking
6.10 Summary

7. Swift Operators and Expressions
7.1 Expression Syntax in Swift
7.2 The Basic Assignment Operator
7.3 Swift Arithmetic Operators
7.4 Compound Assignment Operators
7.5 Comparison Operators
7.6 Boolean Logical Operators
7.7 Range Operators
7.8 The Ternary Operator
7.9 Nil Coalescing Operator
7.10 Bitwise Operators

7.10.1 Bitwise NOT
7.10.2 Bitwise AND
7.10.3 Bitwise OR
7.10.4 Bitwise XOR
7.10.5 Bitwise Left Shift
7.10.6 Bitwise Right Shift

7.11 Compound Bitwise Operators
7.12 Summary

8. Swift Control Flow
8.1 Looping Control Flow
8.2 The Swift for-in Statement

8.2.1 The while Loop
8.3 The repeat ... while loop
8.4 Breaking from Loops
8.5 The continue Statement
8.6 Conditional Control Flow
8.7 Using the if Statement
8.8 Using if ... else … Statements
8.9 Using if ... else if ... Statements

iii

Table of Contents

8.10 The guard Statement
8.11 Summary

9. The Swift Switch Statement
9.1 Why Use a switch Statement?
9.2 Using the switch Statement Syntax
9.3 A Swift switch Statement Example
9.4 Combining case Statements
9.5 Range Matching in a switch Statement
9.6 Using the where statement
9.7 Fallthrough
9.8 Summary

10. Swift Functions, Methods and Closures
10.1 What is a Function?
10.2 What is a Method?
10.3 How to Declare a Swift Function
10.4 Implicit Returns from Single Expressions
10.5 Calling a Swift Function
10.6 Handling Return Values
10.7 Local and External Parameter Names
10.8 Declaring Default Function Parameters
10.9 Returning Multiple Results from a Function
10.10 Variable Numbers of Function Parameters
10.11 Parameters as Variables
10.12 Working with In-Out Parameters
10.13 Functions as Parameters
10.14 Closure Expressions
10.15 Shorthand Argument Names
10.16 Closures in Swift
10.17 Summary

11. The Basics of Swift Object-Oriented Programming
11.1 What is an Instance?
11.2 What is a Class?
11.3 Declaring a Swift Class
11.4 Adding Instance Properties to a Class
11.5 Defining Methods
11.6 Declaring and Initializing a Class Instance
11.7 Initializing and De-initializing a Class Instance
11.8 Calling Methods and Accessing Properties
11.9 Stored and Computed Properties
11.10 Lazy Stored Properties
11.11 Using self in Swift
11.12 Understanding Swift Protocols
11.13 Opaque Return Types
11.14 Summary

12. An Introduction to Swift Subclassing and Extensions
12.1 Inheritance, Classes and Subclasses

iv

Table of Contents

12.2 A Swift Inheritance Example
12.3 Extending the Functionality of a Subclass
12.4 Overriding Inherited Methods
12.5 Initializing the Subclass
12.6 Using the SavingsAccount Class
12.7 Swift Class Extensions
12.8 Summary

13. Working with Array and Dictionary Collections in Swift
13.1 Mutable and Immutable Collections
13.2 Swift Array Initialization
13.3 Working with Arrays in Swift

13.3.1 Array Item Count
13.3.2 Accessing Array Items
13.3.3 Random Items and Shuffling
13.3.4 Appending Items to an Array
13.3.5 Inserting and Deleting Array Items
13.3.6 Array Iteration

13.4 Creating Mixed Type Arrays
13.5 Swift Dictionary Collections
13.6 Swift Dictionary Initialization
13.7 Sequence-based Dictionary Initialization
13.8 Dictionary Item Count
13.9 Accessing and Updating Dictionary Items
13.10 Adding and Removing Dictionary Entries
13.11 Dictionary Iteration
13.12 Summary

14. Understanding Error Handling in Swift 5
14.1 Understanding Error Handling
14.2 Declaring Error Types
14.3 Throwing an Error
14.4 Calling Throwing Methods and Functions
14.5 Accessing the Error Object
14.6 Disabling Error Catching
14.7 Using the defer Statement
14.8 Summary

15. The iOS 16 App and Development Architecture
15.1 An Overview of the iOS 16 Operating System Architecture
15.2 Model View Controller (MVC)
15.3 The Target-Action pattern, IBOutlets, and IBActions
15.4 Subclassing
15.5 Delegation
15.6 Summary

16. Creating an Interactive iOS 16 App
16.1 Creating the New Project
16.2 Creating the User Interface
16.3 Building and Running the Sample App

v

Table of Contents

16.4 Adding Actions and Outlets
16.5 Building and Running the Finished App
16.6 Hiding the Keyboard
16.7 Summary

17. Understanding iOS 16 Views, Windows, and the View Hierarchy
17.1 An Overview of Views and the UIKit Class Hierarchy
17.2 The UIWindow Class
17.3 The View Hierarchy
17.4 Viewing Hierarchy Ancestors in Interface Builder
17.5 View Types

17.5.1 The Window
17.5.2 Container Views
17.5.3 Controls
17.5.4 Display Views
17.5.5 Text and WebKit Views
17.5.6 Navigation Views and Tab Bars
17.5.7 Alert Views

17.6 Summary
18. An Introduction to Auto Layout in iOS 16

18.1 An Overview of Auto Layout
18.2 Alignment Rects
18.3 Intrinsic Content Size
18.4 Content Hugging and Compression Resistance Priorities
18.5 Safe Area Layout Guide
18.6 Three Ways to Create Constraints
18.7 Constraints in More Detail
18.8 Summary

19. Working with iOS 16 Auto Layout Constraints in Interface Builder
19.1 An Example of Auto Layout in Action
19.2 Working with Constraints
19.3 The Auto Layout Features of Interface Builder

19.3.1 Suggested Constraints
19.3.2 Visual Cues
19.3.3 Highlighting Constraint Problems
19.3.4 Viewing, Editing, and Deleting Constraints

19.4 Creating New Constraints in Interface Builder
19.5 Adding Aspect Ratio Constraints
19.6 Resolving Auto Layout Problems
19.7 Summary

20. Implementing iOS 16 Auto Layout Constraints in Code
20.1 Creating Constraints Using NSLayoutConstraint
20.2 Adding a Constraint to a View
20.3 Turning off Auto Resizing Translation
20.4 Creating Constraints Using NSLayoutAnchor
20.5 An Example App
20.6 Creating the Views

vi

Table of Contents

20.7 Creating and Adding the Constraints
20.8 Using Layout Anchors
20.9 Removing Constraints
20.10 Summary

21. Implementing Cross-Hierarchy Auto Layout Constraints in iOS 16
21.1 The Example App
21.2 Establishing Outlets
21.3 Writing the Code to Remove the Old Constraint
21.4 Adding the Cross Hierarchy Constraint
21.5 Testing the App
21.6 Summary

22. Understanding the iOS 16 Auto Layout Visual Format Language
22.1 Introducing the Visual Format Language
22.2 Visual Format Language Examples
22.3 Using the constraints(withVisualFormat:) Method
22.4 Summary

23. Using Trait Variations to Design Adaptive iOS 16 User Interfaces
23.1 Understanding Traits and Size Classes
23.2 Size Classes in Interface Builder
23.3 Enabling Trait Variations
23.4 Setting “Any” Defaults
23.5 Working with Trait Variations in Interface Builder
23.6 Attributes Inspector Trait Variations
23.7 Using Constraint Variations
23.8 An Adaptive User Interface Tutorial
23.9 Designing the Initial Layout
23.10 Adding Universal Image Assets
23.11 Increasing Font Size for iPad Devices
23.12 Adding Width Constraint Variations
23.13 Testing the Adaptivity
23.14 Summary

24. Using Storyboards in Xcode 14
24.1 Creating the Storyboard Example Project
24.2 Accessing the Storyboard
24.3 Adding Scenes to the Storyboard
24.4 Configuring Storyboard Segues
24.5 Configuring Storyboard Transitions
24.6 Associating a View Controller with a Scene
24.7 Passing Data Between Scenes
24.8 Unwinding Storyboard Segues
24.9 Triggering a Storyboard Segue Programmatically
24.10 Summary

25. Organizing Scenes over Multiple Storyboard Files
25.1 Organizing Scenes into Multiple Storyboards
25.2 Establishing a Connection between Different Storyboards

vii

Table of Contents

25.3 Summary
26. Using Xcode 14 Storyboards to Create an iOS 16 Tab Bar App

26.1 An Overview of the Tab Bar
26.2 Understanding View Controllers in a Multiview App
26.3 Setting up the Tab Bar Example App
26.4 Reviewing the Project Files
26.5 Adding the View Controllers for the Content Views
26.6 Adding the Tab Bar Controller to the Storyboard
26.7 Designing the View Controller User interfaces
26.8 Configuring the Tab Bar Items
26.9 Building and Running the App
26.10 Summary

27. An Overview of iOS 16 Table Views and Xcode 14 Storyboards
27.1 An Overview of the Table View
27.2 Static vs. Dynamic Table Views
27.3 The Table View Delegate and dataSource
27.4 Table View Styles
27.5 Self-Sizing Table Cells
27.6 Dynamic Type
27.7 Table View Cell Styles
27.8 Table View Cell Reuse
27.9 Table View Swipe Actions
27.10 Summary

28. Using Xcode 14 Storyboards to Build Dynamic TableViews
28.1 Creating the Example Project
28.2 Adding the TableView Controller to the Storyboard
28.3 Creating the UITableViewController and UITableViewCell Subclasses
28.4 Declaring the Cell Reuse Identifier
28.5 Designing a Storyboard UITableView Prototype Cell
28.6 Modifying the AttractionTableViewCell Class
28.7 Creating the Table View Datasource
28.8 Downloading and Adding the Image Files
28.9 Compiling and Running the App
28.10 Handling TableView Swipe Gestures
28.11 Summary

29. Implementing iOS 16 TableView Navigation using Storyboards
29.1 Understanding the Navigation Controller
29.2 Adding the New Scene to the Storyboard
29.3 Adding a Navigation Controller
29.4 Establishing the Storyboard Segue
29.5 Modifying the AttractionDetailViewController Class
29.6 Using prepare(for segue:) to Pass Data between Storyboard Scenes
29.7 Testing the App
29.8 Customizing the Navigation Title Size
29.9 Summary

viii

Table of Contents

30. Integrating Search using the iOS UISearchController
30.1 Introducing the UISearchController Class
30.2 Adding a Search Controller to the TableViewStory Project
30.3 Implementing the updateSearchResults Method
30.4 Reporting the Number of Table Rows
30.5 Modifying the cellForRowAt Method
30.6 Modifying the Trailing Swipe Delegate Method
30.7 Modifying the Detail Segue
30.8 Handling the Search Cancel Button
30.9 Testing the Search Controller
30.10 Summary

31. Working with the iOS 16 Stack View Class
31.1 Introducing the UIStackView Class
31.2 Understanding Subviews and Arranged Subviews
31.3 StackView Configuration Options

31.3.1 axis
31.3.2 distribution
31.3.3 spacing
31.3.4 alignment
31.3.5 baseLineRelativeArrangement
31.3.6 layoutMarginsRelativeArrangement

31.4 Creating a Stack View in Code
31.5 Adding Subviews to an Existing Stack View
31.6 Hiding and Removing Subviews
31.7 Summary

32. An iOS 16 Stack View Tutorial
32.1 About the Stack View Example App
32.2 Creating the First Stack View
32.3 Creating the Banner Stack View
32.4 Adding the Switch Stack Views
32.5 Creating the Top-Level Stack View
32.6 Adding the Button Stack View
32.7 Adding the Final Subviews to the Top Level Stack View
32.8 Dynamically Adding and Removing Subviews
32.9 Summary

33. A Guide to iPad Multitasking
33.1 Using iPad Multitasking
33.2 Picture-In-Picture Multitasking
33.3 Multitasking and Size Classes
33.4 Handling Multitasking in Code

33.4.1 willTransition(to newcollection: with coordinator:)
33.4.2 viewWillTransition(to size: with coordinator:)
33.4.3 traitCollectionDidChange(_:)

33.5 Lifecycle Method Calls
33.6 Opting Out of Multitasking
33.7 Summary

ix

Table of Contents

34. An iPadOS Multitasking Example
34.1 Creating the Multitasking Example Project
34.2 Adding the Image Files
34.3 Designing the Regular Width Size Class Layout
34.4 Designing the Compact Width Size Class
34.5 Testing the Project in a Multitasking Environment
34.6 Summary

35. An Overview of Swift Structured Concurrency
35.1 An Overview of Threads
35.2 The Application Main Thread
35.3 Completion Handlers
35.4 Structured Concurrency
35.5 Preparing the Project
35.6 Non-Concurrent Code
35.7 Introducing async/await Concurrency
35.8 Asynchronous Calls from Synchronous Functions
35.9 The await Keyword
35.10 Using async-let Bindings
35.11 Handling Errors
35.12 Understanding Tasks
35.13 Unstructured Concurrency
35.14 Detached Tasks
35.15 Task Management
35.16 Working with Task Groups
35.17 Avoiding Data Races
35.18 The for-await Loop
35.19 Asynchronous Properties
35.20 Summary

36. Working with Directories in Swift on iOS 16
36.1 The Application Documents Directory
36.2 The FileManager, FileHandle, and Data Classes
36.3 Understanding Pathnames in Swift
36.4 Obtaining a Reference to the Default FileManager Object
36.5 Identifying the Current Working Directory
36.6 Identifying the Documents Directory
36.7 Identifying the Temporary Directory
36.8 Changing Directory
36.9 Creating a New Directory
36.10 Deleting a Directory
36.11 Listing the Contents of a Directory
36.12 Getting the Attributes of a File or Directory
36.13 Summary

37. Working with Files in Swift on iOS 16
37.1 Obtaining a FileManager Instance Reference
37.2 Checking for the Existence of a File
37.3 Comparing the Contents of Two Files

x

Table of Contents

37.4 Checking if a File is Readable/Writable/Executable/Deletable
37.5 Moving/Renaming a File
37.6 Copying a File
37.7 Removing a File
37.8 Creating a Symbolic Link
37.9 Reading and Writing Files with FileManager
37.10 Working with Files using the FileHandle Class
37.11 Creating a FileHandle Object
37.12 FileHandle File Offsets and Seeking
37.13 Reading Data from a File
37.14 Writing Data to a File
37.15 Truncating a File
37.16 Summary

38. iOS 16 Directory Handling and File I/O in Swift – A Worked Example
38.1 The Example App
38.2 Setting up the App Project
38.3 Designing the User Interface
38.4 Checking the Data File on App Startup
38.5 Implementing the Action Method
38.6 Building and Running the Example
38.7 Summary

39. Preparing an iOS 16 App to use iCloud Storage
39.1 iCloud Data Storage Services
39.2 Preparing an App to Use iCloud Storage
39.3 Enabling iCloud Support for an iOS 16 App
39.4 Reviewing the iCloud Entitlements File
39.5 Accessing Multiple Ubiquity Containers
39.6 Ubiquity Container URLs
39.7 Summary

40. Managing Files using the iOS 16 UIDocument Class
40.1 An Overview of the UIDocument Class
40.2 Subclassing the UIDocument Class
40.3 Conflict Resolution and Document States
40.4 The UIDocument Example App
40.5 Creating a UIDocument Subclass
40.6 Designing the User Interface
40.7 Implementing the App Data Structure
40.8 Implementing the contents(forType:) Method
40.9 Implementing the load(fromContents:) Method
40.10 Loading the Document at App Launch
40.11 Saving Content to the Document
40.12 Testing the App
40.13 Summary

41. Using iCloud Storage in an iOS 16 App
41.1 iCloud Usage Guidelines
41.2 Preparing the iCloudStore App for iCloud Access

xi

Table of Contents

41.3 Enabling iCloud Capabilities and Services
41.4 Configuring the View Controller
41.5 Implementing the loadFile Method
41.6 Implementing the metadataQueryDidFinishGathering Method
41.7 Implementing the saveDocument Method
41.8 Enabling iCloud Document and Data Storage
41.9 Running the iCloud App
41.10 Making a Local File Ubiquitous
41.11 Summary

42. Using iCloud Drive Storage in an iOS 16 App
42.1 Preparing an App to use iCloud Drive Storage
42.2 Making Changes to the NSUbiquitousContainers Key
42.3 Creating the iCloud Drive Example Project
42.4 Modifying the Info.plist File
42.5 Designing the User Interface
42.6 Accessing the Ubiquitous Container
42.7 Saving the File to iCloud Drive
42.8 Testing the App
42.9 Summary

43. An Overview of the iOS 16 Document Browser View Controller
43.1 An Overview of the Document Browser View Controller
43.2 The Anatomy of a Document-Based App
43.3 Document Browser Project Settings
43.4 The Document Browser Delegate Methods

43.4.1 didRequestDocumentCreationWithHandler
43.4.2 didImportDocumentAt
43.4.3 didPickDocumentURLs
43.4.4 failedToImportDocumentAt

43.5 Customizing the Document Browser
43.6 Adding Browser Actions
43.7 Summary

44. An iOS 16 Document Browser Tutorial
44.1 Creating the DocumentBrowser Project
44.2 Declaring the Supported File Types
44.3 Completing the didRequestDocumentCreationWithHandler Method
44.4 Finishing the UIDocument Subclass
44.5 Modifying the Document View Controller
44.6 Testing the Document Browser App
44.7 Summary

45. Synchronizing iOS 16 Key-Value Data using iCloud
45.1 An Overview of iCloud Key-Value Data Storage
45.2 Sharing Data Between Apps
45.3 Data Storage Restrictions
45.4 Conflict Resolution
45.5 Receiving Notification of Key-Value Changes
45.6 An iCloud Key-Value Data Storage Example

xii

Table of Contents

45.7 Enabling the App for iCloud Key-Value Data Storage
45.8 Designing the User Interface
45.9 Implementing the View Controller
45.10 Modifying the viewDidLoad Method
45.11 Implementing the Notification Method
45.12 Implementing the saveData Method
45.13 Testing the App
45.14 Summary

46. iOS 16 Database Implementation using SQLite
46.1 What is SQLite?
46.2 Structured Query Language (SQL)
46.3 Trying SQLite on macOS
46.4 Preparing an iOS App Project for SQLite Integration
46.5 SQLite, Swift, and Wrappers
46.6 Key FMDB Classes
46.7 Creating and Opening a Database
46.8 Creating a Database Table
46.9 Extracting Data from a Database Table
46.10 Closing an SQLite Database
46.11 Summary

47. An Example SQLite-based iOS 16 App using Swift and FMDB
47.1 About the Example SQLite App
47.2 Creating and Preparing the SQLite App Project
47.3 Checking Out the FMDB Source Code
47.4 Designing the User Interface
47.5 Creating the Database and Table
47.6 Implementing the Code to Save Data to the SQLite Database
47.7 Implementing Code to Extract Data from the SQLite Database
47.8 Building and Running the App
47.9 Summary

48. Working with iOS 16 Databases using Core Data
48.1 The Core Data Stack
48.2 Persistent Container
48.3 Managed Objects
48.4 Managed Object Context
48.5 Managed Object Model
48.6 Persistent Store Coordinator
48.7 Persistent Object Store
48.8 Defining an Entity Description
48.9 Initializing the Persistent Container
48.10 Obtaining the Managed Object Context
48.11 Getting an Entity Description
48.12 Setting the Attributes of a Managed Object
48.13 Saving a Managed Object
48.14 Fetching Managed Objects
48.15 Retrieving Managed Objects based on Criteria

xiii

Table of Contents

48.16 Accessing the Data in a Retrieved Managed Object
48.17 Summary

49. An iOS 16 Core Data Tutorial
49.1 The Core Data Example App
49.2 Creating a Core Data-based App
49.3 Creating the Entity Description
49.4 Designing the User Interface
49.5 Initializing the Persistent Container
49.6 Saving Data to the Persistent Store using Core Data
49.7 Retrieving Data from the Persistent Store using Core Data
49.8 Building and Running the Example App
49.9 Summary

50. An Introduction to CloudKit Data Storage on iOS 16
50.1 An Overview of CloudKit
50.2 CloudKit Containers
50.3 CloudKit Public Database
50.4 CloudKit Private Databases
50.5 Data Storage and Transfer Quotas
50.6 CloudKit Records
50.7 CloudKit Record IDs
50.8 CloudKit References
50.9 CloudKit Assets
50.10 Record Zones
50.11 CloudKit Sharing
50.12 CloudKit Subscriptions
50.13 Obtaining iCloud User Information
50.14 CloudKit Console
50.15 Summary

51. An iOS 16 CloudKit Example
51.1 About the Example CloudKit Project
51.2 Creating the CloudKit Example Project
51.3 Designing the User Interface
51.4 Establishing Outlets and Actions
51.5 Implementing the notifyUser Method
51.6 Accessing the Private Database
51.7 Hiding the Keyboard
51.8 Implementing the selectPhoto method
51.9 Saving a Record to the Cloud Database
51.10 Testing the Record Saving Method
51.11 Reviewing the Saved Data in the CloudKit Console
51.12 Searching for Cloud Database Records
51.13 Updating Cloud Database Records
51.14 Deleting a Cloud Record
51.15 Testing the App
51.16 Summary

52. An Overview of iOS 16 Multitouch, Taps, and Gestures

xiv

Table of Contents

52.1 The Responder Chain
52.2 Forwarding an Event to the Next Responder
52.3 Gestures
52.4 Taps
52.5 Touches
52.6 Touch Notification Methods

52.6.1 touchesBegan method
52.6.2 touchesMoved method
52.6.3 touchesEnded method
52.6.4 touchesCancelled method

52.7 Touch Prediction
52.8 Touch Coalescing
52.9 Summary

53. An Example iOS 16 Touch, Multitouch, and Tap App
53.1 The Example iOS Tap and Touch App
53.2 Creating the Example iOS Touch Project
53.3 Designing the User Interface
53.4 Enabling Multitouch on the View
53.5 Implementing the touchesBegan Method
53.6 Implementing the touchesMoved Method
53.7 Implementing the touchesEnded Method
53.8 Getting the Coordinates of a Touch
53.9 Building and Running the Touch Example App
53.10 Checking for Touch Predictions
53.11 Accessing Coalesced Touches
53.12 Summary

54. Detecting iOS 16 Touch Screen Gesture Motions
54.1 The Example iOS 16 Gesture App
54.2 Creating the Example Project
54.3 Designing the App User Interface
54.4 Implementing the touchesBegan Method
54.5 Implementing the touchesMoved Method
54.6 Implementing the touchesEnded Method
54.7 Building and Running the Gesture Example
54.8 Summary

55. Identifying Gestures using iOS 16 Gesture Recognizers
55.1 The UIGestureRecognizer Class
55.2 Recognizer Action Messages
55.3 Discrete and Continuous Gestures
55.4 Obtaining Data from a Gesture
55.5 Recognizing Tap Gestures
55.6 Recognizing Pinch Gestures
55.7 Detecting Rotation Gestures
55.8 Recognizing Pan and Dragging Gestures
55.9 Recognizing Swipe Gestures
55.10 Recognizing Long Touch (Touch and Hold) Gestures

xv

Table of Contents

55.11 Summary
56. An iOS 16 Gesture Recognition Tutorial

56.1 Creating the Gesture Recognition Project
56.2 Designing the User Interface
56.3 Implementing the Action Methods
56.4 Testing the Gesture Recognition Application
56.5 Summary

57. Implementing Touch ID and Face ID Authentication in iOS 16 Apps
57.1 The Local Authentication Framework
57.2 Checking for Biometric Authentication Availability
57.3 Identifying Authentication Options
57.4 Evaluating Biometric Policy
57.5 A Biometric Authentication Example Project
57.6 Checking for Biometric Availability
57.7 Seeking Biometric Authentication
57.8 Adding the Face ID Privacy Statement
57.9 Testing the App
57.10 Summary

58. Drawing iOS 16 2D Graphics with Core Graphics
58.1 Introducing Core Graphics and Quartz 2D
58.2 The draw Method
58.3 Points, Coordinates, and Pixels
58.4 The Graphics Context
58.5 Working with Colors in Quartz 2D
58.6 Summary

59. Interface Builder Live Views and iOS 16 Embedded Frameworks
59.1 Embedded Frameworks
59.2 Interface Builder Live Views
59.3 Creating the Example Project
59.4 Adding an Embedded Framework
59.5 Implementing the Drawing Code in the Framework
59.6 Making the View Designable
59.7 Making Variables Inspectable
59.8 Summary

60. An iOS 16 Graphics Tutorial using Core Graphics and Core Image
60.1 The iOS Drawing Example App
60.2 Creating the New Project
60.3 Creating the UIView Subclass
60.4 Locating the draw Method in the UIView Subclass
60.5 Drawing a Line
60.6 Drawing Paths
60.7 Drawing a Rectangle
60.8 Drawing an Ellipse or Circle
60.9 Filling a Path with a Color
60.10 Drawing an Arc

xvi

Table of Contents

60.11 Drawing a Cubic Bézier Curve
60.12 Drawing a Quadratic Bézier Curve
60.13 Dashed Line Drawing
60.14 Drawing Shadows
60.15 Drawing Gradients
60.16 Drawing an Image into a Graphics Context
60.17 Image Filtering with the Core Image Framework
60.18 Summary

61. iOS 16 Animation using UIViewPropertyAnimator
61.1 The Basics of UIKit Animation
61.2 Understanding Animation Curves
61.3 Performing Affine Transformations
61.4 Combining Transformations
61.5 Creating the Animation Example App
61.6 Implementing the Variables
61.7 Drawing in the UIView
61.8 Detecting Screen Touches and Performing the Animation
61.9 Building and Running the Animation App
61.10 Implementing Spring Timing
61.11 Summary

62. iOS 16 UIKit Dynamics – An Overview
62.1 Understanding UIKit Dynamics
62.2 The UIKit Dynamics Architecture

62.2.1 Dynamic Items
62.2.2 Dynamic Behaviors
62.2.3 The Reference View
62.2.4 The Dynamic Animator

62.3 Implementing UIKit Dynamics in an iOS App
62.4 Dynamic Animator Initialization
62.5 Configuring Gravity Behavior
62.6 Configuring Collision Behavior
62.7 Configuring Attachment Behavior
62.8 Configuring Snap Behavior
62.9 Configuring Push Behavior
62.10 The UIDynamicItemBehavior Class
62.11 Combining Behaviors to Create a Custom Behavior
62.12 Summary

63. An iOS 16 UIKit Dynamics Tutorial
63.1 Creating the UIKit Dynamics Example Project
63.2 Adding the Dynamic Items
63.3 Creating the Dynamic Animator Instance
63.4 Adding Gravity to the Views
63.5 Implementing Collision Behavior
63.6 Attaching a View to an Anchor Point
63.7 Implementing a Spring Attachment Between two Views
63.8 Summary

xvii

Table of Contents

64. Integrating Maps into iOS 16 Apps using MKMapItem
64.1 MKMapItem and MKPlacemark Classes
64.2 An Introduction to Forward and Reverse Geocoding
64.3 Creating MKPlacemark Instances
64.4 Working with MKMapItem
64.5 MKMapItem Options and Configuring Directions
64.6 Adding Item Details to an MKMapItem
64.7 Summary

65. An Example iOS 16 MKMapItem App
65.1 Creating the MapItem Project
65.2 Designing the User Interface
65.3 Converting the Destination using Forward Geocoding
65.4 Launching the Map
65.5 Building and Running the App
65.6 Summary

66. Getting Location Information using the iOS 16 Core Location Framework
66.1 The Core Location Manager
66.2 Requesting Location Access Authorization
66.3 Configuring the Desired Location Accuracy
66.4 Configuring the Distance Filter
66.5 Continuous Background Location Updates
66.6 The Location Manager Delegate
66.7 Starting and Stopping Location Updates
66.8 Obtaining Location Information from CLLocation Objects

66.8.1 Longitude and Latitude
66.8.2 Accuracy
66.8.3 Altitude

66.9 Getting the Current Location
66.10 Calculating Distances
66.11 Summary

67. An Example iOS 16 Location App
67.1 Creating the Example iOS 16 Location Project
67.2 Designing the User Interface
67.3 Configuring the CLLocationManager Object
67.4 Setting up the Usage Description Keys
67.5 Implementing the startWhenInUse Method
67.6 Implementing the startAlways Method
67.7 Implementing the resetDistance Method
67.8 Implementing the App Delegate Methods
67.9 Building and Running the Location App
67.10 Adding Continuous Background Location Updates
67.11 Summary

68. Working with Maps on iOS 16 with MapKit and the MKMapView Class
68.1 About the MapKit Framework
68.2 Understanding Map Regions

xviii

Table of Contents

68.3 Getting Transit ETA Information
68.4 About the MKMapView Tutorial
68.5 Creating the Map Project
68.6 Adding the Navigation Controller
68.7 Creating the MKMapView Instance and Toolbar
68.8 Obtaining Location Information Permission
68.9 Setting up the Usage Description Keys
68.10 Configuring the Map View
68.11 Changing the MapView Region
68.12 Changing the Map Type
68.13 Testing the MapView App
68.14 Updating the Map View based on User Movement
68.15 Summary

69. Working with MapKit Local Search in iOS 16
69.1 An Overview of iOS Local Search
69.2 Adding Local Search to the MapSample App
69.3 Adding the Local Search Text Field
69.4 Performing the Local Search
69.5 Testing the App
69.6 Customized Annotation Markers
69.7 Annotation Marker Clustering
69.8 Summary

70. Using MKDirections to get iOS 16 Map Directions and Routes
70.1 An Overview of MKDirections
70.2 Adding Directions and Routes to the MapSample App
70.3 Adding the New Classes to the Project
70.4 Configuring the Results Table View
70.5 Implementing the Result Table View Segue
70.6 Adding the Route Scene
70.7 Identifying the User’s Current Location
70.8 Getting the Route and Directions
70.9 Establishing the Route Segue
70.10 Testing the App
70.11 Summary

71. Accessing the iOS 16 Camera and Photo Library
71.1 The UIImagePickerController Class
71.2 Creating and Configuring a UIImagePickerController Instance
71.3 Configuring the UIImagePickerController Delegate
71.4 Detecting Device Capabilities
71.5 Saving Movies and Images
71.6 Summary

72. An Example iOS 16 Camera App
72.1 An Overview of the App
72.2 Creating the Camera Project
72.3 Designing the User Interface
72.4 Implementing the Action Methods

xix

Table of Contents

72.5 Writing the Delegate Methods
72.6 Seeking Camera and Photo Library Access
72.7 Building and Running the App
72.8 Summary

73. iOS 16 Video Playback using AVPlayer and AVPlayerViewController
73.1 The AVPlayer and AVPlayerViewController Classes
73.2 The iOS Movie Player Example App
73.3 Designing the User Interface
73.4 Initializing Video Playback
73.5 Build and Run the App
73.6 Creating an AVPlayerViewController Instance from Code
73.7 Summary

74. An iOS 16 Multitasking Picture-in-Picture Tutorial
74.1 An Overview of Picture-in-Picture Multitasking
74.2 Adding Picture-in-Picture Support to the AVPlayerDemo App
74.3 Adding the Navigation Controller
74.4 Setting the Audio Session Category
74.5 Implementing the Delegate
74.6 Opting Out of Picture-in-Picture Support
74.7 Additional Delegate Methods
74.8 Summary

75. An Introduction to Extensions in iOS 16
75.1 iOS Extensions – An Overview
75.2 Extension Types

75.2.1 Share Extension
75.2.2 Action Extension
75.2.3 Photo Editing Extension
75.2.4 Document Provider Extension
75.2.5 Custom Keyboard Extension
75.2.6 Audio Unit Extension
75.2.7 Shared Links Extension
75.2.8 Content Blocking Extension
75.2.9 Sticker Pack Extension
75.2.10 iMessage Extension
75.2.11 Intents Extension

75.3 Creating Extensions
75.4 Summary

76. Creating an iOS 16 Photo Editing Extension
76.1 Creating a Photo Editing Extension
76.2 Accessing the Photo Editing Extension
76.3 Configuring the Info.plist File
76.4 Designing the User Interface
76.5 The PHContentEditingController Protocol
76.6 Photo Extensions and Adjustment Data
76.7 Receiving the Content
76.8 Implementing the Filter Actions

xx

Table of Contents

76.9 Returning the Image to the Photos App
76.10 Testing the App
76.11 Summary

77. Creating an iOS 16 Action Extension
77.1 An Overview of Action Extensions
77.2 About the Action Extension Example
77.3 Creating the Action Extension Project
77.4 Adding the Action Extension Target
77.5 Changing the Extension Display Name
77.6 Designing the Action Extension User Interface
77.7 Receiving the Content
77.8 Returning the Modified Data to the Host App
77.9 Testing the Extension
77.10 Summary

78. Receiving Data from an iOS 16 Action Extension
78.1 Creating the Example Project
78.2 Designing the User Interface
78.3 Importing the Mobile Core Services Framework
78.4 Adding an Action Button to the App
78.5 Receiving Data from an Extension
78.6 Testing the App
78.7 Summary

79. An Introduction to Building iOS 16 Message Apps
79.1 Introducing Message Apps
79.2 Types of Message Apps
79.3 The Key Messages Framework Classes

79.3.1 MSMessagesAppViewController
79.3.2 MSConversation
79.3.3 MSMessage
79.3.4 MSMessageTemplateLayout

79.4 Sending Simple Messages
79.5 Creating an MSMessage Message
79.6 Receiving a Message
79.7 Supported Message App Platforms
79.8 Summary

80. An iOS 16 Interactive Message App Tutorial
80.1 About the Example Message App Project
80.2 Creating the MessageApp Project
80.3 Designing the MessageApp User Interface
80.4 Creating the Outlet Collection
80.5 Creating the Game Model
80.6 Responding to Button Selections
80.7 Preparing the Message URL
80.8 Preparing and Inserting the Message
80.9 Message Receipt Handling
80.10 Setting the Message Image

xxi

Table of Contents

80.11 Summary
81. An Introduction to SiriKit

81.1 Siri and SiriKit
81.2 SiriKit Domains
81.3 Siri Shortcuts
81.4 SiriKit Intents
81.5 How SiriKit Integration Works
81.6 Resolving Intent Parameters
81.7 The Confirm Method
81.8 The Handle Method
81.9 Custom Vocabulary
81.10 The Siri User Interface
81.11 Summary

82. An iOS 16 Example SiriKit Messaging Extension
82.1 Creating the Example Project
82.2 Enabling the Siri Entitlement
82.3 Seeking Siri Authorization
82.4 Adding the Extensions
82.5 Supported Intents
82.6 Using the Default User Interface
82.7 Trying the Example
82.8 Specifying a Default Phrase
82.9 Reviewing the Intent Handler
82.10 Summary

83. An Introduction to Machine Learning on iOS
83.1 Datasets and Machine Learning Models
83.2 Machine Learning in Xcode and iOS
83.3 iOS Machine Learning Frameworks
83.4 Summary

84. Using Create ML to Build an Image Classification Model
84.1 About the Dataset
84.2 Creating the Machine Learning Model
84.3 Importing the Training and Testing Data
84.4 Training and Testing the Model
84.5 Summary

85. An iOS Vision and Core ML Image Classification Tutorial
85.1 Preparing the Project
85.2 Adding the Model
85.3 Modifying the User Interface
85.4 Initializing the Core ML Request
85.5 Handling the Results of the Core ML Request
85.6 Making the Classification Request
85.7 Testing the App
85.8 Summary

86. An iOS 16 Quick Actions Tutorial

xxii

Table of Contents

86.1 Creating the Quick Actions Example Project
86.2 Static Quick Action Keys
86.3 Adding a Static Quick Action to the Project
86.4 Adding a Dynamic Quick Action
86.5 Adding, Removing, and Changing Dynamic Quick Actions
86.6 Responding to a Quick Action Selection
86.7 Testing the Quick Action App
86.8 Summary

87. An iOS 16 Local Notification Tutorial
87.1 Creating the Local Notification App Project
87.2 Requesting Notification Authorization
87.3 Designing the User Interface
87.4 Creating the Message Content
87.5 Specifying a Notification Trigger
87.6 Creating the Notification Request
87.7 Adding the Request
87.8 Testing the Notification
87.9 Receiving Notifications in the Foreground
87.10 Adding Notification Actions
87.11 Handling Notification Actions
87.12 Hidden Notification Content
87.13 Managing Notifications
87.14 Summary

88. Playing Audio on iOS 16 using AVAudioPlayer
88.1 Supported Audio Formats
88.2 Receiving Playback Notifications
88.3 Controlling and Monitoring Playback
88.4 Creating the Audio Example App
88.5 Adding an Audio File to the Project Resources
88.6 Designing the User Interface
88.7 Implementing the Action Methods
88.8 Creating and Initializing the AVAudioPlayer Object
88.9 Implementing the AVAudioPlayerDelegate Protocol Methods
88.10 Building and Running the App
88.11 Summary

89. Recording Audio on iOS 16 with AVAudioRecorder
89.1 An Overview of the AVAudioRecorder Tutorial
89.2 Creating the Recorder Project
89.3 Configuring the Microphone Usage Description
89.4 Designing the User Interface
89.5 Creating the AVAudioRecorder Instance
89.6 Implementing the Action Methods
89.7 Implementing the Delegate Methods
89.8 Testing the App
89.9 Summary

90. An iOS 16 Speech Recognition Tutorial

xxiii

Table of Contents

90.1 An Overview of Speech Recognition in iOS
90.2 Speech Recognition Authorization
90.3 Transcribing Recorded Audio
90.4 Transcribing Live Audio
90.5 An Audio File Speech Recognition Tutorial
90.6 Modifying the User Interface
90.7 Adding the Speech Recognition Permission
90.8 Seeking Speech Recognition Authorization
90.9 Performing the Transcription
90.10 Testing the App
90.11 Summary

91. An iOS 16 Real-Time Speech Recognition Tutorial
91.1 Creating the Project
91.2 Designing the User Interface
91.3 Adding the Speech Recognition Permission
91.4 Requesting Speech Recognition Authorization
91.5 Declaring and Initializing the Speech and Audio Objects
91.6 Starting the Transcription
91.7 Implementing the stopTranscribing Method
91.8 Testing the App
91.9 Summary

92. An Introduction to iOS 16 Sprite Kit Programming
92.1 What is Sprite Kit?
92.2 The Key Components of a Sprite Kit Game

92.2.1 Sprite Kit View
92.2.2 Scenes
92.2.3 Nodes
92.2.4 Physics Bodies
92.2.5 Physics World
92.2.6 Actions
92.2.7 Transitions
92.2.8 Texture Atlas
92.2.9 Constraints

92.3 An Example Sprite Kit Game Hierarchy
92.4 The Sprite Kit Game Rendering Loop
92.5 The Sprite Kit Level Editor
92.6 Summary

93. An iOS 16 Sprite Kit Level Editor Game Tutorial
93.1 About the Sprite Kit Demo Game
93.2 Creating the SpriteKitDemo Project
93.3 Reviewing the SpriteKit Game Template Project
93.4 Restricting Interface Orientation
93.5 Modifying the GameScene SpriteKit Scene File
93.6 Creating the Archery Scene
93.7 Transitioning to the Archery Scene
93.8 Adding the Texture Atlas

xxiv

Table of Contents

93.9 Designing the Archery Scene
93.10 Preparing the Archery Scene
93.11 Preparing the Animation Texture Atlas
93.12 Creating the Named Action Reference
93.13 Triggering the Named Action from the Code
93.14 Creating the Arrow Sprite Node
93.15 Shooting the Arrow
93.16 Adding the Ball Sprite Node
93.17 Summary

94. An iOS 16 Sprite Kit Collision Handling Tutorial
94.1 Defining the Category Bit Masks
94.2 Assigning the Category Masks to the Sprite Nodes
94.3 Configuring the Collision and Contact Masks
94.4 Implementing the Contact Delegate
94.5 Game Over
94.6 Summary

95. An iOS 16 Sprite Kit Particle Emitter Tutorial
95.1 What is the Particle Emitter?
95.2 The Particle Emitter Editor
95.3 The SKEmitterNode Class
95.4 Using the Particle Emitter Editor
95.5 Particle Emitter Node Properties

95.5.1 Background
95.5.2 Particle Texture
95.5.3 Particle Birthrate
95.5.4 Particle Life Cycle
95.5.5 Particle Position Range
95.5.6 Angle
95.5.7 Particle Speed
95.5.8 Particle Acceleration
95.5.9 Particle Scale
95.5.10 Particle Rotation
95.5.11 Particle Color
95.5.12 Particle Blend Mode

95.6 Experimenting with the Particle Emitter Editor
95.7 Bursting a Ball using Particle Emitter Effects
95.8 Adding the Burst Particle Emitter Effect
95.9 Adding an Audio Action
95.10 Summary

96. Preparing and Submitting an iOS 16 Application to the App Store
96.1 Verifying the iOS Distribution Certificate
96.2 Adding App Icons
96.3 Assign the Project to a Team
96.4 Archiving the Application for Distribution
96.5 Configuring the Application in App Store Connect
96.6 Validating and Submitting the Application

xxv

Table of Contents

96.7 Configuring and Submitting the App for Review
Index

1

Chapter 1

1. Start Here
This book aims to teach the skills necessary to create iOS apps using the iOS 16 SDK, UIKit, Xcode 14, and the
Swift programming language.

