iOS 17 App Development
Essentials

i0S 17 App Development Essentials
ISBN-13: 978-1-951442-80-4
© 2023 Neil Smyth / Payload Media, Inc. All Rights Reserved.

This book is provided for personal use only. Unauthorized use, reproduction and/or distribution strictly
prohibited. All rights reserved.

The content of this book is provided for informational purposes only. Neither the publisher nor the author offers
any warranties or representation, express or implied, with regard to the accuracy of information contained in
this book, nor do they accept any liability for any loss or damage arising from any errors or omissions.

This book contains trademarked terms that are used solely for editorial purposes and to the benefit of the
respective trademark owner. The terms used within this book are not intended as infringement of any trademarks.

Rev: 1.0

Contents

Table of Contents

1. SEATT HETE ...coeeeeeeereeeeeerieeiieieeeeeeereteteteeesesessssssssssssssssssssssssssssesesessssssssssssssssssssssssssssssssssssssesesssssssssessssssanssnse 1

1.1 For Swift Programmers.........c.ccoc.eceeevevrecerernenenne
1.2 For Non-Swift Programmers
1.3 Source Code DOWNLOAd.......cccueurieirirriciriinicireireeirei sttt sttt bbb seseens
L4 FEEADACK ... vttt sttt ettt bbbt
L5 BITALA oo 2

3.1 Identifying YOur macOS VEISIONc.cceucuiureueuniurenerneieesereieesetseseesessesessessesessessesssessessssessesessesseseens
3.2 Installing Xcode 15 and the iOS 17 SDK
3.3 StArting XCOMEcuvueuiiiiecitireiciterie ettt eb ettt
3.4 Adding Your Apple ID to the Xcode Preferences
3.5 Developer and Distribution Signing IAENntitieseocveeeecureerererremeeneuseeeserseneesesseeesessesessesseseene 9
3.0 SUIMIMIATY ..ottt bbb bbb bbbt 9
4. An Introduction to Xcode 15 Playgrounds........ccecvririnsensesrinrisiisinsissessessisiisissesessesssssesesessessessssesessees 11
4.1 What is @ Playgrotnd?ccccvemieeeineeneireeeeeeenseeeeetseseesessesessessesessessesessessesessessesessessesesses 11
4.2 Creating a New Playgroundcccoecreenerreeeneineeeeeeeeneeeenseseeessesensessesessessesessessesensessesennes 11
4.3 A Swift Playground EXamPLec.oceeuriemneireremneiniceceeeineenenseseeesseseesessesessessesessessesensessesennes 12
4.4 VIEWING RESULLS ...overrererceeeteecetce ettt sese s sese s ssesessessesensessesenaes 14
4.5 Adding Rich Text Commentsceceeurerennen. .. 16
4.6 Working with Playground Pages............cccocveeunernecrnennee. w17
4.7 Working with SwiftUI and Live View in Playgrounds .. w17
4.8 SUINIMATY ..vneiiniiiicieiiesees sttt st es 20
5. Swift Data Types, Constants, and Variablesccoccevrrrrcninnnnininninininnineninecnenssecesenees 21

5.1 Using a Swift Playground

5.2 Swift Data Types.......ccoc......
5.2.1 Integer Data Types
5.2.2 Floating Point Data TYPESccveeurureueereureuereeresesseeneseesesesessesesessessesesssssssesssssssesssessesesssaees 22
5.2.3 BOOL Data TYPE .uceueveeuieeeieireeeieiriieitiseieteisesesseisesessasese e sese s sese s ss s ssssesesasasssessssssesnsssaen 23
5.2.4 Character Data TYPEccoeuveueueureueiniirieeeniireieieisesesseasesessesesessesesesssssesessssesesssasssesssssssesnssssaces 23
5.2.5 String Data TYPe......cccciuiiiiiiiiniiicccti b e 23
5.2.6 Special Characters/Escape Sequences .24
5.3 Swift Variables...... 25
5.4 Swift Constants 25
5.5 Declaring Constants and Variables............ecrecreerereunereiciniieeneneeenesesesessesesessesesessesessesseseens 25
5.6 Type Annotations and TYPe INFErencecocveueuneerercrneerencrnieinenceieiresetesseseeessesesessesessessesenns 25

Table of Contents

5.7 THe SWft TUPLE ..cuceeeneiriieirecietrce ettt ettt ettt 26
5.8 The SWift OPtional TYPe.....c.ecucueecrriireeiriereeireeeereteeearesseeaeseee e ssese e ssesssessessaeseesessesens 27
5.9 Type Casting and Type ChecKing.........cccvuueevcurereneerernencineineenneineeeieeesesseseasessesessessesessessesessesens 30
5.10 SUIMMATY c.oviiiiicicii bbb bbb bbbt 32

6. Swift Operators and EXPreSSiONSccovcvveerinsinreisininscnessinsucnissessscsessessscsesssessessesssessesssssssssssssesses

6.1 EXPression SyNtax in SWALLc.cceececrcurercineenencineirecneiseenei et tsessese et ssese e sseseseseeas

6.2 The Basic AsSigNment OPErator.........c.ccccucuuuiuriuiuriuiuneiieseseesese s ssessessssssssssssse e ssssenas

6.3 SWift ATIthmetic OPErators........c.eccureurecereereeireireciretreeiretseeeseb e tsebsee et b st ssese et seseeas

6.4 Compound Assignment Operators

6.5 Comparison Operators...........ccococeueururireresccncnen

6.6 Boolean Logical Operators...........cccccoeeureureureunnn.

6.7 Range Operators.........ccceveeuvuvicrrinincnninincnninenenns

6.8 The Ternary Operatorcocveeeeeererreeererrenenne

6.9 Nil Coalescing Operator...........cccoeeeeureureureueen.

6.10 Bitwise OPErators......c.ccueiieiiiuiiiiiiiiiiiiiri et
6.10.1 BItwise NOT ..ot
6.10.2 BItwise ANDcuiiiiiiiiiciiicni s
6.10.3 BItWiSe ORu..cuciiieiiiiiiiiinicnii s
6.10.4 Bitwise XOR......ocooiuiiiiiiciiicinii s
6.10.5 Bitwise Left SHift........cocoiiiiiicccc e
6.10.6 Bitwise Right Shift........c.ccocuiiiiiiiciciicccrec e

6.11 Compound BitWiSe OPEIratorS........oceecurevrecurevreeurerreeeresseessessesessessesessessesessessesessessesessessesessesscas

6.12 SUIMIMATY ..ottt bbb bbb s bbb

7. SWILE CONLEOL FIOW.....uuvveeeeierreeiirereeeissineeesessseeessssssessssssssessssssssssssssssssssssssssssssssssassssssssessssssasesssssssasssss

7.1 LoOPing COontrol FLOWc.ccciieiciniiricinieiciresectresseeiessesesessese s ssessssessessssessesssnessesessesens

7.2 The Swift for-in Statement
7.2.1 The while LOOD ..ccvevurereecinieciricecineceserenennes

7.3 The repeat ... while loOp ...cccoveveurvccinnccrincnnes

7.4 Breaking from LoopsScoceeeeurerrecenerrecrrerrennne

7.5 The cONtINUE STALEIMENTc.vucrriuercreeecireieectreieeetereee e sese e ees s sseseaseseesesseseas

7.6 Conditional Control FIOWc..cccurcinierencineinecineineeeiseeaersese e ssesessessesessessescssessesesesens

7.7 Using the if StAtemMEntc.ocevcuiieecireiricireeccireecreteeeresseeteseese e ssese s ssese e ssesesseseesessesens

7.8 Using if ... €lse ... STAtEIMENTSccccueuecirirrecirireectereeeirer e ae s s sesesseneas

7.9 Using if ... else if ... StALEIMENTSocoeveuecirireecireeeeciereeereeeeieee e seeseneneas

7.10 The guard StAteIMENTc..ceveureueeerreurecireeeeetrereeeeersee e seseese s s seesessessesssessessnessesessesees

7. 11 SUIMIMATY ..ot bbb bbb bbbt

8. The Swift SWItCh StAtEMENTuuveeiieiireeieeiieeeecisreeeeeeiseeeeeesssseeeesssssseessssssseessssssssessssssesssssssssesssssssens

8.2 Using the switch Statement Syntax
8.3 A Swift switch Statement Example
8.4 Combining case Statementscccccceeureureunnn.
8.5 Range Matching in a switch Statement
8.6 Using the where Statementc.cccucuciciciniciiiiccrece e
8.7 FallthIrOUGN ...
8.8 SUIMMATY ..o

9. Swift Functions, Methods, aNd CLOSUIES.....ccccovvueeereeerrereeerssrsrnreeeeeeesessesssssssssreseesssssssssssssssssessssssssssses

ii

Table of Contents

9.1 What iS @ FUNCHONT ...veeveieeeieete ettt st sttt essessse s ese s stenssseseesesessesennesennanen 51
9.2 What iS @ MEtROA? ...ttt s e st ese s aese s enenesennanen 51
9.3 How to Declare a SWift FUNCHONcovivivvieieeeiieececece ettt reseeetene s s e sesesnesennenen

9.4 Implicit Returns from Single EXPressions........c.cveecureurercrnerrenernernenemnerneensesseessessesensessescssessesenne
9.5 Calling a SWift FUNCHOMNcueveuicicieereieeceiecere et seeseasesessseseesens
9.6 Handling Return VAlUESc.cuevcuiureciiieicieieeereieee e seesesessesessessessnsessescssesseseens
9.7 Local and External Parameter NAIMESc..c.evveureurecrnerreemnirneennenneenseresensessesesessesensessescasessesenns
9.8 Declaring Default Function Parameters...........cocvueeecureurercenerrereenernenennerneennessesessessesensessescesessesenne
9.9 Returning Multiple Results from a FUNCHON.c..c.ovcurerrererniircrerrccrerccereceeeesseenereeaenne
9.10 Variable Numbers of Function Parameterscccoceeecureurereenerrencrnernecnnerseensenseensessecnsessesenne
9.11 Parameters as Variablescccocuvueereuniirencineineneineiieieieenenseeessese e seesesesseseseseeseasessescsnessesenns
9.12 Working with In-Out Parameters
9.13 Functions as Parameters.................
9.14 Closure Expressions..........ccceveueee
9.15 Shorthand Argument Names.........
9.16 Closures in SWift.......ccccveueeecurerreneene
9.17 SUMMATY ..ottt bbb bbb bbb

10. The Basics of Swift Object-Oriented Programming

10.1 What i an INStANCETcuiuiiiiiiiiiiccc e e sse s 61
10.2 What 8 @ CLaSS?ueuuiuieiiieiiiicieicice e ssess s et 61
10.3 Declaring a SWift CLaSSc.oviuiuiirciiicicicie et sse s ssesassses
10.4 Adding Instance Properties t0 @ Class.........ccocucueuirieniuniiniunenniiseieescsse e ssessessessessesssssessssnns
10.5 Defining Methods ..o s sse s
10.6 Declaring and Initializing a Class INSTANCE.c.cceuriuriurimniuriniireinescre e
10.7 Initializing and De-initializing a Class INStANCeccccevuiuriuniiremniirciseiseeeieiciececeeeeiseneeienans
10.8 Calling Methods and Accessing PrOPErties...........ccccueuiuiuriuiirerneeserseseneesessensessessesssssssssens
10.9 Stored and Computed Properties.........cocureueeennee.

10.10 Lazy Stored Properties..................
10.11 Using self in Swift......cccccceuvrurennce.
10.12 Understanding Swift Protocols....
10.13 Opaque Return Types...................
10.14 SUINIMATY «.cuiiiiiiieiictceeeie ettt b s tae

11. An Introduction to Swift Subclassing and EXtensionsccocvevenrenisuirnsensensesisesssessessessessessssesesses

11.1 Inheritance, Classes, and SUDCIASSES.........c.ccueuemerreueenerreeierreeeereeceeeee e nsesensensesessensesennes
11.2 A Swift Inheritance EXamPILec.coceuriviueininieeiricieineeierccieecetstese et seese s essesesesseseseen
11.3 Extending the Functionality of @ SUDClasscoveverreeenerreeineineccrecereeereeeeeeenenennes
11.4 Overriding Inherited Methods.........cccveeiireeeeinieeineinieereeeeeceeeee e sseseesessesensessesenses
11.5 Initializing the SUDCLASSc.cueueiiieeccirecccceceee e sese e nsesennes
11.6 Using the SavingsAccount Class
11.7 Swift Class Extensionsc.c......
11.8 SUMMATIY ..

12. An Introduction to Swift Structures and Enumerations

12.1 AN OVErview Of SWIft SEIUCEULESoveveveveeiiieeeretetceeeerete et etesesetsees s s st ssssssesesesesessasenes
12.2 Value Types vs. RefErence TYPEScccureeeueureveeeirereineirereieireeeietseseeetsesessessesessessesessessesesessesesns
12.3 When to Use Structures OF CLASSESceeieieeerereriieerererereseeeesesesesesssssesesesesesesssssesesesesssssenes
12.4 An OVerview Of ENUMETATIONS.cvovivevevereiietereteteeeeeseresesesesesesesesesesssssesesesesesessnsssesesesessssnsnes

iii

Table of Contents

12.5 SUIMIMATY oot bbb bbb bbb aas 81
13. An Introduction to Swift Property Wrappers........ccceveeecnrirnecninninnucnensecneninsecsesesssesessessscssesesns
13.1 Understanding Property WIappers..........ccceireriuiunemeeseseecseesesscssesssssesssssssssssssssesssssessssses 83
13.2 A Simple Property Wrapper EXAmPLec.ccveueuveereeeineiremeineiriieieiseeeieeseseseeseseeessesesessesesessenes 83
13.3 Supporting Multiple Variables and TYPes..........ccceuureuriuniuneincineencineeeiciseeieeeeeesesssesesssesessesesseenas 85
13,4 SUMMATY ..ttt bbbt n s 87

14. Working with Array and Dictionary Collections in Swift

14.12 SUIMIMATY oottt b bbbt asas
15. Understanding Error Handling in SWift 5ccccevivirnininnnnciininncninicncninecncninecssesessscseseens

15.1 Understanding Error Handling..........cccccciiiniincecccieescisecieesesisesssesesssesessesesessas 97
15.2 Declaring Error TYPES ...t sssssesssssssssssssssssse s snes 97
15.3 TRIrOWING QN EITOT ..ottt 98
15.4 Calling Throwing Methods and FUNCHONSccviuiininiincincicicicicieciieeeisesesessese e 98
15.5 Accessing the Error OBJECt ...t ssessesssssssss s saes 100
15.6 Disabling Error CatChing ...t ssessesssssessssssssse s ssssesaes 100
15.7 Using the defer Statementc.c.cucuiiiriniininiinceise e saes 100
15.8 SUMMATY ..ttt bbb n s 101

16. An Overview of SwiftUI

17. Using Xcode in SwiftUI Mode

iv

14.1 Mutable and Immutable Collections
14.2 Swift Array Initialization........cccocvivivirininns
14.3 Working with Arrays in Swift........cccccovuvininnes

14.3.1 Array Item Count.........cccovvivriiiiiiinininn

14.3.2 Accessing Array Itemscccocvviiiiiiiiininns

14.3.3 Random Items and ShUfflingc.ceecvurncinirencrnenineneeneeeeceeeenseensessese e sesens

14.3.4 Appending Items t0 QN ATTAYccccveurereurerrererrerreerrerreessersesessesseseaessesessessesesessesessessesesesens

14.3.5 Inserting and Deleting Array IteIMSc.oc.eveeureurercrnerreernerreennerneenerseensensesensessesessessesesesens

14.3.6 Array Ierationccccuiiiiiiiiiiii s
14.4 Creating MiXed TYPe ATTAYS.......occcuerreemirreeermirreeneeresenstesesestssssessssesesssssssesssssssesssssssessesessesesees
14.5 Swift Dictionary ColleCtionsS........cccueeuirreeeriireereirieenrereesteseeessesesesssasesesssasesesssssssessessssenseses
14.6 Swift Dictionary InitialiZationc.c.eveeevreeriureceiirieiineeereeeeneeseeeseeseseseseesesssseesessesessenseees
14.7 Sequence-based Dictionary InitialiZation.........cceeureeururecrnirrecrnienecnniereereeseeneseeeeneeeeenseees
14.8 Dictionary Item COUNL ..o
14.9 Accessing and Updating Dictionary Itemscccveeerurecriereernieneerieneeneeseseneseesesessssenseenes
14.10 Adding and Removing Dictionary Entries...
14.11 Dictionary Iteration

16.1 UIKit and Interface BUIlAErccoeueuiivieieieiereiieiieieteeeeetet et esses e ses e ssesenas
16.2 SwiftUI Declarative Syntaxcccoeeeeeecreveence
16.3 SwiftUI is Data Drivenccccoeeeveveerererereceennns
16.4 SwiftUI vs. UIKit
16.5 SUIMIMIATY ..o bbb bbb as

17.1 Starting Xcode 15 ...t s sse st saes 107
17.2 Creating @ SWiftUT PLOJECTcuucuuiuciiciciiiiciceiceie e saes 107
17.3 Xcode in SWIftUT MOdEe........cuiuiiciciciiiiieieeiseisie e ssssessssss s saes 109
17.4 The PIevIeW CaVASccuiucuceceesciseiseiaiseaisesasessssse s sse s s sa s ssssssssssssssssssssesssssesaes 111

..

Table of Contents

17.5 Preview PINNING ... 112
17.6 The Preview TOOIDATcccviureeiirreeceiereeereeetreee i ssss s sse s s ssasesessssssscsssassaes 113
17.7 Modifying the DESIZI.......cccvuueueuiireeeiirieriireeereiseeeseeesesseasesesssseesessessesesssasssesssasesesssssssesssssssens 114
17.8 EItOr CONEXt MEMU.....vuvueureeeeneeeersreieensesreeessessesesseesesesssasesesssssssesssasssesssassesssaesesssssssesnsssssens 116
17.9 Running the App 0n @ SIMULALOT «....c..cuveerirreeriirierireeeteeeneseeeeneseeseneesesessseesessssnsesssssssens 117
17.10 Running the App on a Physical i0OS DEVICEcccvuurecrrureemirreeeriereenieseeresseecnsesseseneesesens 117
17.11 Managing Devices and SIMUIAtors.........c.ceveeeureernierecrniuneenireeeneeereneeeesessseesesssessesesessens 118
17.12 Enabling NetWork TeStINg........ccvveuiureemiureerierierieeenieeeeneseesessessesesssesssessssesesessssessessssens 119
17.13 Dealing with BUild EITOTIScocuveeuiurieceinricicireeneieeneiseeenesseeensessesenssasssessssesesssssssesssssescns 119
17.14 Monitoring Application Performance..........c.vcreceniurecernirnecnniunecnnieeeeneaseessesseseseesnsens 119
17.15 Exploring the User Interface Layout Hierarchycccooceeecneurecrnierecenierevcrnienecrneesecnneenenns 120
17.16 SUINIMATY «.cuviiiiiiiiisrrii bbb bbb bbb bbbt 122
18. SWIftUI ATCRItECTULE «..vcuvvereiireiireiiteintcintcetcetese ettt saesessesesasse s sss s sesesaesesnesesnesesassssenses 123
18.1 SWIftUT APP HIETAICHYcevuivrieiiirieciiricieireeccineecisesetetseie et sb s eaeen 123
L8.2 APD ot 123
18.3 SCOIES.....ouvuiniiiniisiit sttt 123
18,4 VIBWS. .ottt bbb 124
18.5 SUIMIMATY ..ttt s bbb 124
19. The Anatomy of a Basic SWiftUI PrOJECt.......ccviviiviirininristintininininsinniniiiiississcsnisnsisissssnesnssssssssees 125
19.1 Creating an EXample PrOJECtc.ovcuiureerirreeeiiricnieeneieeenesseeenessesenseasssessssesesssssssesssssssens

19.2 The DemoProjectAPP.SWIt Fileccvuivieeeiiiciirecceeet e neeeeaens
19.3 The ContentVIeW.SWift Filec.oovriririiririeiricciriceiricienccieeeeisteee sttt sseae s
19.4 ASSets.XCASSeLS ..c.covvervrvruerercerererenene
19.5 DemoProject.entitlements.............
19.6 Preview Content.........ccccecevereennen
19.7 SUMMAry ...

20. Creating Custom Views with SwiftUI

20.1 SWITTUT VIEWS ..ottt sesetet st sebetse bbbt sese bbb sae s sesesaetsesessessesesacs
20.2 Creating @ Basic VIEW ..ot ssssnsns
20.3 AddING VIEWS.....ouiuiiecieiciiiciiiciesese et st s
20.4 SWIftUT HI@Tarchies..........cccuuiiimiimiiciiiiini st sssssse s ssssssssssesnss
20.5 Concatenating Text VIEWS......cccviiiiiiiniiciniiin s sssssssssenens
20.6 Working With SUDVIEWS.........ccevuiuiiiiiiricicicicicicicii st
20.7 VIEWS @S PIOPEITIES .ucuviiiiiiiiiiiiccci e
20.8 MOIfYING VIBWScuceuiiuiieiiiiiiiiiicieisee ettt
20.9 Working with TeXt SEYIES.........ccuiuiiriiiiriiiireicicicieiei e sse s
20.10 Modifier Ordering.........ccccuuiuiuiuriiiireieiseisciese e sae s ssesassses
20.11 Custom Modifiersccccoccuruneee.

20.12 Basic Event Handling..........ccccecveucence

20.13 Building Custom Container VIEWS.........cccucucucueecmmimnimniiiaiiseissesessessessessessessesssssessssssssssns
20.14 Working with the Label VIEW ..ot ssessess s 139
20.15 SUIMIMATY ..ttt e 140

21. SWIftUT StACKS ANd FIAIIESuuuveereeiirerreeeereeeeesirseneeesssssneessssssssssssssssessssssssessssssssssssssasassssssssssssssassssssss 141

21.1 SWITUT SEACKS co..vuiiii s 141
21.2 Spacers, Alignment and Paddingc.ccocveeeeerreeeenerreeeenerneenenrerenetneeenenseseesesseseesesseseesessesenses 143
21.3 GroUPING VIEWS ..ottt bbb bbb 145

Table of Contents

21.4 Dynamic HStack and VStack CONVEISIONccuueeuiureeeiureenieieeneereseneeeeeenesensesessnseseses 145
21.5 Text Line Limits and Layout PriOTItY.......ccccveureeriurecrneireerireeeeeeneeseseseeeeeeseseesesessnseneees 146
21.6 Traditional Vs. LaZy STACKS ..c..c.veeverreeerierieceireneereeeetseeesteseeenseesesessaesesssessesssssssesssssesesnesnes 148
21.7 SWIEUT FramESoucvviiiiiiii s ss s s saees 148
21.8 Frames and the Geometry ReAderoccuueeuiureceiuneceieneeieeneisesesseeeeenessesessessnsenssnes 150
21,9 SUMMIATY wiiiiiiii bbb bbb 150

22. SwiftUI State Properties, Observation, and Environment Objects.........ccccecevrurruccrerrecscnsensecscsensecene 153

22.1 State PrOPEIties.......coieiuiiuiuiiiiiiiciiiciceeiie ettt
22.2 State BINAING.....cuvuieiiiiciireecic s e
22.3 Observable ObJectsccoereueeeerereeeereveereerenennes
22.4 Observation using Combine.........cccccoeuurrureunccn.
22.5 Combine State ObjJectsccveureveererreveereererennee
22.6 Using the Observation Framework
22.7 Observation and @Bindable.............cccccccuuuce.
22.8 ENVIrONMENt ODJECES.cueueuiuiirieeieirieeintireeeieesisesseesesessessesessssesessssesesssssesessssesesssssssesssssssesnsses
22.9 SUIMMATY ..ttt e bbbt b s

23. A SwiftUI Example TUtOrial......cccocievuiiiiiniiiiiiiiininenecetnensacestnessscsstssesesesstssssessessesssssssssssssessenes

24. An Overview of Swift Structured Concurrency

vi

23.1 Creating the EXample PrOJECt......cocuvveuiuriecrniireciirecieiecieeeeeneeeeeensasesessssesesssssssessssssenneses
23.2 ReVIEWING the PIOJECT ... vttt ese s s ssss s esesnsanes
23.3 Modifying the LaYOULc.ccceueereeeeeireecetiieieieeeeseeenesseeesssee e sssssesesssasesesssasssesssssnsesssssssesnsses
23.4 Adding a Slider View t0 the StacK.......cccveiureeiireceiirecireteeeeneiseeneeeeeeneseeseseseeseneees
23.5 Adding a State PrOPEILYcccovureereireceiiricieirieneiseeeneesesesssasesesssasesessssesesssasssesssssssesssssssessses
23.6 Adding Modifiers to the Text View..................
23.7 Adding Rotation and Animation
23.8 Adding a TextField to the Stack.........ccceeureuene.
23.9 Adding a Color Picker
23.10 Tidying the Layout.......
23.11 Summary......coceeueueee.

24.1 An OVerview of TRIEAdSc.ccucuiuiiiciciriiricce e sees
24.2 The Application Main TRread........ocoeeureeiniurieiniinieineinecineesieeeseeesseisesesssssesessessesesessssesssees
24.3 Completion HAndIETseeureeeiiireeciiirieieiniecineiseictseiseseteiseae st sssasese s sssssssessssssesnsses
24.4 SrUCLUTEd CONCUITEIICT . ..ucvevuerieeineereeeestereaesseeseaeseesesessssesesssaseaessssstaessaseaessssesessssssesasssssesnsses
24.5 Preparing the PrOJECt ...t sse s sees
24.6 NoN-Concurrent Code ... sse s sssseseses
24.7 Introducing async/await CONCUITENCYcwuiuiuiurimieremeeereasessessessessssssssssesssssesssssessssessees
24.8 Asynchronous Calls from Synchronous Functions
24.9 The await KeyWOord.......ccocvueuneericineieicineieieiseseeeiseseesessesesennens
24.10 Using async-let Bindings..........ccccccecveureuneunn.

24.11 Handling Errors.......c.ccocuveevcecececceccncnnenncnneen.

24.12 Understanding Tasks
24.13 Unstructured Concurrency
24.14 Detached Tasks........cccuuiincieiciciciciiccieiieeeicse e ss s saes
24.15 Task MANQEIMENLcuuiuieeiciieciieeciiseeeissees e sse s saes
24.16 Working with Task GIOUPS......c.ccccuuuiiiiiuniiiiiiiircriscce s sees
24.17 Avoiding Data RACES........cccuiuiuciciciiiiieiiiiiicsise e sse s sees

Table of Contents

24.18 The fOr-aWait LOOP ..c.ceeeueuriceeireeieirecietreeiet et eteaetstsesesseseae bbbt st sttt ess e s e sssesesees 185
24.19 ASYNChIONOUS PrOPEItIes......cccueuevcreeceeiriieeeirieeietreieesenseneesessesensesseseesessesessessesessessesensessesesse 186
24.20 SUIIMATY ..ot 187
25. An Introduction t0 SWift ACEOTS........ccvueriiietiieniieninriinteintcestsetsetseeste et assesasessesessesesassesns 189
25.1 AN OVEIVIEW Of ACLOTS......ouvuriuriuriiiiiiitseictsetc e sesss st 189
25.2 Declaring @n ACHOTc.cucuiuiuiuiireiieseieisese e s 189
25.3 Understanding Data ISOLAtion ... ssessessessssesassnnns 190
25.4 A SWift ACOr EXAMPLE ...oovuerieiireeeicireecicireieicineeetct ettt sese bbbt ses et ses st sesesnes 191
25.5 Introducing the MailACIOT ... sse s ssessssses 192
25.6 SUIMIMATY ...ttt 193
26. SwiftUI Concurrency and Lifecycle Event MOAIfierscocovvrvnveninuisensnsensisnsnisensensesenscssssessesennes 195
26.1 Creating the LifecycleDemo Project........cucueeerreeeenerneeemnerreeenetreseeesseaenesseseesessesessessesense 195
26.2 DeSIGNING the APP ...cccreeeererreeeeeireieneirereeetseeeeesseseesesseseesessesessessesessessessssessessssessesessessesessessesesss 195
26.3 The onAppear and onDisappear MOdIfIerscoccurreeeureriecirineeeineneeeinineieineneiseseeseesesessesesenees 196
26.4 The onChange MOIfIETcccurieerncrreeeeirieeereeeetreieeenreee e ressese st sesessessesessessesenses 197
26.5 ScenePhase and the onChange MOdIfler..........cveeureeirerreemnerreeeeeireeerreeeesenenesseseeensesennes 197
26.6 Launching Concurrent TasKs..........ccveeerreererneeeerniemennereneesenessesensessesensessesessessesessessesenses 199
26.7 SUMIMATY ..ot bbb bbb bbb bbb 200
27. SwiftUI Observable and Environment Objects — A Tutorial........c.coeccecrsernuencnserscnensenscssensecssessennee 201
27.1 About the ObservableDemo PrOJECt.......ocveueuiureveereereeeineireeeeeireseeetreseeeesesesetsesesessesesessesesnes
27.2 Creating the Projectcocecvcuvcuncuncnnce
27.3 Adding the Observable Object..........
27.4 Designing the ContentView Layout..
27.5 Adding the Second View...................
27.6 Adding Navigation........cccccccoeuueunee.
27.7 Using an Environment ODJect ... ssessessessssessssnnns
27.8 SUMMATY ..ottt e
28. SwiftUI Data Persistence using AppStorage and SceneStorage...........cecevevrerreriruisensensesesscssesessesenses 207
28.1 The @SceneStorage Property WIapPer........ccccecrreeeeerneeemerseremessesensessesessesseseesessesesessesenses 207
28.2 The @ApPStorage Property WIaAPPETc.occcureeeecrreeemerreneneesesemsessenensessesessessesessessesessessesenses 207
28.3 Creating and Preparing the StorageDemo Projectcvecreeencireeeenerreemserrereeserseseeensenennes 208
28.4 USING SCENE SLOTAGE ...ecvvvvviiiiiiiciciti bbb
28.5 USING APP STOTAZE......cuiuiiiiiiiiiiicici bbb
28.6 Storing CustOm TYPES.......ccuiiuiriiueiriiiiieiiie ettt ssass s
28.7 SUMMATY ..ottt bbb bbb bbb

29. SwiftUI Stack Alignment and Alignment Guides

29.1 Container Alignment
29.2 Alignment Guides........cccccoeuuruuennce.

29.3 Custom ALGNMENT TYPEScoruriuiuriiiiriicireicieieeeieiie et sae s ssesassaes
29.4 Cross Stack ALGNMENTcvuiuiiiiriiiireicscic et
29.5 ZStack Custom ALGNMENT..........c.ocuiiiiriiiireicieicieieiiecieiseeasesse et sse s s sassaes
29.6 SUIMIMATY ...ttt ettt

30. SWiftUI Lists and NaviZationcccvevivuiseinnnininininininininieieiiinisiememisisieemmsmssssmemss 231
30.1 SWITTUT LISES..c..cevureeincrreeeeerreeeeetreeeeesseseesessesensenseseesessesessessesessessessssessessssessessssessesssessesessessesenses 231

vii

Table of Contents

30.2 Modifying List Separators and ROWS.........ccvceeeureeeenerreeemnerneieeernereeensesenenseseesensesessessesensessenes 232
30.3 SWIftUI DYNAMIC LISES.....euevuereeeeerreeenerreeeeerrenenesreseesessesensesseseesessesessessesensessessssessesessessesessessenes 233
30.4 Creating a Refreshable LiStccccveerreeecrneeeierreeeienieeeeneeeeenseseesessesensessesensessesessessesessessenes 235
30.5 SwiftUI NavigationStack and NavigationLinkKcccceeveureeeenerreecinerneeemnenneeesenneneesensesensennenee 236
30.6 Navigation DY Value TYPe......c.occeiiererreeeeinieeetreeeeeiereeneeeeessesesessesessessesessessesessessesessessenes
30.7 Working with Navigation Pathiscccceecreeiinieniineeineceeeeieneeeeiseseeensesessessesenessenes
30.8 Navigation Bar CustomizZation ...
30.9 Making the List EQItableccccoeieiiriecinieereceineeeereeeeeneeeeensesensensesessessesessessesensessenes
30.10 Hierarchical LiStScocviiiiiiiiiiciiiiiniini s sssssssessssnes
30.11 Multicolumn NaVIGatiOncceeureueererreeemerreremenreeeeeeserenenseseesessesessessesessessesessessesessessesersesseses
30.12 SUMMATY ..t

31. A SwiftUI List and NavigationStack Tutorial

31.1 About the ListNavDemo Project........ccccveuuenee.

31.2 Creating the ListNavDemo Project.................

31.3 Preparing the PIOJECt ...ttt ss s
31.4 Adding the Car SEIUCHUTIE.........cuucucuciciciciciecieceest et
31.5 Adding the Data SLOTe ..o
31.6 Designing the CONtent VIEW..........c.cccuuciriininieniiniscssise e ssesssesesesesssssesssses
31.7 Designing the Detail VIEW ..o ssesessenes
31.8 Adding Navigation t0 the LiStccccccueiiiirininiiiircniseieicie e sesssesessenes
31.9 Designing the Add Car VIEW.........ccccuuiiinininininessisesscse e ssessessesssssesssesssssessssesssnes
31.10 Implementing Add and Edit BULLONSccccceuuiiuiiininiincinescisceiecceiieeecnesisessesessseseseenes
31.11 Adding a Navigation Path ..o
31.12 Adding the Edit Button Methods.........cccccuiiininiininiincccieieieieceiieeieesesisesssese e
3113 SUMMATY ..ottt bbb

32. An Overview of Split View Navigationc.cocvveriruirnnnsinisiininneninininniiseseniniieemsssssssee

32.1 Introducing NavigatiOnSPItVIEWcvceeveureeeenerreeeererrieenerreeeeerseseeesseseeesseseesessesessessesenessenes
32.2 Using NavigationSplitView
32.3 Handling List Selectionc.ccoceeeureurercrrerrenncne

32.4 NavigationSplitView COnfiGUIationccccveeeeureeeererreeemnerreremrersereeensesenensesensessesessessesessessenes
32.5 Controlling Column ViSiDIlity.........ccceeureuemerreeineirieieinicereeereeeienneseeesseseeessesessessesensensenes
32.0 SUIMIMATY ..ot bbb bbb bbb bbb

33. A NavigationSplitView Tutorial........ccccevevciirniiniininnicnininninininecnininscsisessesesessssssessssssssesseses

33.1 ADOUL the PIOJECT cuuueuiuiiieicireecicireieieireeetctsesete ettt seb st s et ses et sese et ses st sesesastnenes
33.2 Creating the NavSplitDemo Projectcccciiuiniiniiriiniincieicicieieeseceeineeiscsesesesssesesssesessenes
33.3 Adding the Project Data........cocccucueiciciciiiiiisisessise e ssssessssssssss s sssesssaes
33.4 Creating the Navigation VIEW ..o ssesssesssesessssesssses
33.5 Building the Sidebar Column..........ccccceuuuuee.

33.6 Adding the Content Column List

33.7 Adding the Detail Columncccccceueuriuriunennnen.

33.8 Configuring the Split Navigation Experience
33.9 SUIMMATY ..ottt bbb bbbt

34. An Overview of List, OutlineGroup and DisclosureGroup

34.1 Hierarchical Data and DiSCIOSUIES.........ocveuiveeuieeereeiceetieeeeeeeeeeeeteeeteseeresesessseesessssssessesessesessesens
34.2 Hierarchies and Disclosure in SWiftUT LiSES.........ccccvieveuireeieereieeereerereeeseeereseenssesseseseesesnesens
34.3 USING OUHNEGIOUP w..cvuvrreerrreeineteeenserseeeesetseseesesseseesessesensessesessessesessessesessessesessessesessessesessessenes

viii

Table of Contents

34.4 USING DISCIOSUIEGIOUPvuvvrevermrierrerrerenseerieeeetseseesessesemsessesensessesessessesessessessssessessssessessssessesesses 273
34.5 SUMMATY ..o bbb 275

35. A SwiftUI List, OutlineGroup, and DisclosureGroup Tutorial..........cccccevervueeenrerscsensenscssensecsnessennee 277

35.1 About the EXample PrOJECTccueueieureeeieirieeieireeeieireeeiciseseeeisesetetsesessetsesessessesessessesessessesesnes 277
35.2 Creating the OutlineGroupDemo Project ... 277
35.3 Adding the Data StIUCLULEc.vuriuiiriicirciccie et sae s
35.4 Adding the LISt VIEW ..ot ss s ssesasssens
35.5 TeSting the PrOJect ...
35.6 Using the Sidebar List Style...........ccviiiiiiiniincinciicicieieieececisesise e
35.7 Using OutlineGroupcccceuuunee.
35.8 Working with DisclosureGroups
35.9 SUMMATY ..ottt

36. Building SwiftUI Grids with LazyVGrid and LaZyHGEIidccccevuviruivurrnnnininnisnsnsenesscsnssessesennes 287

36.1 SWITUT GIIdS oo ss s sassaes
36.2 GIIAILEINS ..oocvviiiiic bbb
36.3 Creating the GridDemo Project........c..ceeniirieencrriceenneeneireeenetseneesessesensessesessessesesessesenses
36.4 Working with Flexible GIidItemscccoeureuemrerreueererreeeeerrerenerrerenerseneesessesensesseseesessesessessesenses
36.5 Adding Scrolling SUpPOrt t0 @ GIid......cccocureueeerreeeecrrieeerreeneireeeeetreeeeesseee e sseseesesseseesessesennes
36.6 Working with Adaptive GIidItemSccccveeeerreeeencrreeeerreeeirereeetreeeeesseeeeesseseesesseseesessesenses
36.7 Working with Fixed GIidItemscoeueureeemrerreueererrieeeerrieenerresenessesensessesensessesensessesessessesenses
36.8 Using the LazZyHGITIA VIEW.....c.ccvuerciriieeirieeineeectreeeeenseeeeesseseesessesessessesessessesessessesessessesenses
36.9 SUMMATY ..o

37. Building SwiftUI Grids with Grid and GridRow

37.1 Grid and GridRow VIews.........ccceeveviuncmniurcrneuenns
37.2 Creating the GridRowDemo Project...
37.3 A SIMPLe Grid LAYOUL....ceoviereveinireeeieireeeieireeetetseeetet et sese et sese st st sese st sesesaessesesssssesesac
37.4 Non-GridROW CRildIenccouiiiiiiiinicicicciciciceccses e sae s
37.5 Automatic EMPLy Grid Cellsc.ocuevveureueieirieeieirieeicireieieireeeeeineseectseseeetsesesetsesessetsesessessesennes
37.6 Adding EMPLY CellS.......cuuiuimiuiiiiriiireiciseicieieieee it sse s ss s sssssssns
37.7 COIUMN SPANIUINGcuceieniiiiiiieiteiee ettt
37.8 Grid Alignment and SPACING.........cciuriuiireincencieieieieieeeeeiest et saesassaes
37.9 SUMMATY ..ottt

38. Building Tabbed and Paged Views in SWiftUT........ccccvvrrinrisisinnsninininnnenininninnenessnsnseeen

38.1 An Overview of SWIftUL TaDVIEW.....c.ceviuriueeiireeieirieceeireeecirerenetreneeenseeessessesensessesessessesennes
38.2 Creating the TabVIEWDEMO APP ...cccueuevirreueeerrieeeeireieeerreeeeetsesenesseseesessesensessesessessesessessesense
38.3 Adding the TabView Container
38.4 Adding the Content Views.............
38.5 Adding View Pagingcccoocuueee.
38.6 Adding the Tab Items........cccoeuue..
38.7 Adding Tab Item Tags.......ccccoeuueuee.
38.8 SUMMATY ..ot s

39. Building Context Menus in SWiftUL......c.cocceveiiniininninncnininneinininnicncnenneniessscesscessseneee

39.1 Creating the ContextMenuDemo Project ...
39.2 Preparing the Content VIEWccciuruiircincencieieieiiensieeeicissese et ssesssssesssssssssns
39.3 Adding the Context MENUcc.ocuiuiuiuiinciceeieieieiaecieisesesesssssesssese e ssesssssesssssesssssns

ix

Table of Contents

40. Basic SwiftUI Graphics Drawing

41. SwiftUI Animation and Transitions

42. Working with Gesture Recognizers in SwiftUI

43. Creating a Customized SwiftUI ProgressView

44. Presenting Data with SwiftUI Charts

45. A SwiftUI Charts Tutorial

X

39.4 Testing the CONteXt MENU.....c.cevereeeeerreeeierreeeeetreeeeeeseseresseseesessesessessesessessesessessesessessesessessenes 317
39.5 SUMMATY ..ot 317

40.1 Creating the DrawDemOo PrOJect. ..ot sees 319
40.2 SWITTUT SHAPES....ucuiriieireirieeieirieeteiseieetiseeetees et sese s sssese sttt st b s s s ssiees 319
40.3 USING OVEILAYS.....couiviiiiiiiiciccic it 321
40.4 Drawing Custom Paths and Shapes ... s 322
40.5 Color Gradients and SHAdOWS.........c.ccccviiiniininincicce e sees 324
40.6 Drawing Gradients..........c.ccvcueucucucicimeiieireienieseesesse e sse s sssssssssss s sees 325
40.7 SUIMIMATY ..ottt et benen st 327

41.1 Creating the AnimationDemo EXample Project.......c.cvciureecueurecrniunecrnieneeneeeeeneeeeeneens 329
41.2 TMPCIt ANIMATION 1.vueutieiirieieirieieireeiet ettt tsesetsteae bbbt seae et sasesebstseaetseacbeseassesnes 329
41.3 Repeating an ANimation ... 331
41.4 EXPLICIt ANIMATION ...ttt et stses et eaetseacb et seae et sasesebstaese s beseaesesacs 332
41.5 Animation and State Bindings.........cecccveureeurirrierniurecrnirreenieeeeneeseeneseesesesessessesensesessssesesees 333
41.6 Automatically Starting an Animationc.ceceveereceneereerniuneeneereeneeeeesseeeeesesensesesseseseses 334
41.7 SWiftUT Transitions ..o s sssessees 336
41.8 Combining TranSItIONS.......ceueureeererreeerirrieritriereereeesesseseseeeesesseseese e s ssasssesssssssesssssssesnsses 337
41.9 Asymmetrical TranSItIONScvveueereeeeiereeriereeneesesenesseeseesese e ssasesessasssesssasssesssssssesnsses 338
41,10 SUIMIMATY «.oviiiiiiiic bbb bbb bbb bbb bbbt 338

42.1 Creating the GestureDemo Example Projectcocovuincincicicieicininieeseseisessseeeennees 339
42.2 Basic GEStUIES.......coouiciriimciiniiciinccnennes

42.3 The onChange Action Callback
42.4 The updating Callback ACHON........ccccuuiuriuriiriiiriirccc s sees
42.5 COmMPOSING GESTULES.......oiviiriiiiiciiii s s
42.6 SUIMIMATY ..ttt et et s s st

43.1 PTOGIESSVIEW SEYLES ..ottt ese s sse st sae s s sasssennsanes 347
43.2 Creating the ProgressVieWDemOo PIOJECtcccvurecueurecriurecnirniennieseeeseeeeeesessesesessnseneenes 348
43.3 AddIng @ ProgreSSVIEWcccueereireceiinieitireereiseeesessesesstasesenssssssessssssessssssesssssssessssssesnsses 348
43 .4 Using the Circular ProgressView Style.......c..oeurcinecrniereccnienieniineeneeeeesessesesesssseseses 348
43.5 Declaring an Indeterminate ProgressVIewc..coccereceiureerienecnnieneernieneeneeseesesseseneees 349
43.6 ProgressView CustOmizZatioN.........ccoiiimiiiiiiiniiiii s 349
43.7 SUIMIMATY «oouiiiiiiii bbb bbb bbb bbb bbb 352

44.1 Introducing SWIftUT Charts ... ssecsessesssssesssesssssessssesssssesees 353
44.2 Passing Data to the CRart........c.cccciiiicee e saes 354
44.3 Combining Mark TYPeS........cccucucueiiuiirirriiiesiiseissise e sse s sees 355
44 .4 Filtering Data into Multiple Graphiscccoeiniiiniiniincinincisccieceiecseeeeesesesessese s 356
44.5 Changing the Chart Background..........cccocuiiininiiniiniincininciccicieceieceeeesesesseesesssese s 357
44.6 Changing the Interpolation Methodcccoceiiiininiinciniincicceceeceeesesse s 357
44.7 SUIMIMATY ..ottt ettt ettt nenennas 358

..

...

...

Table of Contents

45.1 Creating the ChartDemo Projectocceirecrniereceirecneieeneeseeneesesessssessesssessessessesens 359
45.2 Adding the Project Data.......c.cccreeeierecriireeneineeneeseeeneesesessasesesssssssesssssssessssssesessssesessssens 359
45.3 Adding the Chart VIEW......ccvcirecrirrieiieeeiseeeisesessssesessasesesssssssesssssssesssssssessssssesssasssens 360
45.4 Creating Multiple GIaphis........cccveceiirieriireentineeneieeeeteseseseesesessasssessesessessssssessssessessessesens 361
45.5 SUINIMATY oot a bbb bbb bbbt 362
46. An Overview of SWiftUI DocumentGroup SCENEScocevueererrurssinsersuesensenssessississsessessesssessessacssesseens 363
46.1 DOCUMENTES 1Nl APPS ..oovuieieiiiiiiiieieiiiiiii ettt ettt 363
46.2 Creating the DOCDEIMO APP.....cvcuiuiuiicicicicieieiisisisssetsssesessse s e ss s ssssssssesasens 363
46.3 The DOCUMENTGIOUP SCEIME «...euvuvrieirieieeineireeeieisesessetsesessesesessasesesseseaessssesessssesessssssesnssessees 364
46.4 Declaring File TYPe SUPPOTt.....ccociuiuiiiicicicieieiiiisisesiisssisessese e ss s ssssssssssens 365

46.4.1 Document Content Type IAentifiercocvueeveurerrineenirneneireinereineirecrerseeeseiseeesesseessesseaeene 365
46.4.2 Handler RANK.........ccoiiiiiiiiiiniicicciieie s ss s sse s sssasssens 365
46.4.3 TYPE LIAENTIIEIS ...cucviiuireericireieeeireieec ettt bttt 365
46.4.4 Filename EXTENSIONSc.ccuiuiirimiincieieieieie s ss s s sassssssssens 365
46.4.5 Custom Type Document Content Identifiers.......c.coeeveureurereererrecererneeeneeneeenerneseenernenenne 365
46.4.6 Exported vs. Imported Type Identiflerscocveveereurereenernencineinecenerreeeneiseeesesseessesseneens 366
46.5 Configuring File Type Support in Xcode.........cccccueiiriiniininiincneiseieeneeseiseceesseessesesaens 366
46.6 The DOCUMENT SLIUCLULE.coucuuivririeciciceciseeseeseaiaesases e s sae e sa s aees 367
46.7 The CONENT VIBW......covmimieiiiiiieiiise e sss s s s s s aees 369
46.8 Adding Navigationcccueiuiuiuniiniincieiciceiciseieiseessesesascsss e s sse s sasens 369
46.9 Running the EXample APP.......ccociuiiiincicieiciieieciriseeicssse s ssss s sssssssssssens 370
46.10 SUIMIMATY ..cueiiiiiieiiiciee ettt s bbb senna 371
47. A SwiftUI DocumentGroup TUtOrial........cccceveeeeiriuiiiinninnceniiinicentnesscstsseesestsssesssssssssssssessssassnsens 373
47.1 Creating the ImageDocDemo Project ... 373
47.2 Modifying the Info.plist Filecccviiiiiiiiiiiiicc s 373
47.3 Adding an IMage ASSEL......ccuuveeeeureerirreeriireeneiseeeneeeesesssesesessasesesssasssesssasssessssessessssssessasssens 374
47.4 Modifying the ImageDocDemoDocument.swift Filecccoovvivininciiiiiiinininine, 374

47.5 Designing the COntent VIEW.......cvceurecriureerirneenireeeteseseseeseseseesssesssssssessssssessessssesessssens 375
47.6 Filtering the IMAaGecvveuerreerriereeeiericieieeetseeenessesessssese s esesssssssesssssssesssesscsssssssesnsssssens 377
47.7 TESHING the APP.ceeuieeeeeeireeieirieeireeetee ettt sae e ese st nae s aessns 378
47.8 SUINMIMATY ..ottt st 378
48. An Introduction to Core Data and SWiftUL.........c.cceoieininiiiienintnnieeintntne st snesenes 379
48.1 The Core Data StACK.......cccuuiuiuiirciiccicic s 379
48.2 Persistent CONLAINETcooiiiiiiriiiiiiii s bes 380
48.3 Managed ODBJECES.........cuuiuiuiuiiiireiiiseeie s s 380
48.4 Managed ObjJect CONEXLcowuimiuririieiciciciseieiaecisesesacsssesesss s sa s ssesassse s 380
48.5 Managed Object MOdel..........ccouuiiiicicicicicieicciisciceise s sssssssssaens 380
48.6 Persistent Store COOTAINALOT.........c.cuiuucucicicieeieieeiirieeiecisei s sae e saens 381
48.7 PersiStenit ODJECT SLOTE.....cucuueueuieirieeiiirieeieireeeieiseie sttt sese et sese s sese s sae s esesseen 381
48.8 Defining an Entity DeSCrPioncocueucucuciciecieieiirieeiiieseeseisse e s sssssssesssssessens 381
48.9 Initializing the Persistent CONtAINETccccucumriririmniiririireeise e ssesasesesaens 382
48.10 Obtaining the Managed Object CONEXL........c.cccuirimriurimriuriiniirereiseieiesessesseeseseessesssesesaens 382
48.11 Setting the Attributes of a Managed Object........ccccovuuirininiiincincincicccccececeeseens 382
48.12 Saving @ Managed ODBJECt...........ocuuicincicicicieieieeeiteisesse e saens 382
48.13 Fetching Managed ODJects..........cocuuicicicicicieiiiieeicieisessese e ss s ssssssssesaens 383
48.14 Retrieving Managed Objects based on Criteria.........ocoouveuveuriurcrneincincincrneieecicieeneeseeeeeens 383

xi

Table of Contents

48.15 SUIMIMATY ..viiiiiiiicc bbb bbb bbb bbb bbb bbb

49. A SWIftUI Core Data TUOFIaL.......cccceireeieeiiireeeeeiirreeeecissseeeeesssseeeessssseseesssssaseessssssssesssssssessssasssesssssssssns

50. An Overview of SwiftUI Core Data and CloudKit Storage

49.1 Creating the CoreDataDemo Project ... ssssesees
49.2 Defining the Entity DeSCriPiONc.ccccvieriieniuriiiineiiiseiciseeeenesseceeisesasssesesesssssessssse s sees
49.3 Creating the Persistence CONtroller..........cooiiniiinciniincieicicieceieceeeessesssesessese s
49.4 Setting up the VIEW CONLEXtc.ccueuiririeriiieriiiiiiscsiseeese e ssessssss s sees
49.5 Preparing the ContentView for Core Datac.ccvcuiercucencenceceeieinieieeeeesesssisesssese s
49.6 Designing the User INTErfaceccccucecirininiininiinciisccescie e saes
49.7 SAVING PIOAUCES ...t s
49.8 Testing the addProduct() Function
49.9 Deleting Products.........ccccoveucucucecmeccriunnunennenn.
49.10 Adding the Search Function..........cccccoeuuneuuee.
49.11 Testing the Completed Appc.cccevreuriueunecn.
49.12 SUIMNIMATY ..ttt e bbbt bbbt nen st

50.1 An OVerview Of ClOUAKILcccceverirerereiiiiiieiereeceeiee ettt sss bbb s s s b ssanenene
50.2 CloUudKit CONTAINETS......cceeveveerieierererereeisisteseseesessssssesesesssssssesesesessssassssesesesssssssssesesessssassnne
50.3 CloudKit PUDIiC Database........cccoevvvereueuiiiriererereiceieee ettt sssesese e ssasse s s s ssanenene
50.4 CloudKit Private Databasesccceeeeeeririererereiieieiseereeessesese e sssesese e e sssssssseseseessasenene
50.5 Data Storage QUOLAS ..ot s
50.6 ClOUdKIit RECOIAS...cucuiuiiierereteeiieietereteteeeeste et ssssese st s s ssssesese s ssasssesesesessssassssesesesessasasane
50.7 CloudKit RECOIA IDSccveveveveeieieierereteieiiriete e tseessesesese s ssssssesese et ssasssesesesesessassssesesesessasasene
50.8 CloudKit References.........ccoeeevvevererererenrnrernenens
50.9 ReCOrd ZONES......coceueerrrererererenrereresesesssssesens
50.10 CloudKit Console.........ccceerervrrrererererenrrereenens
50.11 CloudKit Sharingc.c.cceceereuvereunerrencurereenenne
50.12 CloudKit Subscriptionsc.cccceceueereucereneuennes
50.13 SUMMATY ...