Beginning with the basics, this book outlines the steps necessary to set up an iOS development environment.
Next, an introduction to the architecture of iOS 16 and programming in Swift 5.7 is provided, followed by
an in-depth look at the design of iOS apps and user interfaces. More advanced topics such as file handling,
database management, graphics drawing, and animation are also covered, as are touch screen handling, gesture
recognition, multitasking, location management, local notifications, camera access, and video playback support.
Other features include Auto Layout, local map search, user interface animation using UIKit dynamics, Siri
integration, iMessage app development, and biometric authentication.

Additional features of iOS development using Xcode are also covered, including Swift playgrounds, universal
user interface design using size classes, app extensions, Interface Builder Live Views, embedded frameworks,
collection and stack layouts, CloudKit data storage, and the document browser.

Other features of iOS 16 and Xcode 14 are also covered in detail, including iOS machine learning features.

The aim of this book, therefore, is to teach you the skills necessary to build your own apps for iOS 16. Assuming
you are ready to download the iOS 16 SDK and Xcode 14, have a Mac, and some ideas for some apps to develop,
you are ready to get started.

1.1 Source Code Download
The source code and Xcode project files for the examples contained in this book are available for download at:

https://www.ebookfrenzy.com/retail/ios16/

1.2 Feedback
We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have
any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

1.3 Errata
While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a
subject area of this size and complexity may include some errors and oversights. Any known issues with the
book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/ios16.html

If you find an error not listed in the errata, please email our technical support team at feedback@ebookfrenzy.
com.

https://www.ebookfrenzy.com/retail/ios16/
https://www.ebookfrenzy.com/errata/ios16.html

3

Chapter 2

2. Joining the Apple Developer
Program
The first step in learning to develop iOS 16-based applications involves understanding the advantages of
enrolling in the Apple Developer Program and deciding the point at which it makes sense to pay to join. With
these goals in mind, this chapter will outline the costs and benefits of joining the developer program and, finally,
walk through the steps involved in enrolling.

2.1 Downloading Xcode 14 and the iOS 16 SDK
The latest iOS SDK and Xcode versions can be downloaded free of charge from the macOS App Store. Since
the tools are free, this raises the question of whether to enroll in the Apple Developer Program or wait until it
becomes necessary later in your app development learning curve.

2.2 Apple Developer Program
Membership in the Apple Developer Program currently costs $99 per year to enroll as an individual developer.
Organization-level membership is also available.

Before the introduction of iOS 9 and Xcode 7, one of the key advantages of the developer program was that it
permitted the creation of certificates and provisioning profiles to test your applications on physical iOS devices.
Fortunately, this is no longer the case; all that is now required to test apps on physical iOS devices is an Apple ID.

Clearly, much can be achieved without paying to join the Apple Developer program. There are, however, areas
of app development that cannot be fully tested without program membership. Of particular significance is the
fact that Siri integration, iCloud access, Apple Pay, Game Center, and In-App Purchasing can only be enabled
and tested with Apple Developer Program membership.

Of further significance is the fact that Apple Developer Program members have access to technical support
from Apple’s iOS support engineers (though the annual fee initially covers the submission of only two support
incident reports, more can be purchased). Membership also includes access to the Apple Developer forums, an
invaluable resource for obtaining assistance and guidance from other iOS developers and finding solutions to
problems others have encountered and subsequently resolved.

Program membership also provides early access to the pre-release Beta versions of Xcode, macOS, and iOS.

By far, the most important aspect of the Apple Developer Program is that membership is a mandatory
requirement to publish an application for sale or download in the App Store.

Clearly, program membership will be required at some point before your application reaches the App Store. The
only question remaining is when exactly to sign up.

2.3 When to Enroll in the Apple Developer Program?
Clearly, there are many benefits to Apple Developer Program membership, and eventually, membership will
be necessary to begin selling your apps. As to whether to pay the enrollment fee now or later will depend on
individual circumstances. If you are still in the early stages of learning to develop iOS apps or have yet to come
up with a compelling idea for an app to develop, then much of what you need is provided without program

4

Joining the Apple Developer Program

membership. As your skill level increases and your ideas for apps to develop take shape, you can, after all, always
enroll in the developer program later.

If, on the other hand, you are confident that you will reach the stage of having an application ready to publish
or know that you will need access to more advanced features such as Siri support, iCloud storage, In-App
Purchasing and Apple Pay, then it is worth joining the developer program sooner rather than later.

2.4 Enrolling in the Apple Developer Program
If your goal is to develop iOS apps for your employer, it is first worth checking whether the company already
has a membership. That being the case, contact the program administrator in your company and ask them to
send you an invitation from within the Apple Developer Program Member Center to join the team. Once they
have done so, Apple will send you an email entitled You Have Been Invited to Join an Apple Developer Program
containing a link to activate your membership. If you or your company is not already a program member, you
can enroll online at:

https://developer.apple.com/programs/enroll/

Apple provides enrollment options for businesses and individuals. To enroll as an individual, you will need to
provide credit card information to verify your identity. To enroll as a company, you must have legal signature
authority (or access to someone who does) and be able to provide documentation such as a Dun & Bradstreet
D-U-N-S number and documentation confirming legal entity status.

Acceptance into the developer program as an individual member typically takes less than 24 hours, with
notification arriving in the form of an activation email from Apple. Enrollment as a company can take considerably
longer (sometimes weeks or even months) due to the burden of the additional verification requirements.

While awaiting activation, you may log in to the Member Center with restricted access using your Apple ID and
password at the following URL:

https://developer.apple.com/membercenter

Once logged in, clicking on the Your Account tab at the top of the page will display the prevailing status of your
application to join the developer program as Enrollment Pending. Once the activation email has arrived, log in
to the Member Center again and note that access is now available to a wide range of options and resources, as
illustrated in Figure 2-1:

Figure 2-1

https://developer.apple.com/programs/enroll/
https://developer.apple.com/membercenter

5

Joining the Apple Developer Program

2.5 Summary
An important early step in the iOS 16 application development process involves identifying the best time to
enroll in the Apple Developer Program. This chapter has outlined the benefits of joining the program, provided
some guidance to keep in mind when considering developer program membership, and walked briefly through
the enrollment process. The next step is downloading and installing the iOS 16 SDK and Xcode 14 development
environment.

7

Chapter 3

3. Installing Xcode 14 and the iOS 16
SDK
iOS apps are developed using the iOS SDK and Apple’s Xcode development environment. Xcode is an integrated
development environment (IDE) within which you will code, compile, test, and debug your iOS apps. The Xcode
environment also includes a feature called Interface Builder, which enables you to graphically design your app’s
user interface using the UIKit Framework’s components.

This chapter will cover the steps involved in installing Xcode and the iOS 16 SDK on macOS.

3.1 Identifying Your macOS Version
The Xcode 14 environment requires that the version of macOS running on the system be version 12.3 or later.
If you are unsure of the version of macOS on your Mac, you can find this information by clicking on the Apple
menu in the top left-hand corner of the screen and selecting the About This Mac option from the menu. In the
resulting dialog, check the macOS line:

Figure 3-1
If the “About This Mac” dialog indicates that an older macOS is installed, click on the More Info... button to
display the System Settings dialog, followed by the General -> Software Update option to check for operating
system upgrade availability.

3.2 Installing Xcode 14 and the iOS 16 SDK
The best way to obtain the latest Xcode and iOS SDK versions is to download them from the Apple Mac App
Store. Launch the App Store on your macOS system, enter Xcode into the search box, and click on the Get button
to initiate the installation.

8

Installing Xcode 14 and the iOS 16 SDK

3.3 Starting Xcode
Having successfully installed the SDK and Xcode, the next step is to launch it to create a sample iOS 16 app.
To start up Xcode, open the Finder and search for Xcode. Since you will be using this tool frequently, take this
opportunity to drag and drop it into your dock for easier access in the future. Next, click on the Xcode icon in
the dock to launch the tool. You may be prompted to install additional components the first time Xcode runs.
Follow these steps, entering your username and password when prompted.

Once Xcode has loaded and assuming this is the first time you have used Xcode on this system, you will be
presented with the Welcome screen from which you are ready to proceed:

Figure 3-2

3.4 Adding Your Apple ID to the Xcode Preferences
Whether or not you enroll in the Apple Developer Program, it is worth adding your Apple ID to Xcode now that
it is installed and running. First, select the Xcode -> Settings… menu option and select the Accounts tab. Then,
on the Accounts screen, click the + button highlighted in Figure 3-3, choose Apple ID from the resulting panel,
and click on the Continue button. When prompted, enter your Apple ID and associated password and click the
Sign In button to add the account to the preferences.

Figure 3-3

9

Installing Xcode 14 and the iOS 16 SDK

3.5 Developer and Distribution Signing Identities
Once the Apple ID has been entered, the next step is to generate signing identities. Select the newly added Apple
ID in the Accounts panel to view the current signing identities and click on the Manage Certificates… button. At
this point, a list of available signing identities will be listed. If you have not yet enrolled in the Apple Developer
Program, it will only be possible to create iOS and Mac Development identities. To create the iOS Development
signing identity, click on the + button highlighted in Figure 3-4 and make the appropriate selection from the
menu:

Figure 3-4
If the Apple ID has been used to enroll in the Apple Developer program, the option to create an iOS Distribution
certificate will, when clicked, generate the signing identity required to submit the app to the Apple App Store.

Having installed the iOS SDK and successfully launched Xcode 14, we can now look at Xcode in more detail.

11

Chapter 4

4. A Guided Tour of Xcode 14
Just about every activity related to developing and testing iOS apps involves the use of the Xcode environment.
This chapter is intended to serve two purposes. Primarily it is intended to provide an overview of many key areas
that comprise the Xcode development environment. In the course of providing this overview, the chapter will
also work through creating a straightforward iOS app project to display a label that reads “Hello World” on a
colored background.

By the end of this chapter, you will have a basic familiarity with Xcode and your first running iOS app.

4.1 Starting Xcode 14
As with all iOS examples in this book, the development of our example will take place within the Xcode 14
development environment. Therefore, if you have not already installed this tool with the latest iOS SDK, refer
first to the “Installing Xcode 14 and the iOS 16 SDK” chapter of this book. Then, assuming that the installation
is complete, launch Xcode either by clicking on the icon on the dock (assuming you created one) or using the
macOS Finder to locate Xcode in the Applications folder of your system.

When launched for the first time, and until you turn off the Show this window when Xcode launches toggle, the
screen illustrated in Figure 4-1 will appear by default:

Figure 4-1
If you do not see this window, select the Window -> Welcome to Xcode menu option to display it. Within this
window, click on the option to Create a new Xcode project. This selection will display the main Xcode project
window together with the project template panel, where we can select a template matching the type of project we
want to develop. Within this window, select the iOS tab so that the template panel appears as follows:

12

A Guided Tour of Xcode 14

Figure 4-2
The toolbar on the window’s top edge allows for selecting the target platform, providing options to develop
an app for iOS, watchOS, tvOS, or macOS. An option is also available for creating multiplatform apps using
SwiftUI.

Begin by making sure that the App option located beneath iOS is selected. The main panel contains a list of
templates available to use as the basis for an app. The options available are as follows:

• App – This creates a basic template for an app containing a single view and corresponding view controller.

• Document App – Creates a project intended to use the iOS document browser. The document browser
provides a visual environment where the user can navigate and manage local and cloud-based files from
within an iOS app.

• Game – Creates a project configured to take advantage of Sprite Kit, Scene Kit, OpenGL ES, and Metal for
developing 2D and 3D games.

• Augmented Reality App – Creates a template project pre-configured to use ARKit to integrate augmented
reality support into an iOS app.

• Sticker Pack App – Allows a sticker pack app to be created and sold within the Message App Store. Sticker
pack apps allow additional images to be made available for inclusion in messages sent via the iOS Messages
app.

• iMessage App – iMessage apps are extensions to the built-in iOS Messages app that allow users to send
interactive messages, such as games, to other users. Once created, iMessage apps are available through the
Message App Store.

• Safari Extension App - This option creates a project to be used as the basis for developing an extension for
the Safari web browser.

For our simple example, we are going to use the App template, so select this option from the new project window
and click Next to configure some more project options:

13

A Guided Tour of Xcode 14

Figure 4-3
On this screen, enter a Product name for the app that will be created, in this case, “HelloWorld”. Next, choose
your account from the Team menu if you have already signed up for the Apple developer program. Otherwise,
leave the option set to None.

The text entered into the Organization Name field will be placed within the copyright comments of all the source
files that make up the project.

The company identifier is typically the reverse URL of your website, for example, “com.mycompany”. This
identifier will be used when creating provisioning profiles and certificates to enable the testing of advanced
features of iOS on physical devices. It also uniquely identifies the app within the Apple App Store when it is
published.

When developing an app in Xcode, the user interface can be designed using either Storyboards or SwiftUI.
For this book, we will be using Storyboards, so make sure that the Interface menu is set to Storyboard. SwiftUI
development is covered in my SwiftUI Essentials - iOS 16 Edition book.

Apple supports two programming languages for the development of iOS apps in the form of Objective-C and
Swift. While it is still possible to program using the older Objective-C language, Apple considers Swift to be the
future of iOS development. Therefore, all the code examples in this book are written in Swift, so make sure that
the Language menu is set accordingly before clicking on the Next button.

On the final screen, choose a location on the file system for the new project to be created. This panel also
allows placing the project under Git source code control. Source code control systems such as Git allow different
project revisions to be managed and restored, and for changes made over the project’s development lifecycle to
be tracked. Since this is typically used for larger projects, or those involving more than one developer, this option
can be turned off for this and the other projects created in the book.

Once the new project has been created, the main Xcode window will appear as illustrated in Figure 4-4:

14

A Guided Tour of Xcode 14

Figure 4-4
Before proceeding, we should take some time to look at what Xcode has done for us. First, it has created a group
of files we will need to complete our app. Some of these are Swift source code files, where we will enter the code
to make our app work.

In addition, the Main storyboard file is the save file used by the Interface Builder tool to hold the user interface
design we will create. A second Interface Builder file named LaunchScreen will also have been added to the
project. This file contains the user interface design for the screen that appears on the device while the app is
loading.

Also present will be one or more Property List files that contain key/value pair information. For example, the Info.
plist file contains resource settings relating to items such as the language, executable name, and app identifier
and, as will be shown in later chapters, is the location where several properties are stored to configure the
capabilities of the project (for example to configure access to the user’s current geographical location). The list
of files is displayed in the Project Navigator located in the left-hand panel of the main Xcode project window. In
addition, a toolbar at the top of this panel contains options to display other information, such as build and run
history, breakpoints, and compilation errors.

By default, the center panel of the window shows a general summary of the settings for the app project. This
summary includes the identifier specified during the project creation process and the target devices. In addition,
options are also provided to configure the orientations of the device that are to be supported by the app, together
with opportunities to upload icons (the small images the user selects on the device screen to launch the app) and
launch screen images (displayed to the user while the app loads) for the app.

The Signing section allows selecting an Apple identity when building the app. This identity ensures that the
app is signed with a certificate when it is compiled. If you have registered your Apple ID with Xcode using the
Preferences screen outlined in the previous chapter, select that identity now using the Team menu. Testing apps
on physical devices will not be possible if no team is selected, though the simulator environment may still be

15

A Guided Tour of Xcode 14

used.

The Supported Destinations and Minimum Deployment sections of the screen also include settings to specify
the device types and iOS versions on which the completed app is intended to run, as shown in Figure 4-5:

Figure 4-5
The iOS ecosystem now includes a variety of devices and screen sizes. When developing a project, it is possible
to indicate that it is intended to target either the iPhone or iPad family of devices. With the gap between iPad
and iPhone screen sizes now reduced by the introduction of the Pro range of devices, it no longer makes sense
to create a project that targets just one device family. A much more sensible approach is to create a single project
that addresses all device types and screen sizes. As will be shown in later chapters, Xcode 14 and iOS 16 include
several features designed specifically to make the goal of universal app projects easy to achieve. With this in
mind, ensure that the destination list at least includes the iPhone and iPad.

In addition to the General screen, tabs are provided to view and modify additional settings consisting of Signing
& Capabilities, Resource Tags, Info, Build Settings, Build Phases, and Build Rules.

As we progress through subsequent chapters of this book, we will explore some of these other configuration
options in greater detail. To return to the project settings panel at any future time, ensure the Project Navigator
is selected in the left-hand panel and select the top item (the app name) in the navigator list.

When a source file is selected from the list in the navigator panel, the contents of that file will appear in the
center panel, where it may then be edited.

4.2 Creating the iOS App User Interface
Simply by the very nature of the environment in which they run, iOS apps are typically visually oriented.
Therefore, a vital component of any app involves a user interface through which the user will interact with the
app and, in turn, receive feedback. While it is possible to develop user interfaces by writing code to create and
position items on the screen, this is a complex and error-prone process. In recognition of this, Apple provides a
tool called Interface Builder, which allows a user interface to be visually constructed by dragging and dropping
components onto a canvas and setting properties to configure the appearance and behavior of those components.

As mentioned in the preceding section, Xcode pre-created several files for our project, one of which has a
.storyboard filename extension. This is an Interface Builder storyboard save file, and the file we are interested
in for our HelloWorld project is named Main.storyboard. To load this file into Interface Builder, select the Main
item in the list in the left-hand panel. Interface Builder will subsequently appear in the center panel, as shown
in Figure 4-6:

16

A Guided Tour of Xcode 14

Figure 4-6
In the center panel, a visual representation of the app’s user interface is displayed. Initially, this consists solely of
a View Controller (UIViewController) containing a single View (UIView) object. This layout was added to our
design by Xcode when we selected the App template option during the project creation phase. We will construct
the user interface for our HelloWorld app by dragging and dropping user interface objects onto this UIView
object. Designing a user interface consists primarily of dragging and dropping visual components onto the
canvas and setting a range of properties. The user interface components are accessed from the Library panel,
which is displayed by clicking on the Library button in the Xcode toolbar, as indicated in Figure 4-7:

Figure 4-7
This button will display the UI components used to construct our user interface. The layout of the items in the
library may also be switched from a single column of objects with descriptions to multiple columns without
descriptions by clicking on the button located in the top right-hand corner of the panel and to the right of the
search box.

17

A Guided Tour of Xcode 14

Figure 4-8
By default, the library panel will disappear either after an item has been dragged onto the layout or a click
is performed outside of the panel. Hold the Option key while clicking on the required Library item to keep
the panel visible in this mode. Alternatively, displaying the Library panel by clicking on the toolbar button
highlighted in Figure 4-7 while holding down the Option key will cause the panel to stay visible until it is
manually closed.

To edit property settings, we need to display the Xcode right-hand panel (if it is not already shown). This panel
is referred to as the Utilities panel and can be displayed and hidden by clicking the right-hand button in the
Xcode toolbar:

Figure 4-9
The Utilities panel, once displayed, will appear as illustrated in Figure 4-10:

18

A Guided Tour of Xcode 14

Figure 4-10
Along the top edge of the panel is a row of buttons that change the settings displayed in the upper half of the
panel. By default, the File Inspector is typically shown. Options are also provided to display quick help, the
Identity Inspector, History Inspector, Attributes Inspector, Size Inspector, and Connections Inspector. Take some
time to review each of these selections to familiarize yourself with the configuration options each provides.
Throughout the remainder of this book, extensive use of these inspectors will be made.

4.3 Changing Component Properties
With the property panel for the View selected in the main panel, we will begin our design work by changing the
background color of this view. Start by ensuring the View is selected and that the Attributes Inspector (View ->
Inspectors -> Attributes) is displayed in the Utilities panel. Next, click on the current property setting next to the
Background setting and select the Custom option from the popup menu to display the Colors dialog. Finally,
choose a visually pleasing color using the color selection tool and close the dialog. You will now notice that the
view window has changed from white to the new color selection.

4.4 Adding Objects to the User Interface
The next step is to add a Label object to our view. To achieve this, display the Library panel as shown in Figure
4-7 above and either scroll down the list of objects in the Library panel to locate the Label object or, as illustrated
in Figure 4-11, enter Label into the search box beneath the panel:

19

A Guided Tour of Xcode 14

Figure 4-11
After locating the Label object, click on it and drag it to the center of the view so that the vertical and horizontal
center guidelines appear. Once it is in position, release the mouse button to drop it at that location. We have
now added an instance of the UILabel class to the scene. Cancel the Library search by clicking on the “x” button
on the right-hand edge of the search field. Next, select the newly added label and stretch it horizontally so that
it is approximately three times the current width. With the Label still selected, click on the centered alignment
button in the Attributes Inspector (View -> Inspectors -> Attributes) to center the text in the middle of the label
view:

Figure 4-12
Double-click on the text in the label that currently reads “Label” and type in “Hello World”. Locate the font
setting property in the Attributes Inspector panel and click the “T” button to display the font selection menu

20

A Guided Tour of Xcode 14

next to the font name. Change the Font setting from System – System to Custom and choose a larger font setting,
for example, a Georgia bold typeface with a size of 24, as shown in Figure 4-13:

Figure 4-13
The final step is to add some layout constraints to ensure that the label remains centered within the containing
view regardless of the size of the screen on which the app ultimately runs. This involves using the Auto Layout
capabilities of iOS, a topic that will be covered extensively in later chapters. For this example, select the Label
object, display the Align menu as shown in Figure 4-14, and enable both the Horizontally in Container and
Vertically in Container options with offsets of 0 before clicking on the Add 2 Constraints button.

Figure 4-14
At this point, your View window will hopefully appear as outlined in Figure 4-15 (allowing, of course, for
differences in your color and font choices).

21

A Guided Tour of Xcode 14

Figure 4-15
Before building and running the project, it is worth taking a short detour to look at the Xcode Document Outline
panel. This panel appears by default to the left of the Interface Builder panel. It is controlled by the small button
in the bottom left-hand corner (indicated by the arrow in Figure 4-16) of the Interface Builder panel.

Figure 4-16
When displayed, the document outline shows a hierarchical overview of the elements that make up a user
interface layout, together with any constraints applied to views in the layout.

Figure 4-17

22

A Guided Tour of Xcode 14

4.5 Building and Running an iOS App in Xcode
Before an app can be run, it must first be compiled. Once successfully compiled, it may be run either within a
simulator or on a physical iPhone or iPad device. For this chapter, however, it is sufficient to run the app in the
simulator.

Within the main Xcode project window, make sure that the menu located in the top left-hand corner of the
window (marked C in Figure 4-18) has the iPhone 14 simulator option selected:

Figure 4-18
Click on the Run toolbar button (A) to compile the code and run the app in the simulator. The small panel in
the center of the Xcode toolbar (D) will report the progress of the build process together with any problems or
errors that cause the build process to fail. Once the app is built, the simulator will start, and the HelloWorld app
will run:

Figure 4-19
Note that the user interface appears as designed in the Interface Builder tool. Click on the stop button (B),
change the target menu from iPhone 14 to iPad Air 2, and rerun the app. Once again, the label will appear
centered on the screen even with the larger screen size. Finally, verify that the layout is correct in landscape
orientation by using the Device -> Rotate Left menu option. This indicates that the Auto Layout constraints are
working and that we have designed a universal user interface for the project.

4.6 Running the App on a Physical iOS Device
Although the Simulator environment provides a valuable way to test an app on various iOS device models, it is
important to also test on a physical iOS device.

If you have entered your Apple ID in the Xcode preferences screen as outlined in the previous chapter and selected
a development team for the project, it is possible to run the app on a physical device simply by connecting it to

23

A Guided Tour of Xcode 14

the development Mac system with a USB cable and selecting it as the run target within Xcode.

With a device connected to the development system and an app ready for testing, refer to the device menu
in the Xcode toolbar. There is a reasonable chance that this will have defaulted to one of the iOS Simulator
configurations. Switch to the physical device by selecting this menu and changing it to the device name, as
shown in Figure 4-20:

Figure 4-20
If the menu indicates that developer mode is disabled on the device, navigate to the Privacy & Security screen
in the device’s Settings app, locate the Developer Mode setting, and enable it. You will then need to restart the
device. After the device restarts, a dialog will appear in which you will need to turn on developer mode. After
entering your security code, the device will be ready for use with Xcode.

With the target device selected, ensure the device is unlocked and click on the run button, at which point Xcode
will install and launch the app. As will be discussed later in this chapter, a physical device may also be configured
for network testing, whereby apps are installed and tested via a network connection without needing to have the
device connected by a USB cable.

4.7 Managing Devices and Simulators
Currently connected iOS devices and the simulators configured for use with Xcode can be viewed and managed
using the Xcode Devices window, accessed via the Window -> Devices and Simulators menu option. Figure 4-21,
for example, shows a typical Device screen on a system where an iPhone has been detected:

Figure 4-21

24

A Guided Tour of Xcode 14

A wide range of simulator configurations are set up within Xcode by default and can be viewed by selecting the
Simulators button at the top of the left-hand panel. Other simulator configurations can be added by clicking on
the + button in the window’s bottom left-hand corner. Once selected, a dialog will appear, allowing the simulator
to be configured in terms of the device model, iOS version, and name.

4.8 Enabling Network Testing
In addition to testing an app on a physical device connected to the development system via a USB cable, Xcode
also supports testing via a network connection. This option is enabled on a per device basis within the Devices
and Simulators dialog introduced in the previous section. With the device connected via the USB cable, display
this dialog, select the device from the list and enable the Connect via network option as highlighted in Figure
4-22:

Figure 4-22
Once the setting has been enabled, the device may continue to be used as the run target for the app even when
the USB cable is disconnected. The only requirement is that the device and development computer be connected
to the same WiFi network. Assuming this requirement has been met, clicking the run button with the device
selected in the run menu will install and launch the app over the network connection.

4.9 Dealing with Build Errors
If for any reason, a build fails, the status window in the Xcode toolbar will report that an error has been detected
by displaying “Build” together with the number of errors detected and any warnings. In addition, the left-hand
panel of the Xcode window will update with a list of the errors. Selecting an error from this list will take you to
the location in the code where corrective action needs to be taken.

4.10 Monitoring Application Performance
Another useful feature of Xcode is the ability to monitor the performance of an application while it is running,
either on a device or simulator or within the Live Preview canvas. This information is accessed by displaying the
Debug Navigator.

When Xcode is launched, the project navigator is displayed in the left-hand panel by default. Along the top of
this panel is a bar with various of other options. The seventh option from the left displays the debug navigator
when selected, as illustrated in Figure 4-23. When displayed, this panel shows real-time statistics relating to the
performance of the currently running application such as memory, CPU usage, disk access, energy efficiency,
network activity, and iCloud storage access.

25

A Guided Tour of Xcode 14

Figure 4-23
When one of these categories is selected, the main panel (Figure 4-24) updates to provide additional information
about that particular aspect of the application’s performance:

Figure 4-24
Yet more information can be obtained by clicking on the Profile in Instruments button in the top right-hand
corner of the panel.

4.11 Exploring the User Interface Layout Hierarchy
Xcode also provides an option to break the user interface layout out into a rotatable 3D view that shows how the
view hierarchy for a user interface is constructed. This can be particularly useful for identifying situations where
one view instance is obscured by another appearing on top of it or a layout is not appearing as intended. This is
also useful for learning how iOS works behind the scenes to construct a layout if only to appreciate how much
work iOS is saving us from having to do.

To access the view hierarchy in this mode, the app needs to be running on a device or simulator. Once the app
is running, click on the Debug View Hierarchy button indicated in Figure 4-25:

26

A Guided Tour of Xcode 14

Figure 4-25
Once activated, a 3D “exploded” view of the layout will appear. Clicking and dragging within the view will rotate
the hierarchy allowing the layers of views that make up the user interface to be inspected:

Figure 4-26
Moving the slider in the bottom left-hand corner of the panel will adjust the spacing between the different views
in the hierarchy. The two markers in the right-hand slider (Figure 4-27) may also be used to narrow the range
of views visible in the rendering. This can be useful, for example, to focus on a subset of views located in the
middle of the hierarchy tree:

Figure 4-27
While the hierarchy is being debugged, the left-hand panel will display the entire view hierarchy tree for the

27

A Guided Tour of Xcode 14

layout as shown in Figure 4-28 below:

Figure 4-28
Selecting an object in the hierarchy tree will highlight the corresponding item in the 3D rendering and vice
versa. The far right-hand panel will also display the Object Inspector populated with information about the
currently selected object. Figure 4-29, for example, shows part of the Object Inspector panel while a Label view
is selected within the view hierarchy.

Figure 4-29

4.12 Summary
Apps are primarily created within the Xcode development environment. This chapter has provided a basic
overview of the Xcode environment and worked through creating a straightforward example app. Finally, a brief
overview was provided of some of the performance monitoring features in Xcode 14. In subsequent chapters of
the book, many more features and capabilities of Xcode and Interface Builder will be covered.

29

Chapter 5

5. An Introduction to Xcode 14
Playgrounds
Before introducing the Swift programming language in the following chapters, it is first worth learning
about a feature of Xcode known as Playgrounds. This is a feature of Xcode designed to make learning Swift
and experimenting with the iOS SDK much easier. The concepts covered in this chapter can be used when
experimenting with many of the introductory Swift code examples in the following chapters.

5.1 What is a Playground?
A playground is an interactive environment where Swift code can be entered and executed, with the results
appearing in real time. This makes an ideal environment in which to learn the syntax of Swift and the visual
aspects of iOS app development without the need to work continuously through the edit/compile/run/debug
cycle that would ordinarily accompany a standard Xcode iOS project. With support for rich text comments,
playgrounds are also a good way to document code for future reference or as a training tool.

5.2 Creating a New Playground
To create a new Playground, start Xcode and select the File -> New -> Playground… menu option. Choose the
iOS option on the resulting panel and select the Blank template.

The Blank template is useful for trying out Swift coding. The Single View template, on the other hand, provides
a view controller environment for trying out code that requires a user interface layout. The game and map
templates provide preconfigured playgrounds that allow you to experiment with the iOS MapKit and SpriteKit
frameworks, respectively.

On the next screen, name the playground LearnSwift and choose a suitable file system location into which the
playground should be saved before clicking on the Create button.

Once the playground has been created, the following screen will appear ready for Swift code to be entered:

Figure 5-1
The panel on the left-hand side of the window (marked A in Figure 5-1) is the Navigator panel which provides
access to the folders and files that make up the playground. To hide and show this panel, click on the button

30

An Introduction to Xcode 14 Playgrounds

indicated by the leftmost arrow. The center panel (B) is the playground editor where the lines of Swift code
are entered. The right-hand panel (C) is referred to as the results panel and is where the results of each Swift
expression entered into the playground editor panel are displayed. The tab bar (D) will contain a tab for each file
currently open within the playground editor. To switch to a different file, simply select the corresponding tab.
To close an open file, hover the mouse pointer over the tab and click on the “X” button when it appears to the
left of the file name.

The button marked by the right-most arrow in the above figure is used to hide and show the Inspectors panel
(marked A in Figure 5-2 below), where various properties relating to the playground may be configured.
Clicking and dragging the bar (B) upward will display the Debug Area (C), where diagnostic output relating to
the playground will appear when the code is executed:

Figure 5-2
By far, the quickest way to gain familiarity with the playground environment is to work through some simple
examples.

5.3 A Swift Playground Example
Perhaps the simplest of examples in any programming language (that at least does something tangible) is to
write some code to output a single line of text. Swift is no exception to this rule so, within the playground
window, begin adding another line of Swift code so that it reads as follows:
import UIKit

var greeting = "Hello, playground"

print("Welcome to Swift")

All that the additional line of code does is make a call to the built-in Swift print function, which takes as a
parameter a string of characters to be displayed on the console. Those familiar with other programming
languages will note the absence of a semi-colon at the end of the line of code. In Swift, semi-colons are optional
and generally only used as a separator when multiple statements occupy the same line of code.

Note that although some extra code has been entered, nothing yet appears in the results panel. This is because
the code has yet to be executed. One option to run the code is to click on the Execute Playground button located

31

An Introduction to Xcode 14 Playgrounds

in the bottom left-hand corner of the main panel, as indicated by the arrow in Figure 5-3:

Figure 5-3
When clicked, this button will execute all the code in the current playground page from the first line of code to
the last. Another option is to execute the code in stages using the run button located in the margin of the code
editor, as shown in Figure 5-4:

Figure 5-4
This button executes the line numbers with the shaded blue background, including the line on which the button
is currently positioned. In the above figure, for example, the button will execute lines 1 through 3 and stop.

The position of the run button can be moved by hovering the mouse pointer over the line numbers in the editor.
In Figure 5-5, for example, the run button is now positioned on line 5 and will execute lines 4 and 5 when
clicked. Note that lines 1 to 3 are no longer highlighted in blue, indicating that these have already been executed
and are not eligible to be run this time:

Figure 5-5
This technique provides an easy way to execute the code in stages, making it easier to understand how the code
functions and to identify problems in code execution.

To reset the playground so that execution can be performed from the start of the code, simply click on the stop
button as indicated in Figure 5-6:

Figure 5-6

32

An Introduction to Xcode 14 Playgrounds

Using this incremental execution technique, execute lines 1 through 3 and note that output now appears in the
results panel, indicating that the variable has been initialized:

Figure 5-7
Next, execute the remaining lines up to and including line 5 at which point the “Welcome to Swift” output
should appear both in the results panel and debug area:

Figure 5-8

5.4 Viewing Results
Playgrounds are particularly useful when working and experimenting with Swift algorithms. This can be useful
when combined with the Quick Look feature. Remaining within the playground editor, enter the following lines
of code beneath the existing print statement:
var x = 10

for index in 1...20 {

 let y = index * x

 x -= 1

 print(y)

}

This expression repeats a loop 20 times, performing arithmetic expressions on each iteration of the loop. Once
the code has been entered into the editor, click on the run button positioned at line 13 to execute these new lines
of code. The playground will execute the loop and display in the results panel the number of times the loop was
performed. More interesting information, however, may be obtained by hovering the mouse pointer over the
results line so that two additional buttons appear, as shown in Figure 5-9:

33

An Introduction to Xcode 14 Playgrounds

Figure 5-9
Hovering over the output will display the Quick Look button on the far right, which, when selected, will show a
popup panel displaying the results as shown in Figure 5-10:

Figure 5-10
The left-most button is the Show Result button which, when selected, displays the results in-line with the code:

Figure 5-11

34

An Introduction to Xcode 14 Playgrounds

5.5 Adding Rich Text Comments
Rich text comments allow the code within a playground to be documented in a way that is easy to format and
read. A single line of text can be marked as being rich text by preceding it with a //: marker. For example:
//: This is a single line of documentation text

Blocks of text can be added by wrapping the text in /*: and */ comment markers:
/*:

This is a block of documentation text that is intended

to span multiple lines

*/

The rich text uses the Markup language and allows text to be formatted using a lightweight and easy-to-use
syntax. A heading, for example, can be declared by prefixing the line with a ‘#’ character, while text is displayed
in italics when wrapped in ‘*’ characters. Bold text, on the other hand, involves wrapping the text in ‘**’ character
sequences. It is also possible to configure bullet points by prefixing each line with a single ‘*’. Among the many
other features of Markup is the ability to embed images and hyperlinks into the content of a rich text comment.

To see rich text comments in action, enter the following markup content into the playground editor immediately
after the print(“Welcome to Swift”) line of code:
/*:

Welcome to Playgrounds

This is your *first* playground which is intended to demonstrate:

* The use of **Quick Look**

* Placing results **in-line** with the code

*/

As the comment content is added, it is said to be displayed in raw markup format. To display in rendered markup
format, either select the Editor -> Show Rendered Markup menu option or enable the Render Documentation
option located under Playground Settings in the Inspector panel (marked A in Figure 5-2). If the Inspector panel
is not currently visible, click on the button indicated by the right-most arrow in Figure 5-1 to display it. Once
rendered, the above rich text should appear as illustrated in Figure 5-12:

Figure 5-12
Detailed information about the Markup syntax can be found online at the following URL:

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/
index.html

https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html
https://developer.apple.com/library/content/documentation/Xcode/Reference/xcode_markup_formatting_ref/index.html

35

An Introduction to Xcode 14 Playgrounds

5.6 Working with Playground Pages
A playground can consist of multiple pages, with each page containing its own code, resources and, rich text
comments. So far, the playground used in this chapter contains a single page. Add a page to the playground
now by selecting the LearnSwift entry at the top of the Navigator panel, right-clicking, and selecting the New
Playground Page menu option. If the Navigator panel is not currently visible, click the button indicated by the
left-most arrow in Figure 5-1 above to display it. Note that two pages are now listed in the Navigator named
“Untitled Page” and “Untitled Page 2”. Select and then click a second time on the “Untitled Page 2” entry so that
the name becomes editable and change the name to UIKit Examples as outlined in Figure 5-13:

Figure 5-13
Note that the newly added page has Markdown links which, when clicked, navigate to the previous or next page
in the playground.

5.7 Working with UIKit in Playgrounds
The playground environment is not restricted to simple Swift code statements. Much of the power of the iOS
SDK is also available for experimentation within a playground.