51. A SwiftUI Core Data and CloudKit TUtOrialccocvveeeeeririeeeeeirrreeeerssreeeessssseeeesssssesesssssssessssssssessnns

52. An Introduction to SwiftDatacccccccuveererunneennne

xii

51.1 Enabling CloudKit SUPPOITccuiuiiiciciiiiiriitiresise et
51.2 Enabling Background Notifications SUPPOIT...........ccureuiurcuiuncencuereemeinimeeisisesisesssesessseseseenes
51.3 Switching to the CloudKit Persistent CONtainerccvcueeucencuemeemeirinenimseesenssesesssesesseenes
51.4 TeStING the APP....ciiiiiiiiiicic e
51.5 Reviewing the Saved Data in the CloudKit Console.........ccccocuveuveieucirinininineiiresesenneenes
51.6 Filtering and Sorting QUETIES.........c.ccccuuuiriiriiniiniiriscsiese e ssse s sesessenes
51.7 Editing and Deleting RECOTdS..........ccocuuiiiniininiiniininisesscese e ssessensesssssesssesssesessesesssnes
51.8 Adding NeW ReCOIAScucuiuiuiiciciciiiiiaciiiiiseisise e ssss s s
51.9 Viewing Telemetry Data........ccccccoeurrriuriuniunenn.
51.10 SUMMATY ..o

52.1 Introducing SWIftDAtacecueeeecrreeemerreeeeeireeeeseeenetreseeesseseesessesessessesessessesessessesessessesessessenes 411
52.2 MOAE]L ClASSESvevurrerereeeerereeeneteieesesseaeesessese s ssesesses s ssesessessesessessesessessessssessesessessesessessenes 411
52.3 MOAE] CONLANETouceerereeercrreeeretreeeeserseeeesetseseesessesessessesensessesessessesessessesessessessssessesessessesessessenes 412
52.4 Model CONfIGUIALION ...ucvuvurrcrrceieireeenerreeeeseireeeesetreaensensesensessese s s ssessesensessesessessesessessesessessenes 412
52.5 MOAEL CONEXL ..euvurrierrcreieererreeeeetreeeesenseseesetseseesessesessessesessessesessessesessessesessessessssessesessessesessessenes 412
52.6 Predicates and FetChDESCIIPLOLSccueueueueirecerireeirineetsireeciseeaeiseeeesseese s sesseseee s sessesesssnes 413

Table of Contents

52.7 The @QUETY MACTO......cevereeecreieeeireieeetsersee e sessese e s ssese e seeseaseseesssesesssessaens 413
52.8 MOdel RelatiONSIIPS «..c.cuviuceeireieeiricieirecietreacieieacisteee st seese st sesebesseae et sseaeseeaeaes 413
52.9 MOdel AHIIDULESoucvuiviiiiciici s sss s sasassnas 414
52.10 SUMMATY ..ottt bbb 415
53. A SwiftData TUtorial.......ccuovieeieierieeeetetne et e nenes 417
53.1 About the SWIftData PrOJECtc.cueeeurierereireirieireirecireireeireisee ettt s s ens 417
53.2 Creating the SwiftDataDemo PrOject ... 417
53.3 Adding the Data MOdEISccocuiuiiiiciiciiiieieeese et sae s sse s
53.4 Setting up the Model CONtAINercc.ccucuiiririniniiriiseere e
53.5 Accessing the Model Context.........
53.6 Designing the Visitor List View.....
53.7 Establishing the Relationship
53.8 Creating the Visitor Detail View...
53.9 Modifying the Content View.............
53.10 Testing the SwiftData Demo App
53.11 Adding the Search Predicate.........ccccociiiininininincircsce e
53.12 SUMMATY c..ouiiiiiiiiiii ettt
54. Building Widgets with SwiftUI and WidgetKit..........cocovriruirrsnsninisensnnnininninennnescsscssssesesenes 427
54.1 AN OVErvIEW Of WIAGELScuvucvieicircieecireinicireiecirereeeeesee s seesasesesessescsnns 427
54.2 The Widget EXENSION. ...cccveuevcriereerreieeetrereeetreseeseaensesessessesessessesessessesesessessasesesessesesessesesenns 427
54.3 Widget Configuration TYPESccecureeeererremrereuremrecmrerneeeserseseesessesessessesessessesessessesessessesesessesenns 428
54.4 WIdGEt ENIIY VIEW....coiuicirieeicireicicireieeetressee e ssese e seesessessessssesesssessesnns
54.5 Widget Timeline Entries
54.6 Widget Timeline........cccocveeurerrcueen.
54.7 Widget Providercccocveeeurerneucen.
54.8 Reload POlicycccveueverreececrnennn.
54.9 Relevance.......cccvivinininscnninnnnnes
54.10 Forcing a Timeline Reload
54.11 Widget SiZeS......overveuererreemrerrennne
54.12 Widget PlacehOlder ..ot seesesseseesessessesnns
54.13 SUMMATY ..ottt bbb
55. A SWiftUI WidgetKit TUtOrialccccovervueiirriirciinninnininiiniinineinsisisecssisessscssssessssssessessscssesssessessesses 435
55.1 About the WidgetDemo PrOJECt.........ccccuuiiuiuiuiiriiiineseisessise e ssesssssessssssasenens 435
55.2 Creating the WidgetDemo PrOjectc.ccciiiuiiniiiineiniinecisese e ssessssessessesasssesescns 435
55.3 BUILAING the APD ..cucurieieiiiicicicicce et 435
55.4 Adding the Widget EXtENSIONc.cccuiuiriuriiiiiiiriiiisessisesise s ssessessessssesssenens 438
55.5 Adding the Widget Data ... sse s ssesse s sssssenes 439
55.6 Creating Sample TImelNesc.ccocuucuieirininiiniiiiise e sse s ssesse s ssesesesens 440
55.7 Adding Image and Color ASSELS..........c.ccuuruiiurimiuniuiinerseisessese e sse s ssessessesssssessscsns 441
55.8 Designing the Widget VIEW ... sse s sssssenes 443
55.9 Modifying the Widget PrOVIAErc.ccccuuiriiniiniiniiinciecise e ssessessessssssasenes 445
55.10 Configuring the Placeholder VIEW.........cccccciuiiininininiincisceesccie e 446
55.11 Previewing the Widet ..o sse s sssesenes 446
55.12 SUMMATY c..ouiiiiiiiiiiii ettt 448
56. Supporting WidgetKit Size FAMILIEScocvverviniruisiisinniniiiinniinnennenesnsesessssssssesesens 449
56.1 Supporting Multiple Size FAMILIESccccureurererrimrecireiricinereererreerereeeneseesenesseseneseesenseseesenne 449

Table of Contents

56.2 Adding Size Support to the Widget VIEWc.ccocveueereirieemnerreeeeerreneieireeeenneneeenseaeeensesensensenes
56.3 SUIMIMATY ..ot

57. A SwiftUI WidgetKit Deep Link Tutorialcccccevirveevinvinnecnininnecnininnicninennecnesensscseniesscsesseses

58. Adding Configuration Options to a WidgetKit Widget

57.1 Adding Deep Link Support to the Widget..........cocoiviuriniinerniincincicieicieieenceeisessesessseseneenes
57.2 Adding Deep Link SUPPOIt t0 the APD ..o eeceieeieessesesssesesseseseeaes
57.3 Testing the WIAEetccvuiuiiiiiiicccic st
57.4 SUIMIMATY ..ottt ettt

58.1 Reviewing the Project Code
58.2 Adding an App Entity.......cccocveveecrnernencrnernennne
58.3 Adding Entity Query
58.4 Modifying the App Intentc.ccoeveuveverrerneneen.

58.5 Modifying the Timeline Codecerrurcrrierneirieeieireeeerreieeereeeeeeseseeenseseesessesessessesensessenes
58.6 Testing Widget Configurationcccecureeeecereeeeerreeeenerneeenenrereeesseseeessesensessesessessesessessesessessenes
58.7 Customizing the Configuration Intent Ul........cccocevereneireenerneeinerneeeneineeesenseseesensesenensenes
58.8 SUMMATY ..ottt bbb s

59. An Overview of Live Activities in SWiftUT.......ccccceeeeerrreeieeririeeeeeisrseeeersssseeeessssseeessssssesesssssssesssssssssessnns

59.1 Introducing Live ACHVIIESc.ccucucucicicicieiiiieiisiiitsese st ssssssss s sesesseaes
59.2 Creating a Live ACHVIY ..c.cviiiiiiiiiiic s
59.3 Live ACHIVILY AIIDULES.....cuevueereeeicireieieireieicireeetct ettt ettt sebe et sese bbb saesnenes
59.4 Designing the Live Activity Presentations

59.4.1 Lock Screen/Banner..........ccccocceeuveureuneunee.

59.4.2 Dynamic Island Expanded Regions..........

59.4.3 Dynamic Island Compact Regions............

59.4.4 Dynamic Island Minimal.........cccccveecuneunence
59.5 Starting a Live ACHVILY c.c.cviiiiiiiiiiiic s
59.6 Updating @ Live ACHVILY.......ccviuiircucicieicieieiiieeiseiesisesse e s ssesss s s ssss s sasesasenes
59.7 Activity Alert CONAAGUIAtIONScocuuiuiecirieiiiiieteses s
59.8 Stopping a Live ACHIVItY ..o
59.9 SUIMMATY ..ottt bbb

60. A SWiftUI Live Activity TUtOrial.......cccovvivuivuirisnvininniniiiiinininieieniinsnsesesesssnsssesessssssenes

Xiv

60.1 About the Live ActiVityDemo PrOJECtcocueueverreueererrieeeerrereeerrereienseseesesseseesessesessessesensensenes
60.2 Creating the PrOJECtcveireeencirieeerreeetreeeeetreeeeetrese s ssesessessesessessesessessesessessesessesenes
60.3 Building the VIEW MOdelccveuieiirieeireecireeieiereeneeeeeneseeessesessesseseesessesessessesensessenes
60.4 Designing the CONteNt VIEW........ccvveeerreueeerrereenerrerenetneeemesseeeesessesessessesessessesessessesessessesesesseses
60.5 Adding the Live Activity Extension.................

60.6 Enabling Live Activities Support
60.7 Enabling the Background Fetch Capability....
60.8 Defining the Activity Widget Attributes.........
60.9 Adding the Percentage and Lock Screen Views....
60.10 Designing the Widget LAYOULSccoeureueeerreuemrerreeeeerreeeneneeeeenseseesessesensesseseesessesessessesessessenes
60.11 Launching the LiVe ACHVILYccocveererreeecrrereeetrieeeeireeeeenreeeeensesessensesessessesessessesessessesessessenes
60.12 Updating the LiVe ACHVILY ..c..cccveureeerrerreeeeerreeeeeireeeeenereeesseseesessesessessesensessesessessesessessesessessenes
60.13 Stopping the Live ACVILY ...c.occerreeeererreeeeerrereeetreeenetrere e sseseesessesensessesessessesessessesensessenes
60.14 TeStING the APP..vcreeereireeceerreeeieireeeeerreeeeetseseeessese s sese et sesessessesessessesessessesessessesessessesessessenes
60.15 Adding an Alert NOtICAtION.......c.oveverreeeeerreeeeeireeeectreeeeeteieeereseeessese s ssesessessesensessenes

Table of Contents

60.16 Understanding Background UPdatescccveueecureeeeerreeemerreeemneineneeenreeenensesenessesensessesennes
60.17 SUIMIMATY ..ottt

61. Adding a Refresh Button to a Live ACtiVItY.....cccoveruirvinrernuinsinsecnininncncninsnensesessscssessessscsesssessessesnes

61.1 Adding Interactivity to Live ACHVILIESoceocuveurieicieiriiriirceiscese e
61.2 Adding the APP INTENL.......c.coiiimiiiiiiirecic et sae st
61.3 Setting a Stale Date.......c.ccciiiuiiiiiriiiccscic et
61.4 Detecting Stale Data........c.cccuiiuiiiiiinciccicieie ettt
61.5 Testing the Live ACtiVity INENtc.ovuiuiiriiiicieicicicieieec e
61.6 SUMMATY ..ottt e bbbt

62. A Live Activity Push Notifications Tutorial
62.1 An Overview of Push Notifications

62.2 Registering an APNs Key ..o

62.3 Enabling Push Notifications for the APpccccveverreeererneeenerreceneireenenreeenesseseeesseseeensesennes 501

62.4 Enabling Frequent UPAAtes...........ccueeeerreeeenerneeeeerreeeiesnerenessesensessesensessesessessesessessesessessesense 502

62.5 Requesting User PermiSsion ... 502

62.6 Changing the PUSh TYPec.ccueuieeieirieeireceirecctreeeenreeeetsesessetsese s ssesensessesessessesenses 504

62.7 Obtaining @ Push TOKEINc..ceuiuriueierreeeeireieeireeieteieeeneee e nsetsese s ssessesensessesensessesenses 505

62.8 Removing the Refresh BUttoncccvceueiieeincineeeecrrieeieeereeeeetsene e nsessesensessesessessesenses 506

62.9 SUMMATY ..ot 506
63. Testing Live Activity Push NOtifications........cccccevueveininrenninninnennininncncninnenisesscsesessscsessessessesnes 507

63.1 Using the Push Notifications Console...........cccuuuveuininiriniiniiniseseiseseeesesesessesssssesessss

63.2 Configuring the Notification

63.3 Defining the Payload

63.4 Sending the NOtfICAtONc.cuuiuiuieriiiiriscce e

63.5 Sending Push Notifications from the Command Line
63.6 SUIMMATY ...ttt bbbt

64. Troubleshooting Live Activity Push Notificationscoceceuereisennenisnisensnnninininnnnencncnseenene 513
64.1 Push Notification Problems..........cccooviiiiiiiiin s 513
64.2 Push Notification DELIVETYcvvuevcurieeeeireeeeeirieeeetreeeeersenenesseseesetsesensessesessessesensessesessessesense 513
64.3 Check the Payload StIUCTULEc.ceveveeeeerreeeeeireeeeetreeeeenreeenessesensessesessessesessessesensessesensessesenses 514
64.4 Validating the Push and Authentication TOKeNS..........cceeureueverreeemerrememerreremsenrenenerserensersenennes 514
64.5 Checking the Device LOGcccvvurueeerrereeneirieeeeireeeeetreeeeensenenessesensessesessessessssessesessessesessessesesss 515
64.6 SUMMATY ..ot 515
65. Integrating UI'Views wWith SWiftUTcocviiiiiininnininnininininnininiccninecncsessesseseesscsessssssessesnes 517
65.1 SwiftUT and UTKit INteGration..........c.ccucueucucicecueieiiiinieeeiissisesssesesssssessessessssessessesssssesssssns 517
65.2 Integrating UTViews into SWiftUTcccviuiveiiiiiiiniieircsccsecsecese e 517
65.3 Adding @ COOTINALOLcuuiuiuiiriiiieiciseie e 519
65.4 Handling UIKit Delegation and Data SOUICES..........cceuvuuiuriuniiniinierernciseieeeieieieinesissaesasenns 520
65.5 AN EXAIMPLE PIOJECT ..uvrevieiericireieieireieietreieteiseeetet et sese et sese bbbt sese st s st sesenncs 521
65.6 Wrapping the UISCrolledVIEWccocuiunincincincieicieiniiciicisesise et ssessessessssessssnns 521
65.7 Implementing the CoOrdinator ... sae s 522
65.8 USING MYSCIOIIVIEW ...coceiiiiiiiiiiiiiitcic ettt 523
65.9 SUIMMATY ...ttt bbb 523
66. Integrating UI'ViewControllers with SWiftUL.........ccecvvvininininnnnininnnnnininninncncnseenens 525

XV

Table of Contents

66.1 UIViewControllers and SWiftUTL........ccccooiinniiicncsssssesnnes 525
66.2 Creating the ViewControllerDemo Projectcveureeeererreeeererrereeemserensensesemesseseesessesenessenes 525
66.3 Wrapping the UIImagePickerControllercveureeenerreeeenerneeceerreeenenreneeerseseeensesensensenes 525
66.4 Designing the CONtENt VIEW........ccvveuerreueecrrereeerrerenetserenensereesenseseesessesessessesessessesessessesessessenes 526
66.5 Completing MyImAaGePICKeTcvveverreueeerreeeeeireecieireeeeteeeeesseseeensesessensesessessesensessesessessenes 528
66.6 Completing the CONtENt VIEW.........ceeureueeerrieeenerrieeierreremenreseeessesessessesensesseseesessesessessesessessenes 530
66.7 TeStING the APP..cevucrieeeerreieieireceireeeeerreeeeeteee e sese et sese s s sese s sese st sesessessesessesenen 530
06.8 SUIMIMATY ...ttt bbb 531

67. Integrating SWiftUI with UIKit.......ccccoovvurrinvinrinininninininiininincsisisncsesisssceessessessisssssessesene

67.1 An Overview of the Hosting CONtroller ..o

67.2 A UIHostingController Example Project

67.3 Adding the SwiftUT Content View...................
67.4 Preparing the Storyboard........cccccccoeeririuninnnen.
67.5 Adding a Hosting Controller...........cccccecueuuee.
67.6 Configuring the SegUe ACHONc.ccuiiiciiiciriree e
67.7 Embedding a Container VIEW ... ssesssssesssssesssesssesesssssesssnes
67.8 Embedding SWiftUT in Codeccceuiiriiiiiiiireiesesiese e ssesseesesssssesasesssesesssasessenes
67.9 SUIMIMATY ..ottt bbbt

68. Preparing and Submitting an iOS 17 Application to the App Storeccocvvrvenerirucsensnsenesncsneennes

68.1 Verifying the iOS Distribution Certificate...........cveeureeernerreeeererrereenerrerenenrerensenseseesessesensensenee
68.2 AAdING APP ICOMS ..uerreieeicrreecicireieeetreeeeset et sese st sese s s st sesessessesessesenes
68.3 Assign the Project t0 @ TEAIMcocueueecrreeeecrreecireeieireeeeneeeee s nsese e ssesessessesensessenes
68.4 Archiving the Application for Distribution..........ccccoevvuecunneee

68.5 Configuring the Application in App Store Connect

68.6 Validating and Submitting the Applicationccccovvuvvecunneee
68.7 Configuring and Submitting the App for Review...................

Xvi

...

Chapter 1

1. Start Here

This book aims to teach the skills necessary to build iOS 17 applications using SwiftUI, Xcode 15, and the Swift
programming language.

Beginning with the basics, this book outlines the steps to set up an iOS development environment, together with
an introduction to using Swift Playgrounds to learn and experiment with Swift.

The book also includes in-depth chapters introducing the Swift programming language, including data types,
control flow, functions, object-oriented programming, property wrappers, structured concurrency, and error
handling.

A guided tour of Xcode in SwiftUI development mode follows an introduction to the key concepts of SwiftUI
and project architecture. The book also covers creating custom SwiftUI views and explains how these views are
combined to create user interface layouts, including stacks, frames, and forms.

Other topics covered include data handling using state properties and observable, state, and environment
objects, as are key user interface design concepts such as modifiers, lists, tabbed views, context menus, user
interface navigation, and outline groups.

The book also includes chapters covering graphics and chart drawing, user interface animation, view transitions
and gesture handling, WidgetKit, Live Activities, document-based apps, Core Data, SwiftData, and CloudKit.

Chapters also explain how to integrate SwiftUI views into existing UIKit-based projects and integrate UIKit
code into SwiftUI.

Finally, the book explains how to package up a completed app and upload it to the App Store for publication.

Along the way, the topics covered in the book are put into practice through detailed tutorials, the source code
for which is also available for download.

The aim of this book, therefore, is to teach you the skills to build your own apps for iOS 17 using SwiftUL
Assuming you are ready to download the iOS 17 SDK and Xcode 15 and have an Apple Mac system, you are
ready to get started.

1.1 For Swift Programmers

This book has been designed to address the needs of both existing Swift programmers and those new to Swift
and iOS app development. If you are familiar with the Swift programming language, you can probably skip the
Swift-specific chapters. If you are not yet familiar with the SwiftUI-specific language features of Swift, however,
we recommend that you at least read the sections covering implicit returns from single expressions, opaque
return types, and property wrappers. These features are central to the implementation and understanding of
SwiftUL

1.2 For Non-Swift Programmers

If you are new to programming in Swift, then the entire book is appropriate for you. Just start at the beginning
and keep going.

Start Here

1.3 Source Code Download

The source code and Xcode project files for the examples contained in this book are available for download at:
https://www.ebookfrenzy.com/retail/ios17/
1.4 Feedback

We want you to be satisfied with your purchase of this book. Therefore, if you find any errors in the book or have
any comments, questions, or concerns, please contact us at feedback@ebookfrenzy.com.

1.5 Errata

While we make every effort to ensure the accuracy of the content of this book, inevitably, a book covering a
subject area of this size and complexity may include some errors and oversights. Any known issues with the
book will be outlined, together with solutions, at the following URL:

https://www.ebookfrenzy.com/errata/ios17.html

In the event that you find an error not listed in the errata, please let us know by emailing our technical support
team at feedback@ebookfrenzy.com.

https://www.ebookfrenzy.com/retail/ios17/
https://www.ebookfrenzy.com/errata/ios17.html

Chapter 2

2. Joining the Apple Developer
Program

The first step in the process of learning to develop iOS 17 based applications involves gaining an understanding
of the advantages of enrolling in the Apple Developer Program and deciding the point at which it makes sense
to pay to join. With these goals in mind, this chapter will outline the costs and benefits of joining the developer
program and, finally, walk through the steps involved in enrolling.

2.1 Downloading Xcode 15 and the iOS 17 SDK

The latest versions of both the iOS SDK and Xcode can be downloaded free of charge from the macOS App
Store. Since the tools are free, this raises the question of whether to enroll in the Apple Developer Program, or
to wait until it becomes necessary later in your app development learning curve.

2.2 Apple Developer Program

Membership in the Apple Developer Program currently costs $99 per year to enroll as an individual developer.
Organization level membership is also available.

Much can be achieved without the need to pay to join the Apple Developer program. There are, however, areas
of app development which cannot be fully tested without program membership. Of particular significance is the
fact that Siri integration, iCloud access, Apple Pay, Game Center and In-App Purchasing can only be enabled
and tested with Apple Developer Program membership.

Of further significance is the fact that Apple Developer Program members have access to technical support
from Apple’s iOS support engineers (though the annual fee initially covers the submission of only two support
incident reports, more can be purchased). Membership also includes access to the Apple Developer forums;
an invaluable resource both for obtaining assistance and guidance from other iOS developers, and for finding
solutions to problems that others have encountered and subsequently resolved.

Program membership also provides early access to the pre-release Beta versions of Xcode, macOS and iOS.

By far the most important aspect of the Apple Developer Program is that membership is a mandatory requirement
in order to publish an application for sale or download in the App Store.

Clearly, program membership is going to be required at some point before your application reaches the App
Store. The only question remaining is when exactly to sign up.

2.3 When to Enroll in the Apple Developer Program?

Clearly, there are many benefits to Apple Developer Program membership and, eventually, membership will
be necessary to begin selling your apps. As to whether to pay the enrollment fee now or later will depend on
individual circumstances. If you are still in the early stages of learning to develop iOS apps or have yet to come
up with a compelling idea for an app to develop then much of what you need is provided without program
membership. As your skill level increases and your ideas for apps to develop take shape you can, after all, always
enroll in the developer program later.

If, on the other hand, you are confident that you will reach the stage of having an application ready to publish,
3

Joining the Apple Developer Program

or know that you will need access to more advanced features such as Siri support, iCloud storage, In-App
Purchasing and Apple Pay then it is worth joining the developer program sooner rather than later.

2.4 Enrolling in the Apple Developer Program

If your goal is to develop iOS apps for your employer, then it is first worth checking whether the company
already has membership. That being the case, contact the program administrator in your company and ask them
to send you an invitation from within the Apple Developer Program Member Center to join the team. Once they
have done so, Apple will send you an email entitled You Have Been Invited to Join an Apple Developer Program
containing a link to activate your membership. If you or your company is not already a program member, you
can enroll online at:

https://developer.apple.com/programs/enroll/

Apple provides enrollment options for businesses and individuals. To enroll as an individual, you will need to
provide credit card information in order to verify your identity. To enroll as a company, you must have legal
signature authority (or access to someone who does) and be able to provide documentation such as a Dun &
Bradstreet D-U-N-S number and documentation confirming legal entity status.

Acceptanceinto the developer program asan individual member typically takesless than 24 hours with notification
arriving in the form of an activation email from Apple. Enrollment as a company can take considerably longer
(sometimes weeks or even months) due to the burden of the additional verification requirements.

While awaiting activation you may log in to the Member Center with restricted access using your Apple ID and
password at the following URL:

https://developer.apple.com/membercenter

Once logged in, clicking on the Your Account tab at the top of the page will display the prevailing status of your
application to join the developer program as Enrollment Pending. Once the activation email has arrived, log in
to the Member Center again and note that access is now available to a wide range of options and resources as
illustrated in Figure 2-1:

Figure 2-1

https://developer.apple.com/programs/enroll/
https://developer.apple.com/membercenter

Joining the Apple Developer Program

2.5 Summary

An important early step in the iOS 17 application development process involves identifying the best time to
enroll in the Apple Developer Program. This chapter has outlined the benefits of joining the program, provided
some guidance to keep in mind when considering developer program membership and walked briefly through
the enrollment process. The next step is to download and install the iOS 17 SDK and Xcode 15 development
environment.

Chapter 3

3. Installing Xcode 15 and the iOS 17
SDK

iOS apps are developed using the iOS SDK in conjunction with Apple’s Xcode development environment. Xcode
is an integrated development environment (IDE) within which you will code, compile, test and debug your iOS
applications.

All of the examples in this book are based on Xcode version 15 and make use of features unavailable in earlier
Xcode versions. In this chapter we will cover the steps involved in installing both Xcode 15 and the iOS 17 SDK
on macOS.