When working with UIKit within a playground page, we first need to import the iOS UIKit Framework. The
UIKit Framework contains most of the classes required to implement user interfaces for iOS apps and is an area
that will be covered in considerable detail throughout the book. A compelling feature of playgrounds is that it is
possible to work with UIKit and many other frameworks that comprise the iOS SDK.

The following code, for example, imports the UIKit Framework, creates a UILabel instance, and sets color, text,
and font properties on it:
import UIKit

let myLabel = UILabel(frame: CGRect(x: 0, y: 0, width: 200, height: 50))

myLabel.backgroundColor = UIColor.red

myLabel.text = "Hello Swift"

myLabel.textAlignment = .center

myLabel.font = UIFont(name: "Georgia", size: 24)

myLabel

Enter this code into the playground editor on the UIKit Examples page (the existing code can be removed) and
run the code. This code provides an excellent demonstration of how the Quick Look feature can be helpful.

36

An Introduction to Xcode 14 Playgrounds

Each line of the example Swift code configures a different aspect of the appearance of the UILabel instance. For
example, clicking the Quick Look button for the first line of code will display an empty view (since the label
exists but has yet to be given any visual attributes). Clicking on the Quick Look button in the line of code which
sets the background color, on the other hand, will show the red label:

Figure 5-14
Similarly, the quick look view for the line where the text property is set will show the red label with the “Hello
Swift” text left aligned:

Figure 5-15
The font setting quick look view, on the other hand, displays the UILabel with centered text and the larger
Georgia font:

Figure 5-16

5.8 Adding Resources to a Playground
Another helpful feature of playgrounds is the ability to bundle and access resources such as image files in a
playground. For example, within the Navigator panel, click on the right-facing arrow (known as a disclosure
arrow) to the left of the UIKit Examples page entry to unfold the page contents (Figure 5-17) and note the
presence of a folder named Resources:

Figure 5-17

37

An Introduction to Xcode 14 Playgrounds

If you have not already done so, download and unpack the code samples archive from the following URL:

https://www.ebookfrenzy.com/retail/ios16/

Open a Finder window, navigate to the playground_images folder within the code samples folder, and drag
and drop the image file named waterfall.png onto the Resources folder beneath the UIKit Examples page in the
Playground Navigator panel:

Figure 5-18
With the image added to the resources, add code to the page to create an image object and display the waterfall
image on it:
let image = UIImage(named: "waterfall")

With the code added, run the new statement and use either the Quick Look or inline option to view the results
of the code:

Figure 5-19

https://www.ebookfrenzy.com/retail/ios16/

38

An Introduction to Xcode 14 Playgrounds

5.9 Working with Enhanced Live Views
So far in this chapter, all UIKit examples have presented static user interface elements using the Quick Look
and inline features. It is, however, also possible to test dynamic user interface behavior within a playground
using the Xcode Enhanced Live Views feature. First, create a new page within the playground named Live View
Example to demonstrate live views in action. Then, within the newly added page, remove the existing lines of
Swift code before adding import statements for the UIKit Framework and an additional playground module
named PlaygroundSupport:
import UIKit

import PlaygroundSupport

The PlaygroundSupport module provides several useful playground features, including a live view within the
playground timeline.

Beneath the import statements, add the following code:
import UIKit

import PlaygroundSupport

let container = UIView(frame: CGRect(x: 0,y: 0,width: 200,height: 200))
container.backgroundColor = UIColor.white
let square = UIView(frame: CGRect(x: 50,y: 50,width: 100,height: 100))
square.backgroundColor = UIColor.red

container.addSubview(square)

UIView.animate(withDuration: 5.0, animations: {
 square.backgroundColor = UIColor.blue
 let rotation = CGAffineTransform(rotationAngle: 3.14)
 square.transform = rotation
})

The code creates a UIView object as a container view and assigns it a white background color. A smaller view is
then drawn and positioned in the center of the container view and colored red. The second view is then added
as a child of the container view. Animation is then used to change the smaller view’s color to blue and rotate it
360 degrees. If you are new to iOS programming, rest assured that these areas will be covered in detail in later
chapters. At this point, the code is provided to highlight the capabilities of live views.

Once the code has been executed, clicking on any of the Quick Look buttons will show a snapshot of the views
at each stage in the code sequence. None of the quick-look views, however, show the dynamic animation.
Therefore, the live view playground feature will be necessary to see how the animation code works.

The PlaygroundSupport module includes a class named PlaygroundPage that allows playground code to interact
with the pages that make up a playground. This is achieved through a range of methods and properties of the
class, one of which is the current property. This property, in turn, provides access to the current playground page.
To execute the live view within the playground timeline, the liveView property of the current page needs to be
set to our new container. To enable the timeline, enable the Xcode Editor -> Live View menu option as shown
in Figure 5-20:

39

An Introduction to Xcode 14 Playgrounds

Figure 5-20
Once the timeline is enabled, add the code to assign the container to the live view of the current page as follows:
import UIKit

import PlaygroundSupport

let container = UIView(frame: CGRect(x: 0,y: 0,width: 200,height: 200))

PlaygroundPage.current.liveView = container

container.backgroundColor = UIColor.white

let square = UIView(frame: CGRect(x: 50,y: 50,width: 100,height: 100))

square.backgroundColor = UIColor.red

container.addSubview(square)

UIView.animate(withDuration: 5.0, animations: {

 square.backgroundColor = UIColor.blue

 let rotation = CGAffineTransform(rotationAngle: 3.14)

 square.transform = rotation

})

Once the call has been added, re-execute the code, at which point the views should appear in the timeline
(Figure 5-21). During the 5-second animation duration, the red square should rotate through 360 degrees while
gradually changing color to blue:

Figure 5-21

40

An Introduction to Xcode 14 Playgrounds

To repeat the execution of the code on the playground page, click on the stop button highlighted in Figure 5-6
to reset the playground and change the stop button into the run button (Figure 5-3). Then, click the run button
to repeat the execution.

5.10 When to Use Playgrounds
Swift Playgrounds provide an ideal environment for learning to program using the Swift programming language,
and the use of playgrounds in the Swift introductory chapters is recommended.

It is also essential to remember that playgrounds will remain useful long after the basics of Swift have been
learned and will become increasingly useful when moving on to more advanced areas of iOS development.

The iOS SDK is a vast collection of frameworks and classes. As a result, it is not unusual for even experienced
developers to experiment with unfamiliar aspects of iOS development before adding code to a project.
Historically this has involved creating a temporary iOS Xcode project and then repeatedly looping through the
somewhat cumbersome edit, compile, and run cycle to arrive at a programming solution. Rather than fall into
this habit, consider having a playground on standby to conduct experiments during your project development
work.

5.11 Summary
This chapter has introduced the concept of playgrounds. Playgrounds provide an environment in which Swift
code can be entered, and the results of that code are viewed dynamically. This provides an excellent environment
for learning the Swift programming language and experimenting with many of the classes and APIs included in
the iOS SDK without creating Xcode projects and repeatedly editing, compiling, and running code.

41

Chapter 6

6. Swift Data Types, Constants and
Variables
Prior to the introduction of iOS 8, the stipulated programming language for the development of iOS applications
was Objective-C. When Apple announced iOS 8, however, the company also introduced an alternative to
Objective-C in the form of the Swift programming language.

Due entirely to the popularity of iOS, Objective-C had become one of the more widely used programming
languages. With origins firmly rooted in the 40-year-old C Programming Language, however, and despite recent
efforts to modernize some aspects of the language syntax, Objective-C was beginning to show its age.

Swift, on the other hand, is a relatively new programming language designed specifically to make programming
easier, faster and less prone to programmer error. Starting with a clean slate and no burden of legacy, Swift is a
new and innovative language with which to develop applications for iOS, iPadOS, macOS, watchOS and tvOS
with the advantage that much of the syntax will be familiar to those with experience of other programming
languages.

The next several chapters will provide an overview and introduction to Swift programming. The intention of
these chapters is to provide enough information so that you can begin to confidently program using Swift. For
an exhaustive and in-depth guide to all the features, intricacies and capabilities of Swift, some time spent reading
Apple’s excellent book entitled “The Swift Programming Language” (available free of charge from within the
Apple Books app) is strongly recommended.

6.1 Using a Swift Playground
Both this and the following few chapters are intended to introduce the basics of the Swift programming language.
As outlined in the previous chapter, entitled “An Introduction to Xcode 14 Playgrounds” the best way to learn
Swift is to experiment within a Swift playground environment. Before starting this chapter, therefore, create a
new playground and use it to try out the code in both this and the other Swift introduction chapters that follow.

6.2 Swift Data Types
When we look at the different types of software that run on computer systems and mobile devices, from financial
applications to graphics intensive games, it is easy to forget that computers are really just binary machines.
Binary systems work in terms of 0 and 1, true or false, set and unset. All the data sitting in RAM, stored on
disk drives and flowing through circuit boards and buses are nothing more than sequences of 1s and 0s. Each
1 or 0 is referred to as a bit and bits are grouped together in blocks of 8, each group being referred to as a byte.
When people talk about 32-bit and 64-bit computer systems they are talking about the number of bits that can
be handled simultaneously by the CPU bus. A 64-bit CPU, for example, is able to handle data in 64-bit blocks,
resulting in faster performance than a 32-bit based system.

Humans, of course, don’t think in binary. We work with decimal numbers, letters and words. In order for a
human to easily (easily being a subjective term in this context) program a computer, some middle ground
between human and computer thinking is needed. This is where programming languages such as Swift come
into play. Programming languages allow humans to express instructions to a computer in terms and structures
we understand, and then compile that down to a format that can be executed by a CPU.

42

Swift Data Types, Constants and Variables

One of the fundamentals of any program involves data, and programming languages such as Swift define a set
of data types that allow us to work with data in a format we understand when programming. For example, if we
want to store a number in a Swift program, we could do so with syntax similar to the following:
var mynumber = 10

In the above example, we have created a variable named mynumber and then assigned to it the value of 10. When
we compile the source code down to the machine code used by the CPU, the number 10 is seen by the computer
in binary as:
1010

Now that we have a basic understanding of the concept of data types and why they are necessary we can take a
closer look at some of the more commonly used data types supported by Swift.

6.2.1 Integer Data Types
Swift integer data types are used to store whole numbers (in other words a number with no decimal places).
Integers can be signed (capable of storing positive, negative and zero values) or unsigned (positive and zero
values only).

Swift provides support for 8, 16, 32 and 64-bit integers (represented by the Int8, Int16, Int32 and Int64 types
respectively). The same variants are also available for unsigned integers (UInt8, UInt16, UInt32 and UInt64).

In general, Apple recommends using the Int data type rather than one of the above specifically sized data types.
The Int data type will use the appropriate integer size for the platform on which the code is running.

All integer data types contain bounds properties which can be accessed to identify the minimum and maximum
supported values of that particular type. The following code, for example, outputs the minimum and maximum
bounds for the 32-bit signed integer data type:
print("Int32 Min = \(Int32.min) Int32 Max = \(Int32.max)")

When executed, the above code will generate the following output:
Int32 Min = -2147483648 Int32 Max = 2147483647

6.2.2 Floating Point Data Types
The Swift floating point data types are able to store values containing decimal places. For example, 4353.1223
would be stored in a floating-point data type. Swift provides two floating point data types in the form of Float
and Double. Which type to use depends on the size of value to be stored and the level of precision required.
The Double type can be used to store up to 64-bit floating point numbers with a level of precision of 15 decimal
places or greater. The Float data type, on the other hand, is limited to 32-bit floating point numbers and offers
a level of precision as low as 6 decimal places depending on the native platform on which the code is running.
Alternatively, the Float16 type may be used to store 16-bit floating point values. Float16 provides greater
performance at the expense of lower precision.

6.2.3 Bool Data Type
Swift, like other languages, includes a data type for the purpose of handling true or false (1 or 0) conditions. Two
Boolean constant values (true and false) are provided by Swift specifically for working with Boolean data types.

6.2.4 Character Data Type
The Swift Character data type is used to store a single character of rendered text such as a letter, numerical
digit, punctuation mark or symbol. Internally characters in Swift are stored in the form of grapheme clusters.
A grapheme cluster is made of two or more Unicode scalars that are combined to represent a single visible
character.

43

Swift Data Types, Constants and Variables

The following lines assign a variety of different characters to Character type variables:
var myChar1 = "f"

var myChar2 = ":"

var myChar3 = "X"

Characters may also be referenced using Unicode code points. The following example assigns the ‘X’ character
to a variable using Unicode:
var myChar4 = "\u{0058}"

6.2.5 String Data Type
The String data type is a sequence of characters that typically make up a word or sentence. In addition to providing
a storage mechanism, the String data type also includes a range of string manipulation features allowing strings
to be searched, matched, concatenated and modified. Strings in Swift are represented internally as collections
of characters (where a character is, as previously discussed, comprised of one or more Unicode scalar values).

Strings can also be constructed using combinations of strings, variables, constants, expressions, and function
calls using a concept referred to as string interpolation. For example, the following code creates a new string from
a variety of different sources using string interpolation before outputting it to the console:
var userName = "John"

var inboxCount = 25

let maxCount = 100

var message = "\(userName) has \(inboxCount) messages. Message capacity remaining
is \(maxCount - inboxCount) messages."

print(message)

When executed, the code will output the following message:
John has 25 messages. Message capacity remaining is 75 messages.

A multiline string literal may be declared by encapsulating the string within triple quotes as follows:
var multiline = """

 The console glowed with flashing warnings.

 Clearly time was running out.

 "I thought you said you knew how to fly this!" yelled Mary.

 "It was much easier on the simulator" replied her brother,

 trying to keep the panic out of his voice.

"""

print(multiline)

The above code will generate the following output when run:
 The console glowed with flashing warnings.

 Clearly time was running out.

44

Swift Data Types, Constants and Variables

 "I thought you said you knew how to fly this!" yelled Mary.

 "It was much easier on the simulator" replied her brother,

 trying to keep the panic out of his voice.

The amount by which each line is indented within a multiline literal is calculated as the number of characters
by which the line is indented minus the number of characters by which the closing triple quote line is indented.
If, for example, the fourth line in the above example had a 10-character indentation and the closing triple quote
was indented by 5 characters, the actual indentation of the fourth line within the string would be 5 characters.
This allows multiline literals to be formatted tidily within Swift code while still allowing control over indentation
of individual lines.

6.2.6 Special Characters/Escape Sequences
In addition to the standard set of characters outlined above, there is also a range of special characters (also
referred to as escape sequences) available for specifying items such as a new line, tab or a specific Unicode value
within a string. These special characters are identified by prefixing the character with a backslash (a concept
referred to as escaping). For example, the following assigns a new line to the variable named newline:
var newline = "\n"

In essence, any character that is preceded by a backslash is considered to be a special character and is treated
accordingly. This raises the question as to what to do if you actually want a backslash character. This is achieved
by escaping the backslash itself:
var backslash = "\\"

Commonly used special characters supported by Swift are as follows:

• \n - New line

• \r - Carriage return

• \t - Horizontal tab

• \\ - Backslash

• \” - Double quote (used when placing a double quote into a string declaration)

• \’ - Single quote (used when placing a single quote into a string declaration)

• \u{nn} – Single byte Unicode scalar where nn is replaced by two hexadecimal digits representing the Unicode
character.

• \u{nnnn} – Double byte Unicode scalar where nnnn is replaced by four hexadecimal digits representing the
Unicode character.

• \u{nnnnnnnn} – Four-byte Unicode scalar where nnnnnnnn is replaced by eight hexadecimal digits
representing the Unicode character.

6.3 Swift Variables
Variables are essentially locations in computer memory reserved for storing the data used by an application.
Each variable is given a name by the programmer and assigned a value. The name assigned to the variable may
then be used in the Swift code to access the value assigned to that variable. This access can involve either reading
the value of the variable or changing the value. It is, of course, the ability to change the value of variables which
gives them the name variable.

45

Swift Data Types, Constants and Variables

6.4 Swift Constants
A constant is like a variable in that it provides a named location in memory to store a data value. Constants differ
in one significant way in that once a value has been assigned to a constant it cannot subsequently be changed.

Constants are particularly useful if there is a value which is used repeatedly throughout the application code.
Rather than use the value each time, it makes the code easier to read if the value is first assigned to a constant
which is then referenced in the code. For example, it might not be clear to someone reading your Swift code
why you used the value 5 in an expression. If, instead of the value 5, you use a constant named interestRate the
purpose of the value becomes much clearer. Constants also have the advantage that if the programmer needs to
change a widely used value, it only needs to be changed once in the constant declaration and not each time it is
referenced.

As with variables, constants have a type, a name and a value. Unlike variables, however, once a value has been
assigned to a constant, that value cannot subsequently be changed.

6.5 Declaring Constants and Variables
Variables are declared using the var keyword and may be initialized with a value at creation time. If the variable
is declared without an initial value, it must be declared as being optional (a topic which will be covered later in
this chapter). The following, for example, is a typical variable declaration:
var userCount = 10

Constants are declared using the let keyword.
let maxUserCount = 20

For greater code efficiency and execution performance, Apple recommends the use of constants rather than
variables whenever possible.

6.6 Type Annotations and Type Inference
Swift is categorized as a type safe programming language. This essentially means that once the data type of a
variable has been identified, that variable cannot subsequently be used to store data of any other type without
inducing a compilation error. This contrasts to loosely typed programming languages where a variable, once
declared, can subsequently be used to store other data types.

There are two ways in which the type of a constant or variable will be identified. One approach is to use a type
annotation at the point the variable or constant is declared in the code. This is achieved by placing a colon after
the constant or variable name followed by the type declaration. The following line of code, for example, declares
a variable named userCount as being of type Int:
var userCount: Int = 10

In the absence of a type annotation in a declaration, the Swift compiler uses a technique referred to as type
inference to identify the type of the constant or variable. When relying on type inference, the compiler looks to
see what type of value is being assigned to the constant or variable at the point that it is initialized and uses that
as the type. Consider, for example, the following variable and constant declarations:
var signalStrength = 2.231

let companyName = "My Company"

During compilation of the above lines of code, Swift will infer that the signalStrength variable is of type Double
(type inference in Swift defaults to Double for all floating-point numbers) and that the companyName constant
is of type String.

When a constant is declared without a type annotation it must be assigned a value at the point of declaration:

46

Swift Data Types, Constants and Variables

let bookTitle = "iOS 16 App Development Essentials"

If a type annotation is used when the constant is declared, however, the value can be assigned later in the code.
For example:
let bookTitle: String

.

.

if iosBookType {

 bookTitle = "iOS 16 App Development Essentials"

} else {

 bookTitle = "Android Studio Development Essentials"

}

It is important to note that a value may only be assigned to a constant once. A second attempt to assign a value
to a constant will result in a syntax error.

6.7 The Swift Tuple
Before proceeding, now is a good time to introduce the Swift tuple. The tuple is perhaps one of the simplest,
yet most powerful features of the Swift programming language. A tuple is, quite simply, a way to temporarily
group together multiple values into a single entity. The items stored in a tuple can be of any type and there are
no restrictions requiring that those values all be of the same type. A tuple could, for example, be constructed to
contain an Int value, a Double value and a String as follows:
let myTuple = (10, 432.433, "This is a String")

The elements of a tuple can be accessed using a number of different techniques. A specific tuple value can be
accessed simply by referencing the index position (with the first value being at index position 0). The code below,
for example, extracts the string resource (at index position 2 in the tuple) and assigns it to a new string variable:
let myTuple = (10, 432.433, "This is a String")

let myString = myTuple.2

print(myString)

Alternatively, all the values in a tuple may be extracted and assigned to variables or constants in a single statement:
let (myInt, myFloat, myString) = myTuple

This same technique can be used to extract selected values from a tuple while ignoring others by replacing the
values to be ignored with an underscore character. The following code fragment extracts the integer and string
values from the tuple and assigns them to variables, but ignores the floating-point value:
var (myInt, _, myString) = myTuple

When creating a tuple, it is also possible to assign a name to each value:
let myTuple = (count: 10, length: 432.433, message: "This is a String")

The names assigned to the values stored in a tuple may then be used to reference those values in code. For
example, to output the message string value from the myTuple instance, the following line of code could be used:
print(myTuple.message)

Perhaps the most powerful use of tuples is, as will be seen in later chapters, the ability to return multiple values
from a function.

47

Swift Data Types, Constants and Variables

6.8 The Swift Optional Type
The Swift optional data type is a new concept that does not exist in most other programming languages. The
purpose of the optional type is to provide a safe and consistent approach to handling situations where a variable
or constant may not have any value assigned to it.

Variables are declared as being optional by placing a ? character after the type declaration. The following code
declares an optional Int variable named index:
var index: Int?

The variable index can now either have an integer value assigned to it or have nothing assigned to it. Behind the
scenes, and as far as the compiler and runtime are concerned, an optional with no value assigned to it actually
has a value of nil.

An optional can easily be tested (typically using an if statement) to identify whether it has a value assigned to it
as follows:
var index: Int?

if index != nil {

 // index variable has a value assigned to it

} else {

 // index variable has no value assigned to it

}

If an optional has a value assigned to it, that value is said to be “wrapped” within the optional. The value
wrapped in an optional may be accessed using a concept referred to as forced unwrapping. This simply means
that the underlying value is extracted from the optional data type, a procedure that is performed by placing an
exclamation mark (!) after the optional name.

To explore this concept of unwrapping optional types in more detail, consider the following code:
var index: Int?

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if index != nil {

 print(treeArray[index!])

} else {

 print("index does not contain a value")

}

The code simply uses an optional variable to hold the index into an array of strings representing the names
of tree species (Swift arrays will be covered in more detail in the chapter entitled “Working with Array and
Dictionary Collections in Swift”). If the index optional variable has a value assigned to it, the tree name at that
location in the array is printed to the console. Since the index is an optional type, the value has been unwrapped
by placing an exclamation mark after the variable name:
print(treeArray[index!])

Had the index not been unwrapped (in other words the exclamation mark omitted from the above line), the
compiler would have issued an error similar to the following:

48

Swift Data Types, Constants and Variables

Value of optional type ‘Int?’ must be unwrapped to a value of type ‘Int’

As an alternative to forced unwrapping, the value assigned to an optional may be allocated to a temporary
variable or constant using optional binding, the syntax for which is as follows:
if let constantname = optionalName {

}

if var variablename = optionalName {

}

The above constructs perform two tasks. In the first instance, the statement ascertains whether the designated
optional contains a value. Second, in the event that the optional has a value, that value is assigned to the declared
constant or variable and the code within the body of the statement is executed. The previous forced unwrapping
example could, therefore, be modified as follows to use optional binding instead:
var index: Int?

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if let myvalue = index {
 print(treeArray[myvalue])
} else {

 print("index does not contain a value")

}

In this case the value assigned to the index variable is unwrapped and assigned to a temporary (also referred
to as shadow) constant named myvalue which is then used as the index reference into the array. Note that the
myvalue constant is described as temporary since it is only available within the scope of the if statement. Once
the if statement completes execution, the constant will no longer exist. For this reason, there is no conflict in
using the same temporary name as that assigned to the optional. The following is, for example, valid code:
.

.

if let index = index {
 print(treeArray[index])
} else {

.

.

When considering the above example, the use of the temporary value begins to seem redundant. Fortunately,
the Swift development team arrived at the same conclusion and introduced the following shorthand if-let syntax
in Swift 5.7:
var index: Int?

index = 3

49

Swift Data Types, Constants and Variables

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if let index {
 print(treeArray[index])
} else {

 print("index does not contain a value")

}

Using this approach it is no longer necessary to assign the optional to a temporary value.

Optional binding may also be used to unwrap multiple optionals and include a Boolean test condition, the
syntax for which is as follows:
if let constname1 = optName1, let constname2 = optName2,

 let optName3 = …, <boolean statement> {

}

The shorthand if-let syntax is also available when working with multiple optionals and test conditions avoiding
the need to use temporary values:
if let constname1, let constname2,

 let optName3, ... <boolean statement> {

}

The following code, for example, uses shorthand optional binding to unwrap two optionals within a single
statement:
var pet1: String?

var pet2: String?

pet1 = "cat"

pet2 = "dog"

if let pet1, let pet2 {

 print(pet1)

 print(pet2)

} else {

 print("insufficient pets")

}

The code fragment below, on the other hand, also makes use of the Boolean test clause condition:
if let pet1, let pet2, petCount > 1 {
 print(pet1)

 print(pet2)

} else {

 print("insufficient pets")

}

In the above example, the optional binding will not be attempted unless the value assigned to petCount is greater
than 1.

50

Swift Data Types, Constants and Variables

It is also possible to declare an optional as being implicitly unwrapped. When an optional is declared in this way,
the underlying value can be accessed without having to perform forced unwrapping or optional binding. An
optional is declared as being implicitly unwrapped by replacing the question mark (?) with an exclamation mark
(!) in the declaration. For example:
var index: Int! // Optional is now implicitly unwrapped

index = 3

var treeArray = ["Oak", "Pine", "Yew", "Birch"]

if index != nil {

 print(treeArray[index])

} else {

 print("index does not contain a value")

}

With the index optional variable now declared as being implicitly unwrapped, it is no longer necessary to unwrap
the value when it is used as an index into the array in the above print call.

One final observation with regard to optionals in Swift is that only optional types are able to have no value or a
value of nil assigned to them. In Swift it is not, therefore, possible to assign a nil value to a non-optional variable
or constant. The following declarations, for instance, will all result in errors from the compiler since none of the
variables are declared as optional:
var myInt = nil // Invalid code

var myString: String = nil // Invalid Code

let myConstant = nil // Invalid code

6.9 Type Casting and Type Checking
When writing Swift code, situations will occur where the compiler is unable to identify the specific type of
a value. This is often the case when a value of ambiguous or unexpected type is returned from a method or
function call. In this situation it may be necessary to let the compiler know the type of value that your code is
expecting or requires using the as keyword (a concept referred to as type casting).

The following code, for example, lets the compiler know that the value returned from the object(forKey:) method
needs to be treated as a String type:
let myValue = record.object(forKey: "comment") as! String

In fact, there are two types of casting which are referred to as upcasting and downcasting. Upcasting occurs when
an object of a particular class is cast to one of its superclasses. Upcasting is performed using the as keyword
and is also referred to as guaranteed conversion since the compiler can tell from the code that the cast will be
successful. The UIButton class, for example, is a subclass of the UIControl class as shown in the fragment of the
UIKit class hierarchy shown in Figure 6-1:

51

Swift Data Types, Constants and Variables

Figure 6-1
Since UIButton is a subclass of UIControl, the object can be safely upcast as follows:
let myButton: UIButton = UIButton()

let myControl = myButton as UIControl

Downcasting, on the other hand, occurs when a conversion is made from one class to another where there is
no guarantee that the cast can be made safely or that an invalid casting attempt will be caught by the compiler.
When an invalid cast is made in downcasting and not identified by the compiler it will most likely lead to an
error at runtime.

Downcasting usually involves converting from a class to one of its subclasses. Downcasting is performed using
the as! keyword syntax and is also referred to as forced conversion. Consider, for example, the UIKit UIScrollView
class which has as subclasses both the UITableView and UITextView classes as shown in Figure 6-2:

Figure 6-2
In order to convert a UIScrollView object to a UITextView class a downcast operation needs to be performed.
The following code attempts to downcast a UIScrollView object to UITextView using the guaranteed conversion
or upcast approach:
let myScrollView: UIScrollView = UIScrollView()

let myTextView = myScrollView as UITextView

52

Swift Data Types, Constants and Variables

The above code will result in the following error:
‘UIScrollView’ is not convertible to ‘UITextView’

The compiler is indicating that a UIScrollView instance cannot be safely converted to a UITextView class
instance. This does not necessarily mean that it is incorrect to do so, the compiler is simply stating that it cannot
guarantee the safety of the conversion for you. The downcast conversion could instead be forced using the as!
annotation:
let myTextView = myScrollView as! UITextView

Now the code will compile without an error. As an example of the dangers of downcasting, however, the above
code will crash on execution stating that UIScrollView cannot be cast to UITextView. Forced downcasting
should, therefore, be used with caution.

A safer approach to downcasting is to perform an optional binding using as?. If the conversion is performed
successfully, an optional value of the specified type is returned, otherwise the optional value will be nil:
if let myTextView = myScrollView as? UITextView {
 print("Type cast to UITextView succeeded")

} else {

 print("Type cast to UITextView failed")

}

It is also possible to type check a value using the is keyword. The following code, for example, checks that a
specific object is an instance of a class named MyClass:
if myobject is MyClass {

 // myobject is an instance of MyClass

}

6.10 Summary
This chapter has begun the introduction to Swift by exploring data types together with an overview of how to
declare constants and variables. The chapter has also introduced concepts such as type safety, type inference and
optionals, each of which is an integral part of Swift programming and designed specifically to make code writing
less prone to error.

53

Chapter 7

7. Swift Operators and Expressions
So far we have looked at using variables and constants in Swift and also described the different data types. Being
able to create variables, however, is only part of the story. The next step is to learn how to use these variables and
constants in Swift code. The primary method for working with data is in the form of expressions.

7.1 Expression Syntax in Swift
The most basic Swift expression consists of an operator, two operands and an assignment. The following is an
example of an expression:
var myresult = 1 + 2

In the above example, the (+) operator is used to add two operands (1 and 2) together. The assignment operator (=)
subsequently assigns the result of the addition to a variable named myresult. The operands could just have easily
been variables (or a mixture of constants and variables) instead of the actual numerical values used in the
example.

In the remainder of this chapter we will look at the basic types of operators available in Swift.

7.2 The Basic Assignment Operator
We have already looked at the most basic of assignment operators, the = operator. This assignment operator
simply assigns the result of an expression to a variable. In essence, the = assignment operator takes two operands.
The left-hand operand is the variable or constant to which a value is to be assigned and the right-hand operand
is the value to be assigned. The right-hand operand is, more often than not, an expression which performs some
type of arithmetic or logical evaluation, the result of which will be assigned to the variable or constant. The
following examples are all valid uses of the assignment operator:
var x: Int? // Declare an optional Int variable

var y = 10 // Declare and initialize a second Int variable

x = 10 // Assign a value to x

x = x! + y // Assign the result of x + y to x

x = y // Assign the value of y to x

7.3 Swift Arithmetic Operators
Swift provides a range of operators for the purpose of creating mathematical expressions. These operators
primarily fall into the category of binary operators in that they take two operands. The exception is the unary
negative operator (-) which serves to indicate that a value is negative rather than positive. This contrasts with
the subtraction operator (-) which takes two operands (i.e. one value to be subtracted from another). For example:
var x = -10 // Unary - operator used to assign -10 to variable x

x = x - 5 // Subtraction operator. Subtracts 5 from x

The following table lists the primary Swift arithmetic operators:

Operator Description
-(unary) Negates the value of a variable or expression

54

Swift Operators and Expressions

* Multiplication
/ Division
+ Addition
- Subtraction
% Remainder/Modulo

Table 7-1
Note that multiple operators may be used in a single expression.

For example:

x = y * 10 + z - 5 / 4

7.4 Compound Assignment Operators
In an earlier section we looked at the basic assignment operator (=). Swift provides a number of operators
designed to combine an assignment with a mathematical or logical operation. These are primarily of use when
performing an evaluation where the result is to be stored in one of the operands. For example, one might write
an expression as follows:
x = x + y

The above expression adds the value contained in variable x to the value contained in variable y and stores the
result in variable x. This can be simplified using the addition compound assignment operator:
x += y

The above expression performs exactly the same task as x = x + y but saves the programmer some typing.

Numerous compound assignment operators are available in Swift, the most frequently used of which are outlined
in the following table:

Operator Description
x += y Add x to y and place result in x
x -= y Subtract y from x and place result in x
x *= y Multiply x by y and place result in x
x /= y Divide x by y and place result in x
x %= y Perform Modulo on x and y and place result in x

Table 7-2

7.5 Comparison Operators
Swift also includes a set of logical operators useful for performing comparisons. These operators all return a
Boolean result depending on the result of the comparison. These operators are binary operators in that they work
with two operands.

Comparison operators are most frequently used in constructing program flow control logic. For example,
an if statement may be constructed based on whether one value matches another:
if x == y {

 // Perform task

}

The result of a comparison may also be stored in a Bool variable. For example, the following code will result in

55

Swift Operators and Expressions

a true value being stored in the variable result:
var result: Bool?

var x = 10

var y = 20

result = x < y

Clearly 10 is less than 20, resulting in a true evaluation of the x < y expression. The following table lists the full
set of Swift comparison operators:

Operator Description
x == y Returns true if x is equal to y
x > y Returns true if x is greater than y
x >= y Returns true if x is greater than or equal to y
x < y Returns true if x is less than y
x <= y Returns true if x is less than or equal to y
x != y Returns true if x is not equal to y

Table 7-3

7.6 Boolean Logical Operators
Swift also provides a set of so-called logical operators designed to return Boolean true or false values. These
operators both return Boolean results and take Boolean values as operands. The key operators are NOT (!),
AND (&&) and OR (||).

The NOT (!) operator simply inverts the current value of a Boolean variable, or the result of an expression. For
example, if a variable named flag is currently true, prefixing the variable with a ‘!’ character will invert the value
to false:
var flag = true // variable is true

var secondFlag = !flag // secondFlag set to false

The OR (||) operator returns true if one of its two operands evaluates to true, otherwise it returns false. For
example, the following code evaluates to true because at least one of the expressions either side of the OR
operator is true:
if (10 < 20) || (20 < 10) {

 print("Expression is true")

}

The AND (&&) operator returns true only if both operands evaluate to be true. The following example will
return false because only one of the two operand expressions evaluates to true:
if (10 < 20) && (20 < 10) {

 print("Expression is true")

}

7.7 Range Operators
Swift includes several useful operators that allow ranges of values to be declared. As will be seen in later chapters,
these operators are invaluable when working with looping in program logic.

The syntax for the closed range operator is as follows:

56

Swift Operators and Expressions

x…y

This operator represents the range of numbers starting at x and ending at y where both x and y are included
within the range. The range operator 5…8, for example, specifies the numbers 5, 6, 7 and 8.

The half-open range operator, on the other hand uses the following syntax:
x..<y

In this instance, the operator encompasses all the numbers from x up to, but not including, y. A half-closed range
operator 5..<8, therefore, specifies the numbers 5, 6 and 7.

Finally, the one-sided range operator specifies a range that can extend as far as possible in a specified range
direction until the natural beginning or end of the range is reached (or until some other condition is met). A
one-sided range is declared by omitting the number from one side of the range declaration, for example:

x…

or

…y

The previous chapter, for example, explained that a String in Swift is actually a collection of individual characters.
A range to specify the characters in a string starting with the character at position 2 through to the last character
in the string (regardless of string length) would be declared as follows:

2…

Similarly, to specify a range that begins with the first character and ends with the character at position 6, the
range would be specified as follows:

…6

7.8 The Ternary Operator
Swift supports the ternary operator to provide a shortcut way of making decisions within code. The syntax of the
ternary operator (also known as the conditional operator) is as follows:
condition ? true expression : false expression

The way the ternary operator works is that condition is replaced with an expression that will return either true
or false. If the result is true then the expression that replaces the true expression is evaluated. Conversely, if the
result was false then the false expression is evaluated. Let’s see this in action:
let x = 10

let y = 20

print("Largest number is \(x > y ? x : y)")

The above code example will evaluate whether x is greater than y. Clearly this will evaluate to false resulting in y
being returned to the print call for display to the user:
Largest number is 20

7.9 Nil Coalescing Operator
The nil coalescing operator (??) allows a default value to be used in the event that an optional has a nil value. The
following example will output text which reads “Welcome back, customer” because the customerName optional
is set to nil:

57

Swift Operators and Expressions

let customerName: String? = nil

print("Welcome back, \(customerName ?? "customer")")

If, on the other hand, customerName is not nil, the optional will be unwrapped and the assigned value displayed:
let customerName: String? = "John"

print("Welcome back, \(customerName ?? "customer")")

On execution, the print statement output will now read “Welcome back, John”.

7.10 Bitwise Operators
As previously discussed, computer processors work in binary. These are essentially streams of ones and zeros,
each one referred to as a bit. Bits are formed into groups of 8 to form bytes. As such, it is not surprising that we,
as programmers, will occasionally end up working at this level in our code. To facilitate this requirement, Swift
provides a range of bit operators.

Those familiar with bitwise operators in other languages such as C, C++, C#, Objective-C and Java will find
nothing new in this area of the Swift language syntax. For those unfamiliar with binary numbers, now may be a
good time to seek out reference materials on the subject in order to understand how ones and zeros are formed
into bytes to form numbers. Other authors have done a much better job of describing the subject than we can
do within the scope of this book.

For the purposes of this exercise we will be working with the binary representation of two numbers (for the sake
of brevity we will be using 8-bit values in the following examples). First, the decimal number 171 is represented
in binary as:
10101011

Second, the number 3 is represented by the following binary sequence:
00000011

Now that we have two binary numbers with which to work, we can begin to look at the Swift bitwise operators:

7.10.1 Bitwise NOT
The Bitwise NOT is represented by the tilde (~) character and has the effect of inverting all of the bits in a
number. In other words, all the zeros become ones and all the ones become zeros. Taking our example 3 number,
a Bitwise NOT operation has the following result:
00000011 NOT

========

11111100

The following Swift code, therefore, results in a value of -4:
let y = 3

let z = ~y

print("Result is \(z)")

7.10.2 Bitwise AND
The Bitwise AND is represented by a single ampersand (&). It makes a bit by bit comparison of two numbers.
Any corresponding position in the binary sequence of each number where both bits are 1 results in a 1 appearing
in the same position of the resulting number. If either bit position contains a 0 then a zero appears in the result.
Taking our two example numbers, this would appear as follows:
10101011 AND

58

Swift Operators and Expressions

00000011

========

00000011

As we can see, the only locations where both numbers have 1s are the last two positions. If we perform this in
Swift code, therefore, we should find that the result is 3 (00000011):
let x = 171

let y = 3

let z = x & y

print("Result is \(z)")

7.10.3 Bitwise OR
The bitwise OR also performs a bit by bit comparison of two binary sequences. Unlike the AND operation, the
OR places a 1 in the result if there is a 1 in the first or second operand. The operator is represented by a single
vertical bar character (|). Using our example numbers, the result will be as follows:
10101011 OR

00000011

========

10101011

If we perform this operation in a Swift example the result will be 171:
let x = 171

let y = 3

let z = x | y

print("Result is \(z)")

7.10.4 Bitwise XOR
The bitwise XOR (commonly referred to as exclusive OR and represented by the caret ‘^’ character) performs a
similar task to the OR operation except that a 1 is placed in the result if one or other corresponding bit positions
in the two numbers is 1. If both positions are a 1 or a 0 then the corresponding bit in the result is set to a 0. For
example:
10101011 XOR

00000011

========

10101000

The result in this case is 10101000 which converts to 168 in decimal. To verify this we can, once again, try some
Swift code:
let x = 171

let y = 3

let z = x ^ y

print("Result is \(z)")

7.10.5 Bitwise Left Shift
The bitwise left shift moves each bit in a binary number a specified number of positions to the left. Shifting an
integer one position to the left has the effect of doubling the value.