3.1 Identifying Your macOS Version

When developing with SwiftU], the Xcode 15 environment requires a system running macOS Ventura 13.5, or
later. If you are unsure of the version of macOS on your Mac, you can find this information by clicking on the
Apple menu in the top left-hand corner of the screen and selecting the About This Mac option from the menu.
In the resulting dialog check the macOS line:

Figure 3-1

If the “About This Mac” dialog does not indicate that macOS 13.5 or later is running, click on the Software
Update... button to download and install the appropriate operating system upgrades.

3.2 Installing Xcode 15 and the iOS 17 SDK

The best way to obtain the latest versions of Xcode and the iOS SDK is to download them from the Apple Mac
App Store. Launch the App Store on your macOS system, enter Xcode into the search box and click on the Get
button to initiate the installation. This will install both Xcode and the iOS SDK.

Installing Xcode 15 and the iOS 17 SDK

3.3 Starting Xcode

Having successfully installed the SDK and Xcode, the next step is to launch it so that we are ready to start
development work. To start up Xcode, open the macOS Finder and search for Xcode. Since you will be making
frequent use of this tool take this opportunity to drag and drop it onto your dock for easier access in the future.
Click on the Xcode icon in the dock to launch the tool. The first time Xcode runs you may be prompted to install
additional components. Follow these steps, entering your username and password when prompted to do so.

Once Xcode has loaded, and assuming this is the first time you have used Xcode on this system, you will be
presented with the Welcome screen from which you are ready to proceed:

Figure 3-2
3.4 Adding Your Apple ID to the Xcode Preferences

Regardless of whether or not you choose to enroll in the Apple Developer Program it is worth adding your Apple
ID to Xcode now that it is installed and running. Select the Xcode -> Settings... menu option followed by the
Accounts tab. On the Accounts screen, click on the + button highlighted in Figure 3-3, select Apple ID from the
resulting panel and click on the Continue button. When prompted, enter your Apple ID and password before
clicking on the Sign In button to add the account to the preferences.

Figure 3-3

Installing Xcode 15 and the iOS 17 SDK

3.5 Developer and Distribution Signing Identities

Once the Apple ID has been entered the next step is to generate signing identities. To view the current signing
identities, select the newly added Apple ID in the Accounts panel and click on the Manage Certificates... button
to display a list of available signing identity types. To create a signing identity, simply click on the + button
highlighted in Figure 3-4 and make the appropriate selection from the menu:

Figure 3-4

If the Apple ID has been used to enroll in the Apple Developer program, the option to create an Apple Distribution
certificate will appear in the menu which will, when clicked, generate the signing identity required to submit
the app to the Apple App Store. You will also need to create a Developer ID Application certificate if you plan
to integrate features such as iCloud and Siri into your app projects. If you have not yet signed up for the Apple
Developer program, select the Apple Development option to allow apps to be tested during development.

3.6 Summary

This book was written using Xcode 15 and the iOS 17 SDK running on macOS 13.5.2 (Ventura). Before
beginning SwiftUI development, the first step is to install Xcode and configure it with your Apple ID via the
accounts section of the Preferences screen. Once these steps have been performed, a development certificate
must be generated which will be used to sign apps developed within Xcode. This will allow you to build and test
your apps on physical iOS-based devices.

When you are ready to upload your finished app to the App Store, you will also need to generate a distribution
certificate, a process requiring membership in the Apple Developer Program as outlined in the previous chapter.

Having installed the iOS SDK and successfully launched Xcode 15 we can now look at Xcode in more detail,
starting with Playgrounds.

Chapter 14

14. Working with Array and
Dictionary Collections in Swift

Arrays and dictionaries in Swift are objects that contain collections of other objects. This chapter will cover some
of the basics of working with arrays and dictionaries in Swift.

14.1 Mutable and Immutable Collections

Collections in Swift come in mutable and immutable forms. The contents of immutable collection instances
cannot be changed after the object has been initialized. To make a collection immutable, assign it to a constant
when it is created. On the other hand, collections are mutable if assigned to a variable.

14.2 Swift Array Initialization

An array is a data type designed specifically to hold multiple values in a single ordered collection. An array, for
example, could be created to store a list of String values. Strictly speaking, a single Swift based array is only able
to store values that are of the same type. An array declared as containing String values, therefore, could not also
contain an Int value. As will be demonstrated later in this chapter, however, it is also possible to create mixed
type arrays. The type of an array can be specified specifically using type annotation or left to the compiler to
identify using type inference.

An array may be initialized with a collection of values (referred to as an array literal) at creation time using the
following syntax:

var variableName: [type] = [value 1, value2, value3,]
The following code creates a new array assigned to a variable (thereby making it mutable) that is initialized with

three string values:

var treeArray = ["Pine", "Oak", "Yew"]

Alternatively, the same array could have been created immutably by assigning it to a constant:

let treeArray = ["Pine", "Oak", "Yew"]

In the above instance, the Swift compiler will use type inference to decide that the array contains values of String
type and prevent values of other types being inserted into the array elsewhere within the application code.
Alternatively, the same array could have been declared using type annotation:

var treeArray: [String] = ["Pine", "Oak", "Yew"]

Arrays do not have to have values assigned at creation time. The following syntax can be used to create an empty
array:

var variableName = [type] ()

Consider, for example, the following code which creates an empty array designated to store floating point values
and assigns it to a variable named priceArray:

var priceArray = [Float] ()

Another useful initialization technique allows an array to be initialized to a certain size with each array element
89

Working with Array and Dictionary Collections in Swift

pre-set with a specified default value:
var nameArray = [String] (repeating: "My String", count: 10)

When compiled and executed, the above code will create a new 10 element array with each element initialized
with a string that reads “My String”

Finally, a new array may be created by adding together two existing arrays (assuming both arrays contain values
of the same type). For example:

let firstArray = ["Red", "Green", "Blue"]
let secondArray = ["Indigo", "Violet"]

let thirdArray = firstArray + secondArray

14.3 Working with Arrays in Swift

Once an array exists, a wide range of methods and properties are provided for working with and manipulating
the array content from within Swift code, a subset of which is as follows:

14.3.1 Array Item Count
A count of the items in an array can be obtained by accessing the array’s count property:

var treeArray = ["Pine", "Oak", "Yew"]

var itemCount = treeArray.count

print (itemCount)

Whether or not an array is empty can be identified using the array’s Boolean isEmpty property as follows:

var treeArray = ["Pine", "Oak", "Yew"]

if treeArray.isEmpty {
// Array is empty
}
14.3.2 Accessing Array Items

A specific item in an array may be accessed or modified by referencing the item’s position in the array index
(where the first item in the array has index position 0) using a technique referred to as index subscripting. In the
following code fragment, the string value contained at index position 2 in the array (in this case the string value
“Yew”) is output by the print call:

var treeArray = ["Pine", "Oak", "Yew"]

print (treeArray([2])

This approach can also be used to replace the value at an index location:

treeArray[l] = "Redwood"
The above code replaces the current value at index position 1 with a new String value that reads “Redwood”.

14.3.3 Random Items and Shuffling

A call to the shuffled() method of an array object will return a new version of the array with the item ordering
randomly shuffled, for example:

let shuffledTrees = treeArray.shuffled()

90

Working with Array and Dictionary Collections in Swift

To access an array item at random, simply make a call to the randomElement() method:

let randomTree = treeArray.randomElement ()

14.3.4 Appending Items to an Array

Items may be added to an array using either the append method or + and += operators. The following, for
example, are all valid techniques for appending items to an array:

treeArray.append ("Redwood")
treeArray += ["Redwood"]

treeArray += ["Redwood", "Maple", "Birch"]

14.3.5 Inserting and Deleting Array Items

New items may be inserted into an array by specifying the index location of the new item in a call to the array’s
insert(at:) method. An insertion preserves all existing elements in the array, essentially moving them to the right
to accommodate the newly inserted item:

treeArray.insert ("Maple", at: 0)

Similarly, an item at a specific array index position may be removed using the remove(at:) method call:

treeArray.remove (at: 2)

To remove the last item in an array, simply make a call to the array’s removeLast method as follows:

treeArray.removelast ()

14.3.6 Array Iteration

The easiest way to iterate through the items in an array is to make use of the for-in looping syntax. The following
code, for example, iterates through all of the items in a String array and outputs each item to the console panel:
let treeArray = ["Pine", "Oak", "Yew", "Maple", "Birch", "Myrtle"]

for tree in treeArray {
print (tree)

}

Upon execution, the following output will appear in the console:
Pine
Oak
Yew
Maple
Birch
Myrtle
The same result can be achieved by calling the forEach() array method. When this method is called on an array,
it will iterate through each element and execute specified code. For example:
treeArray.forEach { tree in
print (tree)
}
Note that since the task to be performed for each array element is declared in a closure expression, the above
example may be modified as follows to take advantage of shorthand argument names:

treeArray.forEach {
print ($0)

91

Working with Array and Dictionary Collections in Swift
1
14.4 Creating Mixed Type Arrays

A mixed type array is an array that can contain elements of different class types. Clearly, an array that is either
declared or inferred as being of type String cannot subsequently be used to contain non-String class object
instances. Interesting possibilities arise, however, when taking into consideration that Swift includes the Any
type. Any is a special type in Swift that can be used to reference an object of a non-specific class type. It follows,
therefore, that an array declared as containing Any object types can be used to store elements of mixed types.
The following code, for example, declares and initializes an array containing a mixture of String, Int and Double
elements:

let mixedArray: [Any] = ["A String", 432, 34.989]

The use of the Any type should be used with care since the use of Any masks from Swift the true type of the
elements in such an array thereby leaving code prone to potential programmer error. It will often be necessary,
for example, to manually cast the elements in an Any array to the correct type before working with them in
code. Performing the incorrect cast for a specific element in the array will most likely cause the code to compile
without error but crash at runtime. Consider, for the sake of an example, the following mixed type array:

let mixedArray: [Any] = [1, 2, 45, "Hello"]

Assume that, having initialized the array, we now need to iterate through the integer elements in the array and
multiply them by 10. The code to achieve this might read as follows:
for object in mixedArray {
print (object * 10)
}

When entered into Xcode, however, the above code will trigger a syntax error indicating that it is not possible to
multiply operands of type Any and Int. In order to remove this error it will be necessary to downcast the array
element to be of type Int:
for object in mixedArray {

print (object as! Int * 10)
}
The above code will compile without error and work as expected until the final String element in the array is
reached at which point the code will crash with the following error:
Could not cast value of type ‘Swift.String’ to ‘Swift.Int’

The code will, therefore, need to be modified to be aware of the specific type of each element in the array. Clearly,
there are both benefits and risks to using Any arrays in Swift.

14.5 Swift Dictionary Collections

String dictionaries allow data to be stored and managed in the form of key-value pairs. Dictionaries fulfill a
similar purpose to arrays, except each item stored in the dictionary has associated with it a unique key (to be
precise, the key is unique to the particular dictionary object) which can be used to reference and access the
corresponding value. Currently only String, Int, Double and Bool data types are suitable for use as keys within
a Swift dictionary.

14.6 Swift Dictionary Initialization

A dictionary is a data type designed specifically to hold multiple values in a single unordered collection. Each
item in a dictionary consists of a key and an associated value. The data types of the key and value elements type
may be specified specifically using type annotation, or left to the compiler to identify using type inference.

92

Working with Array and Dictionary Collections in Swift

A new dictionary may be initialized with a collection of values (referred to as a dictionary literal) at creation time
using the following syntax:

var variableName: [key type: value type] = [key 1: value 1, key 2: value2]

The following code creates a new dictionary assigned to a variable (thereby making it mutable) that is initialized
with four key-value pairs in the form of ISBN numbers acting as keys for corresponding book titles:

var bookDict = ["100-432112" : "Wind in the Willows",
"200-532874" : "Tale of Two Cities",
"202-546549" : "Sense and Sensibility",
"104-109834" : "Shutter Island"]

In the above instance, the Swift compiler will use type inference to decide that both the key and value elements
of the dictionary are of String type and prevent values or keys of other types being inserted into the dictionary.

Alternatively, the same dictionary could have been declared using type annotation:

var bookDict: [String: String] =

["100-432112" : "Wind in the Willows",
"200-532874" : "Tale of Two Cities",
"202-546549" : "Sense and Sensibility",
"104-109834" : "Shutter Island"]

As with arrays, it is also possible to create an empty dictionary, the syntax for which reads as follows:
var variableName = [key type: value type]()

The following code creates an empty dictionary designated to store integer keys and string values:

var myDictionary = [Int: String] ()

14.7 Sequence-based Dictionary Initialization

Dictionaries may also be initialized using sequences to represent the keys and values. This is achieved using the
Swift zip() function, passing through the keys and corresponding values. In the following example, a dictionary
is created using two arrays:

let keys = ["100-432112", "200-532874", "202-546549", "104-109834"]
let values = ["Wind in the Willows", "Tale of Two Cities",
"Sense and Sensibility", "Shutter Island"]

let bookDict = Dictionary(uniqueKeysWithValues: zip(keys, values))

This approach allows keys and values to be generated programmatically. In the following example, a number
range starting at 1 is being specified for the keys instead of using an array of predefined keys:

let values = ["Wind in the Willows", "Tale of Two Cities",

"Sense and Sensibility", "Shutter Island"]

var bookDict = Dictionary(uniqueKeysWithValues: zip(l..., values))

The above code is a much cleaner equivalent to the following dictionary declaration:

var bookDict = [1 : "Wind in the Willows",
2 : "Tale of Two Cities",
3 : "Sense and Sensibility",

93

Working with Array and Dictionary Collections in Swift

4 : "Shutter Island"]

14.8 Dictionary Item Count

A count of the items in a dictionary can be obtained by accessing the dictionary’s count property:

print (bookDict.count)

14.9 Accessing and Updating Dictionary Items

A specific value may be accessed or modified using key subscript syntax to reference the corresponding value.
The following code references a key known to be in the bookDict dictionary and outputs the associated value (in
this case the book entitled “A Tale of Two Cities”):

print (bookDict ["200-532874"])

When accessing dictionary entries in this way, it is also possible to declare a default value to be used in the event
that the specified key does not return a value:

print (bookDict["999-546547", default: "Book not found"])

Since the dictionary does not contain an entry for the specified key, the above code will output text which reads
“Book not found”

Indexing by key may also be used when updating the value associated with a specified key, for example, to
change the title of the same book from “A Tale of Two Cities” to “Sense and Sensibility”):

bookDict["200-532874"] = "Sense and Sensibility"

The same result is also possible by making a call to the updateValue(forKey:) method, passing through the key
corresponding to the value to be changed:

bookDict.updateValue ("The Ruins", forKey: "200-532874")

14.10 Adding and Removing Dictionary Entries

Items may be added to a dictionary using the following key subscripting syntax:
dictionaryVariable[key] = value

For example, to add a new key-value pair entry to the books dictionary:
bookDict ["300-898871"] = "The Overlook"

Removal of a key-value pair from a dictionary may be achieved either by assigning a nil value to the entry, or
via a call to the removeValueForKey method of the dictionary instance. Both code lines below achieve the same
result of removing the specified entry from the books dictionary:

bookDict ["300-898871"] = nil
bookDict.removeValue (forKey: "300-898871")

14.11 Dictionary Iteration

As with arrays, it is possible to iterate through dictionary entries by making use of the for-in looping syntax. The
following code, for example, iterates through all of the entries in the books dictionary, outputting both the key
and value for each entry:

for (bookid, title) in bookDict {
print ("Book ID: \ (bookid) Title: \(title)")
}
Upon execution, the following output will appear in the console:
Book ID: 100-432112 Title: Wind in the Willows

94

Working with Array and Dictionary Collections in Swift

Book ID: 200-532874 Title: The Ruins
Book ID: 104-109834 Title: Shutter Island
Book ID: 202-546549 Title: Sense and Sensibility

14.12 Summary

Collections in Swift take the form of either dictionaries or arrays. Both provide a way to collect together multiple
items within a single object. Arrays provide a way to store an ordered collection of items where those items are
accessed by an index value corresponding to the item position in the array. Dictionaries provide a platform for
storing key-value pairs, where the key is used to gain access to the stored value. Iteration through the elements
of Swift collections can be achieved using the for-in loop construct.

95

Chapter 18

18. SwiftUI Architecture

A completed SwiftUI app is constructed from multiple components which are assembled in a hierarchical
manner. Before embarking on the creation of even the most basic of SwiftUI projects, it is useful to first gain an
understanding of how SwiftUI apps are structured. With this goal in mind, this chapter will introduce the key
elements of SwiftUI app architecture, with an emphasis on App, Scene and View elements.

18.1 SwiftUI App Hierarchy

When considering the structure of a SwiftUI application, it helps to view a typical hierarchy visually. Figure 18-1,
for example, illustrates the hierarchy of a simple SwiftUI app:

Figure 18-1

Before continuing, it is important to distinguish the difference between the term “app” and the “App” element
outlined in the above figure. The software applications that we install and run on our mobile devices have come
to be referred to as “apps”. In this chapter reference will be made both to these apps and the App element in
the above figure. To avoid confusion, we will use the term “application” to refer to the completed, installed and
running app, while referring to the App element as “App”. The remainder of the book will revert to using the
more common “app” when talking about applications.

18.2 App

The App object is the top-level element within the structure of a SwiftUT application and is responsible for
handling the launching and lifecycle of each running instance of the application.

The App element is also responsible for managing the various Scenes that make up the user interface of the
application. An application will include only one App instance.

18.3 Scenes

Each SwiftUI application will contain one or more scenes. A scene represents a section or region of the
application’s user interface. On iOS and watchOS a scene will typically take the form of a window which takes
up the entire device screen. SwiftUI applications running on macOS and iPadOS, on the other hand, will likely
be comprised of multiple scenes. Different scenes might, for example, contain context specific layouts to be
displayed when tabs are selected by the user within a dialog, or to design applications that consist of multiple

123

SwiftUI Architecture
windows.

SwiftUI includes some pre-built primitive scene types that can be used when designing applications, the most
common of which being WindowGroup and DocumentGroup. It is also possible to group scenes together to
create your own custom scenes.

18.4 Views

Views are the basic building blocks that make up the visual elements of the user interface such as buttons,
labels and text fields. Each scene will contain a hierarchy of the views that make up a section of the application’s
user interface. Views can either be individual visual elements such as text views or buttons, or take the form of
containers that manage other views. The Vertical Stack view, for example, is designed to display child views in a
vertical layout. In addition to the Views provided with SwiftUI, you will also create custom views when developing
SwiftUT applications. These custom views will comprise groups of other views together with customizations to
the appearance and behavior of those views to meet the requirements of the application’s user interface.

Figure 18-2, for example, illustrates a scene containing a simple view hierarchy consisting of a Vertical Stack
containing a Button and TextView combination:

Figure 18-2
18.5 Summary

SwiftUT applications are constructed hierarchically. At the top of the hierarchy is the App instance which
is responsible for the launching and lifecycle of the application. One or more child Scene instances contain
hierarchies of the View instances that make up the user interface of the application. These scenes can either be
derived from one of the SwiftUI primitive Scene types such as WindowGroup, or custom built.

On iOS or watchOS, an application will typically contain a single scene which takes the form of a window
occupying the entire display. On a macOS or iPadOS system, however, an application may comprise multiple
scene instances, often represented by separate windows which can be displayed simultaneously or grouped
together in a tabbed interface.

124

Chapter 22

22. SwiftUI State Properties,
Observation, and Environment
Objects

Earlier chapters have described how SwiftUI emphasizes a data-driven approach to app development whereby
the views in the user interface are updated in response to changes in the underlying data without the need to
write handling code. This approach is achieved by establishing a publisher and subscriber relationship between
the data and the views in the user interface.

SwiftUI offers four options for implementing this behavior in the form of state properties, observation, and
environment objects, all of which provide the state that drives the way the user interface appears and behaves. In
SwiftU], the views that make up a user interface layout are never updated directly within code. Instead, the views
are updated automatically based on the state objects to which they have been bound as they change over time.

This chapter will describe these four options and outline when they should be used. Later chapters, ‘A SwiftUT
Example Tutorial” and “SwiftUI Observable and Environment Objects — A Tutorial”) will provide practical
examples demonstrating their use.

22.1 State Properties

The most basic form of state is the state property. State properties are used exclusively to store state that is local
to a view layout, such as whether a toggle button is enabled, the text being entered into a text field, or the current
selection in a Picker view. State properties are used for storing simple data types such as a String or an Int value
and are declared using the @State property wrapper, for example:

struct ContentView: View ({

@State private var wifiEnabled = true
@State private var userName = ""

var body: some View {

Since state values are local to the enclosing view, they should be declared as private properties.

Every change to a state property value signals to SwiftUI that the view hierarchy within which the property is
declared needs to be re-rendered. This involves rapidly recreating and displaying all of the views in the hierarchy,
which, in turn, ensures that any views that rely on the property in some way are updated to reflect the latest
value.

Once declared, bindings can be established between state properties and the views contained in the layout.
Changes within views referencing the binding are then automatically reflected in the corresponding state
property. A binding could, for example, be established between a Toggle view and the Boolean wifiEnabled

153

SwiftUI State Properties, Observation, and Environment Objects

property declared above. SwiftUI automatically updates the state property to match the new toggle setting
whenever the user switches the toggle.

A binding to a state property is implemented by prefixing the property name with a ‘$’ sign. In the following
example, a TextField view establishes a binding to the userName state property to use as the storage for text
entered by the user:

struct ContentView: View {

@State private var wifiEnabled = true

@State private var userName = ""

var body: some View {
VStack {

TextField ("Enter user name", text: S$userName)

}

With each keystroke performed as the user types into the TextField, the binding will store the current text
into the userName property. Each change to the state property will, in turn, cause the view hierarchy to be re-
rendered by SwiftUI.

Of course, storing something in a state property is only one side of the process. As previously discussed, a state
change usually results in a change to other views in the layout. In this case, a Text view might need to be updated
to reflect the user’s name as it is typed. This can be achieved by declaring the userName state property value as
the content for a Text view:
var body: some View ({
VStack {
TextField ("Enter user name", text: SuserName)

Text (userName)

}

The Text view will automatically update as the user types to reflect the user’s input. The userName property is
declared without the ‘$’ prefix in this case. This is because we are now referencing the value assigned to the state
property (i.e., the String value being typed by the user) instead of a binding to the property.

Similarly, the hypothetical binding between a Toggle view and the wifiEnabled state property described above
could be implemented as follows:

var body: some View {

VStack {
Toggle (isOn: $wifiEnabled) {
Text ("Enable Wi-Fi")
}
TextField ("Enter user name", text: SuserName)
Text (userName)

Image (systemName: wifiEnabled ? "wifi" : "wifi.slash")

154

SwiftUI State Properties, Observation, and Environment Objects
}

The above declaration establishes a binding between the Toggle view and the state property. The value assigned
to the property is then used to decide which image will be displayed on an Image view.

22.2 State Binding

A state property is local to the view it is declared in and any child views. Situations may occur, however, where
a view contains one or more subviews that may also need access to the same state properties. Consider, for
example, a situation whereby the WiFi Image view in the above example has been extracted into a subview:

VStack {
Toggle (1isOn: S$wifiEnabled) {
Text ("Enable WiFi")
}

TextField ("Enter user name", text: SuserName)

WifiTmageView ()

struct WifilmageView: View ({

var body: some View {
Image (systemName: wifiEnabled ? "wifi" : "wifi.slash")

}

Clearly, the WifilmageView subview still needs access to the wifiEnabled state property. As an element of
a separate subview, however, the Image view is now out of the scope of the main view. Within the scope of
WifilmageView, the wifiEnabled property is an undefined variable.

This problem can be resolved by declaring the property using the @Binding property wrapper as follows:

struct WifiTmageView: View {
@Binding var wifiEnabled : Bool

var body: some View {

Image (systemName: wifiEnabled ? "wifi" : "wifi.slash")

}

Now, when the subview is called, it simply needs to be passed a binding to the state property:
WifilmageView (wifiEnabled: $wifiEnabled)

22.3 Observable Objects

State properties provide a way to store the state of a view locally, are available only to the local view, and, as such,
cannot be accessed by other views unless they are subviews and state binding is implemented. State properties
are also transient in that when the parent view goes away, the state is also lost. On the other hand, Observable
objects represent persistent data that is both external and accessible to multiple views.

155

SwiftUI State Properties, Observation, and Environment Objects

An Observable object takes the form of a class that conforms to the ObservableObject protocol. Though the
implementation of an observable object will be application-specific depending on the nature and source of the
data, it will typically be responsible for gathering and managing one or more data values known to change over
time. Observable objects can also handle events such as timers and notifications.

The observable object publishes the data values it is responsible for as published properties. Observer objects
then subscribe to the publisher and receive updates whenever published properties change. As with the state
properties outlined above, by binding to these published properties, SwiftUI views will automatically update to
reflect changes in the data stored in the observable object.

Before the introduction of iOS 17, observable objects were managed using the Combine framework, which was
introduced to make it easier to establish relationships between publishers and subscribers. While this option is
still available, a simpler alternative is now available following the introduction of the Observation framework
(typically referred to as just “Observation”).

However, before we look at how to use Observation, we will cover the old Combine framework approach. We
are doing this for two reasons. First, learning about the old way will help you to understand how the new
Observation works behind the scenes. Second, you will encounter many code examples online that use the
Combine framework. Understanding how to migrate to Observation will help you re-purpose those examples
for your needs.

22.4 Observation using Combine

The Combine framework provides a platform for building custom publishers for performing various tasks,
from merging multiple publishers into a single stream to transforming published data to match subscriber
requirements. This allows for complex, enterprise-level data processing chains to be implemented between
the original publisher and the resulting subscriber. That being said, one of the built-in publisher types will
typically be all that is needed for most requirements. The easiest way to implement a published property within
an observable object is to use the @Published property wrapper when declaring a property. This wrapper sends
updates to all subscribers each time the wrapped property value changes.