59

Swift Operators and Expressions

As the bits are shifted to the left, zeros are placed in the vacated right most (low order) positions. Note also that
once the left most (high order) bits are shifted beyond the size of the variable containing the value, those high
order bits are discarded:
10101011 Left Shift one bit

========

101010110

In Swift the bitwise left shift operator is represented by the ‘<<’ sequence, followed by the number of bit positions
to be shifted. For example, to shift left by 1 bit:
let x = 171

let z = x << 1

print("Result is \(z)")

When compiled and executed, the above code will display a message stating that the result is 342 which, when
converted to binary, equates to 101010110.

7.10.6 Bitwise Right Shift
A bitwise right shift is, as you might expect, the same as a left except that the shift takes place in the opposite
direction. Shifting an integer one position to the right has the effect of halving the value.

Note that since we are shifting to the right there is no opportunity to retain the lower most bits regardless of the
data type used to contain the result. As a result, the low order bits are discarded. Whether or not the vacated high
order bit positions are replaced with zeros or ones depends on whether the sign bit used to indicate positive and
negative numbers is set or not.
10101011 Right Shift one bit

========

01010101

The bitwise right shift is represented by the ‘>>’ character sequence followed by the shift count:
let x = 171

let z = x >> 1

print("Result is \(z)")

When executed, the above code will report the result of the shift as being 85, which equates to binary 01010101.

7.11 Compound Bitwise Operators
As with the arithmetic operators, each bitwise operator has a corresponding compound operator that allows the
operation and assignment to be performed using a single operator:

Operator Description
x &= y Perform a bitwise AND of x and y and assign result to x
x |= y Perform a bitwise OR of x and y and assign result to x
x ^= y Perform a bitwise XOR of x and y and assign result to x
x <<= n Shift x left by n places and assign result to x
x >>= n Shift x right by n places and assign result to x

Table 7-4

60

Swift Operators and Expressions

7.12 Summary
Operators and expressions provide the underlying mechanism by which variables and constants are manipulated
and evaluated within Swift code. This can take the simplest of forms whereby two numbers are added using the
addition operator in an expression and the result stored in a variable using the assignment operator. Operators
fall into a range of categories, details of which have been covered in this chapter.

61

Chapter 8

8. Swift Control Flow
Regardless of the programming language used, application development is largely an exercise in applying logic,
and much of the art of programming involves writing code that makes decisions based on one or more criteria.
Such decisions define which code gets executed, how many times it is executed and, conversely, which code gets
by-passed when the program is executing. This is often referred to as control flow since it controls the flow of
program execution. Control flow typically falls into the categories of looping control (how often code is executed)
and conditional control flow (whether code is executed). This chapter is intended to provide an introductory
overview of both types of control flow in Swift.

8.1 Looping Control Flow
This chapter will begin by looking at control flow in the form of loops. Loops are essentially sequences of Swift
statements which are to be executed repeatedly until a specified condition is met. The first looping statement we
will explore is the for-in loop.

8.2 The Swift for-in Statement
The for-in loop is used to iterate over a sequence of items contained in a collection or number range and provides
a simple to use looping option.

The syntax of the for-in loop is as follows:
for constant name in collection or range {

 // code to be executed

}

In this syntax, constant name is the name to be used for a constant that will contain the current item from the
collection or range through which the loop is iterating. The code in the body of the loop will typically use this
constant name as a reference to the current item in the loop cycle. The collection or range references the item
through which the loop is iterating. This could, for example, be an array of string values, a range operator or
even a string of characters (the topic of collections will be covered in greater detail within the chapter entitled
“Working with Array and Dictionary Collections in Swift”).

Consider, for example, the following for-in loop construct:
for index in 1...5 {

 print("Value of index is \(index)")

}

The loop begins by stating that the current item is to be assigned to a constant named index. The statement then
declares a closed range operator to indicate that the for loop is to iterate through a range of numbers, starting at
1 and ending at 5. The body of the loop simply prints out a message to the console panel indicating the current
value assigned to the index constant, resulting in the following output:
Value of index is 1

Value of index is 2

Value of index is 3

Value of index is 4

Value of index is 5

62

Swift Control Flow

As will be demonstrated in the “Working with Array and Dictionary Collections in Swift” chapter of this book, the
for-in loop is of particular benefit when working with collections such as arrays and dictionaries.

The declaration of a constant name in which to store a reference to the current item is not mandatory. In the
event that a reference to the current item is not required in the body of the for loop, the constant name in the for
loop declaration can be replaced by an underscore character. For example:
var count = 0

for _ in 1...5 {

 // No reference to the current value is required.

 count += 1

}

8.2.1 The while Loop
The Swift for loop described previously works well when it is known in advance how many times a particular
task needs to be repeated in a program. There will, however, be instances where code needs to be repeated until
a certain condition is met, with no way of knowing in advance how many repetitions are going to be needed to
meet that criteria. To address this need, Swift provides the while loop.

Essentially, the while loop repeats a set of tasks while a specified condition is met. The while loop syntax is
defined as follows:
while condition {

 // Swift statements go here

}

In the above syntax, condition is an expression that will return either true or false and the // Swift statements go
here comment represents the code to be executed while the condition expression is true. For example:
var myCount = 0

while myCount < 100 {

 myCount += 1

}

In the above example, the while expression will evaluate whether the myCount variable is less than 100. If it is
already greater than 100, the code in the braces is skipped and the loop exits without performing any tasks.

If, on the other hand, myCount is not greater than 100 the code in the braces is executed and the loop returns to
the while statement and repeats the evaluation of myCount. This process repeats until the value of myCount is
greater than 100, at which point the loop exits.

8.3 The repeat ... while loop
The repeat … while loop replaces the Swift 1.x do .. while loop. It is often helpful to think of the repeat ... while
loop as an inverted while loop. The while loop evaluates an expression before executing the code contained in the
body of the loop. If the expression evaluates to false on the first check then the code is not executed. The repeat ...
while loop, on the other hand, is provided for situations where you know that the code contained in the body of
the loop will always need to be executed at least once. For example, you may want to keep stepping through the
items in an array until a specific item is found. You know that you have to at least check the first item in the array
to have any hope of finding the entry you need. The syntax for the repeat ... while loop is as follows:
repeat {

 // Swift statements here

63

Swift Control Flow

} while conditional expression

In the repeat ... while example below the loop will continue until the value of a variable named i equals 0:
var i = 10

repeat {

 i -= 1

} while (i > 0)

8.4 Breaking from Loops
Having created a loop, it is possible that under certain conditions you might want to break out of the loop before
the completion criteria have been met (particularly if you have created an infinite loop). One such example
might involve continually checking for activity on a network socket. Once activity has been detected it will most
likely be necessary to break out of the monitoring loop and perform some other task.

For the purpose of breaking out of a loop, Swift provides the break statement which breaks out of the current
loop and resumes execution at the code directly after the loop. For example:
var j = 10

for _ in 0 ..< 100

{

 j += j

 if j > 100 {

 break

 }

 print("j = \(j)")

}

In the above example the loop will continue to execute until the value of j exceeds 100 at which point the loop
will exit and execution will continue with the next line of code after the loop.

8.5 The continue Statement
The continue statement causes all remaining code statements in a loop to be skipped, and execution to be
returned to the top of the loop. In the following example, the print function is only called when the value of
variable i is an even number:
var i = 1

while i < 20

{

 i += 1

 if (i % 2) != 0 {

 continue

 }

 print("i = \(i)")

64

Swift Control Flow

}

The continue statement in the above example will cause the print call to be skipped unless the value of i can be
divided by 2 with no remainder. If the continue statement is triggered, execution will skip to the top of the while
loop and the statements in the body of the loop will be repeated (until the value of i exceeds 19).

8.6 Conditional Control Flow
In the previous chapter we looked at how to use logical expressions in Swift to determine whether something
is true or false. Since programming is largely an exercise in applying logic, much of the art of programming
involves writing code that makes decisions based on one or more criteria. Such decisions define which code gets
executed and, conversely, which code gets by-passed when the program is executing.

8.7 Using the if Statement
The if statement is perhaps the most basic of control flow options available to the Swift programmer. Programmers
who are familiar with C, Objective-C, C++ or Java will immediately be comfortable using Swift if statements.

The basic syntax of the Swift if statement is as follows:
if boolean expression {

 // Swift code to be performed when expression evaluates to true

}

Unlike some other programming languages, it is important to note that the braces ({}) are mandatory in Swift,
even if only one line of code is executed after the if expression.

Essentially if the Boolean expression evaluates to true then the code in the body of the statement is executed. The
body of the statement is enclosed in braces ({}). If, on the other hand, the expression evaluates to false the code
in the body of the statement is skipped.

For example, if a decision needs to be made depending on whether one value is greater than another, we would
write code similar to the following:
let x = 10

if x > 9 {

 print("x is greater than 9!")

}

Clearly, x is indeed greater than 9 causing the message to appear in the console panel.

8.8 Using if ... else … Statements
The next variation of the if statement allows us to also specify some code to perform if the expression in the if
statement evaluates to false. The syntax for this construct is as follows:
if boolean expression {

 // Code to be executed if expression is true

} else {

 // Code to be executed if expression is false

}

Using the above syntax, we can now extend our previous example to display a different message if the comparison
expression evaluates to be false:
let x = 10

65

Swift Control Flow

if x > 9 {

 print("x is greater than 9!")

} else {

 print("x is less than 10!")

}

In this case, the second print statement would execute if the value of x was less than or equal to 9.

8.9 Using if ... else if ... Statements
So far we have looked at if statements which make decisions based on the result of a single logical expression.
Sometimes it becomes necessary to make decisions based on a number of different criteria. For this purpose, we
can use the if ... else if ... construct, an example of which is as follows:
let x = 9

if x == 10 {

 print("x is 10")

} else if x == 9 {

 print("x is 9")

} else if x == 8 {

 print("x is 8")

}

This approach works well for a moderate number of comparisons but can become cumbersome for a larger
volume of expression evaluations. For such situations, the Swift switch statement provides a more flexible and
efficient solution. For more details on using the switch statement refer to the next chapter entitled“The Swift
Switch Statement”.

8.10 The guard Statement
The guard statement is a Swift language feature introduced as part of Swift 2. A guard statement contains a
Boolean expression which must evaluate to true in order for the code located after the guard statement to
be executed. The guard statement must include an else clause to be executed in the event that the expression
evaluates to false. The code in the else clause must contain a statement to exit the current code flow (i.e. a return,
break, continue or throw statement). Alternatively, the else block may call any other function or method that does
not itself return.

The syntax for the guard statement is as follows:
guard <boolean expressions> else {

 // code to be executed if expression is false

 <exit statement here>

}

// code here is executed if expression is true

The guard statement essentially provides an “early exit” strategy from the current function or loop in the event
that a specified requirement is not met.

The following code example implements a guard statement within a function:
func multiplyByTen(value: Int?) {

66

Swift Control Flow

 guard let number = value, number < 10 else {
 print("Number is too high")
 return
 }

 let result = number * 10

 print(result)

}

multiplyByTen(value: 5)

multiplyByTen(value: 10)

The function takes as a parameter an integer value in the form of an optional. The guard statement uses
optional binding to unwrap the value and verify that it is less than 10. In the event that the variable could not
be unwrapped, or that its value is greater than 9, the else clause is triggered, the error message printed, and the
return statement executed to exit the function.

If the optional contains a value less than 10, the code after the guard statement executes to multiply the value by
10 and print the result. A particularly important point to note about the above example is that the unwrapped
number variable is available to the code outside of the guard statement. This would not have been the case had
the variable been unwrapped using an if statement.

8.11 Summary
The term control flow is used to describe the logic that dictates the execution path that is taken through the
source code of an application as it runs. This chapter has looked at the two types of control flow provided by
Swift (looping and conditional) and explored the various Swift constructs that are available to implement both
forms of control flow logic.

67

Chapter 9

9. The Swift Switch Statement
In “Swift Control Flow” we looked at how to control program execution flow using the if and else statements.
While these statement constructs work well for testing a limited number of conditions, they quickly become
unwieldy when dealing with larger numbers of possible conditions. To simplify such situations, Swift has
inherited the switch statement from the C programming language. Those familiar with the switch statement
from other programming languages should be aware, however, that the Swift switch statement has some key
differences from other implementations. In this chapter we will explore the Swift implementation of the switch
statement in detail.

9.1 Why Use a switch Statement?
For a small number of logical evaluations of a value the if ... else if ... construct is perfectly adequate. Unfortunately,
any more than two or three possible scenarios can quickly make such a construct both time consuming to write
and difficult to read. For such situations, the switch statement provides an excellent alternative.

9.2 Using the switch Statement Syntax
The syntax for a basic Swift switch statement implementation can be outlined as follows:
switch expression

{

 case match1:

 statements

 case match2:

 statements

 case match3, match4:

 statements

 default:

 statements

}

In the above syntax outline, expression represents either a value, or an expression which returns a value. This is
the value against which the switch operates.

For each possible match a case statement is provided, followed by a match value. Each potential match must be
of the same type as the governing expression. Following on from the case line are the Swift statements that are
to be executed in the event of the value matching the case condition.

Finally, the default section of the construct defines what should happen if none of the case statements present a
match to the expression.

9.3 A Swift switch Statement Example
With the above information in mind we may now construct a simple switch statement:

68

The Swift Switch Statement

let value = 4

switch (value)

{

 case 0:

 print("zero")

 case 1:

 print("one")

 case 2:

 print("two")

 case 3:

 print("three")

 case 4:

 print("four")

 case 5:

 print("five")

 default:

 print("Integer out of range")

}

9.4 Combining case Statements
In the above example, each case had its own set of statements to execute. Sometimes a number of different
matches may require the same code to be executed. In this case, it is possible to group case matches together
with a common set of statements to be executed when a match for any of the cases is found. For example, we can
modify the switch construct in our example so that the same code is executed regardless of whether the value
is 0, 1 or 2:
let value = 1

switch (value)

{

 case 0, 1, 2:

 print("zero, one or two")

 case 3:

 print("three")

 case 4:

 print("four")

 case 5:

69

The Swift Switch Statement

 print("five")

 default:

 print("Integer out of range")

}

9.5 Range Matching in a switch Statement
The case statements within a switch construct may also be used to implement range matching. The following
switch statement, for example, checks a temperature value for matches within three number ranges:
let temperature = 83

switch (temperature)

{

 case 0...49:

 print("Cold")

 case 50...79:

 print("Warm")

 case 80...110:

 print("Hot")

 default:

 print("Temperature out of range")

}

9.6 Using the where statement
The where statement may be used within a switch case match to add additional criteria required for a positive
match. The following switch statement, for example, checks not only for the range in which a value falls, but also
whether the number is odd or even:
let temperature = 54

switch (temperature)

{

 case 0...49 where temperature % 2 == 0:

 print("Cold and even")

 case 50...79 where temperature % 2 == 0:

 print("Warm and even")

 case 80...110 where temperature % 2 == 0:

 print("Hot and even")

 default:

 print("Temperature out of range or odd")

}

70

The Swift Switch Statement

9.7 Fallthrough
Those familiar with switch statements in other languages such as C and Objective-C will notice that it is no
longer necessary to include a break statement after each case declaration. Unlike other languages, Swift
automatically breaks out of the statement when a matching case condition is met. The fallthrough effect of other
switch implementations (whereby the execution path continues through the remaining case statements) can be
emulated using the fallthrough statement:
let temperature = 10

switch (temperature)

{

 case 0...49 where temperature % 2 == 0:

 print("Cold and even")

 fallthrough

 case 50...79 where temperature % 2 == 0:

 print("Warm and even")

 fallthrough

 case 80...110 where temperature % 2 == 0:

 print("Hot and even")

 fallthrough

 default:

 print("Temperature out of range or odd")

}

Although break is less commonly used in Swift switch statements, it is useful when no action needs to be taken
for the default case. For example:
.

.

.

default:

 break

}

9.8 Summary
While the if.. else.. construct serves as a good decision-making option for small numbers of possible outcomes,
this approach can become unwieldy in more complex situations. As an alternative method for implementing
flow control logic in Swift when many possible outcomes exist as the result of an evaluation, the switch statement
invariably makes a more suitable option. As outlined in this chapter, however, developers familiar with switch
implementations from other programming languages should be aware of some subtle differences in the way that
the Swift switch statement works.

71

Chapter 10

10. Swift Functions, Methods and
Closures
Swift functions, methods and closures are a vital part of writing well-structured and efficient code and provide a
way to organize programs while avoiding code repetition. In this chapter we will look at how functions, methods
and closures are declared and used within Swift.

10.1 What is a Function?
A function is a named block of code that can be called upon to perform a specific task. It can be provided data
on which to perform the task and is capable of returning results to the code that called it. For example, if a
particular arithmetic calculation needs to be performed in a Swift program, the code to perform the arithmetic
can be placed in a function. The function can be programmed to accept the values on which the arithmetic
is to be performed (referred to as parameters) and to return the result of the calculation. At any point in the
program code where the calculation is required the function is simply called, parameter values passed through
as arguments and the result returned.

The terms parameter and argument are often used interchangeably when discussing functions. There is, however,
a subtle difference. The values that a function is able to accept when it is called are referred to as parameters. At
the point that the function is actually called and passed those values, however, they are referred to as arguments.

10.2 What is a Method?
A method is essentially a function that is associated with a particular class, structure or enumeration. If, for
example, you declare a function within a Swift class (a topic covered in detail in the chapter entitled “The Basics
of Swift Object-Oriented Programming”), it is considered to be a method. Although the remainder of this chapter
refers to functions, the same rules and behavior apply equally to methods unless otherwise stated.

10.3 How to Declare a Swift Function
A Swift function is declared using the following syntax:
func <function name> (<para name>: <para type>,

 <para name>: <para type>, ...) -> <return type> {

 // Function code
}

This combination of function name, parameters and return type are referred to as the function signature.
Explanations of the various fields of the function declaration are as follows:

• func – The prefix keyword used to notify the Swift compiler that this is a function.

• <function name> - The name assigned to the function. This is the name by which the function will be
referenced when it is called from within the application code.

• <para name> - The name by which the parameter is to be referenced in the function code.

• <para type> - The type of the corresponding parameter.

72

Swift Functions, Methods and Closures

• <return type> - The data type of the result returned by the function. If the function does not return a result
then no return type is specified.

• Function code - The code of the function that does the work.

As an example, the following function takes no parameters, returns no result and simply displays a message:
func sayHello() {

 print("Hello")

}

The following sample function, on the other hand, takes an integer and a string as parameters and returns a
string result:
func buildMessageFor(name: String, count: Int) -> String {

 return("\(name), you are customer number \(count)")

}

10.4 Implicit Returns from Single Expressions
In the previous example, the return statement was used to return the string value from within the buildMessageFor()
function. It is worth noting that if a function contains a single expression (as was the case in this example), the
return statement may be omitted. The buildMessageFor() method could, therefore, be rewritten as follows:
func buildMessageFor(name: String, count: Int) -> String {

 "\(name), you are customer number \(count)"

}

The return statement can only be omitted if the function contains a single expression. The following code,
for example, will fail to compile since the function contains two expressions requiring the use of the return
statement:
func buildMessageFor(name: String, count: Int) -> String {

 let uppername = name.uppercased()

 "\(uppername), you are customer number \(count)" // Invalid expression

}

10.5 Calling a Swift Function
Once declared, functions are called using the following syntax:
<function name> (<arg1>, <arg2>, ...)

Each argument passed through to a function must match the parameters the function is configured to accept.
For example, to call a function named sayHello that takes no parameters and returns no value, we would write
the following code:
sayHello()

10.6 Handling Return Values
To call a function named buildMessageFor that takes two parameters and returns a result, on the other hand, we
might write the following code:
let message = buildMessageFor(name: "John", count: 100)

In the above example, we have created a new variable called message and then used the assignment operator (=)
to store the result returned by the function.

When developing in Swift, situations may arise where the result returned by a method or function call is not

73

Swift Functions, Methods and Closures

used. When this is the case, the return value may be discarded by assigning it to ‘_’. For example:
_ = buildMessageFor(name: "John", count: 100)

10.7 Local and External Parameter Names
When the preceding example functions were declared, they were configured with parameters that were assigned
names which, in turn, could be referenced within the body of the function code. When declared in this way,
these names are referred to as local parameter names.

In addition to local names, function parameters may also have external parameter names. These are the names
by which the parameter is referenced when the function is called. By default, function parameters are assigned
the same local and external parameter names. Consider, for example, the previous call to the buildMessageFor
method:
let message = buildMessageFor(name: "John", count: 100)

As declared, the function uses “name” and “count” as both the local and external parameter names.

The default external parameter names assigned to parameters may be removed by preceding the local parameter
names with an underscore (_) character as follows:
func buildMessageFor(_ name: String, _ count: Int) -> String {

 return("\(name), you are customer number \(count)")

}

With this change implemented, the function may now be called as follows:
let message = buildMessageFor("John", 100)

Alternatively, external parameter names can be added simply by declaring the external parameter name before
the local parameter name within the function declaration. In the following code, for example, the external
names of the first and second parameters have been set to “username” and “usercount” respectively:
func buildMessageFor(username name: String, usercount count: Int)
 -> String {

 return("\(name), you are customer number \(count)")

}

When declared in this way, the external parameter name must be referenced when calling the function:
let message = buildMessageFor(username: "John", usercount: 100)

Regardless of the fact that the external names are used to pass the arguments through when calling the function,
the local names are still used to reference the parameters within the body of the function. It is important to also
note that when calling a function using external parameter names for the arguments, those arguments must still
be placed in the same order as that used when the function was declared.

10.8 Declaring Default Function Parameters
Swift provides the ability to designate a default parameter value to be used in the event that the value is not
provided as an argument when the function is called. This simply involves assigning the default value to
the parameter when the function is declared. Swift also provides a default external name based on the local
parameter name for defaulted parameters (unless one is already provided) which must then be used when
calling the function.

To see default parameters in action the buildMessageFor function will be modified so that the string “Customer”
is used as a default in the event that a customer name is not passed through as an argument:
func buildMessageFor(_ name: String = "Customer", count: Int) -> String

74

Swift Functions, Methods and Closures

{

 return ("\(name), you are customer number \(count)")

}

The function can now be called without passing through a name argument:
let message = buildMessageFor(count: 100)

print(message)

When executed, the above function call will generate output to the console panel which reads:
Customer, you are customer number 100

10.9 Returning Multiple Results from a Function
A function can return multiple result values by wrapping those results in a tuple. The following function takes as
a parameter a measurement value in inches. The function converts this value into yards, centimeters and meters,
returning all three results within a single tuple instance:
func sizeConverter(_ length: Float) -> (yards: Float, centimeters: Float,

 meters: Float) {

 let yards = length * 0.0277778

 let centimeters = length * 2.54

 let meters = length * 0.0254

 return (yards, centimeters, meters)

}

The return type for the function indicates that the function returns a tuple containing three values named yards,
centimeters and meters respectively, all of which are of type Float:
-> (yards: Float, centimeters: Float, meters: Float)

Having performed the conversion, the function simply constructs the tuple instance and returns it.

Usage of this function might read as follows:
let lengthTuple = sizeConverter(20)

print(lengthTuple.yards)

print(lengthTuple.centimeters)

print(lengthTuple.meters)

10.10 Variable Numbers of Function Parameters
It is not always possible to know in advance the number of parameters a function will need to accept when it
is called within application code. Swift handles this possibility through the use of variadic parameters. Variadic
parameters are declared using three periods (…) to indicate that the function accepts zero or more parameters
of a specified data type. Within the body of the function, the parameters are made available in the form of an
array object. The following function, for example, takes as parameters a variable number of String values and
then outputs them to the console panel:
func displayStrings(_ strings: String...)

{

 for string in strings {

 print(string)

75

Swift Functions, Methods and Closures

 }

}

displayStrings("one", "two", "three", "four")

10.11 Parameters as Variables
All parameters accepted by a function are treated as constants by default. This prevents changes being made to
those parameter values within the function code. If changes to parameters need to be made within the function
body, therefore, shadow copies of those parameters must be created. The following function, for example, is
passed length and width parameters in inches, creates shadow variables of the two values and converts those
parameters to centimeters before calculating and returning the area value:
func calcuateArea(length: Float, width: Float) -> Float {

 var length = length

 var width = width

 length = length * 2.54

 width = width * 2.54

 return length * width

}

print(calcuateArea(length: 10, width: 20))

10.12 Working with In-Out Parameters
When a variable is passed through as a parameter to a function, we now know that the parameter is treated as a
constant within the body of that function. We also know that if we want to make changes to a parameter value
we have to create a shadow copy as outlined in the above section. Since this is a copy, any changes made to the
variable are not, by default, reflected in the original variable. Consider, for example, the following code:
var myValue = 10

func doubleValue (_ value: Int) -> Int {

 var value = value

 value += value

 return(value)

}

print("Before function call myValue = \(myValue)")

print("doubleValue call returns \(doubleValue(myValue))")

print("After function call myValue = \(myValue)")

The code begins by declaring a variable named myValue initialized with a value of 10. A new function is then
declared which accepts a single integer parameter. Within the body of the function, a shadow copy of the value
is created, doubled and returned.

The remaining lines of code display the value of the myValue variable before and after the function call is made.
When executed, the following output will appear in the console:

76

Swift Functions, Methods and Closures

Before function call myValue = 10

doubleValue call returns 20

After function call myValue = 10

Clearly, the function has made no change to the original myValue variable. This is to be expected since the
mathematical operation was performed on a copy of the variable, not the myValue variable itself.

In order to make any changes made to a parameter persist after the function has returned, the parameter must
be declared as an in-out parameter within the function declaration. To see this in action, modify the doubleValue
function to include the inout keyword, and remove the creation of the shadow copy as follows:
func doubleValue (_ value: inout Int) -> Int {
 var value = value

 value += value

 return(value)

}

Finally, when calling the function, the inout parameter must now be prefixed with an & modifier:
print("doubleValue call returned \(doubleValue(&myValue))")

Having made these changes, a test run of the code should now generate output clearly indicating that the
function modified the value assigned to the original myValue variable:
Before function call myValue = 10

doubleValue call returns 20

After function call myValue = 20

10.13 Functions as Parameters
An interesting feature of functions within Swift is that they can be treated as data types. It is perfectly valid, for
example, to assign a function to a constant or variable as illustrated in the declaration below:
func inchesToFeet (_ inches: Float) -> Float {

 return inches * 0.0833333

}

let toFeet = inchesToFeet

The above code declares a new function named inchesToFeet and subsequently assigns that function to a constant
named toFeet. Having made this assignment, a call to the function may be made using the constant name instead
of the original function name:
let result = toFeet(10)

On the surface this does not seem to be a particularly compelling feature. Since we could already call the function
without assigning it to a constant or variable data type it does not seem that much has been gained.

The possibilities that this feature offers become more apparent when we consider that a function assigned to
a constant or variable now has the capabilities of many other data types. In particular, a function can now be
passed through as an argument to another function, or even returned as a result from a function.

Before we look at what is, essentially, the ability to plug one function into another, it is first necessary to explore
the concept of function data types. The data type of a function is dictated by a combination of the parameters
it accepts and the type of result it returns. In the above example, since the function accepts a floating-point
parameter and returns a floating-point result, the function’s data type conforms to the following:
(Float) -> Float

77

Swift Functions, Methods and Closures

A function which accepts an Int and a Double as parameters and returns a String result, on the other hand,
would have the following data type:
(Int, Double) -> String

In order to accept a function as a parameter, the receiving function simply declares the data type of the function
it is able to accept.

For the purposes of an example, we will begin by declaring two unit conversion functions and assigning them
to constants:
func inchesToFeet (_ inches: Float) -> Float {

 return inches * 0.0833333

}

func inchesToYards (_ inches: Float) -> Float {

 return inches * 0.0277778

}

let toFeet = inchesToFeet

let toYards = inchesToYards

The example now needs an additional function, the purpose of which is to perform a unit conversion and print
the result in the console panel. This function needs to be as general purpose as possible, capable of performing
a variety of different measurement unit conversions. In order to demonstrate functions as parameters, this
new function will take as a parameter a function type that matches both the inchesToFeet and inchesToYards
function data type together with a value to be converted. Since the data type of these functions is equivalent to
(Float) -> Float, our general-purpose function can be written as follows:
func outputConversion(_ converterFunc: (Float) -> Float, value: Float) {

 let result = converterFunc(value)

 print("Result of conversion is \(result)")

}

When the outputConversion function is called, it will need to be passed a function matching the declared data
type. That function will be called to perform the conversion and the result displayed in the console panel. This
means that the same function can be called to convert inches to both feet and yards, simply by “plugging in” the
appropriate converter function as a parameter. For example:
outputConversion(toYards, value: 10) // Convert to Yards

outputConversion(toFeet, value: 10) // Convert to Feet

Functions can also be returned as a data type simply by declaring the type of the function as the return type. The
following function is configured to return either our toFeet or toYards function type (in other words a function
which accepts and returns a Float value) based on the value of a Boolean parameter:
func decideFunction(_ feet: Bool) -> (Float) -> Float

{

 if feet {

 return toFeet

78

Swift Functions, Methods and Closures

 } else {

 return toYards

 }

}

10.14 Closure Expressions
Having covered the basics of functions in Swift it is now time to look at the concept of closures and closure
expressions. Although these terms are often used interchangeably there are some key differences.

Closure expressions are self-contained blocks of code. The following code, for example, declares a closure
expression and assigns it to a constant named sayHello and then calls the function via the constant reference:
let sayHello = { print("Hello") }

sayHello()

Closure expressions may also be configured to accept parameters and return results. The syntax for this is as
follows:
{(<para name>: <para type>, <para name> <para type>, ...) ->

 <return type> in
 // Closure expression code here
}

The following closure expression, for example, accepts two integer parameters and returns an integer result:
let multiply = {(_ val1: Int, _ val2: Int) -> Int in

 return val1 * val2

}

let result = multiply(10, 20)

Note that the syntax is similar to that used for declaring Swift functions with the exception that the closure
expression does not have a name, the parameters and return type are included in the braces and the in keyword
is used to indicate the start of the closure expression code. Functions are, in fact, just named closure expressions.

Before the introduction of structured concurrency in Swift 5.5 (a topic covered in detail in the chapter entitled “An
Overview of Swift Structured Concurrency”), closure expressions were often (and still are) used when declaring
completion handlers for asynchronous method calls. In other words, when developing iOS applications, it
will often be necessary to make calls to the operating system where the requested task is performed in the
background allowing the application to continue with other tasks. Typically, in such a scenario, the system will
notify the application of the completion of the task and return any results by calling the completion handler that
was declared when the method was called. Frequently the code for the completion handler will be implemented
in the form of a closure expression. Consider the following code example:
eventstore.requestAccess(to: .reminder, completion: {(granted: Bool,
 error: Error?) -> Void in
 if !granted {
 print(error!.localizedDescription)
 }
})

When the tasks performed by the requestAccess(to:) method call are complete it will execute the closure
expression declared as the completion: parameter. The completion handler is required by the method to accept a
Boolean value and an Error object as parameters and return no results, hence the following declaration:

79

Swift Functions, Methods and Closures

{(granted: Bool, error: Error?) -> Void in

In actual fact, the Swift compiler already knows about the parameter and return value requirements for the
completion handler for this method call and is able to infer this information without it being declared in the
closure expression. This allows a simpler version of the closure expression declaration to be written:
eventstore.requestAccess(to: .reminder, completion: {(granted, error) in
 if !granted {

 print(error!.localizedDescription)

 }

})

10.15 Shorthand Argument Names
A useful technique for simplifying closures involves using shorthand argument names. This allows the parameter
names and “in” keyword to be omitted from the declaration and the arguments to be referenced as $0, $1, $2 etc.

Consider, for example, a closure expression designed to concatenate two strings:
let join = { (string1: String, string2: String) -> String in

 string1 + string2

}

Using shorthand argument names, this declaration can be simplified as follows:
let join: (String, String) -> String = {

 $0 + $1

}

Note that the type declaration ((String, String) -> String) has been moved to the left of the assignment operator
since the closure expression no longer defines the argument or return types.

10.16 Closures in Swift
A closure in computer science terminology generally refers to the combination of a self-contained block of code
(for example a function or closure expression) and one or more variables that exist in the context surrounding
that code block. Consider, for example the following Swift function:
func functionA() -> () -> Int {

 var counter = 0

 func functionB() -> Int {
 return counter + 10
 }
 return functionB

}

let myClosure = functionA()

let result = myClosure()

In the above code, functionA returns a function named functionB. In actual fact functionA is returning a closure
since functionB relies on the counter variable which is declared outside the functionB’s local scope. In other
words, functionB is said to have captured or closed over (hence the term closure) the counter variable and, as
such, is considered a closure in the traditional computer science definition of the word.

80

Swift Functions, Methods and Closures

To a large extent, and particularly as it relates to Swift, the terms closure and closure expression have started to be
used interchangeably. The key point to remember, however, is that both are supported in Swift.

10.17 Summary
Functions, closures and closure expressions are self-contained blocks of code that can be called upon to perform
a specific task and provide a mechanism for structuring code and promoting reuse. This chapter has introduced
the concepts of functions and closures in terms of declaration and implementation.

175

Chapter 24

24. Using Storyboards in Xcode 14
Storyboarding is a feature built into Xcode that allows the various screens that comprise an iOS app and
the navigation path through those screens to be visually assembled. Using the Interface Builder component
of Xcode, the developer drags and drops view and navigation controllers onto a canvas and designs the user
interface of each view in the usual manner. The developer then drags lines to link individual trigger controls
(such as a button) to the corresponding view controllers that are to be displayed when the user selects the
control. Having designed both the screens (referred to in the context of storyboarding as scenes) and specified
the transitions between scenes (referred to as segues), Xcode generates all the code necessary to implement the
defined behavior in the completed app. The transition style for each segue (page fold, cross dissolve, etc.) may
also be defined within Interface Builder. Further, segues may be triggered programmatically when behavior
cannot be graphically defined using Interface Builder.

Xcode saves the finished design to a storyboard file. Typically, an app will have a single storyboard file, though
there is no restriction preventing using multiple storyboard files within a single app.

The remainder of this chapter will work through creating a simple app using storyboarding to implement
multiple scenes with segues defined to allow user navigation.

24.1 Creating the Storyboard Example Project
Begin by launching Xcode and creating a new project named Storyboard using the iOS App template with the
language menu set to Swift and the Storyboard Interface option selected. Then, save the project to a suitable
location by clicking the Create button.

24.2 Accessing the Storyboard
Upon creating the new project, Xcode will have created what appears to be the usual collection of files for a
single-view app, including a storyboard named file Main.storyboard. Select this file in the project navigator panel
to view the storyboard canvas as illustrated in Figure 24-1.

The view displayed on the canvas is the view for the ViewController class created for us by Xcode when we
selected the App template. The arrow pointing inwards to the left side of the view indicates that this is the initial
view controller and will be the first view displayed when the app launches. To change the initial view controller,
drag this arrow to any other scene in the storyboard and drop it in place.

176

Using Storyboards in Xcode 14

Figure 24-1
Objects may be added to the view in the usual manner by displaying the Library panel and dragging and
dropping objects onto the view canvas. For this example, drag a label and a button onto the view canvas. Using
the properties panel, change the label text to Scene 1 and the button text to Go to Scene 2.

Figure 24-2
Using the Resolve Auto Layout Issues menu, select the Reset to Suggested Constraints option listed under All Views
in View Controller.

It will be necessary first to establish an outlet to manipulate text displayed on the label object from within the
app code. Select the label in the storyboard canvas and display the Assistant Editor (Editor -> Assistant). Check
that the Assistant Editor is showing the content of the ViewController.swift file. Then, right-click on the label
and drag the resulting line to just below the class declaration line in the Assistant Editor panel. In the resulting
connection dialog, enter scene1Label as the outlet name and click on the Connect button. Upon completion of
the connection, the top of the ViewController.swift file should read as follows:

177

Using Storyboards in Xcode 14

import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var scene1Label: UILabel!

.

.

24.3 Adding Scenes to the Storyboard
To add a second scene to the storyboard, drag a View Controller object from the Library panel onto the canvas.
Figure 24-3 shows a second scene added to a storyboard:

Figure 24-3
Drag and drop a label and a button into the second scene and configure the objects so that the view appears as
shown in Figure 24-4. Then, repeat the steps performed for the first scene to configure Auto Layout constraints
on the two views.

Figure 24-4
As many scenes as necessary may be added to the storyboard, but we will use just two scenes for this exercise.

178

Using Storyboards in Xcode 14

Having implemented the scenes, the next step is to configure segues between the scenes.

24.4 Configuring Storyboard Segues
As previously discussed, a segue is a transition from one scene to another within a storyboard. Within the
example app, touching the Go To Scene 2 button will segue to scene 2. Conversely, the button on scene 2 is
intended to return the user to scene 1. To establish a segue, hold down the Ctrl key on the keyboard, click over
a control (in this case, the button on scene 1), and drag the resulting line to the scene 2 view. Upon releasing the
mouse button, a menu will appear. Select the Present Modally menu option to establish the segue. Once the segue
has been added, a connector will appear between the two scenes, as highlighted in Figure 24-5:

Figure 24-5
As more scenes are added to a storyboard, it becomes increasingly difficult to see more than a few scenes at one
time on the canvas. To zoom out, double-click on the canvas. To zoom back in again, double-click once again on
the canvas. The zoom level may also be changed using the plus and minus control buttons located in the status
bar along the bottom edge of the storyboard canvas or by right-clicking on the storyboard canvas background
to access a menu containing several zoom level options.

24.5 Configuring Storyboard Transitions
Xcode allows changing the visual appearance of the transition that occurs during a segue. To change the
transition, select the corresponding segue connector, display the Attributes Inspector, and modify the Transition
setting. For example, in Figure 24-6, the transition has been changed to Cross Dissolve:

Figure 24-6

179

Using Storyboards in Xcode 14

If animation is not required during the transition, turn off the Animates option. Run the app on a device or
simulator and test that touching the “Go to Scene 2” button causes Scene 2 to appear.

24.6 Associating a View Controller with a Scene
At this point in the example, we have two scenes but only one view controller (the one created by Xcode when we
selected the iOS App template). To add any functionality behind scene 2, it will also need a view controller. The
first step is to add the class source file for a view controller to the project. Right-click on the Storyboard target at
the top of the project navigator panel and select New File… from the resulting menu. In the new file panel, select
iOS in the top bar, followed by Cocoa Touch Class in the main panel, and click Next to proceed. On the options
screen, ensure that the Subclass of menu is set to UIViewController and that the Also create XIB file option is
deselected (since the view already exists in the storyboard there is no need for a XIB user interface file), name
the class Scene2ViewController and proceed through the screens to create the new class file.

Select the Main.storyboard file in the project navigator panel and click the View Controller button located in the
panel above the Scene 2 view, as shown in Figure 24-7:

Figure 24-7
With the view controller for scene 2 selected within the storyboard canvas, display the Identity Inspector (View
-> Inspectors -> Identity) and change the Class from UIViewController to Scene2ViewController:

Figure 24-8
Scene 2 now has a view controller and corresponding Swift source file where code may be written to implement
any required functionality.

Select the label object in scene 2 and display the Assistant Editor. Next, ensure that the Scene2ViewController.
swift file is displayed in the editor, and then establish an outlet for the label named scene2Label.

24.7 Passing Data Between Scenes
One of the most common requirements when working with storyboards involves transferring data from one
scene to another during a segue transition. Before the storyboard runtime environment performs a segue, a call
is made to the prepare(for segue:) method of the current view controller. If any tasks need to be performed before
the segue, implement this method in the current view controller and add code to perform any necessary tasks.
Passed as an argument to this method is a segue object from which a reference to the destination view controller
may be obtained and subsequently used to transfer data.

180

Using Storyboards in Xcode 14

To see this in action, begin by selecting Scene2ViewController.swift and adding a new property variable:
import UIKit

class Scene2ViewController: UIViewController {

 @IBOutlet weak var scene2Label: UILabel!

 var labelText: String?
.

.

.

This property will hold the text to be displayed on the label when the storyboard transitions to this scene. As
such, some code needs to be added to the viewDidLoad method located in the Scene2ViewController.swift file:
override func viewDidLoad() {

 super.viewDidLoad()

 scene2Label.text = labelText
}

Finally, select the ViewController.swift file and implement the prepare(for segue:) method as follows:
override func prepare(for segue: UIStoryboardSegue, sender: Any?) {

 let destination = segue.destination

 as! Scene2ViewController

 destination.labelText = "Arrived from Scene 1"

}

This method obtains a reference to the destination view controller and then assigns a string to the labelText
property of the object so that it appears on the label.

Compile and rerun the app and note that the new label text appears when scene 2 is displayed. This is because
we have, albeit using an elementary example, transferred data from one scene to the next.

24.8 Unwinding Storyboard Segues
The next step is configuring the button on scene 2 to return to scene 1. It might seem that the obvious choice is
to implement a segue from the button in scene 2 to scene 1. Instead of returning to the original instance of scene
1, however, this would create an entirely new instance of the ViewController class. If a user were to perform
this transition repeatedly, the app would continue using more memory and eventually be terminated by the
operating system.

The app should instead make use of the Storyboard unwind feature. This involves implementing a method in
the view controller of the scene to which the user is to be returned and then connecting a segue to that method
from the source view controller. This enables an unwind action to be performed across multiple scene levels.

To implement this in our example app, begin by selecting the ViewController.swift file and implementing a
method to be called by the unwind segue named returned:
@IBAction func returned(segue: UIStoryboardSegue) {

 scene1Label.text = "Returned from Scene 2"

}

All this method requires for this example is that it sets some new text on the label object of scene 1. Once the

181

Using Storyboards in Xcode 14

method has been added, it is important to save the ViewController.swift file before continuing.

The next step is to establish the unwind segue. To achieve this, locate scene 2 within the storyboard canvas and
right-click and drag from the button view to the “exit” icon (the orange button with the white square and the
right-facing arrow pointing outward shown in Figure 24-9) in the panel located along the top edge of the scene
view. Release the line and select the returnedWithSegue method from the resulting menu:

Figure 24-9
Once again, run the app and note that the button on scene 2 now returns to scene 1 and, in the process, calls the
returned method resulting in the label on scene 1 changing.

24.9 Triggering a Storyboard Segue Programmatically
In addition to wiring up controls in scenes to trigger a segue, it is possible to initiate a preconfigured segue from
within the app code. This can be achieved by assigning an identifier to the segue and then making a call to the
performSegue(withIdentifier:) method of the view controller from which the segue is to be triggered.

To set the identifier of a segue, select it in the storyboard canvas, display the Attributes Inspector, and set the
value in the Identifier field.

Assuming a segue with the identifier of SegueToScene1, this could be triggered from within code as follows:
self.performSegue(withIdentifier: "SegueToScene1", sender: self)

24.10 Summary
The Storyboard feature of Xcode allows for the navigational flow between the various views in an iOS app to be
visually constructed without the need to write code. In this chapter, we have covered the basic concepts behind
storyboarding, worked through creating an example iOS app using storyboards, and explored the storyboard
unwind feature.

257

Chapter 35

35. An Overview of Swift Structured
Concurrency
Concurrency can be defined as the ability of software to perform multiple tasks in parallel. Many app development
projects will need to use concurrent processing at some point, and concurrency is essential for providing a good
user experience. Concurrency, for example, allows an app’s user interface to remain responsive while performing
background tasks such as downloading images or processing data.

In this chapter, we will explore the structured concurrency features of the Swift programming language and
explain how these can be used to add multi-tasking support to your app projects.

35.1 An Overview of Threads
Threads are a feature of modern CPUs and provide the foundation of concurrency in any multitasking operating
system. Although modern CPUs can run large numbers of threads, the actual number of threads that can be
run in parallel at any one time is limited by the number of CPU cores (depending on the CPU model, this will
typically be between 4 and 16 cores). When more threads are required than there are CPU cores, the operating
system performs thread scheduling to decide how the execution of these threads is to be shared between the
available cores.

Threads can be thought of as mini-processes running within a main process, the purpose of which is to enable
at least the appearance of parallel execution paths within application code. The good news is that although
structured concurrency uses threads behind the scenes, it handles all of the complexity for you, and you should
never need to interact with them directly.

35.2 The Application Main Thread
When an app is first started, the runtime system will typically create a single thread in which the app will run by
default. This thread is generally referred to as the main thread. The primary role of the main thread is to handle
the user interface in terms of UI layout rendering, event handling, and user interaction with views in the user
interface.

Any additional code within an app that performs a time-consuming task using the main thread will cause the
entire application to appear to lock up until the task is completed. This can be avoided by launching the tasks to
be performed in separate threads, allowing the main thread to continue unhindered with other tasks.

35.3 Completion Handlers
As outlined in the chapter entitled “Swift Functions, Methods and Closures”, Swift previously used completion
handlers to implement asynchronous code execution. In this scenario, an asynchronous task would be started,
and a completion handler would be assigned to be called when the task finishes. In the meantime, the main app
code would continue to run while the asynchronous task is performed in the background. On completion of the
asynchronous task, the completion handler would be called and passed any results. The body of the completion
handler would then execute and process those results.

Unfortunately, completion handlers tend to result in complex and error-prone code constructs that are difficult
to write and understand. Completion handlers are also unsuited to handling errors thrown by asynchronous

258

An Overview of Swift Structured Concurrency

tasks and generally result in large and confusing nested code structures.

35.4 Structured Concurrency
Structured concurrency was introduced into the Swift language with Swift version 5.5 to make it easier for
app developers to implement concurrent execution safely and in a logical and easy way to both write and
understand. In other words, structured concurrency code can be read from top to bottom without jumping back
to completion handler code to understand the logic flow. Structured concurrency also makes it easier to handle
errors thrown by asynchronous functions.

Swift provides several options for implementing structured concurrency, each of which will be introduced in
this chapter.

35.5 Preparing the Project
Launch Xcode and select the option to create a new iOS App project named ConcurrencyDemo. Once created,
select the Main.storyboard file, display the Library, and drag a Button object onto the center of the scene layout.
Next, double-click on the button and change the text to read “Async Test”, then use the Align menu to add
constraints to center the button horizontally and vertically in the container:

Figure 35-1
Display the Assistant Editor and establish an action connection from the button to a method named buttonClick().
Next, edit the ViewController.swift file and add two additional functions that will be used later in the chapter.
Finally, modify the buttonCLick() method to call the doSomething function:
import UIKit

259

An Overview of Swift Structured Concurrency

class ViewController: UIViewController {

 override func viewDidLoad() {

 super.viewDidLoad()

 }

 @IBAction func buttonClick(_ sender: Any) {

 doSomething()
 }

 func doSomething() {
 }

 func takesTooLong() {
 }

}

35.6 Non-Concurrent Code
Before exploring concurrency, we will first look at an example of non-concurrent code (also referred to as
synchronous code) execution. Begin by adding the following code to the two stub functions. The changes to the
doSomething() function print out the current date and time before calling the takesTooLong() function. Finally,
the date and time are output once again before the doSomething() function exits.

The takesTooLong() function uses the system sleep() method to simulate the effect of performing a time-
consuming task that blocks the main thread until it is complete before printing out another timestamp:
func doSomething() {

 print("Start \(Date())")
 takesTooLong()
 print("End \(Date())")
}

func takesTooLong() {

 sleep(5)
 print("Async task completed at \(Date())")
}

Run the app on a device or simulator and click on the “Async Test” button. Output similar to the following
should appear in the Xcode console panel:
Start 2023-02-05 17:43:10 +0000

Async task completed at 2023-02-05 17:43:15 +0000

End 2023-02-05 17:43:15 +0000

The key point to note in the above timestamps is that the end time is 5 seconds after the start time. This tells us
not only that the call to takesTooLong() lasted 5 seconds as expected but that any code after the call was made
within the doSomething() function was not able to execute until after the call returned. During that 5 seconds,
the app would appear to the user to be frozen.

The answer to this problem is implementing a Swift async/await concurrency structure. Before looking at async/

260

An Overview of Swift Structured Concurrency

await, we will need a Swift concurrency-compatible alternative to the sleep() call used in the above example. To
achieve this, add a new function to the ViewController.swift file that reads as follows:
func taskSleep(_: Int) async {

 do {

 try await Task.sleep(until: .now + .seconds(5), clock: .continuous)

 } catch { }

}

Ironically, the new function used Swift concurrency before we covered the topic. Rest assured, the techniques
used in the above code will be explained in the remainder of this chapter.

35.7 Introducing async/await Concurrency
The foundation of structured concurrency is the async/await pair. The async keyword is used when declaring a
function to indicate that it will be executed asynchronously relative to the thread from which it was called. We
need, therefore, to declare both of our example functions as follows (any errors that appear will be addressed
later):
func doSomething() async {
 print("Start \(Date())")

 takesTooLong()

 print("End \(Date())")

}

func takesTooLong() async {
 await taskSleep(5)
 print("Async task completed at \(Date())")

}

Marking a function as async achieves several objectives. First, it indicates that the code in the function needs to
be executed on a different thread to the one from which it was called. It also notifies the system that the function
itself can be suspended during execution to allow the system to run other tasks. As we will see later, these
suspend points within an async function are specified using the await keyword.

Another point to note about async functions is that they can generally only be called from within the scope of
other async functions though, as we will see later in the chapter, the Task object can be used to provide a bridge
between synchronous and asynchronous code. Finally, if an async function calls other async functions, the
parent function cannot exit until all child tasks have also been completed.

Most importantly, once a function has been declared asynchronous, it can only be called using the await keyword.
Before looking at the await keyword, we must understand how to call async functions from synchronous code.

35.8 Asynchronous Calls from Synchronous Functions
The rules of structured concurrency state that an async function can only be called from within an asynchronous
context. If the entry point into your program is a synchronous function, this raises the question of how any
async functions can ever get called. The answer is to use the Task object from within the synchronous function
to launch the async function. Suppose we have a synchronous function named main() from which we need to
call one of our async functions and attempt to do so as follows:
func main() {

 doSomething()

}

261

An Overview of Swift Structured Concurrency

The above code will result in the following error notification in the code editor:
'async' call in a function that does not support concurrency

The only options we have are to make main() an async function or to launch the function in an unstructured
task. Assuming that declaring main() as an async function is not a viable option, in this case, the code will need
to be changed as follows:
func main() {

 Task {
 await doSomething()
 }
}

35.9 The await Keyword
As we previously discussed, the await keyword is required when making a call to an async function and can only
usually be used within the scope of another async function. Attempting to call an async function without the
await keyword will result in the following syntax error:
Expression is 'async' but is not marked with 'await'

To call the takesTooLong() function, therefore, we need to make the following change to the doSomething()
function:
func doSomething() async {

 print("Start \(Date())")

 await takesTooLong()
 print("End \(Date())")

}

One more change is now required because we are attempting to call the async doSomething() function from
a synchronous context (in this case, the buttonClick action method). To resolve this, we need to use the Task
object to launch the doSomething() function:
@IBAction func buttonClick(_ sender: Any) {

 Task {
 await doSomething()
 }
}

When tested now, the console output should be similar to the following:
Start 2023-02-05 17:53:03 +0000

Async task completed at 2023-02-05 17:53:08 +0000

End 2023-02-05 17:53:08 +0000

This is where the await keyword can be a little confusing. As you have probably noticed, the doSomething()
function still had to wait for the takesTooLong() function to return before continuing, giving the impression that
the task was still blocking the thread from which it was called. In fact, the task was performed on a different
thread, but the await keyword told the system to wait until it completed. The reason for this is that, as previously
mentioned, a parent async function cannot complete until all of its sub-functions have also completed. This
means that the call has no choice but to wait for the async takesTooLong() function to return before executing
the next line of code. The next section will explain how to defer the wait until later in the parent function using
the async-let binding expression. Before doing that, however, we need to look at another effect of using the await
keyword in this context.

262

An Overview of Swift Structured Concurrency

In addition to allowing us to make the async call, the await keyword has also defined a suspend point within the
doSomething() function. When this point is reached during execution, it tells the system that the doSomething()
function can be temporarily suspended and the thread on which it is running used for other purposes. This
allows the system to allocate resources to any higher priority tasks and will eventually return control to the
doSomething() function so that execution can continue. By marking suspend points, the doSomething() function
is essentially being forced to be a good citizen by allowing the system to briefly allocate processing resources
to other tasks. Given the speed of the system, it is unlikely that a suspension will last more than fractions of a
second and will not be noticeable to the user while benefiting the overall performance of the app.

35.10 Using async-let Bindings
In our example code, we have identified that the default behavior of the await keyword is to wait for the called
function to return before resuming execution. A more common requirement, however, is to continue executing
code within the calling function while the async function is executing in the background. This can be achieved
by deferring the wait until later in the code using an async-let binding. To demonstrate this, we first need to
modify our takesTooLong() function to return a result (in this case, our task completion timestamp):
func takesTooLong() async -> Date {
 await taskSleep(5)

 return Date()
}

Next, we need to change the call within doSomething() to assign the returned result to a variable using a let
expression but also marked with the async keyword:
func doSomething() async {

 print("Start \(Date())")

 async let result = takesTooLong()
 print("End \(Date())")

}

Now, we need to specify where within the doSomething() function we want to wait for the result value to be
returned. We do this by accessing the result variable using the await keyword. For example:
func doSomething() async {

 print("Start \(Date())")

 async let result = takesTooLong()
 print("After async-let \(Date())")
 // Additional code to run concurrently with async function goes here
 print ("result = \(await result)")
 print("End \(Date())")

}

When printing the result value, we are using await to let the system know that execution cannot continue until
the async takesTooLong() function returns with the result value. At this point, execution will stop until the
result is available. Any code between the async-let and the await, however, will execute concurrently with the
takesTooLong() function.

Execution of the above code will generate output similar to the following:
Start 2023-02-05 17:56:00 +0000

After async-let 2023-02-05 17:56:00 +0000
result = 2023-02-05 17:56:05 +0000
End 2023-02-05 17:56:05 +0000

263

An Overview of Swift Structured Concurrency

Note that the “After async-let” message has a timestamp that is 5 seconds earlier than the “result =” call return
stamp confirming that the code was executed while takesTooLong() was also running.

35.11 Handling Errors
Error handling in structured concurrency uses the throw/do/try/catch mechanism previously covered in the
chapter entitled “Understanding Error Handling in Swift 5”. The following example modifies our original async
takesTooLong() function to accept a sleep duration parameter and to throw an error if the delay is outside of a
specific range:
enum DurationError: Error {
 case tooLong
 case tooShort
}
.

.

func takesTooLong(delay: Int) async throws {

 if delay < 5 {
 throw DurationError.tooShort
 } else if delay > 20 {
 throw DurationError.tooLong
 }

 await taskSleep(delay)
 print("Async task completed at \(Date())")
}

Now when the function is called, we can use a do/try/catch construct to handle any errors that get thrown:
func doSomething() async {

 print("Start \(Date())")

 do {
 try await takesTooLong(delay: 25)
 } catch DurationError.tooShort {
 print("Error: Duration too short")
 } catch DurationError.tooLong {
 print("Error: Duration too long")
 } catch {
 print("Unknown error")
 }
 print("End \(Date())")

}

When executed, the resulting output will resemble the following:
Start 2022-03-30 19:29:43 +0000

Error: Duration too long

End 2022-03-30 19:29:43 +0000

264

An Overview of Swift Structured Concurrency

35.12 Understanding Tasks
Any work that executes asynchronously runs within an instance of the Swift Task class. An app can run multiple
tasks simultaneously and structures these tasks hierarchically. When launched, the async version of our
doSomething() function will run within a Task instance. When the takesTooLong() function is called, the system
creates a sub-task within which the function code will execute. In terms of the task hierarchy tree, this sub-task
is a child of the doSomething() parent task. Any calls to async functions from within the sub-task will become
children of that task, and so on.

This task hierarchy forms the basis on which structured concurrency is built. For example, child tasks inherit
attributes such as priority from their parents, and the hierarchy ensures that a parent task does not exit until all
descendant tasks have been completed.

As we will see later in the chapter, tasks can be grouped to enable the dynamic launching of multiple asynchronous
tasks.

35.13 Unstructured Concurrency
Individual tasks can be created manually using the Task object, a concept referred to as unstructured
concurrency. As we have already seen, a common use for unstructured tasks is to call async functions from
within synchronous functions.

Unstructured tasks also provide more flexibility because they can be externally canceled at any time during
execution. This is particularly useful if you need to provide the user with a way to cancel a background activity,
such as tapping on a button to stop a background download task. This flexibility comes with extra cost in terms
of having to do a little more work to create and manage tasks.

Unstructured tasks are created and launched by calling the Task initializer and providing a closure containing
the code to be performed. For example:
Task {

 await doSomething()

}

These tasks also inherit the configuration of the parent from which they are called, such as the actor context,
priority, and task local variables. Tasks can also be assigned a new priority when they are created, for example:
Task(priority: .high) {
 await doSomething()

}

This provides a hint to the system about how the task should be scheduled relative to other tasks. Available
priorities ranked from highest to lowest are as follows:

• .high / .userInitiated

• .medium

• .low / .utility

• .background

When a task is manually created, it returns a reference to the Task instance. This can be used to cancel the task
or to check whether the task has already been canceled from outside the task scope:
let task = Task(priority: .high) {

 await doSomething()

265

An Overview of Swift Structured Concurrency

}

.

.

if (!task.isCancelled) {

 task.cancel()

}

35.14 Detached Tasks
Detached tasks are another form of unstructured concurrency, but they differ in that they do not inherit any
properties from the calling parent. Detached tasks are created by calling the Task.detached() method as follows:
Task.detached {
 await doSomething()

}

Detached tasks may also be passed a priority value, and checked for cancellation using the same techniques as
outlined above:
let detachedTask = Task.detached(priority: .medium) {

 await doSomething()

}

.

.

if (!detachedTask.isCancelled) {

 detachedTask.cancel()

}

35.15 Task Management
Whether you are using structured or unstructured tasks, the Task class provides a set of static methods and
properties that can be used to manage the task from within the scope.

A task may, for example, use the currentPriority property to identify the priority assigned when it was created:
Task {

 let priority = Task.currentPriority

 await doSomething()

}

Unfortunately, this is a read-only property so cannot be used to change the priority of the running task.

It is also possible for a task to check if it has been canceled by accessing the isCancelled property:
if Task.isCancelled {

 // perform task cleanup

}

Another option for detecting cancellation is to call the checkCancellation() method, which will throw a
CancellationError error if the task has been canceled:
do {

 try Task.checkCancellation()

} catch {

 // Perform task cleanup

}

266

An Overview of Swift Structured Concurrency

A task may cancel itself at any time by calling the cancel() Task method:
Task.cancel()

Finally, if there are locations within the task code where execution could safely be suspended, these can be
declared to the system via the yield() method:
Task.yield()

35.16 Working with Task Groups
So far in this chapter, our examples have involved creating one or two tasks (a parent and a child). In each case,
we knew how many tasks were required in advance of writing the code. Situations often arise, however, where
several tasks need to be created and run concurrently based on dynamic criteria. We might, for example, need to
launch a separate task for each item in an array or within the body of a for loop. Swift addresses this by providing
task groups.

Task groups allow a dynamic number of tasks to be created and are implemented using either the
withThrowingTaskGroup() or withTaskGroup() functions (depending on whether or not the async functions in
the group throw errors). The looping construct to create the tasks is then defined within the corresponding
closure, calling the group addTask() function to add each new task.

Modify the two functions as follows to create a task group consisting of five tasks, each running an instance of
the takesTooLong() function:
func doSomething() async {

 await withTaskGroup(of: Void.self) { group in
 for i in 1...5 {
 group.addTask {
 let result = await self.takesTooLong()
 print("Completed Task \(i) = \(result)")
 }
 }
 }
}

func takesTooLong() async -> Date {
 await taskSleep(5)
 return Date()
}

When executed, there will be a 5-second delay while the tasks run before output similar to the following appears:
Completed Task 1 = 2022-03-31 17:36:32 +0000

Completed Task 2 = 2022-03-31 17:36:32 +0000

Completed Task 5 = 2022-03-31 17:36:32 +0000

Completed Task 3 = 2022-03-31 17:36:32 +0000

Completed Task 4 = 2022-03-31 17:36:32 +0000

Note that the tasks all show the same completion timestamp indicating that they were executed concurrently.
It is also interesting to notice that the tasks did not complete in the order in which they were launched. When
working with concurrency, it is important to remember that there is no guarantee that tasks will be completed
in the order they were created.

267

An Overview of Swift Structured Concurrency

In addition to the addTask() function, several other methods and properties are accessible from within the task
group, including the following:

• cancelAll() - Method call to cancel all tasks in the group

• isCancelled - Boolean property indicating whether the task group has already been canceled.

• isEmpty - Boolean property indicating whether any tasks remain within the task group.

35.17 Avoiding Data Races
In the above task group example, the group did not store the results of the tasks. In other words, the results did
not leave the scope of the task group and were not retained when the tasks ended. For example, let’s assume we
want to store the task number and result timestamp for each task within a Swift dictionary object (with the task
number as the key and the timestamp as the value). When working with synchronous code, we might consider
a solution that reads as follows:
func doSomething() async {

 var timeStamps: [Int: Date] = [:]

 await withTaskGroup(of: Void.self) { group in

 for i in 1...5 {

 group.addTask {

 timeStamps[i] = await self.takesTooLong()
 }

 }

 }

}

Unfortunately, the above code will report the following error on the line where the result from the takesTooLong()
function is added to the dictionary:
Mutation of captured var 'timeStamps' in concurrently-executing code

The problem is that we have multiple tasks concurrently accessing the data and risk encountering a data race
condition. A data race occurs when multiple tasks attempt to access the same data concurrently, and one or
more of these tasks is performing a write operation. This generally results in data corruption problems that can
be hard to diagnose.

One option is to create an actor in which to store the data. Another solution is to adapt our task group to return
the task results sequentially and add them to the dictionary. We originally declared the task group as returning
no results by passing Void.self as the return type to the withTaskGroup() function as follows:
await withTaskGroup(of: Void.self) { group in
.

.

The first step is to design the task group so that each task returns a tuple containing the task number (Int) and
timestamp (Date) as follows. We also need a dictionary in which to store the results:
func doSomething() async {

 var timeStamps: [Int: Date] = [:]

268

An Overview of Swift Structured Concurrency

 await withTaskGroup(of: (Int, Date).self) { group in
 for i in 1...5 {

 group.addTask {

 return(i, await self.takesTooLong())
 }

 }

 }

}

Next, we need to declare a second loop to handle the results as they are returned from the group. Because the
results are being returned individually from async functions, we cannot simply write a loop to process them all
at once. Instead, we need to wait until each result is returned. For this situation, Swift provides the for-await loop.

35.18 The for-await Loop
The for-await expression allows us to step through sequences of values that are being returned asynchronously
and await the receipt of values as they are returned by concurrent tasks. The only requirement for using for-
await is that the sequential data conforms to the AsyncSequence protocol (which should always be the case when
working with task groups).

In our example, we need to add a for-await loop within the task group scope, but after the addTask loop as
follows:
func doSomething() async {

 var timeStamps: [Int: Date] = [:]

 await withTaskGroup(of: (Int, Date).self) { group in

 for i in 1...5 {

 group.addTask {

 return(i, await self.takesTooLong())

 }

 }

 for await (task, date) in group {
 timeStamps[task] = date
 }
 }

}

As each task returns, the for-await loop will receive the resulting tuple and store it in the timeStamps dictionary.
To verify this, we can add some code to print the dictionary entries after the task group exits:
func doSomething() async {

.

.

 for await (task, date) in group {

 timeStamps[task] = date

 }

 }

269

An Overview of Swift Structured Concurrency

 for (task, date) in timeStamps {
 print("Task = \(task), Date = \(date)")
 }
}

When executed, the output from the completed example should be similar to the following:
Task = 2, Date = 2023-02-05 18:54:06 +0000

Task = 3, Date = 2023-02-05 18:54:06 +0000

Task = 4, Date = 2023-02-05 18:54:06 +0000

Task = 5, Date = 2023-02-05 18:54:06 +0000

Task = 1, Date = 2023-02-05 18:54:06 +0000

35.19 Asynchronous Properties
In addition to async functions, Swift also supports async properties within class and struct types. Asynchronous
properties are created by explicitly declaring a getter and marking it as async as demonstrated in the following
example. Currently, only read-only properties can be asynchronous.
struct MyStruct {

 var myResult: Date {

 get async {
 return await self.getTime()
 }
 }

 func getTime() async -> Date {

 sleep(5)

 return Date()

 }

}

.

.

func doSomething() async {

 let myStruct = MyStruct()

 Task {

 let date = await myStruct.myResult
 print(date)

 }

}

35.20 Summary
Modern CPUs and operating systems are designed to execute code concurrently, allowing multiple tasks to be
performed simultaneously. This is achieved by running tasks on different threads, with the main thread primarily
responsible for rendering the user interface and responding to user events. By default, most code in an app is also
executed on the main thread unless specifically configured to run on a different thread. If that code performs
tasks that occupy the main thread for too long, the app will appear to freeze until the task completes. To avoid
this, Swift provides the structured concurrency API. When using structured concurrency, code that would block

270

An Overview of Swift Structured Concurrency

the main thread is instead placed in an asynchronous function (async properties are also supported) so that it
is performed on a separate thread. The calling code can be configured to wait for the async code to complete
before continuing using the await keyword or to continue executing until the result is needed using async-let.

Modern CPUs and operating systems are designed to execute code concurrently allowing multiple tasks to
be performed at the same time. This is achieved by running tasks on different threads with the main thread
being primarily responsible for rendering the user interface and responding to user events. By default, most
code in an app is also executed on the main thread unless specifically configured to run on a different thread.
If that code performs tasks that occupy the main thread for too long the app will appear to freeze until the task
completes. To avoid this, Swift provides the structured concurrency API. When using structured concurrency,
code that would block the main thread is instead placed in an asynchronous function (async properties are also
supported) so that it is performed on a separate thread. The calling code can be configured to wait for the async
code to complete before continuing using the await keyword, or to continue executing until the result is needed
using async-let.

Tasks can be run individually or as groups of multiple tasks. The for-await loop provides a useful way to
asynchronously process the results of asynchronous task groups.

299

Chapter 41

41. Using iCloud Storage in an iOS 16
App
The two preceding chapters of this book were intended to convey the knowledge necessary to begin implementing
iCloud-based document storage in iOS apps. Having outlined the steps necessary to enable iCloud access in the
chapter entitled “Preparing an iOS 16 App to use iCloud Storage” and provided an overview of the UIDocument
class in “Managing Files using the iOS 16 UIDocument Class”, the next step is to begin to store documents using
the iCloud service.

Within this chapter, the iCloudStore app created in the previous chapter will be re-purposed to store a document
using iCloud storage instead of the local device-based file system. The assumption is also made that the project
has been enabled for iCloud document storage following the steps outlined in “Preparing an iOS 16 App to use
iCloud Storage”.

Before starting on this project, it is important to note that membership to the Apple Developer Program will be
required as outlined in “Joining the Apple Developer Program”.

41.1 iCloud Usage Guidelines
Before implementing iCloud storage in an app, a few rules must first be understood. Some of these are mandatory
rules, and some are simply recommendations made by Apple:

• Apps must be associated with a provisioning profile enabled for iCloud storage.

• The app projects must include a suitably configured entitlements file for iCloud storage.

• Apps should not make unnecessary use of iCloud storage. Once a user’s initial free iCloud storage space is
consumed by stored data, the user will either need to delete files or purchase more space.

• Apps should, ideally, provide the user with the option to select which documents are to be stored in the cloud
and which are to be stored locally.

• When opening a previously created iCloud-based document, the app should never use an absolute path to the
document. The app should instead search for the document by name in the app’s iCloud storage area and then
access it using the result of the search.

• Documents stored using iCloud should be placed in the app’s Documents directory. This gives the user the
ability to delete individual documents from the storage. Documents saved outside the Documents folder can
only be deleted in bulk.

41.2 Preparing the iCloudStore App for iCloud Access
Much of the work performed in creating the local storage version of the iCloudStore app in the previous chapter
will be reused in this example. The user interface, for example, remains unchanged, and the implementation
of the UIDocument subclass will not need to be modified. The only methods that need to be rewritten are the
saveDocument and viewDidLoad methods of the view controller.

Load the iCloudStore project into Xcode and select the ViewController.swift file. Locate the saveDocument

300

Using iCloud Storage in an iOS 16 App

method and remove the current code from within the method so that it reads as follows:
@IBAction func saveDocument(_ sender: Any) {

}

Next, locate the loadFile method and modify it accordingly to match the following fragment:
func loadFile() {

}

41.3 Enabling iCloud Capabilities and Services
Before writing any code, we need to add the iCloud capability to our project, enable the iCloud Documents
service, and create an iCloud container.

Begin by selecting the iCloudStore target located at the top of the Project Navigator panel (marked A in Figure
41-1) so that the main panel displays the project settings. From within this panel, select the Signing & Capabilities
tab (B) followed by the CoreDataDemo target entry (C):

Figure 41-1
Click on the “+ Capability” button (D) to display the dialog shown in Figure 41-2. Enter iCloud into the filter
bar, select the result and press the keyboard enter key to add the capability to the project:

Figure 41-2
If iCloud is not listed as an option, you will need to pay to join the Apple Developer program as outlined in the
chapter entitled “Joining the Apple Developer Program”. If you are already a member, use the steps outlined in the
chapter entitled “Installing Xcode 14 and the iOS 16 SDK” to ensure you have created a Developer ID Application
certificate.

Within the iCloud entitlement settings, make sure that the iCloud Documents service is enabled before clicking
on the “+” button indicated by the arrow in Figure 41-3 below to add an iCloud container for the project:

301

Using iCloud Storage in an iOS 16 App

Figure 41-3
After clicking the “+” button, the dialog shown in Figure 41-4 will appear containing a text field into which you
need to enter the container identifier. This entry should uniquely identify the container within the CloudKit
ecosystem, generally includes your organization identifier (as defined when the project was created), and should
be set to something similar to iCloud.com.yourcompany.iCloudStore.

Figure 41-4
Once you have entered the container name, click the OK button to add it to the app entitlements. Returning to
the Signing & Capabilities screen, make sure that the new container is selected:

Figure 41-5

302

Using iCloud Storage in an iOS 16 App

41.4 Configuring the View Controller
Before writing any code, several variables need to be defined within the view controller’s ViewController.swift file
in addition to those implemented in the previous chapter.

Creating a URL to the document location in the iCloud storage will also be necessary. When a document is
stored on iCloud, it is said to be ubiquitous since the document is accessible to the app regardless of the device
on which it is running. Therefore, the object used to store this URL will be named ubiquityURL.

As previously stated, when opening a stored document, an app should search for it rather than directly access it
using a stored path. An iCloud document search is performed using an NSMetaDataQuery object which needs
to be declared in the view controller class, in this instance, using the name metaDataQuery. Note that declaring
the object locally to the method in which it is used will result in the object being released by the automatic
reference counting system (ARC) before it has completed the search.

To implement these requirements, select the ViewController.swift file in the Xcode project navigator panel and
modify the file as follows:
import UIKit

class ViewController: UIViewController {

 @IBOutlet weak var textView: UITextView!

 var document: MyDocument?

 var documentURL: URL?

 var ubiquityURL: URL?
 var metaDataQuery: NSMetadataQuery?
.

.

.

}

41.5 Implementing the loadFile Method
The purpose of the code in the view controller loadFile method is to identify the URL for the ubiquitous file
version to be stored using iCloud (assigned to ubiquityURL). The ubiquitous URL is constructed by calling the
url(forUbiquityContainerIdentifier:) method of the FileManager passing through nil as an argument to default to
the first container listed in the entitlements file.
ubiquityURL = filemgr.url(forUbiquityContainerIdentifier: nil)

The app will only be able to obtain the ubiquityURL if the user has configured a valid Apple ID within the iCloud
page of the iOS Settings app. Therefore, some defensive code must be added to notify the user and return from
the method if a valid ubiquityURL cannot be obtained. For testing in this example, we will output a message to
the console before returning:
guard ubiquityURL != nil else {

 print("Unable to access iCloud Account")

 print("Open the Settings app and enter your Apple ID into iCloud settings")

 return

}

Since it is recommended that documents be stored in the Documents sub-directory, this needs to be appended

303

Using iCloud Storage in an iOS 16 App

to the URL path along with the file name:
ubiquityURL =

 ubiquityURL?.appendingPathComponent("Documents/savefile.txt")

The final task for the loadFile method is to initiate a search in the app’s iCloud storage area to find out if the
savefile.txt file already exists and to act accordingly, subject to the result of the search. The search is performed
by calling the methods on an instance of the NSMetaDataQuery object. This involves creating the object, setting
a predicate to indicate the files to search for, and defining a ubiquitous search scope (in other words instructing
the object to search within the Documents directory of the app’s iCloud storage area). Once initiated, the search
is performed on a separate thread and issues a notification when completed. For this reason, it is also necessary
to configure an observer to be notified when the search is finished. The code to perform these tasks reads as
follows:
metaDataQuery = NSMetadataQuery()

metaDataQuery?.predicate =

 NSPredicate(format: "%K like 'savefile.txt'",

 NSMetadataItemFSNameKey)

metaDataQuery?.searchScopes = [NSMetadataQueryUbiquitousDocumentsScope]

NotificationCenter.default.addObserver(self,

 selector: #selector(

 ViewController.metadataQueryDidFinishGathering),

 name: NSNotification.Name.NSMetadataQueryDidFinishGathering,

 object: metaDataQuery!)

metaDataQuery?.start()

Once the start method is called, the search will run and call the metadataQueryDidFinishGathering method
when the search is complete. The next step, therefore, is to implement the metadataQueryDidFinishGathering
method. Before doing so, however, note that the loadFile method is now complete, and the full implementation
should read as follows:
func loadFile() {

 let filemgr = FileManager.default

 ubiquityURL = filemgr.url(forUbiquityContainerIdentifier: nil)

 guard ubiquityURL != nil else {
 print("Unable to access iCloud Account")
 print("Open the Settings app and enter your Apple ID into iCloud
settings")
 return
 }

 ubiquityURL = ubiquityURL?.appendingPathComponent(
 "Documents/savefile.txt")

304

Using iCloud Storage in an iOS 16 App

 metaDataQuery = NSMetadataQuery()

 metaDataQuery?.predicate =
 NSPredicate(format: "%K like 'savefile.txt'",
 NSMetadataItemFSNameKey)
 metaDataQuery?.searchScopes =
 [NSMetadataQueryUbiquitousDocumentsScope]

 NotificationCenter.default.addObserver(self,
 selector: #selector(
 ViewController.metadataQueryDidFinishGathering),
 name: NSNotification.Name.NSMetadataQueryDidFinishGathering,
 object: metaDataQuery!)

 metaDataQuery?.start()
}

41.6 Implementing the metadataQueryDidFinishGathering Method
When the metadata query was triggered in the loadFile method to search for documents in the
Documents directory of the app’s iCloud storage area, an observer was configured to call a method named
metadataQueryDidFinishGathering when the initial search was completed. The next logical step is to implement
this method. The first task of the method is to identify the query object that caused this method to be called.
This object must then disable any further query updates (at this stage, the document either exists or doesn’t
exist, so there is nothing to be gained by receiving additional updates) and stop the search. Finally, removing
the observer that triggered the method call is also necessary. When combined, these requirements result in the
following code:
let query: NSMetadataQuery = notification.object as! NSMetadataQuery

query.disableUpdates()

NotificationCenter.default.removeObserver(self,

 name: NSNotification.Name.NSMetadataQueryDidFinishGathering,

 object: query)

query.stop()

The next step is to make sure at least one match was found and to extract the URL of the first document located
during the search:
if query.resultCount == 1 {

 let resultURL = query.value(ofAttribute: NSMetadataItemURLKey,

 forResultAt: 0) as! URL

In all likelihood, a more complex app would need to implement a for loop to iterate through more than one
document in the array. Given that the iCloudStore app searched for only one specific file name, we can check
the array element count and assume that if the count is one, then the document already exists. In this case,
the ubiquitous URL of the document from the query object needs to be assigned to our ubiquityURL member
property and used to create an instance of our MyDocument class called document. The document object’s
open(completionHandler:) method is then called to open the document in the cloud and read the contents. This

305

Using iCloud Storage in an iOS 16 App

will trigger a call to the load(fromContents:) method of the document object, which, in turn, will assign the
contents of the document to the userText property. Assuming the document read is successful, the value of
userText needs to be assigned to the text property of the text view object to make it visible to the user. Bringing
this together results in the following code fragment:
 document = MyDocument(fileURL: resultURL as URL)

 document?.open(completionHandler: {(success: Bool) -> Void in

 if success {

 print("iCloud file open OK")

 self.textView.text = self.document?.userText

 self.ubiquityURL = resultURL as URL

 } else {

 print("iCloud file open failed")

 }

 })

} else {

}

Suppose the document does not yet exist in iCloud storage. In that case, the code needs to create the document
using the save(to:) method of the document object passing through the value of ubiquityURL as the destination
path on iCloud:
.

.