The following class shows a simple observable object declaration with two published properties:

import Foundation

import Combine
class DemoData : ObservableObject {

@Published var playerName = ""
@Published var score = 0

init () {
// Code here to initialize data

updateData ()

func updateData () {
// Code here to update the data
score += 1

156

SwiftUI State Properties, Observation, and Environment Objects

A subscriber uses either the @ObservedObject or @StateObject property wrapper to subscribe to the observable
object. Once subscribed, that view and any of its child views access the published properties using the same
techniques used with state properties earlier in the chapter. A sample SwiftUI view designed to subscribe to an
instance of the above DemoData class might read as follows:

import SwiftUI

struct ContentView: View {

@ObservedObject var demoData : DemoData = DemoData(player: "John")

var body: some View {
VStack {
Text ("\ (demoData.playerName) 's Score = \ (demoData.score)")
Button (action: {
demoData.update ()
}, label: {
Text ("Update")

})
.padding ()

}

When the update button is clicked, the published score variable will change, and SwiftUI will automatically re-
render the view layout to reflect the new state.

22.5 Combine State Objects

The State Object property wrapper (@StateObject) was introduced in iOS 14 as an alternative to the @
ObservedObject wrapper. The key difference between a state object and an observed object is that an observed
object reference is not owned by the view in which it is declared and, as such, is at risk of being destroyed or
recreated by the SwiftUI system while still in use (for example as the result of the view being re-rendered).

Using @StateObject instead of @ObservedObject ensures that the reference is owned by the view in which it is
declared and, therefore, will not be destroyed by SwiftUI while it is still needed, either by the local view in which
it is declared or any child views. For example:

import SwiftUI

struct ContentView: View {

@StateObject var demoData : DemoData = DemoData ()

var body: some View {

157

SwiftUI State Properties, Observation, and Environment Objects

22.6 Using the Observation Framework

Using Observation instead of the Combine framework will provide us with the same behavior outlined above but
with simpler code. To switch the DemoData class to use Observation, we need to make the following changes:

import Foundation

@Observable class DemoData—©Observabletbiect {

fPubtished—var playerName = ""
fPubtished—var score = 0

init (player: String) {
self.playerName = player

func update () {
score += 1

}

Instead of declaring the DemoData as a subclass of ObservableObject, we now prefix the declaration with the @
Observable macro. We also no longer need to use the @Published property wrappers because the macro handles
this automatically.

The code in the ContentView is also simplified by removing the @ObservedObject directive:

struct ContentView: View {

fObservedObject var demoData : DemoData = DemoData(player: "John")

Where the @StateObject property wrapper was used, this can be replaced with @State as follows:
import SwiftUI

struct ContentView: View {
@State var demoData : DemoData = DemoData ()

var body: some View ({

)
22.7 Observation and @Bindable

Earlier in the chapter, we introduced state binding and explained how it is used to pass state properties from one
view to another. Suppose that our example layout uses a separate view named ScoreView to display the score as
follows:

struct ContentView: View {

158

SwiftUI State Properties, Observation, and Environment Objects

var demoData : DemoData = DemoData (player: "John")

var body: some View {
VStack {
ScoreView (score: $demoData.score) // Syntax error
Text ("\ (demoData.playerName) 's Score")
Button (action: {
demoData.update ()
}, label: {
Text ("Update™)
1)
.padding ()

struct ScoreView: View {
@Binding var score: Int

var body: some View {
Text ("\ (score)")

.font(.system(size: 150))

}

The above code will report an error indicating that $demoData.score cannot be found. To correct this, we need
to apply the @Bindable property wrapper to the demoData declaration. This property wrapper is used when
we need to create bindings from the properties of observable objects. To resolve the problem with the above
example, we need to make the following change:

@Bindable var demoData : DemoData = DemoData (player: "John")

22.8 Environment Objects

Observed objects are best used when a particular state needs to be used by a few SwiftUI views within an app.
When one view navigates to another view that needs access to the same observed or state object, the originating
view will need to pass a reference to the observed object to the destination view during the navigation (navigation
will be covered in the chapter entitled “SwiftUI Lists and Navigation”). Consider, for example, the following code:

var demoData : DemoData = DemoData ()

NavigationLink (destination: SecondView (demoData)) {

Text ("Next Screen")

159

SwiftUI State Properties, Observation, and Environment Objects

In the above declaration, a navigation link is used to navigate to another view named SecondView, passing
through a reference to the demoData observed object.

While this technique is acceptable for many situations, it can become complex when many views within an app
need access to the same observed object. In this situation, using an environment object may make more sense.

An environment object is declared in the same way as an observable object. The key difference, however, is that
the object is stored in the environment of the view in which it is declared and, as such, can be accessed by all
child views without needing to be passed from view to view.

Consider the following example observable object declaration:
@Observable class SpeedSetting {
var speed = 0.0
}
Views needing to subscribe to an environment object reference the object using the @Environment property
wrapper. For example, the following view uses @Environment to access the SpeedSetting data:

struct SpeedDisplayView: View {
@Environment (SpeedSetting.self) var speedsetting: SpeedSetting

var body: some View {
Text ("Speed = \ (speedsetting.speed)")

}
Suppose that a second view also needs access to the speed data but needs to create a binding to the speed
property. In this case, we need to use the @Bindable property wrapper as follows:

struct SpeedControlView: View {
QEnvironment (SpeedSetting.self) var speedsetting: SpeedSetting

var body: some View {
@Bindable var speedsetting = speedsetting
Slider (value: $speedsetting.speed, in: 0...100)

}

At this point, we have an observable object named SpeedSetting and two views that reference an environment
object of that type. Still, we have not yet initialized an instance of the observable object. The logical place to
perform this task is the parent view of the above sub-views. In the following example, both views are sub-views
of the main ContentView:
struct ContentView: View {

let speedsetting = SpeedSetting()

var body: some View ({

VStack {
SpeedControlView ()
SpeedDisplayView ()

}

160

SwiftUI State Properties, Observation, and Environment Objects

}

If the app were to run at this point, however, it would crash shortly after launching with the following diagnostics:

Thread 1: Fatal error: No ObservableObject of type SpeedSetting found. A View.
environmentObject (:) for SpeedSetting may be missing as an ancestor of this

view.

The problem is that while we have created an instance of the observable object within ContentView, we still
need to insert it into the view hierarchy environment. This is achieved using the environment() modifier, passing
through the observable object instance as follows:

struct ContentView: View {

let speedsetting = SpeedSetting()

var body: some View {

VStack {
SpeedControlView ()
SpeedDisplayView ()

}

.environment (speedsetting)

}

Once these steps have been taken, the object will behave the same way as an observed object, except that it will
be accessible to all child views of the content view without being passed down through the view hierarchy. When
the slider in SpeedControlView is moved, the Text view in SpeedDisplayView will update to reflect the current
speed setting, thereby demonstrating that both views are accessing the same environment object:

Figure 22-1
22.9 Summary

SwiftUI provides three ways to bind data to an app’s user interface and logic. State properties store the views’
state in a user interface layout and are local to the current content view. These transient values are lost when the
view goes away.

The Observation framework can be used for data that is external to the user interface and is required only by a
subset of the SwiftUI view structures in an app. Using this approach, the @Observable macro must be applied
to the class that represents the data. To bind to an observable object property in a view declaration, the property
must use the @Bindable property wrapper.

The environment object provides the best solution for data external to the user interface, but for which access is
required for many views. Although declared the same way as observable objects, environment object bindings
are declared in SwiftUI View files using the @Environment property wrapper. Before becoming accessible to
child views, the environment object must also be initialized before being inserted into the view hierarchy using
the environment() modifier.

161

Chapter 23

23. A SwiftUI Example Tutorial

Now that some of the fundamentals of SwiftUT development have been covered, this chapter will begin to put
this theory into practice by building an example SwiftUI-based project.

This chapter aims to demonstrate using Xcode to design a simple interactive user interface using views, modifiers,
state variables, and some basic animation effects. This tutorial will use various techniques to add and modify
views. While this may appear inconsistent, the objective is to gain familiarity with the options available.

23.1 Creating the Example Project

Start Xcode and select the option to create a new project. Then, on the template selection screen, make sure
Multiplatform is selected and choose the App option as shown in Figure 23-1 before proceeding to the next
screen:

Figure 23-1
On the project options screen, name the project Swift UIDemo before clicking Next to proceed to the final screen.
Choose a suitable filesystem location for the project and click on the Create button.
23.2 Reviewing the Project

Once the project has been created, it will contain the Swift UIDemoApp.swift file along with a SwiftUI View file
named Content View.swift, which should have loaded into the editor and preview canvas ready for modification
(if it has not loaded, select it in the project navigator panel). Next, from the target device menu (Figure 23-2),
select an iPhone 15 simulator:

163

A SwiftUI Example Tutorial

Figure 23-2

If the preview canvas is in the paused state, click on the Resume button to build the project and display the
preview:

Figure 23-3

164

A SwiftUI Example Tutorial

23.3 Modifying the Layout

The view body currently consists of a vertical stack layout (VStack) containing an Image and a Text view.
Although we could reuse some of the existing layout for our example, we will learn more by deleting the current
views and starting over. Within the Code Editor, delete the existing views from the ContentView body:

import SwiftUI

struct ContentView: View ({

var body: some View {

Q4 1,
Stacrk

T ¢’ 4 T [T B A TR
LTIHIayT 1oy S LTIV AllT . gLrooT 7

- 3 3
TImageScatettarge)

= PRV | { PR
L ULTCTYLIOUUITUCUTOL W aCCTITLCUTULY

}

Next, add a Text view to the layout as follows:

struct ContentView: View {
var body: some View {
Text ("Hello, world!")

}

Right-click on the Text view entry within the code editor, and select the Embed in VStack option from the
resulting menu:

Figure 23-4
165

A SwiftUI Example Tutorial
Once the Text view has been embedded into the VStack the declaration will read as follows:

struct ContentView: View {
var body: some View ({
VStack {
Text ("Hello, world!")

)
23.4 Adding a Slider View to the Stack

The next item to be added to the layout is a Slider view. Display the Library panel by clicking on the ‘+” button
highlighted in Figure 23-5, locating the Slider in the View list, and dragging it into position beneath the Text
view in the editor. Ensure that the Slider view will be inserted into the existing stack before dropping the view

into place:

Figure 23-5
Once the slider has been dropped into place, the view implementation should read as follows:
struct ContentView: View ({
var body: some View {
VStack {
VStack {
Text ("Hello, world!")
Slider (value: Value)

)
23.5 Adding a State Property

The slider will be used to control the degree to which the Text view is to be rotated. As such, a binding must be

established between the Slider view and a state property into which the current rotation angle will be stored.
Within the code editor, declare this property and configure the Slider to use a range between 0 and 360 in

increments of 0.1:

166

A SwiftUI Example Tutorial
struct ContentView: View {

@State private var rotation: Double = 0

var body: some View {

VStack {
VStack {
Text ("Hello, world!")
Slider (value: $rotation, in: 0 ... 360, step: 0.1)

}
Note that since we are declaring a binding between the Slider view and the rotation state property, it is prefixed

by a ‘$’ character.

23.6 Adding Modifiers to the Text View

The next step is to add some modifiers to the Text view to change the font and adopt the rotation value stored
by the Slider view. Begin by displaying the Library panel, switch to the modifier list, and drag and drop a font

modifier onto the Text view entry in the code editor:

Figure 23-6
Select the modifier line in the editor, refer to the Attributes inspector panel, and change the font property from
Title to Large Title, as shown in Figure 23-7:

167

A SwiftUI Example Tutorial

Figure 23-7
Note that the modifier added above does not change the font weight. Since modifiers may also be added to a

view from within the Attributes inspector, take this opportunity to change the setting of the Weight menu from
Inherited to Heavy.

On completion of these steps, the View body should read as follows:
var body: some View {
VStack {
VStack {
Text ("Hello, world!")

.font (.largeTitle)
.fontWeight (.heavy)
Slider (value: S$rotation, in: 0 ... 360, step: 0.1)

)
23.7 Adding Rotation and Animation

The next step is to add the rotation and animation effects to the Text view using the value stored by the Slider
(animation is covered in greater detail in the “SwiftUI Animation and Transitions” chapter). This can be
implemented using a modifier as follows:
Text ("Hello, world!")

.font (.largeTitle)

.fontWeight (.heavy)

.rotationEffect (.degrees (rotation))

Note that since we are simply reading the value assigned to the rotation state property, instead of establishing a
binding, the property name is not prefixed with the ‘§$’ sign notation.

Click on the Live button (indicated by the arrow in Figure 23-8), wait for the code to compile, then use the slider
to rotate the Text view:

168

A SwiftUI Example Tutorial

Figure 23-8
Next, add an animation modifier to the Text view to animate the rotation over 5 seconds using the Ease In Out
effect:
Text ("Hello, world!")
.font (.largeTitle)
.fontWeight (.heavy)
.rotationEffect (.degrees (rotation))

.animation(.easeInOut (duration: 5), value: rotation)

Use the slider once again to rotate the text, and note that rotation is now smoothly animated.

23.8 Adding a TextField to the Stack

In addition to supporting text rotation, the app will also allow custom text to be entered and displayed on the
Text view. This will require the addition of a TextField view to the project. To achieve this, either directly edit
the View structure or use the Library panel to add a TextField so that the structure reads as follows (also note
the addition of a state property in which to store the custom text string and the change to the Text view to use
this property):

struct ContentView: View {

@State private var rotation: Double = 0
@State private var text: String = "Welcome to SwiftUI"

169

A SwiftUI Example Tutorial

var body: some View {

VStack {
VStack {

Text (text)
.font (.largeTitle)
.fontWeight (.heavy)
.rotationEffect (.degrees (rotation))
.animation (.easeInOut (duration: 5))

Slider (value: S$rotation, in: 0 ... 360, step: 0.1)

TextField ("Enter text here", text: S$text)
.textFieldStyle (RoundedBorderTextFieldStyle())

}

When the user enters text into the TextField view, that text will be stored in the fext state property and will
automatically appear on the Text view via the binding.

Return to the preview canvas and ensure that the changes work as expected.

23.9 Adding a Color Picker

A Picker view is the final view to be added to the stack before we tidy up the layout. The purpose of this view
will be to allow the user to choose the foreground color of the Text view from a range of color options. Begin by
adding some arrays of color names and Color objects, together with a state property to hold the current array
index value as follows:

import SwiftUI
struct ContentView: View {

var colors: [Color] = [.black, .red, .green, .blue]
var colornames = ["Black", "Red", "Green", "Blue"]

@State private var colorIndex = 0
@State private var rotation: Double = 0

@State private var text: String = "Welcome to SwiftUI"

With these variables configured, display the Library panel, locate the Picker in the Views screen, and drag and
drop it beneath the TextField view in the code editor to embed it in the existing VStack layout. Once added, the
view entry will read as follows:
Picker (selection: .constant(l), label: Text ("Picker") {

Text ("1") .tag (1)

Text ("2") .tag(2)
}

The Picker view needs to be configured to store the current selection in the colorIndex state property and to

170

A SwiftUI Example Tutorial

display an option for each color name in the colorNames array. In addition, to make the Picker more visually
appealing, we will change the background color for each Text view to the corresponding color in the colors array.

To iterate through the colorNames array, the code will use the SwiftUI ForEach structure. At first glance, ForEach
looks like just another Swift programming language control flow statement. In fact, ForEach is very different
from the Swift forEach() array method outlined earlier in the book.

ForEach is a SwiftUI view structure designed to generate multiple views by looping through a data set such as
an array or range. We may also configure the Picker view to display the color choices in various ways. For this
project, we must select the WheelPickerStyle (.wheel) style via the pickerStyle() modifier. Within the editor,
modify the Picker view declaration so that it reads as follows:

Picker (selection: $colorIndex, label: Text("Color")) ({

ForEach (0 ..< colornames.count, id:\.self) { color in
Text (colornames[color])
. foregroundColor (colors[color])

}
.pickerStyle (.wheel)

In the above implementation, ForEach is used to loop through the elements of the colornames array, generating
a Text view for each color and setting the displayed text and background color on each view accordingly.

The ForEach loop in the above example is contained within a closure expression. As outlined in the “Swift
Functions, Methods, and Closures” chapter, this expression can be simplified using shorthand argument names.
Using this technique, modify the Picker declaration so that it reads as follows:
Picker (selection: $colorIndex, label: Text ("Color™)) {
ForEach (0 ..< colornames.count, id:\.self) { cotor—in
Text (colornames[$0])

.foregroundColor (colors[$0])

}
.pickerStyle (.wheel)

Remaining in the code editor, locate the Text view and add a foreground color modifier to set the foreground
color based on the current Picker selection value:
Text (text)

.font (.largeTitle)

.fontWeight (.heavy)

.rotationEffect (.degrees (rotation))

.animation (.easeInOut (duration: 5), value: rotation)

. foregroundColor (colors[colorIndex])

Test the app in the preview canvas and confirm that the Picker view appears with all of the color names using the
corresponding foreground color and that color selections are reflected in the Text view.

23.10 Tidying the Layout

Until this point, the focus of this tutorial has been on the appearance and functionality of the individual views.
Aside from making sure the views are stacked vertically, however, no attention has been paid to the overall
appearance of the layout. At this point, the layout should resemble that shown in Figure 23-9:

171

A SwiftUI Example Tutorial

Figure 23-9

The first improvement needed is to add some space around the Slider, TextField, and Picker views so that they
are not so close to the edge of the device display. To implement this, we will add some padding modifiers to the
views:
Slider (value: S$rotation, in: 0 ... 360, step: 0.1)

.padding ()

TextField ("Enter text here", text: S$Stext)
.textFieldStyle (RoundedBorderTextFieldStyle())

.padding ()
Picker (selection: $colorIndex, label: Text ("Color"™)) {
ForEach (0 ..< colornames.count, id:\.self) {

Text (colornames[$0])

.foregroundColor (colors([$0])

172

A SwiftUI Example Tutorial

.pickerStyle (.wheel)
.padding ()

Next, the layout would look better if the Views were evenly spaced. One way to implement this is to add some

Spacer views before and after the Text view:

VStack {

Spacer ()

Text (text)
.font (.largeTitle)
.fontWeight (.heavy)
.rotationEffect (.degrees (rotation))
.animation (.easeInOut (duration: 5), value: rotation)
.foregroundColor (colors[colorIndex])

Spacer ()

Slider (value: S$rotation, in: 0 ... 360, step: 0.1)

.padding ()

The Spacer view provides a flexible space between views that will expand and contract based on the requirements
of the layout. If a Spacer is contained in a stack, it will resize along the stack axis. When used outside a stack

container, a Spacer view can resize horizontally and vertically.

To make the separation between the Text view and the Slider more obvious, also add a Divider view to the layout:

VStack {

Spacer ()

Text (text)
.font (.largeTitle)
.fontWeight (.heavy)
.rotationEffect (.degrees (rotation))
.animation (.easeInOut (duration: 5), value: rotation)
.foregroundColor (colors[colorIndex])

Spacer ()

Divider()

The Divider view draws a line to indicate the separation between two views in a stack container.

With these changes made, the layout should now appear in the preview canvas, as shown in Figure 23-10:

173

A SwiftUI Example Tutorial

Figure 23-10
23.11 Summary

The goal of this chapter has been to put into practice some of the theory covered in the previous chapters
through the creation of an example app project. In particular, the tutorial used various techniques for adding
views to a layout and using modifiers and state property bindings. The chapter also introduced the Spacer and
Divider views and used the ForEach structure to dynamically generate views from a data array.

174

Chapter 48

48. An Introduction to Core Data and
SwiftUI

A common requirement when developing iOS apps is to store data in some form of structured database.
One option is to directly manage data using an embedded database system such as SQLite. While this is a
perfectly good approach for working with SQLite in many cases, it does require knowledge of SQL and can
lead to some complexity in terms of writing code and maintaining the database structure. This complexity is
further compounded by the non-object-oriented nature of the SQLite API functions. In recognition of these
shortcomings, Apple introduced the Core Data Framework. Core Data is essentially a framework that places a
wrapper around the SQLite database (and other storage environments) enabling the developer to work with data
in terms of Swift objects without requiring any knowledge of the underlying database technology.

We will begin this chapter by defining some of the concepts that comprise the Core Data model before providing
an overview of the steps involved in working with this framework. Once these topics have been covered, the next
chapter will work through a SwiftUI Core Data tutorial.

48.1 The Core Data Stack

Core Data consists of several framework objects that integrate to provide the data storage functionality. This
stack can be visually represented as illustrated in Figure 48-1:

Figure 48-1

As we can see from Figure 48-1, the app sits on top of the stack and interacts with the managed data objects
handled by the managed object context. Of particular significance in this diagram is the fact that although
the lower levels in the stack perform a considerable amount of the work involved in providing Core Data
functionality, the application code does not interact with them directly.

379

An Introduction to Core Data and SwiftUI

Before moving on to the more practical areas of working with Core Data it is important to spend some time
explaining the elements that comprise the Core Data stack in a little more detail.

48.2 Persistent Container

The persistent container handles the creation of the Core Data stack and is designed to be easily subclassed to
add additional application-specific methods to the base Core Data functionality. Once initialized, the persistent
container instance provides access to the managed object context.

48.3 Managed Objects

Managed objects are the objects that are created by your application code to store data. A managed object
may be thought of as a row or a record in a relational database table. For each new record to be added, a new
managed object must be created to store the data. Similarly, retrieved data will be returned in the form of
managed objects, one for each record matching the defined retrieval criteria. Managed objects are instances of
the NSManagedObject class, or a subclass thereof. These objects are contained and maintained by the managed
object context.

48.4 Managed Object Context

Core Data-based applications never interact directly with the persistent store. Instead, the application code
interacts with the managed objects contained in the managed object context layer of the Core Data stack. The
context maintains the status of the objects in relation to the underlying data store and manages the relationships
between managed objects defined by the managed object model. All interactions with the underlying database
are held temporarily within the context until the context is instructed to save the changes, at which point the
changes are passed down through the Core Data stack and written to the persistent store.

48.5 Managed Object Model

So far we have focused on the management of data objects but have not yet looked at how the data models are
defined. This is the task of the Managed Object Model which defines a concept referred to as entities.

Much as a class description defines a blueprint for an object instance, entities define the data model for managed
objects. In essence, an entity is analogous to the schema that defines a table in a relational database. As such,
each entity has a set of attributes associated with it that define the data to be stored in managed objects derived
from that entity. For example, a Contacts entity might contain name, address, and phone number attributes.

In addition to attributes, entities can also contain relationships, fetched properties, persistent stores, and fetch
requests:

« Relationships - In the context of Core Data, relationships are the same as those in other relational database
systems in that they refer to how one data object relates to another. Core Data relationships can be one-to-one,
one-to-many, or many-to-many.

o Fetched property - This provides an alternative to defining relationships. Fetched properties allow properties
of one data object to be accessed from another data object as though a relationship had been defined between
those entities. Fetched properties lack the flexibility of relationships and are referred to by Apple’s Core Data
documentation as “weak, one-way relationships” best suited to “loosely coupled relationships”.

o Fetch request — A predefined query that can be referenced to retrieve data objects based on defined predicates.
For example, a fetch request can be configured into an entity to retrieve all contact objects where the name
field matches “John Smith”.

380

An Introduction to Core Data and SwiftUI

48.6 Persistent Store Coordinator

The persistent store coordinator is responsible for coordinating access to multiple persistent object stores. As an
iOS developer, you will never directly interact with the persistent store coordinator and will very rarely need to
develop an application that requires more than one persistent object store. When multiple stores are required,
the coordinator presents these stores to the upper layers of the Core Data stack as a single store.

48.7 Persistent Object Store

The term persistent object store refers to the underlying storage environment in which data are stored when
using Core Data. Core Data supports three disk-based and one memory-based persistent store. Disk-based
options consist of SQLite, XML, and binary. By default, iOS will use SQLite as the persistent store. In practice,
the type of store being used is transparent to you as the developer. Regardless of your choice of persistent store,
your code will make the same calls to the same Core Data APIs to manage the data objects required by your
application.

48.8 Defining an Entity Description

Entity descriptions may be defined from within the Xcode environment. When a new project is created with
the option to include Core Data, a template file will be created named <entityname>.xcdatamodeld. Xcode also
provides a way to manually add entity description files to existing projects. Selecting this file in the Xcode
project navigator panel will load the model into the entity editing environment as illustrated in Figure 48-2:

Figure 48-2

Create a new entity by clicking on the Add Entity button located in the bottom panel. The new entity will appear
as a text box in the Entities list. By default, this will be named Entity. Double-click on this name to change it.

To add attributes to the entity, click on the Add Attribute button located in the bottom panel, or use the + button
located beneath the Attributes section. In the Attributes panel, name the attribute and specify the type and any
other options that are required.

381

An Introduction to Core Data and SwiftUT
Repeat the above steps to add more attributes and additional entities.