} else {

 if let url = ubiquityURL {

 document = MyDocument(fileURL: url)

 document?.save(to: url,

 for: .forCreating,

 completionHandler: {(success: Bool) -> Void in

 if success {

 print("iCloud create OK")

 } else {

 print("iCloud create failed")

 }

 })

 }

}

The individual code fragments outlined above combine to implement the following
metadataQueryDidFinishGathering method, which should be added to the ViewController.swift file:
@objc func metadataQueryDidFinishGathering(notification: NSNotification)

 -> Void

{

 let query: NSMetadataQuery = notification.object as! NSMetadataQuery

 query.disableUpdates()

306

Using iCloud Storage in an iOS 16 App

 NotificationCenter.default.removeObserver(self,

 name: NSNotification.Name.NSMetadataQueryDidFinishGathering,

 object: query)

 query.stop()

 if query.resultCount == 1 {

 let resultURL = query.value(ofAttribute: NSMetadataItemURLKey,

 forResultAt: 0) as! URL

 document = MyDocument(fileURL: resultURL as URL)

 document?.open(completionHandler: {(success: Bool) -> Void in

 if success {

 print("iCloud file open OK")

 self.textView.text = self.document?.userText

 self.ubiquityURL = resultURL as URL

 } else {

 print("iCloud file open failed")

 }

 })

 } else {

 if let url = ubiquityURL {

 document = MyDocument(fileURL: url)

 document?.save(to: url,

 for: .forCreating,

 completionHandler: {(success: Bool) -> Void in

 if success {

 print("iCloud create OK")

 } else {

 print("iCloud create failed")

 }

 })

 }

 }

}

41.7 Implementing the saveDocument Method
The final task before building and running the app is implementing the saveDocument method. This method
needs to update the userText property of the document object with the text entered into the text view and then
call the saveToURL method of the document object, passing through the ubiquityURL as the destination URL
using the .forOverwriting option:
@IBAction func saveDocument(_ sender: Any) {

 document?.userText = textView.text

307

Using iCloud Storage in an iOS 16 App

 if let url = ubiquityURL {
 document?.save(to: url,
 for: .forOverwriting,
 completionHandler: {(success: Bool) -> Void in
 if success {
 print("Save overwrite OK")
 } else {
 print("Save overwrite failed")
 }
 })
 }
}

All that remains now is to build and run the iCloudStore app on an iOS device, but first, some settings need to
be checked.

41.8 Enabling iCloud Document and Data Storage
When testing iCloud on an iOS Simulator session, it is important to ensure that the simulator is configured
with a valid Apple ID within the Settings app. Launch the simulator, load the Settings app, and click on the
iCloud option to configure this. If no account information is configured on this page, enter a valid Apple ID and
corresponding password before proceeding with the testing.

Whether or not apps are permitted to use iCloud storage on an iOS device or Simulator is controlled by the
iCloud settings. To review these settings, open the Settings app on the device or simulator, select your account at
the top of the settings list and, on the resulting screen, select the iCloud category. Scroll down the list of various
iCloud-related options and verify that the iCloud Drive option is set to On:

Figure 41-6

41.9 Running the iCloud App
Once you have logged in to an iCloud account on the device or simulator, test the iCloudStore app by clicking the
run button. Once running, edit the text in the text view and touch the Save button. Next, in the Xcode toolbar,

308

Using iCloud Storage in an iOS 16 App

click on the stop button to exit the app, followed by the run button to re-launch the app. On the second launch,
the previously entered text will be read from the document in the cloud and displayed in the text view object.

41.10 Making a Local File Ubiquitous
In addition to writing a file directly to iCloud storage, as illustrated in this example app, it is also possible
to transfer a pre-existing local file to iCloud storage, making it ubiquitous. This can be achieved using the
setUbiquitous method of the FileManager class. For example, assuming that documentURL references the path
to the local copy of the file and ubiquityURL the iCloud destination, a local file can be made ubiquitous using
the following code:
do {

 try filemgr.setUbiquitous(true, itemAt: documentUrl,

 destinationURL: ubiquityURL)

} catch let error {

 print("setUbiquitous failed: \(error.localizedDescription)")

}

41.11 Summary
The objective of this chapter was to work through the process of developing an app that stores a document using
the iCloud service. Both techniques of directly creating a file in iCloud storage and making an existing locally
created file ubiquitous were covered. In addition, some important guidelines that should be observed when
using iCloud were outlined.

613

Chapter 84

84. Using Create ML to Build an
Image Classification Model
This chapter will demonstrate the use of Create ML to build an image classification model trained to classify
images based on whether the image contains one of four specific items (an apple, banana, cat, or a mixture of
fruits).

The tutorial will include the training and testing of an image recognition machine learning model using an
Xcode playground. In the next chapter, this model will be integrated into an app to perform image classifications
when a user takes a photo or selects an image from the photo library.

84.1 About the Dataset
As explained in the previous chapter, an image classification model is trained by providing it with a range of
images that have already been categorized. Once the training process has been performed, the model is then
tested using a set of images that were not previously used in the training process. Once the testing achieves a
high enough level of validation, the model is ready to be integrated into an app project.

For this example, a dataset containing images of apples and bananas will be used for training. The dataset is
contained within a folder named CreateML_dataset, which is included with the source code download available
at the following URL:

https://www.ebookfrenzy.com/retail/ios16/

The dataset includes a Training folder containing images divided into two subfolders organized as shown in
Figure 84-1:

Figure 84-1
The dataset also includes a Testing folder containing images for each classification, none of which were used
during the training session. Once the dataset has been downloaded, take some time to browse the folders and
images to understand the data’s structure.

84.2 Creating the Machine Learning Model
With the dataset prepared, the next step is to create the model using the Create ML tool. Begin by launching
Xcode, then select the Xcode -> Open Developer Tool -> Create ML menu option. When Create ML has loaded, it
will display a Finder window where you can choose an existing model or create a new one. Within this window,
click on the New Document button to display the template selection screen shown in Figure 84-2:

https://www.ebookfrenzy.com/retail/ios16/

614

Using Create ML to Build an Image Classification Model

Figure 84-2

For this example, we will work with images, so select the Image Classification template followed by the Next
button. Then, continue through the remaining screens, naming the project MyImageClassifier and selecting a
suitable folder into which to create the model.

Once the model has been created, the screen shown in Figure 84-3 will appear ready for the training and tested
data to be imported:

Figure 84-3

In the left-hand panel, click on the “MyImageClassifier 1” entry listed under Model Sources and change the
name to MyImageClassifier.

615

Using Create ML to Build an Image Classification Model

84.3 Importing the Training and Testing Data
Click on the box labeled Training Data to display the finder dialog and navigate to and open the Training data
set folder. Next, repeat these steps to import the test folder into the Testing Data box. Once the data has been
imported, the Data section of the Create ML screen should resemble Figure 84-4:

Figure 84-4

Next, increase the number of training iterations to 45 and set some augmentations to train the model to deal
with image variations:

Figure 84-5

84.4 Training and Testing the Model
Now that we have loaded the data, we are ready to start training and testing the model by clicking on the Train
button indicated by the arrow in Figure 84-4 above. Once the process is complete, select the Training tab to
display a graph showing how accuracy improved with each training iteration:

Figure 84-6

616

Using Create ML to Build an Image Classification Model

Next, switch to the Evaluation screen to review a more detailed breakdown of the training:

Figure 84-7

Finally, switch to the Preview screen and drag and drop images for each category that were not part of the
training or testing data and see which are successfully classified by the model:

Figure 84-8

We now need to save the model in preparation for loading it into an Xcode project. To save the model, display
the Output screen, click on the Get button highlighted in Figure 84-9, and select a name and location for the
model file:

617

Using Create ML to Build an Image Classification Model

Figure 84-9

Before exiting from Create ML tool, save the project using the File -> Save... menu option.

84.5 Summary
A key component of any machine learning implementation is a well-trained model, and the accuracy of that
model is dependent on the dataset used during the model training. Once comprehensive training data has been
gathered, Create ML makes creating and testing machine learning models easy. This involves the use of the
Create ML classifier builder. This chapter demonstrated the use of the Image classifier builder to create and save
a model designed to identify several different object types within images. This model will be used in the next
chapter to perform image identification within an existing iOS app.

669

Chapter 92

92. An Introduction to iOS 16 Sprite
Kit Programming
Suppose you have ever had an idea for a game but didn’t create it because you lacked the skills or time to write
complex game code and logic; look no further than Sprite Kit. Introduced as part of the iOS 7 SDK, Sprite Kit
allows 2D games to be developed relatively easily.

Sprite Kit provides almost everything needed to create 2D games for iOS, watchOS, tvOS, and macOS with
minimum coding. Sprite Kit’s features include animation, physics simulation, collision detection, and special
effects. These features can be harnessed within a game with just a few method calls.

In this and the next three chapters, the topic of games development with Sprite Kit will be covered to bring the
reader up to a level of competence to begin creating games while also providing a knowledge base on which to
develop further Sprite Kit development skills.

92.1 What is Sprite Kit?
Sprite Kit is a programming framework that makes it easy for developers to implement 2D-based games that run
on iOS, macOS, tvOS, and watchOS. It provides a range of classes that support the rendering and animation of
graphical objects (otherwise known as sprites) that can be configured to behave in specific programmer-defined
ways within a game. Through actions, various activities can be run on sprites, such as animating a character so
that it appears to be walking, making a sprite follow a specific path within a game scene, or changing the color
and texture of a sprite in real-time.

Sprite Kit also includes a physics engine allowing physics-related behavior to be imposed on sprites. For example,
a sprite can, amongst other things, be made to move by subjecting it to a pushing force, configured to behave as
though affected by gravity, or to bounce back from another sprite as the result of a collision.

In addition, the Sprite Kit particle emitter class provides a useful mechanism for creating special effects within a
game, such as smoke, rain, fire, and explosions. A range of templates for existing special effects is provided with
Sprite Kit and an editor built into Xcode for creating custom particle emitter-based special effects.

92.2 The Key Components of a Sprite Kit Game
A Sprite Kit game will typically consist of several different elements.

92.2.1 Sprite Kit View
Every Sprite Kit game will have at least one SKView class. An SKView instance sits at the top of the component
hierarchy of a game and is responsible for displaying the game content to the user. It is a subclass of the UIView
class and, as such, has many of the traits of that class, including an associated view controller.

92.2.2 Scenes
A game will also contain one or more scenes. One scene might, for example, display a menu when the game
starts, while additional scenes may represent multiple levels within the game. Scenes are represented in a game
by the SKScene class, a subclass of the SKNode class.

670

An Introduction to iOS 16 Sprite Kit Programming

92.2.3 Nodes
Each scene within a Sprite Kit game will have several Sprite Kit node children. These nodes fall into several
different categories, each of which has a dedicated Sprite Kit node class associated with it. These node classes are
all subclasses of the SKNode class and can be summarized as follows:

• SKSpriteNode – Draws a sprite with a texture. These textures will typically be used to create image-based
characters or objects in a game, such as a spaceship, animal, or monster.

• SKLabelNode – Used to display text within a game, such as menu options, the prevailing score, or a “game
over” message.

• SKShapeNode – Allows nodes to be created containing shapes defined using Core Graphics paths. If a sprite
is required to display a circle, for example, the SKShapeNode class could be used to draw the circle as an
alternative to texturing an SKSpriteNode with an image of a circle.

• SKEmitterNode – The node responsible for managing and displaying particle emitter-based special effects.

• SKVideoNode – Allows video playback to be performed within a game node.

• SKEffectNode – Allows Core Image filter effects to be applied to child nodes. A sepia filter effect, for example,
could be applied to all child nodes of an SKEffectNode.

• SKCropNode – Allows the pixels in a node to be cropped subject to a specified mask.

• SKLightNode – The lighting node is provided to add light sources to a SpriteKit scene, including casting
shadows when the light falls on other nodes in the same scene.

• SK3DNode – The SK3DNode allows 3D assets created using the Scene Kit Framework to be embedded into
2D Sprite Kit games.

• SKFieldNode – Applies physics effects to other nodes within a specified area of a scene.

• SKAudioNode – Allows an audio source using 3D spacial audio effects to be included in a Sprite Kit scene.

• SKCameraNode – Provides the ability to control the position from which the scene is viewed. The camera
node may also be adjusted dynamically to create panning, rotation, and scaling effects.

92.2.4 Physics Bodies
Each node within a scene can have associated with it a physics body. Physics bodies are represented by the
SKPhysicsBody class. Assignment of a physics body to a node brings a wide range of possibilities in terms of the
behavior associated with a node. When a node is assigned a physics body, it will, by default, behave as though
subject to the prevailing forces of gravity within the scene. In addition, the node can be configured to behave as
though having a physical boundary. This boundary can be defined as a circle, a rectangle, or a polygon of any
shape.

Once a node has a boundary, collisions between other nodes can be detected, and the physics engine is used to
apply real-world physics to the node, such as causing it to bounce when hitting other nodes. The use of contact
bit masks can be employed to specify the types of nodes for which contact notification is required.

The physics body also allows forces to be applied to nodes, such as propelling a node in a particular direction
across a scene using either a constant or one-time impulse force. Physical bodies can also be combined using
various join types (sliding, fixed, hinged, and spring-based attachments).

The properties of a physics body (and, therefore, the associated node) may also be changed. Mass, density,
velocity, and friction are just a few of the properties of a physics body available for modification by the game

671

An Introduction to iOS 16 Sprite Kit Programming

developer.

92.2.5 Physics World
Each scene in a game has its own physics world object in the form of an instance of the SKPhysicsWorld class. A
reference to this object, which is created automatically when the scene is initialized, may be obtained by accessing
the physicsWorld property of the scene. The physics world object is responsible for managing and imposing
the rules of physics on any nodes in the scene with which a physics body has been associated. Properties are
available on the physics world instance to change the default gravity settings for the scene and also to adjust the
speed at which the physics simulation runs.

92.2.6 Actions
An action is an activity performed by a node in a scene. Actions are the responsibility of SKAction class instances
which are created and configured with the action to be performed. That action is then run on one or more nodes.
An action might, for example, be configured to perform a rotation of 90 degrees. That action would then be run
on a node to make it rotate within the scene. The SKAction class includes various action types, including fade in,
fade out, rotation, movement, and scaling. Perhaps the most interesting action involves animating a sprite node
through a series of texture frames.

Actions can be categorized as sequence, group, or repeating actions. An action sequence specifies a series of
actions to be performed consecutively, while group actions specify a set of actions to be performed in parallel.
Repeating actions are configured to restart after completion. An action may be configured to repeat several
times or indefinitely.

92.2.7 Transitions
Transitions occur when a game changes from one scene to another. While it is possible to switch immediately
from one scene to another, a more visually pleasing result might be achieved by animating the transition in
some way. This can be implemented using the SKTransition class, which provides several different pre-defined
transition animations, such as sliding the new scene down over the top of the old scene or presenting the effect
of doors opening to reveal the new scene.

92.2.8 Texture Atlas
A large part of developing games involves handling images. Many of these images serve as textures for sprites.
Although adding images to a project individually is possible, Sprite Kit also allows images to be grouped into a
texture atlas. Not only does this make it easier to manage the images, but it also brings efficiencies in terms of
image storage and handling. For example, the texture images for a particular sprite animation sequence would
typically be stored in a single texture atlas. In contrast, another atlas might store the images for the background
of a particular scene.

92.2.9 Constraints
Constraints allow restrictions to be imposed on nodes within a scene in terms of distance and orientation in
relation to a point or another node. A constraint can, for example, be applied to a node such that its movement is
restricted to within a certain distance of another node. Similarly, a node can be configured so that it is oriented to
point toward either another node or a specified point within the scene. Constraints are represented by instances
of the SKConstraint class and are grouped into an array and assigned to the constraints property of the node to
which they are to be applied.

92.3 An Example Sprite Kit Game Hierarchy
To aid in visualizing how the various Sprite Kit components fit together, Figure 92-1 outlines the hierarchy for
a simple game:

672

An Introduction to iOS 16 Sprite Kit Programming

Figure 92-1
In this hypothetical game, a single SKView instance has two SKScene children, each with its own SKPhysicsWorld
object. Each scene, in turn, has two node children. In the case of both scenes, the SKSpriteNode instances have
been assigned SKPhysicsBody instances.

92.4 The Sprite Kit Game Rendering Loop
When working with Sprite Kit, it helps to understand how the animation and physics simulation process works.
This process can best be described by looking at the Sprite Kit frame rendering loop.

Sprite Kit performs the work of rendering a game using a game rendering loop. Within this loop, Sprite Kit
performs various tasks to render the visual and behavioral elements of the currently active scene, with an
iteration of the loop performed for each successive frame displayed to the user.

Figure 92-2 provides a visual representation of the frame rendering sequence performed in the loop:

Figure 92-2
When a scene is displayed within a game, Sprite Kit enters the rendering loop and repeatedly performs the same
sequence of steps as shown above. At several points in this sequence, the loop will make calls to your game,
allowing the game logic to respond when necessary.

Before performing any other tasks, the loop begins by calling the update method of the corresponding SKScene
instance. Within this method, the game should perform any tasks before the frame is updated, such as adding
additional sprites or updating the current score.

The loop then evaluates and implements any pending actions on the scene, after which the game can perform
more tasks via a call to the didEvaluateActions method.

Next, physics simulations are performed on the scene, followed by a call to the scene’s didSimulatePhysics
method, where the game logic may react where necessary to any changes resulting from the physics simulation.

The scene then applies any constraints configured on the nodes in the scene. Once this task has been completed,

673

An Introduction to iOS 16 Sprite Kit Programming

a call is made to the scene’s didApplyConstraints method if it has been implemented.

Finally, the SKView instance renders the new scene frame before the loop sequence repeats.

92.5 The Sprite Kit Level Editor
Integrated into Xcode, the Sprite Kit Level Editor allows scenes to be designed by dragging and dropping nodes
onto a scene canvas and setting properties on those nodes using the SKNode Inspector. Though code writing is
still required for anything but the most basic scene requirements, the Level Editor provides a useful alternative
to writing code for some of the less complex aspects of SpriteKit game development. The editor environment
also includes both live and action editors, allowing for designing and testing animation and action sequences
within a Sprite Kit game.

92.6 Summary
Sprite Kit provides a platform for creating 2D games on iOS, tvOS, watchOS, and macOS. Games comprise an
SKView instance with an SKScene object for each game scene. Scenes contain nodes representing the game’s
characters, objects, and items. Various node types are available, all of which are subclassed from the SKNode
class. In addition, each node can have associated with it a physics body in the form of an SKPhysicsBody
instance. A node with a physics body will be subject to physical forces such as gravity, and when given a physical
boundary, collisions with other nodes may also be detected. Finally, actions are configured using the SKAction
class, instances of which are then run by the nodes on which the action is to be performed.

The orientation and movement of a node can be restricted by implementing constraints using the SKConstraint
class.

The rendering of a Sprite Kit game takes place within the game loop, with one loop performed for each game
frame. At various points in this loop, the app can perform tasks to implement and manage the underlying game
logic.

Having provided a high-level overview in this chapter, the next three chapters will take a more practical approach
to exploring the capabilities of Sprite Kit by creating a simple game.

675

Chapter 93

93. An iOS 16 Sprite Kit Level Editor
Game Tutorial
In this chapter of iOS 16 App Development Essentials, many of the Sprite Kit Framework features outlined in
the previous chapter will be used to create a game-based app. In particular, this tutorial will demonstrate the
practical use of scenes, textures, sprites, labels, and actions. In addition, the app created in this chapter will also
use physics bodies to demonstrate the use of collisions and simulated gravity.

This tutorial will also demonstrate using the Xcode Sprite Kit Level, Live, and Action editors combined with
Swift code to create a Sprite Kit-based game.

93.1 About the Sprite Kit Demo Game
The game created in this chapter consists of a single animated character that shoots arrows across the scene
when the screen is tapped. For the game’s duration, balls fall from the top of the screen, with the objective being
to hit as many balls as possible with the arrows.

The completed game will comprise the following two scenes:

• GameScene – The scene which appears when the game is first launched. The scene will announce the game’s
name and invite the user to touch the screen to begin the game. The game will then transition to the second
scene.

• ArcheryScene – The scene where the game-play takes place. Within this scene, the archer and ball sprites are
animated, and the physics behavior and collision detection are implemented to make the game work.

In terms of sprite nodes, the game will include the following:

• Welcome Node – An SKLabelNode instance that displays a message to the user on the Welcome Scene.

• Archer Node – An SKSpriteNode instance to represent the archer game character. The animation frames that
cause the archer to load and launch an arrow are provided via a sequence of image files contained within a
texture atlas.

• Arrow Node – An SKSpriteNode instance used to represent the arrows as the archer character shoots them.
This node has associated with it a physics body so that collisions can be detected and to make sure it responds
to gravity.

• Ball Node – An SKSpriteNode represents the balls that fall from the sky. The ball has associated with it a
physics body for gravity and collision detection purposes.

• Game Over Node – An SKLabelNode instance that displays the score to the user at the end of the game.

The overall architecture of the game can be represented hierarchically, as outlined in Figure 93-1:

676

An iOS 16 Sprite Kit Level Editor Game Tutorial

Figure 93-1
In addition to the nodes outlined above, the Xcode Live and Action editors will be used to implement animation
and audio actions, which will be triggered from within the app’s code.

93.2 Creating the SpriteKitDemo Project
To create the project, launch Xcode and select the Create a new Xcode project option from the welcome screen
(or use the File -> New -> Project…) menu option. Next, on the template selection panel, choose the iOS Game
template option. Click on the Next button to proceed and on the resulting options screen, name the product
SpriteKitDemo and choose Swift as the language in which the app will be developed. Finally, set the Game
Technology menu to SpriteKit. Click Next and choose a suitable location for the project files. Once selected, click
Create to create the project.

93.3 Reviewing the SpriteKit Game Template Project
The selection of the SpriteKit Game template has caused Xcode to create a template project with a demonstration
incorporating some pre-built Sprite Kit behavior. This template consists of a View Controller class
(GameViewController.swift), an Xcode Sprite Kit scene file (GameScene.sks), and a corresponding GameScene
class file (GameScene.swift). The code within the GameViewController.swift file loads the scene design contained
within the GameScene.sks file and presents it on the view to be visible to the user. This, in turn, triggers a call to
the didMove(to view:) method of the GameScene class as implemented in the GameScene.swift file. This method
creates an SKLabelNode displaying text that reads “Hello, World!”.

The GameScene class also includes a variety of touch method implementations that create SKShapeNode
instances into which graphics are drawn when triggered. These nodes, in turn, are displayed in response to
touches and movements on the device screen. To see the template project in action, run it on a physical device
or the iOS simulator and perform tapping and swiping motions on the display.

As impressive as this may be, given how little code is involved, this bears no resemblance to the game that will
be created in this chapter, so some of this functionality needs to be removed to provide a clean foundation on
which to build. Begin the tidying process by selecting and editing the GameScene.swift file to remove the code to
create and present nodes in the scene. Once modified, the file should read as follows:
import SpriteKit

import GameplayKit

677

An iOS 16 Sprite Kit Level Editor Game Tutorial

class GameScene: SKScene {

 override func didMove(to view: SKView) {

 }

 override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {

 }

 override func update(_ currentTime: TimeInterval) {

 // Called before each frame is rendered

 }

}

With these changes, it is time to start creating the SpriteKitDemo game.

93.4 Restricting Interface Orientation
The game created in this tutorial assumes that the device on which it is running will be in landscape orientation.
Therefore, to prevent the user from attempting to play the game with a device in portrait orientation, the
Device Orientation properties for the project need to be restricted. To achieve this, select the SpriteKitDemo
entry located at the top of the Project Navigator and, in the resulting General settings panel, change the device
orientation settings so that only the Landscape options are selected both for iPad and iPhone devices:

Figure 93-2

93.5 Modifying the GameScene SpriteKit Scene File
As previously outlined, Xcode has provided a SpriteKit scene file (GameScene.sks) for a scene named GameScene
together with a corresponding class declaration contained within the GameScene.swift file. The next task is to
repurpose this scene to act as the welcome screen for the game. Begin by selecting the GameScene.sks file so that
it loads into the SpriteKit Level Editor, as shown in Figure 93-3:

678

An iOS 16 Sprite Kit Level Editor Game Tutorial

Figure 93-3
When working with the Level Editor to design SpriteKit scenes, there are several key areas of importance, each
of which has been labeled in the above figure:

• A – Scene Canvas - This is the canvas onto which nodes may be placed, positioned, and configured.

• B – Attribute Inspector Panel - This panel provides a range of configuration options for the currently
selected item in the editor panel. This allows SKNode and SKAction objects to be customized within the
editor environment.

• C – Library Button – This button displays the Library panel containing a range of node and effect types that
can be dragged and dropped onto the scene.

• D – Animate/Layout Button - Toggles between the editor’s simulation and layout editing modes. Simulate
mode provides a useful mechanism for previewing the scene behavior without compiling and running the
app.

• E – Zoom Buttons – Buttons to zoom in and out of the scene canvas.

• F – Live Editor – The live editor allows actions and animations to be placed within a timeline and simulated
within the editor environment. It is possible, for example, to add animation and movement actions within the
live editor and play them back live within the scene canvas.

• G – Timeline View Slider – Pans back and forth through the view of the live editor timeline.

• H – Playback Speed – When in Animation mode, this control adjusts the playback speed of the animations
and actions contained within the live editor panel.

• I – Scene Graph View – This panel provides an overview of the scene’s hierarchy and can be used to select,

679

An iOS 16 Sprite Kit Level Editor Game Tutorial

delete, duplicate and reposition scene elements within the hierarchy.

Within the scene editor, click on the “Hello, World!” Label node and press the keyboard delete key to remove it
from the scene. With the scene selected in the scene canvas, click on the Color swatch in the Attribute Inspector
panel and use the color selection dialog to change the scene color to a shade of green. Remaining within the
Attributes Inspector panel, change the Size setting from Custom to iPad 9.7” in Landscape mode:

Figure 93-4
Click on the button (marked C in Figure 93-3 above) to display the Library panel, locate the Label node object,
and drag and drop an instance onto the center of the scene canvas. With the label still selected, change the Text
property in the inspector panel to read “SpriteKitDemo – Tap Screen to Play”. Remaining within the inspector
panel, click on the T next to the font name and use the font selector to assign a 56-point Marker Felt Wide font
to the label from the Fun font category. Finally, set the Name property for the label node to “welcomeNode”. Save
the scene file before proceeding.

With these changes complete, the scene should resemble that of Figure 93-5:

Figure 93-5

680

An iOS 16 Sprite Kit Level Editor Game Tutorial

93.6 Creating the Archery Scene
As previously outlined, the game’s first scene is a welcome screen on which the user will tap to begin playing
within a second scene. Add a new class to the project to represent this second scene by selecting the File -> New
-> File… menu option. In the file template panel, make sure that the Cocoa Touch Class template is selected
in the main panel. Click on the Next button and configure the new class to be a subclass of SKScene named
ArcheryScene. Click on the Next button and create the new class file within the project folder.

The new scene class will also require a corresponding SpriteKit scene file. Select File -> New -> File… once again,
this time selecting SpriteKit Scene from the Resource section of the main panel (Figure 93-6). Click Next, name
the scene ArcheryScene and click the Create button to add the scene file to the project.

Figure 93-6
Edit the newly added ArcheryScene.swift file and modify it to import the SpriteKit Framework as follows:
import UIKit

import SpriteKit

class ArcheryScene: SKScene {

}

93.7 Transitioning to the Archery Scene
Clearly, having instructed the user to tap the screen to play the game, some code needs to be written to make this
happen. This behavior will be added by implementing the touchesBegan method in the GameScene class. Rather
than move directly to ArcheryScene, some effects will be added as an action and transition.

When implemented, the SKAction will cause the node to fade from view, while an SKTransition instance will be
used to animate the transition from the current scene to the archery scene using a “doorway” style of animation.
Implement these requirements by adding the following code to the touchesBegan method in the GameScene.
swift file:
override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {

 if let welcomeNode = childNode(withName: "welcomeNode") {
 let fadeAway = SKAction.fadeOut(withDuration: 1.0)

681

An iOS 16 Sprite Kit Level Editor Game Tutorial

 welcomeNode.run(fadeAway, completion: {
 let doors = SKTransition.doorway(withDuration: 1.0)
 if let archeryScene = ArcheryScene(fileNamed: "ArcheryScene") {
 self.view?.presentScene(archeryScene, transition: doors)
 }
 })
 }
}

Before moving on to the next steps, we will take some time to provide more detail on the above code.

From within the context of the touchesBegan method, we have no direct reference to the welcomeNode instance.
However, we know that when it was added to the scene in the SpriteKit Level Editor, it was assigned the name
“welcomeNode”. Using the childNode(withName:) method of the scene instance, therefore, a reference to the
node is being obtained within the touchesBegan method as follows:
if let welcomeNode = childNode(withName: "welcomeNode") {

The code then checks that the node was found before creating a new SKAction instance configured to cause the
node to fade from view over a one-second duration:
let fadeAway = SKAction.fadeOut(withDuration: 1.0)

The action is then executed on the welcomeNode. A completion block is also specified to be executed when the
action completes. This block creates an instance of the ArcheryScene class preloaded with the scene contained
within the ArcheryScene.sks file and an appropriately configured SKTransition object. The transition to the new
scene is then initiated:
let fadeAway = SKAction.fadeOut(withDuration: 1.0)

welcomeNode.run(fadeAway, completion: {

 let doors = SKTransition.doorway(withDuration: 1.0)

 if let archeryScene = ArcheryScene(fileNamed: "ArcheryScene") {

 self.view?.presentScene(archeryScene, transition: doors)

 }

})

Compile and run the app on an iPad device or simulator in landscape orientation. Once running, tap the screen
and note that the label node fades away and that after the transition to the ArcheryScene takes effect, we are
presented with a gray scene that now needs to be implemented.

93.8 Adding the Texture Atlas
Before textures can be used on a sprite node, the texture images must first be added to the project. Textures take
the form of image files and may be added individually to the project’s asset catalog. However, for larger numbers
of texture files, it is more efficient (both for the developer and the app) to create a texture atlas. In the case of
the archer sprite, this will require twelve image files to animate an arrow’s loading and subsequent shooting. A
texture atlas will be used to store these animation frame images. The images for this project can be found in the
sample code download, which can be obtained from the following web page:

https://www.ebookfrenzy.com/retail/ios16/

Within the code sample archive, locate the folder named sprite_images. Located within this folder is the archer.
atlas sub-folder, which contains the animation images for the archer sprite node.

https://www.ebookfrenzy.com/retail/ios16

682

An iOS 16 Sprite Kit Level Editor Game Tutorial

To add the atlas to the project, select the Assets catalog file in the Project Navigator to display the image assets
panel. Locate the archer.atlas folder in a Finder window and drag and drop it onto the asset catalog panel so that
it appears beneath the existing AppIcon entry, as shown in the following figure:

Figure 93-7

93.9 Designing the Archery Scene
The layout for the archery scene is contained within the ArcheryScene.sks file. Select this file so that it loads
into the Level Editor environment. With the scene selected in the canvas, use the Attributes Inspector panel to
change the color property to white and the Size property to landscape iPad 9.7”.

From within the SpriteKit Level Editor, the next task is to add the sprite node representing the archer to the
scene. Display the Library panel, select the Media Library tab as highlighted in Figure 93-8 below, and locate
the archer001.png texture image file:

Figure 93-8

683

An iOS 16 Sprite Kit Level Editor Game Tutorial

Once located, change the Size property in the Attributes Inspector to iPad 9.7”, then drag and drop the texture
onto the canvas and position it so that it is located in the vertical center of the scene at the left-hand edge, as
shown in the following figure:

Figure 93-9
With the archer node selected, use the Attributes Inspector panel to assign the name “archerNode” to the sprite.
The next task is to define the physical outline of the archer sprite. The SpriteKit system will use this outline when
deciding whether the sprite has been involved in a collision with another node within the scene. By default, the
physical shape is assumed to be a rectangle surrounding the sprite texture (represented by the blue boundary
around the node in the scene editor). Another option is to define a circle around the sprite to represent the
physical shape. A much more accurate approach is to have SpriteKit define the physical shape of the node based
on the outline of the sprite texture image. With the archer node selected in the scene, scroll down within the
Attribute Inspector panel until the Physics Definition section appears. Then, using the Body Type menu, change
the setting to Alpha mask:

Figure 93-10
Before proceeding with the next phase of the development process, test that the scene behaves as required by
clicking on the Animate button located along the bottom edge of the editor panel. Note that the archer slides

684

An iOS 16 Sprite Kit Level Editor Game Tutorial

down and disappears off the bottom edge of the scene. This is because the sprite is configured to be affected by
gravity. For the game’s purposes, the archer must be pinned to the same location and not subject to the laws of
gravity. Click on the Layout button to leave simulation mode, select the archer sprite and, within the Physical
Definition section, turn the Pinned option on and the Dynamic, Allows Rotation, and Affected by Gravity options
off. Re-run the animation to verify that the archer sprite now remains in place.

93.10 Preparing the Archery Scene
Select the ArcheryScene.swift file and modify it as follows to add some private variables and implement the
didMove(to:) method:
import UIKit

import SpriteKit

class ArcheryScene: SKScene {

 var score = 0
 var ballCount = 20

 override func didMove(to view: SKView) {
 let archerNode = self.childNode(withName: "archerNode")
 archerNode?.position.y = 0
 archerNode?.position.x = -self.size.width/2 + 40
 self.initArcheryScene()
 }
.

.

}

When the archer node was added to the ArcheryScene, it was positioned using absolute X and Y coordinates.
This means the node will be positioned correctly on an iPad with a 9.7” screen but not on any other screen sizes.
Therefore, the first task performed by the didMove method is to position the archer node correctly relative to
the screen size. Regarding the scene, position 0, 0 corresponds to the screen’s center point. Therefore, to position
the archer node in the vertical center of the screen, the y-coordinate is set to zero. The code then obtains the
screen’s width, performs a basic calculation to identify a position 40 points in from the screen’s left-hand edge,
and assigns it to the x-coordinate of the node.

The above code then calls another method named initArcheryScene which now needs to be implemented as
follows within the ArcheryScene.swift file ready for code which will be added later in the chapter:
func initArcheryScene() {

}

93.11 Preparing the Animation Texture Atlas
When the user touches the screen, the archer sprite node will launch an arrow across the scene. For this example,
we want the sprite character’s loading and shooting of the arrow to be animated. The texture atlas already
contains the animation frames needed to implement this (named sequentially from archer001.png through to
archer012.png), so the next step is to create an action to animate this sequence of frames. One option would be
to write some code to perform this task. A much easier option, however, is to create an animation action using
the SpriteKit Live Editor.

Begin by selecting the ArcheryScene.sks file so that it loads into the editor. Once loaded, the first step is to add an

685

An iOS 16 Sprite Kit Level Editor Game Tutorial

AnimateWithTextures action within the timeline of the live editor panel. Next, within the Library panel, scroll
down the list of objects until the AnimateWithTextures Action object comes into view. Once located, drag and
drop an instance of the object onto the live editor timeline for the archerNode as indicated in Figure 93-11:

Figure 93-11
With the animation action added to the timeline, the action needs to be configured with the texture sequence
to be animated. With the newly added action selected in the timeline, display the Media Library panel so that
the archer texture images are listed. Next, use the Command-A keyboard sequence to select all of the images in
the library and then drag and drop those images onto the Textures box in the Animate with Textures attributes
panel, as shown in Figure 93-12:

Figure 93-12
Test the animation by clicking on the Animate button. The archer sprite should animate through the sequence of
texture images to load and shoot the arrow.

Compile and run the app and tap on the screen to enter the archery scene. On appearing, the animation sequence
will execute once. The animation sequence should only run when the user taps the screen to launch an arrow.
Having this action within the timeline, therefore, does not provide the required behavior for the game. Instead,
the animation action needs to be converted to a named action reference, placed in an action file, and triggered
from within the touchesBegan method of the archer scene class.

686

An iOS 16 Sprite Kit Level Editor Game Tutorial

93.12 Creating the Named Action Reference
With the ArcherScene.sks file loaded into the level editor, right-click on the Animate with Textures action in the
timeline and select the Convert to Reference option from the popup menu:

Figure 93-13
In the Create Action panel, name the action animateArcher and change the File menu to Create New File. Next,
click on the Create button and, in the Save As panel, navigate to the SpriteKitDemo subfolder of the main project
folder and enter ArcherActions into the Save As: field before clicking on Create.

Since the animation action is no longer required in the timeline of the archer scene, select the ArcherScene.sks
file, right-click on the Animate with Texture action in the timeline, and select Delete from the menu.

93.13 Triggering the Named Action from the Code
With the previous steps completed, the project now has a named action (named animateArcher) which can be
triggered each time the screen is tapped by adding some code to the touchesBegan method of the ArcheryScene.
swift file. With this file selected in the Project Navigator panel, implement this method as follows:
override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {

 if let archerNode = self.childNode(withName: "archerNode"),

 let animate = SKAction(named: "animateArcher") {

 archerNode.run(animate)

 }

}

Run the app and touch the screen within the Archery Scene. Each time a touch is detected, the archer sprite will
run through the animation sequence of shooting an arrow.

93.14 Creating the Arrow Sprite Node
At this point in the tutorial, the archer sprite node goes through an animation sequence of loading and shooting
an arrow, but no actual arrow is being launched across the scene. To implement this, a new sprite node must
be added to the ArcheryScene. This node will be textured with an arrow image and placed to the right of the
archer sprite at the end of the animation sequence. Then, a physics body will be associated with the arrow, and
an impulse force will be applied to it to propel it across the scene as though shot by the archer’s bow. This task
will be performed entirely in code to demonstrate the alternative to using the action and live editors.

Begin by locating the ArrowTexture.png file in the sprite_images folder of the sample code archive and drag and
drop it onto the left-hand panel of the Assets catalog screen beneath the archer texture atlas entry. Next, add a

687

An iOS 16 Sprite Kit Level Editor Game Tutorial

new method named createArrowNode within the ArcheryScene.swift file so that it reads as follows:
func createArrowNode() -> SKSpriteNode {

 let arrow = SKSpriteNode(imageNamed: "ArrowTexture.png")

 if let archerNode = self.childNode(withName: "archerNode"),

 let archerPosition = archerNode.position as CGPoint?,

 let archerWidth = archerNode.frame.size.width as CGFloat? {

 arrow.position = CGPoint(x: archerPosition.x + archerWidth,

 y: archerPosition.y)

 arrow.name = "arrowNode"

 arrow.physicsBody = SKPhysicsBody(rectangleOf:

 arrow.frame.size)

 arrow.physicsBody?.usesPreciseCollisionDetection = true

 }

 return arrow

}

The code creates a new SKSpriteNode object, positions it to the right of the archer sprite node, and assigns the
name arrowNode. A physics body is then assigned to the node, using the node’s size as the boundary of the body
and enabling precision collision detection. Finally, the node is returned.

93.15 Shooting the Arrow
A physical force needs to be applied to propel the arrow across the scene. The arrow sprite’s creation and
propulsion must be timed to occur at the end of the archer animation sequence. This timing can be achieved via
some minor modifications to the touchesBegan method:
override func touchesBegan(_ touches: Set<UITouch>, with event: UIEvent?) {

 if let archerNode = self.childNode(withName: "archerNode"),

 let animate = SKAction(named: "animateArcher") {

 let shootArrow = SKAction.run({
 let arrowNode = self.createArrowNode()
 self.addChild(arrowNode)
 arrowNode.physicsBody?.applyImpulse(CGVector(dx: 60, dy: 0))
 })

 let sequence = SKAction.sequence([animate, shootArrow])

 archerNode.run(sequence)
 }

}

A new SKAction object is created, specifying a block of code to be executed. This run block calls the
createArrowNode method, adds the new node to the scene, and then applies an impulse force of 60.0 on the
X-axis of the scene. An SKAction sequence comprises the previously created animation action and the new run

688

An iOS 16 Sprite Kit Level Editor Game Tutorial

block action. This sequence is then run on the archer node.

When executed with these changes, touching the screen should now cause an arrow to be launched after the
archer animation completes. Then, as the arrow flies across the scene, it gradually falls toward the bottom of the
display. This behavior is due to gravity’s effect on the physics body assigned to the node.