The Xcode entity editor also allows relationships to be established between entities. Assume, for example, two
entities named Contacts and Sales. To establish a relationship between the two tables select the Contacts entity
and click on the + button beneath the Relationships panel. In the detail panel, name the relationship, specify the
destination as the Sales entity, and any other options that are required for the relationship:

Figure 48-3
48.9 Initializing the Persistent Container
The persistent container is initialized by creating a new NSPersistentContainer instance, passing through the
name of the model to be used, and then making a call to the loadPersistentStores method of that object as follows:

let persistentContainer: NSPersistentContainer

persistentContainer = NSPersistentContainer (name: "DemoData")
persistentContainer.loadPersistentStores { (storeDescription, error) in
if let error = error as NSError? {

fatalError ("Container load failed: \ (error)")

}
48.10 Obtaining the Managed Object Context

Since many of the Core Data methods require the managed object context as an argument, the next step after
defining entity descriptions often involves obtaining a reference to the context. This can be achieved by accessing
the viewContext property of the persistent container instance:

let managedObjectContext = persistentContainer.viewContext

48.11 Setting the Attributes of a Managed Object

As previously discussed, entities and the managed objects from which they are instantiated contain data in the
form of attributes. Once a managed object instance has been created as outlined above, those attribute values can
be used to store the data before the object is saved. Assuming a managed object named contact with attributes
named name, address and phone respectively, the values of these attributes may be set as follows before saving
the object to storage:

contact.name = "John Smith"

contact.address = "1 Infinite Loop"

contact.phone = "555-564-0980"

48.12 Saving a Managed Object

Once a managed object instance has been created and configured with the data to be stored it can be saved to
storage using the save() method of the managed object context as follows:

do {

try viewContext.save ()

382

An Introduction to Core Data and SwiftUI

} catch {
let error = error as NSError
fatalError ("An error occured: \ (error)")

)
48.13 Fetching Managed Objects

Once managed objects are saved into the persistent object store those objects and the data they contain will
likely need to be retrieved. One way to fetch data from Core Data storage is to use the @FetchRequest property
wrapper when declaring a variable in which to store the data. The following code, for example, declares a variable
named customers which will be automatically updated as data is added to or removed from the database:
@FetchRequest (entity: Customer.entity(), sortDescriptors: [])

private var customers: FetchedResults<Customer>

The @FetchRequest property wrapper may also be configured to sort the fetched results. In the following
example, the customer data stored in the customers variable will be sorted alphabetically in ascending order
based on the name entity attribute:
@FetchRequest (entity: Customer.entity(),

sortDescriptors: [NSSortDescriptor (key: "name", ascending: true)])

private var customers: FetchedResults<Customer>

48.14 Retrieving Managed Objects based on Criteria
The preceding example retrieved all of the managed objects from the persistent object store. More often than not
only managed objects that match specified criteria are required during a retrieval operation. This is performed
by defining a predicate that dictates criteria that a managed object must meet to be eligible for retrieval. For
example, the following code configures a @FetchRequest property wrapper declaration with a predicate to
extract only those managed objects where the name attribute matches “John Smith”:
@FetchRequest (

entity: Customer.entity(),

sortDescriptors: [],

predicate: NSPredicate(format: "name LIKE %@", "John Smith")
)

private var customers: FetchedResults<Customer>

The above example will maintain the customers variable so that it always contains the entries that match the
specified predicate criteria. It is also possible to perform one-time fetch operations by creating NSFetchRequest
instances, configuring them with the entity and predicate settings, and then passing them to the fetch() method
of the managed object context. For example:

@State var matches: [Customer]?

let fetchRequest: NSFetchRequest<Product> = Product.fetchRequest ()

fetchRequest.entity = Customer.entity ()
fetchRequest.predicate = NSPredicate (
format: "name LIKE %@Q@", "John Smith"

matches = try? viewContext.fetch (fetchRequest)

383

An Introduction to Core Data and SwiftUI

48.15 Summary

The Core Data Framework stack provides a flexible alternative to directly managing data using SQLite or other
data storage mechanisms. By providing an object-oriented abstraction layer on top of the data the task of
managing data storage is made significantly easier for the SwiftUTI application developer. Now that the basics of

Core Data have been covered, the next chapter entitled “A SwiftUI Core Data Tutorial” will work through the
creation of an example application.

384

Chapter 51

51. A SwiftUI Core Data and
CloudKit Tutorial

Using the CoreDataDemo project created in the chapter entitled “A SwiftUI Core Data Tutorial”, this chapter will
demonstrate how to add CloudKit support to an Xcode project and migrate from Core Data to CloudKit-based
storage. This chapter assumes that you have read the chapter entitled “An Introduction to Core Data and SwiftUI”.

51.1 Enabling CloudKit Support

Begin by launching Xcode and opening the CoreDataDemo project. Once the project has loaded into Xcode,
the first step is to add the iCloud capability to the app. Select the CoreDataDemo target located at the top of the
Project Navigator panel (marked A in Figure 51-1) so that the main panel displays the project settings. From
within this panel, select the Signing & Capabilities tab (B) followed by the CoreDataDemo target entry (C):

Figure 51-1

Click on the “+ Capability” button (D) to display the dialog shown in Figure 51-2. Enter iCloud into the filter bar,
select the result and press the keyboard enter key to add the capability to the project:

Figure 51-2
If iCloud is not listed as an option, you will need to pay to join the Apple Developer program as outlined in the
chapter entitled “Joining the Apple Developer Program”. If you are already a member, use the steps outlined in the
chapter entitled “Installing Xcode 15 and the iOS 17 SDK” to ensure you have created a Developer ID Application
certificate.

« »

Within the iCloud entitlement settings, make sure that the CloudKit service is enabled before clicking on the “+
button indicated by the arrow in Figure 51-3 below to add an iCloud container for the project:

401

A SwiftUI Core Data and CloudKit Tutorial

Figure 51-3

After clicking the “+” button, the dialog shown in Figure 51-4 will appear containing a text field into which you
will need to enter the container identifier. This entry should uniquely identify the container within the CloudKit
ecosystem, generally includes your organization identifier (as defined when the project was created), and should
be set to something similar to iCloud.com.yourcompany.CoreDataDemo.

Figure 51-4

Once you have entered the container name, click the OK button to add it to the app entitlements. Returning to
the Signing & Capabilities screen, make sure that the new container is selected:

Figure 51-5
51.2 Enabling Background Notifications Support

When the app is running on multiple devices and a data change is made in one instance of the app, CloudKit will
use remote notifications to notify other instances of the app to update to the latest data. To enable background

402

A SwiftUI Core Data and CloudKit Tutorial

notifications, repeat the above steps, this time adding the Background Modes capability. Once the capability
has been added, review the settings and make sure that Remote notifications mode is enabled as highlighted in
Figure 51-6:

Figure 51-6

Now that the necessary entitlements have been enabled for the app, all that remains is to make some minor code
changes to the project.

51.3 Switching to the CloudKit Persistent Container

Locate the Persistence.swift file in the project navigator panel and select it so that it loads into the code
editor. Within the init() function, change the container creation call from NSPersistentContainer to
NSPersistentCloudKitContainer as follows:

let container: NSPersistentCloudKitContainer

init () |
container = NSPersistentCloudKitContainer (name: "Products")

container.loadPersistentStores { (storeDescription, error) in
if let error = error as NSError? {

fatalError ("Container load failed: \ (error)")

}

Since multiple instances of the app could potentially change the same data at the same time, we also need to
define a merge policy to make sure that conflicting changes are handled:
init () {

container = NSPersistentCloudKitContainer (name: "Products")

container.loadPersistentStores { (storeDescription, error) in

if let error = error as NSError? {

fatalError ("Container load failed: \ (error)")

403

A SwiftUI Core Data and CloudKit Tutorial
}

container.viewContext.automaticallyMergesChangesFromParent = true

}
51.4 Testing the App

CloudKit storage can be tested on either physical devices, simulators, or a mixture of both. All test devices and
simulators must be signed in to iCloud using your Apple developer account and have the iCloud Drive option
enabled. Once these requirements have been met, run the CoreDataDemo app and add some product entries.
Next, run the app on another device or simulator and check that the newly added products appear. This confirms
that the data is being stored and retrieved from iCloud.

With both app instances running, enter a new product in one instance and check that it appears in the other.
Note that a bug in the simulator means that you may need to place the app in the background and then restore
it before the new data will appear.

51.5 Reviewing the Saved Data in the CloudKit Console

Once some product entries have been added to the database, return to the Signing & Capabilities screen for the
project (Figure 51-1) and click on the CloudKit Console button. This will launch the default web browser on
your system and load the CloudKit Dashboard portal. Enter your Apple developer login and password and, once
the dashboard has loaded, the home screen will provide the range of options illustrated in Figure 51-7:

Figure 51-7

Select the CloudKit Database option and, on the resulting web page, select the container for your app from
the drop-down menu (marked A in Figure 51-8 below). Since the app is still in development and has not been
published to the App Store, make sure that menu B is set to Development and not Production:

Figure 51-8

Next, we can query the records stored in the app container’s private database. Set the row of menus (C) to Private
Database, com.apple.coredata.cloudkit.zone, and Query Records respectively. Finally, set the Record Type menu
to CD_Product and the Fields menu to All:

404

A SwiftUI Core Data and CloudKit Tutorial

Figure 51-9

Clicking on the Query Records button should display a list of all the product items saved in the database as
illustrated in Figure 51-10:

Figure 51-10
51.6 Filtering and Sorting Queries

The queries we have been running so far are returning all of the records in the database. Queries may also be
performed based on sorting and filtering criteria by clicking in the “Add filter or sort to query” field. Clicking
in this field will display a menu system that will guide you through setting up the criteria. In Figure 51-11, for
example, the menu system is being used to set up a filtered query based on the CD_name field:

Figure 51-11
Similarly, Figure 51-12 shows the completed filter and query results:

405

A SwiftUI Core Data and CloudKit Tutorial

Figure 51-12

The same technique can be used to sort the results in ascending or descending order. You can also combine
multiple criteria in a single query. To edit or remove a query criterion, left-click on it and select the appropriate
menu option.

51.7 Editing and Deleting Records

In addition to querying the records in the database, the CloudKit Console also allows records to be edited
and deleted. To edit or delete a record, locate it in the query list and click on the entry in the name column as
highlighted below:

Figure 51-13

Once the record has been selected, the Record Details panel shown in Figure 51-14 will appear. In addition to
displaying detailed information about the record, this panel also allows the record to be modified or deleted.

406

A SwiftUI Core Data and CloudKit Tutorial

Figure 51-14
51.8 Adding New Records

To add a new record to a database, click on the “+” located at the top of the query results list and select the Create
New Record option:

Figure 51-15
When the New Record panel appears (Figure 51-16) enter the new data before clicking the Save button:
407

A SwiftUI Core Data and CloudKit Tutorial

Figure 51-16
51.9 Viewing Telemetry Data

To view telemetry data, return to the console home screen (Figure 51-7) and select the Telemetry option. Within
the telemetry screen, select the container, environment, timescale, and database type options:

Figure 51-17

Hovering the mouse pointer over a graph will display a key explaining the metric represented by the different
line colors:

408

A SwiftUI Core Data and CloudKit Tutorial

Figure 51-18

By default, telemetry data is displayed for database activity. This can be changed to display data relating to
notifications or database usage using tabs highlighted in Figure 51-19:

Figure 51-19

51.10 Summary

The first step in adding CloudKit support to an Xcode SwiftUI project is to add the iCloud capability, enabling
both the CloudKit service and remote notifications, and configuring a container to store the databases
associated with the app. The migration from Core Data to CloudKit is simply a matter of changing the code to
use NSPersistentCloudKitContainer instead of NSPersistentContainer and re-building the project.

CloudKit databases can be queried, modified, managed, and monitored from within the CloudKit Console.

409

Chapter 59

59. An Overview of Live Activities in
SwiftUI

The previous chapters introduced WidgetKit and demonstrated how it can be used to display widgets that
provide information to the user on the home screen, lock screen, and Today view. Widgets of this type present
information based on a timeline you create and pass to WidgetKit. In this chapter, we will introduce ActivityKit
and Live Activities and explore how these can be used to present dynamic information to the user via widgets
on the lock screen and Dynamic Island.

59.1 Introducing Live Activities
Live Activities are created using the ActivityKit and WidgetKit frameworks and present dynamic information in

glanceable form without restricting updates to a predefined timeline.

A single app can have multiple Live Activities, and the information presented can be sourced locally within
the app or delivered from a remote server via push notifications. One important caveat is that updates to the
Live Activity will not necessarily occur in real-time. Both the local and remote push notification options use
background modes of execution, the timing and frequency of which are dictated by the operating system based
on various factors, including battery status, the resource-intensive nature of the update task, and user behavior
patterns. We will cover this in more detail in the next chapter.

In addition to displaying information, Live Activities may contain Button and Toggle views to add interactive
behavior.

59.2 Creating a Live Activity

Once a Widget Extension has been added to an Xcode app project, the process of creating a Live Activity can be
separated into the following steps, each of which will be covered in this chapter and put to practical use in the
next chapter:

o Declare static and dynamic Activity Attributes.

« Design the Live Activity presentations for the lock screen and Dynamic Island.
« Configure and start the Live Activity.

« Update the Live Activity with the latest information.

« End the Live Activity when updates are no longer required.

59.3 Live Activity Attributes

The purpose of Live Activities is to present information to the user when the corresponding app has been
placed in the background. The Live Activity attributes declare the data structure to be presented and are created
using ActivityKit’s ActivityAttributes class. Two types of attributes can be included. The first type declares the
data that will change over the lifecycle of the Live Activity, such as the latest scores of a live sporting event or
an estimated flight arrival time. The second attribute type declares values that will remain static while the Live
Activity executes, such as the name of the sports teams or the airline and flight number of a tracked flight.

469

An Overview of Live Activities in SwiftUI

Within the ActivityAttributes declaration, the dynamic attributes are embedded in a ContentState structure
using the following syntax:
struct DemoWidgetAttributes: ActivityAttributes {
public struct ContentState: Codable, Hashable {
// dynamic attributes here

var arrivalTime: Date

// static attributes here
var airlineName: String = "Pending"
var flightNumber: String = "Pending"
}
59.4 Designing the Live Activity Presentations

Live Activities present data to the user via lock screen, Dynamic Island, and banner widgets, each of which
must be designed to complete the Live Activity. These presentations are created using SwiftUI views. While
the lock screen presentation (also used for the banner widget) consists of a single layout, the Dynamic Island
presentations are separated into regions.

The layouts for the Live Activity widgets are defined in a configuration structure subclassed from the WidgetKit
framework’s Widget class and must conform to the following syntax:

struct DemoWidgetLiveActivity: Widget {
var body: some WidgetConfiguration {
ActivityConfiguration (for: DemoWidgetAttributes.self) { context in
} dynamicIsland: { context in

DynamicIsland {

DynamicIslandExpandedRegion (.leading) {

}
DynamicIslandExpandedRegion(.trailing) {

}
DynamicIslandExpandedRegion (.bottom) {

}

DynamicIslandExpandedRegion (.center) {

}

} compactLeading: {
} compactTrailing: {

} minimal: {

470

An Overview of Live Activities in SwiftUI

}

Each element is passed a context object from which static and current dynamic data values can be accessed for
inclusion in the presentation views. For example, the arrival time and flight number from the previous activity
attributes declaration could be displayed by the widget as follows:

Text ("Arrival: \ (context.state.arrivalTime)")

Text ("Flight: \ (context.attributes.flightNumber)")

59.4.1 Lock Screen/Banner

Starting at the top of the Widget declaration, the layout for the lock screen and banner presentation consists
of an area the size of a typical lock screen notification. The following example will display two Text views in a
VStack layout:
struct DemoWidgetLiveActivity: Widget {
var body: some WidgetConfiguration {
ActivityConfiguration (for: DemoWidgetAttributes.self) { context in
VStack {
Text ("Arrival: \ (context.state.arrivalTime)")
Text ("Flight: \ (context.attributes.flightNumber)")

}

} dynamicIsland: { context in

59.4.2 Dynamic Island Expanded Regions

The Live Activity will display data using compact layouts on devices with a Dynamic Island. However, a long
press performed on the island will display the expanded widget. Unlike the lock screen widget, the expanded
Dynamic Island presentation is divided into four regions, as illustrated in Figure 59-1:

Trailing

Bottom /

Figure 59-1

/’

The following example highlights the code locations for each Dynamic Island region:

471

An Overview of Live Activities in SwiftUI

} dynamicIsland: { context in
DynamicIsland {

DynamicIslandExpandedRegion (.leading) {
Text ("Leading")

}

DynamicIslandExpandedRegion(.trailing) {
Text ("Trailing")

}

DynamicIslandExpandedRegion (.bottom) {
Text ("Bottom")

}

DynamicIslandExpandedRegion (.center) {
Text ("Center")

}

} compactLeading: {

The default sizing behavior of each region can be changed using priorities. In the following code, for example,
the leading and trailing region sizes are set to 25% and 75% of the available presentation width, respectively:
DynamicIslandExpandedRegion (.leading, priority: 0.25) ({

Text ("Leading")
}
DynamicIslandExpandedRegion(.trailing, priority: 0.75) {

Text ("Trailing")
}

59.4.3 Dynamic Island Compact Regions

The compact presentation is divided into regions located on either side of the camera, as illustrated in Figure
59-2:

Leading Trailing

Figure 59-2

An example compact declaration might read as follows:

472

An Overview of Live Activities in SwiftUI

} compactLeading: {
Text ("L")

} compactTrailing: {
Text ("T")

} minimal: {

59.4.4 Dynamic Island Minimal

The Live Activity uses minimal presentations when multiple Live Activities are running concurrently. In this
situation, the minimal presentation for one Live Activity will appear in the compact leading region (referred to
as the attached minimal), while another appears as a detached minimal positioned to the right of the camera:

Minimal Minimal
attached detached

Figure 59-3

For example:

} minimal: {
Text ("M")

59.5 Starting a Live Activity

Once the data model has been defined and the presentations designed, the next step is to request and start the
Live Activity. This is achieved by a call to the Activity.request() method. When the request method is called, an
activity attributes instance, an initialized ContentState, and a push type must be provided. The push type should
be set to token if the data updates will be received via push notifications or nil if updates are coming from the

app.
An optional stale date may also be included. When the stale date is reached, the state of the Live Activity context
will update to reflect that the information is out of date, allowing you to notify the user within the widget
presentation. To check if the Live Activity is out of date, access the context’s isStale property. The following
code, for example, displays a message in the Dynamic Island expanded presentation when the data needs to be
refreshed:

DynamicIslandExpandedRegion (.leading) {

473

An Overview of Live Activities in SwiftUI

VStack {
Text ("Arrival: \ (context.state.arrivalTime)")
Text ("Flight: \ (context.attributes.flightNumber)")

if (context.isStale) {
Text ("Out of date")

}
Set the staleDate parameter to nil if you do not plan to check the Live Activity status for this property.

Based on the above requirements, the first step is to create an activity attributes object and initialize any static
properties, for example:

var attributes = DemoWidgetAttributes ()
attributes.flightNumber = "Loading..."

The second requirement is a ContentState instance configured with initial dynamic values:

let contentState = DemoWidgetAttributes.ContentState (arrivalTime: Date.now + 60)

With the requirements met, the Activity.request() method can be called as follows:

private var activity: Activity<DemoWidgetAttributes>?

do {
activity = try Activity.request (
attributes: attributes,
content: .init(state: contentState, staleDate: nil),
pushType: nil
)
} catch (let error) {

print ("Error requesting live activity: \(error.localizedDescription).")

}

If the request is successful, the Live Activity will launch and be ready to receive updates. In the above example,
the push type has been set to nil to indicate the data is generated within the app. This would need to be changed
to token to support updates using push notifications.

59.6 Updating a Live Activity

To refresh a Live Activity with updated data, a call is made to the update() method of the activity instance
returned by the earlier call to the Activity.request() method. The update call must be passed an ActivityContent
instance containing a ContentState initialized with the updated dynamic data values and an optional stale date
value. For example:

let flightState = DemoWidgetAttributes.ContentState (arrivalTime: newTime)

Task {

await activity?.update (

474

An Overview of Live Activities in SwiftUI

ActivityContent<DemoWidgetAttributes.ContentState> (
state: flightState,
staleDate: Date.now + 120,
relevanceScore: 0

)y

alertConfiguration: nil

}

If your app starts multiple concurrent Live Activities, the system will display the one with the highest
relevanceScore. When working with push notifications, the content state is updated automatically, and the
update call is unnecessary.

59.7 Activity Alert Configurations

Alert configurations are passed to the update() method to notify the user of significant events in the Live Activity
data. When an alert is triggered, a banner (based on the lock screen presentation layout) appears on the device
screen, accompanied by an optional alert sound. The following code example creates an alert configuration
when a tracked flight has been significantly delayed:

var alertConfig: AlertConfiguration? = nil

if (arrvialTime > Date.now + 84000) {
alertConfig = AlertConfiguration (
title: "Flight Delay",
body: "Flight now arriving tomorrow",

sound: .default

}
Note that the title and body text will only appear on Apple Watch devices.

Once an alert configuration has been created, it can be passed to the update() method:
awailt activity?.update (
ActivityContent<DemoWidgetAttributes.ContentState> (
state: flightState,
staleDate: Date.now + 120,
relevanceScore: 0
)
alertConfiguration: alertConfig

)
59.8 Stopping a Live Activity

Live Activities are stopped by calling the end() method of the activity instance. The call is passed a ContentState
instance initialized with the final data values and a dismissal policy setting. For example:

let finalState = DemoWidgetAttributes.ContentState (arrivalTime: Date.now)

await activity?.end(
.init (state: finalState, staleDate: nil),

dismissalPolicy: .default
475

An Overview of Live Activities in SwiftUI
)

When the dismissalPolicy is set to default, the Live Activity widget will remain on the lock screen for four hours
unless the user removes it. Use immediate to instantly remove the Live Activity from the lock screen or after() to
dismiss the Live Activity at a specific time within the four-hour window.

59.9 Summary

Live Activities provide users with timely updates via widgets on the device lock screen and Dynamic Island.
Updated information can be generated locally within the app or sent from a remote server using push notifications.
A Live Activity consists of a set of attributes that define the data to be presented and SwiftUI-based layouts for
each of the widget presentations. Live Activity instances are started, stopped, and updated using calls to the
corresponding Activity object. When working with push notifications, the activity will update automatically on
receipt of a notification. Updates may also include an optional alert to attract the user’s attention.

476

Chapter 63

63. Testing Live Activity Push
Notifications

The previous chapter explained how to add support for push notifications to a Live Activity. Once enabled for
push notifications, the Live Activity is ready for testing.

Test push notifications can be sent from the CloudKit console or the command line using the curl tool. This
chapter will demonstrate both options, including generating the authentication key required for sending
notifications from the command line and declaring a notification payload.

In the next chapter, “Troubleshooting Live Activity Push Notifications”, we will outline techniques for identifying
and resolving push notification problems.
63.1 Using the Push Notifications Console

The best way to begin push notification testing is using the CloudKit console. The console provides an easy
way to send push notifications and, more importantly, identify why the Live Activity may not have received a
notification on the user’s device.

To access the CloudKit console, open a browser window, navigate to https://icloud.developer.apple.com/, and sign
in using your Apple Developer credentials. Once you have signed in, select the Push Notifications option in the
dashboard, as highlighted in Figure 63-1:

Figure 63-1

Use the drop-down menu (marked A in Figure 63-2) to select the LiveActivityDemo project, then click the
Enable Push Notifications button (B):

507

https://icloud.developer.apple.com/

Testing Live Activity Push Notifications

Figure 63-2

Once notifications have been enabled, click on the Create New Notification button:

Figure 63-3

The New Notification screen will appear ready for the notification details to be entered.

63.2 Configuring the Notification

In the General section of the New Notification screen, enter a name for the test and set the Environment menu
to Development (the Production setting is for when the app has been published on the App Store). Next, return
to Xcode, run the app on a device and start tracking, copy the push token from the Xcode console and paste it
into the Device Token field in the CloudKit console:

Figure 63-4

In the Request Headers section, the apns-topic field is read-only and will already contain your app Bundle
Identifier. Select the apns-push-type menu and change the selection to liveactivity. The apns-expiration setting

508

Testing Live Activity Push Notifications

can specify a date and time when the APNs service should stop trying to send the notification. The default
setting will only make one push attempt. The single delivery attempt option is actually more robust than the
name suggests, and this setting is adequate for most requirements.

The apns-priority value can be set to 1 (low), 5 (medium), or 10 (high). Use low priority for non-time-sensitive
updates and high priority for critical alerts. For most uses, however, medium is the recommended priority:

Figure 63-5

The final section will contain the notification payload, which requires additional explanation.

63.3 Defining the Payload

The notification payload is declared using JSON and must contain the following information:

- timestamp - The timestamp ensures that the Live Activity is updated only with the most up-to-date push
notification. Notifications containing a timestamp identical to or earlier than the previous notification are
discarded. For this reason, you must provide a new timestamp each time you send a push notification. The
timestamp is calculated as the number of elapsed seconds since January 1, 1970, and can be obtained using the
following online Epoch calculator:

https://www.epochconverter.com/

Alternatively, open a Terminal window on your Mac and run the following command:

date +%s

- event - This value specifies the action associated with the push notification and should be set to “update”

- content-state - The content state defines the updated data to be displayed by the Live Activity. It must match
exactly the dynamic variable names and data types declared in the Live Activity widget attributes structure.

Return to the CloudKit console and enter the following JSON declaration into the Payload section of the New
Notification form, where <recent timestamp> is replaced with the current value:
{
"aps":{

"timestamp":<recent time stamp>

"event":"update"

"content-state": {

"currentPrice": 310,

"changePercent": 37

509

https://www.epochconverter.com/

Testing Live Activity Push Notifications
}
63.4 Sending the Notification

Before sending the notification, ensure the app is still running on your device and check the Xcode console to
confirm that the push token is unchanged from when it was pasted into the notification form. Place the app
into the background, return to the CloudKit console, and click the Send button. After a short delay, the console
will report a problem with the entered information or attempt to send the notification. Check the Live Activity
widget on your device to see if the price information has updated to the values contained in the payload. If
nothing happens, it is time to troubleshoot the notification using the steps outlined in the next chapter.

63.5 Sending Push Notifications from the Command Line

Another way to test push notifications is from the command line of a Terminal window on your Mac using the
curl command. This technique has the advantage that it can be used to automate sending multiple notifications
without having to create each one in the CloudKit console manually. It also allows us to generate the timestamp
dynamically.

Behind the scenes, the CloudKit console automatically generated an authentication token for us that is required
to send push notifications. To generate this for the command line, you will need the Key ID and the key file saved
in the “Testing Live Activity Push Notifications” chapter. You will also need your Apple Developer Team ID, which
can be found by selecting the Membership details option in the Apple Developer console. You will also need to
specify the Bundle ID of your app (known as the topic in this context).

Once this information has been gathered, open a Terminal window, change directory to a suitable location,
create a new file named push.sh, and edit it as follows:

#!/bin/bash

TEAM ID="<Your Team ID here>"

TOKEN KEY FILE NAME="<Path to your P8 key file here>"

AUTH KEY ID="<Your Key ID here>"

TOPIC="<Your app Bundle ID here>"

APNS HOST NAME=api.sandbox.push.apple.com

JWT TSSUE TIME=$ (date +%s)

JWT_HEADER=$(printf '{ "alg": "ES256", "kid": "&s" }' "${AUTH_KEY_ID}" | openssl
base64 -e -A | tr -- '+/' '= ' | tr -d =)

JWT_CLAIMS:$(printf '{ "iss": "&s", "iat": %d }' "${TEAM_ID}" "${JWT_ISSUE_TIME}"
| openssl base64 -e -A | tr -- '+/' '- ' | tr -d =)
JWT_HEADER_CLAIMS="${JWT_HEADER}.${JWT_CLAIMS}"

JWTisIGNEDiHEADER7CLAIMS:$(printf "${JWT7HEADER7CLAIMS}" | openssl dgst -binary
-sha256 -sign "S${TOKEN KEY FILE NAME}" | openssl base64 -e -A | tr -- '"+/' '- ' |
tr -d =)

AUTHENTICATION TOKEN="${JWT HEADER}.${JWT CLAIMS}.${JWT SIGNED HEADER CLAIMS}"
echo SAUTHENTICATION TOKEN

Save the file and run it using the following command:
sh ./push.sh

On successful execution, the script should print the authentication token.

Use Xcode to launch the LiveActivityDemo app on a device and copy the latest push token from the console.
Edit the push.sh script file and add the token as follows:

510

Testing Live Activity Push Notifications

#!/bin/bash
ACTIVITY PUSH TOKEN="<Your push token here>"

Finally, the curl command can be added to the script. This consists of the authentication and push tokens and
the push type, topic, priority, and expiration settings. The command must also include the notification payload
with a current timestamp using the same JSON syntax used in the CloudKit console. With these requirements
in mind, add the following lines to the end of the push.sh file:
curl -v \

--header "authorization: bearer ${AUTHENTICATION TOKEN}" \

--header "apns-topic: <your bundle id here>.push-type.liveactivity" \

-—-header "apns-push-type: liveactivity" \

--header "apns-priority: 10" \

--header "apns-expiration: 0" \

--data '{"aps":{"timestamp":'$ (date +%s)',"event":"update","content-state":{"cu
rrentPrice":500, "changePercent":50}}} " \

--http2 https://api.development.push.apple.com:443/3/device/$SACTIVITY PUSH
TOKEN

Note that the topic header consists of your bundle ID followed by .push-type.liveactivity and that we are using
the date +%s command to create the timestamp.

Check the push token is still valid, execute the push script, and check the output for errors. If the APNs accepted
the notification, the output will end as follows:

> apns-expiration: 0

> Content-Length: 105

> Content-Type: application/x-www-form-urlencoded

>

* We are completely uploaded and fine

HTTP/2 200

apns-id: 92F32B4C-9527-0CAD-32FA-AC0B4A9200B1

apns-unique-id: 4090d3d1-b615-250a-79e5-d39e3801b542

* AN AN A

Connection #0 to host api.development.push.apple.com left intact

If the notification does not update the Live Activity widgets, record the apns-unique-id in the curl output and
use it to diagnose the problem using the steps in the “Troubleshooting Live Activity Push Notifications” chapter.

63.6 Summary

Test push notifications can be sent to a Live Activity using either the CloudKit console or from the command
line using the curl command. For both options, the notification must include the push token from the device
and a JSON payload containing the updated Live Activity content state. An additional authentication token is
required when testing is performed using the command line. The token is generated using the Key ID and file
created in the previous chapter.

511

Index

Symbols

& 37
A 38
A= 39
<< 39
<<= 39
&= 39
>> 39
>>= 39
| 38
|= 39
~ 37
$ 154
$0 59
@AppStorage 207, 208, 211, 213
@Attributes 414
@Bindable 158
@Binding 155, 251
@Environment 160
@FetchRequest 388, 392
@GestureState 342
@main 126
@MainActor 193
@Model 411, 417
@ObservedObject 157
22 operator 36
@Parameter 463
@Published 156
@Query 413, 419, 423
@Relationship 413, 419
@SceneStorage 207, 209, 211, 213
@State 153
@StateObject 157
Text Styles

body 135

callout 135
caption 135
footnote 135
headline 135
subheadline 135
@Transient 415

A

Actors 189
data isolation 190
Declaring 189
example 191
@MainActor 192
MainActor 192
nonisolated keyword 190
adaptable padding 143
addArc() 322
addCurve() 322
addLine() 322
addLines() 322
addQuadCurve() 322
addTask() function 183
Alignment 143
Cross Stack 223
alignmentGuide() modifier 219
Alignment Guides 215, 217
AlignmentID protocol 221
Alignment Types
custom 220
AND (&&) operator 35
AND operator 37
Animation 168, 329
automatically starting 334
autoreverse 331
easeln 330
easeInOut 330
easeOut 330
explicit 332
implicit 329

553

Index

linear 330

repeating 331
animation() modifier 329
AnyObject 92
AnyTransition 337
APNs 499
apns-expiration 508
APNs Key

registering 500
apns-priority 509
apns-topic 508
apns-unique-id 511
App 123
app delegate 502
append() method 239
AppEntity protocol 462
App Hierarchy 123
App Icons 547
App Intent Configuration 428
ApplIntentConfiguration 462
App Intents framework 495
ApplntentTimelineProvider 461
ApplntentTimelineProvider protocol 430
Apple Developer Program 3
Apple Push Notification service 499
Application Performance 119
AppStorage 207
App Store

creating archive 548

submission 545
App Store Connect 549
Architecture

overview 123
AreaMark 353
Array

forEach() 91

mixed type 92
Array Initialization 89
Array Item Count 90
Array Items

accessing 90

appending 91

554

inserting and deleting 91
Array Iteration 91
Arrays

immutable 89

mutable 89
as! keyword 31
Assets.xcassets 126
Assistant Editor 537
async

suspend points 177
async/await 177

asynchronous functions 176

Asynchronous Properties 186

async keyword 177
async-let bindings 179
AsyncSequence protocol 185
Attributes inspector 116
await keyword 177, 178

B

Background Notifications

enabling 402
BarMark 353
Bézier curves 322
binary operators 33
bit operators 37
Bitwise AND 37
Bitwise Left Shift 38
bitwise OR 38
bitwise right shift 39
bitwise XOR 38
body 135

Boolean Logical Operators 35

break statement 43

Build Errors 119

C

callout 135

cancelAll() function 184
Capsule() 320

caption 135

cardinal 358

case Statement 48
catch statement 99
multiple matches 99
catmullRom 358
CGRect 322, 323
Character data type 23
chartPlotStyle() 357
Charts 353, 359
chartPlotStyle() 357
foregroundStyle() modifier 356, 357, 361
interpolationMethod() modifier 357
interpolation options 357
mark type combining 355
mark types 353
multiple graphs 356
passing data to 354
PlottableValue 353
PointMark 362
symbol() modifier 357
checkCancellation() method 183
Child Limit 145
CircularProgressViewStyle 348
Class Extensions 74
closed range operator 35
closeSubPath() 322
Closure Expressions 58
shorthand argument names 59
closures 51
Closures 59
CloudKit 397
add container 402
Console 399, 404
Containers 397
Data Storage Quotas 398
enabling in Xcode 401
filtering and sorting 405
NSPersistentCloudKitContainer 403
Persistence Container 403
Record IDs 399
Records 398
Record Zones 399
References 399

Index
Sharing 400
Subscriptions 400
Telemetry Data 408
CloudKit console 507
push notifications 507
CloudKit Console 399, 404
CloudKit Sharing 400
CloudKit Subscriptions 400
code editor 109
context menu 116
Color
drop() modifier 324
.gradient 324
inner() modifier 324
shadow() modifier 324
Combine framework 156
Comparable protocol 86
Comparison Operators 34
Completion Handlers 175
Compound Bitwise Operators 39
computed properties 65
concrete type 69
Concurrent Tasks
launching 199
Conditional Control Flow 44
Configuration Intent UI 466
constants 25
Container Alignment 215
Container Child Limit 145
Containers 397
Container Views 137
ContentView.swift file 109, 126
Context Menus 315
continue Statement 43
Coordinator 519
Core Data 379, 385
enabling in Xcode 385
Entity Description 381
Fetched property 380
Fetch request 380
@FetchRequest 388, 392
loadPersistentStores() method 382

555

Index

Managed Object 382
Managed Object Context 380, 382
Managed Object Model 380
Managed Objects 380
NSFetchRequest 383, 395
NSPersistentContainer 382
NSSortDescriptor 392
Persistence Controller 387
Persistent Container 380
Persistent Object Store 381
Persistent Store Coordinator 381
Private Databases 398
Public Database 397
Relationships 380
tutorial 385
View Context 387
viewContext property 382

Core Data Stack 379

CPU cores 175

curl tool 507

Custom Alignment Types 220

Custom Container Views 137

custom fonts 135

Custom Paths 322

Custom Shapes 322

D

data encapsulation 62

Data Isolation 190

data race 189

Data Races 184

Data Storage Quotas 398
Debug Navigator 119

debug panel 109

Debug View Hierarchy 120
Declarative Syntax 103
Deep Links 455, 458
Default Function Parameters 53
defer statement 100
Detached Tasks 182
Developer Mode setting 118

Developer Program 3

556

Devices
managing 118
Dictionary Collections 92
Dictionary Entries
adding and removing 94
Dictionary Initialization 92
Dictionary Item Count 94
Dictionary Items
accessing and updating 94
Dictionary Iteration 94
didFinishLaunchingWithOptions 503
DisclosureGroup 243, 269, 282
syntax 274
tutorial 277
using 273
Disclosures 269
dismantleUIView() 518
Divider view 173
do-catch statement 99
multiple matches 99
Document App
creating 363
Document Content Type Identifier 365
DocumentGroup 124, 363, 364
Content Type Identifier 365
Document Structure 367
Filename Extensions 365
File Type Support 365
Handler Rank 365
Info.plist 373
navigation 369
overview 363
tutorial 373, 385
Type Identifiers 365
DocumentGroups
Exported Type Identifiers 366
Imported Type Identifiers 366
Double 22
downcasting 30
DragGesture.Value 342
drop() modifier 324
Dynamic Lists 233

E

easeln 330
easeInOut 330
easeOut 330
EditButton view 256
Entity Description 381, 385
defining 381, 385
EntityQuery 463
enum 80, 97
associated values 81
Enumeration 80
environment() 161
environmentObject() 161
Environment Object 159
example 201, 205
Errata 2
Error
throwing 98
Error Catching
disabling 100
Error Object
accessing 100
ErrorType protocol 97
Event handling 137
exclusive OR 38
Explicit Animation 332
Expression Syntax 33

external parameter names 53

F

fallthrough statement 50
FetchDescriptors 413
Fetched property 380
fetch() method 383
Fetch request 380
FileDocument class 368
FileWrapper 368

fill() modifier 319
Flexible frames. See Frames
Float 22

flow control 41

font

Index
create custom 135
footnote 135
for-await 185
forced unwrapping 27
forEach() 91
ForEach 171, 233,247
foregroundColor() modifier 320
foregroundStyle() modifier 356, 357, 361
for loop 41
Form container 248
Frames 141, 148
Geometry Reader 150
infinity 150
function 461
arguments 51
parameters 51
Function Parameters
variable number of 54
functions 51
as parameters 56
default function parameters 53
external parameter names 53
In-Out Parameters 55
parameters as variables 55

return multiple results 54

G

GeometryReader 150
gesture() modifier 339
gesture recognizer
removal of 340
Gesture Recognizers 339
exclusive 343
onChanged 340
sequenced 343
simultaneous 343
updating 342
Gestures
composing 343
getSnapshot() 430
getTimeline() 430
gradient 324

557

Index

Gradients
drawing 325
LinearGradient 326
RadialGradient 326
Graphics
drawing 319
overlays 321
Graphics Drawing 319
Grid 299
adaptive 288
alignment 304
column spanning 304
empty cells 302
fixed 288
flexible 288
spacing 304
gridCellAnchor() modifier 309
gridCellColumns() modifier 304
gridCellUnsized Axes() modifier 303
GridItems 287
adaptive 292
fixed 293
Grid Layouts 287
GridRow 299
alignment 307
empty cells 303
.gridCellAnchor() modifier 309
.gridCellColumns() modifier 304
.gridCellUnsized Axes() modifier 303

guard statement 45

H

half-closed range operator 36
Handler Rank 365
headline 135
Hierarchical data
displaying 270
HorizontalAlignment 220, 221
Hosting Controller 533
adding 536
HStack 132, 141

conversion to VStack 145

558

I

if ... else if ... Statements 45
if ... else ... Statements 44
if-let 28
if Statement 44
Image view 141
implicit alignment 215
Implicit Animation 329
implicitly unwrapped 30
Inheritance, Classes and Subclasses 71
init method 63
in keyword 58
inner() modifier 324
inout keyword 56
In-Out Parameters 55
Instance Properties 62
IntentTimelineProvider 456
Interface Builder 103
Interpolation
cardinal 358
catmullRom 358
monotone 358
stepCenter 358
stepEnd 358
stepStart 358
interpolationMethod() modifier 357
iOS Distribution Certificate 545
iOS SDK
installation 7
system requirements 7
isCancelled property 183
isEmpty property 184
is keyword 32

L

Label view 139
Layout Hierarchy 120
Layout Priority 146
lazy

keyword 67
LazyHGrid 287, 295
LazyHStack 148

Lazy properties 66
Lazy Stacks 148
vs. traditional 148
LazyVGrid 287
LazyVStack 148
Left Shift Operator 38
Library panel 114
Lifecycle Events 195
linear 330, 358
LinearGradient 326
lineLimit() modifier 147
LineMark 353
listRowSeparator() modifier 232
listRowSeparatorTint() modifier 232
Lists 231
dynamic 233
hierarchical 242
listRowSeparator() modifier 232
listRowSeparatorTint() modifier 232
making editable 240
refreshable 235
separators 232
listStyle() modifier 280
List view
adding navigation 250
listStyle() modifier 280
SidebarListStyle 280
List view
tutorial 245
Live Activity
adding interactivity 495
App Intent 495
frequent updates 502
isStale 497
payload 509
push notifications 507
Push Notifications 499
Push Token 505
pushTokenUpdates() 505
stale date 496
LiveActivityIntent protocol 495
Live View 17

Index

loadPersistentStores() method 382
localizedStandardContains() 424
local parameter names 53
Loops

breaking from 43

M

MainActor 192
Main.storyboard file 535
Main Thread , 175
makeBody() 350
makeCoordinator() 523, 524
makeUIView() 518
Managed Object

fetch() method 383

saving a 382

setting attributes 382
Managed Object Context 380, 382
Managed Object Model 380
Managed Objects 380

retrieving 383
mathematical expressions 33
Methods

declaring 62
minimap 110
Mixed Type Arrays 92
Model Attributes 414
Model Classes 411
Model Configuration 412
Model Container 412, 418
modelContainer(for:) 418
modelContainer(for:) modifier 412
Model Context 412, 418

delete() 413

fetch() 413

insert() 413

save() 413
Model Relationships 413
modifier() method 136
Modifiers 136

monotone 358

559

Index

N

Navigation 231
implementing 204
tutorial 245
navigationDestination(for:) modifier 237
navigationDestination() modifier 250, 255
NavigationLink 231, 235, 236, 250, 254
navigation path 239
NavigationPath 239, 255
append() method 239
removeLast() method 239
NavigationSplitView 243
NavigationStack 231, 236, 250
navigationDestination(for:) modifier 237
NavigationPath 239
path 239
navigationTitle() modifier 239, 253
Network Testing 119
new line 24
nil coalescing operator 36
nonisolated keyword 190
NOT (!) operator 35
NSFetchRequest 383, 395
NSPersistentCloudKitContainer 403
NSPersistentContainer 382
NSSortDescriptor 392

o

Objective-C 21
Observable Object

example 201
ObservableObject 153
ObservableObject protocol 156
Observation 156

@Bindable 158
Observation Framework 158
onAppear() 335
onAppear modifier 196
onChanged() 340
onChange modifier 197
onDelete() 240, 256

onDisappear modifier 196
560

onMove() 241, 256
onOpenUrl() 458
Opaque Return Types 69
operands 33
optional
implicitly unwrapped 30
optional binding 28
Optional Type 27
OR (||) operator 35
OR operator 38
OutlineGroup 243, 269, 281
tutorial 277
using 272
Overlays 321

P

Padding 143
padding() modifier 143
PageTabViewStyle() 312
Parameter Names 53
external 53
local 53
parent class 61
Path object 322
Paths 322
Performance
monitoring 119
Persistence Container
switching to 403
Persistence Controller
creating 387
Persistent Container 380, 382
initialization 382
Persistent Object Store 381
Persistent Store Coordinator 381
Physical iOS Device 117
running app on 117
Picker view 153
placeholder() 430, 456
Playground 11
creatinga 11

Live View 17

pages 17
rich text comments 16
Rich Text Comments 16
Playground editor 12
PlaygroundPage 18
PlaygroundSupport module 17
Playground Timelines 14
PlottableValue 353, 356
PlottableValue.value 354
PointMark 353, 362
Predicates 413
preferred text size 134
Preview Canvas 111
Preview on Device 113
Preview Pinning 112
Private Databases 398
Profile in Instruments 120
ProgressView 347
circular 347, 348
CircularProgressViewStyle 348
customization 349
indeterminate 347, 349
linear 347, 348
makeBody() 349, 350
progressViewStyle() 349
ProgressViewStyle 349
styles 347
progressViewStyle() 349
ProgressViewStyle 349
Property Wrappers 83
example 83
Multiple Variables and Types 85
Protocols 68
Public Database 397
push notifications 507
curl tool 507
troubleshooting 513
Push Notifications 499
enabling 501
Push Token 505
pushTokenUpdates() 505

Index

R

Range Operators 35
Record IDs 399

Record Zones 399
Rectangle() 319
RectangleMark 353
Reference Types 78
Refreshable lists 235
refreshable() modifier 235
removeLast() method 239
repeatCount() modifier 331
repeatForever() modifier 331
repeat ... while loop 42
Resume button 112

Right Shift Operator 39
Rotation 168

RuleMark 353

running an app 117

S

scale 337
Scene 123
ScenePhase 197
SceneStorage 207
ScrollView 148, 291
searchable() modifier 422
Segue Action 537
self 67
SF Symbols 139

macOS app 139
shadow() modifier 324
Shapes 322

drawing 319
shorthand argument names 59, 91, 171
SidebarListSyle 280
sign bit 39
Signing Identities 9
Simulator

running app 117
Simulators

managing 118
sleep() method 176

561

Index

slide 337

Slider view 166

snapshot() 430, 445, 456

some
keyword 69

SortDescriptor 413

source code
download 2

Spacers 143

Spacer view 173

Spacer View 143

spring() modifier 331

SQLite 379

Stacks 141
alignment 215
alignment guides 215
child limit 145
cross stack alignment 223
implicit alignment 215
Layout Priority 146

State Binding 155

State Objects 157

State properties 153
binding 154
example 166

stepCenter 358

stepStart 358

Stored and Computed Properties 65

stored properties 65

String
data type 23

stroke() modifier 320

StrokeStyle 320

struct keyword 77

Structured Concurrency 175, 176, 185
addTask() function 183
async/await 177
Asynchronous Properties 186
async keyword 177
async-let bindings 179
await keyword 177, 178
cancelAll() function 184

562

cancel() method 183
Data Races 184
detached tasks 182
error handling 180
for-await 185
isCancelled property 183
isEmpty property 184
priority 182
suspend point 179
suspend points 177
synchronous code 176
Task Groups 183
task hierarchy 181
Task object 178
Tasks 181
throw/do/try/catch 180
withTaskGroup() 183
withThrowingTaskGroup() 183
yield() method 183
Structures 77
subheadline 135
subtraction operator 33
Subviews 132
suspend points 177, 179
Swift
Actors 189
Arithmetic Operators 33
array iteration 91
arrays 89
Assignment Operator 33
async/await 177
async keyword 177
async-let bindings 179
await keyword 177, 178
base class 71
Binary Operators 34
Bitwise AND 37
Bitwise Left Shift 38
Bitwise NOT 37
Bitwise Operators 37
Bitwise OR 38
Bitwise Right Shift 39

Bitwise XOR 38

Bool 23

Boolean Logical Operators 35
break statement 43
calling a function 52

case statement 47
character data type 23
child class 71

class declaration 61

class deinitialization 63
class extensions 74

class hierarchy 71

class initialization 63
Class Methods 62

class properties 61

closed range operator 35
Closure Expressions 58
Closures 59

Comparison Operators 34
Compound Bitwise Operators 39
constant declaration 25
constants 25

continue statement 43
control flow 41

data types 21

Dictionaries 92

do ... while loop 42

error handling 97

Escape Sequences 24
exclusive OR 38
expressions 33

floating point 22

for Statement 41

function declaration 51
functions 51

guard statement 45
half-closed range operator 36
if ... else ... Statements 44
if Statement 44

implicit returns 21, 52
Inheritance, Classes and Subclasses 71

Instance Properties 62

Index
instance variables 62
integers 22
methods 61
opaque return types 69
operators 33
optional binding 28
optional type 27
Overriding 72
parent class 71
Property Wrappers 83
protocols 68
Range Operators 35
Reference Types 78
root class 71
single expression functions 52
single expression returns 52
single inheritance 71
Special Characters 24
Stored and Computed Properties 65
String data type 23
structured concurrency 175
structures 77
subclass 71
suspend points 177
switch fallthrough 50
switch statement 47
syntax 47

Ternary Operator 36
tuples 26
type annotations 25
type casting 30
type checking 30
type inference 25
Value Types 78
variable declaration 25
variables 25
while loop 42

Swift Actors 189

SwiftData 411, 417
@Attributes 414
FetchDescriptors 413
@Model 411

563

Index

Model Attributes 414
Model Classes 411

Model Container 412, 418
modelContainer(for:) 418

modelContainer(for:) modifier 412

Model Context 412, 418
Model Relationships 413
Predicates 413
@Query 419, 423
@Relationship 413, 419
SortDescriptor 413
@Transient 415
Swift Playground 11
Swift Structures 77
SwiftUI
create project 107
custom views 129
data driven 104
Declarative Syntax 103
example project 163
overview 103
Subviews 132
Views 129
SwiftUI Project
anatomy of 125
creating 107
SwiftUT Views 129
SwiftUI View template 203
SwiftUI vs. UIKit 104
switch statement 47
example 47
switch Statement 47
example 47
range matching 49
symbol() modifier 357

synchronous code 176

T

Tabbed Views 311
tabItem() 313
Tab Items 313
Tab Item Tags 313

564

TabView 311

PageTabViewStyle() 312
page view style 312
tab items 313

tag() 313
Task.detached() method 182
Task Groups 183

addTask() function 183
cancelAll() function 184
isEmpty property 184
withTaskGroup() 183
withThrowingTaskGroup() 183

Task Hierarchy 181
task modifier 199
Task object 178
Tasks 182

cancel() 183

detached tasks 182
isCancelled property 183
overview 181

priority 182

Telemetry Data 408
ternary operator 36
TextField view 169
Text Styles 134

Text view

adding modifiers 167

line limits 146

Threads

overview , 175

throw statement 98
timeline() 430, 461, 464
timeline entries 428
TimelineEntryRelevance 431
timeline() method 445
ToggleButton view 154
Toolbarltem 240

toolbar() modifier 240, 253
transition() modifier 337

Transitions 329, 336

asymmetrical 338

combining 337

.move(edge)
edge) 337

.opacity 337

.scale 337

slide 337
try statement 98
try! statement 100
Tuple 26
TupleView 130
Tutorial

Charts 359
Type Annotations 25
type casting 30
Type Checking 30
Type Identifiers 365
Type Inference 25
type safe programming 25

U

UlIHostingController 533
UlImagePickerController 525
UIKit 103
UIKit integration
data sources 520
delegates 520
UIKit Integration 517
Coordinator 519
UlNotificationCenter 503
Ulnt8 22
Ulntl6 22
Ulnt32 22
Ulnt64 22
UlIRefreshControl 519
UlScrolledView 520
UlView 517
SwiftUI integration 517
UlViewController 525
SwiftUI integration 525
UlViewControllerRepresentable protocol 525
UlViewRepresentable protocol 519
makeCoordinator() 519

unary negative operator 33

Index

Unicode scalar 25

Uniform Type Identifier 365

Unstructured Concurrency 181
cancel() method 183
detached tasks 182
isCancelled property 183
priority 182
yield() method 183

upcasting 30

updateView() 518

UserDefaults 208

UTI 365

UTType 368

UUID() method 233

\%

Value Types 78
variables 25
variadic parameters 54
VerticalAlignment 220, 221
View 124
ViewBuilder 138
View Context 387
viewContext property 382
ViewDimensions 221
ViewDimensions object 219
View Hierarchy

exploring the 120
ViewModifier protocol 136
Views

adding 203

as properties 133

modifying 133
VStack 141

conversion to HStack 145

w

where clause 29

where statement 49

while Loop 42
WidgetCenter 431
Widget Configuration 427

565

Index

WidgetConfiguration 427

WidgetConfigurationIntent 428, 461
WidgetConfiguration protocol 427
Widget Configuration Types 428

Widget Entry View 427, 429
Widget Extension 427
widgetFamily 453, 454
Widget kind 427
WidgetKit 449, 455
Configuration Intent UI 466
Deep Links 455, 458
Intent Configuration 427, 428
introduction 427
Reload Policy 430
ReloadPolicy
.after(Date) 430
.atEnd 430
.never 430
size families 449
snapshot() 430
Static Configuration 427, 428
timeline() 430
timeline entries 428
TimelineEntryRelevance 431
timeline example 440
timeline() method 445
Timeline Reload 431
tutorial 435
Widget Configuration 427

WidgetConfiguration protocol 427

widget entry view 443
Widget Entry View 427, 429
Widget Extension 427, 438
widgetFamily 453, 454
widget gallery 452
Widget kind 427
Widget Provider 430, 445
Widget Sizes 432
widget timeline 428
Widget Provider 430
Widget Sizes 432
widget timeline 428

566

widgetUrl() 457
WindowGroup 124, 126
withAnimation() closure 332
withTaskGroup() 183
withThrowingTaskGroup() 183

X

Xcode
account configuration 8
Attributes inspector 116
code editor 109
create project 107
debug panel 109
device log 515
enabling CloudKit 401
entity editor 381
installation 7
Library panel 114
preferences 8
preview canvas 111
Preview Resume button 112
project navigation panel 109
SwiftUI mode 107

XOR operator 38

Y

yield() method 183

Z

ZStack 141,215
alignment 225
ZStack Custom Alignment 225

	1. Start Here
	1.1 For Swift Programmers
	1.2 For Non-Swift Programmers
	1.3 Source Code Download
	1.4 Feedback
	1.5 Errata

	2. Joining the Apple Developer Program
	2.1 Downloading Xcode 15 and the iOS 17 SDK
	2.2 Apple Developer Program
	2.3 When to Enroll in the Apple Developer Program?
	2.4 Enrolling in the Apple Developer Program
	2.5 Summary

	3. Installing Xcode 15 and the iOS 17 SDK
	3.1 Identifying Your macOS Version
	3.2 Installing Xcode 15 and the iOS 17 SDK
	3.3 Starting Xcode
	3.4 Adding Your Apple ID to the Xcode Preferences
	3.5 Developer and Distribution Signing Identities
	3.6 Summary