93.16 Adding the Ball Sprite Node
The game’s objective is to score points by hitting balls with arrows. So, the next logical step is adding the ball
sprite node to the scene. Begin by locating the BallTexture.png file in the sprite_images folder of the sample code
package and drag and drop it onto the Assets.xcassets catalog.

Next, add the corresponding createBallNode method to the ArcheryScene.swift file as outlined in the following
code fragment:
func createBallNode() {

 let ball = SKSpriteNode(imageNamed: "BallTexture.png")

 let screenWidth = self.size.width

 ball.position = CGPoint(x: CGFloat.random(

 in: -screenWidth/2 ..< screenWidth/2-100),

 y: self.size.height-50)

 ball.name = "ballNode"

 ball.physicsBody = SKPhysicsBody(circleOfRadius:

 (ball.size.width/2))

 ball.physicsBody?.usesPreciseCollisionDetection = true

 self.addChild(ball)

}

This code creates a sprite node using the ball texture and then sets the initial position at the top of the scene but a
random position on the X-axis. Since position 0 on the X-axis corresponds to the horizontal center of the screen
(as opposed to the far left side), some calculations are performed to ensure that the balls can fall from most of
the screen’s width using random numbers for the X-axis values.

The node is assigned a name and a circular physics body slightly less than the radius of the ball texture image.
Finally, precision collision detection is enabled, and the ball node is added to the scene.

Next, modify the initArcheryScene method to create an action to release a total of 20 balls at one-second intervals:
func initArcheryScene() {

 let releaseBalls = SKAction.sequence([SKAction.run({
 self.createBallNode() }),
 SKAction.wait(forDuration: 1)])

 self.run(SKAction.repeat(releaseBalls,
 count: ballCount))
}

689

An iOS 16 Sprite Kit Level Editor Game Tutorial

Run the app and verify that the balls now fall from the top of the scene. Then, attempt to hit the balls as they fall
by tapping the background to launch arrows. Note, however, that when an arrow hits a ball, it simply bounces
off:

Figure 93-14
The goal for the completed game is to have the balls burst with a sound effect when hit by the arrow and for a
score to be presented at the end of the game. The steps to implement this behavior will be covered in the next
chapters.

The balls fall from the top of the screen because they have been assigned a physics body and are subject to the
simulated forces of gravity within the Sprite Kit physical world. To reduce the effects of gravity on both the
arrows and balls, modify the didMove(to view:) method to change the current gravity setting on the scene’s
physicsWorld object:
override func didMove(to view: SKView) {

 let archerNode = self.childNode(withName: "archerNode")

 archerNode?.position.y = 0

 archerNode?.position.x = -self.size.width/2 + 40

 self.physicsWorld.gravity = CGVector(dx: 0, dy: -1.0)
 self.initArcheryScene()

}

93.17 Summary
The goal of this chapter has been to create a simple game for iOS using the Sprite Kit framework. In creating this
game, topics such as using sprite nodes, actions, textures, sprite animations, and physical forces have been used
to demonstrate the use of the Xcode Sprite Kit editors and Swift code.

In the next chapter, this game example will be further extended to demonstrate the detection of collisions.

717

Index

Index

Symbols
& 57

^ 58

^= 59

<< 59

<<= 59

&= 59

>> 59

>>= 59

| 58

|= 59

~ 57

$0 79

@IBDesignable 423

@IBInspectable 424

?? operator 56

A
Action Extension 548

add target 564

overview 563

receiving data from 573

tutorial 563

Adaptive User Interface

tutorial 168

addArc method 427, 431

addConstraint method 148

addCurve(to:) method 431

addEllipse(in:) method 429

addQuadCurve method 432

addRect method 428

addTask() function 266

Affine Transformations 444

Alert Views 128

Alignment Rects 130

alpha property 443

AND (&&) operator 55

AND operator 57

Animation 443

example 445

Animation Blocks 443

Animation Curves 444

AnyObject 100

App Icons 709

Apple Developer Program 3

applicationDidEnterBackground delegate method 248

Application Performance 24

applicationWillResignActive method 248

App project template 175

App Store

creating archive 710

submission 707

App Store Connect 711

Arranged Subviews 226

arrangedSubviews property 226

Array

forEach() 99

mixed type 100

Array Initialization 97

Array Item Count 98

Array Items

accessing 98

appending 99

inserting and deleting 99

Array Iteration 99

Arrays

immutable 97

mutable 97

as! keyword 51

Aspect Ratio Constraints 143

Assistant Editor 118, 119

async

suspend points 260

async/await 259

718

Index

Asynchronous Properties 269

async keyword 260

async-let bindings 262

AsyncSequence protocol 268

attributesOfItemAtPath method 275

Audio 643

Audio Formats 643

Audio Session

category 543

Audio Unit Extension 549

Augmented Reality App 12

Auto Layout

addConstraint 148

Add New Constraints menu 135

Alignment Rects 130

Align menu 139

Auto Resizing Translation 149

Compression Resistance 130

constraintsWithVisualFormat 160

Content Hugging 130

Creating Constraints in Code 147

Cross Hierarchy Constraints 155

cross-view hierarchy constraints 129

Editing Constraints 141

Interface Builder example 133

Intrinsic Content Size 130

introduction 129

Removing Constraints 153

Suggested Constraints 136

Visual Format Language 131, 159

Auto Layout Problems

resolving 143

Auto Resizing Translation 149

autosizing 129

AVAudioPlayer 649

AVAudioPlayerDelegate protocol

methods 643

AVAudioRecorder 649

AVAudioSession.Category.playback 543

AVPlayerViewController 537, 539

await keyword 260, 261

B
background colors

changing scene 190

binary operators 53

Biometric Authentication 405

Bitcode 713

bit operators 57

Bitwise AND 57

Bitwise Left Shift 58

bitwise OR 58

bitwise right shift 59

bitwise XOR 58

Boolean Logical Operators 55

bottomAnchor 150

Bounds Rectangles 116

break statement 63

Build Errors 24

Build Phases 15

Build Rules 15

Build Settings 15

Bundle display name key 565

C
calculateETA(completionHandler:) method 494

Camera

tutorial 531

Camera and Photo Library 527

cancelAll() function 267

canHandle(adjustmentData:) method 555

case Statement 68

catch statement 107

multiple matches 107

cellForRowAt indexPath method 197

Cell Reuse Identifier 203

centerXAnchor 149

centerYAnchor 150

CFBundleTypeName 317

CFBundleTypeRole 317, 322

CGAffineTransformMakeRotation() function 444

CGColor property 416

CGColorSpaceCreateDeviceCMYK() function 416

CGColorSpaceCreateDeviceGray function 416

719

Index
CGContextRef 416

CGCreateSetStrokeColorWithColor function 416

CGGradient class 434

CGImageRef 441

CGPoint 415

CGRect 415

CGRect structure 415

CGSize 415

Character data type 42

checkCancellation() method 265

childNode(withName:) method 681

CIContext 440

CIFilter 440

CIImage 440, 441

CKContainer class 361

CKDatabase 361, 362, 365, 381

CKModifyRecordsOperation 363

CKRecord 362, 364, 365, 377

CKRecordID 364

CKRecordTypeUserRecord 366

CKRecordZone 365

CKReference 364

Class Extensions 94

CLGeocoder 467

CLLocation 467, 479

CLLocationManager 479

CLLocationManagerDelegate protocol 481, 486

CLLocationManager Object 486

closed range operator 55

Closure Expressions 78

shorthand argument names 79

closures 71

Closures 79

CloudKit 361

add container 301, 370

Assets 364

Console 377

deleting a record 381

example 369

overview 361

Private Database 373

Private Databases 361

Public Database 361

quotas 362

Record IDs 364

Records 362

Record Zones 365

Saving a Record 376

searching 379

Subscriptions 365

tutorial 369

Updating records 380

CloudKit Console 377

CloudKit Containers 361

CloudKit Data Storage 287

CloudKit Sharing 365

CLPlacemark 468

coalesced touches 385

Coalesced Touches

accessing 391

coalescedTouchesForTouch method 385

Cocoa Touch 111

Color

working with 416

colorspace 416

compact size class 163

company identifier 13

Comparison Operators 54

Completion Handlers 257

Component Properties 18

Compound Bitwise Operators 59

Compression Resistance 130

computed properties 85

concrete type 89

Conditional Control Flow 64

constants 45

constraint() method 150

Constraints 129

editing 141

Outlets 156

Removing 153

constraintsWithVisualFormat 160

constraintsWithVisualFormat method 161

constraintWithItem method 147

720

Index

Container Views 128

Content Blocking Extension 549

Content Hugging 130

continue Statement 63

Controls 128

Coordinates 415

Core Animation 443

Core Data 349

Entity Description 351

Fetched Property 350

Fetch request 350

Managed Object Context 350

Managed Object Model 350

Managed Objects 350

Persistent Object Store 351

Persistent Store Coordinator 350

relationships 350

stack 349

tutorial 355

Core Graphics 415

Core Image Framework 440

Core Location

basics of 479

CoreML

classification request 622

example 619

CoreML framework 612

CouldKit

References 364

CPU cores 257

Create ML 611

building a model 613

CreateMLUI 611

cross-view hierarchy constraints 129

Current Location

getting 483

Current Working Directory 272

Custom Keyboard Extension 549

D
data encapsulation 82

Data Races 267

defaultContainer method 361

Default Function Parameters 73

defer statement 108

Delegation 113

dequeueReusableCell(withIdentifier:) method 197, 207

design patterns 111

Detached Tasks 265

Developer Mode setting 23

Developer Program 3

Dictionary Collections 100

Dictionary Entries

adding and removing 102

Dictionary Initialization 100

Dictionary Item Count 102

Dictionary Items

accessing and updating 102

Dictionary Iteration 102

didBegin(contact:) method 693

didChangeAuthorizationStatus delegate method 482

didEnd(contact:) method 693

Did End on Exit event 122

didFinishLaunchingWithOptions 113

didFinishPickingMediaWithInfo method 528

didMove(to view:) method 676, 693

didUpdateLocations delegate method 482

Directories

working with filesystem 271

Directory

attributes of 275

changing 273

contents of 274

creating 273

deleting 274

dispatch_async 568

display

dimension of 439

Display Views 128

do-catch statement 107

multiple matches 107

Document App 12

Document Based App 316

Document Browser View Controller 315

721

Index
adding actions 319

declaring file types 321

delegate methods 317

tutorial 321

Document Provider Extension 549

Documents Directory 271

locating 272

Double 42

downcasting 50

Drawing

arc 431

Cubic Bézier Curve 431

dashed line 433

ellipse 429

filling with color 429

gradients 434

images 438

line 426

paths 427

Quadratic Bézier Curve 432

rectangle 428

shadows 434

drawLinearGradient method 435

drawRadialGradient method 437

draw(rect:) method 415, 426

Dynamic Animator 452

Dynamic Quick Action 626

Dynamic Type 195

E
Embedded Frameworks 419

creating 421

enum 105

Errata 1

Error

throwing 106

Error Catching

disabling 108

Error Object

accessing 108

ErrorType protocol 105

Event forwarding 383

exclusive OR 58

Expression Syntax 53

Extensions 547

creating 550

overview 547

Extensions and Adjustment Data 555

Extension Types 547

external parameter names 73

F
Face ID

checking availability 405

example 407

policy evaluation 406

privacy statement 411

seeking authentication 409

Face ID Authentication

Authentication 405

fallthrough statement 70

File

access permissions 278

comparing 277

copying 278

deleting 278

existence of 277

offsets and seeking 280

reading and writing 279

reading data 280

renaming and moving 278

symbolic link 279

truncation 281

writing data 281

File Inspector 18

fillEllipse(in:) method 429

fillPath method 429

fill(rect:) method 429

finishContentEditing(completionHandler:) method 559

firstBaselineAnchor 150

first responder 123

Float 42

flow control 61

FMDatabase 337

722

Index

FMDatabaseQueue 337

FMDB Classes 337

FMDB Source Code 341

FMResultSet 337

font setting 20

for-await 268

forced unwrapping 47

forEach() 99

for loop 61

forward-geocoding 468

Forward Geocoding 474

function

arguments 71

parameters 71

Function Parameters

variable number of 74

functions 71

as parameters 76

default function parameters 73

external parameter names 73

In-Out Parameters 75

parameters as variables 75

return multiple results 74

G
Game project template 12

geocodeAddressString method 468

Geocoding 467, 474

Gesture

identification 397

Gesture Recognition 401

Gestures 384

continuous 398

discreet 398

Graphics Context 416

guard statement 65

H
half-closed range operator 56

Haptic Touch

Home Screen Quick Actions 625

Quick Action Keys 625

Quick Actions 625

heightAnchor 150

Horizontal Stack View 225

I
IBAction 113

IBOutlet 113

iCloud

application preparation 287

conflict resolution 291

document storage 287, 299

enabling on device 307

enabling support 288

entitlements 289

guidelines 299

key-value change notifications 330

key-value conflict resolution 330

key-value data storage 329

key-value storage 287

key-value storage restrictions 330

searching 302

storage services 287

UBUIQUITY_CONTAINER_URL 289

iCloud Drive

enabling 309

overview 309

iCloud User Information

obtaining 366

if ... else if ... Statements 65

if ... else … Statements 64

if-let 48

if Statement 64

Image Filtering 440

imagePickerControllerDidCancel delegate 534

iMessage App 12

iMessage Extension 549

implicitly unwrapped 50

INExtension class 600

Inheritance, Classes and Subclasses 91

Initial View Controller 184

init method 83

in keyword 78

723

Index
inout keyword 76

In-Out Parameters 75

Instance Properties 82

Intents Extension 549, 600

IntentViewController class 600

Interface Builder 15

Live Views 419

Intrinsic Content Size 130

iOS 12

architecture 111

iOS Distribution Certificate 707

iOS SDK

installation 7

system requirements 7

iPad Pro

multitasking 246

Split View 246

isActive property 153

isCancelled property 265

isEmpty property 267

is keyword 52

isSourceTypeAvailable method 529

K
keyboard

change return key 505

Keyboard Type property 116

Key Messages Framework 579

kUTTypeImage 527

kUTTypeMovie 527

L
LAError.biometryNotAvailable 406

LAError.biometryNotEnrolled 406

LAError.passcodeNotSet 406

lastBaselineAnchor 150

Layout Anchors

constraint() method 150

isActive property 153

Layout Hierarchy 25

lazy

keyword 87

Lazy properties 86

leadingAnchor 149

leftAnchor 149

Left Shift Operator 58

Library panel

displaying 16

libsqlite3.tbd 341

Live Views 419

loadItem(forTypeIdentifier:)

 567

Local Authentication Framework 405

Local Notifications 631

local parameter names 73

Local Search

overview 503

Location Access Authorization 479

Location Accuracy 480

Location Information 479

permission request 498

Location Manager Delegate 481

Long Touch Gestures 399

Loops

breaking from 63

LSHandlerRank 317, 322

LSItemContentTypes 317

M
Machine learning

datasets 611

models 611

Machine Learning

example 619

iOS Frameworks 612

overview 611

Main.storyboard file 120

Main Thread 257

MapKit

Local Search 503

Transit ETA Information 494

MapKit Framework 493

Map Regions 493

Map Type

724

Index

changing 499

mapView(didUpdate userLocation:) method 500

MapView Region

changing 499

mathematical expressions 53

mediaTypes property 527

Message App

preparing message URL 592

tutorial 585

types of 578

Message Apps 577

introduction 577

Message App Store 577

metadataQueryDidFinishGathering method 304

Methods

declaring 82

Mixed Type Arrays 100

MKDirections class 515

MKDirections.Request class 515

MKLocalSearch class 503

MKLocalSearchRequest 504

MKLocalSearchRequest class 503

MKLocalSearchResponse class 503

MKMapItem 467

example app 473

options 470

turn-by-turn directions 470

MKMapItem forCurrentLocation method 470

MKMapType.Hybrid 499

MKMapType.HybridFlyover 499

MKMapType.Satellite 499

MKMapType.SatelliteFlyover 499

MKMapType.Standard 499

MKMapView 493

tutorial 494

MKPlacemark 467

creating 469

MKPolylineRenderer class 516

MKRouteStep class 515

MKUserLocation 501

Model View Controller (MVC) 111

MSConversation class 579

MSMessage

creating a message 582

MSMessage class 580, 581

MSMessagesAppViewController 579, 582

MSMessageTemplateLayout class 580

Multiple Storyboard Files 183

Multitasking 243

disabling 248

example 251

handling in code 246

Lifecycle Methods 248

Picture-in-Picture 245, 541

Multitouch

enabling 388

multiview application 187

MVC 112

N
NaturalLangauge framework 612

navigation controller 211

stack 211

Navigation Controller

adding to storyboard 212

overview 211

Network Testing 24

new line 44

nextResponder property 383

nil coalescing operator 56

Notification Actions

adding 636

Notification Authorization

requesting 631

Notification Request

creating 633

Notifications

managing 640

Notification Trigger

specifying 633

NOT (!) operator 55

NSData 271

NSDocumentDirectory 272

NSExtensionContext 566

725

Index
NSExtensionItem 566, 567, 569, 575

NSFileHandle 271

creating 279

working with files 279

NSFileManager 271, 277

creating 277

defaultManager 277

reading and writing files 279

NSFileManager class

default manager 272

NSItemProvider 566, 567, 568, 575

NSLayoutAnchor 147, 149

constraint() method 150

NSLayoutAttributeBaseline 138

NSLayoutConstraint 131, 147

NSLocationAlwaysUsageDescription 480

NSLocationWhenInUseUsageDescription 480

NSMetaDataQuery 302

NSMicrophoneUsageDescription 655

NSSearchPathForDirectoriesInDomains 272

NSSecureCoding protocol 568

NSSpeechRecognitionUsageDescription 656

NSUbiquitousContainers

iCloud Drive 310

NSVocabulary class 603

numberOfSectionsInTableView

method 206

O
Objective-C 41

offsetInFile method 280

Opaque Return Types 89

openInMaps(launchOptions:) method 469

operands 53

optional

implicitly unwrapped 50

optional binding 48

Optional Type 47

OR (||) operator 55

OR operator 58

outlet collection 590

P
Pan and Dragging Gestures 399

Parameter Names 73

external 73

local 73

parent class 81

Particle Emitter

node properties 699

overview 697

Particle Emitter Editor 697

Pathnames 272

performActionForShortcutItem method 628

Performance

monitoring 24

PHAdjustmentData 561

PHContentEditingController Protocol 555

PHContentEditingInput 557

PHContentEditingInput object 556

PHContentEditingOutput class 560

Photo Editing Extension 548

Info.plist configuration 553

tutorial 551

PHSupportedMediaTypes key 553

Picture-in-Picture 245, 541

opting out 546

Pinch Gestures 398

Pixels 415

playground

working with UIKit 35

Playground 29

adding resources 36

creating a 29

Enhanced Live Views 38

pages 35

rich text comments 34

Rich Text Comments 34

Playground editor 30

PlaygroundSupport module 38

Playground Timelines 32

Points 415

predictedTouchesForTouch method 385

preferredFontForTextStyle property 196

726

Index

prepare(for segue:) method 215

Profile in Instruments 25

Project Navigator 14

Protocols 88

Q
Quartz 2D API 415

Quick Action Keys 625

Quick Actions 625

adding and removing 628

dynamic 626

responding to 628

Static 625

R
Range Operators 55

Recording Audio 649

Refactor to Storyboard 183

Referenced ID 185

registerClass method 197

regular

size class 163

removeArrangedSubview method 232

removeConstraint method 153

removeItemAtPath method 274

repeat ... while loop 62

resignFirstResponder 123

responder chain 127, 383

reverseGeocodeLocation method 468

reverse-geocoding 468

Reverse Geocoding 467

RGBA components 416

rightAnchor 149

Right Shift Operator 59

root controller 187

Rotation

restricting 677

Rounded Rect Button 116

S
Safari Extension App 12

Safe Area Layout 130

SceneDelegate.swift file 627, 628

sceneWillResignActive method 627

screen

dimension of 439

searchResultsUpdater property 219

searchViewController property 219

seekToEndOfFile method 280

seekToFileOffset method 280

Segue

unwind 180

self 87

setFillColor method 430

setLineDash method 433

setNeedsDisplayInRect method 415

setNeedsDisplay method 415

setShadow method 434

setUbiquitous 308

setVocabularyStrings(oftype:) method 603

SFSpeechURLRecognitionRequest 656

Share Button

adding 574

Shared Links Extension 549

Share Extension 547

shorthand argument names 79, 99

sign bit 59

Siri 599

enabling entitlement 605

Siri Authorization 605

SiriKit 599

confirm method 602

custom vocabulary 602

domains 599

handle method 602

intent handler 600

intents 600

Messaging Extension example 605

overview 600

resolving intent parameters 601

supported intents 607

tutorial 605

UI Extension 600

SiriKit Extensions

727

Index
adding to project 607

Siri Shortcuts 600

Size Classes 163

Defaults 164

in Interface Builder 163

Size Inspector 18

SK3DNode class 670

SKAction class 671

SKAudioNode class 670

SKCameraNode class 670

SKConstraint class 671

SKCropNode class 670

SKEffectNode class 670

SKEmitterNode class 670, 697

SKFieldNode class 670

SKLabelNode class 670

SKLightNode class 670

SKPhysicsBody class 670

SKPhysicsContactDelegate protocol 693

SKPhysicsWorld class 671

SKShapeNode class 670

SKSpriteNode class 670

SKTransition class 671

SKVideoNode class 670

sleep() method 259

some

keyword 89

Speech Recognition 655

real-time 661

seeking authorization 655, 658

Transcribing Live Audio 656

Transcribing Recorded Audio 656

tutorial 656, 661

Sprite Kit

Actions 671

Category Bit Masks 691

components 669

Contact Delegate 693

Contact Masks 692

Nodes 670

overview 669

Physics Bodies 670

Physics World 671

Rendering Loop 672

Scenes 669

Texture Atlas 671

Transitions 671

SpriteKit

Audio Action 704

Named Action Reference 686

Sprite Kit Level Editor 673

SpriteKit Live Editor 684

Sprite Kit View 669

SQLite 335

application preparation 337

closing database 338

data extraction 338

on Mac OS X 335

overview 335

swift wrappers 337

table creation 338

StackView

adding subviews 232

alignment 229

axis 227

baseLineRelativeArrangement 231

Bottom 230

Center 230

configuration options 227

distribution 227

EqualCentering 228

EqualSpacing 228

Fill 227, 229

FillEqually 227

FillProportionally 228

FirstBaseLine 230

Hiding and Removing Subviews 232

LastBaseLine 231

layoutMarginsRelativeArrangement 231

leading 229

spacing 228

Top 230

trailing 229

tutorial 233

728

Index

Stack View Class 225

startContentEditing method 556

startContentEditingWithInput method 556

Static Quick Actions 625

Sticker Pack App 12

Sticker Pack Extension 549

Stored and Computed Properties 85

stored properties 85

Storyboard

add navigation controller 212

add table view controller 201

add view controller relationship 189

design scene 190

design table view cell prototype 204

dynamic table view example 201

file 175

Insert Tab Bar Controller 188

prepare(for: segue) method 215

programming segues 181

scenes 177

segues 178

static vs. dynamic table views 193

Tab Bar 187

Tab Bar example 187

table view navigation 211

table view overview 193

table view segue 212

unwind segue 180

Storyboards

multiple 183

Storyboard Transitions 178

String

data type 43

Structured Concurrency 257, 258, 268

addTask() function 266

async/await 259

Asynchronous Properties 269

async keyword 260

async-let bindings 262

await keyword 260, 261

cancelAll() function 267

cancel() method 266

Data Races 267

detached tasks 265

error handling 263

for-await 268

isCancelled property 265

isEmpty property 267

priority 264

suspend point 262

suspend points 260

synchronous code 259

Task Groups 266

task hierarchy 264

Task object 260

Tasks 264

throw/do/try/catch 263

withTaskGroup() 266

withThrowingTaskGroup() 266

yield() method 266

Structured Query Language 335

Subclassing 113

subtraction operator 53

subview 126

superview 126

suspend points 260, 262

Swift

Arithmetic Operators 53

array iteration 99

arrays 97

Assignment Operator 53

async/await 259

async keyword 260

async-let bindings 262

await keyword 260, 261

base class 91

Binary Operators 54

Bitwise AND 57

Bitwise Left Shift 58

Bitwise NOT 57

Bitwise Operators 57

Bitwise OR 58

Bitwise Right Shift 59

Bitwise XOR 58

729

Index
Bool 42

Boolean Logical Operators 55

break statement 63

calling a function 72

case statement 67

character data type 42

child class 91

class declaration 81

class deinitialization 83

class extensions 94

class hierarchy 91

class initialization 83

Class Methods 82

class properties 81

closed range operator 55

Closure Expressions 78

Closures 79

Comparison Operators 54

Compound Bitwise Operators 59

constant declaration 45

constants 45

continue statement 63

control flow 61

data types 41

Dictionaries 100

do ... while loop 62

error handling 105

Escape Sequences 44

exclusive OR 58

expressions 53

floating point 42

for Statement 61

function declaration 71

functions 71

guard statement 65

half-closed range operator 56

if ... else … Statements 64

if Statement 64

implicit returns 72

Inheritance, Classes and Subclasses 91

Instance Properties 82

instance variables 82

integers 42

methods 81

opaque return types 89

operators 53

optional binding 48

optional type 47

Overriding 92

parent class 91

protocols 88

Range Operators 55

root class 91

single expression functions 72

single expression returns 72

single inheritance 91

Special Characters 44

Stored and Computed Properties 85

String data type 43

structured concurrency 257

subclass 91

suspend points 260

switch fallthrough 70

switch statement 67

syntax 67

Ternary Operator 56

tuples 46

type annotations 45

type casting 50

type checking 50

type inference 45

variable declaration 45

variables 44

while loop 62

Swift Playground 29

Swipe Gestures 399

switch statement 67

example 67

switch Statement 67

example 67

range matching 69

synchronous code 259

T

730

Index

Tab Bar Controller

adding to storyboard 188

Tab Bar Items

configuring 191

Table Cells

self-sizing 195

Table View 193

cell styles 196

datasource 205

styles 194

Table View Cell

reuse 197

TableView Navigation 211

Tap Gestures 398

Taps 384

Target-Action 112

Task.detached() method 265

Task Groups 266

addTask() function 266

cancelAll() function 267

isEmpty property 267

withTaskGroup() 266

withThrowingTaskGroup() 266

Task Hierarchy 264

Task object 260

Tasks 264

cancel() 266

detached tasks 265

isCancelled property 265

overview 264

priority 264

Temporary Directory 273

ternary operator 56

Texture Atlas 671

adding to project 681

example 684

Threads

overview 257

throw statement 106

topAnchor 150

Touch

coordinates of 389

Touches 384

touchesBegan 384

touchesBegan event 122

touchesCancelled 385

touchesEnded 384

touchesMoved 384

Touch ID

checking availability 405

example 407

policy evaluation 406

seeking authentication 409

Touch ID Authentication 405

Touch Notification Methods 384

Touch Prediction 385

Touch Predictions

checking for 390

touch scan rate 385

Touch Up Inside event 112

trailingAnchor 149

traitCollectionDidChange method 247

Traits 163

variations 167

Trait Variations 163, 164

Attributes Inspector 165

in Interface Builder 164

Transit ETA Information 494

try statement 106

try! statement 108

Tuple 46

Type Annotations 45

type casting 50

Type Checking 50

Type Inference 45

type safe programming 45

U
ubiquity-container-identifiers 289

UIActivityViewController 575

UIApplication 113

UIApplicationShortcutItem 628

UIApplicationShortCutItem class 626

UIApplicationShortcutItemIconType 625

731

Index
UIApplicationShortcutItems 625

UIApplicationShortcutItemSubtitle 625

UIApplicationShortcutItemTitle 625

UIApplicationShortcutItemType 625, 628

UIApplicationShortcutItemUserInfo 625

UIAttachmentBehavior class 455

UIButton 125

UICollisionBehavior class 454

UICollisionBehaviorMode 454

UIColor class 416

UIControl 128

UIDocument 291

contents(forType:)

 291

documentState 291

example 292

load(fromContents:)

 291

overview 291

subclassing 292

UIDocumentBrowserViewController 321

UIDocumentState options 291

UIDynamicAnimator class 452, 453

UIDynamicItemBehavior class 457

UIFontTextStyle

properties 196

UIGestureRecognizer 397, 398

UIGraphicsGetCurrentContext() function 416

UIGravityBehavior class 453

UIImagePickerController 527

delegate 528

source types 527

UIImageWriteToSavedPhotosAlbum 529

UIKit

in playgrounds 35

UIKit Dynamics 451

architecture 451

Attachment Behavior 455

collision behavior 454

Dynamic Animator 452

dynamic behaviors 452

dynamic items 451

example 459

gravity behavior 453

overview of 451

push behavior 456

reference view 452

snap behavior 456

UIKIt Dynamics

dynamic items 451

UIKit Framework 7

UIKit Newton 456

UILabel 122

set color 35

UILongPressGestureRecognizer 397

UIMutableApplicationShortCutItem class 627

UINavigationBar 211

UINavigationController 187

UInt8 42

UInt16 42

UInt32 42

UInt64 42

UIPanGestureRecognizer 397

UIPinchGestureRecognizer 397

UIPushBehavior class 456

UIRotationGestureRecognizer 397

UISaveVideoAtPathToSavedPhotosAlbum 529

UIScreen 439

UIScreenEdgePanGestureRecognizer 397

UIScrollView 128

UISearchBarDelegate 219

UISearchController 219

UISearchControllerDelegate 219

UISnapBehavior class 456

UISpringTimingParameters class 448

UIStackView class 225, 233

UISwipeGestureRecognizer 397

UITabBar 187

UITabBarController 187

UITableView 128, 201, 211

Prototype Cell 204

UITableViewCell 193, 201

UITableViewCell class 193

UITableViewCellStyle

732

Index

types 196

UITableViewDataSource protocol 193

UITableViewDelegate protocol 193

UITapGestureRecognizer 397

UITextField 125

UITextView 128

UIToolbar 128

UIViewAnimationOptions 444

UIViewController 113, 118

UIViewPropertyAnimator 443

UIWindow 125

unary negative operator 53

Unicode scalar 44

Universal Image Assets 170

universal interface 163

Universal User Interfaces 163

UNMutableNotificationContent class 633

UNNotificationRequest 633

Unstructured Concurrency 264

cancel() method 266

detached tasks 265

isCancelled property 265

priority 264

yield() method 266

UNUserNotificationCenter 631

UNUserNotificationCenterDelegate 635

upcasting 50

updateSeatchResults 219

user location

updating 500

userNotification

didReceive method 637

UserNotifications framework 631

Utilities panel 17

V
variables 44

variadic parameters 74

Vertical Stack View 225

Video Playback 537

ViewController.swift file 118

viewDidLoad method 122

view hierarchies 125

View Hierarchy 125

views 125

View Types 127

viewWillTransitionToSize method 247

Vision framework 612

Vision Framework

example 619

Visual Format Language 131, 159

constraintsWithVisualFormat 160

examples 159

VNCoreMLModel 620

VNCoreMLRequest 620

VNImageRequestHandler 620

W
where clause 49

where statement 69

while Loop 62

widthAnchor 150

willTransitionToTraitCollection method 247

windows 125

withTaskGroup() 266

withThrowingTaskGroup() 266

WKWebView 128

X
Xcode

create project 11

Utilities panel 17

XCPShowView 38

XOR operator 58

Y
yield() method 266

	1. Start Here
	1.1 Source Code Download
	1.2 Feedback
	1.3 Errata

	2. Joining the Apple Developer Program
	2.1 Downloading Xcode 14 and the iOS 16 SDK
	2.2 Apple Developer Program
	2.3 When to Enroll in the Apple Developer Program?
	2.4 Enrolling in the Apple Developer Program
	2.5 Summary

	3. Installing Xcode 14 and the iOS 16 SDK
	3.1 Identifying Your macOS Version
	3.2 Installing Xcode 14 and the iOS 16 SDK
	3.3 Starting Xcode
	3.4 Adding Your Apple ID to the Xcode Preferences
	3.5 Developer and Distribution Signing Identities

	4. A Guided Tour of Xcode 14
	4.1 Starting Xcode 14
	4.2 Creating the iOS App User Interface
	4.3 Changing Component Properties
	4.4 Adding Objects to the User Interface
	4.5 Building and Running an iOS App in Xcode
	4.6 Running the App on a Physical iOS Device
	4.7 Managing Devices and Simulators
	4.8 Enabling Network Testing
	4.9 Dealing with Build Errors
	4.10 Monitoring Application Performance
	4.11 Exploring the User Interface Layout Hierarchy
	4.12 Summary

	5. An Introduction to Xcode 14 Playgrounds
	5.1 What is a Playground?
	5.2 Creating a New Playground
	5.3 A Swift Playground Example
	5.4 Viewing Results
	5.5 Adding Rich Text Comments
	5.6 Working with Playground Pages
	5.7 Working with UIKit in Playgrounds
	5.8 Adding Resources to a Playground
	5.9 Working with Enhanced Live Views
	5.10 When to Use Playgrounds
	5.11 Summary

	6. Swift Data Types, Constants and Variables
	6.1 Using a Swift Playground
	6.2 Swift Data Types
	6.2.1 Integer Data Types
	6.2.2 Floating Point Data Types
	6.2.3 Bool Data Type
	6.2.4 Character Data Type
	6.2.5 String Data Type
	6.2.6 Special Characters/Escape Sequences

	6.3 Swift Variables
	6.4 Swift Constants
	6.5 Declaring Constants and Variables
	6.6 Type Annotations and Type Inference
	6.7 The Swift Tuple
	6.8 The Swift Optional Type
	6.9 Type Casting and Type Checking
	6.10 Summary

	7. Swift Operators and Expressions
	7.1 Expression Syntax in Swift
	7.2 The Basic Assignment Operator
	7.3 Swift Arithmetic Operators
	7.4 Compound Assignment Operators
	7.5 Comparison Operators
	7.6 Boolean Logical Operators
	7.7 Range Operators
	7.8 The Ternary Operator
	7.9 Nil Coalescing Operator
	7.10 Bitwise Operators
	7.10.1 Bitwise NOT
	7.10.2 Bitwise AND
	7.10.3 Bitwise OR
	7.10.4 Bitwise XOR
	7.10.5 Bitwise Left Shift
	7.10.6 Bitwise Right Shift

	7.11 Compound Bitwise Operators
	7.12 Summary

	8. Swift Control Flow
	8.1 Looping Control Flow
	8.2 The Swift for-in Statement
	8.2.1 The while Loop

	8.3 The repeat ... while loop
	8.4 Breaking from Loops
	8.5 The continue Statement
	8.6 Conditional Control Flow
	8.7 Using the if Statement
	8.8 Using if ... else … Statements
	8.9 Using if ... else if ... Statements
	8.10 The guard Statement
	8.11 Summary

	9. The Swift Switch Statement
	9.1 Why Use a switch Statement?
	9.2 Using the switch Statement Syntax
	9.3 A Swift switch Statement Example
	9.4 Combining case Statements
	9.5 Range Matching in a switch Statement
	9.6 Using the where statement
	9.7 Fallthrough
	9.8 Summary

	10. Swift Functions, Methods and Closures
	10.1 What is a Function?
	10.2 What is a Method?
	10.3 How to Declare a Swift Function
	10.4 Implicit Returns from Single Expressions
	10.5 Calling a Swift Function
	10.6 Handling Return Values
	10.7 Local and External Parameter Names
	10.8 Declaring Default Function Parameters
	10.9 Returning Multiple Results from a Function
	10.10 Variable Numbers of Function Parameters
	10.11 Parameters as Variables
	10.12 Working with In-Out Parameters
	10.13 Functions as Parameters
	10.14 Closure Expressions
	10.15 Shorthand Argument Names
	10.16 Closures in Swift
	10.17 Summary

	11. The Basics of Swift Object-Oriented Programming
	11.1 What is an Instance?
	11.2 What is a Class?
	11.3 Declaring a Swift Class
	11.4 Adding Instance Properties to a Class
	11.5 Defining Methods
	11.6 Declaring and Initializing a Class Instance
	11.7 Initializing and De-initializing a Class Instance
	11.8 Calling Methods and Accessing Properties
	11.9 Stored and Computed Properties
	11.10 Lazy Stored Properties
	11.11 Using self in Swift
	11.12 Understanding Swift Protocols
	11.13 Opaque Return Types
	11.14 Summary

	12. An Introduction to Swift Subclassing and Extensions
	12.1 Inheritance, Classes and Subclasses
	12.2 A Swift Inheritance Example
	12.3 Extending the Functionality of a Subclass
	12.4 Overriding Inherited Methods
	12.5 Initializing the Subclass
	12.6 Using the SavingsAccount Class
	12.7 Swift Class Extensions
	12.8 Summary

	13. Working with Array and Dictionary Collections in Swift
	13.1 Mutable and Immutable Collections
	13.2 Swift Array Initialization
	13.3 Working with Arrays in Swift
	13.3.1 Array Item Count
	13.3.2 Accessing Array Items
	13.3.3 Random Items and Shuffling
	13.3.4 Appending Items to an Array
	13.3.5 Inserting and Deleting Array Items
	13.3.6 Array Iteration

	13.4 Creating Mixed Type Arrays
	13.5 Swift Dictionary Collections
	13.6 Swift Dictionary Initialization
	13.7 Sequence-based Dictionary Initialization
	13.8 Dictionary Item Count
	13.9 Accessing and Updating Dictionary Items
	13.10 Adding and Removing Dictionary Entries
	13.11 Dictionary Iteration
	13.12 Summary

	14. Understanding Error Handling in Swift 5
	14.1 Understanding Error Handling
	14.2 Declaring Error Types
	14.3 Throwing an Error
	14.4 Calling Throwing Methods and Functions
	14.5 Accessing the Error Object
	14.6 Disabling Error Catching
	14.7 Using the defer Statement
	14.8 Summary

	15. The iOS 16 App and Development Architecture
	15.1 An Overview of the iOS 16 Operating System Architecture
	15.2 Model View Controller (MVC)
	15.3 The Target-Action pattern, IBOutlets, and IBActions
	15.4 Subclassing
	15.5 Delegation
	15.6 Summary

	16. Creating an Interactive iOS 16 App
	16.1 Creating the New Project
	16.2 Creating the User Interface
	16.3 Building and Running the Sample App
	16.4 Adding Actions and Outlets
	16.5 Building and Running the Finished App
	16.6 Hiding the Keyboard
	16.7 Summary

	17. Understanding iOS 16 Views, Windows, and the View Hierarchy
	17.1 An Overview of Views and the UIKit Class Hierarchy
	17.2 The UIWindow Class
	17.3 The View Hierarchy
	17.4 Viewing Hierarchy Ancestors in Interface Builder
	17.5 View Types
	17.5.1 The Window
	17.5.2 Container Views
	17.5.3 Controls
	17.5.4 Display Views
	17.5.5 Text and WebKit Views
	17.5.6 Navigation Views and Tab Bars
	17.5.7 Alert Views