	4. An Introduction to Xcode 15 Playgrounds
	4.1 What is a Playground?
	4.2 Creating a New Playground
	4.3 A Swift Playground Example
	4.4 Viewing Results
	4.5 Adding Rich Text Comments
	4.6 Working with Playground Pages
	4.7 Working with SwiftUI and Live View in Playgrounds
	4.8 Summary

	5. Swift Data Types, Constants, and Variables
	5.1 Using a Swift Playground
	5.2 Swift Data Types
	5.2.1 Integer Data Types
	5.2.2 Floating Point Data Types
	5.2.3 Bool Data Type
	5.2.4 Character Data Type
	5.2.5 String Data Type
	5.2.6 Special Characters/Escape Sequences

	5.3 Swift Variables
	5.4 Swift Constants
	5.5 Declaring Constants and Variables
	5.6 Type Annotations and Type Inference
	5.7 The Swift Tuple
	5.8 The Swift Optional Type
	5.9 Type Casting and Type Checking
	5.10 Summary

	6. Swift Operators and Expressions
	6.1 Expression Syntax in Swift
	6.2 The Basic Assignment Operator
	6.3 Swift Arithmetic Operators
	6.4 Compound Assignment Operators
	6.5 Comparison Operators
	6.6 Boolean Logical Operators
	6.7 Range Operators
	6.8 The Ternary Operator
	6.9 Nil Coalescing Operator
	6.10 Bitwise Operators
	6.10.1 Bitwise NOT
	6.10.2 Bitwise AND
	6.10.3 Bitwise OR
	6.10.4 Bitwise XOR
	6.10.5 Bitwise Left Shift
	6.10.6 Bitwise Right Shift

	6.11 Compound Bitwise Operators
	6.12 Summary

	7. Swift Control Flow
	7.1 Looping Control Flow
	7.2 The Swift for-in Statement
	7.2.1 The while Loop

	7.3 The repeat ... while loop
	7.4 Breaking from Loops
	7.5 The continue Statement
	7.6 Conditional Control Flow
	7.7 Using the if Statement
	7.8 Using if ... else … Statements
	7.9 Using if ... else if ... Statements
	7.10 The guard Statement
	7.11 Summary

	8. The Swift Switch Statement
	8.1 Why Use a switch Statement?
	8.2 Using the switch Statement Syntax
	8.3 A Swift switch Statement Example
	8.4 Combining case Statements
	8.5 Range Matching in a switch Statement
	8.6 Using the where statement
	8.7 Fallthrough
	8.8 Summary

	9. Swift Functions, Methods, and Closures
	9.1 What is a Function?
	9.2 What is a Method?
	9.3 How to Declare a Swift Function
	9.4 Implicit Returns from Single Expressions
	9.5 Calling a Swift Function
	9.6 Handling Return Values
	9.7 Local and External Parameter Names
	9.8 Declaring Default Function Parameters
	9.9 Returning Multiple Results from a Function
	9.10 Variable Numbers of Function Parameters
	9.11 Parameters as Variables
	9.12 Working with In-Out Parameters
	9.13 Functions as Parameters
	9.14 Closure Expressions
	9.15 Shorthand Argument Names
	9.16 Closures in Swift
	9.17 Summary

	10. The Basics of Swift Object-Oriented Programming
	10.1 What is an Instance?
	10.2 What is a Class?
	10.3 Declaring a Swift Class
	10.4 Adding Instance Properties to a Class
	10.5 Defining Methods
	10.6 Declaring and Initializing a Class Instance
	10.7 Initializing and De-initializing a Class Instance
	10.8 Calling Methods and Accessing Properties
	10.9 Stored and Computed Properties
	10.10 Lazy Stored Properties
	10.11 Using self in Swift
	10.12 Understanding Swift Protocols
	10.13 Opaque Return Types
	10.14 Summary

	11. An Introduction to Swift Subclassing and Extensions
	11.1 Inheritance, Classes, and Subclasses
	11.2 A Swift Inheritance Example
	11.3 Extending the Functionality of a Subclass
	11.4 Overriding Inherited Methods
	11.5 Initializing the Subclass
	11.6 Using the SavingsAccount Class
	11.7 Swift Class Extensions
	11.8 Summary

	12. An Introduction to Swift Structures and Enumerations
	12.1 An Overview of Swift Structures
	12.2 Value Types vs. Reference Types
	12.3 When to Use Structures or Classes
	12.4 An Overview of Enumerations
	12.5 Summary

	13. An Introduction to Swift Property Wrappers
	13.1 Understanding Property Wrappers
	13.2 A Simple Property Wrapper Example
	13.3 Supporting Multiple Variables and Types
	13.4 Summary

	14. Working with Array and Dictionary Collections in Swift
	14.1 Mutable and Immutable Collections
	14.2 Swift Array Initialization
	14.3 Working with Arrays in Swift
	14.3.1 Array Item Count
	14.3.2 Accessing Array Items
	14.3.3 Random Items and Shuffling
	14.3.4 Appending Items to an Array
	14.3.5 Inserting and Deleting Array Items
	14.3.6 Array Iteration

	14.4 Creating Mixed Type Arrays
	14.5 Swift Dictionary Collections
	14.6 Swift Dictionary Initialization
	14.7 Sequence-based Dictionary Initialization
	14.8 Dictionary Item Count
	14.9 Accessing and Updating Dictionary Items
	14.10 Adding and Removing Dictionary Entries
	14.11 Dictionary Iteration
	14.12 Summary

	15. Understanding Error Handling in Swift 5
	15.1 Understanding Error Handling
	15.2 Declaring Error Types
	15.3 Throwing an Error
	15.4 Calling Throwing Methods and Functions
	15.5 Accessing the Error Object
	15.6 Disabling Error Catching
	15.7 Using the defer Statement
	15.8 Summary

	16. An Overview of SwiftUI
	16.1 UIKit and Interface Builder
	16.2 SwiftUI Declarative Syntax
	16.3 SwiftUI is Data Driven
	16.4 SwiftUI vs. UIKit
	16.5 Summary

	17. Using Xcode in SwiftUI Mode
	17.1 Starting Xcode 15
	17.2 Creating a SwiftUI Project
	17.3 Xcode in SwiftUI Mode
	17.4 The Preview Canvas
	17.5 Preview Pinning
	17.6 The Preview Toolbar
	17.7 Modifying the Design
	17.8 Editor Context Menu
	17.9 Running the App on a Simulator
	17.10 Running the App on a Physical iOS Device
	17.11 Managing Devices and Simulators
	17.12 Enabling Network Testing
	17.13 Dealing with Build Errors
	17.14 Monitoring Application Performance
	17.15 Exploring the User Interface Layout Hierarchy
	17.16 Summary

	18. SwiftUI Architecture
	18.1 SwiftUI App Hierarchy
	18.2 App
	18.3 Scenes
	18.4 Views
	18.5 Summary

	19. The Anatomy of a Basic SwiftUI Project
	19.1 Creating an Example Project
	19.2 The DemoProjectApp.swift File
	19.3 The ContentView.swift File
	19.4 Assets.xcassets
	19.5 DemoProject.entitlements
	19.6 Preview Content
	19.7 Summary

	20. Creating Custom Views with SwiftUI
	20.1 SwiftUI Views
	20.2 Creating a Basic View
	20.3 Adding Views
	20.4 SwiftUI Hierarchies
	20.5 Concatenating Text Views
	20.6 Working with Subviews
	20.7 Views as Properties
	20.8 Modifying Views
	20.9 Working with Text Styles
	20.10 Modifier Ordering
	20.11 Custom Modifiers
	20.12 Basic Event Handling
	20.13 Building Custom Container Views
	20.14 Working with the Label View
	20.15 Summary

	21. SwiftUI Stacks and Frames
	21.1 SwiftUI Stacks
	21.2 Spacers, Alignment and Padding
	21.3 Grouping Views
	21.4 Dynamic HStack and VStack Conversion
	21.5 Text Line Limits and Layout Priority
	21.6 Traditional vs. Lazy Stacks
	21.7 SwiftUI Frames
	21.8 Frames and the Geometry Reader
	21.9 Summary

	22. SwiftUI State Properties, Observation, and Environment Objects
	22.1 State Properties
	22.2 State Binding
	22.3 Observable Objects
	22.4 Observation using Combine
	22.5 Combine State Objects
	22.6 Using the Observation Framework
	22.7 Observation and @Bindable
	22.8 Environment Objects
	22.9 Summary

	23. A SwiftUI Example Tutorial
	23.1 Creating the Example Project
	23.2 Reviewing the Project
	23.3 Modifying the Layout
	23.4 Adding a Slider View to the Stack
	23.5 Adding a State Property
	23.6 Adding Modifiers to the Text View
	23.7 Adding Rotation and Animation
	23.8 Adding a TextField to the Stack
	23.9 Adding a Color Picker
	23.10 Tidying the Layout
	23.11 Summary

	24. An Overview of Swift Structured Concurrency
	24.1 An Overview of Threads
	24.2 The Application Main Thread
	24.3 Completion Handlers
	24.4 Structured Concurrency
	24.5 Preparing the Project
	24.6 Non-Concurrent Code
	24.7 Introducing async/await Concurrency
	24.8 Asynchronous Calls from Synchronous Functions
	24.9 The await Keyword
	24.10 Using async-let Bindings
	24.11 Handling Errors
	24.12 Understanding Tasks
	24.13 Unstructured Concurrency
	24.14 Detached Tasks
	24.15 Task Management
	24.16 Working with Task Groups
	24.17 Avoiding Data Races
	24.18 The for-await Loop
	24.19 Asynchronous Properties
	24.20 Summary

	25. An Introduction to Swift Actors
	25.1 An Overview of Actors
	25.2 Declaring an Actor
	25.3 Understanding Data Isolation
	25.4 A Swift Actor Example
	25.5 Introducing the MainActor
	25.6 Summary

	26. SwiftUI Concurrency and Lifecycle Event Modifiers
	26.1 Creating the LifecycleDemo Project
	26.2 Designing the App
	26.3 The onAppear and onDisappear Modifiers
	26.4 The onChange Modifier
	26.5 ScenePhase and the onChange Modifier
	26.6 Launching Concurrent Tasks
	26.7 Summary

	27. SwiftUI Observable and Environment Objects – A Tutorial
	27.1 About the ObservableDemo Project
	27.2 Creating the Project
	27.3 Adding the Observable Object
	27.4 Designing the ContentView Layout
	27.5 Adding the Second View
	27.6 Adding Navigation
	27.7 Using an Environment Object
	27.8 Summary

	28. SwiftUI Data Persistence using AppStorage and SceneStorage
	28.1 The @SceneStorage Property Wrapper
	28.2 The @AppStorage Property Wrapper
	28.3 Creating and Preparing the StorageDemo Project
	28.4 Using Scene Storage
	28.5 Using App Storage
	28.6 Storing Custom Types
	28.7 Summary

	29. SwiftUI Stack Alignment and Alignment Guides
	29.1 Container Alignment
	29.2 Alignment Guides
	29.3 Custom Alignment Types
	29.4 Cross Stack Alignment
	29.5 ZStack Custom Alignment
	29.6 Summary

	30. SwiftUI Lists and Navigation
	30.1 SwiftUI Lists
	30.2 Modifying List Separators and Rows
	30.3 SwiftUI Dynamic Lists
	30.4 Creating a Refreshable List
	30.5 SwiftUI NavigationStack and NavigationLink
	30.6 Navigation by Value Type
	30.7 Working with Navigation Paths
	30.8 Navigation Bar Customization
	30.9 Making the List Editable
	30.10 Hierarchical Lists
	30.11 Multicolumn Navigation
	30.12 Summary

	31. A SwiftUI List and NavigationStack Tutorial
	31.1 About the ListNavDemo Project
	31.2 Creating the ListNavDemo Project
	31.3 Preparing the Project
	31.4 Adding the Car Structure
	31.5 Adding the Data Store
	31.6 Designing the Content View
	31.7 Designing the Detail View
	31.8 Adding Navigation to the List
	31.9 Designing the Add Car View
	31.10 Implementing Add and Edit Buttons
	31.11 Adding a Navigation Path
	31.12 Adding the Edit Button Methods
	31.13 Summary

	32. An Overview of Split View Navigation
	32.1 Introducing NavigationSplitView
	32.2 Using NavigationSplitView
	32.3 Handling List Selection
	32.4 NavigationSplitView Configuration
	32.5 Controlling Column Visibility
	32.6 Summary

	33. A NavigationSplitView Tutorial
	33.1 About the Project
	33.2 Creating the NavSplitDemo Project
	33.3 Adding the Project Data
	33.4 Creating the Navigation View
	33.5 Building the Sidebar Column
	33.6 Adding the Content Column List
	33.7 Adding the Detail Column
	33.8 Configuring the Split Navigation Experience
	33.9 Summary

	34. An Overview of List, OutlineGroup and DisclosureGroup
	34.1 Hierarchical Data and Disclosures
	34.2 Hierarchies and Disclosure in SwiftUI Lists
	34.3 Using OutlineGroup
	34.4 Using DisclosureGroup
	34.5 Summary

	35. A SwiftUI List, OutlineGroup, and DisclosureGroup Tutorial
	35.1 About the Example Project
	35.2 Creating the OutlineGroupDemo Project
	35.3 Adding the Data Structure
	35.4 Adding the List View
	35.5 Testing the Project
	35.6 Using the Sidebar List Style
	35.7 Using OutlineGroup
	35.8 Working with DisclosureGroups
	35.9 Summary

	36. Building SwiftUI Grids with LazyVGrid and LazyHGrid
	36.1 SwiftUI Grids
	36.2 GridItems
	36.3 Creating the GridDemo Project
	36.4 Working with Flexible GridItems
	36.5 Adding Scrolling Support to a Grid
	36.6 Working with Adaptive GridItems
	36.7 Working with Fixed GridItems
	36.8 Using the LazyHGrid View
	36.9 Summary

	37. Building SwiftUI Grids with Grid and GridRow
	37.1 Grid and GridRow Views
	37.2 Creating the GridRowDemo Project
	37.3 A Simple Grid Layout
	37.4 Non-GridRow Children
	37.5 Automatic Empty Grid Cells
	37.6 Adding Empty Cells
	37.7 Column Spanning
	37.8 Grid Alignment and Spacing
	37.9 Summary

	38. Building Tabbed and Paged Views in SwiftUI
	38.1 An Overview of SwiftUI TabView
	38.2 Creating the TabViewDemo App
	38.3 Adding the TabView Container
	38.4 Adding the Content Views
	38.5 Adding View Paging
	38.6 Adding the Tab Items
	38.7 Adding Tab Item Tags
	38.8 Summary

	39. Building Context Menus in SwiftUI
	39.1 Creating the ContextMenuDemo Project
	39.2 Preparing the Content View
	39.3 Adding the Context Menu
	39.4 Testing the Context Menu
	39.5 Summary

	40. Basic SwiftUI Graphics Drawing
	40.1 Creating the DrawDemo Project
	40.2 SwiftUI Shapes
	40.3 Using Overlays
	40.4 Drawing Custom Paths and Shapes
	40.5 Color Gradients and Shadows
	40.6 Drawing Gradients
	40.7 Summary

	41. SwiftUI Animation and Transitions
	41.1 Creating the AnimationDemo Example Project
	41.2 Implicit Animation
	41.3 Repeating an Animation
	41.4 Explicit Animation
	41.5 Animation and State Bindings
	41.6 Automatically Starting an Animation
	41.7 SwiftUI Transitions
	41.8 Combining Transitions
	41.9 Asymmetrical Transitions
	41.10 Summary

	42. Working with Gesture Recognizers in SwiftUI
	42.1 Creating the GestureDemo Example Project
	42.2 Basic Gestures
	42.3 The onChange Action Callback
	42.4 The updating Callback Action
	42.5 Composing Gestures
	42.6 Summary

	43. Creating a Customized SwiftUI ProgressView
	43.1 ProgressView Styles
	43.2 Creating the ProgressViewDemo Project
	43.3 Adding a ProgressView
	43.4 Using the Circular ProgressView Style
	43.5 Declaring an Indeterminate ProgressView
	43.6 ProgressView Customization
	43.7 Summary

	44. Presenting Data with SwiftUI Charts
	44.1 Introducing SwiftUI Charts
	44.2 Passing Data to the Chart
	44.3 Combining Mark Types
	44.4 Filtering Data into Multiple Graphs
	44.5 Changing the Chart Background
	44.6 Changing the Interpolation Method
	44.7 Summary

	45. A SwiftUI Charts Tutorial
	45.1 Creating the ChartDemo Project
	45.2 Adding the Project Data
	45.3 Adding the Chart View
	45.4 Creating Multiple Graphs
	45.5 Summary

	46. An Overview of SwiftUI DocumentGroup Scenes
	46.1 Documents in Apps
	46.2 Creating the DocDemo App
	46.3 The DocumentGroup Scene
	46.4 Declaring File Type Support
	46.4.1 Document Content Type Identifier
	46.4.2 Handler Rank
	46.4.3 Type Identifiers
	46.4.4 Filename Extensions
	46.4.5 Custom Type Document Content Identifiers
	46.4.6 Exported vs. Imported Type Identifiers

	46.5 Configuring File Type Support in Xcode
	46.6 The Document Structure
	46.7 The Content View
	46.8 Adding Navigation
	46.9 Running the Example App
	46.10 Summary

	47. A SwiftUI DocumentGroup Tutorial
	47.1 Creating the ImageDocDemo Project
	47.2 Modifying the Info.plist File
	47.3 Adding an Image Asset
	47.4 Modifying the ImageDocDemoDocument.swift File
	47.5 Designing the Content View
	47.6 Filtering the Image
	47.7 Testing the App
	47.8 Summary

	48. An Introduction to Core Data and SwiftUI
	48.1 The Core Data Stack
	48.2 Persistent Container
	48.3 Managed Objects
	48.4 Managed Object Context
	48.5 Managed Object Model
	48.6 Persistent Store Coordinator
	48.7 Persistent Object Store
	48.8 Defining an Entity Description
	48.9 Initializing the Persistent Container
	48.10 Obtaining the Managed Object Context
	48.11 Setting the Attributes of a Managed Object
	48.12 Saving a Managed Object
	48.13 Fetching Managed Objects
	48.14 Retrieving Managed Objects based on Criteria
	48.15 Summary

	49. A SwiftUI Core Data Tutorial
	49.1 Creating the CoreDataDemo Project
	49.2 Defining the Entity Description
	49.3 Creating the Persistence Controller
	49.4 Setting up the View Context
	49.5 Preparing the ContentView for Core Data
	49.6 Designing the User Interface
	49.7 Saving Products
	49.8 Testing the addProduct() Function
	49.9 Deleting Products
	49.10 Adding the Search Function
	49.11 Testing the Completed App
	49.12 Summary

	50. An Overview of SwiftUI Core Data and CloudKit Storage
	50.1 An Overview of CloudKit
	50.2 CloudKit Containers
	50.3 CloudKit Public Database
	50.4 CloudKit Private Databases
	50.5 Data Storage Quotas
	50.6 CloudKit Records
	50.7 CloudKit Record IDs
	50.8 CloudKit References
	50.9 Record Zones
	50.10 CloudKit Console
	50.11 CloudKit Sharing
	50.12 CloudKit Subscriptions
	50.13 Summary

	51. A SwiftUI Core Data and CloudKit Tutorial
	51.1 Enabling CloudKit Support
	51.2 Enabling Background Notifications Support
	51.3 Switching to the CloudKit Persistent Container
	51.4 Testing the App
	51.5 Reviewing the Saved Data in the CloudKit Console
	51.6 Filtering and Sorting Queries
	51.7 Editing and Deleting Records
	51.8 Adding New Records
	51.9 Viewing Telemetry Data
	51.10 Summary

	52. An Introduction to SwiftData
	52.1 Introducing SwiftData
	52.2 Model Classes
	52.3 Model Container
	52.4 Model Configuration
	52.5 Model Context
	52.6 Predicates and FetchDescriptors
	52.7 The @Query Macro
	52.8 Model Relationships
	52.9 Model Attributes
	52.10 Summary

	53. A SwiftData Tutorial
	53.1 About the SwiftData Project
	53.2 Creating the SwiftDataDemo Project
	53.3 Adding the Data Models
	53.4 Setting up the Model Container
	53.5 Accessing the Model Context
	53.6 Designing the Visitor List View
	53.7 Establishing the Relationship
	53.8 Creating the Visitor Detail View
	53.9 Modifying the Content View
	53.10 Testing the SwiftData Demo App
	53.11 Adding the Search Predicate
	53.12 Summary

	54. Building Widgets with SwiftUI and WidgetKit
	54.1 An Overview of Widgets
	54.2 The Widget Extension
	54.3 Widget Configuration Types
	54.4 Widget Entry View
	54.5 Widget Timeline Entries
	54.6 Widget Timeline
	54.7 Widget Provider
	54.8 Reload Policy
	54.9 Relevance
	54.10 Forcing a Timeline Reload
	54.11 Widget Sizes
	54.12 Widget Placeholder
	54.13 Summary

	55. A SwiftUI WidgetKit Tutorial
	55.1 About the WidgetDemo Project
	55.2 Creating the WidgetDemo Project
	55.3 Building the App
	55.4 Adding the Widget Extension
	55.5 Adding the Widget Data
	55.6 Creating Sample Timelines
	55.7 Adding Image and Color Assets
	55.8 Designing the Widget View
	55.9 Modifying the Widget Provider
	55.10 Configuring the Placeholder View
	55.11 Previewing the Widget
	55.12 Summary

	56. Supporting WidgetKit Size Families
	56.1 Supporting Multiple Size Families
	56.2 Adding Size Support to the Widget View
	56.3 Summary

	57. A SwiftUI WidgetKit Deep Link Tutorial
	57.1 Adding Deep Link Support to the Widget
	57.2 Adding Deep Link Support to the App
	57.3 Testing the Widget
	57.4 Summary

	58. Adding Configuration Options to a WidgetKit Widget
	58.1 Reviewing the Project Code
	58.2 Adding an App Entity
	58.3 Adding Entity Query
	58.4 Modifying the App Intent
	58.5 Modifying the Timeline Code
	58.6 Testing Widget Configuration
	58.7 Customizing the Configuration Intent UI
	58.8 Summary

	59. An Overview of Live Activities in SwiftUI
	59.1 Introducing Live Activities
	59.2 Creating a Live Activity
	59.3 Live Activity Attributes
	59.4 Designing the Live Activity Presentations
	59.4.1 Lock Screen/Banner
	59.4.2 Dynamic Island Expanded Regions
	59.4.3 Dynamic Island Compact Regions
	59.4.4 Dynamic Island Minimal

	59.5 Starting a Live Activity
	59.6 Updating a Live Activity
	59.7 Activity Alert Configurations
	59.8 Stopping a Live Activity
	59.9 Summary

	60. A SwiftUI Live Activity Tutorial
	60.1 About the LiveActivityDemo Project
	60.2 Creating the Project
	60.3 Building the View Model
	60.4 Designing the Content View
	60.5 Adding the Live Activity Extension
	60.6 Enabling Live Activities Support
	60.7 Enabling the Background Fetch Capability
	60.8 Defining the Activity Widget Attributes
	60.9 Adding the Percentage and Lock Screen Views
	60.10 Designing the Widget Layouts
	60.11 Launching the Live Activity
	60.12 Updating the Live Activity
	60.13 Stopping the Live Activity
	60.14 Testing the App
	60.15 Adding an Alert Notification
	60.16 Understanding Background Updates
	60.17 Summary

	61. Adding a Refresh Button to a Live Activity
	61.1 Adding Interactivity to Live Activities
	61.2 Adding the App Intent
	61.3 Setting a Stale Date
	61.4 Detecting Stale Data
	61.5 Testing the Live Activity Intent
	61.6 Summary

	62. A Live Activity Push Notifications Tutorial
	62.1 An Overview of Push Notifications
	62.2 Registering an APNs Key
	62.3 Enabling Push Notifications for the App
	62.4 Enabling Frequent Updates
	62.5 Requesting User Permission
	62.6 Changing the Push Type
	62.7 Obtaining a Push Token
	62.8 Removing the Refresh Button
	62.9 Summary

	63. Testing Live Activity Push Notifications
	63.1 Using the Push Notifications Console
	63.2 Configuring the Notification
	63.3 Defining the Payload
	63.4 Sending the Notification
	63.5 Sending Push Notifications from the Command Line
	63.6 Summary

	64. Troubleshooting Live Activity Push Notifications
	64.1 Push Notification Problems
	64.2 Push Notification Delivery
	64.3 Check the Payload Structure
	64.4 Validating the Push and Authentication Tokens
	64.5 Checking the Device Log
	64.6 Summary

	65. Integrating UIViews with SwiftUI
	65.1 SwiftUI and UIKit Integration
	65.2 Integrating UIViews into SwiftUI
	65.3 Adding a Coordinator
	65.4 Handling UIKit Delegation and Data Sources
	65.5 An Example Project
	65.6 Wrapping the UIScrolledView
	65.7 Implementing the Coordinator
	65.8 Using MyScrollView
	65.9 Summary

	66. Integrating UIViewControllers with SwiftUI
	66.1 UIViewControllers and SwiftUI
	66.2 Creating the ViewControllerDemo project
	66.3 Wrapping the UIImagePickerController
	66.4 Designing the Content View
	66.5 Completing MyImagePicker
	66.6 Completing the Content View
	66.7 Testing the App
	66.8 Summary

	67. Integrating SwiftUI with UIKit
	67.1 An Overview of the Hosting Controller
	67.2 A UIHostingController Example Project
	67.3 Adding the SwiftUI Content View
	67.4 Preparing the Storyboard
	67.5 Adding a Hosting Controller
	67.6 Configuring the Segue Action
	67.7 Embedding a Container View
	67.8 Embedding SwiftUI in Code
	67.9 Summary

	68. Preparing and Submitting an iOS 17 Application to the App Store
	68.1 Verifying the iOS Distribution Certificate
	68.2 Adding App Icons
	68.3 Assign the Project to a Team
	68.4 Archiving the Application for Distribution
	68.5 Configuring the Application in App Store Connect
	68.6 Validating and Submitting the Application
	68.7 Configuring and Submitting the App for Review

	Index