	17.6 Summary

	18. An Introduction to Auto Layout in iOS 16
	18.1 An Overview of Auto Layout
	18.2 Alignment Rects
	18.3 Intrinsic Content Size
	18.4 Content Hugging and Compression Resistance Priorities
	18.5 Safe Area Layout Guide
	18.6 Three Ways to Create Constraints
	18.7 Constraints in More Detail
	18.8 Summary

	19. Working with iOS 16 Auto Layout Constraints in Interface Builder
	19.1 An Example of Auto Layout in Action
	19.2 Working with Constraints
	19.3 The Auto Layout Features of Interface Builder
	19.3.1 Suggested Constraints
	19.3.2 Visual Cues
	19.3.3 Highlighting Constraint Problems
	19.3.4 Viewing, Editing, and Deleting Constraints

	19.4 Creating New Constraints in Interface Builder
	19.5 Adding Aspect Ratio Constraints
	19.6 Resolving Auto Layout Problems
	19.7 Summary

	20. Implementing iOS 16 Auto Layout Constraints in Code
	20.1 Creating Constraints Using NSLayoutConstraint
	20.2 Adding a Constraint to a View
	20.3 Turning off Auto Resizing Translation
	20.4 Creating Constraints Using NSLayoutAnchor
	20.5 An Example App
	20.6 Creating the Views
	20.7 Creating and Adding the Constraints
	20.8 Using Layout Anchors
	20.9 Removing Constraints
	20.10 Summary

	21. Implementing Cross-Hierarchy Auto Layout Constraints in iOS 16
	21.1 The Example App
	21.2 Establishing Outlets
	21.3 Writing the Code to Remove the Old Constraint
	21.4 Adding the Cross Hierarchy Constraint
	21.5 Testing the App
	21.6 Summary

	22. Understanding the iOS 16 Auto Layout Visual Format Language
	22.1 Introducing the Visual Format Language
	22.2 Visual Format Language Examples
	22.3 Using the constraints(withVisualFormat:) Method
	22.4 Summary

	23. Using Trait Variations to Design Adaptive iOS 16 User Interfaces
	23.1 Understanding Traits and Size Classes
	23.2 Size Classes in Interface Builder
	23.3 Enabling Trait Variations
	23.4 Setting “Any” Defaults
	23.5 Working with Trait Variations in Interface Builder
	23.6 Attributes Inspector Trait Variations
	23.7 Using Constraint Variations
	23.8 An Adaptive User Interface Tutorial
	23.9 Designing the Initial Layout
	23.10 Adding Universal Image Assets
	23.11 Increasing Font Size for iPad Devices
	23.12 Adding Width Constraint Variations
	23.13 Testing the Adaptivity
	23.14 Summary

	24. Using Storyboards in Xcode 14
	24.1 Creating the Storyboard Example Project
	24.2 Accessing the Storyboard
	24.3 Adding Scenes to the Storyboard
	24.4 Configuring Storyboard Segues
	24.5 Configuring Storyboard Transitions
	24.6 Associating a View Controller with a Scene
	24.7 Passing Data Between Scenes
	24.8 Unwinding Storyboard Segues
	24.9 Triggering a Storyboard Segue Programmatically
	24.10 Summary

	25. Organizing Scenes over Multiple Storyboard Files
	25.1 Organizing Scenes into Multiple Storyboards
	25.2 Establishing a Connection between Different Storyboards
	25.3 Summary

	26. Using Xcode 14 Storyboards to Create an iOS 16 Tab Bar App
	26.1 An Overview of the Tab Bar
	26.2 Understanding View Controllers in a Multiview App
	26.3 Setting up the Tab Bar Example App
	26.4 Reviewing the Project Files
	26.5 Adding the View Controllers for the Content Views
	26.6 Adding the Tab Bar Controller to the Storyboard
	26.7 Designing the View Controller User interfaces
	26.8 Configuring the Tab Bar Items
	26.9 Building and Running the App
	26.10 Summary

	27. An Overview of iOS 16 Table Views and Xcode 14 Storyboards
	27.1 An Overview of the Table View
	27.2 Static vs. Dynamic Table Views
	27.3 The Table View Delegate and dataSource
	27.4 Table View Styles
	27.5 Self-Sizing Table Cells
	27.6 Dynamic Type
	27.7 Table View Cell Styles
	27.8 Table View Cell Reuse
	27.9 Table View Swipe Actions
	27.10 Summary

	28. Using Xcode 14 Storyboards to Build Dynamic TableViews
	28.1 Creating the Example Project
	28.2 Adding the TableView Controller to the Storyboard
	28.3 Creating the UITableViewController and UITableViewCell Subclasses
	28.4 Declaring the Cell Reuse Identifier
	28.5 Designing a Storyboard UITableView Prototype Cell
	28.6 Modifying the AttractionTableViewCell Class
	28.7 Creating the Table View Datasource
	28.8 Downloading and Adding the Image Files
	28.9 Compiling and Running the App
	28.10 Handling TableView Swipe Gestures
	28.11 Summary

	29. Implementing iOS 16 TableView Navigation using Storyboards
	29.1 Understanding the Navigation Controller
	29.2 Adding the New Scene to the Storyboard
	29.3 Adding a Navigation Controller
	29.4 Establishing the Storyboard Segue
	29.5 Modifying the AttractionDetailViewController Class
	29.6 Using prepare(for segue:) to Pass Data between Storyboard Scenes
	29.7 Testing the App
	29.8 Customizing the Navigation Title Size
	29.9 Summary

	30. Integrating Search using the iOS UISearchController
	30.1 Introducing the UISearchController Class
	30.2 Adding a Search Controller to the TableViewStory Project
	30.3 Implementing the updateSearchResults Method
	30.4 Reporting the Number of Table Rows
	30.5 Modifying the cellForRowAt Method
	30.6 Modifying the Trailing Swipe Delegate Method
	30.7 Modifying the Detail Segue
	30.8 Handling the Search Cancel Button
	30.9 Testing the Search Controller
	30.10 Summary

	31. Working with the iOS 16 Stack View Class
	31.1 Introducing the UIStackView Class
	31.2 Understanding Subviews and Arranged Subviews
	31.3 StackView Configuration Options
	31.3.1 axis
	31.3.2 distribution
	31.3.3 spacing
	31.3.4 alignment
	31.3.5 baseLineRelativeArrangement
	31.3.6 layoutMarginsRelativeArrangement

	31.4 Creating a Stack View in Code
	31.5 Adding Subviews to an Existing Stack View
	31.6 Hiding and Removing Subviews
	31.7 Summary

	32. An iOS 16 Stack View Tutorial
	32.1 About the Stack View Example App
	32.2 Creating the First Stack View
	32.3 Creating the Banner Stack View
	32.4 Adding the Switch Stack Views
	32.5 Creating the Top-Level Stack View
	32.6 Adding the Button Stack View
	32.7 Adding the Final Subviews to the Top Level Stack View
	32.8 Dynamically Adding and Removing Subviews
	32.9 Summary

	33. A Guide to iPad Multitasking
	33.1 Using iPad Multitasking
	33.2 Picture-In-Picture Multitasking
	33.3 Multitasking and Size Classes
	33.4 Handling Multitasking in Code
	33.4.1 willTransition(to newcollection: with coordinator:)
	33.4.2 viewWillTransition(to size: with coordinator:)
	33.4.3 traitCollectionDidChange(_:)

	33.5 Lifecycle Method Calls
	33.6 Opting Out of Multitasking
	33.7 Summary

	34. An iPadOS Multitasking Example
	34.1 Creating the Multitasking Example Project
	34.2 Adding the Image Files
	34.3 Designing the Regular Width Size Class Layout
	34.4 Designing the Compact Width Size Class
	34.5 Testing the Project in a Multitasking Environment
	34.6 Summary

	35. An Overview of Swift Structured Concurrency
	35.1 An Overview of Threads
	35.2 The Application Main Thread
	35.3 Completion Handlers
	35.4 Structured Concurrency
	35.5 Preparing the Project
	35.6 Non-Concurrent Code
	35.7 Introducing async/await Concurrency
	35.8 Asynchronous Calls from Synchronous Functions
	35.9 The await Keyword
	35.10 Using async-let Bindings
	35.11 Handling Errors
	35.12 Understanding Tasks
	35.13 Unstructured Concurrency
	35.14 Detached Tasks
	35.15 Task Management
	35.16 Working with Task Groups
	35.17 Avoiding Data Races
	35.18 The for-await Loop
	35.19 Asynchronous Properties
	35.20 Summary

	36. Working with Directories in Swift on iOS 16
	36.1 The Application Documents Directory
	36.2 The FileManager, FileHandle, and Data Classes
	36.3 Understanding Pathnames in Swift
	36.4 Obtaining a Reference to the Default FileManager Object
	36.5 Identifying the Current Working Directory
	36.6 Identifying the Documents Directory
	36.7 Identifying the Temporary Directory
	36.8 Changing Directory
	36.9 Creating a New Directory
	36.10 Deleting a Directory
	36.11 Listing the Contents of a Directory
	36.12 Getting the Attributes of a File or Directory
	36.13 Summary

	37. Working with Files in Swift on iOS 16
	37.1 Obtaining a FileManager Instance Reference
	37.2 Checking for the Existence of a File
	37.3 Comparing the Contents of Two Files
	37.4 Checking if a File is Readable/Writable/Executable/Deletable
	37.5 Moving/Renaming a File
	37.6 Copying a File
	37.7 Removing a File
	37.8 Creating a Symbolic Link
	37.9 Reading and Writing Files with FileManager
	37.10 Working with Files using the FileHandle Class
	37.11 Creating a FileHandle Object
	37.12 FileHandle File Offsets and Seeking
	37.13 Reading Data from a File
	37.14 Writing Data to a File
	37.15 Truncating a File
	37.16 Summary

	38. iOS 16 Directory Handling and File I/O in Swift – A Worked Example
	38.1 The Example App
	38.2 Setting up the App Project
	38.3 Designing the User Interface
	38.4 Checking the Data File on App Startup
	38.5 Implementing the Action Method
	38.6 Building and Running the Example
	38.7 Summary

	39. Preparing an iOS 16 App to use iCloud Storage
	39.1 iCloud Data Storage Services
	39.2 Preparing an App to Use iCloud Storage
	39.3 Enabling iCloud Support for an iOS 16 App
	39.4 Reviewing the iCloud Entitlements File
	39.5 Accessing Multiple Ubiquity Containers
	39.6 Ubiquity Container URLs
	39.7 Summary

	40. Managing Files using the iOS 16 UIDocument Class
	40.1 An Overview of the UIDocument Class
	40.2 Subclassing the UIDocument Class
	40.3 Conflict Resolution and Document States
	40.4 The UIDocument Example App
	40.5 Creating a UIDocument Subclass
	40.6 Designing the User Interface
	40.7 Implementing the App Data Structure
	40.8 Implementing the contents(forType:) Method
	40.9 Implementing the load(fromContents:) Method
	40.10 Loading the Document at App Launch
	40.11 Saving Content to the Document
	40.12 Testing the App
	40.13 Summary

	41. Using iCloud Storage in an iOS 16 App
	41.1 iCloud Usage Guidelines
	41.2 Preparing the iCloudStore App for iCloud Access
	41.3 Enabling iCloud Capabilities and Services
	41.4 Configuring the View Controller
	41.5 Implementing the loadFile Method
	41.6 Implementing the metadataQueryDidFinishGathering Method
	41.7 Implementing the saveDocument Method
	41.8 Enabling iCloud Document and Data Storage
	41.9 Running the iCloud App
	41.10 Making a Local File Ubiquitous
	41.11 Summary

	42. Using iCloud Drive Storage in an iOS 16 App
	42.1 Preparing an App to use iCloud Drive Storage
	42.2 Making Changes to the NSUbiquitousContainers Key
	42.3 Creating the iCloud Drive Example Project
	42.4 Modifying the Info.plist File
	42.5 Designing the User Interface
	42.6 Accessing the Ubiquitous Container
	42.7 Saving the File to iCloud Drive
	42.8 Testing the App
	42.9 Summary

	43. An Overview of the iOS 16 Document Browser View Controller
	43.1 An Overview of the Document Browser View Controller
	43.2 The Anatomy of a Document-Based App
	43.3 Document Browser Project Settings
	43.4 The Document Browser Delegate Methods
	43.4.1 didRequestDocumentCreationWithHandler
	43.4.2 didImportDocumentAt
	43.4.3 didPickDocumentURLs
	43.4.4 failedToImportDocumentAt

	43.5 Customizing the Document Browser
	43.6 Adding Browser Actions
	43.7 Summary

	44. An iOS 16 Document Browser Tutorial
	44.1 Creating the DocumentBrowser Project
	44.2 Declaring the Supported File Types
	44.3 Completing the didRequestDocumentCreationWithHandler Method
	44.4 Finishing the UIDocument Subclass
	44.5 Modifying the Document View Controller
	44.6 Testing the Document Browser App
	44.7 Summary

	45. Synchronizing iOS 16 Key-Value Data using iCloud
	45.1 An Overview of iCloud Key-Value Data Storage
	45.2 Sharing Data Between Apps
	45.3 Data Storage Restrictions
	45.4 Conflict Resolution
	45.5 Receiving Notification of Key-Value Changes
	45.6 An iCloud Key-Value Data Storage Example
	45.7 Enabling the App for iCloud Key-Value Data Storage
	45.8 Designing the User Interface
	45.9 Implementing the View Controller
	45.10 Modifying the viewDidLoad Method
	45.11 Implementing the Notification Method
	45.12 Implementing the saveData Method
	45.13 Testing the App
	45.14 Summary

	46. iOS 16 Database Implementation using SQLite
	46.1 What is SQLite?
	46.2 Structured Query Language (SQL)
	46.3 Trying SQLite on macOS
	46.4 Preparing an iOS App Project for SQLite Integration
	46.5 SQLite, Swift, and Wrappers
	46.6 Key FMDB Classes
	46.7 Creating and Opening a Database
	46.8 Creating a Database Table
	46.9 Extracting Data from a Database Table
	46.10 Closing an SQLite Database
	46.11 Summary

	47. An Example SQLite-based iOS 16 App using Swift and FMDB
	47.1 About the Example SQLite App
	47.2 Creating and Preparing the SQLite App Project
	47.3 Checking Out the FMDB Source Code
	47.4 Designing the User Interface
	47.5 Creating the Database and Table
	47.6 Implementing the Code to Save Data to the SQLite Database
	47.7 Implementing Code to Extract Data from the SQLite Database
	47.8 Building and Running the App
	47.9 Summary

	48. Working with iOS 16 Databases using Core Data
	48.1 The Core Data Stack
	48.2 Persistent Container
	48.3 Managed Objects
	48.4 Managed Object Context
	48.5 Managed Object Model
	48.6 Persistent Store Coordinator
	48.7 Persistent Object Store
	48.8 Defining an Entity Description
	48.9 Initializing the Persistent Container
	48.10 Obtaining the Managed Object Context
	48.11 Getting an Entity Description
	48.12 Setting the Attributes of a Managed Object
	48.13 Saving a Managed Object
	48.14 Fetching Managed Objects
	48.15 Retrieving Managed Objects based on Criteria
	48.16 Accessing the Data in a Retrieved Managed Object
	48.17 Summary

	49. An iOS 16 Core Data Tutorial
	49.1 The Core Data Example App
	49.2 Creating a Core Data-based App
	49.3 Creating the Entity Description
	49.4 Designing the User Interface
	49.5 Initializing the Persistent Container
	49.6 Saving Data to the Persistent Store using Core Data
	49.7 Retrieving Data from the Persistent Store using Core Data
	49.8 Building and Running the Example App
	49.9 Summary

	50. An Introduction to CloudKit Data Storage on iOS 16
	50.1 An Overview of CloudKit
	50.2 CloudKit Containers
	50.3 CloudKit Public Database
	50.4 CloudKit Private Databases
	50.5 Data Storage and Transfer Quotas
	50.6 CloudKit Records
	50.7 CloudKit Record IDs
	50.8 CloudKit References
	50.9 CloudKit Assets
	50.10 Record Zones
	50.11 CloudKit Sharing
	50.12 CloudKit Subscriptions
	50.13 Obtaining iCloud User Information
	50.14 CloudKit Console
	50.15 Summary

	51. An iOS 16 CloudKit Example
	51.1 About the Example CloudKit Project
	51.2 Creating the CloudKit Example Project
	51.3 Designing the User Interface
	51.4 Establishing Outlets and Actions
	51.5 Implementing the notifyUser Method
	51.6 Accessing the Private Database
	51.7 Hiding the Keyboard
	51.8 Implementing the selectPhoto method
	51.9 Saving a Record to the Cloud Database
	51.10 Testing the Record Saving Method
	51.11 Reviewing the Saved Data in the CloudKit Console
	51.12 Searching for Cloud Database Records
	51.13 Updating Cloud Database Records
	51.14 Deleting a Cloud Record
	51.15 Testing the App
	51.16 Summary

	52. An Overview of iOS 16 Multitouch, Taps, and Gestures
	52.1 The Responder Chain
	52.2 Forwarding an Event to the Next Responder
	52.3 Gestures
	52.4 Taps
	52.5 Touches
	52.6 Touch Notification Methods
	52.6.1 touchesBegan method
	52.6.2 touchesMoved method
	52.6.3 touchesEnded method
	52.6.4 touchesCancelled method

	52.7 Touch Prediction
	52.8 Touch Coalescing
	52.9 Summary

	53. An Example iOS 16 Touch, Multitouch, and Tap App
	53.1 The Example iOS Tap and Touch App
	53.2 Creating the Example iOS Touch Project
	53.3 Designing the User Interface
	53.4 Enabling Multitouch on the View
	53.5 Implementing the touchesBegan Method
	53.6 Implementing the touchesMoved Method
	53.7 Implementing the touchesEnded Method
	53.8 Getting the Coordinates of a Touch
	53.9 Building and Running the Touch Example App
	53.10 Checking for Touch Predictions
	53.11 Accessing Coalesced Touches
	53.12 Summary

	54. Detecting iOS 16 Touch Screen Gesture Motions
	54.1 The Example iOS 16 Gesture App
	54.2 Creating the Example Project
	54.3 Designing the App User Interface
	54.4 Implementing the touchesBegan Method
	54.5 Implementing the touchesMoved Method
	54.6 Implementing the touchesEnded Method
	54.7 Building and Running the Gesture Example
	54.8 Summary

	55. Identifying Gestures using iOS 16 Gesture Recognizers
	55.1 The UIGestureRecognizer Class
	55.2 Recognizer Action Messages
	55.3 Discrete and Continuous Gestures
	55.4 Obtaining Data from a Gesture
	55.5 Recognizing Tap Gestures
	55.6 Recognizing Pinch Gestures
	55.7 Detecting Rotation Gestures
	55.8 Recognizing Pan and Dragging Gestures
	55.9 Recognizing Swipe Gestures
	55.10 Recognizing Long Touch (Touch and Hold) Gestures
	55.11 Summary

	56. An iOS 16 Gesture Recognition Tutorial
	56.1 Creating the Gesture Recognition Project
	56.2 Designing the User Interface
	56.3 Implementing the Action Methods
	56.4 Testing the Gesture Recognition Application
	56.5 Summary

	57. Implementing Touch ID and Face ID Authentication in iOS 16 Apps
	57.1 The Local Authentication Framework
	57.2 Checking for Biometric Authentication Availability
	57.3 Identifying Authentication Options
	57.4 Evaluating Biometric Policy
	57.5 A Biometric Authentication Example Project
	57.6 Checking for Biometric Availability
	57.7 Seeking Biometric Authentication
	57.8 Adding the Face ID Privacy Statement
	57.9 Testing the App
	57.10 Summary

	58. Drawing iOS 16 2D Graphics with Core Graphics
	58.1 Introducing Core Graphics and Quartz 2D
	58.2 The draw Method
	58.3 Points, Coordinates, and Pixels
	58.4 The Graphics Context
	58.5 Working with Colors in Quartz 2D
	58.6 Summary

	59. Interface Builder Live Views and iOS 16 Embedded Frameworks
	59.1 Embedded Frameworks
	59.2 Interface Builder Live Views
	59.3 Creating the Example Project
	59.4 Adding an Embedded Framework
	59.5 Implementing the Drawing Code in the Framework
	59.6 Making the View Designable
	59.7 Making Variables Inspectable
	59.8 Summary

	60. An iOS 16 Graphics Tutorial using Core Graphics and Core Image
	60.1 The iOS Drawing Example App
	60.2 Creating the New Project
	60.3 Creating the UIView Subclass
	60.4 Locating the draw Method in the UIView Subclass
	60.5 Drawing a Line
	60.6 Drawing Paths
	60.7 Drawing a Rectangle
	60.8 Drawing an Ellipse or Circle
	60.9 Filling a Path with a Color
	60.10 Drawing an Arc
	60.11 Drawing a Cubic Bézier Curve
	60.12 Drawing a Quadratic Bézier Curve
	60.13 Dashed Line Drawing
	60.14 Drawing Shadows
	60.15 Drawing Gradients
	60.16 Drawing an Image into a Graphics Context
	60.17 Image Filtering with the Core Image Framework
	60.18 Summary

	61. iOS 16 Animation using UIViewPropertyAnimator
	61.1 The Basics of UIKit Animation
	61.2 Understanding Animation Curves
	61.3 Performing Affine Transformations
	61.4 Combining Transformations
	61.5 Creating the Animation Example App
	61.6 Implementing the Variables
	61.7 Drawing in the UIView
	61.8 Detecting Screen Touches and Performing the Animation
	61.9 Building and Running the Animation App
	61.10 Implementing Spring Timing
	61.11 Summary

	62. iOS 16 UIKit Dynamics – An Overview
	62.1 Understanding UIKit Dynamics
	62.2 The UIKit Dynamics Architecture
	62.2.1 Dynamic Items
	62.2.2 Dynamic Behaviors
	62.2.3 The Reference View
	62.2.4 The Dynamic Animator

	62.3 Implementing UIKit Dynamics in an iOS App
	62.4 Dynamic Animator Initialization
	62.5 Configuring Gravity Behavior
	62.6 Configuring Collision Behavior
	62.7 Configuring Attachment Behavior
	62.8 Configuring Snap Behavior
	62.9 Configuring Push Behavior
	62.10 The UIDynamicItemBehavior Class
	62.11 Combining Behaviors to Create a Custom Behavior
	62.12 Summary

	63. An iOS 16 UIKit Dynamics Tutorial
	63.1 Creating the UIKit Dynamics Example Project
	63.2 Adding the Dynamic Items
	63.3 Creating the Dynamic Animator Instance
	63.4 Adding Gravity to the Views
	63.5 Implementing Collision Behavior
	63.6 Attaching a View to an Anchor Point
	63.7 Implementing a Spring Attachment Between two Views
	63.8 Summary

	64. Integrating Maps into iOS 16 Apps using MKMapItem
	64.1 MKMapItem and MKPlacemark Classes
	64.2 An Introduction to Forward and Reverse Geocoding
	64.3 Creating MKPlacemark Instances
	64.4 Working with MKMapItem
	64.5 MKMapItem Options and Configuring Directions
	64.6 Adding Item Details to an MKMapItem
	64.7 Summary

	65. An Example iOS 16 MKMapItem App
	65.1 Creating the MapItem Project
	65.2 Designing the User Interface
	65.3 Converting the Destination using Forward Geocoding
	65.4 Launching the Map
	65.5 Building and Running the App
	65.6 Summary

	66. Getting Location Information using the iOS 16 Core Location Framework
	66.1 The Core Location Manager
	66.2 Requesting Location Access Authorization
	66.3 Configuring the Desired Location Accuracy
	66.4 Configuring the Distance Filter
	66.5 Continuous Background Location Updates
	66.6 The Location Manager Delegate
	66.7 Starting and Stopping Location Updates
	66.8 Obtaining Location Information from CLLocation Objects
	66.8.1 Longitude and Latitude
	66.8.2 Accuracy
	66.8.3 Altitude

	66.9 Getting the Current Location
	66.10 Calculating Distances
	66.11 Summary

	67. An Example iOS 16 Location App
	67.1 Creating the Example iOS 16 Location Project
	67.2 Designing the User Interface
	67.3 Configuring the CLLocationManager Object
	67.4 Setting up the Usage Description Keys
	67.5 Implementing the startWhenInUse Method
	67.6 Implementing the startAlways Method
	67.7 Implementing the resetDistance Method
	67.8 Implementing the App Delegate Methods
	67.9 Building and Running the Location App
	67.10 Adding Continuous Background Location Updates
	67.11 Summary

	68. Working with Maps on iOS 16 with MapKit and the MKMapView Class
	68.1 About the MapKit Framework
	68.2 Understanding Map Regions
	68.3 Getting Transit ETA Information
	68.4 About the MKMapView Tutorial
	68.5 Creating the Map Project
	68.6 Adding the Navigation Controller
	68.7 Creating the MKMapView Instance and Toolbar
	68.8 Obtaining Location Information Permission
	68.9 Setting up the Usage Description Keys
	68.10 Configuring the Map View
	68.11 Changing the MapView Region
	68.12 Changing the Map Type
	68.13 Testing the MapView App
	68.14 Updating the Map View based on User Movement
	68.15 Summary

	69. Working with MapKit Local Search in iOS 16
	69.1 An Overview of iOS Local Search
	69.2 Adding Local Search to the MapSample App
	69.3 Adding the Local Search Text Field
	69.4 Performing the Local Search
	69.5 Testing the App
	69.6 Customized Annotation Markers
	69.7 Annotation Marker Clustering
	69.8 Summary

	70. Using MKDirections to get iOS 16 Map Directions and Routes
	70.1 An Overview of MKDirections
	70.2 Adding Directions and Routes to the MapSample App
	70.3 Adding the New Classes to the Project
	70.4 Configuring the Results Table View
	70.5 Implementing the Result Table View Segue
	70.6 Adding the Route Scene
	70.7 Identifying the User’s Current Location
	70.8 Getting the Route and Directions
	70.9 Establishing the Route Segue
	70.10 Testing the App
	70.11 Summary

	71. Accessing the iOS 16 Camera and Photo Library
	71.1 The UIImagePickerController Class
	71.2 Creating and Configuring a UIImagePickerController Instance
	71.3 Configuring the UIImagePickerController Delegate
	71.4 Detecting Device Capabilities
	71.5 Saving Movies and Images
	71.6 Summary

	72. An Example iOS 16 Camera App
	72.1 An Overview of the App
	72.2 Creating the Camera Project
	72.3 Designing the User Interface
	72.4 Implementing the Action Methods
	72.5 Writing the Delegate Methods
	72.6 Seeking Camera and Photo Library Access
	72.7 Building and Running the App
	72.8 Summary

	73. iOS 16 Video Playback using AVPlayer and AVPlayerViewController
	73.1 The AVPlayer and AVPlayerViewController Classes
	73.2 The iOS Movie Player Example App
	73.3 Designing the User Interface
	73.4 Initializing Video Playback
	73.5 Build and Run the App
	73.6 Creating an AVPlayerViewController Instance from Code
	73.7 Summary

	74. An iOS 16 Multitasking Picture-in-Picture Tutorial
	74.1 An Overview of Picture-in-Picture Multitasking
	74.2 Adding Picture-in-Picture Support to the AVPlayerDemo App
	74.3 Adding the Navigation Controller
	74.4 Setting the Audio Session Category
	74.5 Implementing the Delegate
	74.6 Opting Out of Picture-in-Picture Support
	74.7 Additional Delegate Methods
	74.8 Summary

	75. An Introduction to Extensions in iOS 16
	75.1 iOS Extensions – An Overview
	75.2 Extension Types
	75.2.1 Share Extension
	75.2.2 Action Extension
	75.2.3 Photo Editing Extension
	75.2.4 Document Provider Extension
	75.2.5 Custom Keyboard Extension
	75.2.6 Audio Unit Extension
	75.2.7 Shared Links Extension
	75.2.8 Content Blocking Extension
	75.2.9 Sticker Pack Extension
	75.2.10 iMessage Extension
	75.2.11 Intents Extension

	75.3 Creating Extensions
	75.4 Summary

	76. Creating an iOS 16 Photo Editing Extension
	76.1 Creating a Photo Editing Extension
	76.2 Accessing the Photo Editing Extension
	76.3 Configuring the Info.plist File
	76.4 Designing the User Interface
	76.5 The PHContentEditingController Protocol
	76.6 Photo Extensions and Adjustment Data
	76.7 Receiving the Content
	76.8 Implementing the Filter Actions
	76.9 Returning the Image to the Photos App
	76.10 Testing the App
	76.11 Summary

	77. Creating an iOS 16 Action Extension
	77.1 An Overview of Action Extensions
	77.2 About the Action Extension Example
	77.3 Creating the Action Extension Project
	77.4 Adding the Action Extension Target
	77.5 Changing the Extension Display Name
	77.6 Designing the Action Extension User Interface
	77.7 Receiving the Content
	77.8 Returning the Modified Data to the Host App
	77.9 Testing the Extension
	77.10 Summary

	78. Receiving Data from an iOS 16 Action Extension
	78.1 Creating the Example Project
	78.2 Designing the User Interface
	78.3 Importing the Mobile Core Services Framework
	78.4 Adding an Action Button to the App
	78.5 Receiving Data from an Extension
	78.6 Testing the App
	78.7 Summary

	79. An Introduction to Building iOS 16 Message Apps
	79.1 Introducing Message Apps
	79.2 Types of Message Apps
	79.3 The Key Messages Framework Classes
	79.3.1 MSMessagesAppViewController
	79.3.2 MSConversation
	79.3.3 MSMessage
	79.3.4 MSMessageTemplateLayout

	79.4 Sending Simple Messages
	79.5 Creating an MSMessage Message
	79.6 Receiving a Message
	79.7 Supported Message App Platforms
	79.8 Summary

	80. An iOS 16 Interactive Message App Tutorial
	80.1 About the Example Message App Project
	80.2 Creating the MessageApp Project
	80.3 Designing the MessageApp User Interface
	80.4 Creating the Outlet Collection
	80.5 Creating the Game Model
	80.6 Responding to Button Selections
	80.7 Preparing the Message URL
	80.8 Preparing and Inserting the Message
	80.9 Message Receipt Handling
	80.10 Setting the Message Image
	80.11 Summary

	81. An Introduction to SiriKit
	81.1 Siri and SiriKit
	81.2 SiriKit Domains
	81.3 Siri Shortcuts
	81.4 SiriKit Intents
	81.5 How SiriKit Integration Works
	81.6 Resolving Intent Parameters
	81.7 The Confirm Method
	81.8 The Handle Method
	81.9 Custom Vocabulary
	81.10 The Siri User Interface
	81.11 Summary

	82. An iOS 16 Example SiriKit Messaging Extension
	82.1 Creating the Example Project
	82.2 Enabling the Siri Entitlement
	82.3 Seeking Siri Authorization
	82.4 Adding the Extensions
	82.5 Supported Intents
	82.6 Using the Default User Interface
	82.7 Trying the Example
	82.8 Specifying a Default Phrase
	82.9 Reviewing the Intent Handler
	82.10 Summary

	83. An Introduction to Machine Learning on iOS
	83.1 Datasets and Machine Learning Models
	83.2 Machine Learning in Xcode and iOS
	83.3 iOS Machine Learning Frameworks
	83.4 Summary

	84. Using Create ML to Build an Image Classification Model
	84.1 About the Dataset
	84.2 Creating the Machine Learning Model
	84.3 Importing the Training and Testing Data
	84.4 Training and Testing the Model
	84.5 Summary

	85. An iOS Vision and Core ML Image Classification Tutorial
	85.1 Preparing the Project
	85.2 Adding the Model
	85.3 Modifying the User Interface
	85.4 Initializing the Core ML Request
	85.5 Handling the Results of the Core ML Request
	85.6 Making the Classification Request
	85.7 Testing the App
	85.8 Summary

	86. An iOS 16 Quick Actions Tutorial
	86.1 Creating the Quick Actions Example Project
	86.2 Static Quick Action Keys
	86.3 Adding a Static Quick Action to the Project
	86.4 Adding a Dynamic Quick Action
	86.5 Adding, Removing, and Changing Dynamic Quick Actions
	86.6 Responding to a Quick Action Selection
	86.7 Testing the Quick Action App
	86.8 Summary

	87. An iOS 16 Local Notification Tutorial
	87.1 Creating the Local Notification App Project
	87.2 Requesting Notification Authorization
	87.3 Designing the User Interface
	87.4 Creating the Message Content
	87.5 Specifying a Notification Trigger
	87.6 Creating the Notification Request
	87.7 Adding the Request
	87.8 Testing the Notification
	87.9 Receiving Notifications in the Foreground
	87.10 Adding Notification Actions
	87.11 Handling Notification Actions
	87.12 Hidden Notification Content
	87.13 Managing Notifications
	87.14 Summary

	88. Playing Audio on iOS 16 using AVAudioPlayer
	88.1 Supported Audio Formats
	88.2 Receiving Playback Notifications
	88.3 Controlling and Monitoring Playback
	88.4 Creating the Audio Example App
	88.5 Adding an Audio File to the Project Resources
	88.6 Designing the User Interface
	88.7 Implementing the Action Methods
	88.8 Creating and Initializing the AVAudioPlayer Object
	88.9 Implementing the AVAudioPlayerDelegate Protocol Methods
	88.10 Building and Running the App
	88.11 Summary

	89. Recording Audio on iOS 16 with AVAudioRecorder
	89.1 An Overview of the AVAudioRecorder Tutorial
	89.2 Creating the Recorder Project
	89.3 Configuring the Microphone Usage Description
	89.4 Designing the User Interface
	89.5 Creating the AVAudioRecorder Instance
	89.6 Implementing the Action Methods
	89.7 Implementing the Delegate Methods
	89.8 Testing the App
	89.9 Summary

	90. An iOS 16 Speech Recognition Tutorial
	90.1 An Overview of Speech Recognition in iOS
	90.2 Speech Recognition Authorization
	90.3 Transcribing Recorded Audio
	90.4 Transcribing Live Audio
	90.5 An Audio File Speech Recognition Tutorial
	90.6 Modifying the User Interface
	90.7 Adding the Speech Recognition Permission
	90.8 Seeking Speech Recognition Authorization
	90.9 Performing the Transcription
	90.10 Testing the App
	90.11 Summary

	91. An iOS 16 Real-Time Speech Recognition Tutorial
	91.1 Creating the Project
	91.2 Designing the User Interface
	91.3 Adding the Speech Recognition Permission
	91.4 Requesting Speech Recognition Authorization
	91.5 Declaring and Initializing the Speech and Audio Objects
	91.6 Starting the Transcription
	91.7 Implementing the stopTranscribing Method
	91.8 Testing the App
	91.9 Summary

	92. An Introduction to iOS 16 Sprite Kit Programming
	92.1 What is Sprite Kit?
	92.2 The Key Components of a Sprite Kit Game
	92.2.1 Sprite Kit View
	92.2.2 Scenes
	92.2.3 Nodes
	92.2.4 Physics Bodies
	92.2.5 Physics World
	92.2.6 Actions
	92.2.7 Transitions
	92.2.8 Texture Atlas
	92.2.9 Constraints

	92.3 An Example Sprite Kit Game Hierarchy
	92.4 The Sprite Kit Game Rendering Loop
	92.5 The Sprite Kit Level Editor
	92.6 Summary

	93. An iOS 16 Sprite Kit Level Editor Game Tutorial
	93.1 About the Sprite Kit Demo Game
	93.2 Creating the SpriteKitDemo Project
	93.3 Reviewing the SpriteKit Game Template Project
	93.4 Restricting Interface Orientation
	93.5 Modifying the GameScene SpriteKit Scene File
	93.6 Creating the Archery Scene
	93.7 Transitioning to the Archery Scene
	93.8 Adding the Texture Atlas
	93.9 Designing the Archery Scene
	93.10 Preparing the Archery Scene
	93.11 Preparing the Animation Texture Atlas
	93.12 Creating the Named Action Reference
	93.13 Triggering the Named Action from the Code
	93.14 Creating the Arrow Sprite Node
	93.15 Shooting the Arrow
	93.16 Adding the Ball Sprite Node
	93.17 Summary

	94. An iOS 16 Sprite Kit Collision Handling Tutorial
	94.1 Defining the Category Bit Masks
	94.2 Assigning the Category Masks to the Sprite Nodes
	94.3 Configuring the Collision and Contact Masks
	94.4 Implementing the Contact Delegate
	94.5 Game Over
	94.6 Summary

	95. An iOS 16 Sprite Kit Particle Emitter Tutorial
	95.1 What is the Particle Emitter?
	95.2 The Particle Emitter Editor
	95.3 The SKEmitterNode Class
	95.4 Using the Particle Emitter Editor
	95.5 Particle Emitter Node Properties
	95.5.1 Background
	95.5.2 Particle Texture
	95.5.3 Particle Birthrate
	95.5.4 Particle Life Cycle
	95.5.5 Particle Position Range
	95.5.6 Angle
	95.5.7 Particle Speed
	95.5.8 Particle Acceleration
	95.5.9 Particle Scale
	95.5.10 Particle Rotation
	95.5.11 Particle Color
	95.5.12 Particle Blend Mode

	95.6 Experimenting with the Particle Emitter Editor
	95.7 Bursting a Ball using Particle Emitter Effects
	95.8 Adding the Burst Particle Emitter Effect
	95.9 Adding an Audio Action
	95.10 Summary

	96. Preparing and Submitting an iOS 16 Application to the App Store
	96.1 Verifying the iOS Distribution Certificate
	96.2 Adding App Icons
	96.3 Assign the Project to a Team
	96.4 Archiving the Application for Distribution
	96.5 Configuring the Application in App Store Connect
	96.6 Validating and Submitting the Application
	96.7 Configuring and Submitting the App for Review

	Index
	_Installing_Xcode_5
	_Installing_Xcode_6
	_Installing_Xcode_7
	_Installing_Xcode_8
	_Installing_Xcode_9
	_Installing_Xcode_10
	Starting_Xcode
	_Ref429746122
	_Ref429746723
	_Ref302558281
	_Ref504467476
	_Ref362425536
	_Ref401646208
	_Ref401650569
	_Ref302558390
	_Ref401646807
	_Ref401648106
	_Ref429745526
	_Ref302559385
	_Ref336262998
	_Ref302559412
	OLE_LINK434
	OLE_LINK435
	OLE_LINK436
	OLE_LINK437
	OLE_LINK440
	OLE_LINK441
	OLE_LINK438
	OLE_LINK439
	OLE_LINK442
	OLE_LINK443
	OLE_LINK520
	OLE_LINK521
	OLE_LINK522
	OLE_LINK523
	OLE_LINK524
	OLE_LINK525
	OLE_LINK526
	OLE_LINK527
	_Ref525655341
	_Ref506295932
	_Ref506295943
	OLE_LINK429
	OLE_LINK430
	OLE_LINK1074
	OLE_LINK431
	OLE_LINK432
	OLE_LINK433
	OLE_LINK1075
	OLE_LINK1076
	OLE_LINK1077
	OLE_LINK1078
	OLE_LINK1079
	OLE_LINK1080
	OLE_LINK1081
	OLE_LINK1082
	OLE_LINK1083
	OLE_LINK1084
	OLE_LINK1085
	OLE_LINK1086
	OLE_LINK1087

